JP6920676B2 - 微粒子製造装置および微粒子製造方法 - Google Patents

微粒子製造装置および微粒子製造方法 Download PDF

Info

Publication number
JP6920676B2
JP6920676B2 JP2017083154A JP2017083154A JP6920676B2 JP 6920676 B2 JP6920676 B2 JP 6920676B2 JP 2017083154 A JP2017083154 A JP 2017083154A JP 2017083154 A JP2017083154 A JP 2017083154A JP 6920676 B2 JP6920676 B2 JP 6920676B2
Authority
JP
Japan
Prior art keywords
gas
vacuum chamber
shield gas
arc discharge
supplied
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017083154A
Other languages
English (en)
Other versions
JP2018176121A (ja
Inventor
正明 田邉
正明 田邉
永井 久雄
久雄 永井
剛 小岩崎
剛 小岩崎
大熊 崇文
崇文 大熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2017083154A priority Critical patent/JP6920676B2/ja
Priority to CN201810211540.2A priority patent/CN108722325B/zh
Priority to US15/922,838 priority patent/US10898957B2/en
Publication of JP2018176121A publication Critical patent/JP2018176121A/ja
Application granted granted Critical
Publication of JP6920676B2 publication Critical patent/JP6920676B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/087Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J19/088Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/914Carbides of single elements
    • C01B32/956Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0809Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes
    • B01J2219/0813Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes employing two or more electrodes employing four electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0822The electrode being consumed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0839Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0803Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy
    • B01J2219/0805Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges
    • B01J2219/0807Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electric or magnetic energy giving rise to electric discharges involving electrodes
    • B01J2219/0837Details relating to the material of the electrodes
    • B01J2219/0841Metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0869Feeding or evacuating the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0871Heating or cooling of the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0875Gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0894Processes carried out in the presence of a plasma
    • B01J2219/0898Hot plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/10Inert gases
    • B22F2201/11Argon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/20Use of vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/13Use of plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/10Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/15Nickel or cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/25Noble metals, i.e. Ag Au, Ir, Os, Pd, Pt, Rh, Ru
    • B22F2301/255Silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2304/00Physical aspects of the powder
    • B22F2304/05Submicron size particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Plasma Technology (AREA)
  • Ceramic Capacitors (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • General Chemical & Material Sciences (AREA)

