WO2000000672A2 - Galvanisches bad und verfahren zur erzeugung strukturierter hartchromschichten und verwendung - Google Patents

Galvanisches bad und verfahren zur erzeugung strukturierter hartchromschichten und verwendung Download PDF

Info

Publication number
WO2000000672A2
WO2000000672A2 PCT/EP1999/004412 EP9904412W WO0000672A2 WO 2000000672 A2 WO2000000672 A2 WO 2000000672A2 EP 9904412 W EP9904412 W EP 9904412W WO 0000672 A2 WO0000672 A2 WO 0000672A2
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
ions
galvanic bath
chrome layer
current density
Prior art date
Application number
PCT/EP1999/004412
Other languages
English (en)
French (fr)
Other versions
WO2000000672A3 (de
Inventor
Klaus Szameitat
Original Assignee
Cromotec Oberflächentechnik Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US09/701,530 priority Critical patent/US6447666B1/en
Application filed by Cromotec Oberflächentechnik Gmbh filed Critical Cromotec Oberflächentechnik Gmbh
Priority to AT99931178T priority patent/ATE231933T1/de
Priority to DE59904174T priority patent/DE59904174D1/de
Priority to EP99931178A priority patent/EP1097261B1/de
Priority to JP2000557019A priority patent/JP2002519514A/ja
Priority to CA002334708A priority patent/CA2334708A1/en
Priority to BR9912214-6A priority patent/BR9912214A/pt
Publication of WO2000000672A2 publication Critical patent/WO2000000672A2/de
Publication of WO2000000672A3 publication Critical patent/WO2000000672A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/10Electroplating: Baths therefor from solutions of chromium characterised by the organic bath constituents used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N7/00Shells for rollers of printing machines
    • B41N7/04Shells for rollers of printing machines for damping rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N2207/00Location or type of the layers in shells for rollers of printing machines
    • B41N2207/02Top layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N2207/00Location or type of the layers in shells for rollers of printing machines
    • B41N2207/10Location or type of the layers in shells for rollers of printing machines characterised by inorganic compounds, e.g. pigments

