WO1999064354A1 - Sol composite silice-alumine, ses procedes de production, et support d'impression - Google Patents

Sol composite silice-alumine, ses procedes de production, et support d'impression Download PDF

Info

Publication number
WO1999064354A1
WO1999064354A1 PCT/JP1999/003112 JP9903112W WO9964354A1 WO 1999064354 A1 WO1999064354 A1 WO 1999064354A1 JP 9903112 W JP9903112 W JP 9903112W WO 9964354 A1 WO9964354 A1 WO 9964354A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
sol
alumina
particles
composite sol
Prior art date
Application number
PCT/JP1999/003112
Other languages
English (en)
French (fr)
Inventor
Katsumasa Nakahara
Tomoko Torimoto
Hachiro Hirano
Toshiya Matsubara
Shinichi Suzuki
Hisao Inokuma
Hirokazu Wakabayashi
Original Assignee
Asahi Glass Company Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company Ltd. filed Critical Asahi Glass Company Ltd.
Priority to US09/463,965 priority Critical patent/US6623820B1/en
Priority to AT99925295T priority patent/ATE447542T1/de
Priority to DE69941619T priority patent/DE69941619D1/de
Priority to JP55654999A priority patent/JP4197747B2/ja
Priority to EP99925295A priority patent/EP1010666B1/en
Publication of WO1999064354A1 publication Critical patent/WO1999064354A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5218Macromolecular coatings characterised by inorganic additives, e.g. pigments, clays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/14Colloidal silica, e.g. dispersions, gels, sols
    • C01B33/146After-treatment of sols
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/34Preparation of aluminium hydroxide by precipitation from solutions containing aluminium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/502Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording characterised by structural details, e.g. multilayer materials
    • B41M5/508Supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M5/00Duplicating or marking methods; Sheet materials for use therein
    • B41M5/50Recording sheets characterised by the coating used to improve ink, dye or pigment receptivity, e.g. for ink-jet or thermal dye transfer recording
    • B41M5/52Macromolecular coatings
    • B41M5/5254Macromolecular coatings characterised by the use of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. vinyl polymers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/50Agglomerated particles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • the present invention relates to a silica-alumina composite sol and a method for producing the same.
  • the present invention relates to a silica-alumina composite sol suitable for forming an ink receiving layer of a recording medium for an inkjet printer, a method for producing the same, and a recording medium.
  • hard copy technology for recording those images on paper or the like has rapidly developed.
  • a wide variety of hard copy recording methods are known, including direct capture of a display displaying an image using silver halide photography, a sublimation thermal transfer method, and an inkjet method.
  • the ink jet system ejects ink droplets composed of a dye and a large amount of solvent from a nozzle toward a recording medium at a high speed.
  • Inkjet printers have been rapidly spreading in recent years due to their ease of full colorization and high speed, and low printing noise.
  • an inorganic fine particle such as silica or alumina and a binder such as polyvinyl alcohol are used on a base material such as paper or film in order to quickly absorb ink and obtain a clear image.
  • a porous ink receiving layer comprising: Since the recording medium for an ink jet printer needs to absorb a large amount of the solvent contained in the ink into the pores in the ink receiving layer, the ink receiving layer has an appropriate pore diameter and a large pore volume.
  • a transparent ink receiving layer is preferable.
  • the ink jet recording method uses water-based ink.
  • the dye in the ink does not flow, and the ink does not bleed (hereinafter referred to as water resistance), or the recording medium comes into contact with sharp objects and is scratched. It is also important that quality is not impaired (hereinafter referred to as abrasion resistance) and that the surface has high gloss (hereinafter referred to as glossiness).
  • Silica-based materials such as silica gel have moderate pores, but generally, silica has a negatively charged particle surface and adsorbs direct dyes or acid dyes with anionic dissociation groups used in ink jets. And water resistance is low.
  • polyaluminum chloride in the ink-receiving layer as disclosed in Japanese Patent Application Laid-Open No. 60-25772 / 86, but since polyaluminum chloride is a water-soluble salt, The polyaluminum chloride itself in the ink receiving layer may be dissolved in water to cause pit-like appearance defects on the surface of the ink receiving layer, and the water resistance was not always sufficient. In addition, when stored for a long period of time, the polyvinyl chloride migrated and closed the pores of the ink receiving layer, and the ink absorbency sometimes decreased.
  • a method for producing a positively charged colloidal silica sol by coating the silica surface with alumina is disclosed in Japanese Patent Publication No. 47-26959.
  • a silica sol having a particle size of 2 to 150 nm is gradually added to an aqueous solution of polyaluminum chloride, and the mixture is aged until the pH is constant, that is, generally 4 or less, and then, The addition of alkali increases the pH of the mixture to a value of about 4.5 to 7.0.
  • a silica sol having excellent transparency and stability and having a surface coated with alumina can be obtained.
  • xerogel pores obtained by drying this are obtained. The volume and the radius of the pores are small, and therefore, the ink receiving layer formed by using this may have insufficient ink absorption in some cases.
  • An ink receiving layer formed using alumina hydrate such as pseudo-boehmite is excellent in ink absorption, transparency, water resistance, glossiness, etc., but is problematic in abrasion resistance. was there. This is presumed to be because alumina hydrate is not spherical.
  • a porous layer made of pseudo-boehmite having a thickness of 0.1 to 30 ⁇ m is provided.
  • this silica gel layer has a drawback that ink absorbability is impaired, and is disadvantageous in industrial production because it has a two-layer structure. Disclosure of the invention
  • the present invention provides a colloid solution in which agglomerated particles containing silica and alumina are dispersed in an aqueous medium, wherein silica has a spherical primary particle and an average primary particle diameter of 2 to 200 nm.
  • the average particle diameter of the particles is at least twice the average particle diameter of the primary silica particles and not more than 100 nm, the zeta potential of the aggregated particles is at least +10 mV, and the pH of the solution is
  • the present invention provides a silicic alumina composite sol having a ratio of 3 to 9.
  • the present invention provides the following first production method and second production method as preferred production methods of the silica-alumina composite sol.
  • silica sol and xerogel obtained by drying are mixed with alumina sol having a specific surface area of 150 m 2 / g or more to form aggregated particles containing silica and alumina.
  • This is a method for producing a silica-alumina composite sol in which the average particle size of aggregated particles is adjusted to 30 to 100 nm by glue treatment.
  • the present invention further provides a colloid solution in which agglomerated particles containing silica and alumina are dispersed in an aqueous medium, wherein silica has a spherical primary particle and an average primary particle diameter of 2 to 200 nm.
  • the average particle size of the aggregated particles is at least twice the average particle size of the silica-secondary particles and not more than 100 nm
  • the zeta potential of the aggregated particles is +1 OmV or more
  • the pH of the solution is BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention provides a recording medium having a porous layer obtained by applying and drying a silica-alumina composite sol of 3 to 9 on a substrate.
  • the silica-alumina composite sol of the present invention is obtained by dispersing aggregated particles containing silica and alumina as colloid particles in an aqueous medium.
  • the silica in the aggregated particles is such that the primary particles are spherical and the average particle size of the primary particles is 2 to 200. nm.
  • the silica-alumina composite sol of the present invention has high abrasion resistance when a coating layer is formed on a substrate because the silica primary particles are spherical.
  • the average particle size of the silica primary particles is smaller than 2 nm, it is not preferable because a xerogel having a large average pore radius and a large pore volume cannot be obtained when the composite sol is dried. If the average particle size of the silica primary particles exceeds 200 nm, a xerogel having a large specific surface area cannot be obtained when the composite sol is dried, and a xerogel having high dye fixation cannot be obtained. It is not preferable.
  • a more preferred range of the average particle size of the silica primary particles is from 5 to 1 O Onm. The average particle size of the silica primary particles is measured with a transmission electron microscope.
  • the average particle size of the aggregated particles must be at least twice the average particle size of the silica-subparticles.
  • Ordinary silica sols are manufactured so as not to contain aggregated particles in order to improve stability and dispersibility, but the silica-alumina composite sol of the present invention is one in which aggregated particles are actively formed. . By including such agglomerated particles, the pore volume and the average pore radius of the xerogel can be increased, and an ink receiving layer having excellent ink absorption can be formed.
  • the average particle size of the agglomerated particles must be 100 nm or less: If the average particle size of the agglomerated particles exceeds 100 nm, the transparency of the xerogel is reduced. As a result, not only the haze of the ink receiving layer is increased, but also the color density of the cyan dye in the water resistance test described below is reduced: If the average particle size of the aggregated particles is 500 nm or less, the transparency is improved. Is more preferable.
  • the average particle size of the aggregated particles is preferably 30 nm or more.
  • the silica-alumina composite sol of the present invention has a pH of 3 to 9. If the pH is greater than 9, the zeta potential of the aggregated particles will be low, which is inappropriate. Conversely, if the pH is less than 3, the alumina is likely to dissolve, which is inappropriate: a more preferred range for the pH is 3-7.
  • the zeta potential of the aggregated particles is +1 OmV or more: Since the surface of a normal silica sol is negatively charged, fixing of an anion-based dye used in an ink jet printer or the like. There is no sex. For example, in the water resistance test described below, the color density of cyan ink is substantially 0. In contrast, the present invention
  • the silica-alumina composite sol obtained in (1) has dye fixability because the surface charge is positive, and shows a cyan ink color density of 1.0 or more in a water resistance test described below: From the zeta potential of the aggregated particles, The preferred range is +30 to 109 OmV.
  • the zeta potential of the aggregated particles tends to increase as the amount of alumina with respect to silica increases. It is necessary to add alumina so that the zeta potential of the aggregated particles becomes +1 OmV or more.
  • the amount of alumina added to silica is preferably 900 g or less as A 1 2 ⁇ 3 against S i 0 2 component 1 00 g in the silica sol. More preferred correct range is 5 to 400 g as A 1 2 03 to the S I_ ⁇ 2 component 1 00 g in the silica sol.
  • the amount of impurities is not more than 10 mol% based on the total number of atoms of Si and A1. Preferably it is. If the ink-receiving layer is formed using a silica-alumina composite sol containing a larger amount of impurity elements, the dye may be discolored after the image is formed, or the surface of the ink-receiving layer may be picked up in the water resistance test described later. This is not preferable because it may result in the appearance defect of the shape.
  • the silica-alumina composite sol of the present invention has a specific surface area of 50 m 2 / g or more, an average pore radius of 5 nm or more, and a total pore volume of 1 to 100 nm by removing the solvent.
  • xerogel of 0.35 cm : i Zg or more can be obtained.
  • the average pore radius is 10 nm or more, more preferable.
  • the total pore volume for a pore radius of 1 to 100 nm is 0.50 cm : i / g or more. These pore characteristics are measured by a nitrogen adsorption / desorption method.
  • the average pore radius herein, a total pore volume of the pore radius.
  • More preferable pore characteristics of xerogel obtained by removing the solvent from the composite sol include a specific surface area of 100 m 2 / g or more, an average pore radius of 5.5 nm or more, and a pore radius of 1-1.
  • the total pore volume for 00 nm is 0.4 cm 3 Zg or more.
  • the term “pore volume” also means the total pore volume for a pore radius of 1 to 100 nm.
  • a xerogel having good transparency can be obtained.
  • This xerogel has excellent dye fixing properties, transparency and gloss when used in the ink receiving layer of a recording medium for an ink jet printer.
  • the dye fixing property, transparency and glossiness of the ink receiving layer can be evaluated as follows. 1 part by weight of polyvinyl alcohol is mixed with 10 parts by weight of the solid content of the silica-alumina composite sol, and concentrated or diluted as necessary, so that the total solid concentration is 10 parts by weight.
  • a coating solution for the coating Apply this coating solution to a white polyethylene terephthalate film (an opaque film with a white pigment dispersed inside) after drying to a coating amount of 4.5 to 5.5 g / m 2 and dried to form a porous ink-receiving layer.
  • a transparent Helsingborg ethylene terephthalate film as a substrate c
  • the water resistance (the property of fixing the dye) of the ink receiving layer is determined by cutting out the film on which the coating layer is formed into an appropriate size, and using a cyan ink for 2 minutes (for example, Seiko FF : Son's inkjet printer MJ-5000C). After immersion in the color ink cartridge MJIC 2 C), wash with running water for 2 minutes to remove the unfixed ink, and measure the color density of the ink receiving layer with the fixed cyan ink by using a reflection color densitometer. It is measured using Qubes, trade name RD-918). When measuring the reflection color density, place a white reflection standard plate on the back side of the sheet and measure. In this measurement, the color density of the ink receiving layer is preferably 1 or more. Has sufficient water resistance.