Description

本発明は、例えば、食品包装のフィルム材などのコーティング材、又は電子機器配線に使用されるインク原料などに利用される、微粒子製造装置及び微粒子製造方法に関するものである。
近年、ナノメートルサイズの微粒子は、電子材料、インク、又は化粧品など様々な分野で利用が進んでいる。
用途によって使用される微粒子は様々で、例えば電子材料としてはSiなどの材料の微粒子が用いられ、インク又は化粧品としてはTiOなどの微粒子が用いられている。
このようなナノメートルサイズの微粒子の製造方法として代表的なものには、固相反応法、液相反応法、及び、気相反応法の3種類がある。
この3種類の内、気相反応法では、レーザー又はプラズマにより高エネルギー状態の空間を作り、そこに材料となる粒子又は粒子を含むガスを供給する。これにより、材料を蒸発させ、再び冷却することにより凝縮凝固し、高純度の微粒子を形成することができる。この気相反応法は、他の2種類の方法に比べて、微粒子の粒径分布を制御しやすいという特徴がある。
このような気相反応法によるナノメートルサイズの微粒子の製造方法として、例えば特許文献1では、真空チャンバー内に接続した電極からのアーク放電による高温のアーク放電を生成し、このアーク放電中に供給器から材料となる粒子を送り込み、粒子を蒸発及び冷却することで、ナノメートルサイズの微粒子を作製する方法が記載されている。
また、特許文献1では、材料供給時に角度をつけた複数本の材料供給口を設け、かつ、これをモータにより回転させる構造が記載されている。これにより、材料供給時に同一の箇所へ、材料となる粒子が供給されてプラズマの温度が下がり、その結果、製造された微粒子の粒径分布が広くなる現象を抑制することができるため、微粒子を効率良く製造できる旨が記載されている。
特開2016−131935号公報
しかしながら、上述された従来の微粒子製造装置(特許文献1の図1参照)を用いて微粒子を製造する場合、材料ガスの供給口がプラズマ発生領域の中心付近のみであるため、供給する材料ガスの流速を増して生産効率を高めようとした場合に、連続して供給される粒子によりプラズマの温度が低下してしまう。その結果、プラズマ処理後の微粒子の粒度分布の幅が広くなり、粒子の大きさが不均一になるとともに処理効率も低下する。
本発明は、上述された従来の課題を考慮し、材料を効率良く大量にプラズマに投入し、生産量を増加させ、かつ低コストで生産することができる微粒子製造装置及び微粒子製造方法を提供することを目的とする。
前記目的を達成するため、本発明の1つの態様おける微粒子製造装置は、
真空チャンバーと、
前記真空チャンバーに接続されて材料粒子の供給を行う材料供給装置と、
前記真空チャンバーに接続されて先端が前記真空チャンバー内に突出してアーク放電によるプラズマを発生させる複数本の電極と、
前記電極のそれぞれに接続された交流電源と、
前記真空チャンバーに接続されて微粒子を回収する回収装置とを有しており、
前記真空チャンバー内で前記アーク放電を発生させ、前記材料粒子から前記微粒子を製造する微粒子製造装置であって、
前記真空チャンバー内において、前記材料粒子を含む材料ガスを供給する前記材料供給装置の複数の材料供給口は、前記複数本の電極より鉛直方向の下側に設置されており、
前記材料供給装置の前記複数の材料供給口が、前記複数本の電極先端を結んだ円周よりも内側に配置され、
前記材料供給装置の前記複数の材料供給口の内周に、第1シールドガスを供給する第1シールドガス供給口が配置されるとともに、前記複数の材料供給口の外周に、第2シールドガスを供給する複数の第2シールドガス供給口が配置され
前記第1シールドガスの流速を前記材料ガスの流速よりも速い流速になるように調節し、かつ、前記第2シールドガスの流速を前記材料ガスの流速よりも遅い流速になるように調節するように前記材料供給装置から供給される前記材料ガスおよび前記第1及び第2シールドガス供給口から供給される前記第1及び第2シールドガスの流量をそれぞれ調節可能な流量調節装置及び絞りが前記材料供給装置に接続されている。
前記目的を達成するために、本発明の別の態様における微粒子製造方法は、
前記態様に記載の微粒子製造装置を利用して、
前記アーク放電を発生させ、
前記材料ガスを前記アーク放電に供給し、
前記微粒子を生成する微粒子製造方法であって、
前記材料ガスを前記材料供給装置の前記複数の材料供給口から前記真空チャンバー内の前記アーク放電に供給するとき、前記材料ガスの流速よりも速い流速で前記第1シールドガスを前記真空チャンバー内に供給するとともに、前記材料ガスの流速よりも遅い流速で前記第2シールドガスを前記真空チャンバー内に供給する。
本発明の前記態様によると、真空チャンバー内において、材料粒子を含む材料ガスを供給する材料供給装置の複数の材料供給口は、複数本の電極より鉛直方向の下側に分散して設置されており、材料供給装置の複数の材料供給口の内周に第1シールドガス供給口が配置されるとともに、複数の材料供給口の外周に複数の第2シールドガス供給口が配置されている。このように構成する結果、最も高温のプラズマが発生する電極先端部のプラズマ領域に分散して材料を効率良く大量に供給することで、微粒子の生成量を上げ、かつ低コストで生産することができる。すなわち、内側の第1シールドガス供給口と外側の複数の第2シールドガス供給口との間に複数の材料供給口が配置されることになり、アーク放電プラズマ領域外まで拡がることなく第1シールドガスと第2シールドガスとで案内されつつ、これらの複数の材料供給口から材料ガスをアーク放電プラズマ中の複数個所へ供給することができて、アーク放電プラズマ中への材料ガスの供給を分散化することができる。これにより、プラズマの局所的な温度低下を抑制し、電極近傍のプラズマ高温領域に材料ガスを分散して効率良く供給することができる。また、材料ガスの内外周にシールドガスをそれぞれ導入することで、アーク放電プラズマ発生領域外への材料拡散を抑制することができる。この結果、前記態様の微粒子製造装置及び方法によれば、材料を効率良く大量にプラズマに投入し、生産量を増加させ、かつ低コストで生産することができる。
本発明における第1実施形態の微粒子製造装置の側面概略断面図 本発明における第1実施形態の微粒子製造装置の供給口の概略平面図 本発明における第1実施形態の微粒子製造装置の側面の供給口付近の拡大断面図
以下、図面を参照しながら、本発明における実施の形態について詳細に説明する