Definitions

  • the present invention relates to a galvanic bath and a method for producing structured hard chrome layers and the use thereof for producing structured hard chrome layers on components. It has long been common state of the art to provide objects of technology or general use with galvanic processes with surface coatings. This is necessary in order to give the objects special functional and / or decorative surface properties, such as hardness, corrosion resistance, metallic appearance, gloss, etc.
  • a bath that contains at least the metal to be deposited as a salt is converted into metal deposited by means of direct current on the object connected as cathode.
  • the object to be coated usually consists of a metallic material. If the base material is not electrically conductive per se instead, the surface can be made conductive by a thin metallization.
  • Galvanic baths containing nickel or chromium are mostly used in technical applications to create particularly hard, mechanically resistant layers.
  • an electroplated hard chrome layer In certain cases it is necessary or desirable that objects which are provided with an electroplated hard chrome layer have a rough surface structure. With decorative covers, for example, a matt appearance or a pleasant, not smooth "handle" should be created.
  • rough hard chrome layers or structured chrome layers fulfill certain functional properties. For machine components that are in sliding contact with each other, such as pistons, cylinders, liners, axle bearings, etc., rough hard chrome layers are advantageous because the structure forms lubricant deposits so that dry running is prevented.
  • printing drums, inking rollers and in particular dampening cylinders with a special, rough surface are required for printing machines. Chromium-plated tools can be used in forming technology to give the workpiece to be machined a structured surface.
  • objects with a hard chrome coating and a rough surface structure are obtained by mechanical processing, such as grinding, sandblasting, spark erosion, etc., or by chemical etching processes before, between or after the chrome plating.
  • mechanical processing such as grinding, sandblasting, spark erosion, etc.
  • chemical etching processes before, between or after the chrome plating.
  • DE 42 11 881 discloses a galvanic method for applying surface coatings to machine components, in which e.g. Chromium is deposited in a structured form.
  • Chromium is deposited in a structured form.
  • at least one initial pulse and at least one subsequent pulse of voltage or current and certain guidance of the voltage or current function initially cause nucleation on the surface of the machine component and subsequent growth of the germs of the separating material.
  • the chromium is deposited in the form of statistically evenly distributed, dendritic or approximately hemispherical (dome-shaped) elevations.
  • EP 0722 515 contains a further development of the method according to
  • DE 34 02 554 C2 describes a saturated aliphatic sulfonic acid with a maximum of two carbon atoms and a maximum of six sulfonic acid groups or salts or halogen acid derivatives thereof for increasing the current efficiency in the electrodeposition of hard chromium on a workpiece made of steel or aluminum alloy from an aqueous, chromic acid and Use non-caustic electrolytes containing sulfuric acid.
  • US-A-5 176 813 discloses a process for the electrodeposition of chromium from a galvanic bath with a lead-containing anode in the absence of monosulfonic acid, the galvanic bath containing chromic acid, Sulfate ions and at least one optionally halogenated
  • the object of the present invention is therefore to simplify the production of structured hard chrome layers considerably and, in particular, to enable structure layers with a more uniform surface topography and significantly higher roughness values.
  • Chromium (VI) ions in an amount corresponding to 100 to 600 g / l chromic anhydride
  • sulfate ions in the form of sulfuric acid and / or a soluble salt thereof in a molar concentration ratio of chromium (VI) ions to sulfate ions ( SO 4 2 ' ) from 90: 1 to 120: 1
  • 2-hydroxyethanesulfonate ions in an amount corresponding to 0.01 to 3.0 g / l of the sodium salt, includes.
  • the galvanic bath according to the invention preferably contains chromium (VI) ions in an amount which corresponds to 200 to 250 g / l chromic acid anhydride.
  • the chromium (VI) ion-providing compound is preferably selected from chromic anhydride (Cr0 3 ) and / or alkali dichromates such as Na 2 Cr 2 0 7 and K 2 Cr 2 ⁇ 7 . Of the alkali dichromates, K 2 Cr 2 0 7 is preferred.
  • the chromium (VI) ion-providing compound is chromic anhydride.
  • part of the chromium (VI) ion-providing compound is one or more alkali dichromate (s), preferably potassium dichromate.
  • alkali dichromate preferably potassium dichromate.
  • preferably less than 30% and particularly preferably less than 15% of the chromium (VI) ions are supplied by alkali dichromate.
  • the molar concentration ratio of chromium (VI) ions to sulfate ions in the electroplating bath is preferably 100: 1 to 105: 1.
  • the soluble salts of sulfuric acid which can be used are preferably selected from sodium sulfate, potassium sulfate, lithium sulfate, ammonium sulfate, magnesium sulfate, strontium sulfate, aluminum sulfate and potassium aluminum sulfate. Strontium sulfate is particularly preferred.
  • the bath comprises 2-hydroxyethanesulfonate ions in an amount corresponding to 0.07 to 1.5 / 1 of the sodium salt.
  • the 2-hydroxyethanesulfonate ions contained in the galvanic bath according to the invention can be provided by the 2-hydroxyethanesulfonic acid itself or a salt thereof, preferably the sodium salt.
  • the electroplating chrome bath according to the invention can be used in the electroplating systems usually used in this technology and with the usual working methods as well as for the usual coating purposes on the normally provided basic materials.
  • Such base materials can be, for example, objects made of conductive materials such as metal, in particular steel, and metallized, non-conductive objects.
  • the galvanic bath according to the invention is expediently used at temperatures between 30 and 70 ° C.
  • chrome layers with largely uniform dome-shaped microstructure and roughness values Rz up to about 40 ⁇ m can be produced.
  • Such a deposition is preferably carried out in the temperature range 40 and 50 ° C., preferably between 42 and 48 ° C. and particularly preferably between 44 and 46 ° C.
  • the galvanic deposition from such a bath is carried out at a temperature of ⁇ 50 ° C., smooth, low-crack chrome layers can be produced.
  • Such deposition is preferably carried out in the temperature range between 51 and 61 ° C., preferably between 53 and 59 ° C. and particularly preferably between 55 and 57 ° C.
  • chrome bath according to the invention can be used to deposit directly onto the base material, for example steel. Galvanic precoatings, especially with nickel, are not necessary.
  • the latter In order to deposit a structured hard chrome layer on an object, the latter, connected as a cathode, is introduced into the galvanic bath according to the invention. It is sufficient if the object is ground to size. Further surface processing and in particular galvanic precoating are not necessary. For a particularly uniform coating, it is advantageous to continuously circulate the bath and / or to keep the object to be coated rotating in the bath.
  • a base layer in the form of a smooth, low-crack chrome layer at a temperature in the range from 50 to 70 ° C, preferably from 51 to 61 ° C, particularly preferably from 53 to 59 ° C and most preferably from 55 to 57 ° C C deposited.
  • the current density can be up to 50 A / dm 2 .
  • a deposition time TP 10 to 15 minutes
  • a base layer thickness of 6-9 ⁇ m can be achieved.
  • a waiting time TW is expediently inserted before the start of the deposition while the object takes on the temperature of the bath. This time can be 1 to 10 minutes depending on the size of the object and the temperature difference.
  • the current density can be up to 30 A / dm 2 . 1 to 2 minutes are sufficient as the duration TP.
  • the base layer obtained generally has a microhardness of 800 to 950 HV 0.1.
  • the actual deposition of the structured chrome layer takes place from the same bath.
  • the bath temperature is to be set to 30 to 50 ° C., preferably to 40 to 50 ° C., particularly preferably to 42 to 48 ° C. and most preferably to 44 to 46 ° C.
  • a waiting time TW and an activation step with the parameters already mentioned before the start of the deposition.
  • the deposition is expediently carried out at a current density of 75 to 90 A / dm 2 . With a deposition time TP of 10 to 30 minutes, a thickness of the structural layer of 14 to 40 ⁇ m can be achieved.
  • the structure layer obtained normally has a microhardness of 850 to 900 HV 0.1.
  • the structure layer has a roughness Rz of up to about 40 ⁇ m.
  • the structural chrome layer is coated with a thin, smooth hard chrome layer, the functional layer, again from the same bath.
  • the bath is brought to a temperature in the range from 50 to 70 ° C., preferably from 51 to 61 ° C., particularly preferably from 53 to 59 ° C. and most preferably from 55 to 57 ° C. and then at a current density up to 50 A / dm 2 deposited.
  • a deposition time TP of 5 to 15 minutes, a layer thickness of the functional layer of 3 to 9 ⁇ m can be achieved.
  • the functional layer normally has a microhardness of 1,000 to 1050 HV 0.1.
  • the final thin hard chrome layer practically does not change the roughness of the structural layer.
  • the ramp time TR can be 1 to 5 minutes each.
  • the method is distinguished by a particularly simple current density control.
  • a particularly simple current density control In order to produce thin, uniform, well-structured hard chrome structure coatings, it is easily sufficient to linearly increase the current density to the respective setpoint or the respective descent in the respective steps.
  • otherwise required, technically complex and therefore expensive current and voltage control units and their complex programming are not required.
  • it can also be favorable and advantageous in individual cases to regulate the current density in steps to the maximum value or down again.
  • a structured hard chrome layer is obtained on the surface of the object, which is characterized by a particularly dense and uniform distribution of very well-formed dome-shaped elevations.
  • a layer with a peak number of 75 to 100 / cm can be obtained.
  • roughness values Rz up to 40 ⁇ m can be achieved.
  • the method according to the invention can be used to generate a chrome layer on components, in particular machine components.
  • the method is used to produce a structured hard chrome layer on machine components in sliding contact with one another, in particular pistons, cylinders, bushings and axle bearings, on rollers, drums or cylinders of the graphics industry, in particular ink rollers and dampening cylinders, and on tools .
  • 100 l bath contain 20.450 kg chromic anhydride, 2.500 kg potassium dichromate, 0.550 kg Strontium sulfate and 3.5 g of 2-hydroxyethanesulfonic acid sodium salt. This results in the concentration values in the bath of 222 g / l chromic anhydride, 2.2 g / l free sultate and 0.035 g / l 2-hydroxyethanesulfonic acid sodium salt.
  • the following process parameters are selected for structural chrome plating using the example of a rolling cylinder made of the basic material steel St 52:
  • the structure chrome layer obtained has a roughness Rz of 35 to 40 ⁇ m and a peak number of 75-100 / cm with an extremely uniform distribution of very well-formed dome-shaped elevations.
  • 1 shows the SEM image of the surface of the roll cylinder, which is chromium-plated by way of example with the chrome bath according to the invention and according to the method according to the invention, at a magnification of 30: 1. The dense and even distribution of dome-shaped elevations can be clearly seen.
  • 3 shows the SEM image of a cross section through the layer at an enlargement of 400: 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Cosmetics (AREA)

Abstract

Die vorliegende Erfindung betrifft ein galvanisches Bad, ein Verfahren zur Abscheidung von Chrom auf Gegenständen unter Verwendung des galvanischen Bades von Gegenständen und die Verwendung des Verfahrens zur Erzeugung strukturierter Hartchromschichten auf Maschinenbauteilen. Das galvanische Bad enthält in wäßriger Lösung mindestens eine Chrom(VI)ionen liefernde Verbindung und umfaßt: a) Chrom(VI)ionen in einer Menge, die 100 bis 600 g/l Chromsäureanhydrid entspricht, b) Sulfationen in Form von Schwefelsäure und/oder eines löslichen Salzes davon in einem molaren Konzentrationsverhältnis von Chrom(VI)ionen zu Sulfationen (SO42-) von 90:1 bis 120:1, und c) 2-Hydroxyethansulfonationen in einer Menge, die 0,01 bis 3,0 g/l des Natriumsalzes entspricht.