  • a cyan ink for 2 minutes for example, Seiko FF : Son's inkjet printer MJ-5000C. After immersion in the color ink cartridge MJIC 2 C), wash with running water for 2 minutes to remove the unfixed ink,
  • the haze value of the ink receiving layer is preferably 3 ink receiving layer is less than 1 0% as the haze value, and haze value of the polyethylene terephthalate one Tofuirumu haze value of a polyethylene terephthalate film and uncoated having an ink-receiving layer It shall be expressed as the difference between
  • the glossiness of the ink receiving layer is 60 as defined in JIS Z8741. It is evaluated by specular gloss.
  • the specular glossiness of the ink receiving layer is preferably 20% or more.
  • the first method for producing the silica-alumina composite sol of the present invention will be described in more detail:
  • the first method comprises a silica sol in which the primary particles are spherical and include silicide particles having an average particle diameter of 2 to 200 nm.
  • silicide particles having an average particle diameter of 2 to 200 nm.
  • it can be produced by adding an aluminum salt which becomes acidic when dissolved in water.
  • the pH and solvent of the silica sol as a raw material are not particularly limited, but the solvent is preferably water from the viewpoint of easy operation.
  • a silica sol commercially available under the trade name such as Cataloid S I-40 of Catalysis Chemical Industry Co., Ltd. or Silica Doll 20GA of Nippon Chemical Industry Co., Ltd. can be suitably used.
  • the silica sol may be appropriately diluted with water for use.
  • an aluminum salt which becomes acidic when dissolved in water a salt of aluminum hydroxide and a strong acid is preferable.
  • an aluminum salt which becomes acidic when dissolved in water is hereinafter simply referred to as an acidic aluminum salt.
  • an inorganic acid salt such as aluminum chloride, aluminum sulfate, and aluminum nitrate, or an organic acid salt such as aluminum acetate can be suitably used. It is preferable that the acidic aluminum salt is appropriately dissolved in water and mixed with the silica sol.
  • the method of mixing the silica sol and the acidic aluminum salt is not particularly limited, and a method of adding an acidic aluminum salt to the silica sol is preferable. It is preferable to gradually add a predetermined amount of an acidic aluminum salt to silica sol as a raw material. As the acidic aluminum salt is gradually added to the silica sol, alumina is gradually generated and adheres to the surface of the silica particles in the sol. As the amount of alumina deposited increases, the surface potential of the zeolite changes from negative to positive. On the way, since the potential passes through the state of 0, the particles are aggregated, and the aggregated particles containing silica and alumina are formed. When adding the acid aluminum salt, it is preferable to stir the silica sol to prevent the concentration of the acid aluminum salt from locally increasing:
  • the xerogel obtained by drying the sol may have a small pore volume and a small average pore radius.
  • the temperature at which the silica sol is mixed with the acidic aluminum salt is preferably 25 to 150C. If the temperature is lower than 25 ° C., the reaction rate becomes slow, and alumina may not sufficiently adhere to the surface of the silica particles, which is not preferable. If the temperature is higher than 1 5 0 D C, since the operation becomes difficult unfavorably:
  • the amount of the acidic aluminum salt added must be such that the zeta potential of the particles becomes +1 OmV or more. As the specific surface area of the sol particles of the raw material sol becomes larger, it is necessary to add more acidic aluminum salt.However, the average particle diameter of the primary particles used as the raw material in this specification is 2 to 200 nm. for silica sol, S i 0 2 with respect to 1 0 0 g of silica in terms of, a 1 2 ⁇ 3 preferably c acidic to add 1 g or more acidic Aruminiumu salt in terms of Aruminiumu There is no particular problem if the amount of salt added is excessive, but it is disadvantageous because the operation of removing impurity elements by ultrafiltration or the like described below becomes difficult. 9/64354
  • the silica-alumina composite sol has a specific surface area of 50 m 2 / g or more, an average pore radius of 10 nm or more, and a pore radius of 1 to 100 nm.
  • a xerogel having a total pore volume of 0.5 cm 3 Zg or more can be obtained.
  • the pH of the aggregation treatment is preferably pH 7 to 10. If the pH is lower than 7, agglomeration does not sufficiently occur, and the pore radius, the total pore volume, and the specific surface area cannot be increased. On the other hand, if the pH is higher than 10, the color density of the ink in the water resistance test decreases, which is not suitable. A more preferred pH range is pH 7-9.
  • a method of adjusting the pH of the coagulation treatment to 7 to 10 is to add an alkali metal hydroxide or an alkali metal aluminate to a mixed solution of a silica sol and an acidic aluminum salt. Can be
  • the aging is preferably performed at a temperature of 50 to 150 : C with stirring for 1 hour or more. If the aging temperature is lower than 50, agglomeration does not occur sufficiently and the pore radius, total pore volume, and specific surface area cannot be increased, which is not suitable: On the other hand, the temperature is 150 ° C. A higher value is not preferable because the operation becomes difficult. The longer the aging time, the more the agglomeration proceeds and the larger the pore radius, the total pore volume, and the specific surface area can be.
  • the ink receiving layer using this is excellent in ink absorbency, but if it is too long, It needs to be adjusted moderately as it reduces transparency:
  • the solution after the agglomeration treatment contains a large amount of impurity ions such as metal ions, it is preferable to remove and purify the impurity ions before the next peptization treatment.
  • an ultrafiltration membrane is preferably used because of its high efficiency.
  • the above-mentioned agglomeration treatment is effective even if it is applied to a mixture obtained by gradually adding silica sol to a solution of an aluminum salt which shows an acidic property when dissolved in water:
  • the mixture obtained by gradually adding silica sol to a solution of an aluminum salt whose acidity is acidic when subjected to coagulation by aging at pH 7 to 10 and then peptization Large pore volume and large fines C Rukoto is possible to produce a silica-alumina composite sol can be obtained xenon outlet gel having a pore radius
  • an electrolyte other than the acidic aluminum salt when further added to the silica sol, aggregated particles can be formed more effectively.
  • the electrolyte to be added is not particularly limited as long as it has an aggregating effect on silica sol or alumina sol, and examples thereof include sodium chloride, calcium chloride, sodium sulfate, potassium acetate, and magnesium nitrate. . These may be used alone or as a mixture.
  • the addition amount is preferably 1 to 70% by weight based on the weight of silica (in terms of Si 2 ) in the silica sol as a raw material.
  • the method for adding the electrolyte is not particularly limited, and these electrolytes may be added to the silica sol in advance, or may be added to the acidic aluminum salt and added to the silica sol. Further, an electrolyte may be added to the mixed solution after adding the acidic aluminum salt to the silica sol.
  • the second method for producing the silicic alumina composite sol of the present invention will be described more specifically.
  • the second manufacturing method silica sol and dried to obtain xerogel by mixing specific surface area 1 5 0 m 2 Z g or more alumina sol, after forming the aggregated particles children comprising silica and alumina,
  • This is a method for producing a silicic alumina composite sol in which the average particle size of the aggregated particles is adjusted to 30 to 100 nm by peptization.
  • silica sol having a particle diameter of primary particles of 100 to 200 nm and alumina sol are mixed and reacted. Agglomeration occurs by mixing. Next, the particle size of the aggregated particles is adjusted to 30 to 100 nm by peptizing the composite sol.
  • the silica sol used in the present invention preferably contains spherical particles having an average particle diameter of 10 to 200 nm as primary particles.
  • a composite sol with alumina sol has scratch resistance: If the average particle size is less than 10 nm, the primary particles are too small, so that the pore radius and pore volume are large, and a composite sol cannot be obtained. Not. On the other hand, if it exceeds 200 nm, the specific surface area becomes small, and in the water resistance test, a high color density of the cyan dye cannot be obtained.
  • the alumina sol used in the present invention is preferably a sol in which the sol particles are composed of alumina hydrate, and has a specific surface area of at least 150 m 2 / g when dried alone to form a xerogel.
  • the present invention is characterized in that the xerogel obtained by drying the composite sol has a large specific surface area by using an alumina sol capable of forming a xerogel having a large specific surface area. Due to the large specific surface area, the adsorption point of the dye can be increased when the composite sol is dried, and an ink receiving layer having a high cyan dye color density in a water resistance test can be formed.
  • a spherical particle having a primary particle diameter of 10 to 200 nm is preferable.
  • the pH, the solvent, etc. the solvent is preferably water from the viewpoint of easy operation. It may be used by diluting with water as appropriate.
  • Alumina sol as a raw material is a sol in which sol particles are alumina hydrate, and its production method is not particularly limited. Hydrolysis of aluminum alkoxide or neutralization or ion exchange of alkali metal aluminate or aluminum salt.
  • the alumina gel obtained in the above can be appropriately aged, then washed and peptized.
  • the specific surface area of xerogel obtained by drying the silica-alumina composite sol can be increased as the specific surface area of xerogel obtained by drying the sol is increased. It is preferable because an ink receiving layer having a high color density can be formed.
  • the specific surface area of the xerogel obtained by drying the alumina sol is preferably at least 15 Om 2 / g, more preferably at least 230 m 2 Zg: alumina hydrate particles having such a high specific surface area
  • the alumina gel obtained as described above is appropriately washed and then peptized to obtain an alumina sol.
  • the method of peptization is not limited, and examples thereof include a method of adding an acid such as hydrochloric acid, nitric acid, acetic acid, and amide sulfuric acid as a peptizing agent, and a method of peptizing by a mechanical method such as ultrasonic dispersion. May be used together.
  • the method of mixing the silica sol and the alumina sol is not particularly limited, and the alumina sol may be added while stirring the silica sol, or the silica sol may be added while stirring the alumina sol.
  • the temperature at the time of mixing is not particularly limited, and may be room temperature or may be appropriately heated. However, if the temperature is too high, the operation becomes difficult, and thus it is preferably 150 ° C. or lower.
  • the amount of the alumina sol to be added to the silica sol is preferably 100 to 400 g of alumina solids per 100 g of silica solids (in terms of Si ⁇ 2 ).
  • the zeta potential of the composite sol tends to increase as the amount of the anoremina sol added increases. It is preferable to add the alumina sol in such an amount that positively charged aggregated particles are obtained. If, silica force solids relative to (S i 0 2 terms) 1 0 0 g, it is necessary to add a solid alumina content of 1 0 g or more with a primary particle size of 1 0 to 2 0 0 nm silica sol .
  • the added amount of the alumina sol is too large, when the ink-receiving layer is formed using the obtained silicic alumina composite sol, the abrasion resistance of the ink-receiving layer may be lowered, which is not preferable.
  • the mixture of the silica sol and the alumina sol is adjusted to a coagulated particle diameter of 30 to 100 nm by peptization.
  • the method of peptizing treatment is not particularly limited, and examples include a method of adding a peptizing agent and a mechanical method such as ultrasonic dispersion. These may be used in combination.
  • As the peptizer hydrochloric acid, nitric acid, sulfuric acid, acetic acid, amide sulfuric acid and the like can be suitably used. These may be used alone or as a mixture.
  • Silica-alumina composite sol synthesized by the first production method or the second production method When the average particle diameter of the aggregated particles is 100 nm or less, the average particle diameter may be kept as it is. However, the average particle diameter of the aggregated particles can be adjusted as needed. The average particle diameter of the aggregated particles can be reduced by ultrasonic dispersion or the like. Also, peptization may be performed by adding a peptizer.
  • the deflocculant is not particularly limited, and inorganic acids such as hydrochloric acid, nitric acid, sulfuric acid, and amide sulfate, or organic acids such as acetic acid can be suitably used. These deflocculants are used alone. Or may be appropriately mixed and used.
  • the silica-alumina composite sol of the present invention When the silica-alumina composite sol of the present invention is dried to remove the solvent, a xerogel having good transparency and high absorbability can be obtained. Therefore, by coating the coating solution obtained by mixing the silica-alumina composite sol of the present invention with a binder as appropriate and drying it after coating on a substrate, the ink absorbency, transparency, water resistance, and scratch resistance are improved. Thus, a recording medium having an ink receiving layer having excellent gloss can be obtained.
  • the silica-alumina composite sol of the present invention can also be included in a paper substrate.
  • the binder is not particularly limited, and starch and its modified products, polybutyl alcohol and its modified products, cellulose derivatives such as carboxymethylcellulose, SBR latex, NBR latex, Polyvinylpyrrolidone and the like.
  • the base material of the ink receiving layer is not particularly limited, and examples thereof include resin films such as polyethylene terephthalate, paper such as high-quality paper and synthetic paper, cloth, glass, metal, leather, wood, and ceramics such as ceramics. Further, it may be formed on the upper or lower part of the ink receiving layer formed by containing boehmite, silica gel, cationic resin or the like other than the present invention.
  • a silica sol in which spherical primary silica particles having an average primary particle diameter of 17 nm and secondary particles are dispersed Si 2 concentration: 40.4 weight 0 /., N a, O concentration: 0.41% by weight, manufactured by Catalysis Kasei Kogyo Co., Ltd., trade name: Cataloid SI — 40) 198.0 g and ion-exchanged water 142 g were added, and the temperature was raised to 80 ° C.
