WO1999057243A1 - Liqueurs de culture microbienne contenant des micro-organismes de caracteristiques differentes vivant en symbiose et des metabolites de ceux-ci, vecteurs et adsorbants contenant les composants actifs de ces liqueurs de culture et leur utilisation - Google Patents

Liqueurs de culture microbienne contenant des micro-organismes de caracteristiques differentes vivant en symbiose et des metabolites de ceux-ci, vecteurs et adsorbants contenant les composants actifs de ces liqueurs de culture et leur utilisation Download PDF

Info

Publication number
WO1999057243A1
WO1999057243A1 PCT/JP1999/002346 JP9902346W WO9957243A1 WO 1999057243 A1 WO1999057243 A1 WO 1999057243A1 JP 9902346 W JP9902346 W JP 9902346W WO 9957243 A1 WO9957243 A1 WO 9957243A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
treated
water
treating
culture solution
Prior art date
Application number
PCT/JP1999/002346
Other languages
English (en)
French (fr)
Inventor
Keijiro Nakamura
Original Assignee
Keijiro Nakamura
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keijiro Nakamura filed Critical Keijiro Nakamura
Priority to AU36285/99A priority Critical patent/AU771630B2/en
Priority to EP99918307A priority patent/EP1077252A1/en
Priority to CA002331966A priority patent/CA2331966A1/en
Priority to US09/673,655 priority patent/US6649397B1/en
Publication of WO1999057243A1 publication Critical patent/WO1999057243A1/ja
Priority to US10/601,668 priority patent/US20050101003A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P39/00Processes involving microorganisms of different genera in the same process, simultaneously
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/30Microbial fungi; Substances produced thereby or obtained therefrom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/01Deodorant compositions
    • A61L9/013Deodorant compositions containing animal or plant extracts, or vegetable material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F11/00Other organic fertilisers
    • C05F11/08Organic fertilisers containing added bacterial cultures, mycelia or the like
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/10Addition or removal of substances other than water or air to or from the material during the treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F17/00Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation
    • C05F17/20Preparation of fertilisers characterised by biological or biochemical treatment steps, e.g. composting or fermentation using specific microorganisms or substances, e.g. enzymes, for activating or stimulating the treatment
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05FORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C, e.g. FERTILISERS FROM WASTE OR REFUSE
    • C05F3/00Fertilisers from human or animal excrements, e.g. manure
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/12Halogens or halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/20Nature of the water, waste water, sewage or sludge to be treated from animal husbandry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/40Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture or use of photosensitive materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/20Fertilizers of biological origin, e.g. guano or fertilizers made from animal corpses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/145Feedstock the feedstock being materials of biological origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2
    • Y02P60/22Methane [CH4], e.g. from rice paddies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/40Bio-organic fraction processing; Production of fertilisers from the organic fraction of waste or refuse

Definitions

  • the present invention relates to a microorganism culture solution, a method for producing the same, and a use thereof. More specifically, a microorganism culture solution in which anaerobic microorganisms and aerobic microorganisms originally incompatible with each other coexist and contain an enzyme as a metabolite thereof, a method for producing the same, and an active ingredient in the culture solution
  • the present invention relates to a carrier and an adsorbent material containing, and their use in the agricultural and environmental fields.
  • Japanese Examined Patent Publication No. 4-4-2355 discloses that rhizobia and azotopactor or photosynthetic bacteria and sulfur bacteria are added to an aqueous solution of plant ash with sucrose or maltose and inoculated into a sterilized medium.
  • a mixture of cultures of nitrifying bacteria, yeast, thermophiles, Bacillus subtilis, and Pseudomonas bacteria is used separately to promote the maturation of compost, improve soil, increase fertilizer effectiveness, and reduce residual pesticides. It discloses the ability to detoxify and control diseased microorganisms.
  • horticulture such as bonsai and gardening is now widespread, and plants such as ornamental plants, edible plants and herbs are cultivated not only by plant growers but also by ordinary households. ing.
  • a solid medium for plant cultivation is usually placed in a so-called container, such as plantan or Ueki, and plant seeds or bulbs are planted or plant seedlings are transplanted to grow plants. It is common to do it.
  • the solid medium used to grow such plants contains a large number of pests, eggs, and molds that inhibit plant growth.
  • a solid plant culture medium such as soil by pathogens such as eggs of various insects, insects themselves, white silkworm, powdery mildew, root-knot disease, mottled scab, scab, rust, etc.