Description

Galvanischen Bad und Verfahren zur Erzeugung strukturierter Hartchromschichten und Verwendung
Die vorliegende Erfindung betrifft ein galvanisches Bad und ein Verfahren zur Erzeugung strukturierter Hartchromschichten sowie dessen Verwendung zur Erzeugung strukturierter Hartchromschichten auf Bauteilen. Es ist seit langem gängiger Stand der Technik, Gegenstände der Technik oder des allgemeinen Gebrauchs mittels galvanischer Prozesse mit Oberflächenbeschichtungen zu versehen. Dies ist erforderlich, um den Gegenständen spezielle funk4ionelle und/oder dekorative Oberflächeneigenschaften zu verleihen, wie etwa Härte, Korrosionsbeständigkeit, metallisches Aussehen, Glanz etc. Bei der galvanischen Oberflächenbeschichtung wird aus einem Bad, das zumindest das abzuscheidende Metall als Salz gelöst enthält, das Metall mittels Gleichstrom auf dem als Kathode geschalteten Gegenstand abgeschieden. Der zu beschichtende Gegenstand besteht in aller Regel aus einem metallischen Material. Ist das Grundmaterial statt dessen an sich nicht elektrisch leitend, so kann die Oberfläche etwa durch eine dünne Metallisierung leitfähig gemacht werden. Galvanische Bäder, die Nickel oder Chrom enthalten, dienen bei technischen Anwendungen meist zur Erzeugung besonders harter, mechanisch widerstandsfähiger Schichten.
In bestimmten Fällen ist es erforderlich oder erwünscht, daß Gegenstände, die mit einer galvanisch erzeugten Hartchromschicht versehen sind, eine rauhe Oberflächenstruktur aufweisen. Bei dekorativen Oberzügen soll somit etwa ein mattes Aussehen oder ein angenehmer, nicht glatter "Griff " erzeugt werden. Im technischen Bereich erfüllen rauhe Hartchromschichten oder Strukturchromschichten bestimmte funktionale Eigenschaften. Bei Maschinenbauteilen, die in gleitendem Kontakt miteinander stehen, wie zum Beispiel Kolben, Zylinder, Laufbuchsen, Achslagern etc., sind rauhe Hartchromschichten von Vorteil, da die Struktur Schmiermitteldepots bildet, so daß ein Trockenlaufen verhindert wird. In der graphischen Industrie werden z.B. für Druckmaschinen bogenführende Trommeln, Farbwalzen und insbesondere Feuchtreibzylinder mit einer speziellen, rauhen Oberfläche benötigt. In der Umformtechnik können strukturverchromte Werkzeuge verwendet werden, um dem zu bearbeitenden Werkstück eine strukturierte Oberfläche zu verleihen. Nach konventioneller Technik werden Gegenstände mit Hartchrombeschichtung und rauher Oberflächenstruktur durch mechanische Bearbeitung, wie etwa Schleifen, Sandstrahlen, Funkenerosion etc., oder durch chemische Ätzprozesse vor, zwischen oder nach der Verchromung erhalten. Entsprechende Verfahren sind jedoch aufgrund der Vielzahl der erforderlichen unterschiedlichen Arbeitstechniken aufwendig, kompliziert und kostenintensiv.
Aus DE 42 11 881 ist ein galvanisches Verfahren zum Aufbringen von Oberflächenbeschichtungen auf Maschinenbauteile bekannt, bei dem z.B. Chrom in strukturierter Form abgeschieden wird. Hierbei wird durch zumindest einen Anfangsimpuls und zumindest einen Folgeimpuls von Spannung bzw. Strom sowie bestimmte Führung der Spannungs- bzw. Stromfunktion zunächst eine Keimbildung auf der Oberfläche des Maschinenbauteils und anschließendes Wachstum der Keime des Abscheidematerials bewirkt. Hierbei wird das Chrom in Form von statistisch gleichmäßig verteilten, dendritischen oder ungefähr halbkugelförmigen (kalottenförmigen) Erhebungen abgeschieden.
EP 0722 515 beinhaltet eine Fortbildung des Verfahrens gemäß
DE 42 11 881 , wobei die Erhöhung der elektrischen Spannung bzw. der
Stromdichte in Stufen erfolgt.
In diesen Verfahren werden an sich bekannte, übliche galvanische Bäder eingesetzt.
In DE 34 02 554 C2 wird beschrieben, eine gesättigte aliphatische Sulfonsäure mit maximal zwei Kohlenstoffatomen und maximal sechs Sulfonsäuregruppen bzw. Salze oder Halogensäurederivate davon zur Erhöhung der Stromausbeute bei der galvanischen Abscheidung von Hartchrom auf einem Werkstück aus Stahl oder Aluminiumlegierung aus einem wäßrigen, Chromsäure und Schwefelsäure enthaltenden, nichtätzenden Elektrolyten zu verwenden.
US-A-5 176 813 offenbart ein Verfahren zur galvanischen Abscheidung von Chrom aus einem galvanischen Bad mit einer bleihaltigen Anode in Abwesenheit von Monosulfonsäure, wobei das galvanische Bad Chromsäure, Sulfationen und wenigstens eine gegebenenfalls halogenierte
Alkylpolysulfönsäure oder deren Salz mit 1 bis 3 Kohlenstoffatomen enthält.
Die bekannten Verfahren, bei denen strukturierte Chromschichten galvanisch erzeugt werden, besitzen jedoch Nachteile. Sie erfordern einen komplizierten mehrschichtigen Schichtaufbau, bei dem vor der eigentlichen Strukturchromschicht zunächst eine Nickel-Strikeschicht, dann eine dickere Sulfamat-Nickelschicht, gefolgt von einer rißarmen Chromschicht auf das Grundmaterial des Bauteils aufgebracht und zuletzt die Strukturchromschicht mit einer rißarmen Hartchromschicht überzogen werden muß. Diese verschiedenen Schichten erfordern spezifische, unterschiedlich zusammengesetzte galvanische Bäder und hierauf jeweils abgestimmte unterschiedliche Abscheidebedingungen. Die Prozeßführung ist somit aufwendig, kompliziert und aufgrund der notwendigen Arbeitsschritte sehr kostenintensiv. Weiterhin sind mit diesem Verfahren offenbar nur Schichten mit Rauhigkeitswerten Rz bis etwa 10 μm erhältlich. Darüber hinaus ist die Gleichmäßigkeit der Verteilung und der Ausbildung kalottenförmiger Erhebungen noch verbesserungsbedürftig.
Der vorliegenden Erfindung liegt daher die Aufgabenstellung zugrunde, die Erzeugung von strukturierten Hartchromschichten erheblich zu vereinfachen und insbesondere Strukturschichten mit gleichmäßigerer Oberflächentopographie und wesentlich höheren Rauhigkeitswerten zu ermöglichen.
