EP1565596B1 - Herstellung strukturierter hartchromschichten - Google Patents

Herstellung strukturierter hartchromschichten Download PDF

Info

Publication number
EP1565596B1
EP1565596B1 EP03773629A EP03773629A EP1565596B1 EP 1565596 B1 EP1565596 B1 EP 1565596B1 EP 03773629 A EP03773629 A EP 03773629A EP 03773629 A EP03773629 A EP 03773629A EP 1565596 B1 EP1565596 B1 EP 1565596B1
Authority
EP
European Patent Office
Prior art keywords
layer
chromium
structured
electrolyte
hard chrome
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03773629A
Other languages
English (en)
French (fr)
Other versions
EP1565596A1 (de
Inventor
Rudolf Linde
Stefan Dürdoth
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Federal Mogul Burscheid GmbH
Original Assignee
Federal Mogul Burscheid GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Federal Mogul Burscheid GmbH filed Critical Federal Mogul Burscheid GmbH
Publication of EP1565596A1 publication Critical patent/EP1565596A1/de
Application granted granted Critical
Publication of EP1565596B1 publication Critical patent/EP1565596B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/04Electroplating: Baths therefor from solutions of chromium
    • C25D3/10Electroplating: Baths therefor from solutions of chromium characterised by the organic bath constituents used
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12389All metal or with adjacent metals having variation in thickness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12389All metal or with adjacent metals having variation in thickness
    • Y10T428/12396Discontinuous surface component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12486Laterally noncoextensive components [e.g., embedded, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12778Alternative base metals from diverse categories
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the invention relates to a method for producing a structured hard chrome layer on a workpiece, structured hard chrome layers obtainable thereby and an electrolyte for carrying out the method.
  • Electrochemically or galvanically deposited chromium layers have been considered as prior art for many years in functional and decorative applications and applications for coating electrically conductive and non-conductive workpieces.
  • the structured layers used in the prior art all have a pronounced spherical layer structure.
  • the size of the spherical shapes varies between less than 1 micron and several microns.
  • the degree of coverage or the density of the spherical layer structure is more or less variable depending on the method.
  • structured chromium layers according to DE 33 077 48 A1, DE 42 11 881 A1 and DE 43 34 122 A1 are produced by varying the direct electrical currents, the structure of the structures being influenced by variation of current ramp and current pulse heights.
  • a process for the electrolytic coating of materials wherein a chromium alloy is deposited from an electrolyte containing at least chromic acid, sulfuric acid, a isopolyanionen auslagendes metal, a short-chain aliphatic sulfonic acid, its salt and / or their halogen derivative and Contains fluorides.
  • a structured hard chrome layer is not mentioned in this prior art.
  • the method according to the invention is ideally suited for use in the production of structured hard chrome layers.
  • a structured hard chrome layer is obtained by targeted influencing of the cathode film forming during the electrochemical deposition of metals, wherein the layer is formed in the shape of cups and / or labyrinth-like and / or columnar.
  • salts are dissolved in water, they dissociate into cations and anions. These dissociated ions surround simultaneously with a hydration shell, i. Water molecules (as dipoles) attach themselves to the cations or anions. During hydration, the charge of the ions is not changed. If a hydrated metal ion then begins to flow under the influence of current, it will be in the vicinity of the cathode in a boundary region between the electrolyte and the cathode.
  • This so-called cathode film is located directly on the surface of the workpiece to be coated, since the workpiece is electrically negatively connected.
  • the metal ions present in the electrolyte are first aligned by receiving electrons which are offered by the cathode from the electric current.
  • an electrochemical double layer also called "Helmholtz double layer”. It is a name for the approximately some atomic or molecular layers thick electrically charged zone at the interface electrolyte / electrode. Their formation is dependent on ions, electrons or directed dipole molecules. It is positive on the one hand and negatively charged on the other, and behaves like a plate capacitor with extremely low plate spacing.
  • the resulting metal atom is now on the workpiece surface. His condition is not yet comparable to that of an atom in the metal interior. Only when a so-called growth site is present, the resulting atoms arrange themselves in the existing metal lattice.
  • the deposition conditions of the electrolytes such as chemical composition, temperature, hydrodynamics and electric current, are chosen so that a uniform coverage of the base material takes place with the metal to be deposited.
  • the cathode film is influenced by this measure so that its permeability to the ions present is as uniform as possible.
  • the element chromium is present in aqueous solution, compared to most electrochemically depositable elements, as negatively charged complexion mainly as hydrodichromate in strongly acidic solution.
  • the chromium in this complex has the oxidation state 6.
  • smaller amounts of chromium (III) compounds are contained in electrolytes.
  • the formation of the cathode film is controlled so that it becomes permeable to chromium ions, so that initially forms a very dense barrier layer, which thenteurabel depending on the applied electrical coating current density and the metal structure of different thickness or layer thickness can arise.
  • structured chromium layers which are cup-shaped and / or labyrinth-like and / or columnar are obtained.
  • the chromium layer obtained by the method according to the invention has a high resistance to wear and corrosion, excellent sliding properties and seizure resistance as well as an aesthetically favorable appearance, which is hardly achieved by any other coating. Due to the cup-shaped and / or labyrinth-like and / or columnar structured hard chrome layer, it can be used for many functional or decorative applications. For example, the special structure of the layer ensures better absorption of liquids. Furthermore, the construction of a gas cushion allows as well as an improved anchoring possibility for explicatlagemde there substances, such as plastics, dyes, metals, ceramics, electronic components, the body's own tissue as implant coating, can be achieved. Furthermore, this surface structure allows specific optical effects, such as high adsorption capacity for light and heat radiation when using solar collectors, as well as decorative applications in the field of design.
  • electrolyte in the context of the present invention means aqueous solutions whose electrical conductivity is due to electrolytic dissociation in ions. Accordingly, the electrolyte in addition to the components (a) to (d) and optionally further present additives as the remainder of water.
  • component (a) preferably CrO 3 is used, which has proven to be particularly favorable for the electrolytic deposition of chromium.
  • An aliphatic sulfonic acid preferably used as component (c) is methanesulfonic acid. This has proven to be particularly favorable for the formation of the structured hard chrome layers with the above properties.
  • component (d) Li + , Na + and K + can be used.
  • alkaline earth ions are Mg 2+ and Ca 2+ .