図1は本発明における第1実施形態の微粒子製造装置の側面概略断面図を示している。また、図2は本発明における第1実施形態の微粒子製造装置の供給口の概略平面図を示している。また、図3は本発明における第1実施形態の微粒子製造装置の側面の供給口付近の拡大断面図を示している。
(第1実施形態)
第1の実施形態に関わる微粒子製造装置は、図1、図2に示すように、真空チャンバー1と、材料供給装置10と、複数本の電極4と、交流電源5と、微粒子回収装置3とを少なくとも備えて、真空チャンバー1内でアーク放電16を発生させ、材料粒子17から微粒子18を製造するようにしている。真空チャンバーの一例は真空チャンバー1である。
図示しない水冷機構を円筒状の側壁内部に有した真空チャンバー1の側壁の内面は、アーク放電(プラズマ)の熱を効率良く材料に伝えるため、例えばセラミックからなる断熱材で覆われた構造になっている。
材料供給装置10は、真空チャンバー1に接続されて、材料粒子17の供給を行う。材料供給装置10は、真空チャンバー1の底部下方に配置されて、材料供給管11の上端部11aの複数の材料供給口12からキャリアガスによって材料粒子17を材料ガスMGとして、真空チャンバー1内に上向きに供給している。
複数本の電極4は、真空チャンバー1に接続されて、各先端が真空チャンバー1内に横方向(例えば水平方向沿い)に突出した状態で配置されて、アーク放電16によるプラズマを発生させる。電極4は、所定間隔をあけて配置されるように、材料供給口12の上側にそれぞれ配置されている。具体的には、電極4は、材料供給口12の近傍から微粒子回収部3までの間で材料粒子17が流れる方向(例えば下から上向きの方向)に対してそれぞれ交差する(例えば直交する)ように配置されている。一例として、アーク放電16を生成させる炭素製又は金属製の電極4は、図2に示すように、真空チャンバー1内に先端が横方向に突出した状態で、真空チャンバー1の円周壁に30°間隔で、電極4を12本の電極を放射状に配置することができる。一例として、電極4は金属電極で構成され、作製する微粒子18の不純物として金属材料が混ざらないようにするため、水冷及び冷却ガスを内部に流して、金属電極の蒸発を低減させている。また、電極4の材料の一例として、高融点金属であるタングステン電極を使用することができるが、これに代えて、タンタルなどの他の高融点金属又は炭素材料で構成される電極を使用しても良い。一例として、各電極4の先端が鉛直方向と垂直な1つの平面内に収まるように配置されている。第1実施例では、12本の電極4を放射状に配置しているが、電極数は6の倍数であれば、電極本数を増やしたり、又は、同一平面に配置するだけでなく、2段、又は、3段など多段化した電極配置にしても良い。電極4を多段化して配置することで、材料粒子を蒸発させる熱源であるアーク放電をさらに鉛直方向に拡大させることができ、大量の微粒子生成には優位である。また、電極4の材料の一例として、アーク放電しやすいように炭素電極を使用しているが、タングステン又はタンタルなどの高融点金属で構成される金属電極を使用しても良い。電極4の材料として金属電極を使用する場合には、金属電極の材料が蒸発して、生成した微粒子と混じったり、又は生成した微粒子と反応して合金にならないように、水冷又は冷却ガスを流すなど、金属電極を冷却できる機構にすると良い。
交流電源5は、其々n個(nは2以上の整数。例えば電極が12本の場合にはn=12である。)の交流電源5、具体的には、第1交流電源5−1、第2交流電源5−2、第3交流電源5−3、・・・、第n交流電源5−nとが接続されて、複数の電極4にそれぞれ位相を30°ずつずらした60Hzの交流電圧を交流電源5からそれぞれ印加し、アーク放電であるアーク放電16を生成する。
各電極4は、それぞれ独立して、モータなどで構成される電極駆動装置8により、真空チャンバー1の中心に対して放射線方向に進退する可動式になっている。よって、アーク放電を着火させるときには、互いの電極4の先端が接触するまで、電極駆動装置8により各電極4を真空チャンバー1の中心側に移動させる。アーク放電が着火後、其々電極4にかかる電流が一定になるように調整しながら、電極4を放射線方向(放射状に配置した電極の中心位置から外側に向かう方向)に電極駆動装置8により移動させ、電極4の先端を壁近傍にまで遠ざける。これにより、約10000℃のアーク放電であるアーク放電の面積が大きくなり、処理量を増加させることができる。電極駆動装置8としては、一例として、モータによりボールネジを正逆回転させて、ボールネジに螺合したナット部材に連結された電極4を軸方向に進退させるものである。
微粒子回収装置3は、真空チャンバー1に接続されて微粒子18を回収する。微粒子回収部3は、真空チャンバー1の上端に接続されて配置され、配管80を通じてポンプ7により排気され、真空チャンバー1で生成された微粒子18を回収している。
微粒子製造装置は、さらに、プラズマ放電を行うための雰囲気ガス(放電ガス)を供給する放電ガス供給管14と冷却ガス供給管15とを有している。
放電ガス供給管14は、真空チャンバー1の下側の複数の放電ガス供給管であって、材料供給口12の下側に、真空チャンバー1の中央向きに放電ガス供給可能に真空チャンバー1の中心軸周りに所定間隔毎に放射状に配置されている。具体的には、各放電ガス供給管14は、材料供給口12よりも真空チャンバー1の下部側に開口が配置され、ガス供給装置30から流量調節装置の一例としてのガス流量調整器31を介して、放電ガスを供給している。
冷却ガス供給管15は、真空チャンバー1の上側の複数の冷却ガス供給管であって、電極4の上側に、真空チャンバー1の中央向きに冷却ガス供給可能に真空チャンバー1の中心軸周りに所定間隔毎に放射状に配置されている。具体的には、冷却ガス供給管15は、電極4よりも真空チャンバー1の上部側に開口が配置され、ガス供給装置30からガス流量調整器31を介して、冷却ガスを供給している。
なお、制御装置100は、材料供給装置10と、微粒子回収部3と、圧力調整バルブ6と、排気ポンプ7と、ガス供給装置30と、各ガス流量調整器31と、後述するガス流量調整器32,33と、絞り31v,32v,33vと、交流電源5と、各電極駆動装置8とにそれぞれ接続されて、それぞれの動作を制御可能としている。
このような構成の微粒子製造装置は、真空チャンバー1内で放電を発生させ、材料粒子17から微粒子18を製造する装置である。