Es wurde nun gefunden, daß den Anforderungen entsprechende strukturierte Hartchromschichten aus einem galvanischen Bad erhalten werden können, das in wäßriger Lösung mindestens eine Chrom(VI)-ionen liefernde Verbindung enthält und dadurch gekennzeichnet ist, daß es
a) Chrom(VI)-ionen in einer Menge, die 100 bis 600 g/l Chromsäureanhydrid entspricht, b) Sulfationen in Form von Schwefelsäure und/oder eines löslichen Salzes davon in einem molaren Konzentrationsverhältnis von Chrom(VI)-ionen zu Sulfationen (SO4 2') von 90:1 bis 120:1, und c) 2-Hydroxyethansulfonationen in einer Menge, die 0,01 bis 3,0 g/l des Natriumsalzes entspricht, umfaßt.
Es wurde überraschend gefunden, daß die erfindungsgemäße Kombination der Komponenten Sulfat und 2-Hydroxyethansulfonat besonders vorteilhafte Eigenschaften des Chrombades zur Folge hat.
Vorzugsweise enthält das erfindungsgemäße galvanische Bad Chrom(VI)- ionen in einer Menge, die 200 bis 250 g/l Chromsäureanhydrid entspricht. Die Chrom(VI)-ionen liefernde Verbindung wird bevorzugt ausgewählt aus Chromsäureanhydrid (Cr03) und/oder Alkalidichromaten wie Na2Cr207 und K2Cr2θ7. Von den Alkalidichromaten ist K2Cr207 bevorzugt. In einer besonders bevorzugten Ausführungsform ist die Chrom(VI)-ionen liefernde Verbindung Chromsäureanhydrid. In einer weiteren Ausführungsform ist ein Teil der Chrom(VI)-ionen liefernden Verbindung ein oder mehrere Alkalidichromat(e), bevorzugt Kaliumdichromat. In dieser Ausführungsform werden bevorzugt weniger als 30% und besonders bevorzugt weniger als 15% der Chrom(VI)- ionen durch Alkalidichromat geliefert.
Das molare Konzentrationsverhältnis von Chrom(VI)-ionen zu Sulfationen im galvanischen Bad beträgt vorzugsweise 100:1 bis 105:1. Die einsetzbaren löslichen Salze der Schwefelsäure werden bevorzugt ausgewählt aus Natriumsulfat, Kaliumsulfat, Lithiumsulfat, Ammoniumsulfat, Magnesiumsulfat, Strontiumsulfat, Aluminiumsulfat und Kaliumaluminiumsulfat. Besonders bevorzugt ist Strontiumsulfat.
In einer bevorzugten Ausführungsform umfaßt das Bad 2- Hydroxyethansulfonationen in einer Menge, die 0,07 bis 1,5/1 des Natriumsalzes entspricht. Die im erfindungsgemäßen galvanischen Bad enthaltenen 2-Hydroxyethansulfonationen können bereitgestellt werden durch die 2-Hydroxyethansulfonsäure selbst oder ein Salz davon, bevorzugt das Natriumsalz.
Das erfindungsgemäße galvanische Chrombad kann in den in dieser Technik gewöhnlich eingesetzten Galvanisieranlagen und mit den hierbei gängigen Arbeitsweisen sowie für die hierbei üblichen Beschichtungszwecke auf den üblicherweise vorgesehenen Grundmaterialien eingesetzt werden. Solche Grundmaterialien können z.B. Gegenstände aus leitenden Materialien wie Metall, insbesondere Stahl, und metallisierte, nicht-leitende Gegenstände sein. Das erfindungsgemäße galvanische Bad wird zweckmäßig bei Temperaturen zwischen 30 und 70°C eingesetzt.
Wird die galvanische Abscheidung aus einem solchen Bad bei einer Temperatur von < 50°C durchgeführt, so lassen sich Chromschichten mit weitestgehend gleichmäßiger kalottenförmiger MikroStruktur und Rauhigkeitswerten Rz bis etwa 40 μm erzeugen. Eine solche Abscheidung wird bevorzugt im Temperaturbereich 40 und 50°C, bevorzugt zwischen 42 und 48°C und besonders bevorzugt zwischen 44 und 46°C vorgenommen.
Wird die galvanische Abscheidung aus einem solchen Bad bei einer Temperatur von < 50°C durchgeführt, so lassen sich rißarme glatte Chromschichten erzeugen. Eine solche Abscheidung wird bevorzugt im Temperaturbereich zwischen 51 und 61 °C, bevorzugt zwischen 53 und 59°C und besonders bevorzugt zwischen 55 und 57°C vorgenommen.
Es ist also auf diese Weise ohne weiteres möglich, aus ein und dem selben erfindungsgemäßen Chrombad nur durch Variation der Badtemperatur während der galvanischen Abscheidung einen dreischichtigen Schichtaufbau auf der Unterlage vorzunehmen, wobei zweckmäßigerweise als erste Schicht eine rißarme glatte Grundschicht, darauf folgend eine Strukturchromschicht und abschließend eine rißarme glatte Funktionsschicht vorgesehen sind. Mit dem erfindungsgemäßen Chrombad kann direkt auf das Grundmaterial, etwa Stahl, abgeschieden werden. Galvanische Vorbeschichtungen, insbesondere mit Nickel, sind nicht erforderlich.
Zur Abscheidung einer strukturierten Hartchromschicht auf einem Gegenstand wird dieser, als Kathode geschaltet, in das erfindungsgemäße galvanische Bad eingebracht. Dabei ist es ausreichend, wenn der Gegenstand auf Maß geschliffen ist. Eine weitere Oberflächenbearbeitung sowie insbesondere galvanische Vorbeschichtungen sind nicht erforderlich. Für eine besonders gleichmäßige Beschichtung ist es vorteilhaft, das Bad laufend umzuwälzen und/oder den zu beschichtenden Gegenstand im Bad in Rotation zu halten.
Das erfindungsgemäße Verfahren kann in der folgenden Weise durchgeführt werden: In einem ersten Schritt wird eine Grundschicht in Form einer glatten rißarmen Chromschicht bei einer Temperatur im Bereich von 50 bis 70°C, bevorzugt von 51 bis 61 °C, besonders bevorzugt von 53 bis 59°C und am meisten bevorzugt von 55 bis 57°C abgeschieden. Die Stromdichte kann hierbei bis zu 50 A/dm2 betragen. Bei einer Abscheidedauer TP von 10 bis 15 Minuten kann hierbei eine Grundschichtdicke von 6-9 μm erreicht werden. Zweckmäßigerweise wird vor dem Beginn der Abscheidung eine Wartezeit TW eingelegt, während der Gegenstand die Temperatur des Bades annimmt. Diese Zeit kann je nach Größe des Objektes und Temperaturdifferenz 1 bis 10 Minuten betragen. Es ist vorteilhaft, vor der Abscheidung einen Aktivierungsschritt einzulegen, bei dem der Gegenstand positiv gepolt wird. Die Stromdichte kann hierbei bis zu 30 A/dm2 betragen. Als Zeitdauer TP sind 1 bis 2 Minuten ausreichend. Die erhaltene Grundschicht weist in der Regel eine Mikrohärte von 800 bis 950 HV 0,1 auf.