  • pathogens such as eggs of various insects, insects themselves, white silkworm, powdery mildew, root-knot disease, mottled scab, scab, rust, etc.
  • harmful substances such as pesticides may be mixed.
  • eggs are laid on plants or medium cultivated by insects and the like, which may propagate and adversely affect the plants.
  • Japanese Patent Publication No. 4-422355 describes that a mixed solution of various microorganisms is sprayed on a solid medium for plant cultivation such as soil or the plant itself.
  • rhizobia and azotobacter or photosynthetic bacteria and sulfur bacteria are added to an aqueous solution of plant ash with sucrose or maltose and a growth promoting solution of the microorganism according to the present invention, and inoculated into a sterilized medium at 25 ° C.
  • a suitable mixture of microbial mixed cultures obtained by culturing for a suitable period of time before and after, and separately preparing cultures of nitrifying bacteria, yeast, thermophiles, Bacillus subtilis, and Pseudomonas in a microorganism growth promoting solution according to the present invention. It is said to have the ability to promote maturity of compost, improve soil, increase fertilizer effectiveness, detoxify pesticide residues, and control diseased microorganisms.
  • these bacterial groups even if these bacterial groups are used, it has a disadvantage that it takes a long time to exert an effect after application, and the effect lasts for a short time. In addition, these fungi could not be applied to plants grown in containers.
  • EM bacteria an effective bacterium group that is considered to coexist with both anaerobic bacteria and aerobic bacteria
  • EM bacteria especially bacteria mainly composed of lactic acid bacteria, soil
  • improved methods and insecticides have been developed, the synergistic effect of the EM bacteria group cannot be expected because only the aerobic bacteria group and the breathable bacteria group are substantially present.
  • EM bacteria were used, fermentation materials called EM blur had to be used, and the range of use was extremely limited.
  • Sestone is a general term for particles suspended in water, and refers to organisms from swimming organisms and non-organisms from soil and fine particles. These sestons often aggregate to form clumps.
  • Organic seston can be a habitat for micro-organisms, but it is desirable to remove it because it deteriorates the transparency of water and causes rot such as coconut due to decay of organic seston.
  • inorganic sestone contained in wastewater from chemical factories is a so-called lump of particles containing harmful substances, and it is desirable to remove it.
  • the target waters include inorganic wastewater such as sewage treatment wastewater, food processing wastewater, human waste treatment wastewater such as swine raising and livestock production, organic wastewater such as eutrophic lake water, and wastewater from chemical factories. Due to the wide variety of wastewaters, there are a wide variety of sestons, and a single flocculant may not be able to handle them.
  • coconut was generated in the eutrophic hydrosphere, and it was desired to remove it.
  • it has been desired to remove oil that has spilled into sea areas in the event of accidents involving petroleum tankers, etc., and there is a demand to develop effective means for these.
  • Examples of the wastewater treatment method include, for example, JP-A-55-86559, JP-A-60-137394, Kaihei 6-71293, JP-A-9 Japanese Patent Publication No. 206678/1999 describes a method of treating wastewater separately with anaerobic microorganisms and aerobic microorganisms. These methods have limited treatment targets, and it has been difficult to say that they are effective and sufficient. At present, no treatment method has been developed that can centrally cope with contaminations of different origins.
  • organic halogen compounds including chlorine and bromine are specified as specified chemical substances or specified chemical substances, and many of them are substances causing environmental problems.
  • Typical examples thereof include dioxins, polychlorinated biphenyls, and benzene-substituted aromatic organic compounds such as chlorobenzene, tetrachloroethylene, trichloroethylene, dichloromethane, carbon tetrachloride, 2-dichloroethylene, 1,1-dichloroethylene, cis_1,2-dichloroethylene, 1,1,1 trichloroethane, 1,1,2-trichloroethane, 1,3-dichloropropene And other aliphatic organic halogen compounds.
  • an organochlorine compound which is characterized in that contaminants of an organochlorine compound are dechlorinated in a reducing atmosphere and under neutral conditions in the presence of at least one kind of heterotrophic anaerobic microorganism and metallic iron.
  • a method for purifying contaminants is described in Japanese Patent Application Laid-Open No. 10-216694, and heterotrophic anaerobic microorganisms present in soil include methanogens (e.g., Me thanosarcina, Me thanothrix, Me thanobacterium).