  • component (d) (NH 4 ) 6 Mo 7 O 24 .4H 2 O, which has been found to be particularly favorable for the formation of the patterned hard chrome layer having the above properties.
  • the electrolyte specified above in a particularly preferred embodiment, is substantially free of fluorides.
  • fluorides both simple and complex fluorides. If fluorides are present in the electrolyte, the formation of the structured hard chromium layer is disturbed. Accordingly, the term "substantially no fluorides" means that so much fluoride is tolerable in the electrolyte that the formation of the patterned hard chromium layer is unaffected.
  • the amount of fluorides that are tolerable can be readily determined by those skilled in the art. It has proved to be favorable if not more than 0.1 g / l is present in the electrolyte.
  • the electrolyte may further contain conventional catalysts which promote chromium deposition, such as SO 4 2- and / or Cl - . These can be present in the electrolyte in conventional amounts.
  • workpiece is understood to mean objects of any type that are to be provided with a structured chrome layer. These may be metallic or non-metallic objects. Should a non-metallic object structured hard chrome layer are formed, it is first made electrically conductive by applying a thin metal film.
  • the structured hard chromium layer is switched cathodically and immersed in the electrolyte.
  • a direct current for example a pulsating direct current with a frequency up to 1000 Hz, is applied to the workpiece.
  • the temperature for the deposition of the chromium may be 45 ° C to 95 ° C, in particular about 55 ° C.
  • the duration of the deposition is chosen as a function of the desired thickness of the structured hard chromium layer, the layer becoming thicker the longer the deposition takes place.
  • the cathodic current efficiency in the production of the structured hard chromium layer according to the method of the invention is 12% or less. If the current efficiency is higher, the desired structuring of the hard chrome layer is not obtained.
  • multiple layers may be applied to the workpiece, whereby the aforementioned patterned hard chromium layers and layers formed from conventional electrolytes may be alternately deposited one on top of the other.
  • the structured hard chrome layer obtainable by the process according to the invention and then a layer selected from a conventional chromium layer, black chrome layer, copper, nickel or tin layer.
  • a conventional chromium, copper and / or nickel layer can first be applied to the workpiece and then the hard chrome layer described in more detail above can be deposited thereon.
  • the subject matter of the present invention is furthermore a structured hard chrome layer, as obtainable by the process according to the invention described in more detail above.
  • the structured hard chrome layer is - in contrast to the hard chrome layers of the prior art, which have a pronounced spherical layer structure - cup-shaped and / or labyrinth-like and / or columnar.
  • the structured hard chromium layer according to the invention has the advantages described in connection with the method according to the invention.
  • the structured hard chrome layer according to the invention can be used to coat a variety of workpieces, such as piston rings, cylinders, pistons, bolts, camshafts, gaskets, composite materials, valves, bearings to protect against wear and to reduce friction, pressure cylinder for better wetting with colors, embossing rollers for better deep-drawing processes for the automotive industry, solar technology, decorative applications, medical technology, microtechnology and microelectronics.
  • workpieces such as piston rings, cylinders, pistons, bolts, camshafts, gaskets, composite materials, valves, bearings to protect against wear and to reduce friction, pressure cylinder for better wetting with colors, embossing rollers for better deep-drawing processes for the automotive industry, solar technology, decorative applications, medical technology, microtechnology and microelectronics.
  • FIGS. 1 to 8 show photographs according to the hard chrome layers of Examples 1 to 8.
  • a conventional chromium electrolyte of the following basic composition was prepared chromic anhydride CrO 3 250 g / l sulfuric acid H 2 SO 4 2.5 g / l
  • a part of the product is introduced into the electrolyte according to customary proviso and at 40 ° C. with 40 A / dm 2 for 30 min. coated.
  • the product coated under these conditions has, after the treatment, a conventional glossy uniform chromium layer, cf. Fig. 1.
  • Ammonium molybdate (NH 4 ) 6 Mo 7 O 24 .4H 2 O 100 g / l and methanesulfonic acid 4 g / l are additionally added to the electrolyte according to Example 1.
  • a product is coated according to the conditions described in Example 1.
  • the product described thus has a structured chromium layer after the treatment. This chrome layer has a shiny appearance on the protruding surface portions (supporting portion), and brown-colored cathode film is obtained in the recesses of the structure (Fig. 2).
  • a product is coated according to the conditions of Example 2. However, it is carried out instead of a coating current density of 40 A / dm 2 with 20 A / dm 2 .
  • the product thus coated has a structured chromium layer after the treatment.
  • the proportion of the protruding, glossy surface areas (supporting portion) is lower and the proportion of the deep areas is larger compared to the structural layer of Example 2 (FIG. 3).
  • a product is coated according to the conditions of Example 2. However, instead of a coating current density of 40 A / dm 2 , 60 A / dm 2 is used.
  • the product thus coated has a structured chromium layer after the treatment.
  • the proportion of the protruding, glossy surface areas (carrying portion) is greater and the proportion of the deep areas is lower compared to the structural layer of Example 2 (FIG. 4).
  • a product is coated according to the conditions of Example 2.
  • the product thus coated has a structured chromium layer after the treatment.
  • a conventional chromium electrolyte from Example 1 is now on this patterned chromium layer with chromium at 55 ° C and 50 A / dm 2 for 120 min. further coated.
  • the thus coated article has a significant increase in the structural height as compared with Example 2 (Fig. 5).
  • This graded layer has metallurgical properties on the surface such as conventional chrome and is additionally structured.
  • This layer structure is due to the fact that the profile height of the structural layer can be varied within a wide range, which is limited by the exclusive deposition according to Examples 2-4 by their low film growth rate.
  • a product is coated according to the conditions of Example 2.
  • the product thus coated has a structured chromium layer after the treatment.
  • a black chromium oxide-containing layer is now deposited on this structured chromium layer.
  • the thus coated article has a uniform, deep black surface with a very high light index (Figure 6).
  • a product is coated according to the conditions of Example 2.
  • the product thus coated has a structured chromium layer after the treatment.
  • a tin layer is now deposited on this patterned chromium layer, of sufficient thickness to fill the recesses of the structural chrome layer with tin.
  • the product thus coated has a surface which also has very good sliding properties with high wear resistance (FIG. 7).
  • a product is coated according to the conditions of Example 1 with a conventional chrome layer.
  • a structured chromium layer is applied with the conditions from Example 2 to the chromium layer from Example 1.
  • the structured chromium layer represents an entry layer for the conventional chromium layer and, depending on the tribological application, leads to an improvement of the layer system (FIG. 8).