  • reaction solution was subjected to ultrafiltration using an ultrafiltration apparatus while adding ion-exchanged water while keeping the amount of the solution constant, until the conductivity of the filtrate dropped to 50 ⁇ S / cm or less. Then, silica-alumina composite sol was obtained.
  • the amount of impurity elements contained in the composite sol is 0.7 mol% for Na and 2.2 mol 0 / for C 1 based on the total amount of moles of Si and A 1. A total of 2.9 mol. /.
  • This sol was subjected to various evaluations by the methods described below (the same applies to other examples).
  • the average particle diameter of the aggregated particles was 125 nm, and the aggregated particles were positively charged.
  • the xerogel obtained by drying this sol had a large pore volume and a large average pore radius.
  • the characteristics of the ink receiving layer the color density of the cyan ink was high, and the ink had excellent performance in all of transparency, glossiness, and scratch resistance.
  • Example 1 instead of adding 142 g of ion-exchanged water to the silica sol, 140 g of an aqueous solution containing 24.0 g of sodium chloride was added, and the reaction and purification were performed in the same manner as in Example 1 except for the above. A silica-alumina composite sol was obtained.
  • the amount of the impurity element contained in this composite sol is 2.0 moles 0 / Na with respect to the total amount of the moles of Si and A1.
  • the C1 is 4.5 mol 0 /. A total of 6.5 mol. /. Met.
  • this sol was subjected to ultrasonic treatment to adjust the average particle diameter of the aggregated particles to 217 nm.
  • the ink-receiving layer formed using this sol was also excellent in water resistance, high in color density of cyan ink, and excellent in all of transparency, glossiness and scratch resistance as in Example 1. .
  • Example 4 The properties of the silica sol itself used as a raw material in Example 1 were evaluated. The pore volume and average pore radius of the xerogel were smaller than those of the sol obtained in Example 1, and an ink receiving layer was formed using this silica sol. Was 0, indicating no dye fixability. [Example 4]
  • a sol was obtained in the same manner as in Example 1 except that purification by ultrafiltration was not performed. Impurity element content contained in the sol in this is the total amount of moles of S i and A 1, N a force S 1. 5 mole 0/0, C 1 1 1.3 mole 0 I A total of 12.8 moles 0 /. And contained a large amount of C1.
  • Example 1 A by changing the method of addition, capacity 20 ⁇ 0 cm same polyaluminum chloride aqueous solution as used in Example 1 glass reactor 3 (Taki Chemical Co., Ltd., trade name Takibai emissions # 1 500 ) put 85. 9 g of ion-exchanged water 1402 g, 80 C C and the temperature was raised to - upon reaching the 80 ° C, with stirring, the same silica force sol (Shokubai Kasei as used as the starting material in example 1 198.0 g of Cataloid SI-40) manufactured by Kogyo Co., Ltd. was gradually added over about 10 minutes. After completion of the addition, the temperature was maintained at 80 ° C with stirring for 1 hour.
  • silica force sol Shibai Kasei as used as the starting material in example 1 198.0 g of Cataloid SI-40
  • the reaction solution was purified in the same manner as in Example 1 to obtain a silica-alumina composite sol.
  • the amount of impurity elements contained in the sol was Na with respect to the total amount of moles of S i and A 1. But 0.6 mol 0 /.
  • the C1 is 2.3 moles. /. A total of 2.9 mol. /. Met.
  • the average particle diameter of the aggregated particles of this sol is 27 nm, and the pore volume and the average pore radius are small because the aggregated particles are not sufficiently formed.
  • the color density, haze, and gloss of the cyan ink in the water resistance test were inferior to those of Examples 1 and 2.
  • the physical properties of the sols of Examples 1 to 5 were measured as follows.
  • the sol concentration was determined by drying the sol at 140 ° C. until a constant weight was obtained, and calculating the weight difference before and after the drying.
  • the pH was measured using a pH meter HM-12P manufactured by Toa Denpasha.
  • the zeta potential is Otsuka
  • the measurement was performed using an electrophoretic light scattering photometer ELS-800 manufactured by Denshisha.
  • the average particle size of the agglomerated particles was examined using a Microtrack UPA manufactured by Nikkiso Co., Ltd.
  • the sol Examples 1-5 and dried to a constant weight at 140 e C, to obtain a powder of xerogel. After 2 hours the vacuum degassing at the powder at 1 20 ° C 1 X 1 0- 2 T orr, using nitrogen adsorption-desorption apparatus (manufactured by Beckman Coulter, Inc., trade name Omunisopu 1 00 type), specific surface area, pore The pore volume and average pore radius were measured. The average pore radius is calculated values at 2 V / AX 1 0 3. The results are shown in Table 2:
  • the sol obtained in Examples 1 to 5 was mixed with a polyvinyl alcohol aqueous solution (trade name: R1130, manufactured by Kuraray Co., Ltd.) at a solid content ratio of 100: 10, and the total solid content concentration was 1: 1. 0% by weight of coating solution and 100 ⁇ m thick white polyester 70.
  • a polyvinyl alcohol aqueous solution (trade name: R1130, manufactured by Kuraray Co., Ltd.) at a solid content ratio of 100: 10, and the total solid content concentration was 1: 1. 0% by weight of coating solution and 100 ⁇ m thick white polyester 70.
  • Tylene terephthalate film manufactured by Teijin Limited, trade name U2
  • an ink receiving layer was formed.
  • the properties of this ink receiving layer were examined by the following methods. However, the haze was measured using a 125 ⁇ thick polyethylene terephthalate film (manufactured by Teijin Limited, trade name: OL) on which an ink receiving layer was formed in the same manner as described
  • Coating amount The coated film was cut into a 10 cm opening, and the ink receiving layer was peeled off from the polyethylene terephthalate film and examined by the difference in weight. In all of Examples 1 to 5, the coating amount was 5. O g / m 2 .
  • Cyan color density For the water resistance test, the cyan color density was measured by the following method. Cut the polyethylene terephthalate film with the ink receiving layer into 3 cm x 5 cm, immerse it in cyan ink for 2 minutes, wash it with running water for 2 minutes to remove unfixed ink, and remove C for 15 minutes. Next, the color density of the fixed cyan ink was measured using a reflection color densitometer RD-918 manufactured by Macbeth. As the cyan ink, a cyan ink was taken out from a color ink cartridge MJIC2C for a color printer MJ-500C manufactured by Seiko Epson Corporation and used.
  • Haze Measured using a haze computer HGM-3DP manufactured by Suga Test Instruments Co., Ltd., and the haze value of the polyethylene terephthalate film 0.7 was subtracted to obtain the haze of the coating layer.
  • Gloss A 60 ° specular gloss was measured using a handy gloss meter PG-1 manufactured by Nippon Denshoku Industries Co., Ltd.
  • volume glass reactor 2000 cm 3 a silica sol having an average particle size 26 nm sphere-shaped silica primary particles of the primary particles are dispersed (S ⁇ 2 concentration 48.4 wt%, N a 2 0 concentration 0.5 1 % By weight, manufactured by Sekiyu Kasei Kogyo Co., Ltd., trade name: Cataloid SI-50) 165.3 g and 1457 g of ion-exchanged water were added, and the temperature was raised to 80 : C. 8 way became CTC, with stirring, polyethylene aluminum chloride aqueous solution (aluminum concentration in terms of A 1 2 0 3 23.
  • the temperature of the mixed solution was raised to 95 : C.
  • the pH was adjusted to 8.0 by adding 11.0 g of a 48% NaOH solution, and then the solution was stirred with 95%. Aggregation was performed by aging at 24 ° C for 24 hours.
  • the reaction solution after the agglomeration treatment was treated with an ultrafiltration device while adding ion-exchanged water while keeping the volume of the solution constant, and the conductivity of the filtrate was 50 ⁇ S / Purification was achieved by ultrafiltration until it fell below cm.
  • This sol was evaluated in various ways by the methods described below (similarly in other examples): This sol had an average particle size of 233 nm for aggregated particles. Particles were positively charged: The xerogel obtained by drying this sol has a larger pore volume and a larger average pore radius compared to the sol of Example 9 which was not subjected to the following coagulation treatment. Was. As the characteristics of the ink receiving layer, the color density of the cyan ink was high, and the ink had excellent performance in all of transparency, glossiness and scratch resistance.
  • the mixed solution was heated to 95, 95 upon reaching the e C, was adjusted to 48% N a OH solution 66. 0 ⁇ the added 1 "1 8.0, while stirring Aggregation treatment was performed by aging at 95 ° C for 24 hours.
  • Example 6 Thereafter, purification and deflocculation were performed in the same manner as in Example 6, to obtain a silica-alumina composite sol having an average particle diameter of aggregated particles of 2 16 nm.
  • the xerogel obtained by drying this sol had a very large pore volume and a large average pore radius as compared with the sol of Example 10 which was not subjected to the following aggregation treatment. .
  • the color density of cyan ink was also high.
  • Takibaine (trade name) was gradually added over about 10 minutes. After the addition is completed, keep at 80 ° C with stirring for another 1 hour, 99/6435
  • a solution was obtained by mixing silica sol and an acidic aluminum salt.
  • Example 6 Thereafter, purification and deflocculation were performed in the same manner as in Example 6, to obtain a silica-alumina composite sol having an average particle diameter of agglomerated particles of 175 nm.
  • the xerogel obtained by drying this sol had a large pore volume and a very large average pore radius as compared with the sol of Example 11 which was not subjected to the following aggregation treatment.
  • Example 10 A silica-alumina composite sol having an average particle diameter of 212 m of aggregated particles was obtained in the same manner as in Example 6, except that the agglomeration treatment in Example 6 was not performed. [Example 10]
  • a silica-alumina composite sol having an average particle diameter of 213 m of aggregated particles was obtained in the same manner as in Example 7, except that the aggregation treatment in Example 7 was not performed.
  • a silica-alumina composite sol having an average particle diameter of 180 m of aggregated particles was obtained in the same manner as in Example 8, except that the aggregation treatment of Example 8 was not performed.
  • Table 4 shows the results of measuring the physical properties of the sols of Examples 6 to 11 in the same manner as in Example 1.
  • Example 6 The sols of Examples 6 to 11 were dried at 140 ° C. to a constant weight to obtain a xerogel powder.
  • Table 5 shows the results of measuring the specific surface area, the pore volume, and the average pore radius of this powder in the same manner as in Example 1.
  • Example 6 Using the sols obtained in Examples 6 to 11, an ink receiving layer was formed on the Example] and polyethylene terephthalate film. Similarly, the coating amount of the ink receiving layer was examined. In all of the examples, the coating amount was 5. O g / m 2 . Table 6 shows the results of measuring the cyan color density, haze, glossiness, and scratch resistance of these ink receiving layers in the same manner as in Example 1.
  • alumina sol (sol consisting of boehmite particles) was synthesized as follows. Capacity 2000 cm 3 glass reactor, an aqueous solution of aluminum chloride (1 1 - 5 wt aluminum Niumu concentration in terms of A 1 2 0 3 0 /.,. 1 concentration 24.0 wt 0/0) 3 put 10 g of water 1 341 g, while stirring, aluminate Natoriumu solution ( ⁇ Ruminiumu concentration converted to 20.0 wt ./ to a 1 2 0 3., sodium concentration in terms of N a 2 O 1 9.0 wt Te 0/0) 237 g was added over 60 minutes. Next, this reaction solution was used for 95.
  • the temperature was raised to C, and 112 g of the same aqueous sodium aluminate solution was added again to adjust the pH of the reaction solution to 9 (95 ° C).
  • the reaction solution was stirred and aged for 2 hours while maintaining the temperature at 95 to obtain alumina hydrate.
  • This mixture of silica sol and alumina sol was aggregated to an aggregate particle size of 333 nm. Acetic acid was added thereto to adjust the pH to 4.2, and the mixture was concentrated to a concentration of 10.0% by weight. After that, pulverization treatment was performed using an ultrasonic dispersing device to adjust the aggregated particle diameter to 189 nm to obtain a silica-alumina composite sol. The zeta potential of this silica-alumina composite sol was +52 mV, that is, it was positively charged.
  • Example 12 the catalyst was used as a raw material. SI-45P) was similarly evaluated for comparison.
  • Example 12 The alumina sol used as a raw material in Example 12 was similarly evaluated for comparison.
  • the sol Example 1 2-1 4, and dried to a constant weight at 1 4 0 e C, to obtain a powdery powder of xerogel.
  • Table 8 shows the results of measuring the specific surface area, the pore volume, and the average pore radius of this powder in the same manner as in Example 1.
  • the silica-alumina composite sol of Example 12 was larger in pore volume and pore radius than the silica sol of Example 13 and the alumina sol of Example 14, and had a sufficiently large specific surface area.
  • Example 12 Using the sols obtained in Examples 12 to 14, an ink receiving layer was formed on the polyethylene terephthalate film of Example 1. Similarly, when the coating amount of the ink receiving layer was examined, At this time, the strength of all of Examples 12 to 14; and the coating amount was 5. Og / m 2 : For these ink-receiving layers, as in Example 1, cyan color density, haze and gloss Table 9 shows the results of measuring the scratch resistance.
  • the ink receiving layer obtained from the silica-alumina composite sol of Example 12 had high water resistance and scratch resistance.
  • the ink receiving layer obtained from the silica sol of Example 13 had substantially no water resistance.
  • the ink receiving layer obtained from the alumina sol of Example 14 had relatively high water resistance, but did not have abrasion resistance.
  • the xerogel obtained by removing the solvent forms a porous layer having ink absorptivity and dye fixability.
  • silica-alumina composite sol of the present invention it is possible to form a porous layer having ink absorbency and dye fixability.
  • This sol is appropriately mixed with a binder to form a coating liquid, which is applied on a substrate and dried to obtain good ink absorbency, transparency, water resistance, gloss, and scratch resistance.
  • a good ink receiving layer can be formed.
  • the ink receiving layer thus obtained is suitable as a recording medium for an ink jet printer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Geology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Silicon Compounds (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Colloid Chemistry (AREA)