Im zweiten Schritt erfolgt die eigentliche Abscheidung der Strukturchromschicht aus dem gleichen Bad. Hierfür ist die Badtemperatur auf 30 bis 50°C, bevorzugt auf 40 bis 50°C, besonders bevorzugt auf 42 bis 48°C und am meisten bevorzugt auf 44 bis 46°C einzustellen. Auch in diesem Schritt ist es zweckmäßig, vor dem Beginn der Abscheidung eine Wartezeit TW und einen Aktivierungsschritt mit den bereits genannten Parametern einzulegen. Die Abscheidung erfolgt zweckmäßigerweise bei einer Stromdichte von 75 bis 90 A/dm2 . Bei einer Abscheidedauer TP von 10 bis 30 Minuten kann hierbei eine Dicke der Strukturschicht von 14 bis 40 μm erreicht werden. Die erhaltene Strukturschicht weist normalerweise eine Mikrohärte von 850 bis 900 HV 0,1 auf. Die Strukturschicht erhält eine Rauhigkeit Rz von bis zu etwa 40 μm.
Im dritten Schritt wird die Strukturchromschicht mit einer dünnen, glatten Hartchromschicht, der Funktionsschicht, überzogen, wiederum aus dem gleichen Bad. Hierzu wird das Bad auf eine Temperatur im Bereich von 50 bis 70°C, bevorzugt von 51 bis 61 °C, besonders bevorzugt von 53 bis 59°C und am meisten bevorzugt von 55 bis 57°C gebracht und dann bei einer Stromdichte bis 50 A/dm2 abgeschieden. Bei einer Abscheidedauer TP von 5 bis 15 Minuten kann hierbei eine Schichtdicke der Funktionsschicht von 3 bis 9 μm erreicht werden. Die Funktionsschicht weist normalerweise eine Mikrohärte von 1 000 bis 1050 HV 0,1 auf. Durch die abschließende dünne Hartchromschicht wird die Rauhigkeit der Strukturschicht praktisch nicht verändert. Auch in diesem Schritt ist es wiederum zweckmäßig, vor dem Beginn der Abscheidung eine Wartezeit TW und einen Aktivierungsschritt mit den bereits genannten Parametern einzulegen.
Bei allen Abscheideschritten ist es weiterhin vorteilhaft, vor den jeweiligen Abscheidezeiten eine Rampenzeit TR vorzusehen, in der die Stromdichte auf den entsprechenden Wert geregelt wird. Die Rampenzeit TR kann jeweils 1 bis 5 Minuten betragen.
Das Verfahren zeichnet sich, im Gegensatz zu Verfahren nach dem Stand der Technik, durch eine besonders einfache Stromdichteführung aus. So ist es zur Erzeugung dünner gleichmäßigen, gut strukturierten Hartchromstrukturbeschichtung ohne weiteres ausreichend, in den jeweiligen Schritten den Anstieg der Stromdichte auf den jeweiligen Sollwert bzw. den jeweiligen Abstieg linear zu führen. Hierdurch werden andernfalls erforderliche, technisch aufwendige und damit teuere Strom- und Spannungsregeleinheiten und deren aufwendige Programmierung nicht benötigt. Es kann aber auch im Einzelfall günstig und vorteilhaft sein, die Stromdichte in Stufen auf den Maximalwert bzw. wieder herunterzuregeln.
Bei diesem Vorgehen erhält man auf der Oberfläche des Gegenstandes eine strukturierte Hartchromschicht, die sich durch eine besonders dichte und gleichmäßige Verteilung von sehr gut ausgebildeten kalottenförmigen Erhebungen auszeichnet. Es kann eine Schicht mit einer Spitzenzahl von 75 bis 100/cm erhalten werden. Je nach Wahl der Abscheidebedingungen, insbesondere im Schritt der Strukturbeschichtung, können Rauhigskeitswerte Rz bis zu 40 μm erzielt werden.
Das erfindungsgemäße Verfahren kann verwendet werden, um eine Chromschicht auf Bauteilen, insbesondere Maschinenbauteilen, zu erzeugen. In einer bevorzugten Ausführungsform wird das Verfahren verwendet, um eine strukturierte Hartchromschicht auf in gleitendem Kontakt miteinander stehenden Maschinenbauteilen, insbesondere Kolben, Zylindern, Laufbuchsen und Achslagern, auf Walzen, Trommeln oder Zylindern der graphischen Industrie, insbesondere Farbwalzen und Feuchtreibzylindern, und auf Werkzeugen zu erzeugen.
In einer beispielhaften Ausführungsform der Erfindung enthalten 100 I Bad 20,450 kg Chromsäureanhydrid, 2,500 kg Kaliumdichromat, 0,550 kg Strontiumsulfat und 3,5 g 2-Hydroxyethansulfonsäure-Natriumsalz. Hieraus ergeben sich als Konzentrationswerte im Bad 222 g/l Chromsäureanhydrid, 2,2 g/l freies Sultat und 0,035 g/l 2-Hydroxyethansulfonsäure-Natriumsalz. Zur Strukturverchromung am Beispiel eines Walzzylinders aus dem Grundwerkstoff Stahl St 52 werden etwa folgende Verfahrensparameter gewählt:
Abscheidung Grundschicht (Badtemperatur 55 bis 57°C):
TW 5,0 min
Aktivierung (30 A/dm ) TR 1,0 min
TP 0,5 min
Abscheidung (50 A/dm ) TR 2,0 min
TP 10,0 min
adtemp eratur 44 bis 46°C)
TW 0,5 min
Aktivierung (30 A/dm ) TR 1 ,0 min
TP 0,5 min
Abscheidung (75 A/dm ) TR 3,0 min
TP 10, 0 min
TW 3, 0 min
Abscheidung (80 A/dm ) TR 1,0 min
TP 10, 0 min
TW 3, 0 min
Abscheidung (90 A/dm ) TR 1,0 min
TP 10,0 min
Badtei Tiperatur 55 bis 57°
TW 3,0 min
Aktivierung (30 A/dm ) TR 1 ,0 min
TP 0,5 min
Abscheidung (50 A/dm ) TR 2,0 min
TP 10,0 min
Die erhaltene Strukturchromschicht weist eine Rauhigkeit Rz von 35 bis 40 μm und eine Spitzenzahl von 75 - 100/cm bei einer äußerst gleichmäßigen Verteilung von sehr gut ausgebildeten kalottenförmigen Erhebungen auf. Fig. 1 zeigt die REM-Aufnahme der Oberfläche des beispielhaft mit dem erfindungsgemäßen Chrombad und gemäß dem erfindungsgemäßen Verfahren strukturverchromten Walzzylinders bei einer Vergrößerung von 30:1. Es ist deutlich die dichte und gleichmäßige Verteilung von kalottenförmigen Erhebungen zu erkennen.
Fig. 2 zeigt einen Ausschnitt aus diesem Bereich bei einer Vergrößerung von 400:1 , bei der die Topographie der Struktur verdeutlicht wird.
Fig. 3 zeigt die REM-Aufnahme eines Querschliffes durch die Schicht bei einer Vergrößerung von 400:1.