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer strukturierten Hartchromschicht auf einem Werkstück, dadurch erhältliche strukturierte Hartchromschichten und einen Elektrolyt zur Durchführung des Verfahrens.
  • Elektrochemisch bzw. galvanisch abgeschiedene Chromschichten gelten seit vielen Jahren als Stand der Technik bei funktionellen und dekorativen Einsatzgebieten und Anwendungen zur Beschichtung von elektrisch leitenden und nicht leitenden Werkstücken.
  • Der Einsatz strukturierter elektrochemisch erzeugter Hartchromschichten hat in den vergangenen Jahren und gerade in letzter Zeit zunehmend an Bedeutung gewonnen. Vor allem der Einsatz funktioneller Strukturen zeigt einen starken Aufwärtstrend. Typische Anwendungen finden sich bei der Beschichtung von Druckwalzen zu deren besseren Benetzung mit Farbe, bei Walzen zum Prägen von Blechen, zur Verbesserung des Tiefziehprozesses für die Autoindustrie und auch beim Lagern zum Schutz vor Verschleiß und der Verminderung von Reibung.
  • Die nach dem Stand der Technik eingesetzten strukturierten Schichten weisen jedoch alle einen ausgeprägten kugeligen Schichtaufbau auf. Die Größe der Kugelformen schwankt zwischen weniger als 1 µm und mehreren µm. Der Bedeckungsgrad bzw. die Dichte des sphärischen Schichtaufbaus ist je nach Verfahren mehr oder weniger variierbar.
  • So werden strukturierte Chromschichten nach DE 33 077 48 A1, DE 42 11 881 A1 und DE 43 34 122 A1 durch Variation der elektrischen Gleichströme erzeugt, wobei der Aufbau der Strukturen durch Variation von Stromrampen- und Stromimpulshöhen beeinflußt werden.
  • Nach DE 44 32 512 A1 werden ebenfalls sphärische Strukturen erzeugt. Hier werden deren Wachstum jedoch über die Zugabe von Salzen der Elemente Selen oder Tellur zum Verchromungselektrolyten ermöglicht.
  • Nach DE 19828545 C1 hat die Zugabe von 2-Hydroxyethansulfonationen zum Elektrolyten in Kombination mit dessen Temperaturvariation und der Variation des angelegten elektrischen Gleichstroms ebenfalls kugelige Strukturen zur Folge.
  • Alle diese aufgeführten strukturierten Chrombeschichtungen besitzen jedoch die gleiche, mehr oder weniger stark ausgeprägte kugelige Charakteristik, die nicht für alle Anwendungen geeignet ist. Die Schichten sind zum Teil ungleichmäßig ausgebildet und der Prozeß zu deren Abscheidung unterliegt einigen nicht sicher zu kontrollierenden Mechanismen.
  • Aus der WO 02/38835 A1 ist ein Verfahren zur elektrolytischen Beschichtung von Werkstoffen bekannt, wobei eine Chromlegierung aus einem Elektrolyten abgeschieden wird, der wenigstens Chromsäure, Schwefelsäure, ein lsopolyanionen ausbildendes Metall, eine kurzkettige aliphatische Sulfonsäure, deren Salz und/oder deren Halogenderivat und Fluoride enthält. Die Ausbildung einer strukturierten Hartchromschicht wird in diesem Stand der Technik nicht erwähnt.
  • Der vorliegenden Erfindung liegt somit die Aufgabe zugrunde, ein Verfahren zur Herstellung einer strukturierten Hartchromschicht bereitzustellen, das nicht die Nachteile des Standes der Technik aufweist.
  • Erfindungsgemäß wird dies durch ein Verfahren zur Herstellung einer strukturierten Hartchromschicht erreicht, wobei Chrom aus einem Elektrolyt auf einem Werkstück abgeschieden wird, der enthält:
    • (a) Cr(VI)-Verbindung in einer Menge, die 50 g/l bis 600 g/l Chromsäureanhydrid entsprechen;
    • (b) 0,5 g/l bis 10 g/l Schwefelsäure;
    • (c) 1 g/l bis 20 g/l aliphatische Sulfonsäure mit 1 bis 6 Kohlenstoffatomen und
    • (d) 10 g/l bis 200 g/l mindestens einer einen dichten Kathodenfilm ausbildende Verbindung ausgewählt unter Ammonium-, Alkali- und Erdalkalimolybdat, Ammonium-, Alkali- und Erdalkalivanadat und Ammonium-, Alkali- und Erdalkalizirkonat,
    wobei mit einer Rathodischen Stromausbeute von 12% oder weigher gearbeitet wird.
  • Das erfindungsgemäße Verfahren ist bestens geeignet, um zur Herstellung strukturierter Hartchromschichten angewandt zu werden.
  • Durch das erfindungsgemäße Verfahren wird durch eine gezielte Beeinflussung des sich bei der elektrochemischen Abscheidung von Metallen bildenden Kathodenfilms eine strukturierte Hartchromschicht erhalten, wobei die Schicht näpfchenförmig und/oder labyrinthartig und/oder säulenförmig ausgebildet ist.
  • Löst man Salze in Wasser, so dissoziieren sie in Kationen und Anionen. Diese dissoziierten Ionen umgeben sich gleichzeitig mit einer Hydrathülle, d.h. es lagern sich Wassermoleküle (als Dipole) um die Kationen bzw. Anionen an. Während der Hydratation wird die Ladungszahl der Ionen nicht verändert. Beginnt nun ein hydratisiertes Metallion unter Stromeinfluß zu wandem, so gerät es in der Nähe der Kathode in einen Grenzbereich zwischen Elektrolyt und Kathode.
  • Dieser sogenannte Kathodenfilm befindet sich unmittelbar auf der Oberfläche des zu beschichtenden Werkstücks, da das Werkstück elektrisch negativ geschaltet ist. In dieser Phasengrenze werden die im Elektrolyten anwesenden Metallionen durch Aufnahme von Elektronen, die von der Kathode vom elektrischen Strom angeboten werden, zunächst ausgerichtet. Unmittelbar auf der Werkstückoberfläche unter der Diffusionszone befindet sich eine elektrochemische Doppelschicht, auch "Helmholtzsche Doppelschicht" genannt. Sie ist eine Bezeichnung für die etwa einige Atom- oder Molekülschichten dicke elektrisch geladene Zone an der Grenzfläche Elektrolyt/Elektrode. Ihre Bildung ist von Ionen, Elektronen oder gerichteten Dipolmolekülen abhängig. Sie ist auf der einen Seite positiv, auf der anderen Seite negativ aufgeladen und verhält sich so wie ein Plattenkondensator mit extrem niedrigem Plattenabstand. Das so entstandene Metallatom befindet sich nun auf der Werkstückoberfläche. Sein Zustand ist aber noch nicht mit dem eines Atoms im Metallinneren vergleichbar. Erst wenn eine sogenannte Wachstumsstelle vorhanden ist, ordnen sich die entstandenen Atome in das vorhanden Metallgitter ein.
  • Üblicherweise werden die Abscheidebedingungen der Elektrolyte, wie chemische Zusammensetzung, Temperatur, Hydrodynamik und elektrischer Strom, so gewählt, daß eine gleichmäßige Bedeckung des Grundwerkstoffs mit dem abzuscheidenden Metall erfolgt. Dies bedeutet, daß der Kathodenfilm durch diese Maßnahme so beeinflußt wird, daß seine Durchlässigkeit für die anwesenden Ionen so gleichmäßig wie möglich ist.
  • Das Element Chrom liegt in wäßriger Lösung, im Vergleich zu den meisten elektrochemisch abscheidbaren Elementen, als negativ geladenes Komplexion hauptsächlich als Hydrogendichromat in stark saurer Lösung vor.