Description

明細書 ナ複合ゾル、 その製造方法および記録媒体 技術分野
本発明は、 シリカアルミナ複合ゾルおよびその製造方法に関する。 特に、 イン クジエツトプリンタ用記録媒体のインク受容層を形成するために好適なシリカァ ルミナ複合ゾルおよびその製造方法、 ならびに記録媒体に関する。 背景技術
近年、 デジタルカメラまたはコンピュータの普及とともに、 それらの画像を紙 面などに記録するためのハードコピー技術が急速に発達した。 ハードコピーの記 録方式には、 銀塩写真によって画像を表示したディスプレイを直接撮影するもの のほか、 昇華型熱転写方式、 インクジェット方式など多種多様の方式が知られて いる。
このうち、 インクジェット方式は、 ノズルから記録媒体に向けて染料と多量の 溶媒よりなるインク液滴を高速で射出するものである。 インクジエツト方式によ るプリンタは、 フルカラ一化や高速化が容易なことや、 印字騒音が低いことなど から、 近年急速に普及しつつある。
インクジェットプリンタ用の記録媒体としては、 インクを速やかに吸収し、 鮮 明な画像を得るために、 紙やフィルムなどの基材上にシリカやアルミナなどの無 機微粒子とポリビエルアルコールなどのバインダ一とからなる多孔質のィンク受 容層を設けたものが知られている。 インクジェットプリンタ用の記録媒体は、 ィ ンク中に多量に含まれる溶媒をインク受容層中の細孔で吸収する必要があるため、 インク受容層は適度な細孔径を有し、 細孔容積が大きいことが必要である: さら に、インク受容層が透明であるほど、色濃度の高い鮮明な画像を形成できるので、 インク受容層としては、 透明性のよいものが好ましい。
さらに、 前記のインク吸収性や透明性に加えて、 インクジェット記録方法が水 系のインクを使用するため、 画像形成後、 水がかかってもインク受容層に外観上 の欠陥が発生したり、 インク中の染料が流れてインクが滲んだりしないこと (以 下、 耐水性と記す) や、 記録媒体の表面が鋭利なものに接触して傷がつき、 記録 物の品質を損なうことがないこと (以下、 耐擦傷性と記す) や、 表面の光沢度が 高いこと (以下、 光沢性と記す) なども重要となってきている。
シリカゲルなどのシリカ系材料は、 適度な細孔を有するが、 一般に、 シリカは 粒子表面が負に帯電しており、 インクジヱッ卜に用いられるァニオン性解離基を 有する直接染料または酸性染料は吸着することができず、 耐水性は低い。
そこで、 特開昭 6 0 - 2 5 7 2 8 6号公報に開示されているようにィンク受容 層中にポリ塩化アルミニウムを含有させる方法があるが、 ポリ塩化アルミニウム は水溶性塩であるため、 インク受容層中のポリ塩化アルミニウム自身が水に溶解 して、 インク受容層の表面にピット状の外観欠陥を生じる場合があり、 耐水性と しては必ずしも充分ではなかった。 また、 長期間保存した場合には、 ポリ塩化ァ ルミ二ゥムがマイグレーションしてインク受容層の細孔を閉塞し、 インク吸収性 が低下する場合があった。
また、 シリカ表面をアルミナでコーティングして、 正に荷電したコロイ ド状シ リカゾルの製造方法は、 特公昭 4 7 - 2 6 9 5 9号公報に開示されている。 その 方法としては、 ポリ塩化アルミニウムの水溶液に徐々に粒子径 2〜 1 5 0 n mの シリカゾルを添加して、 この混合物を p Hが一定、 すなわち一般に 4またはそれ 以下になるまで熟成し、 次いで、 アルカリを添加することにより混合物の p Hを 約 4 . 5〜7 . 0の値まで増加させるものである。 この方法によれば、 透明性と 安定性に優れた、表面がアルミナでコーティングされたシリカゾルが得られるが、 二次凝集粒子を形成してないため、 これを乾燥して得られるキセロゲルの細孔容 積と細孔半径が小さく、 ゆえにこれを用いて形成したインク受容層は、 インク吸 収性が不充分となる場合があつた。
擬ベーマイ トなどのアルミナ水和物を用いて形成されたインク受容層は、 イン ク吸収性、 透明性、 耐水性、 光沢性などの点で優れているが、 耐擦傷性の点で問 題があった。 これはアルミナ水和物が球状ではないためと推定される。 この問題 を解決するために、 特開平 7— 7 6 1 6 2号公報に開示されるように、 擬ベーマ イ トからなる多孔質層の上に、 厚さ 0 . 1〜3 0 μ mのシリカゲル層を設ける方 法があるが、 このシリカゲル層はインク吸収性を阻害する欠点があり、 また工業 生産上も 2層構造となるため不利である。 発明の開示
本発明は、 シリカとアルミナとを含む凝集粒子が水性媒体中に分散したコロイ ド溶液であって、 シリカは一次粒子が球状で一次粒子の平均粒子径が 2〜 2 0 0 n mであり、 凝集粒子の平均粒子径がシリカ一次粒子の平均粒子径の 2倍以上か つ 1 0 0 0 n m以下であり、 凝集粒子のゼ一タ電位が + 1 0 m V以上であり、 溶 液の p Hが 3〜 9であるシリ力アルミナ複合ゾルを提供する。
本発明は、 上記シリカアルミナ複合ゾルの好適な製造方法として、 次の第 1の 製造方法と第 2の製造方法を提供する。
第 1の製造方法は、 一次粒子が球状で一次粒子の平均粒子径が 2〜 2 0 0 n m のシリカ粒子を含むシリカゾルに、 水に溶解したとき液性が酸性を示すアルミ二 ゥム塩を徐々に添加するシリカアルミナ複合ゾルの製造方法である =
第 2の製造方法は、 シリカゾルと、 乾燥して得られるキセロゲルが比表面積 1 5 0 m 2/ g以上のアルミナゾルとを混合して、 シリカとアルミナとを含む凝集 粒子を形成させた後、 解膠処理によって、 凝集粒子の平均粒子径を 3 0〜 1 0 0 0 n mに調整するシリカアルミナ複合ゾルの製造方法である。
本発明は、 さらに、 シリカとアルミナとを含む凝集粒子が水性媒体中に分散し たコロイ ド溶液であって、 シリカは一次粒子が球状で一次粒子の平均粒子径が 2 〜 2 0 0 n mであり、 凝集粒子の平均粒子径がシリカー次粒子の平均粒子径の 2 倍以上かつ 1 0 0 0 n m以下であり、 凝集粒子のゼータ電位が + 1 O m V以上で あり、 溶液の p Hが 3〜9であるシリカアルミナ複合ゾルを、 基材に塗布乾燥し て得られる多孔質層を有する記録媒体を提供する: 発明を実施するための最良の形態
本発明のシリカアルミナ複合ゾルは、 コロイ ド粒子としてシリカとアルミナと を含む凝集粒子が水性媒体中に分散したものである。
凝集粒子中のシリカは、 一次粒子が球状で一次粒子の平均粒子径が 2〜 2 0 0 n mである。 本発明のシリカアルミナ複合ゾルは、 シリカ一次粒子が球状である ため、 基材の上に塗工層を形成したときに、 高い耐擦傷性を有する。
シリカ一次粒子の平均粒子径が 2 n mより小さい場合は、 複合ゾルを乾燥した ときに、 平均細孔半径および細孔容積の大きいキセ口ゲルを得ることができない ので好ましくない。 シリカ一次粒子の平均粒子径が 2 0 0 n mを超える場合は、 複合ゾルを乾燥したときに、 比表面積の大きなキセ口ゲルを得ることができず、 色素定着性の高いキセロゲルを得ることができないので好ましくない。 シリカ一 次粒子の平均粒子径のさらに好ましい範囲は 5〜 1 O O n mである。 シリカ一次 粒子の平均粒子径は、 透過型電子顕微鏡で測定する。
凝集粒子の平均粒子径は、 シリカー次粒子の平均粒子径の 2倍以上であること が必要である。 通常のシリカゾルは、 安定性と分散性を良くするために、 凝集粒 子を含まないように製造されているが、 本発明のシリカアルミナ複合ゾルは積極 的に凝集粒子を形成させたものである。 このような凝集粒子を含むことにより、 キセロゲルにしたときの細孔容積と平均細孔半径を大きくすることができ、 イン ク吸収性に優れたィンク受容層を形成することができる。
凝集粒子の平均粒子径は、 1 0 0 0 n m以下であることが必要である: 凝集粒 子の平均粒子径が 1 0 0 0 n mを超える場合は、 キセロゲルにしたときの透明性 が低下して、 インク受容層のヘイズが高くなるだけでなく、 後述する耐水性試験 におけるシアン染料の色濃度も低下する:, 凝集粒子の平均粒子径が 5 0 0 n m以 下である場合は、 透明性がさらに良好であるので好ましい。 凝集粒子の平均粒子 径が 3 0 n m以上であることが好ましい。
本発明のシリカアルミナ複合ゾルは、 p Hが 3〜9である。 p Hが 9より大き い場合は、 凝集粒子のゼータ電位が低くなるので不適当である。 逆に、 p Hが 3 より小さい場合は、 アルミナが溶解するおそれがあるので不適当である: p Hの より好ましい範囲は 3〜 7である。
本発明のシリカアルミナ複合ゾルは、 凝集粒子のゼータ電位が + 1 O m V以上 である: 通常のシリカゾルは表面が負に帯電しているため、 インクジェットブリ ンタなどに用いられるァニオン系染料の定着性がない。 例えば、 後述する耐水性 試験においてシアンインクの色濃度は実質的に 0である。 これに対して、 本発明 で得られるシリカアルミナ複合ゾルは、 表面電荷が正であるので染料定着性を有 し、 後述する耐水性試験においてシアンインクの色濃度は 1. 0以上を示す: 凝 集粒子のゼータ電位のより好ましい範囲は + 30〜十 9 OmVである。
本発明のシリカアルミナ複合ゾルにおいては、 シリカに対するアルミナの量が 増すにつれて、 凝集粒子のゼータ電位が大きくなる傾向がある。 アルミナの添加 量は、凝集粒子のゼータ電位が + 1 OmV以上になるように添加する必要がある。 原料となるシリカゾルの比表面積が大きいほど、 より多くアルミナを添加する必 要があるが、 シリカゾルの中の S i 02成分 1 00 gに対して A 1203として 1 g以上添加することが好ましい。 アルミナの過剰量を添加しても特に問題とはな らないが、 後述の限外濾過などによる不純物イオンを除去する操作が容易でなく なるので不利である。 シリカに対するアルミナの添加量が、 シリカゾルの中の S i 02成分 1 00 gに対して A 123として 900 g以下が好ましい。 より好ま しい範囲は、 シリカゾルの中の S i〇2成分 1 00 gに対して A 1203として 5 〜400 gである。
本発明の複合ゾルは、 不純物 (S i、 A 1、 〇、 H以外の元素) の量は、 S i および A 1の原子数の合計量に対し、 原子数基準で 1 0モル%以下であることが 好ましい。 不純物元素の量がこれより多いシリカアルミナ複合ゾルを用いてイン ク受容層を形成した場合には、 画像形成後、 染料が変色したり、 後述する耐水性 試験において、 インク受容層の表面にピッ ト状の外観欠陥を生じたりする場合が あるので好ましくない。
本発明のシリカアルミナ複合ゾルは、 溶媒を除去することにより、 比表面積が 50m2/g以上、 平均細孔半径が 5 n m以上、 かつ、 細孔半径 1〜 1 00 n m についての全細孔容積が 0. 35 cm:iZg以上、 のキセロゲルを得ることがで きる。 平均細孔半径が 1 0 nm以上である場合は、 さらに好ましレ、。 また、 細孔 半径 1〜1 00 nmについての全細孔容積が 0. 50 c m :i/ g以上である場合 は、 さらに好ましい。 これらの細孔特性は、 窒素吸脱着法により測定する。 ここ でいう平均細孔半径とは、 細孔半径 1〜 1 00 n mについての全細孔容積を V c n^Zg、 比表面積を Am2/gとしたときに、 2 V/AX 1 03 (nm) により 計算して求めた値である。 複合ゾルから溶媒を除去して得られるキセロゲルにおいて、 平均細孔半径が 5 nmに満たない場合、 細孔半径 1〜 1 00 nmについての全細孔容積が 0. 35 cm3Zgに満たない場合、 または比表面積が 50m2Zgに満たない場合は、 そ れぞれ、 インク受容層を形成したときにインク吸収性が不足するおそれがあるの で好ましくない。 複合ゾルから溶媒を除去して得られるキセロゲルのより好まし い細孔特性は、 比表面積については 1 00m2/g以上、 平均細孔半径について は 5. 5 nm以上、細孔半径 1〜 1 00 n mについての全細孔容積については 0. 4 cm3Zg以上、 である。 本明細書で単に細孔容積というときも、 細孔半径 1 〜100 nmについての全細孔容積を意味するものとする。
本発明のシリカアルミナ複合ゾルは、 乾燥して溶媒を除去したときに、 透明性 の良好なキセロゲルが得られる。 このキセロゲルは、 インクジェットプリンタ用 の記録媒体のインク受容層に用いた場合、 優れた色素定着性、 透明性、 光沢性を 有する。