  • Me thanobrevibacter genus Me thanobrevibacter genus, Sulfate reducing bacteria (for example, Desulfovibrio, DesI fotomacuIum, Desulfobacterium, Desiffobacter, Desulfococcus), acid-producing bacteria (for example, CI ostridium) Acetivibrio, Bacteroides, Rum inococcus, facultative anaerobic microbes (eg, Baciius, Lact ObacciIlus ⁇ , Aeromonas, Genus Streptococcus, Micrococcus) and the like.
  • Sulfate reducing bacteria for example, Desulfovibrio, DesI fotomacuIum, Desulfobacterium, Desiffobacter, Desulfococcus
  • acid-producing bacteria for example, CI ostridium
  • Acetivibrio Bacteroides, Rum inococcus, facultative anaerobic microbes (eg, Baciius, Lact Obacci
  • Solids and liquids such as incineration ash, soda glass, soil, semiconductor processing wastewater, and plating wastewater contain various heavy metals such as chromium, manganese, cobalt, nickel, zinc, lead, and mercury. There is a need to remove these metals based on the action of microorganisms.
  • photographic waste liquids include those containing various harmful substances.
  • Photographic films and photographic papers generally include silver halide emulsions (eg, silver bromide, silver iodide, silver iodobromide), stabilizers (eg, benzotriazole) as photosensitive materials. , Azaindolizines, etc.), various chemicals such as color sensitizers (e.g., orthochromatic match, panchromatic, superpanchromatic dyes, etc.), and hardeners (e.g., aldehyde compounds).
  • silver halide emulsions eg, silver bromide, silver iodide, silver iodobromide
  • stabilizers eg, benzotriazole
  • Azaindolizines, etc. various chemicals such as color sensitizers (e.g., orthochromatic match, panchromatic, superpanchromatic dyes, etc.), and hardeners (e.g., aldehyde compounds).
  • intensification work is performed with a chromium compound such as potassium dichromate, a mercury compound such as mercuric chloride, etc.
  • a mixture or permanganate ream is used to reduce the pressure.
  • porous adsorbents Another area in which there is a demand for detoxification of chemical substances is porous adsorbents.
  • Activated carbon and other porous adsorbent materials are used as adsorbent materials for treating harmful substances in various fields such as filters for water treatment and filters for deodorization.
  • porous adsorbing materials exhibit an adsorbing effect by adsorbing a substance to be treated into a large number of pores of the adsorbing material itself, but the adsorbing ability decreases when a certain amount of the substance is adsorbed.
  • Such used porous material is usually recovered and regenerated, but the harmful substances adsorbed at that time are released from the porous adsorbent material to the outside of the system, and released out of the system during regeneration. Measures must be taken to treat and detoxify harmful substances, which requires enormous costs.
  • river sand has been used as fine aggregate such as concrete and asphalt, but its supply has been declining. At present, river sand itself is becoming more polluted and contains various harmful substances.
  • incinerated ash contains harmful substances such as lead, zinc, heavy metals and organochlorine compounds, they are treated and used as aggregates in the form of slag.
  • a harmful substance such as an organic chlorine compound may be contained, and in some cases, such a harmful substance must be treated as a pretreatment. Insufficient metal removal.
  • it is used only as aggregate with high grain size, not as fine aggregate.
  • the method of grinding waste glass into sand and using it was very expensive to contain impurities such as lead in the glass or to grind and use it for fine aggregate.
  • sand containing salt existing on the sandy beaches of the coast is not suitable for fine aggregate because it contains salt.
  • Garbage disposal is another area where there is a demand for utilizing the action of microorganisms.
  • Waste is generally classified into household waste and business waste, and these wastes are currently dumped in landfill facilities or treated by incineration to reburn. is the current situation.
  • garbage such as food waste is occupied.
  • a large amount of garbage is also discharged from various facilities such as restaurants, grocery stores, convenience stores, accommodation facilities, and medical facilities. It is said that these garbage, together with household garbage and business garbage, account for about 30% of the total waste to be treated.
  • Garbage disposal method by such microorganisms 1) garbage the ways and 2) a method of Ru is extinguished garbage a C 0 2 and H 2 0 volume reduction decompose or substantially the composting It is roughly divided into two types.
  • the method of composting garbage is generally performed by using a composting container called a composter or a container having a ventilation means called a compoplanter having both functions of a composter and a planter.
  • the composter is composed of a container body consisting of a vent, a space, a heat insulation layer and a lid.