  • Das Chrom besitzt in diesem Komplex die Oxidationsstufe 6. Daneben sind in Elektrolyten auch geringere Mengen an Chrom (III)-Verbindungen enthalten.
  • Elektrolysiert man eine solche wäßrige Lösung, so bildet sich auf der Kathode ein fester Film, der eine Chromabscheidung verhindert. Es entsteht lediglich Wasserstoff, der wegen seines kleinen Radius durch den festen Kathodenfilm hindurchtreten kann, nicht aber die großen Hydrogendichromationen. Erst durch den Zusatz von Fremdanionen, z.B. Sulfat und Chlorid, wird der Kathodenfilm für Chromionen durchlässig und es kommt über verschiedene Oxidationsstufen zur Abscheidung des Chroms (siehe "Chemie für die Galvanotechnik" Leutze Verlag, 2. Auflage, 1993).
  • Durch die Zugabe mindestens einer einen dichten Kathodenfilm ausbildenden Verbindungen zum Elektrolyt wird die Bildung des Kathodenfilms so gesteuert, daß dieser durchlässig für Chromionen wird, so daß sich zunächst eine sehr dichte Sperrschicht bildet, welche dann je nach angelegter elektrischer Beschichtungsstromdichte durchschlägt und den Metallaufbau unterschiedlicher Stärke bzw. Schichtdicke entstehen läßt. Auf diese Weise werden strukturierte Chromschichten, die näpfchenförmig und/oder labyrinthartig und/oder säulenförmig ausgebildet sind, erhalten.
  • Die nach dem erfindungsgemäßen Verfahren erhaltene Chromschicht weist eine hohe Verschleiß- und Korrosionsbeständigkeit, hervorragende Gleiteigenschaften und Freßbeständigkeit sowie auch ein ästhetisch günstiges Aussehen auf, das kaum von einer anderen Beschichtung erreicht wird. Durch die näpfchenförmig und/oder labyrinthartig und/oder säulenförmig strukturierte Hartchromschicht kann sie für viele funktionelle oder auch dekorative Anwendungen eingesetzt werden. So ist beispielsweise durch die spezielle Struktur der Schicht ein besseres Aufnahmevermögen von Flüssigkeiten gewährleistet. Ferner kann der Aufbau eines Gaspolsters ermöglicht sowie eine verbesserte Verankerungsmöglichkeit für dort einzulagemde Stoffe, z.B. Kunststoffe, Farbstoffe, Metalle, Keramiken, elektronische Bauelemente, körpereigenes Gewebe als lmplantatheschichtung, erreicht werden. Des weiteren ermöglicht diese spezielle Struktur durch ihre Oberflächentopographie gezielte optische Effekte, z.B. hohes Adsorptionsvermögen für Licht- und Wärmestrahlung beim Einsatz von Solarkollektoren und auch dekorative Anwendungen im Designbereich.
  • Unter dem Ausdruck "Elektrolyt" im Sinne der vorliegenden Erfindung werden wäßrige Lösungen verstanden, deren elektrische Leitfähigkeit durch elektrolytisch Dissoziation in Ionen zustande kommt. Demzufolge weist der Elektrolyt neben den Komponenten (a) bis (d) und gegebenenfalls weiter vorliegende Zusatzstoffe als Rest Wasser auf.
  • Die vorstehend angegebenen Mengen der Komponenten (a) bis (d) beziehen sich auf den Elektrolyt.
  • Als Komponente (a) wird vorzugsweise CrO3 eingesetzt, das sich für die elektrolytische Abscheidung von Chrom als besonders günstig erwiesen hat.
  • Eine als Komponente (c) vorzugsweise eingesetzte aliphatische Sulfonsäure ist Methansulfonsäure. Diese hat sich als besonders günstig für die Ausbildung der strukturierten Hartchromschichten mit vorstehenden Eigenschaften erweisen.
  • Als Alkaliionen für die Komponente (d) können Li+, Na+ und K+ eingesetzt werden. Beispiele für Erdalkaliionen sind Mg2+ und Ca2+. In einer bevorzugten Ausführungsform ist die Komponente (d) (NH4)6Mo7O24·4 H2O, das sich als besonders günstig für die Ausbildung der strukturierten Hartchromschicht mit vorstehenden Eigenschaften herausgestellt hat.
  • Der vorstehend näher bezeichnete Elektrolyt ist in einer besonders bevorzugten Ausführungsform im wesentlichen frei von Fluoriden. Dabei werden als Fluoride sowohl einfache als komplexe Fluoride verstanden. Liegen im Elektrolyten Fluoride vor, so wird die Ausbildung der strukturierten Hartchromschicht gestört. Der Ausdruck "im wesentlichen keine Fluoride" bedeutet demzufolge, daß soviel Fluorid im Elektrolyten tolerabel ist, daß die Ausbildung der strukturierten Hartchromschicht nicht beeinflußt wird. Die Menge der Fluoride, die tolerabel sind, können vom Fachmann leicht ermittelt werden. Als günstig hat es sich erwiesen, wenn nicht mehr als 0,1 g/l im Elektrolyt vorliegt.
  • Der Elektrolyt kann weiterhin übliche Katalysatoren, die die Chromabscheidung unterstützen, wie SO4 2- und/oder Cl- enthalten. Diese können in üblichen Mengen im Elektrolyt vorliegen.
  • Mit dem erfindungsgemäßen Verfahren werden strukturierte Hartchromschichten, wie sie vorstehend näher beschrieben wurden, auf Werkstücken ausgebildet. Unter dem Ausdruck "Werkstück" werden dabei Gegenstände jeglicher Art verstanden, die mit einer strukturierten Chromschicht ausgestattet werden sollen. Dabei kann es sich um metallische oder nicht metallische Gegenstände handeln. Soll auf einen nicht metallischen Gegenstand eine strukturierte Hartchromschicht ausgebildet werden, so wird dieser zunächst durch Aufbringen eines dünnen Metallfilms elektrisch leitend gemacht.
  • Zur Ausbildung der strukturierten Hartchromschicht auf dem Werkstück wird dieses kathodisch geschaltet und in den Elektrolyten eingetaucht. An das Werkstück wird ein Gleichstrom, beispielsweise ein pulsierender Gleichstrom mit einer Frequenz bis 1000 Hz, angelegt. Die Temperatur für die Abscheidung des Chroms kann 45°C bis 95°C, insbesondere etwa 55°C betragen. Die Zeitdauer der Abscheidung wird in Abhängigkeit von der gewünschten Dicke der strukturierten Hartchromschicht gewählt, wobei die Schicht um so dicker wird, je länger die Abscheidung erfolgt.
  • In einer bevorzugten Ausführungsform der vorliegenden Erfindung wird mit einer Stromdichte von 20 A/dm2 bis 200 A/dm2 gearbeitet. Dadurch werden besonders günstige Strukturen der Hartchromschicht erhalten. Je höher die Stromdichte gewählt wird, desto dichter werden die hervorstehenden Bereiche der strukturierten Hartchromschicht.
  • Die kathodische Stromausbeute bei der Herstellung der strukturierten Hartchromschicht gemäß dem erfindungsgemäßen Verfahren liegt bei 12% oder weniger. Ist die Stromausbeute höher, wird die gewünschte Strukturierung der Hartchromschicht nicht erhalten.