Claims

Patentansprüche
1. Galvanisches Bad, das in wäßriger Lösung mindestens eine Chrom(VI)-ionen liefernde Verbindung enthält und dadurch gekennzeichnet ist, daß es a) Chrom(VI)-ionen in einer Menge, die 100 bis 600 g/l Chromsäureanhydrid entspricht, b) Sulfationen in Form von Schwefelsäure und/oder eines löslichen Salzes davon in einem molaren Konzentrationsverhältnis von Chrom(VI)-ionen zu Sulfationen (S0 2') von 90:1 bis 120:1, und c) 2-Hydroxyethaneulfonationen in einer Menge, die 0,01 bis 3,0 g/l des
Natriumsalzes entspricht, umfaßt.
2. Galvanisches Bad gemäß Anspruch 1 , dadurch gekennzeichnet, daß das Bad Chrom(VI)-ionen in einer Menge umfaßt, die 200 bis 250 g/l Chromsäureanhydrid entspricht.
3. Galvanisches Bad gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Chrom(VI)-ionen liefernde Verbindung ausgewählt ist aus Chromsäureanhydrid und/oder Alkalidichromat(en).
4. Galvanisches Bad gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das molare Konzentrationsverhältnis von Chrom(VI)-ionen zu Sulfationen 100:1 bis 105:1 beträgt.
5. Galvanisches Bad gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß es Sulfationen in Form von Schwefelsäure, Natrium-, Kalium-, Lithium-, Ammonium-, Magnesium-, Strontium-, Aluminium- und/oder Kaliumaluminiumsulfat umfaßt.
6. Galvanisches Bad gemäß Anspruch 5, dadurch gekennzeichnet, daß es Sulfationen in Form von Strontiumsulfat umfaßt.
7. Galvanisches Bad gemäß einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Bad 0,07 bis 1 ,5 g/l Hydroxyethansulfonat, berechnet als Natriumsalz, enthält.
8. Verfahren zur Chrombeschichtung, dadurch gekennzeichnet, daß aus einem galvanischen Bad nach einem der Ansprüche 1 bis 7 Chrom auf einen als Kathode geschalteten Gegenstand abgeschieden wird.
9. Verfahren gemäß Anspruch 8, umfassend die folgenden Schritte: a) Abscheidung einer Grundchromschicht bei einer Temperatur von > 50°C, b) Abscheidung einer Strukturchromschicht bei einer Temperatur von <50°C,und c) Abscheidung einer Funktionschromschicht bei einer Temperatur von > 50°C.
10. Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, daß unabhängig voneinander
Schritt a) bei einer Temperatur im Bereich zwischen 51 und 61 " C,
Schritt b) bei einer Temperatur im Bereich zwischen 40 und 50'C, und
Schritt c) bei einer Temperatur im Bereich zwischen 51 und 61 'C durchgeführt wird.
11. Verfahren gemäß Anspruch 9 oder 1 0, dadurch gekennzeichnet, daß unabhängig voneinander die Abscheidung der Grundchromschicht in Schritt a) bei einer
Stromdichte von bis zu 50 A/dm2, die Abscheidung der Strukturchromschicht in Schritt b) bei einer
Stromdichte von 75 bis 90 A/dm2, und die Abscheidung der Funktionschromschicht in Schritt c) bei einer
Stromdichte von bis zu 50 A/dm2 durchgeführt wird.
12. Verfahren gemäß einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, daß der Anstieg und/oder Abstieg der Stromdichte in den Schritten a), b) und/oder c) vom Start- auf den Endwert bzw. umgekehrt jeweils linear durchgeführt wird.
13. Verfahren gemäß einem der Ansprüche 9 bis 11 , dadurch gekennzeichnet, daß der Anstieg und/oder Abstieg der Stromdichte in den Schritten a), b) und/oder c) vom Start- auf den Endwert bzw. umgekehrt jeweils in Schritten durchgeführt wird.
14. Verfahren gemäß einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß man unabhängig voneinander vor einem oder mehreren der Schritte a), b) und c) eine Aktivierung bei einer Stromdichte von bis zu 30 A/dm2 und positiver Polarisierung des Gegenstands durchfuhrt.
15. Verwendung des Verfahrens nach einem der Ansprüche 9 bis 14 zur Erzeugung einer Chromschicht auf einem Bauteil.
16. Verwendung gemäß Anspruch 15, i. dadurch gekennzeichnet, daß eine strukturierte Hartchromschicht auf in gleitendem Kontakt miteinander stehenden Maschinenbauteilen, insbesondere Kolben, Zylindern, Laufbuchsen und Achslagern, auf Walzen der graphischen Industrie, insbesondere Farbwalzen und Feuchtreibzylindern, oder auf Werkzeugen erzeugt wird.
17. Verwendung nach Anspruch 15, dadurch gekennzeichnet, daß eine strukturierte Hartchromschicht auf bogenführenden Zylindern oder Trommeln in der graphischen Industrie erzeugt wird.
PCT/EP1999/004412 1998-06-26 1999-06-24 Galvanisches bad und verfahren zur erzeugung strukturierter hartchromschichten und verwendung WO2000000672A2 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US09/701,530 US6447666B1 (en) 1998-06-26 1999-06-21 Galvanic bath, method for producing structured hard chromium layers and use thereof
AT99931178T ATE231933T1 (de) 1998-06-26 1999-06-24 Galvanisches bad und verfahren zur erzeugung strukturierter hartchromschichten und verwendung
DE59904174T DE59904174D1 (de) 1998-06-26 1999-06-24 Galvanisches bad und verfahren zur erzeugung strukturierter hartchromschichten und verwendung
EP99931178A EP1097261B1 (de) 1998-06-26 1999-06-24 Galvanisches bad und verfahren zur erzeugung strukturierter hartchromschichten und verwendung
JP2000557019A JP2002519514A (ja) 1998-06-26 1999-06-24 めっき浴、組織化硬質クロム層の形成および使用
CA002334708A CA2334708A1 (en) 1998-06-26 1999-06-24 Galvanic bath, method for producing structured hard chromium layers and use thereof
BR9912214-6A BR9912214A (pt) 1998-06-26 1999-06-24 Banho galvânico e processo para a produção de camadas de cromo duro estruturadas e aplicação