  • a material such as rice husk ( ⁇ ⁇ nutrient soil) is laid in the container body, and the same material as the material is placed on it.
  • the garbage is laid at a depth, and a fermentation agent containing cultivation soil and bacilli and actinomycetes is further poured on the garbage. In this way, the composting is promoted by alternately stacking culture soil and garbage to promote fermentation of garbage. In this way, after about one month, the garbage in the composter is fermented to produce a compost.
  • Such a method of composting garbage with microorganisms can be performed with inexpensive equipment, but it takes a long time of one month or more to compost the garbage, and the garbage that can be processed in one operation Has the disadvantage of being limited in amount. Furthermore, the fertilizer obtained as a result of processing garbage has a strong odor, and when such fertilizer is applied, there is a problem such as generation of fusarium.
  • Such a garbage disposal apparatus is composed of a sealed container provided with a vent, a heat insulating layer, an aeration unit, a drainage unit and a stirring unit, and the bottom of the container is partitioned by a porous plate.
  • Materials for improving the air permeability are spread on the porous plate, and on the porous plate are germ beds for microorganisms, and sawdust and the like for the purpose of adjusting the water content of the garbage.
  • the specified microorganisms are charged into the container, and the garbage is further charged.
  • the mixture is stirred by aeration means such as a pump under aeration. It is decomposed into water and reduces the volume and volume of garbage.
  • aeration means such as a pump under aeration. It is decomposed into water and reduces the volume and volume of garbage.
  • Such a processing apparatus can process about 1 kg of garbage, but the actual volume reduction rate of garbage is as low as 60% to 80%. The body also needs to be replaced every three to four months.
  • sulfur dioxide, nitrogen oxides, etc. were generated when the garbage was decomposed, so it was necessary to take countermeasures, and the processing equipment was expensive.
  • an ultra-reduction device for garbage As a device to reduce a large amount of garbage, an ultra-reduction device for garbage has been developed.
  • This apparatus is composed of a closed container having a volume of about 500 to 600 liters, which has stirring means, aeration means, deodorizing means and the like. Almost all wood chips such as cedar chips are put into this container as a material, and about 20 kg of garbage is put in and 100 to 300 liters of air per minute is intermittently supplied. The garbage is decomposed by microorganisms that live in the chips by agitation.
  • Methods for desalinating seawater include the multi-stage flash method, the multiple effect method, and the reverse osmosis method.
  • the multi-stage flash method and the multiple-effect method are effective for large-scale plants such as national plants, desalination of seawater by the reverse osmosis method, which requires relatively little capital investment, is becoming the mainstream at present.
  • Japanese Patent Application Laid-Open No. 10-12838 / 25 discloses that seawater is passed through a reverse osmosis membrane separation device in which two stages of seawater are arranged in series using a single pump.
  • a method for obtaining fresh water with a low boron concentration is described in Japanese Patent Application Laid-Open No. H10-1283225 in order to pump water produced from a reverse osmosis membrane module and a water collection pipe of the reverse osmosis membrane module.
  • a desalination apparatus equipped with a water pump is described.
  • an object of the present invention is to establish a microbial technology that can respond to these uses, and to provide a group of microorganisms and metabolites thereof that exhibit excellent effects in various agricultural and environmental fields.
  • Another object of the present invention is to provide an application method in the fields of agriculture and environment based on these microbial technologies.
  • Yet another object of the present invention is to find new ways of applying these microbial technologies.
  • the present invention relates to the following items.
  • the microbial culture solution according to the above item 1 including one obtained by crossing Basidiomycete oyster mushroom and Tamagitake mushroom.
  • microorganism culture solution according to the above item 1 further containing a photosynthetic fungus.
  • the microbial culture solution according to the above item 3 further comprising a carbon-degrading enzyme.
  • a method for producing a microorganism culture solution comprising:
  • a method for producing a microbial culture solution comprising the steps of: introducing a group of photosynthetic bacteria and continuing culturing further under anaerobic dark conditions.
  • step (4) diluting the culture obtained in step (4) 2 to 4 times with the solution obtained in step (3)
  • a method for producing a microorganism culture solution comprising:
  • porous adsorbent material according to the above item 10, wherein the porous adsorbent material is based on activated carbon.
  • the porous adsorbent material is a used porous adsorbent material, and is immersed in the above solution or its diluent for a time sufficient to decompose the components adsorbed in the pores of the porous material. 13.
  • a filter comprising the adsorbent according to the above item 10.