材料供給装置10が前記したように複数の材料供給口12を有しているが、複数の材料供給口12は複数本の電極4の鉛直下側に設置されている。鉛直上方から見た時に(平面視において)電極4の内側の先端を結ぶ円周40上よりもすべて内側に、例えば円周上に、複数の材料供給口12が配置されて、各材料供給口12から、キャリアガスによって材料粒子17を材料ガスMGとして供給する。従って、材料供給装置10からは、電極先端部を結んだ円周40よりも内側の位置に向かって材料供給が行われる。
また、鉛直上方から見た時に、材料供給装置10の前記複数の材料供給口12の内周側の例えば中央には、1個の第1シールドガス供給口13aが配置されて、第1シールドガス供給口13aから内側の第1シールドガスSG1を供給する。また、鉛直上方から見た時に、材料供給装置10の前記複数の材料供給口12の外周側には、例えば円周上に、複数の第2シールドガス供給口13bが配置されて、第2シールドガス供給口13bから第2シールドガスSG2を供給する。一例として、第1及び第2シールドガスSG1,SG2及びキャリアガスとしては、それぞれ、アルゴンガスなどを使用することができ、ガス供給装置30からガス流量調整器31,32,33を介して供給する。ここで、材料ガスMGと、第1シールドガスSG1と、第2シールドガスSG2との夫々に合わせて、周波数変調ユニットであるガス流量調整器31,32,33が合計3つ配置されている。図1に、これらのガス流量調整器31,32,33に対応して絞り31v,32v,33vも配置されているとともに、これらの配置に対応してガス供給装置30も3本のガスボンベと接続されている。
また、図2及び図3に示すように、複数の材料供給口12の配置位置よりも外周側の電極4と電極4との間の位置には、材料供給装置10の第2シールドガス供給口13bが配置され、各第2シールドガス供給口13bから第2シールドガスSG2が真空チャンバー1内の上方に向けて供給されている。この第2シールドガスSG2は、材料ガスMGよりも遅い流速になるよう、ガス流量調整器31,33と絞り31v,33vにより調節されている。ここで、遅い流速とは、材料ガスMGの第2シールドガスSG2への引き込まれを防止するとともに、粒子生産性を高める観点から、第2シールドガスSG2の流速は、材料ガスMGの流速の25%〜75%の範囲として、材料ガスMGの流速よりも遅くすることを意味している。
また、図2及び図3に示すように、複数の材料供給口12の配置位置よりも内周側の位置(例えば中央)にも、材料供給装置10の第1シールドガス供給口13aが1個配置され、第1シールドガス供給口13aから第1シールドガスSG1が真空チャンバー1内の上方に向けて供給されている。この第1シールドガスSG1は、材料ガスMGよりも速い流速になるよう、ガス流量調整器31,32と絞り31v,32vにより調節されている。ここで、速い流速とは、材料ガスMGの第1シールドガスSG1へ引き込まれるようにするとともに、引き込み過ぎないようにする観点から、第1シールドガスSG1の流速は、材料ガスMGの流速の125%〜200%の範囲として、材料ガスMGの流速よりも速くすることを意味している。
真空チャンバー1は、微粒子18を回収する微粒子回収装置3のフィルターを通して、排気ポンプ7から排気することができる。
前記構成にかかる微粒子製造装置を使用する微粒子製造方法は、
アーク放電16を生成し、
材料粒子17をアーク放電16に供給し、
微粒子18を生成する、
といった3つのステップで少なくとも構成されている。これらの動作は、制御装置100で動作制御されることにより自動的に実施可能である。
まず、アーク放電16を生成するとき、真空チャンバー1内で、複数の電極4のそれぞれに互いに位相が異なる交流電力を交流電源5から印加して、アーク放電16を生成する。
次いで、材料粒子17をアーク放電16に供給するとき、材料供給装置10の複数の材料供給口12からアーク放電16の領域内に材料粒子17を材料ガスMGとして供給するとともに、複数の材料供給口12の内側では、第1シールドガス供給口13aから第1シールドガスSG1を供給し、複数の材料供給口12の外側では、複数の第2シールドガス供給口13bから第2シールドガスSG2を供給する。これらは、材料ガスMGの供給と、第1シールドガスSG1の供給と、第2シールドガスSG2の供給とは同時的に行う。
次いで、微粒子18を生成するとき、材料粒子17が、アーク放電16の領域中を通過するときに、蒸発又は気化して材料ガスMGとなり、さらに、材料ガスMGがアーク放電16の領域から抜けた瞬間、材料ガスMGが急激に冷やされて微粒子18を生成する。
以下、この微粒子製造方法について、実際に行う手順に沿って詳しく説明する。
始めに、真空チャンバー1と微粒子回収部3と材料供給装置10とを排気ポンプ7によって数10Paまで排気することで、大気の酸素の影響を低減させる。
次に、ガス供給装置30からガス流量調整器31,32,33と絞り31v,32v,33vを介して、材料供給装置10と放電ガス供給管14と冷却ガス供給管15とにそれぞれガスを供給し、排気ポンプ7の前段に取付けた圧力調整バルブ6で真空チャンバー1内の圧力を調整する。真空チャンバー1の下側の放電ガス供給管14からは、複数個の供給口からガスを供給する。
真空チャンバー1の上側の冷却ガス供給管15は、複数個の供給口から冷却ガスを真空チャンバー1内に供給することで、アーク放電16により蒸発及び気化したガスを効率良く冷却し、作製する微粒子18の粒子径を制御する。
一例として、この第1実施形態の1つの実施例では、シリコンの微粒子を製造するため、真空チャンバー1内には、ガス供給器30から放電ガス供給管14と冷却ガス供給管15とを介して、放電ガス及び冷却ガスとしてアルゴンをそれぞれ供給して、真空チャンバー1内を、アルゴンの不活性ガス雰囲気中において微粒子製造を行った。ここでは、放電ガス及び冷却ガスとして不活性ガスを使用するが、例えば両ガスともアルゴンを使用している。この場合、材料の還元を促進させるため、真空チャンバー1内に、ガス供給装置30から放電ガス供給管14と冷却ガス供給管15とを介して、アルゴンに水素ガス及び微量の炭化系ガスを混合して導入しても良い。アルゴンに水素ガスを混合した場合は、アルゴン単体の場合よりもアーク放電が高温となるために、製造される微粒子の小径化を促進することができる。
次に、アーク放電16(言い換えれば、アーク放電)を生成させる。一例として、アーク放電16を生成させる金属製の電極4は、図1〜図3に示すように、真空チャンバー1内に先端が横方向に突出した状態で、真空チャンバー1の円周壁に30°間隔で12本の電極4を放射状に配置している。