インク受容層の色素定着性、 透明性および光沢性は、 次のようにして評価する ことができる。 シリカアルミナ複合ゾルの固形分 1 0重量部に対して 1重量部の ポリビニルアルコールを混合し、 必要に応じて濃縮または希釈して、 総固形分濃 度が 1 0重量。んの塗工液を調製する: この塗工液を、 白色ポリエチレンテレフタ レートフィルム (内部に白色顔料が分散した不透明フィルム) に乾燥後の塗工量 が 4. 5〜5. 5 g/m2になるよう塗布して乾燥して多孔質のインク受容層を 形成する。 ただし、 透明性を評価する場合は基材として透明なボリエチレンテレ フタレートフイルムを用いる c
インク受容層の耐水性 (色素を定着する性質) は、 塗工層を形成したフィルム を適当な大きさに切り出して、 2分間シアンインク (例えば、 セイコーエフ :ソン 社製インクジェットプリンタ M J - 5000 C用カラーインクカートリッジ M J I C 2 C) 中に浸漬した後、 流水で 2分間洗浄して定着していないインクを除去 し、 定着しているシアンインクによるインク受容層の色濃度を反射色濃度計 (マ クべス社製、 商品名 RD— 9 1 8) を用いて測定する。 反射色濃度の測定の際に はシートの裏側に白色の反射標準板を敷いて測定する。 この測定で、 インク受容 層の色濃度は、 1以上であることが好ましく、 この場合は、 インク受容層として 充分な耐水性を有する。
インク受容層はヘイズ値として 1 0 %以下であることが好ましい 3 インク受容 層のヘイズ値は、 インク受容層を有するポリエチレンテレフタレートフイルムの ヘイズ値と未塗工のポリエチレンテレフタレ一トフイルムのヘイズ値との差で表 すものとする。
インク受容層の光沢性は、 J I S Z 8 7 4 1に規定される 6 0。 鏡面光沢度 で評価する。 インク受容層の鏡面光沢度は 2 0 %以上であることが好ましい。 本発明のシリカアルミナ複合ゾルの第 1の製造方法を、より具体的に説明する: 第 1の製造方法は、 一次粒子が球状で平均粒子径 2〜 2 0 0 n mのシリ力粒子を 含むシリカゾルに、 水に溶解したときに液性が酸性になるようなアルミニウム塩 を添加することにより製造することができる。
原料となるシリカゾルの p Hや溶媒は、特に限定されないが、溶媒については、 操作が簡単な点から水が好ましい。 例えば、 触媒化成工業社製のカタロイ ド S I —4 0や日本化学工業社製のシリカドール 2 0 G Aなどの商品名で市販されてい るシリカゾルを好適に使用できる。 また、 シリカゾルは、 適宜、 水で希釈して使 用してもよレ、。
水に溶解したときに液性が酸性になるようなアルミニウム塩としては、 水酸化 アルミニウムと強酸との塩が好ましい。 本明細書においては、 水に溶解したとき に液性が酸性になるようなアルミニウム塩を、 以下単に酸性アルミニウム塩とい 0。
酸性アルミニウム塩としては、 塩化アルミニウム、 硫酸アルミニウム、 硝酸ァ ルミ二ゥムなどの無機酸塩、 または酢酸アルミニゥムなどの有機酸塩を好適に使 用できる。 酸性アルミニウム塩は、 適宜水に溶解して、 シリカゾルに混合するの が好ましい。
酸性アルミニウム塩としては、 特にポリ塩化アルミニウムを用いるのが好まし レヽ。 ポリ塩化アルミニウムは、 化学式が [ A 1 , ( O H) n C 1 6 _ J m ( 1 < n < 6、 m < 1 0 ) で表される化合物である。 例えば多木化学社製のタキバイン = 1 5 0 0や P A C 2 5 O Aなどの商品名で市販されているものが挙げられる: ポリ 塩化アルミニウムは塩基度が 2 0 %以上であることが好ましい。 塩基度が 2 0 % より小さい場合は、 A 1に対する 1の含有量が多いので、 後述の限外濾過など により不純物元素を除去する場合に不利である。 塩基度は、 上記化学式における ( n / 6 ) を 1 0 0分率で表したものであり、 具体的測定方法は J I S K 1 4 7 5に規定される。
シリカゾルと酸性アルミニウム塩を混合する方法としては、 特に限定されず、 シリカゾルに酸性アルミニゥム塩を添加する方法が好ましい。 原料となるシリカ ゾルに対し、 所定量の酸性アルミニウム塩を徐々に添加するのが好ましい。 シリ カゾルに徐々に酸性アルミニウム塩を添加していくと、 ゾル中のシリカ粒子の表 面に徐々にアルミナが生成して付着する。 アルミナの付着量が増大するにつれゾ ル粒子の表面電位は負から正に変化する。その途中で電位が 0の状態を通るので、 粒子の凝集が起こり、 シリカおよびアルミナを含む凝集粒子が形成される。 酸性 アルミニウム塩の添加の際には、 シリカゾルを撹拌して、 酸性アルミニウム塩の 濃度が局所的に高くなることを防ぐのが好ましい:
逆に、酸性アルミニウム塩の溶液に原料となるシリカゾルを徐々に添加すると、 シリカゾル粒子表面にアルミナが付着した複合粒子を含むゾルは形成されるが、 凝集粒子が形成されにくレ、。 このため、 ゾルを乾燥させて得られるキセロゲルは、 細孔容積と平均細孔半径が小さいものになるおそれがある。
シリカゾルと酸性アルミニウム塩を混合する際の温度は、 2 5〜 1 5 0 Cが好 ましい。 温度が 2 5 °Cより低い場合は、 反応速度が遅くなり、 シリカ粒子の表面 に充分にアルミナが付着しないおそれがあるので好ましくない。 温度が 1 5 0 DC より高い場合は、 操作が困難となるので好ましくない:
酸性アルミニウム塩の添加量は、 粒子のゼータ電位が + 1 O m V以上になるだ けの添加量が必要である。 原料となるシリ力ゾルのゾル粒子の比表面積が大きい ほど、 より多くの酸性アルミニウム塩を添加する必要があるが、 本明細書で原料 として用いる一次粒子の平均粒子径が 2〜2 0 0 n mのシリカゾルの場合は、 S i 0 2に換算して 1 0 0 gのシリカに対して、 A 1 23に換算して 1 g以上の酸 性アルミニゥム塩を添加するのが好ましい c 酸性アルミニゥム塩の添加量が過剰 でも特に問題とはならないが、 後述の限外濾過などによる不純物元素を除去する 操作が容易でなくなるので不利である。 9/64354
第 1の製造方法において、 シリカゾルに酸性アルミニウム塩を混合して得られ る溶液を、 p H 7〜l 0にて熟成して凝集化し、 さらに解膠処理を行う場合は、 細孔容積の大きなキセロゲルが得られるので好ましい。 この場合のシリカアルミ ナ複合ゾルは、 溶媒を除去することにより、 比表面積が 5 0 m 2/ g以上、 平均 細孔半径が 1 0 n m以上、 かつ、 細孔半径 1〜 1 0 0 n mについての全細孔容積 が 0 . 5 0 c m 3Z g以上のキセロゲルを得ることができる。
凝集化処理の p Hとしては p H 7〜 1 0が好ましい。 p Hが 7より低いと凝集 化が充分に起こらず、 細孔半径、 全細孔容積、 比表面積を大きくすることができ ないので不適である。 一方、 p Hが 1 0より高いと耐水性試験におけるインクの 色濃度が低下するので不適である。より好ましい p Hの範囲は p H 7〜 9である。 凝集化処理の p Hを 7〜 1 0にする方法としては、 シリカゾルと酸性アルミ二 ゥム塩との混合溶液に、 アル力リ金属水酸化物またはアルミン酸アルカリ金属塩 を添加する方法があげられる。
熟成は、 撹拌しながら、 温度 5 0〜 1 5 0 :Cで、 1時間以上行うことが好まし レ、。 熟成の温度が 5 0 より低い場合は、 凝集化が充分に起こらず、 細孔半径、 全細孔容積、 比表面積を大きくすることができないので不適である: 一方、 温度 が 1 5 0 °Cより高い場合は、 操作が困難となるので好ましくない。 熟成時間は、 長いほど凝集化が充分に進行して細孔半径、 全細孔容積、 比表面積を大きくする ことができ、 これを用いたインク受容層はインク吸収性に優れるが、 長すぎると 透明性が低下するので適度に調整する必要がある:
凝集化処理後の溶液が、 アル力リ金属ィオン等の多量の不純物イオンを含有し ている場合には、 次の解膠処理に先立って、 この不純物イオンを除去し精製する ことが好ましい。 不純物イオンの除去の方法としては、 限外濾過膜を用いると効 率が良く好ましい。
上述の凝集化処理は、 水に溶解したとき液性が酸性を示すアルミニゥム塩の溶 液に、 シリカゾルを徐々に添加して得られる混合物に適用しても、 効果がある: すなわち、 水に溶解したとき液性が酸性を示すアルミニウム塩の溶液に、 シリカ ゾルを徐々に添加して得られる混合物を、 p H 7〜 l 0にて熟成することにより 凝集化処理し、 次いで解膠処理することにより、 大きな細孔容積および大きな細 孔半径を有するキセ口ゲルを得ることのできるシリカアルミナ複合ゾルを製造す ることが可能である c
第 1の製造方法において、 シリカゾルに、 酸性アルミニウム塩とは別の電解質 をさらに添加すると、 より効果的に凝集粒子を形成することができる。 ここで添 加する電解質としては、 シリカゾルまたはアルミナゾルに対して凝集作用を有す るものであれば、 特に限定されず、 塩化ナトリウム、 塩化カルシウム、 硫酸ナト リウム、 酢酸カリウム、 硝酸マグネシウムなどが挙げられる。 これらを単独で用 いてもよいし、 混合して用いてもよレ、。 また添加量としては、 原料であるシリカ ゾル中のシリカ (S i〇2換算) の重量に対して、 1〜7 0重量%が好ましい。 電解質を添加する方法としては、 特に限定されず、 これらの電解質をあらかじ めシリカゾルに添加しておいてもよく、 酸性アルミニウム塩に加えておいてシリ 力ゾルに添加してもよい。 さらには、 シリカゾルに酸性アルミニウム塩を添加し た後の混合液に、 電解質を添加してもよい。
次いで、 シリカゾルに酸性アルミニウム塩を添加した後の混合液からは、 未反 応の酸性アルミニゥム塩または添加した電解質などの不純物ィオンを除去するの が好ましい。 除去の方法としては限外濾過が好ましい。
本発明のシリ力アルミナ複合ゾルの第 2の製造方法を、より具体的に説明する。 第 2の製造方法は、 シリカゾルと、 乾燥して得られるキセロゲルが比表面積 1 5 0 m 2 Z g以上のアルミナゾルとを混合して、 シリカとアルミナとを含む凝集粒 子を形成させた後、 解膠処理によって、 凝集粒子の平均粒子径を 3 0〜 1 0 0 0 n mに調整するシリ力アルミナ複合ゾルの製造方法である。
具体的には次のような方法を採用するのが好ましい。 すなわち、 まず、 一次粒 子の粒子径 1 0〜2 0 0 n mのシリカゾルとアルミナゾルを混合し反応させる。 混合することによって凝集化が起こる。 次いで、 この複合ゾルを解膠処理によつ て、 凝集粒子の粒子径を 3 0〜 1 0 0 0 n mに調整する。
本発明に用いるシリカゾルは一次粒子として平均粒子径 1 0〜2 0 0 n mの球 状粒子を含むものが好ましい: 球状粒子を用いることによってアルミナゾルとの 複合ゾルは耐擦傷性を有する: 一次粒子の平均粒子径としては、 1 0 n m以下で あると一次粒子が小さすぎるため、 細孔半径と細孔容積の大きレ、複合ゾルが得ら れない。 また、 200 nmを超えると比表面積が小さくなり、 耐水性試験におい てシァン染料の色濃度の高レ、ものが得られない。
本発明に用いるアルミナゾルは、 ゾル粒子がアルミナ水和物からなるゾルであ つて、 単独で乾燥させてキセロゲルとしたときの比表面積が 1 50m2/g以上 であることが好ましい。 キセロゲルとしたときの比表面積が 23 Om2/g以上 である場合は、 さらに好ましい c アルミナ水和物としては、 ベーマイ ト (A 1 2 03 · ηΗ2〇、 η= 1〜1. 5) が好ましい。 本発明では、 このように比表面積 の大きいキセロゲルを形成することのできるアルミナゾルを用いることにより、 複合ゾルを乾燥して得られるキセロゲルの比表面積を大きく したことが特徴であ る。 比表面積が大きいことにより、 複合ゾルを乾燥したときに染料の吸着点を多 くすることができ、 耐水性試験においてシアン染料の色濃度の高いインク受容層 を形成することができる。
原料となるシリ力ゾルとしては、 一次粒子径が 1 0〜 200 n mの球状粒子が 好ましく、 例えば、 触媒化成工業社製のカタロイ ド S I— 45 Pや日本化学工業 社製のシリカドール 20G Aなどの商品名で市販されているシリカゾルを好適に 使用できる。 pH、 溶媒等、 特に限定されないが、 溶媒については、 操作が簡単 な点から水が好ましい。 また、 適宜、 水で希釈して使用してもよい。