  • Plant-derived fiber is coniferous sawdust, crushed thinned wood, crushed fallen trees Item 17.
  • the soil base material according to the above item 16 which is a material, a fir, a buckwheat hull, a primary-treated building material, or a mixture thereof.
  • a method for improving soil comprising mixing the soil base material according to paragraph 16 or 17 with a fertilizer and laying 1 to 100 cm on the soil to be treated.
  • a method for improving soil comprising spraying a solution diluted with water.
  • a method for optimizing a plant system comprising a container for plant cultivation, a solid medium for plant cultivation, and a cultivated plant,
  • a method for optimizing a plant system comprising sealing a container and holding the container for a period of time sufficient to kill pests, eggs and harmful microorganisms against the plant in a culture medium and a cultivated plant.
  • Organic fertilizer obtained by adding a solution obtained by diluting the microorganism culture solution according to any one of the above items 1 to 4 with water or the carrier according to the above item 8 to livestock manure. .
  • a garbage decomposition bed obtained by immersing a plant-derived fiber in a solution obtained by diluting the microbial culture solution according to any one of the above items 1 to 4 with water.
  • a method for treating garbage wherein the garbage to be treated is put into the garbage decomposition bed described in paragraph 32 or 33 above and stirred to decompose the garbage into an odorless liquid.
  • a liquid fertilizer containing an odorless liquid obtained by the method according to the above item 34.
  • a method for treating a solid characterized by stirring, mixing, and washing the carrier according to the above item 8 with a solid to be treated containing a harmful substance or a salt or a mixture thereof.
  • Fine aggregate comprising sand treated by the method of paragraph 37 above.
  • a reduced structure comprising the carrier according to the above item 8.
  • a method for removing cocoa which comprises spraying a solution obtained by diluting the microorganism culture solution according to any one of the above items 1 to 4 with water onto cocos generated by eutrophication.
  • a method for treating seston which comprises introducing the carrier according to the above item 8 into a water area containing seston to aggregate the seston.
  • a method for treating a water area which comprises introducing the carrier according to the above item 8 into a water area containing the sludge and decomposing the sludge.
  • a seston flocculant comprising the carrier according to the above item 8.
  • a method for treating a liquid comprising the step of passing salt-containing water once or more than once through a filter containing the adsorbent material according to item 15 to remove salt.
  • the method for treating a liquid according to the above item 48 comprising a step of charging the carrier according to the above item 8 into water containing salt and stirring the pretreatment.
  • a method for treating a liquid comprising charging the carrier according to the above item 8 to a liquid containing a harmful substance.
  • a method for treating a liquid comprising charging the carrier according to the above item 8 into a liquid containing a harmful substance and stirring the liquid.
  • a method for treating a liquid comprising passing a liquid containing a harmful substance once or a plurality of times through a filter containing the adsorbent material according to the above item 15.
  • step b) passing the liquid treated in step a) one or more times through the filter containing the adsorbent material according to claim 15 above.
  • step a) is performed under stirring.
  • the liquid containing harmful substances to be treated is a waste liquid containing heavy metals, organic halogen compounds, or petroleum, a plating waste liquid, a semiconductor waste liquid, a photographic development processing waste liquid, a dye-containing waste liquid, a sewer water, and a waste liquid containing these.
  • a supply port for supplying water to be treated
  • a filtration means comprising one or more filters comprising the adsorbent material of paragraph 15 above;
  • the liquid processing apparatus according to the above item 56 or 57, further comprising a pretreatment water tank provided with a stirring means, and comprising means for conveying the liquid to the filtration means.
  • a method for treating a gas comprising spraying a diluted solution obtained by diluting the microorganism culture solution according to any one of the above items 1 to 4 with a gas to be treated.
  • a method for treating a gas comprising passing the gas to be treated through a filter containing the adsorbent material according to the above item 15.
  • a liquid deodorant comprising a diluent obtained by diluting the microorganism culture solution according to any one of the above items 1 to 4 with water.
  • a liquid decoloring agent comprising a diluent obtained by diluting the microorganism culture solution according to the above item 4 with water.
  • a method for removing harmful substances from building materials comprising spraying or immersing a diluent obtained by diluting the microbial culture solution according to paragraph 4 with water into the building materials.
  • a fungicide comprising a diluent obtained by diluting the microorganism culture solution according to the above item 4 with water.
  • a plant resuscitation agent comprising a diluent obtained by diluting the microorganism culture solution according to the above item 4 with water.