これらの電極4には、交流電源5から位相をずらした交流電力を印加する。一例としては、12本の電極4にそれぞれ位相を30°ずつずらした60Hzの交流電力を12個の交流電源5−1,…,5−12から印加し、約10000℃のアーク放電である縦長のアーク放電16を生成した。
前記交流電力印加後に、アーク放電16を着火させるときには、任意の2本もしくは3本の電極4を電極駆動装置8により真空チャンバー1の中心側に移動させる。アーク放電16が着火後、各電極4にかかる電流が一定になるように調整し、其々電極4を放射線方向(放射状に配置した各電極4の先端同士で形成される円40の中心位置から外側に向かう方向)に電極駆動装置8により移動させ、電極4をそれぞれ所望の位置にする。
次に、アーク放電16が発生したのち、アーク放電16に対して、処理する材料の供給を開始する。一例として、微粒子18の原料となる材料粒子17は、約16ミクロンメートルのシリコン粉末を用い、材料供給装置10内に設置する。第1実施例では、16ミクロンメートルの粒子を使用したが、プラズマの条件にもよるが1ミクロンより大きくかつ100ミクロン以下の粒子径であれば、蒸発し、ナノメートルオーダーの微粒子を製造することは可能である。100ミクロンメートルより大きい粒子径の材料を使用すると、材料を完全に蒸発させることができず、生成される微粒子18が大きくなってしまうことがある。
材料供給装置10は、一例として、局部流動式粉末供給装置で構成されている。この局部流動式粉末供給装置では、キャリアガスの一例であるアルゴンガスの流量と、材料を導入した器の回転数とによって材料の供給量を制御して、粉末材料を一定の割合で材料供給管11に送ることができる。材料供給装置10の他の例としては、レーザーなどを用いて、粉末材料の表面とノズルの距離とを制御する表面倣い式粉末供給器、又は、ホッパーなどから溝に定量の粉末材料を供給してガスで吸引する定量式粉末供給器などがある。どの方式の粉末材料供給器を使用しても良いが、供給する粉末材料の量又は粉末材料の種類又は粒子径によって、粉末材料供給装置の方式を使い分ける。
材料供給装置10からキャリアガスとともに材料ガスMGとして供給された材料粒子17は、材料供給装置10から材料供給管11に送られ、材料供給口12の一例としての複数の材料供給口12から真空チャンバー1内のアーク放電16の発生領域に導入される。この材料ガスMGの供給時に、材料ガスMGが供給される領域よりも内側の領域において、材料ガスMGの流速よりも速い流速で第1シールドガスSG1が第1シールドガス供給口13aから供給されて、材料ガスMGが材料供給口12の位置よりも内側に引き込まれる結果、材料ガスMGがプラズマ発生領域外へと拡散するのを抑制している。また、この材料ガスMGの供給時に、材料ガスMGが供給される領域よりも外側の領域において、材料ガスMGの流速よりも遅い流速で第2シールドガスSG2が第2シールドガス供給口13bから供給されて、材料ガスMGが材料供給口12の位置よりも外側に引き込まれることがなく、材料ガスMGがプラズマ発生領域外へと拡散するのを抑制している。
このような状態で、真空チャンバー1内に導入された材料ガスMG中の材料粒子17は、アーク放電16の中を通過するときに、蒸発又は気化(以下、代表的に「蒸発」と称する。)して、材料粒子蒸発ガス(微粒子生成用ガス)となる。このように材料粒子17が蒸発して形成された材料粒子蒸発ガスは、アーク放電16の熱などによる上昇気流又は放電ガス供給管14からのガス流れなどによって、真空チャンバー1内を上昇し、アーク放電16の領域から抜けた瞬間、冷却ガス供給管15からの冷却ガスによって急激に冷やされ、球形の微粒子18が生成される。
一般に、材料が供給された場所のアーク放電16は、材料の蒸発によりプラズマの温度が奪われてしまうため、材料を蒸発させた場所のアーク放電16の温度が下がってしまう。従来、一般的な誘導結合型プラズマ(ICP)トーチなどの連続的放電に連続的に材料を投入する場合では、材料の蒸発によってプラズマの温度が下がってしまい、材料を完全に蒸発させることができず、比較的大きな微粒子18が生成されてしまい、製造された微粒子18の平均粒子径が大径化し、粒径分布が悪化してしまう。また、所望の粒子径の微粒子18を製造し、製造した微粒子18の粒径分布を良化させるためには、材料の投入量を制限するしかなく、処理量が低下してしまう。
これに対して、第1実施例で用いた複数の電極4で生成するアーク放電16は、位相が互いに異なる電力、例えば位相を30°ずらした60Hzの電力が供給可能な交流電源5を複数の電極4の電源としてそれぞれ使用している。このため、放電がパルス状になっており、アーク放電16として、常に高温の熱プラズマを生成することができる。さらに、前記のような材料供給法と合わせる事で、材料をパルス的に供給することができるため、材料の蒸発によるプラズマ温度の低下の影響を小さくすることができ、非常に効率良くアーク放電16の熱を材料の蒸発に利用することができる。このため、微粒子製造時の処理量の増加が期待できる。
アーク放電16などの高温プラズマは、粘性気体であるため、ある速度を有した材料粒子17でないと、アーク放電16の中に入らず処理されない。材料供給装置10及び材料供給口12がアーク放電16の鉛直方向の下側に配置され、材料供給口12が電極先端を結ぶ円周40よりも内側に設置され、アーク放電16の鉛直方向の下側から材料粒子17を供給する本装置では、アーク放電16にはじかれた未処理の材料粒子17は、重力によって鉛直方向の下側に落ち、アーク放電16の上方に位置しかつ処理された微粒子18とは、確実に分離することができる。
最後に、図1に示すように、アーク放電16により生成されかつ重力よりも軽い微粒子18は、放電ガス供給管14から供給されるガスの流れにより、排気機構を有する微粒子回収装置3によって回収される。図示していないが、微粒子回収装置3には、任意の微粒子径以上を分級できるサイクロンと、所望の微粒子18を回収できるバグフィルタとが取付けられている。また、回収した微粒子18を取出す際は、大気圧中での発火の恐れがあるため、大気を1%程度含んだ雰囲気下で数時間放置したのち、徐酸化処理を行い、大気中に取り出す。これにより、シリコンの微粒子18の表面は、1〜2ナノメートル程度酸化し、安全に取出すことが可能になる。これらの上記のプロセスにより、バグフィルタからは10以上300ナノメートル以下のシリコン微粒子を回収することができる。