原料となるアルミナゾルは、 ゾル粒子がアルミナ水和物であるゾルであって、 その製造方法に関しては特に限定されず、 アルミニウムアルコキシドの加水分解 またはアルミン酸アルカリ金属塩やアルミニウム塩の中和またはイオン交換で得 たアルミナゲルを適宜熟成した後、洗浄、解膠する方法により得ることができる。 ただし、 アルミナゾルは、 そのゾルを乾燥して得られるキセロゲルの比表面積 が大きいほど、 シリカアルミナ複合ゾルを乾燥して得られるキセロゲルの比表面 積を大きくすることができ、 耐水性試験においてシアン染料の色濃度の高いイン ク受容層を形成することができるので好ましい。 アルミナゾルを乾燥して得られ るキセロゲルの比表面積は、 好ましくは 1 5 Om2/g以上、 より好ましくは 2 30m2Zg以上であることが好ましい: このような高比表面積のアルミナ水和 物粒子は、 先に挙げたアルミニウムアルコキシドの加水分解またはアルミン酸ァ ルカリ金属塩やアルミニウム塩の中和またはイオン交換で得たアルミナゲルの熟 成条件、 すなわち、 p H、 温度、 時間を制御することにより得られる。
上記のようにして得られたアルミナゲルを適宜洗浄した後、 解膠してアルミナ ゾルを得るのが好ましい。 解膠の方法としては限定されず、 塩酸、 硝酸、 酢酸、 アミ ド硫酸などの酸を解膠剤として添加する方法や超音波分散などの機械的方法 により解膠する方法が挙げられる- またこれらを併用してもよレ、。 ゾル粒子の平 均粒子径は小さいほど均一なシリカアルミナ複合ゾルが得られるので、 5 0 0 η m以下であることが好ましい。 ゾル粒子の平均粒子径が 3 0 0 n m以下である場 合は、 さらに好ましい。
第 2の製造方法において、 シリカゾルとアルミナゾルを混合する方法は特に限 定されず、 シリカゾルを撹拌しながらアルミナゾルを添加してもよいし、 アルミ ナゾルを撹拌しながらシリカゾルを添加してもよい。 混合時の温度としては特に 限定されず、 常温でもよいし適宜加温してもよいが、 温度が高すぎると操作が困 難となるので 1 5 0 °C以下が好ましい。
シリカゾルに対するアルミナゾルの添加量としては、 好ましくはシリカ固形分 ( S i〇2換算) 1 0 0 gに対してアルミナ固形分が 1 0〜4 0 0 gである。 ァ ノレミナゾルの添加量が多いほど複合ゾルのゼータ電位が大きくなる傾向がある。 アルミナゾルの添加量は、 正の荷電の凝集粒子が得られるだけの量を添加するこ とが好ましい。 一次粒子径が 1 0〜2 0 0 n mのシリカゾルを用いた場合、 シリ 力固形分 (S i 0 2換算) 1 0 0 gに対して、 アルミナ固形分として 1 0 g以上 添加する必要がある。 一方、 アルミナゾルの添加量が多すぎると、 得られるシリ 力アルミナ複合ゾルを用いてインク受容層を形成した場合に、 インク受容層の耐 擦傷性が低くなるおそれがあるので好ましくない。
本発明では、上記のシリカゾルとアルミナゾルの混合物を、解膠処理によって、 凝集粒子径を 3 0〜 1 0 0 0 n mに調整する。 解膠処理の方法としては特に限定 されず、 解膠剤を添加する方法や超音波分散などの機械的方法が挙げられる。 ま たこれらを併用してもよい。 解膠剤としては、 塩酸、 硝酸、 硫酸、 酢酸、 アミ ド 硫酸などを好適に使用できる。 これらを単独で用いてもよいし、 混合して用いて よい。
第 1の製造方法または第 2の製造方法で合成されたシリカアルミナ複合ゾルは、 凝集粒子の平均粒子径が 1 0 0 0 n m以下の場合はそのままでもよいが、 さらに 必要に応じて凝集粒子の平均粒子径を調整することができる。 凝集粒子の平均粒 子径は、 超音波分散などにより小さくすることができる。 また、 解膠剤を添加す るなどして解膠してもよレ、。 解膠剤としては、 特に限定されず、 塩酸、 硝酸、 硫 酸、 アミ ド硫酸などの無機酸、 または酢酸などの有機酸を好適に使用できる: こ れらの解膠剤は、 単独で用いても適宜混合して用いてもよい。
本発明のシリカアルミナ複合ゾルは、 乾燥して溶媒を除去したときに、 透明性 が良好で、 かつ、 吸収性の高いキセロゲルが得られる。 したがって、 本発明のシ リカアルミナ複合ゾルを、 適宜バインダーと混合して得られる塗工液を、 基材上 に塗布した後に乾燥することにより、 ィンク吸収性、 透明性、 耐水性、 耐擦傷性、 光沢性に優れたインク受容層を有する記録媒体が得られる。 本発明のシリカアル ミナ複合ゾルは、 紙基材中に内填することもできる。
シリカアルミナ複合ゾルからインク受容層を形成する場合、 バインダーとして は、 特に限定されず、 でんぷんおよびその変性物、 ポリビュルアルコールおよび その変性物、 カルボキシメチルセルロースなどのセルロース誘導体、 S B Rラテ ックス、 N B Rラテックス、 ポリビニルピロリ ドンなどが挙げられる。
インク受容層の基材としては、 特に限定されず、 ポリエチレンテレフタレート などの樹脂のフィルム、 上質紙、 合成紙などの紙、 布、 ガラス、 金属、 皮革、 木 材、 陶磁器などのセラミックスなどが挙げられる: さらには、 本発明以外のベー マイ ト、 シリカゲル、 カチオン性樹脂などを含有して形成されたインク受容層の 上部または下部に形成してもよい。
実施例
[例 1 ]
容量 2 0 0 0 c m :iののガラス製反応器に、 一次粒子の平均粒子径 1 7 n mの 球状シリカー次粒子が分散したシリカゾル ( S i〇 2濃度 4 0 . 4重量0/。、 N a , O濃度 0 . 4 1重量%、 触媒化成工業社製、 商品名カタロイ ド S I — 4 0 ) 1 9 8 . 0 gおよびイオン交換水 1 4 0 2 gを入れ、 8 0 °Cに昇温した- 8 0で;こな つたところで、 撹拌しながら、 ポリ塩化アルミニウム水溶液 (アルミニウム濃度 が Aし〇3に換算して 2 3 . 6重量。 /o、 C l濃度 8 . 1重量。 /0、 塩基度 8 4 %、 多木化学社製、 商品名タキバイン # 1 5 0 0 ) 8 5 . 9 gを、 約 1 0分間かけて 徐々に添加した。
添加終了後、 さらに 1時間、 撹拌しながら 8 0 eCに保持した。 次いで、 この反 応液を限外濾過装置を用いて、 イオン交換水を添加しながら液の量を一定に保ち つつ、 濾液の電導度が 5 0 μ S / c m以下に低下するまで限外濾過することによ り精製し、 シリカアルミナ複合ゾルを得た。
この複合ゾル中に含有される不純物元素量は、 S i と A 1のモル数の合計量に 対して、 N aが 0 . 7モル%、 C 1が 2 . 2モル0/。の合計 2 . 9モル。/。であった: このゾルについて、 後述の方法により各種の評価を行った (他の例においても同 様) 。 このゾルは、 凝集粒子の平均粒子径が 1 2 9 n mに凝集しており、 凝集粒 子が正に帯電していた。 このゾルを乾燥して得られるキセロゲルは、 大きな細孔 容積と大きな平均細孔半径を有していた。 インク受容層の特性としては、 シアン インクの色濃度が高く、 透明性、 光沢度、 耐擦傷性のすべてにおいて優れた性能 を有していた。
[例 2 ]
例 1において、 シリカゾルにイオン交換水 1 4 0 2 gを加える代わりに、 塩化 ナトリウム 2 4 . 0 gを含有する水溶液 1 4 0 2 gを加え、 その他は例 1と同様 に反応と精製を行い、 シリカアルミナ複合ゾルを得た。
この複合ゾル中に含有される不純物元素量は、 S i と A 1のモル数の合計量に 対して、 N aが 2 . 0モル0/。、 C 1が 4 . 5モル0/。の合計 6 . 5モル。/。であった。 次いで、 このゾルを超音波処理し、 凝集粒子の平均粒子径を 2 1 7 n mに調整し た。 このゾルを用いて形成したインク受容層も例 1と同様に耐水性に優れ、 シァ ンインクの色濃度が高く、 透明性、 光沢度、 耐擦傷性のすべてにおいて優れた性 能を有していた。
[例 3 (比較例) ]
例 1で原料として用いたシリカゾル自体の特性を評価した。 キセ口ゲルの細孔 容積と平均細孔半径は例 1で得られたゾルの場合よりも小さく、 またこのシリカ ゾルを用いてインク受容層を形成し、 その特性を調べたところ、 耐水性試験での シアンィンクの色濃度は 0であって、 染料定着性を全く示さなかった。 [例 4]
限外濾過による精製を行わないこと以外は例 1と同様にして、 ゾルを得た。 こ のゾル中に含有される不純物元素量は、 S i と A 1のモル数の合計量に対して、 N a力 S 1. 5モル0 /0、 C 1が 1 1. 3モル0んの合計 1 2. 8モル0 /。であり、 多量 の C 1を含有していた。
このゾルを用いてインク受容層を形成し、 その特性を調べた- 耐水性試験のた めのシアンインクの色濃度から、 染料定着性を示すことがわかった。 しかし、 例 1のゾルと比較するとシアンィンクの色濃度、 ヘイズについての特性は劣ってい た。 また、 耐水性試験でインク受容層の表面の一部に外観欠点が生じており、 さ らにこのインク受容層が基材ポリエチレンテレフタレートフイルムから剥がれた 部分も観察された。
[例 5 (比較例) ]
例 1とは、 添加の方法を変えて、 容量 20◦ 0 c m3のガラス製反応器に例 1 で用いたのと同じポリ塩化アルミニウム水溶液 (多木化学社製、 商品名タキバイ ン # 1 500) 85. 9 gとイオン交換水 1402 gを入れ、 80CCに昇温した- 80°Cになったところで、 撹拌しながら、 例 1で原料として用いたのと同じシリ 力ゾル (触媒化成工業社製、 商品名カタロイ ド S I— 40 ) 1 98. 0 gを約 1 0分間かけて徐々に添加した。 添加終了後 1時間、 撹拌しながら 80°Cに保持し た。 この反応液を例 1と同様の方法で精製し、 シリカアルミナ複合ゾルを得た- このゾル中に含有される不純物元素量は、 S i と A 1のモル数の合計量に対し て、 Naが 0. 6モル0/。、 C 1が 2. 3モル。/。の合計 2. 9モル。/。であった。 し かし、 このゾルの凝集粒子の平均粒子径は 27 nmであって、 充分に凝集粒子が 形成されていないために細孔容積と平均細孔半径が小さく、 またこのゾルを用い てインク受容層を形成したところ、 耐水性試験でのシアンインクの色濃度、 ヘイ ズ、 光沢度が例 1および 2よりも劣っていた。
[ゾルの物性測定]
以下において、例 1〜 5のゾルの物性は次のようにして測定した。 ゾル濃度は、 ゾルを 140 °Cで恒量になるまで乾燥し、乾燥前後の重量差より求めた。 p Hは、 東亜電波社製の pHメーター HM— 1 2 Pを用いて調べた。 ゼータ電位は、 大塚 電子社製の電気泳動光散乱光度計 E LS- 800を用いて調べた。 凝集粒子の平 均粒子径は、 日機装社製のマイクロ トラック UP Aを用いて調べた。
表 1
Figure imgf000018_0001
[キセ口ゲルの物性測定]
例 1〜5のゾルを、 140eCで恒量になるまで乾燥して、 キセロゲルの粉末を 得た。 この粉末を 1 20°Cで 1 X 1 0-2T o r rで 2時間真空脱気した後、 窒素 吸脱着装置 (コールター社製、 商品名ォムニソープ 1 00型) を用いて、 比表面 積、 細孔容積、 平均細孔半径を測定した。 平均細孔半径は 2 V/A X 1 03で計 算した値である。 結果を表 2に示す:
表 2
Figure imgf000018_0002
受容層の特性評価]
例 1〜 5で得られたゾルに、 ポリビニルアルコール水溶液 (クラレ社製、 商品 名 R 1 1 30) を固形分比が 1 00 : 1 0となる割合で混合して、 総固形分濃度 が 1 0重量%の塗工液とし、 バーコ一ターを用いて厚さ 1 00 μ mの白色ポリェ チレンテレフタレ一トフイルム (帝人社製、 商品名 U2) 上に塗工後、 70。じで 1 5分乾燥してインク受容層を形成した。 このインク受容層の特性を次の方法で 調べた。 ただし、 ヘイズについては、 厚さ 1 25 μπιのポリエチレンテレフタレ 一トフイルム (帝人社製、 商品名 OL) 上に上記と同様にしてインク受容層を形 成させたものを用いて測定した。
塗工量:塗工後のフィルムを 1 0 cm口に切り出して、 インク受容層をポリエ チレンテレフタレ一トフイルムから剥ぎ取り重量差によって調べた。 例 1〜5の いずれもが、 塗工量 5. O g/m2であった。
シアン色濃度:耐水性試験のため、 次の方法でシアン色濃度を測定した。 イン ク受容層を形成したポリエチレンテレフタレートフイルムを 3 c mX 5 c mに切 り出して、 2分間シアンインク中に浸漬した後、 流水で 2分間洗浄して定着して いないインクを除去し、 70°Cで 1 5分間乾燥した。 次に、 定着しているシアン インクの色濃度をマクベス社製の反射色濃度計 RD— 9 1 8を用いて測定した。 なお、 シアンインクとしては、 セイコーエブソン社製カラープリンタ M J— 50 00C用のカラ一^ f ンクカートリッジ M J I C 2 Cからシアンィンクを取り出し て用いた。
ヘイズ:スガ試験機社製のヘイズコンピュータ HGM— 3 D Pを用いて測定し、 基材であるポリエチレンテレフタレ—トフイルムのヘイズ値 0. 7を差し引いて 塗工層のヘイズとした。
光沢度: 日本電色工業社製のハンディ一光沢計 PG— 1を用いて、 60° 鏡面 光沢度を測定した。