  • a water treatment filter comprising the filter containing the adsorption material according to the above item 15.
  • a water purifier including the water treatment filter according to paragraph 69 above.
  • a water detergent comprising the carrier according to item 8 above.
  • a water purifier comprising the porous adsorbent according to item 10 above.
  • FIG. 1 is a cross-sectional view illustrating an example of an apparatus for treating pests in one embodiment of the present invention.
  • FIGS. 2 to 3 are cross-sectional views showing an example of an apparatus for processing liquid processing in one embodiment of the present invention
  • FIG. 4 (a) to 4 (d) are graphs for comparing the adsorption capacity of the adsorbent according to the present invention with the conventional adsorbent, and FIG. 4 (a) shows the adsorption of formaldehyde on the adsorbent of the present invention.
  • Fig. 4 (b) is a graph showing the adsorption capacity when formaldehyde is adsorbed on a conventional adsorbent material
  • Fig. 4 (c) is a graph showing the adsorption capacity when ammonia is added to the adsorbent material of the present invention.
  • Fig. 4 (d) is a graph showing the adsorption capacity when ammonia was adsorbed on a conventional adsorbent material.
  • an aerobic microorganism and a specific basidiomycete are cultured in a bioactive agent which the present inventors previously applied as a specific culture medium, and then the anaerobic microorganism is cultured in the culture medium.
  • a bioactive agent which the present inventors previously applied as a specific culture medium
  • the anaerobic microorganism is cultured in the culture medium.
  • OM a group of microorganisms obtained by the process and a metabolite of the microorganism
  • OME a solution
  • OME a solution
  • Bioactive agent In preparing OME in the present invention, first, an aerobic microorganism group and a basidiomycete are introduced into a bioactive agent, and the cells are aerobic under aerobic conditions, that is, at room temperature and normal pressure for 2 to 5 weeks. Preferably, these bacterial groups are cultured for 20 to 30 days.
  • the bioactive agent used in this case is described in Japanese Patent Application Laid-Open No. H5-224496, which was previously filed by the present inventors. As disclosed in Japanese Patent Publication No. 2 (1), (1) crushing a protein mainly composed of animal protein, (2) mixing the crushed product with cereals and yeast, and (3) heating the fermented product.
  • an aerobic microorganism group and a basidiomycete are introduced into the bioactive agent to start cultivation.
  • the aerobic microorganism group is a microorganism group generally existing in soil or the like and living in the presence of oxygen.
  • Means These representative aerobic bacteria include those commonly found in nature, such as Bacillus and Cytopha-Gaseromonas, which belong to the group of Gram-negative aerobic bacteria, aerobic spore bacteria, and euphoric bacteria. There is no particular limitation as long as the effects of the present invention described below are not impaired.
  • the most common source of aerobic microorganisms is humus obtained by decaying broadleaf leaves and the like in nature, and is preferably decay in progress.
  • the dosage of such aerobic biosources into the bioactive agent is generally in the range of 1 to 7%, preferably 2 to 6% by weight of humus per tonne of bioactive agent. If the input amount of the source is less than the above range, it takes a long time to proceed with the culture. Conversely, when the amount exceeds the above range, the culture medium becomes viscous, and the culture medium with poor air ventilation becomes patchy.
  • basidiomycetes derived from mushrooms belonging to the Pleurochoceae family preferably, a Japanese Patent Application Laid-Open No. (5)
  • a mushroom-derived basidiomycete (referred to as Pleolotusenu) belonging to the Pleurocetaceae described in Japanese Patent No. 2528284 is used as an essential component.
  • other basidiomycetes derived from other mushrooms are introduced together. May be. Generally, such basidiomycetes are introduced in the form of an extract.
  • the input amount at this time is also arbitrary as in the case of the aerobic microorganism, but is preferably in the range of 1 to 7 liters, more preferably 1 to 5 liters, as basidiomycete extract per ton of the bioactive agent.
  • the introduction of this basidiomycete greatly increases the productivity of cellulase.
  • the aerobic microorganisms and the basidiomycetes are introduced into the bioactive agent in this manner, and the resulting mixture is subjected to aerobic conditions, that is, at room temperature and normal pressure under air rate for 2 to 5 weeks, preferably 20 to 3 weeks. On day 0, these bacterial groups are cultured. When the culture is completed in this way, the culture solution that had emitted an off-flavor at the beginning of the introduction becomes odorless (hereinafter referred to as OM stock solution).