第1実施例では、シリコン(Si)のナノメートルオーダーの微粒子を製造する方法について説明したが、ニッケル(Ni)、銀(Ag)若しくは銅(Cu)などの金属、又は、ガラス(SiO)、窒化シリコン(SiN)、アルミナ(Al)などの無機系の材料を微粒子生成用材料として微粒子18を生成しても良い。また、真空チャンバーに導入するガスと反応させることで、例えば、シリコン材料を用いて、一酸化シリコン(SiOx:x=1〜1.6)、窒化シリコン(SiNx:x=0.1〜1.3)又は炭化シリコン(SiCx:x=0.1〜1)の微粒子を生成しても良い。さらには、例えば、内側にシリコンの核を有し、外側にはアルミナ又は炭化シリコンなどで覆われているような複数の材料から構成される複合材料の生成に利用することもできる。
前記第1実施形態によれば、真空チャンバー1において、材料供給装置10の複数の材料供給口12は、複数本の電極4より鉛直方向の下側、複数本の電極4の先端を結んだ円周40よりも内側に分散して設置され、かつ、材料供給装置10の複数の材料供給口12の内周に第1シールドガス供給口13aが配置されるとともに、複数の材料供給口12の外周に複数の第2シールドガス供給口13bが配置されている。すなわち、内側の第1シールドガス供給口13aと外側の複数の第2シールドガス供給口13bとの間に複数の材料供給口12が分散して配置されることになり、アーク放電プラズマ領域外まで拡がることなく第1シールドガスSG1と第2シールドガスSG2とで案内されつつ、これらの複数の材料供給口12から材料ガスMGをアーク放電プラズマ16中の複数個所へ供給することができて、最も高温のプラズマが発生する電極先端部のプラズマ領域に材料を分散して効率良く大量に供給することで、微粒子18の生成量を上げ、かつ低コストで生産することができる。また、未処理の材料と、生成した微粒子18とを分離することで、生成する微粒子18の粒子径もそろいやすく、安定した生成処理が可能になる。
また、前記第1実施形態によれば、複数本の電極4には、其々交流電源5が接続されて
アーク放電16を生成できるので、他の方法に比べ、材料を蒸発させるプラズマ
の面積を大きくすることができる。
また、材料ガスMGの供給時に、材料ガスMGが供給される領域よりも外側の領域において、材料ガスMGの流速よりも遅い流速で第2シールドガスSG2が第2シールドガス供給口13bから供給されている。この結果、材料ガスMGが外周の第2シールドガスSG2に引き込まれることがなくなり、材料ガスMGがプラズマ発生領域外へと拡散するのを抑制することができる。
また、材料ガスMGの供給時に、材料ガスMGが供給される領域よりも内側の領域において、材料ガスMGの流速よりも速い流速で第1シールドガスSG1が第1シールドガス供給口13aから供給される。この結果、材料ガスMGよりも内周の第1シールドガスSG1の流速を速くすることで、材料ガスMGは材料供給口12の位置よりも内側に引き込まれ、その結果、材料ガスMGがプラズマ発生領域外へと拡散するのを抑制することができる。
また、図2に示すように外周の第2シールドガス供給口13bの位置は、微粒子製造装置を鉛直上側から見た場合、電極4の先端を結ぶ円周40よりも外側、かつ、電極4と電極4との間に配置されている。電極4と電極4との間に配置された第2シールドガス供給口13bから供給される第2シールドガスSGは、前述の通り、材料ガスMGよりも流速が遅くなっている。このため、材料ガスMGが外周の第2シールドガスSG2に引き込まれることがなくなり、プラズマ発生領域外への材料ガスMGの拡散を抑制することができる。
また、ガス流量調整器31,32,33で周波数を段階的に変調させることにより、材料ガスMGおよび、内外周の第1及び第2シールドガスSG1,SG2の流量を段階的に変化させることができる。これは、例えば、周波数を低周波数から高周波数へと0Hzから1000kHzまで、1分間で100kHzごとに変化させる、というようなことを意味している。また、その逆の場合もある。この結果として、ガスの供給量としては、周波数を上げれば流量が多くなる方向に変化し、周波数を下げれば流量が少なくなる方向に変化することになる。周波数でガス流量をコントロールすることになるので、流量の変化は、ガス種には依存しないことになる。これにより、材料ガスMGがプラズマ中に供給される位置を不均一に変化させることができ、プラズマの同一箇所への材料粒子17の投入によるプラズマの温度低下を抑制できる。この結果、材料を効率良く大量にプラズマに投入し、生産量を増加させ、かつ低コストで生産することができる。
また、ガス流量調整器31,32,33などの流量調節装置により各材料供給口からの材料粒子の供給のタイミングとシールドガスの供給のタイミングとを同期させるようにすることもできる。これは、例えば、ガス流量調整器31,32,33を用いた周波数制御によって、粒子の供給を行う時間間隔と、シールドガスを供給する時間間隔とを同期させる。この結果、プラズマ発生領域外への材料ガスの拡散に抑制することができる。また、周波数制御による材料ガス又はシールドガスの供給を行うことで、材料供給及びプラズマ処理における微粒子製造装置のアイドリングタイムを削減し、生産性を高めることができる。
なお、前記様々な実施形態又は変形例のうちの任意の実施形態又は変形例を適宜組み合わせることにより、それぞれの有する効果を奏するようにすることができる。また、実施形態同士の組み合わせ又は実施例同士の組み合わせ又は実施形態と実施例との組み合わせが可能であると共に、異なる実施形態又は実施例の中の特徴同士の組み合わせも可能である。
本発明の前記態様における微粒子製造装置及び微粒子製造方法は、プラズマの高温領域に材料を効率良く大量に供給することで、微粒子の生成量を上げ、かつ低コストで生産することができるため、電池の電極又はセラミックコンデンサーなど大量生産が要望されるデバイスに使用される微粒子製造装置及び微粒子製造方法として有用である。
1 真空チャンバー
3 微粒子回収装置
4 電極
5 交流電源
6 圧力調整バルブ
7 排気ポンプ
8 電極駆動装置
10 材料供給装置
11 材料供給管
12 材料供給口
13a,13b 第1及び第2シールドガス供給口
14 放電ガス供給管
15 冷却ガス供給管
16 アーク放電
17 材料粒子
18 微粒子
30 ガス供給装置
31,32,33 ガス流量調整器
40 電極の内側の先端を結ぶ円周
80 配管
100 制御装置
MG 材料ガス
SG1 第1シールドガス
SG2 第2シールドガス