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19828545A DE19828545C1 (de) 1998-06-26 1998-06-26 Galvanisches Bad, Verfahren zur Erzeugung strukturierter Hartchromschichten und Verwendung
DE19828545.0 1998-06-26

Publications (2)

Publication Number Publication Date
WO2000000672A2 true WO2000000672A2 (de) 2000-01-06
WO2000000672A3 WO2000000672A3 (de) 2000-06-29

Family

ID=7872131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/004412 WO2000000672A2 (de) 1998-06-26 1999-06-24 Galvanisches bad und verfahren zur erzeugung strukturierter hartchromschichten und verwendung

Country Status (12)

Country Link
US (1) US6447666B1 (de)
EP (1) EP1097261B1 (de)
JP (1) JP2002519514A (de)
KR (1) KR100573531B1 (de)
CN (1) CN1191392C (de)
AT (1) ATE231933T1 (de)
BR (1) BR9912214A (de)
CA (1) CA2334708A1 (de)
CZ (1) CZ299000B6 (de)
DE (2) DE19828545C1 (de)
RU (1) RU2202005C2 (de)
WO (1) WO2000000672A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149995A (ja) * 2001-10-02 2009-07-09 Rohm & Haas Electronic Materials Llc 基体上に金属層を堆積させるためのメッキ浴および方法
US8282808B2 (en) 2006-06-02 2012-10-09 Merck Patent Gmbh Use of phosphinic acids and/or phosphonic acids in redox processes
JP2017185753A (ja) * 2016-04-08 2017-10-12 トヨタ紡織株式会社 成形型の製造方法、成形型、乗物用内装材の製造方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT4737U1 (de) * 2001-01-15 2001-11-26 Plansee Ag Pulvermetallurgisches verfahren zur herstellung hochdichter formteile
DE10255853A1 (de) 2002-11-29 2004-06-17 Federal-Mogul Burscheid Gmbh Herstellung strukturierter Hartchromschichten
DE10302107A1 (de) * 2003-01-21 2004-07-29 Fuchs Technology Ag Zylinderoberfläche
ES2726013T3 (es) * 2003-05-12 2019-10-01 Arkema Inc Soluciones electrolíticas de ácido sulfónico de pureza elevada
DE102004019370B3 (de) 2004-04-21 2005-09-01 Federal-Mogul Burscheid Gmbh Herstellung einer strukturierten Hartchromschicht und Herstellung einer Beschichtung
CN100359048C (zh) * 2004-12-27 2008-01-02 西安建筑科技大学 一种导电辊修复方法
DE102005022692A1 (de) * 2005-05-18 2006-11-23 Robert Bosch Gmbh Verfahren zur Herstellung beschichteter Oberflächen und Verwendung derselben
CH698493B1 (de) * 2006-06-01 2009-08-31 Hartchrom Ag Bauteil aus zwei kraftschlüssig verbundenen Werkstücken.
DE102006042076A1 (de) * 2006-09-05 2008-03-20 Goldschmidt Tib Gmbh Ein neues Additiv für Chromelektrolyte
DE102006055251A1 (de) * 2006-11-23 2008-05-29 Mahle International Gmbh Zweiteiliger Kolben für einen Verbrennungsmotor
DE102008017270B3 (de) 2008-04-04 2009-06-04 Federal-Mogul Burscheid Gmbh Strukturierte Chrom-Feststoffpartikel-Schicht und Verfahren zu deren Herstellung sowie beschichtetes Maschinenelement
EP2149447A1 (de) 2008-07-29 2010-02-03 Alcan Technology &amp; Management Ltd. Verfahren zur Herstellung einer Materialbahn mit Oberflächenstruktur
CN101372756B (zh) * 2008-09-28 2010-06-09 武汉船用机械有限责任公司 一种大直径球冠工件球冠面的镀铬方法
WO2010144509A2 (en) * 2009-06-08 2010-12-16 Modumetal Llc Electrodeposited, nanolaminate coatings and claddings for corrosion protection
AT507785B1 (de) 2009-08-04 2010-08-15 Univ Wien Tech Verfahren zur herstellung strukturierter chromschichten
DE102009028223A1 (de) 2009-08-04 2011-02-24 Koenig & Bauer Aktiengesellschaft Verfahren und Herstellung strukturierter Chromschichten
CN101812708B (zh) * 2010-04-20 2011-08-24 安徽华东光电技术研究所 一种钼芯杆镀铬的方法
CN103952731B (zh) * 2014-04-29 2016-05-04 上海交通大学 凸包状仿生织构化铬镀层的电沉积制备方法及其用途
DE102014113000A1 (de) * 2014-09-10 2016-03-10 Rieter Ingolstadt Gmbh Beschichtung für einen Drehteller
RU2603935C1 (ru) * 2015-06-04 2016-12-10 Закрытое акционерное общество "Поволжский Центр Гальваники" Способ беспористого твёрдого хромирования деталей из чугунов и сталей
CN110257883A (zh) * 2019-07-22 2019-09-20 嘉兴怀莲贸易有限公司 一种高耐磨磁悬浮轴承
EP4012074A1 (de) * 2020-12-14 2022-06-15 topocrom systems AG Oberflächenbeschichtung und verfahren zu ihrer herstellung
CN114875466B (zh) * 2022-06-07 2024-03-22 中国航发航空科技股份有限公司 一种不可分解轴承零件的尺寸修复工装夹具及修复方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506548A (en) * 1966-09-23 1970-04-14 Allied Res Prod Inc Electrodeposition of nickel
DE3402554A1 (de) * 1984-01-26 1985-08-08 LPW-Chemie GmbH, 4040 Neuss Abscheidung von hartchrom auf einer metallegierung aus einem waessrigen, chromsaeure und schwefelsaeure enthaltenden elektrolyten
US4588481A (en) * 1985-03-26 1986-05-13 M&T Chemicals Inc. Chromium plating bath for producing non-iridescent, adherent, bright chromium deposits at high efficiencies and substantially free of cathodic low current density etching
US4619742A (en) * 1984-07-04 1986-10-28 Hoechst Aktiengesellschaft Process for the simultaneous graining and chromium-plating of steel plates as supports for lithographic applications
DE4211881A1 (de) * 1992-04-09 1993-10-14 Wmv Ag Verfahren zum galvanischen Aufbringen einer Oberflächenbeschichtung
DE4432512A1 (de) * 1994-09-13 1996-03-14 Lpw Chemie Gmbh Verfahren zur elektrolytischen Abscheidung von Strukturchromschichten