耐擦傷性:特開平 7— 76 1 62号公報に開示されている方法、 すなわちスガ 試験機社製の摩擦試験機を用いて、 インク受容層の表面に 200 gの荷重で木綿 のガーゼを押し付けて 100回摩擦試験を行った後、 表面を目視で観察し、 傷が 無い場合を耐擦傷性が良好と判断して〇とし、 傷が生じた場合を Xとした。 表 3
Figure imgf000020_0001
[例 6 ]
容量 2000 c m3のガラス製反応器に、 一次粒子の平均粒子径 26 nmの球 状シリカ一次粒子が分散したシリカゾル (S 〖〇2濃度48. 4重量%、 N a 20 濃度 0. 5 1重量%、 触媒化成工業社製、 商品名カタロイ ド S I— 50) 1 65. 3 gおよびイオン交換水 1457 gを入れ、 80:Cに昇温した。 8 CTCになった ところで、 撹拌しながら、 ボリ塩化アルミニウム水溶液 (アルミニウム濃度が A 1203に換算して 23. 6重量。/。、 C 1濃度 8. 1重量。/。、 塩基度 84%、 多木 化学社製、 商品名タキバイン # 1 500) 63. 8 gを、 約 1 0分間かけて徐々 に添加した。 添加終了後、 さらに 1時間、 撹拌しながら 80でに保持して、 シリ 力ゾルと酸性アルミニゥム塩とを混合した溶液を得た:
次いで、 この混合溶液を 95 :Cに昇温し、 95でになったところで、 48%N a OH溶液 1 1. 0 gを添加して pHを 8. 0に調整した後、撹拌しながら 95 °C で 24時間保って熟成することにより、 凝集化処理を行った。
次いで、解膠処理に先立って、凝集化処理後の反応液を限外濾過装置を用いて、 イオン交換水を添加しながら液の量を一定に保ちつつ、 濾液の電導度が 50 μ S / c m以下に低下するまで限外濾過することにより精製した。
次レ、で、この精製した溶液に 1 0 %濃度のァミ ド硫酸溶液を添加して p Hを 4. 5とし、 さらに超音波分散機を用いて解膠処理を行ってシリカアルミナ複合ゾル を得た。
このゾルについて、 後述の方法により各種の評価を行った (他の例においても 同様) : このゾルは、 凝集粒子の平均粒子径が 233 nmに凝集しており、 凝集 粒子が正に帯電していた: このゾルを乾燥して得られるキセロゲルは、 以下の凝 集化処理を行わなかった例 9のゾルと比較して大きな細孔容積と大きな平均細孔 半径を有していた。インク受容層の特性としては、 シアンインクの色濃度が高く、 透明性、 光沢度、 耐擦傷性のすべてにおいて優れた性能を有していた。
[例 7 ]
容量 2000 c m3ののガラス製反応器に、 一次粒子の平均粒子径 26 nmの 球状シリ力一次粒子が分散したシリカゾル ( S i〇 2濃度 48. 4重量0ん、 a 2 O濃度 0. 5 1重量%、 触媒化成工業社製、 商品名カタロイ ド S I— 50 ) 57. 1 gおよびイオン交換水 1 825 gを入れ、 80SCに昇温した。 80°Cになった ところで、 撹拌しながら、 塩化アルミニウム水溶液 (アルミニウム濃度が A 1 23に換算して 1 1. 5重量。/。) 1 1 8. 3 gを、 約 1 0分間かけて徐々に添加 した。 添加終了後、 さらに 1時間、 撹拌しながら 8 (TCに保持して、 シリカゾノレ と酸性アルミニゥム塩とを混合した溶液を得た。
次いで、 この混合溶液を 95でに昇温し、 95eCになったところで、 48%N a OH溶液 66. 0 §を添加して 1"1を8. 0に調整した後、撹拌しながら 95 °C で 24時間保って熟成することにより、 凝集化処理を行った。
その後、 例 6と同様にして精製と解膠を行い、 凝集粒子の平均粒子径 2 1 6 n mのシリカアルミナ複合ゾルを得た。このゾルを乾燥して得られるキセ口ゲルは、 以下の凝集化処理を行わなかった例 1 0のゾルと比較して、 非常に大きな細孔容 積と大きな平均細孔半径を有していた。 また、 シアンインクの色濃度も高かった。
[例 8]
容量 2000 c ηαのガラス製反応器に、 一次粒子の平均粒子径 80 n mの球 状シリカー次粒子が分散したシリカゾル ( S i〇 2濃度 40. 4重量。 /。、 N a 2〇 濃度 0. 38重量%、 触媒化成工業社製、 商品名カタロイ ド S I— 80 P ) 1 9 8. 0 gおよびイオン交換水 1425 gを入れ、 80¾に昇温した: 80:Cにな つたところで、 撹拌しながら、 ボリ塩化アルミニウム水溶液 (アルミニウム濃度 が A 12:iに換算して 23. 6重量。/。、 C 1濃度 8. 1重量%、 塩基度 84%、 多木化学社製、 商品名タキバイン # 1 500) 63. 0 gを、 約 1 0分間かけて 徐々に添加した。 添加終了後、 さらに 1時間、 撹拌しながら 80°Cに保持して、 99/6435
20 シリカゾルと酸性アルミニゥム塩とを混合した溶液を得た。
次いで、 この混合溶液を 95 Cに昇温し、 95eCになったところで、 48%N a OH溶液 1 3. 6 §を添加して 11を9. 0に調整した後、撹拌しながら 95 :C で 24時間保って熟成することにより、 凝集化処理を行った。
その後、 例 6と同様にして精製と解膠を行い、 凝集粒子の平均粒子径 1 75 n mのシリカアルミナ複合ゾルを得た。このゾルを乾燥して得られるキセ口ゲルは、 以下の凝集化処理を行わなかった例 1 1のゾルと比較して、 大きな細孔容積と非 常に大きな平均細孔半径を有していた。
[例 9]
例 6の凝集化処理を行わなかった以外は、 例 6と同様の方法で、 凝集粒子の平 均粒子径 21 2 mのシリカアルミナ複合ゾルを得た- [例 1 0]
例 7の凝集化処理を行わなかった以外は、 例 7と同様の方法で、 凝集粒子の平 均粒子径 21 3 mのシリカアルミナ複合ゾルを得た。
[例 1 1 ]
例 8の凝集化処理を行わなかった以外は、 例 8と同様の方法で、 凝集粒子の平 均粒子径 1 80 mのシリカアルミナ複合ゾルを得た。
[ゾルの物性測定]
以下において、 例 6〜1 1のゾルの物性を例 1と同様にして測定した結果を表 4に示す。
表 4
例 ゾル濃度 pH ゼータ電位 凝集粒子の
平均粒子径
(重量%) (mV) (n m)
6 1 1. 7 4. 5 + 47 233
7 1 5. 4 4. 5 + 54 2 1 6
8 14. 8 4. 5 + 48 1 75
9 10. 5 4. 5 十 45 2 1 2
1 0 14. 2 4. 5 + 56 2 1 3
1 1 1 3. 6 4. 5 + 42 1 80 [キセ口ゲルの物性測定]
例 6〜 1 1のゾルを、 140 °Cで恒量になるまで乾燥して、 キセロゲルの粉末 を得た。 この粉末について例 1と同様にして、 比表面積、 細孔容積、 平均細孔半 径を測定した結果を表 5に示す。
表 5
Figure imgf000023_0001
[インク受容層の特性評価]
例 6〜1 1で得られたゾルを用いて、 例 ] とポリエチレンテレフタレ一トフィ ルム上にインク受容層を形成した- 同様に、 インク受容層の塗工量を調べたとこ ろ、 例 6〜 1 1のいずれもが、 塗工量 5. O g/m2であった。 これらのインク 受容層について、 例 1と同様に、 シアン色濃度、 ヘイズ、 光沢度、 耐擦傷性を測 定した結果を表 6に示す。
表 6
例 シアン へィズ 光沢度 耐擦傷性
色濃度 (%) (%)
6 1. 5 29 〇
7 1. 2 1 2 8 〇
8 0. 3 23 26 〇
9 1. 3 8 33 〇
10 0. 3 14 1 8 〇
1 1 0. 3 47 7 〇 [例 1 2 ]
まず、 アルミナゾル (ベーマイ ト粒子からなるゾル) を次のようにして合成し た。 容量 2000 cm3のガラス製反応器に、 塩化アルミニウム水溶液 (アルミ ニゥム濃度が A 1203に換算して 1 1 · 5重量0 /。、 。 1濃度24. 0重量0 /0) を 3 10 gと水 1 341 gを入れ、撹拌しながら、アルミン酸ナトリゥム水溶液(ァ ルミニゥム濃度が A 1203に換算して 20. 0重量。/。、 ナトリウム濃度が N a 2 Oに換算して 1 9. 0重量0 /0) 237 gを 60分かけて添加した。 次いで、 この 反応液を 95。Cに昇温し、 再び上記と同じアルミン酸ナトリウム水溶液を 1 1 2 g添加し反応液の pHを 9 (95°C) とした。 この反応液を 95 に保持したま ま 2時間撹拌して熟成し、 アルミナ水和物を得た。
このアルミナ水和物から、限外濾過法によって副生している N a C 1を除去し、 精製した後、 酢酸 3. 1 g添加して解膠し濃縮して濃度を 1 5. 8重量%とした c その後さらに超音波分散して凝集粒子径 65 nmのアルミナゾルを得た。 このァ ノレミナゾルは pH4. 5で、 そのまま乾燥させて得られたキセロゲルの比表面積 は 279m2Zgであった。
次いで、 2000 c m 3のガラス製反応器に、 触媒化成工業社製のシリカゾル (S i〇2濃度 40. 8重量%、 N a 2〇濃度 0. 44重量%、 一次粒子径 43 n m、 商品名カタロイ ド S I— 45 P) を 49 gと水 1 55 1 gを入れ、 80CCに 昇温した。 80°Cになったところで、 撹拌しながら、 先のアルミナゾル (濃度 1 5. 8重量%) 1 8 1 gを約 1 0分間かけて徐々に添加した。アルミナ固形分(ベ 一マイ ト換算) の添加量は、 S i〇2換算で 20 gのシリカゾルに対して 29 g であった。 添加終了後 1時間、 撹拌しながら 80°Cに保持した。
このシリカゾルとアルミナゾルの混合物は、 凝集粒子径が 333 nmに凝集し ていた。 これに酢酸を添加して、 pH4. 2とした後、 濃縮して濃度を 1 0. 0 重量%とした。 さらにその後、 超音波分散装置を用いて解膠処理し、 凝集粒子径 189 nmに調整し、 シリカアルミナ複合ゾルを得た。 このシリカアルミナ複合 ゾルのゼータ電位は + 52mVであり、 すなわち正に帯電していた。
[例 1 3 (比較例) ]
例 1 2で原料として用レ、た触媒化成工業社製のシリ力ゾル (商品名カタロイ ド S I—4 5 P ) を比較のために同様に評価した。
[例 1 4 (比較例)' ]
例 1 2で原料として用いたアルミナゾルを比較のために同様に評価した。
[ゾルの物性測定]
以下において、 例 1 2〜 1 4ゾルの物性を例 1と同様にして測定した結果を表 7に示す。 例 1 3のシリカゾルのゼータ電位が負であるのに対し、 例 1 2のシリ カァノレミナ複合ゾルは、例 1 4のァノレミナゾルと同様にゼータ電位が正であった。 表 7
Figure imgf000025_0001
[キセ口ゲルの物性測定]
例 1 2〜 1 4のゾルを、 1 4 0 eCで恒量になるまで乾燥して、 キセロゲルの粉 末を得た。 この粉末について例 1と同様にして、 比表面積、 細孔容積、 平均細孔 半径を測定した結果を表 8に示す。 例 1 2のシリカアルミナ複合ゾルは、 細孔容 積および細孔半径が、 例 1 3のシリカゾルおよび例 1 4のアルミナゾルより大き く、 かつ、 比表面積も充分に大きな値であった。
表 8
Figure imgf000025_0002
受容層の特性評価]
例 1 2〜 1 4で得られたゾルを用いて、 例 1とポリエチレンテレフタレートフ イルム上にインク受容層を形成した。 同様に、 インク受容層の塗工量を調べたと ころ、 例 1 2〜 1 4のいずれも力;、 塗工量 5 . O g /m 2であった: これらのィ ンク受容層について、 例 1と同様に、 シアン色濃度、 ヘイズ、 光沢度、 耐擦傷性 を測定した結果を表 9に示す。
例 1 2のシリカアルミナ複合ゾルから得られたィンク受容層は、耐水性が高く、 かつ耐擦傷性もあった。 これに対し、 例 1 3のシリカゾルから得れらたインク受 容層は、 耐水性が実質上なかった。 また、 例 1 4のアルミナゾルから得れらたィ ンク受容層は、 耐水性は比較的あるものの、 耐擦傷性がなかった。
表 6
Figure imgf000026_0001
産業上の利用可能性
本発明のシリカアルミナ複合ゾルは、 溶媒を除去して得られるキセ口ゲルが、 インクの吸収性を有し、 かつ、 染料の定着性のある多孔質層を形成する。
本発明のシリカアルミナ複合ゾルを用いることにより、インクの吸収性を有し、 かつ、 色素の定着性のある多孔質層を形成することができる。 このゾルを適宜バ インダ一と混合して塗工液とし、 これを基材上に塗工して乾燥させると、 インク 吸収性、 透明性、 耐水性、 光沢性、 耐擦傷性の全てにおいて良好なインク受容層 が形成できる。 このようにして得られるインク受容層は、 インクジェットプリン タ用の記録媒体として好適である-