Claims (5)

  1. 真空チャンバーと、
    前記真空チャンバーに接続されて材料粒子の供給を行う材料供給装置と、
    前記真空チャンバーに接続されて先端が前記真空チャンバー内に突出してアーク放電によるプラズマを発生させる複数本の電極と、
    前記電極のそれぞれに接続された交流電源と、
    前記真空チャンバーに接続されて微粒子を回収する回収装置とを有しており、
    前記真空チャンバー内で前記アーク放電を発生させ、前記材料粒子から前記微粒子を製造する微粒子製造装置であって、
    前記真空チャンバー内において、前記材料粒子を含む材料ガスを供給する前記材料供給装置の複数の材料供給口は、前記複数本の電極より鉛直方向の下側に設置されており、
    前記材料供給装置の前記複数の材料供給口が、前記複数本の電極先端を結んだ円周よりも内側に配置され、
    前記材料供給装置の前記複数の材料供給口の内周に、第1シールドガスを供給する第1シールドガス供給口が配置されるとともに、前記複数の材料供給口の外周に、第2シールドガスを供給する複数の第2シールドガス供給口が配置され
    前記第1シールドガスの流速を前記材料ガスの流速よりも速い流速になるように調節し、かつ、前記第2シールドガスの流速を前記材料ガスの流速よりも遅い流速になるように調節するように前記材料供給装置から供給される前記材料ガスおよび前記第1及び第2シールドガス供給口から供給される前記第1及び第2シールドガスの流量をそれぞれ調節可能な流量調節装置及び絞りが前記材料供給装置に接続されている微粒子製造装置。
  2. 前記第2シールドガス供給口は、前記複数本の電極と電極との間に配置されている請求項1に記載の微粒子製造装置。
  3. 前記第2シールドガス供給口は、前記複数本の電極先端を結んだ円周よりも外側に配置されている請求項1又は2に記載の微粒子製造装置。
  4. 請求項1〜のいずれか1つに記載の微粒子製造装置を利用して、
    前記アーク放電を発生させ、
    前記材料ガスを前記アーク放電に供給し、
    前記微粒子を生成する微粒子製造方法であって、
    前記材料ガスを前記材料供給装置の前記複数の材料供給口から前記真空チャンバー内の前記アーク放電に供給するとき、前記材料ガスの流速よりも速い流速で前記第1シールドガスを前記真空チャンバー内に供給するとともに、前記材料ガスの流速よりも遅い流速で前記第2シールドガスを前記真空チャンバー内に供給する、微粒子製造方法。
  5. 請求項1〜3のいずれか1つに記載の微粒子製造装置を利用して、
    前記アーク放電を発生させ、
    前記材料ガスを前記アーク放電に供給し、
    前記微粒子を生成する微粒子製造方法であって、
    前記材料ガスを前記材料供給装置の前記複数の材料供給口から前記真空チャンバー内の前記アーク放電に供給するとき、前記材料ガスの流速よりも速い流速で前記第1シールドガスを前記真空チャンバー内に供給するとともに、前記材料ガスの流速よりも遅い流速で前記第2シールドガスを前記真空チャンバー内に供給するとともに、
    前記流量調節装置により前記各材料供給口からの前記材料粒子の供給のタイミングと前記シールドガスの供給のタイミングとを同期させる、微粒子製造方法。
JP2017083154A 2017-04-19 2017-04-19 微粒子製造装置および微粒子製造方法 Active JP6920676B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017083154A JP6920676B2 (ja) 2017-04-19 2017-04-19 微粒子製造装置および微粒子製造方法
CN201810211540.2A CN108722325B (zh) 2017-04-19 2018-03-14 微粒制造装置以及微粒制造方法
US15/922,838 US10898957B2 (en) 2017-04-19 2018-03-15 Production apparatus and production method for fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017083154A JP6920676B2 (ja) 2017-04-19 2017-04-19 微粒子製造装置および微粒子製造方法