  • Auf das Werkstück können mehrere Schichten aufgebracht werden, wobei sich die vorstehend erwähnten strukturierten Hartchromschichten und Schichten, die aus herkömmlichen Elektrolyten gebildet werden, wechselweise aufeinander abgeschieden werden können. Beispielsweise kann auf ein Werkstück zunächst die nach dem erfindungsgemäßen Verfahren erhältliche strukturierte Hartchromschicht und darauf eine Schicht ausgewählt unter einer herkömmlichen Chromschicht, Schwarzchromschicht, Kupfer-, Nickel- oder Zinnschicht aufgebracht werden. Ferner kann zunächst auf dem Werkstück eine herkömmliche Chrom-, Kupfer- und/oder Nickelschicht aufgebracht werden und darauf die vorstehend näher beschriebene Hartchromschicht abgeschieden werden.
  • Direkt auf die nach dem erfindungsgemäßen Verfahren erhältliche Hartchromschicht können weitere, nicht chromhaltige Beschichtungen aufgebracht werden, wie Kupfer, Nickel, Zinn, Zink, Keramik, Kunststoff, Festschmiermittel, Farbstoffe.
  • Gegenstand der vorliegenden Erfindung ist femer eine strukturierte Hartchromschicht, wie sie nach dem vorstehend näher beschriebenen erfindungsgemäßen Verfahren erhältlich ist.
  • Die strukturierten Hartchromschicht ist - im Gegensatz zu den Hartchromschichten aus dem Stand der Technik, die einen ausgeprägten kugeligen Schichtaufbau aufweisen - näpfchenförmig und/oder labyrinthartig und/oder säulenförmig ausgebildet. Die erfindungsgemäße strukturierte Hartchromschicht weist die im Zusammenhang mit dem erfindungsgemäßen Verfahren geschilderten Vorteile auf.
  • Die erfindungsgemäße strukturierte Hartchromschicht kann zur Beschichtung einer Vielzahl von Werkstücken eingesetzt werden, beispielsweise Kolbenringe, Zylinder, Kolben, Bolzen, Nockenwellen, Dichtungen, Verbundmaterialien, Ventile, Lager zum Schutz vor Verschleiß und zur Verminderung der Reibung, Druckzylinder zur besseren Benetzung mit Farben, Prägewalzen für bessere Tiefziehprozesse für die Automobilindustrie, in der Solartechnik, für dekorative Anwendungen, in der Medizintechnik, der Mikrotechnik und der Mikroelektronik.
  • Die vorliegende Erfindung wird in den nachfolgenden Beispielen unter Bezugnahme auf die Figuren näher erläutert, ohne sie jedoch darauf einzuschränken.
  • Die Figuren 1 bis 8 zeigen Fotografien gemäß den Hartchromschichten aus den Beispielen 1 bis 8.
  • Beispiel 1:
  • Ein herkömmlicher Chromelektrolyt folgender Grundzusammensetzung wurde hergestellt
    Chromsäureanhydrid CrO3 250 g/l
    Schwefelsäure H2SO4 2.5 g/l
  • Ein Warenteil wird nach üblicher Vorbehaltung in den Elektrolyten eingebracht und bei 55°C mit 40 A/dm2 für 30 min. beschichtet.
  • Das unter diesen Bedingungen beschichtete Warenteil weist nach der Behandlung eine herkömmliche glänzende gleichmäßig ausgebildete Chromschicht auf, vgl. Fig. 1.
  • Beispiel 2:
  • Dem Elektrolyten nach Beispiel 1 werden zusätzlich Ammoniummolybdat (NH4)6Mo7O24 · 4 H2O 100 g/l und Methansulfonsäure 4 g/l zugesetzt. Ein Warenteil wird nach den unter Beispiel 1 beschriebenen Bedingungen beschichtet. Das so beschriebene Warenteil weist nach der Behandlung eine strukturierte Chromschicht auf. Diese Chromschicht weist auf den hervorstehenden Oberflächenbereichen (Traganteil) ein glänzendes Aussehen auf und in den Vertiefungen der Struktur ist braunfarbener Kathodenfilm bzw. Sperrschicht erhalten (Fig. 2).
  • Beispiel 3:
  • Ein Warenteil wird nach den Bedingungen aus Beispiel 2 beschichtet. Es wird jedoch statt mit einer Beschichtungsstromdichte von 40 A/dm2 mit 20 A/dm2 gearbeitet.
  • Das so beschichtete Warenteil weist nach der Behandlung eine strukturierte Chromschicht auf. Der Anteil der hervorstehenden, glänzenden Oberflächenbereiche (Traganteil) ist geringer und der Anteil der tiefen Bereiche ist größer im Vergleich zu der Strukturschicht aus Beispiel 2 (Fig. 3).
  • Beispiel 4:
  • Ein Warenteil wird nach den Bedingungen aus Beispiel 2 beschichtet. Es wird jedoch statt mit einer Beschichtungsstromdichte von 40 A/dm2 mit 60 A/dm2 gearbeitet.
  • Das so beschichtete Warenteil weist nach der Behandlung eine strukturierte Chromschicht auf. Der Anteil der hervorstehenden, glänzenden Oberflächenbereiche (Traganteil) ist größer und der Anteil der tiefen Bereiche ist geringer im Vergleich zu der Strukturschicht aus Beispiel 2 (Fig. 4).
  • Beispiel 5:
  • Ein Warenteil wird nach den Bedingungen aus Beispiel 2 beschichtet. Das so beschichtete Warenteil weist nach der Behandlung eine strukturierte Chromschicht auf. In einer herkömmlichen Chromelektrolyten aus Beispiel 1 wird nun auf dieser strukturierten Chromschicht mit Chrom bei 55°C und 50 A/dm2 für 120 min. weiterbeschichtet. Das so beschichtete Warenteil weist eine erhebliche Vergrößerung der Strukturhöhe auf im Vergleich zu Beispiel 2 (Fig. 5).
  • Diese gradierte Schicht besitzt auf der Oberfläche metallurgische Eigenschaften wie herkömmliches Chrom und ist zusätzlich strukturiert.
  • Der Vorteil dieses Schichtaufbaus ist darin begründet, daß die Profilhöhe der Strukturschicht in einem weiten Bereich variiert werden kann, was durch die ausschließliche Abscheidung nach den Beispielen 2-4 durch deren geringe Schichtwachstumsgeschwindigkeit begrenzt ist.
  • Beispiel 6:
  • Ein Warenteil wird nach den Bedingungen aus Beispiel 2 beschichtet. Das so beschichtete Warenteil weist nach der Behandlung eine strukturierte Chromschicht auf. In einem herkömmlichen Schwarzchromelektrolyten wird nun auf dieser strukturierten Chromschicht eine schwarze chromoxidhaltige Schicht abgeschieden.
  • Das so beschichtete Warenteil weist eine gleichmäßige, tiefschwarze Oberfläche mit sehr hohem Lichtberechungsindex_auf (Fig. 6).
  • Beispiel 7:
  • Ein Warenteil wird nach den Bedingungen aus Beispiel 2 beschichtet. Das so beschichtete Warenteil weist nach der Behandlung eine strukturierte Chromschicht auf. In einem herkömmlichen Zinnelektrolyten wird nun auf dieser strukturierten Chromschicht eine Zinnschicht abgeschieden, in ausreichender Dicke, um die Vertiefungen der Strukturchromschicht mit Zinn aufzufüllen.
  • Das so beschichtete Warenteil besitzt eine Oberfläche welche bei hohem Verschleißwiderstand ebenfalls sehr gute Gleiteigenschaften besitzt (Fig. 7).
  • Beispiel 8:
  • Ein Warenteil wird nach den Bedingungen aus Beispiel 1 mit einer herkömmlichen Chromschicht beschichtet.
  • Anschließend wird mit den Bedingungen aus Beispiel 2 auf die Chromschicht aus Beispiel 1 eine strukturierte Chromschicht aufgebracht.
  • Die strukturierte Chromschicht stellt eine Einlaufschicht für die herkömmliche Chromschicht dar und führt je nach tribologischer Anwendung zu einer Verbesserung des Schichtsystems (Fig. 8).