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5176813A (en) * 1989-11-06 1993-01-05 Elf Atochem North America, Inc. Protection of lead-containing anodes during chromium electroplating
AU7784794A (en) * 1993-10-07 1995-05-01 Heidelberger Druckmaschinen Aktiengesellschaft Process for the galvanic application of a surface coating

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3506548A (en) * 1966-09-23 1970-04-14 Allied Res Prod Inc Electrodeposition of nickel
DE3402554A1 (de) * 1984-01-26 1985-08-08 LPW-Chemie GmbH, 4040 Neuss Abscheidung von hartchrom auf einer metallegierung aus einem waessrigen, chromsaeure und schwefelsaeure enthaltenden elektrolyten
US4619742A (en) * 1984-07-04 1986-10-28 Hoechst Aktiengesellschaft Process for the simultaneous graining and chromium-plating of steel plates as supports for lithographic applications
US4588481A (en) * 1985-03-26 1986-05-13 M&T Chemicals Inc. Chromium plating bath for producing non-iridescent, adherent, bright chromium deposits at high efficiencies and substantially free of cathodic low current density etching
DE4211881A1 (de) * 1992-04-09 1993-10-14 Wmv Ag Verfahren zum galvanischen Aufbringen einer Oberflächenbeschichtung
US5415761A (en) * 1992-04-09 1995-05-16 Heidelberger Druckmaschinen Ag Process for applying a structured surface coating on a component
DE4432512A1 (de) * 1994-09-13 1996-03-14 Lpw Chemie Gmbh Verfahren zur elektrolytischen Abscheidung von Strukturchromschichten

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009149995A (ja) * 2001-10-02 2009-07-09 Rohm & Haas Electronic Materials Llc 基体上に金属層を堆積させるためのメッキ浴および方法
US8282808B2 (en) 2006-06-02 2012-10-09 Merck Patent Gmbh Use of phosphinic acids and/or phosphonic acids in redox processes
JP2017185753A (ja) * 2016-04-08 2017-10-12 トヨタ紡織株式会社 成形型の製造方法、成形型、乗物用内装材の製造方法

Also Published As

Publication number Publication date
CZ299000B6 (cs) 2008-04-02
EP1097261A2 (de) 2001-05-09
JP2002519514A (ja) 2002-07-02
CA2334708A1 (en) 2000-01-06
CN1307652A (zh) 2001-08-08
KR100573531B1 (ko) 2006-04-26
RU2202005C2 (ru) 2003-04-10
CN1191392C (zh) 2005-03-02
US6447666B1 (en) 2002-09-10
KR20010072627A (ko) 2001-07-31
BR9912214A (pt) 2001-04-10
EP1097261B1 (de) 2003-01-29
ATE231933T1 (de) 2003-02-15
DE19828545C1 (de) 1999-08-12
CZ20004789A3 (cs) 2001-12-12
WO2000000672A3 (de) 2000-06-29
DE59904174D1 (de) 2003-03-06

Similar Documents

Publication Publication Date Title
DE19828545C1 (de) Galvanisches Bad, Verfahren zur Erzeugung strukturierter Hartchromschichten und Verwendung
EP0565070B1 (de) Verfahren zum galvanischen Aufbringen einer Oberflächenbeschichtung
DE3031501C2 (de)
EP0054165B1 (de) Druckwalze in Verbundkörperbauweise
DE2462449A1 (de) Verfahren zum kontinuierlichen elektrolytischen eloxieren und galvanisieren von aluminium sowie vorrichtung zur durchfuehrung dieses verfahrens
DE3933896C1 (de)
DE102016208184A1 (de) Verfahren zum Erzeugen mehrerer elektrischer Strompfade auf einem Werkstück
EP1565596B1 (de) Herstellung strukturierter hartchromschichten
EP1738000B1 (de) Herstellung einer strukturierten hartchromschicht und herstellung einer beschichtung
EP3241929A1 (de) Beschichtung von funktionsteilen aus metall
DE1250712B (de) Galvanisches Nickelsulfamatbad und Verfahren zum Abscheiden von Nickeluberzugen
EP2180088B1 (de) Verfahren zur galvanischen Abscheidung von Hartchromschichten
DE1771241A1 (de) Plattierte Gegenstaende
DE2729423C2 (de)
DE2618638A1 (de) Galvanisches verfahren zur abscheidung von zinnenthaltenden legierungen, sowie entsprechendes elektrolysebad
DE4116686C2 (de) Verfahren und Vorrichtung zur Herstellung von Gleitflächen
DE2261782C3 (de) Galvanische Abscheidung einer Chrom-Nickel-Eisen-Legierung
DE579064C (de) Verfahren zur Herstellung von Tiefdruckwalzen oder -zylindern
DE2237834A1 (de) Gegenstand aus einem metallischen grundkoerper mit einer metallischen beschichtung
DE3502995C2 (de)
DE102016208185A1 (de) Werkstück mit elektrischen Strompfaden
DE10060127B4 (de) Elektrolytisches Eisenabscheidungsbad und Verfahren zum elektrolytischen Abscheiden von Eisen und Anwendungen des Verfahrens
EP0081788A1 (de) Zusatzfreies, schnellabscheidendes galvanisches Palladiumbad
DE668274C (de) Verfahren zur elektrolytischen Herstellung von Metallueberzuegen auf Gegenstaenden mit nicht leitender Oberflaeche
EP4012074A1 (de) Oberflächenbeschichtung und verfahren zu ihrer herstellung

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99807932.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A2

Designated state(s): BR CA CN CZ JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): BR CA CN CZ JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1999931178

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2334708

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PV2000-4789

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 1020007014501

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09701530

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999931178

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020007014501

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: PV2000-4789

Country of ref document: CZ

NENP Non-entry into the national phase

Ref country code: CA

WWG Wipo information: grant in national office

Ref document number: 1999931178

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020007014501

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: PV2000-4789

Country of ref document: CZ