Publications (2)

Publication Number Publication Date
JP2018176121A JP2018176121A (ja) 2018-11-15
JP6920676B2 true JP6920676B2 (ja) 2021-08-18

Family

ID=63852617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017083154A Active JP6920676B2 (ja) 2017-04-19 2017-04-19 微粒子製造装置および微粒子製造方法

Country Status (3)

Country Link
US (1) US10898957B2 (ja)
JP (1) JP6920676B2 (ja)
CN (1) CN108722325B (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108368442A (zh) * 2015-11-03 2018-08-03 责任能源股份有限公司 用于处理材料以在模块化结构中生成合成气的系统和设备

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7600738A (nl) * 1976-01-23 1977-07-26 Plasmainvent Ag Inrichting voor het plasma-spuiten.
GB1529526A (en) * 1976-08-27 1978-10-25 Tetronics Res & Dev Co Ltd Apparatus and procedure for reduction of metal oxides
US4696855A (en) * 1986-04-28 1987-09-29 United Technologies Corporation Multiple port plasma spray apparatus and method for providing sprayed abradable coatings
CA2084281C (fr) * 1992-12-01 1999-07-06 Roberto Nunes Szente Torche a plasma pour deposition avec injection centrale
JP2823494B2 (ja) * 1993-09-29 1998-11-11 健 増本 非晶質金属超微粒子及びその製造方法
US6379419B1 (en) * 1998-08-18 2002-04-30 Noranda Inc. Method and transferred arc plasma system for production of fine and ultrafine powders
US20030155079A1 (en) * 1999-11-15 2003-08-21 Andrew D. Bailey Plasma processing system with dynamic gas distribution control
DE60101840T2 (de) * 2000-02-10 2004-11-18 Tetronics Ltd., Faringdon Plasmareaktor zur herstellung von feinem pulver
JP4770029B2 (ja) * 2001-01-22 2011-09-07 株式会社Ihi プラズマcvd装置及び太陽電池の製造方法
US20100314788A1 (en) * 2006-08-18 2010-12-16 Cheng-Hung Hung Production of Ultrafine Particles in a Plasma System Having Controlled Pressure Zones
US7758838B2 (en) * 2006-08-18 2010-07-20 Ppg Industries Ohio, Inc. Method and apparatus for the production of ultrafine particles and related coating compositions
JP6277844B2 (ja) * 2014-04-21 2018-02-14 Jfeエンジニアリング株式会社 ナノ粒子材料製造装置
JP6208107B2 (ja) 2014-10-01 2017-10-04 東芝三菱電機産業システム株式会社 微粒子生成装置
JP6392652B2 (ja) * 2014-12-05 2018-09-19 株式会社スギノマシン 湿式微粒化方法及び湿式微粒化装置
JP6337354B2 (ja) * 2015-01-20 2018-06-06 パナソニックIpマネジメント株式会社 微粒子製造装置及び微粒子製造方法
KR102452084B1 (ko) * 2015-09-22 2022-10-11 (주) 엔피홀딩스 파티클 저감을 위한 플라즈마 반응기
JP6590203B2 (ja) 2015-11-12 2019-10-16 パナソニックIpマネジメント株式会社 微粒子製造装置及び微粒子製造方法

Also Published As

Publication number Publication date
US10898957B2 (en) 2021-01-26
US20180304374A1 (en) 2018-10-25
CN108722325B (zh) 2021-11-19
JP2018176121A (ja) 2018-11-15
CN108722325A (zh) 2018-11-02

Similar Documents

Publication Publication Date Title
JP6337354B2 (ja) 微粒子製造装置及び微粒子製造方法
JP6590203B2 (ja) 微粒子製造装置及び微粒子製造方法
JP6890291B2 (ja) 微粒子製造装置及び製造方法
CN107224944B (zh) 微粒子制造装置以及制造方法
US10124406B2 (en) Production apparatus and production method for fine particles
JP6920676B2 (ja) 微粒子製造装置および微粒子製造方法
JP7142241B2 (ja) 微粒子製造装置及び微粒子製造方法
US10974220B2 (en) Fine particle producing apparatus and fine particle producing method
KR20200056073A (ko) 직류 플라즈마 아크를 이용한 나노 분말의 제조 장치 및 제조 방법
JP6551851B2 (ja) 微粒子製造装置及び微粒子製造方法
TWI552958B (zh) 矽精製方法及矽精製裝置
JP2020189257A (ja) 微粒子製造装置及び微粒子製造方法
JP2019136679A (ja) 複合粒子製造装置及び製造方法
JP2019103961A (ja) 微粒子製造装置及び微粒子製造方法
JP7297108B2 (ja) 液体シリコンを製造するための装置及び方法
JPWO2021068054A5 (ja)
JPS6111140A (ja) 高純度セラミツクス超微粒子の製造方法
JP2016060678A (ja) 酸化亜鉛微粒子の製造方法、酸化亜鉛微粒子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210706

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210713

R151 Written notification of patent or utility model registration

Ref document number: 6920676

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151