Claims (7)

  1. Verfahren zur Herstellung einer strukturierten Hartchromschicht, wobei Chrom aus einem Elektrolyt auf ein Werkstück abgeschieden wird, der enthält:
    (a) Cr(VI)-Verbindung in einer Menge, die 50 g/l bis 600 g/l Chromsäureanhydrid entsprechen;
    (b) 0,5 g/l bis 10 g/l Schwefelsäure;
    (c) 1 g/l bis 20 g/l aliphatische Sulfonsäure mit 1 bis 6 Kohlenstoffatomen, und
    (d) 10 g/l bis 200 g/l mindestens einer einen dichten Kathodenfilm ausbildenden Verbindung ausgewählt unter Ammonium-, Alkali- und Erdalkalimolybdat, Ammonium-, Alkali- und Erdalkalivanadat und Ammonium-, Alkali- und Erdalkalizirkonat,
    wobei mit einer kathodischen Stromausbeute von 12% oder weniger gearbeitet wird.
  2. Verfahren nach Anspruch 1, wobei die Cr(VI)-Verbindung CrO3 ist.
  3. Verfahren nach einem der vorhergehenden Ansprüche, wobei die aliphatische Sulfonsäure Methansulfonsäure ist.
  4. Verfahren nach einem der vorhergehenden Ansprüche, wobei die einen dichten Kathodenfilm ausbildende Verbindung (NH4)6Mo7O24 · 4 H2O ist.
  5. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Elektrolyt im wesentlichen keine Fluoride enthält.
  6. Verfahren nach einem der vorhergehenden Ansprüche, wobei mit einer Stromdichte von 20 A/dm2 bis 200 A/dm2 gearbeitet wird:
  7. Strukturierte Hartchromschicht, ethalten nach den Verfahren gemäß einem der Ansprüche 1 bis 6.
EP03773629A 2002-11-29 2003-09-18 Herstellung strukturierter hartchromschichten Expired - Lifetime EP1565596B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10255853 2002-11-29
DE2002155853 DE10255853A1 (de) 2002-11-29 2002-11-29 Herstellung strukturierter Hartchromschichten
PCT/EP2003/010425 WO2004050960A1 (de) 2002-11-29 2003-09-18 Herstellung strukturierter hartchromschichten