  • This OM stock solution is a culture solution containing the aerobic microorganisms, basidiomycetes and their metabolites.
  • anaerobic microorganisms are added to the OM stock solution thus prepared, and the culture is further continued.
  • the anaerobic microorganisms to be introduced include bacterial groups belonging to two groups, Gram-negative anaerobic eubacteria and Gram-positive fermentative eubacteria.
  • a source of such anaerobic bacteria is sewage sludge.
  • the amount of such an anaerobic microorganism source to be added to the bioactive agent is generally in the range of 1 to 7% by weight, preferably 2 to 6% by weight of the anaerobic microorganism source per ton of OM stock solution.
  • the cultivation takes a long time, and if the input amount exceeds the above range, the viscosity including the sludge increases, and as a culture solution, there are factors that hinder the progress of the next step.
  • After introducing the anaerobic microorganism supply source into the OM stock solution leave it under anaerobic conditions, that is, without aeration, generally at room temperature and normal pressure for 2 to 5 weeks, preferably 20 to 30 days, and culture. To continue.
  • the off-flavor from the supply source disappears, and an odorless OM solution is obtained.
  • the OM solution contains anaerobic microorganisms and their metabolites in addition to the components of the OM stock solution.
  • the anaerobic microorganism is cultured at the same time, during the culturing stage, or after culturing.
  • a group of photosynthetic bacteria can be added and cultivation can be performed under anaerobic dark conditions.
  • examples of such a photosynthetic bacterium group include cyanobacteria, green sulfur bacteria, green non-sulfur bacteria, and red sulfur bacteria. By culturing these, the reducing power is increased.
  • the amount of these optional photosynthetic bacteria to be added is generally in the range of 1 to 10 liters, preferably ⁇ 2 to 5 liters, per ton of the liquid.
  • a culture solution (hereinafter abbreviated as ⁇ ) is produced.
  • is diluted with water or an aqueous medium, preferably 300 to 500
  • diluent can also be used as a diluent after diluting it by a factor of 0, more preferably by a factor of 500 to 3000 (hereinafter simply referred to as a diluent).
  • can be used by adsorbing it on a carrier as described below.
  • the second aspect of the present invention relates to an OME component-containing carrier (hereinafter, abbreviated as DCP) obtained by treating fine carbonaceous material with 0 ME or a diluent thereof to dissolve the carbonaceous material.
  • DCP OME component-containing carrier
  • OME has an enzyme that has the effect of dissolving carbonaceous material as described above.
  • OME diluted solution or a diluent diluted with water or aquatic medium
  • the carbonaceous material is dissolved by the action of the carbon-decomposing enzyme in the OM active ingredient, and the OME active ingredient (enzyme) is dissolved.
  • microorganisms are absorbed into the carbonaceous material to obtain a carrier containing the OME active ingredient having a special function.
  • the finely divided carbonaceous material used in the production of DCP refers to fine powder of graphite-based carbon and amorphous carbon, and is generally used at a low temperature, preferably at a low temperature of about 400 ° C or lower.
  • the source is not limited as long as it is obtained by combustion and achieves the object of the present invention.
  • Examples of carbon sources of DCP include woody materials, cellulosic carbon such as crushed wood (wood chips) and vegetation, plant-based carbon derived from plants containing carbohydrates, protein-based carbon derived from animals and plants containing proteins, and the like.
  • Examples include petroleum-based carbon obtained from petroleum, and these carbons can be used alone or in combination. It is particularly preferred to use carbon of these various origins which is discarded as so-called garbage.
  • the ratio between the carbonaceous material and the OME diluent is not particularly limited as long as the object and effects of the present invention are not impaired. Not something.
  • an aqueous solution of a microorganism may be introduced into the carbonaceous material, or the carbonaceous material may be introduced into the aqueous solution of the microorganism.
  • the carbonaceous material is gradually introduced into the aqueous microbial solution with stirring.
  • the finely-divided carbonaceous material and the aqueous solution of the bacterial group are mixed and stirred, and the carbonaceous material is gradually decomposed.
  • it becomes a sludge-like carrier, and the load of stirring becomes small.
  • the cake-like or sludge-like carrier can be used as it is, but it can be dried, for example, by sunlight or air drying, to give a sludge-like carrier containing a desired moisture content, or a fine powdery carrier.
  • OM component-containing carrier can be used as it is, but it can be dried, for example, by sunlight or air drying, to give a sludge-like carrier containing a desired moisture content, or a fine powdery carrier.