Claims

請求の範囲
1. シリカとアルミナとを含む凝集粒子が水性媒体中に分散したコロイ ド溶 液であって、 シリカは一次粒子が球状で一次粒子の平均粒子径が 2〜 200 nm であり、 凝集粒子の平均粒子径がシリカー次粒子の平均粒子径の 2倍以上かつ 1 O O O nm以下であり、 凝集粒子のゼ一タ電位が + 1 OmV以上であり、 溶液の pHが 3〜9であるシリカアルミナ複合ゾル。
2. 複合ゾルから溶媒を除去して得られるキセロゲルにおいて、 比表面積が 50m2Zg以上、 平均細孔半径が 5 nm以上、 かつ、 細孔半径 1〜 1 00 n m についての全細孔容積が 0. 35 cm3/g以上、 である請求項 1記載のシリカ アルミナ複合ゾル。
3. S i、 A l、 0、 H以外の元素の合計量が、 S iおよび A 1の原子数の 合計量に対し、 原子数基準で 1 0モル%以下である請求項 1または 2記載のシリ 力アルミナ複合ゾル。
4. 複合ゾルの固形分 10重量部に対してポリビュルアルコール 1重量部を 含む総固形分濃度 1 0重量0 /。の塗工液を、 ポリエチレンテレフタレートフィルム に、 乾燥後の塗工量が 4. 5〜5. 5 gZm2になるように塗工してインク受容 層を形成したとき、 このインク受容層をシアンィンクに浸して水洗した後でのィ ンク受容層の色濃度が 1. 0以上であり、 かつ、 前記インク受容層のヘイズ値が 1 0%以下で、 前記インク受容層の J I S Z 8741に規定される 60° 光沢 度が 20%以上である請求項 1、 2または 3記載のシリカアルミナ複合ゾル。
5. 一次粒子が球状で一次粒子の平均粒子径が 2〜200 nmのシリ力粒子 を含むシリカゾルに、 水に溶解したとき液性が酸性を示すアルミニウム塩を徐々 に添加することにより、 シリカとアルミナとを含む凝集粒子が水性媒体中に分散 したコロイ ド溶液であって、 凝集粒子の平均粒子径がシリカ一次粒子の平均粒子 径の 2倍以上かつ 1 000 nm以下であり、 凝集粒子のゼータ電位が + 1 OmV 以上であるコ口ィ ド溶液を形成するシリカアルミナ複合ゾルの製造方法。
6. シリカゾルに、 水に溶解したとき液性が酸性を示すアルミニウム塩とは 別の電解質をシリ力の重量に対して 1〜 70重量%添加する請求項 5記載のシリ 力アルミナ複合ゾルの製造方法:
7. シリカゾルと、 水に溶解したとき液性が酸性を示すアルミニウム塩とを 混合した溶液を、 pH7〜l 0:こて熟成することにより凝集化処理し、 次いで解 膠処理する請求項 6または 7記載のシリカアルミナ複合ゾルの製造方法。
8. 水に溶解したとき液性が酸性を示すアルミニウム塩の溶液に、 シリカゾ ルを徐々に添加して得られる混合物を、 pH7〜l 0にて熟成することにより凝 集化処理し、 次いで解膠処理するシリカアル物ミナ複合ゾルの製造方法。
9. シリカゾルと、 乾燥して得られるキセロゲルが比表面積 1 50m2Zg 以上のアルミナゾルとを混合して、 シリカとアルミナとを含む凝集粒子を形成さ せた後、 解膠処理によって、 凝集粒子の平均粒子径を 30〜 1 000 nmに調整 するシリカアルミナ複合ゾルの製造方法。
1 0. 請求項 1、 2、 3または 4記載のシリカアルミナ複合ゾルを、 基材に 塗布乾燥して得られる多孔質層を有する記録媒体。
PCT/JP1999/003112 1998-06-12 1999-06-10 Sol composite silice-alumine, ses procedes de production, et support d'impression WO1999064354A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/463,965 US6623820B1 (en) 1998-06-12 1999-06-10 Silica-alumina composite sol, processes for producing the same, and recording medium
AT99925295T ATE447542T1 (de) 1998-06-12 1999-06-10 Siliciumdioxid-aluminiumoxid-verbund-sol, verfahren zu dessen herstellung, und aufnahme- medium
DE69941619T DE69941619D1 (de) 1998-06-12 1999-06-10 Siliciumdioxid-aluminiumoxid-verbund-sol, verfahren zu dessen herstellung, und aufnahme-medium
JP55654999A JP4197747B2 (ja) 1998-06-12 1999-06-10 シリカアルミナ複合ゾル,その製造方法および記録媒体
EP99925295A EP1010666B1 (en) 1998-06-12 1999-06-10 Silica-alumina composite sol, processes for producing the same, and recording medium

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10/165526 1998-06-12
JP16552698 1998-06-12
JP24071498 1998-08-26
JP10/240714 1998-08-26

Publications (1)

Publication Number Publication Date
WO1999064354A1 true WO1999064354A1 (fr) 1999-12-16

Family

ID=26490231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/003112 WO1999064354A1 (fr) 1998-06-12 1999-06-10 Sol composite silice-alumine, ses procedes de production, et support d'impression

Country Status (6)

Country Link
US (1) US6623820B1 (ja)
EP (1) EP1010666B1 (ja)
JP (1) JP4197747B2 (ja)
AT (1) ATE447542T1 (ja)
DE (1) DE69941619D1 (ja)
WO (1) WO1999064354A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1112962A2 (en) 1999-12-27 2001-07-04 Asahi Glass Company Ltd. Recording medium excellent in ink absorptivity and process for its production, and process for producing silica-alumina composite sol
JP2001213617A (ja) * 2000-01-28 2001-08-07 Jsr Corp 疎水化コロイダルシリカの製造方法
JP2002356321A (ja) * 2001-06-01 2002-12-13 Asahi Glass Co Ltd シリカアルミナ複合ゾル、その製造方法およびインクジェット記録媒体
EP1266765A1 (en) 2001-06-15 2002-12-18 Asahi Glass Company Ltd. Ink jet recording medium and method for its production
JP2006508882A (ja) * 2002-12-03 2006-03-16 デグサ アクチエンゲゼルシャフト 分散液、塗工液および吸収性媒体
WO2008056668A1 (fr) * 2006-11-08 2008-05-15 Nissan Chemical Industries, Ltd. Sol composite silice-alumine et son procédé de production
JP2011016252A (ja) * 2009-07-07 2011-01-27 Canon Inc 記録媒体
JP2014210677A (ja) * 2013-04-18 2014-11-13 多木化学株式会社 シリカ−アルミニウム含有コロイド系水溶液
JP2015063451A (ja) * 2013-08-28 2015-04-09 日揮触媒化成株式会社 金属酸化物粒子およびその製造方法ならびに用途
CN117819580A (zh) * 2024-03-05 2024-04-05 湖南荣岚智能科技有限公司 耐高温氧化铝气凝胶及其制备方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU4255200A (en) * 1999-08-10 2001-02-15 Felix Schoeller Technical Papers, Inc. High gloss ink-jet recording material
JP2002347337A (ja) 2001-03-21 2002-12-04 Asahi Glass Co Ltd インクジェット記録用媒体
EP1287886A1 (de) * 2001-08-09 2003-03-05 OMG AG & Co. KG Katalysator für die Reinigung der Abgase eines Verbrennungsmotors
DE10203047A1 (de) * 2002-01-26 2003-08-07 Degussa Kationische Mischoxid-Dispersion, Streichfarbe und tintenaufnehmendes Medium
US20050266180A1 (en) * 2004-05-26 2005-12-01 Yubai Bi Ink-jet recording medium for dye-or pigment-based ink-jet inks
US7291386B2 (en) * 2004-08-26 2007-11-06 3M Innovative Properties Company Antiglare coating and articles
US7294405B2 (en) 2004-08-26 2007-11-13 3M Innovative Properties Company Antiglare coating and articles
US7651590B2 (en) * 2006-03-03 2010-01-26 Birla Research Institute For Applied Sciences Flame retardant and glow resistant zinc free cellulose product
MY181241A (en) * 2014-06-30 2020-12-21 Nippon Sheet Glass Co Ltd Low-reflection coating, low-reflection coated substrate, and photoelectric conversion device
RU2610593C2 (ru) * 2015-08-07 2017-02-14 Эдуард Жорисович Мавлиханов Способ получения гранулированного диоксида кремния
WO2019069412A1 (ja) * 2017-10-04 2019-04-11 日立化成株式会社 塗液、塗膜の製造方法及び塗膜
CN110004521B (zh) * 2019-02-28 2020-04-21 山东大学 一种可纺性硅铝溶胶的制备方法
CN112919826B (zh) * 2021-03-04 2022-03-04 常州大学 一种高透光率双疏减反射膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1344288A (en) * 1971-05-14 1974-01-16 Du Pont Aluminium-borate coated silica sols
JPH0710522A (ja) * 1993-06-17 1995-01-13 Catalysts & Chem Ind Co Ltd 複合酸化物ゾルの製造方法
JPH1086509A (ja) * 1996-09-19 1998-04-07 Oji Paper Co Ltd インクジェット記録体
JPH10152315A (ja) * 1996-11-21 1998-06-09 Oji Yuka Synthetic Paper Co Ltd 無機微細粉末およびその利用

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES369370A1 (es) * 1968-07-18 1971-06-16 Du Pont Mejoras introducidas en un procedimiento para la prepara- cion de un sol de silice cargado positivamente.
US5196177A (en) * 1990-01-17 1993-03-23 Nissan Chemical Industries, Ltd. Production of stable aqueous silica sol
EP0605840A3 (en) * 1992-12-25 1994-12-14 Mitsubishi Paper Mills Ltd Inkjet recording sheet.
US5576088A (en) * 1994-05-19 1996-11-19 Mitsubishi Paper Mills Limited Ink jet recording sheet and process for its production
JP2877740B2 (ja) * 1994-10-27 1999-03-31 キヤノン株式会社 被記録媒体及びこれを用いた画像形成方法、印字物
US6000794A (en) * 1994-10-27 1999-12-14 Canon Kabushiki Kaisha Image forming method
IT1275412B (it) * 1995-06-01 1997-08-05 Enichem Spa Procedimento per la preparazione di ossidi misti silice-allumina porosi in forma sferica

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1344288A (en) * 1971-05-14 1974-01-16 Du Pont Aluminium-borate coated silica sols
JPH0710522A (ja) * 1993-06-17 1995-01-13 Catalysts & Chem Ind Co Ltd 複合酸化物ゾルの製造方法
JPH1086509A (ja) * 1996-09-19 1998-04-07 Oji Paper Co Ltd インクジェット記録体
JPH10152315A (ja) * 1996-11-21 1998-06-09 Oji Yuka Synthetic Paper Co Ltd 無機微細粉末およびその利用

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6630213B2 (en) 1999-12-27 2003-10-07 Asahi Glass Company, Limited Recording medium excellent in ink absorptivity and process for its production, and process for producing silica-alumina composite sol
EP1112962A3 (en) * 1999-12-27 2004-01-14 Asahi Glass Company Ltd. Recording medium excellent in ink absorptivity and process for its production, and process for producing silica-alumina composite sol
EP1112962A2 (en) 1999-12-27 2001-07-04 Asahi Glass Company Ltd. Recording medium excellent in ink absorptivity and process for its production, and process for producing silica-alumina composite sol
JP2001213617A (ja) * 2000-01-28 2001-08-07 Jsr Corp 疎水化コロイダルシリカの製造方法
JP4593011B2 (ja) * 2001-06-01 2010-12-08 三菱製紙株式会社 シリカアルミナ複合ゾル、その製造方法およびインクジェット記録媒体
JP2002356321A (ja) * 2001-06-01 2002-12-13 Asahi Glass Co Ltd シリカアルミナ複合ゾル、その製造方法およびインクジェット記録媒体
EP1266765A1 (en) 2001-06-15 2002-12-18 Asahi Glass Company Ltd. Ink jet recording medium and method for its production
JP2006508882A (ja) * 2002-12-03 2006-03-16 デグサ アクチエンゲゼルシャフト 分散液、塗工液および吸収性媒体
WO2008056668A1 (fr) * 2006-11-08 2008-05-15 Nissan Chemical Industries, Ltd. Sol composite silice-alumine et son procédé de production
JP5141908B2 (ja) * 2006-11-08 2013-02-13 日産化学工業株式会社 シリカアルミナ複合ゾル及びその製造方法
JP2011016252A (ja) * 2009-07-07 2011-01-27 Canon Inc 記録媒体
JP2014210677A (ja) * 2013-04-18 2014-11-13 多木化学株式会社 シリカ−アルミニウム含有コロイド系水溶液
JP2015063451A (ja) * 2013-08-28 2015-04-09 日揮触媒化成株式会社 金属酸化物粒子およびその製造方法ならびに用途
CN117819580A (zh) * 2024-03-05 2024-04-05 湖南荣岚智能科技有限公司 耐高温氧化铝气凝胶及其制备方法
CN117819580B (zh) * 2024-03-05 2024-05-14 湖南荣岚智能科技有限公司 耐高温氧化铝气凝胶及其制备方法

Also Published As

Publication number Publication date
ATE447542T1 (de) 2009-11-15
DE69941619D1 (de) 2009-12-17
EP1010666A1 (en) 2000-06-21
US6623820B1 (en) 2003-09-23
EP1010666B1 (en) 2009-11-04
EP1010666A4 (en) 2003-01-02
JP4197747B2 (ja) 2008-12-17

Similar Documents

Publication Publication Date Title
WO1999064354A1 (fr) Sol composite silice-alumine, ses procedes de production, et support d&#39;impression
JP4328935B2 (ja) 数珠状のシリカゾル、その製法及びインクジェット記録媒体
JP4305627B2 (ja) 複合ゾル、その製造法及びインクジェット記録媒体
JP4101178B2 (ja) 無機多孔性微粒子
EP1243436B1 (en) Ink jet recording medium
JP2007099586A (ja) シリカ微粒子分散液の製造方法、シリカ微粒子分散液、及びインクジェット記録シート
US6630213B2 (en) Recording medium excellent in ink absorptivity and process for its production, and process for producing silica-alumina composite sol
JP4125906B2 (ja) シリカアルミナ複合ゾル、その製造方法及びインクジェット記録媒体
JPH11322325A (ja) シリカ複合粒子及びその製造方法並びにインクジェット記録シート
WO2001016026A1 (fr) Particules d&#39;hydrate d&#39;alumine, sol en dispersion de particules d&#39;hydrate d&#39;alumine et revetement liquide permettant de former une couche d&#39;encrage et substrat avec couche receptrice d&#39;encre
JP4326096B2 (ja) シリカアルミナ複合ゾルの製造方法
JP4298894B2 (ja) インクジェット記録用媒体
JP4593011B2 (ja) シリカアルミナ複合ゾル、その製造方法およびインクジェット記録媒体
JP4387558B2 (ja) 記録媒体
JP2005255457A (ja) シリカ微粒子分散液及びその製造方法
JPWO2007007751A1 (ja) 表面処理シリカゾル、その製造方法及びインクジェット記録媒体
JP4085883B2 (ja) インクジェット記録シート
JP2005154235A (ja) シリカ微粒子分散液及びその製造方法
JP2000218924A (ja) 記録シートおよびその製造方法
JP3854879B2 (ja) カチオン性シリカ微粒子凝集体分散液の製造方法及び記録用シート
JP2000071609A (ja) 被記録媒体、この被記録媒体を用いた画像形成方法、この被記録媒体の製造方法、アルミナ分散液およびアルミナ分散液の製造方法
JP2005262797A (ja) インクジェット記録材料
JP2002011945A (ja) インク吸収性に優れた記録媒体およびその製造方法
JP3513454B2 (ja) インクジェット用記録媒体の製造方法
JP2003291488A (ja) インク吸収性に優れたインクジェット記録媒体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09463965

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999925295

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1999925295

Country of ref document: EP