Publications (2)

Publication Number Publication Date
EP1565596A1 EP1565596A1 (de) 2005-08-24
EP1565596B1 true EP1565596B1 (de) 2006-08-09

Family

ID=32318822

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03773629A Expired - Lifetime EP1565596B1 (de) 2002-11-29 2003-09-18 Herstellung strukturierter hartchromschichten

Country Status (8)

Country Link
US (2) US7699970B2 (de)
EP (1) EP1565596B1 (de)
JP (1) JP4373923B2 (de)
AU (1) AU2003282018A1 (de)
BR (1) BRPI0315192B1 (de)
DE (2) DE10255853A1 (de)
PT (1) PT1565596E (de)
WO (1) WO2004050960A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007038188A1 (de) 2007-08-13 2009-02-19 Federal-Mogul Burscheid Gmbh Verschleißfest beschichtetes Maschinenelement und Verfahren zu dessen Herstellung
WO2011014897A1 (de) 2009-08-04 2011-02-10 Technische Universität Wien Verfahren zur herstellung strukturierter chromschichten
DE102009028223A1 (de) 2009-08-04 2011-02-24 Koenig & Bauer Aktiengesellschaft Verfahren und Herstellung strukturierter Chromschichten

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10255853A1 (de) 2002-11-29 2004-06-17 Federal-Mogul Burscheid Gmbh Herstellung strukturierter Hartchromschichten
DE102004019370B3 (de) * 2004-04-21 2005-09-01 Federal-Mogul Burscheid Gmbh Herstellung einer strukturierten Hartchromschicht und Herstellung einer Beschichtung
DE102004039056A1 (de) * 2004-08-11 2006-03-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zur Herstellung eines Substrats für Solarzellen, derartige Substrate sowie deren Verwendung
CN100344797C (zh) * 2004-09-20 2007-10-24 南京飞燕活塞环股份有限公司 一种球铁环镀铬工艺及其镀液
DE102005022692A1 (de) * 2005-05-18 2006-11-23 Robert Bosch Gmbh Verfahren zur Herstellung beschichteter Oberflächen und Verwendung derselben
DE102006042076A1 (de) * 2006-09-05 2008-03-20 Goldschmidt Tib Gmbh Ein neues Additiv für Chromelektrolyte
DE102008017270B3 (de) * 2008-04-04 2009-06-04 Federal-Mogul Burscheid Gmbh Strukturierte Chrom-Feststoffpartikel-Schicht und Verfahren zu deren Herstellung sowie beschichtetes Maschinenelement
DE102011084051B4 (de) 2011-10-05 2020-03-12 Federal-Mogul Burscheid Gmbh Beschichteter Kolbenring mit radial zunehmender Schichtdicke und Verfahren zu dessen Herstellung
DE102011084052A1 (de) 2011-10-05 2013-04-11 Federal-Mogul Burscheid Gmbh Beschichteter Kolbenring mit scharfer Ölabstreifkante
CN105734631B (zh) * 2014-12-10 2019-03-19 上海宝钢工业技术服务有限公司 冷轧轧辊毛化处理的电镀方法
CN109537002B (zh) * 2018-12-07 2020-10-27 重庆立道新材料科技有限公司 一种超高硬度镀铬添加剂及其应用

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL271581A (de) * 1960-11-22
FR1597909A (de) * 1968-02-03 1970-06-29
DD103391A5 (de) * 1972-03-07 1974-01-20
GB1492702A (en) * 1974-01-23 1977-11-23 Vintage Curacao Nv Electroplating process for chrome
CS214553B1 (cs) 1979-11-30 1984-02-28 Ladislav Herbansky Sposob galvan iekého nanášania funkčněj vrstvy odolnéj Hlavně proti otěru
US4468293A (en) * 1982-03-05 1984-08-28 Olin Corporation Electrochemical treatment of copper for improving its bond strength
JPS60127339A (ja) * 1983-12-15 1985-07-08 Mitsubishi Gas Chem Co Inc メツキ用ポリフエニレンエ−テル系樹脂組成物
DE3402554A1 (de) 1984-01-26 1985-08-08 LPW-Chemie GmbH, 4040 Neuss Abscheidung von hartchrom auf einer metallegierung aus einem waessrigen, chromsaeure und schwefelsaeure enthaltenden elektrolyten
US4588481A (en) 1985-03-26 1986-05-13 M&T Chemicals Inc. Chromium plating bath for producing non-iridescent, adherent, bright chromium deposits at high efficiencies and substantially free of cathodic low current density etching
DE3531410A1 (de) 1985-09-03 1987-03-05 Goetze Ag Galvanische hartchromschicht
US5196108A (en) * 1991-04-24 1993-03-23 Scot Industries, Inc. Sucker rod oil well pump
DE4334122C2 (de) * 1992-04-09 1995-11-23 Wmv Ag Verfahren zum elektrochemischen Aufbringen einer Oberflächenbeschichtung und Anwendung des Verfahrens
DE4211881C2 (de) * 1992-04-09 1994-07-28 Wmv Ag Verfahren zum elektrochemischen Aufbringen einer strukturierten Oberflächenbeschichtung
US5415763A (en) * 1993-08-18 1995-05-16 The United States Of America As Represented By The Secretary Of Commerce Methods and electrolyte compositions for electrodepositing chromium coatings
US5958207A (en) * 1994-10-01 1999-09-28 Heidelberger Druckmaschinen Ag Process for applying a surface coating
AU7784794A (en) 1993-10-07 1995-05-01 Heidelberger Druckmaschinen Aktiengesellschaft Process for the galvanic application of a surface coating
IT1267394B1 (it) 1994-02-18 1997-02-05 Ind S R L Procedimento per la realizzazione di riporti galvanici compositi in cromo duro con una fase dispersa e riporto anti-usura realizzato con
DE4432512C2 (de) * 1994-09-13 1998-12-17 Lpw Chemie Gmbh Verwendung eines Verfahrens zur elektrolytischen Abscheidung von Chromschichten
DE69711722T2 (de) 1996-11-11 2002-08-08 Teikoku Piston Ring Co Ltd Galvanische Komposit-Chrom-Beschichtung und damit beschichtetes Gleitteil
DE19828545C1 (de) * 1998-06-26 1999-08-12 Cromotec Oberflaechentechnik G Galvanisches Bad, Verfahren zur Erzeugung strukturierter Hartchromschichten und Verwendung
JP3918142B2 (ja) * 1998-11-06 2007-05-23 株式会社日立製作所 クロムめっき部品、クロムめっき方法およびクロムめっき部品の製造方法
DE19929090A1 (de) * 1999-06-24 2000-12-28 Duralloy Ag Haerkingen Verfahren zur Beschichtung eines Werkstückes mit einem Schmierstoff
DE19931829A1 (de) 1999-07-08 2001-01-18 Federal Mogul Burscheid Gmbh Galvanische Hartchromschicht
DE10001888A1 (de) * 2000-01-19 2001-07-26 Rheinmetall W & M Gmbh Verfahren zur Innenbeschichtung eines Waffenrohres
US6478943B1 (en) * 2000-06-01 2002-11-12 Roll Surface Technologies, Inc. Method of manufacture of electrochemically textured surface having controlled peak characteristics
DE50015318D1 (de) * 2000-11-11 2008-10-02 Enthone Verfahren zur elektrolytischen Abscheidung aus einer chromhaltigen Lösung
DE10255853A1 (de) 2002-11-29 2004-06-17 Federal-Mogul Burscheid Gmbh Herstellung strukturierter Hartchromschichten
JP4353485B2 (ja) 2004-01-30 2009-10-28 株式会社リケン 複合クロムめっき皮膜並びにその皮膜を有する摺動部材及びその製造方法
DE102004019370B3 (de) 2004-04-21 2005-09-01 Federal-Mogul Burscheid Gmbh Herstellung einer strukturierten Hartchromschicht und Herstellung einer Beschichtung
DE102005059367B4 (de) * 2005-12-13 2014-04-03 Enthone Inc. Elektrolytzusammensetzung und Verfahren zur Abscheidung rissfreier, korrosionsbeständiger und harter Chrom- und Chromlegierungsschichten

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007038188A1 (de) 2007-08-13 2009-02-19 Federal-Mogul Burscheid Gmbh Verschleißfest beschichtetes Maschinenelement und Verfahren zu dessen Herstellung
WO2011014897A1 (de) 2009-08-04 2011-02-10 Technische Universität Wien Verfahren zur herstellung strukturierter chromschichten
DE102009028223A1 (de) 2009-08-04 2011-02-24 Koenig & Bauer Aktiengesellschaft Verfahren und Herstellung strukturierter Chromschichten

Also Published As

Publication number Publication date
BR0315192A (pt) 2005-08-23
US20100112376A1 (en) 2010-05-06
DE50304610D1 (de) 2006-09-21
US20060054509A1 (en) 2006-03-16
EP1565596A1 (de) 2005-08-24
US8277953B2 (en) 2012-10-02
PT1565596E (pt) 2006-12-29
WO2004050960A1 (de) 2004-06-17
US7699970B2 (en) 2010-04-20
BRPI0315192B1 (pt) 2015-10-13
JP2006508243A (ja) 2006-03-09
AU2003282018A1 (en) 2004-06-23
JP4373923B2 (ja) 2009-11-25
DE10255853A1 (de) 2004-06-17

Similar Documents

Publication Publication Date Title
EP2260127B1 (de) Strukturierte chrom-feststoffpartikel-schicht und verfahren zu deren herstellung
EP1565596B1 (de) Herstellung strukturierter hartchromschichten
DE102010055968A1 (de) Substrat mit korrosionsbeständigem Überzug und Verfahren zu dessen Herstellung
EP2588645B1 (de) Verfahren zur abscheidung einer nickel-metall-schicht
DE2462448A1 (de) Flaechiger metallgegenstand, verfahren zu seiner herstellung sowie katalysator aus diesem metallgegenstand
DE102005059367B4 (de) Elektrolytzusammensetzung und Verfahren zur Abscheidung rissfreier, korrosionsbeständiger und harter Chrom- und Chromlegierungsschichten
EP1738000B1 (de) Herstellung einer strukturierten hartchromschicht und herstellung einer beschichtung
DE19815568A1 (de) Verfahren zur elektrolytischen Erzeugung von radioaktiven Ruthenium-Schichten auf einem Träger sowie radioaktive Ruthenium-Strahlenquellen
EP2635724B1 (de) Verfahren zur abscheidung von hartchrom aus cr(vi)-freien elektrolyten
DE2556716C2 (de) Elektrolytisch hergestellte Schichten mit den Eigenschaften eines im Bereich des Sonnenspektrums nahezu idealen schwarzen Körpers
EP2180088B1 (de) Verfahren zur galvanischen Abscheidung von Hartchromschichten
DE2724730A1 (de) Verfahren und elektrolyt zum abscheiden von chromhaltigen umwandlungsschutzueberzuegen
DE3029364A1 (de) Verfahren zur herstellung von kathoden mit niedriger wasserstoffueberspannung und ihre verwendung
EP2770088B1 (de) Hochkorrosionsfeste Stahlteile und Verfahren zu deren Herstellung
EP2307593A2 (de) Verbundwerkstoff
DE2310638C2 (de) Verfahren zum Umwandeln hydrophober Oberflächen aus Aluminium, Aluminiumlegierungen, Kupfer oder Kupferlegierungen in hydrophile Oberflächen
DE2432044B2 (de) Verfahren zur elektrolytischen Nachbehandlung von chromatisierten oder metallisch verchromten Stahlblechoberflächen
DE4311005C1 (de) Fensterbeschlag und Verfahren zu dessen Herstellung
DE10060127B4 (de) Elektrolytisches Eisenabscheidungsbad und Verfahren zum elektrolytischen Abscheiden von Eisen und Anwendungen des Verfahrens
DE2612445A1 (de) Galvanisches verzinkungsbad
DE2237834A1 (de) Gegenstand aus einem metallischen grundkoerper mit einer metallischen beschichtung
DE2034760C (de) Kolbenring für Brennkraftmaschinen und Verfahren zur Herstellung desselben
DD218637A1 (de) Verbund oxidische zwischenschicht/metallschicht auf aluminium und -legierungen
DE2030295A1 (en) Decorative micropore chromium coating - electroplated on bright and

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT PT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DUERDOTH, STEFAN

Inventor name: LINDE, RUDOLF

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT PT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060809

REF Corresponds to:

Ref document number: 50304610

Country of ref document: DE

Date of ref document: 20060921

Kind code of ref document: P

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20061012

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070510

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090807

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120910

Year of fee payment: 10

Ref country code: IT

Payment date: 20120920

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20120319

Year of fee payment: 10

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20140318

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200812

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50304610

Country of ref document: DE

Representative=s name: MUELLER SCHUPFNER & PARTNER PATENT- UND RECHTS, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50304610

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220401