  • the porous adsorbent material is immersed in OME or a diluent thereof, and is left for a predetermined period of time. (Hereinafter abbreviated as "RCS").
  • the treatment of the porous adsorbent material in the RCS is not particularly limited as long as the OME active ingredient can be introduced into the pores.
  • activated carbon SOG sand, Taisheng stone, barley stone, Iio stone, tourmaline, various ceramics Activated carbon is preferred.
  • shape of the porous adsorbent used in the present invention is not particularly limited, and may be granular, fibrous, or molded. Particular preference is given to being granular.
  • the porosity of the porous adsorbent used in the present invention is OME or its dilution.
  • the immersion conditions at this time are not particularly limited, but the immersion can be carried out usually at least 8 hours after water washing, preferably at least 24 hours at normal temperature and normal pressure, with or without aeration.
  • the used adsorbent is regenerated at the same time, it is preferable to immerse for 24-72 hours. If activated carbon is used as the adsorbent, immersion for more than 72 hours is not preferable because carbon will dissolve out.
  • the OM cultured in the present invention contains OM active components, that is, metabolites of these microorganisms in addition to various microorganisms such as aerobic microorganisms, anaerobic microorganisms, basidiomycetes, and photosynthetic bacteria. Contains enzymes.
  • OME has a carbonaceous dissolving effect. It can be assumed that the OME active ingredient contains carbon-degrading enzymes. Therefore, it can be used as a unique carrier (DCP) and an adsorption material according to the present invention.
  • OM active ingredients cause the following microbial-enzymatic reactions selectively depending on the substance to be treated (OM, OME. DCP, RCS) 0
  • R-CH-OR ' + H 2 0 - ⁇ RH + H0-CH-0R " (In the formula, R and R ′ each independently represent a hydrocarbon group which may be substituted.)
  • R and R ′ each independently represent a hydrocarbon group which may be substituted.
  • R, R ′ and R ′′ each independently represent a hydrocarbon group which may be substituted.
  • R represents an optionally substituted hydrocarbon group
  • X represents a halogen atom
  • R represents an optionally substituted hydrocarbon group
  • X represents a halogen atom
  • Sawdust and bark of conifers contain phenols, tannins, lignin, and essential oils, which are substances that inhibit plant growth.
  • Phenolic acids, non-phenolic acids, and higher fatty acids in raw sawdust inhibit the elongation of seed roots and lateral roots.
  • sawdust wood has an extremely high CZN ratio of 1000 to 1500, and is hardly decomposable due to the strong binding of cellulose and lignin. It is possible to decompose these hardly decomposable components successively by continuous cometabolism such as gliding eubacteria, myxobacteria, actinomycetes and filamentous fungi in the OM.
  • OM, OME, DCP, and RCS can be used as assimilative substances that coexist with such microorganisms.
  • OME has an action of removing heavy metals such as zinc, lead, tin, nickel, chromium, copper, con- trol, manganese, mercury, cadmium, and dross components in semiconductors. Although it is not clear by what mechanism heavy metals are removed, as a result of the inventor's experiments on plating waste liquid and semiconductor waste liquid, it has been found that these heavy metals can be substantially removed.
  • heavy metals such as zinc, lead, tin, nickel, chromium, copper, con- trol, manganese, mercury, cadmium, and dross components in semiconductors.
  • organic halogen compounds for example, halogen-substituted aromatic organic compounds such as dioxins, polychlorinated biphenyls, and chlorobenzene, tetrachloroethylene, trichloroethylene, dichloromethane, carbon tetrachloride, 1,2 —Dichloroethylene, 1,1-dichloroethylene, cis-1,2-dichloroethylene, 1,1,1-trichloroethane, 1,1,2-trichloroethane, 1,3-dichloropropene, etc.
  • Anaerobic and facultative anaerobic chemoheterotrophs contained in OM and OME have either anaerobic respiration or fermentation mechanisms.
  • Anaerobic respiration is essentially the same biochemical pathway as aerobic metabolism (aerobic breath), instead terminal electron acceptor is oxygen electron transport chain, nitrate (N0 3 -), sulfate (S0 4 2 —), fumaric acid or trimethylamine oxide.
  • N0 3 one, S0 4 case 2 _ of, acts as a reducing product your final electron acceptor.
  • Ammonia becomes odorless by the following reaction in OM or OME.
  • Ammonia water also presents ammonium carbonate, and when the supply of oxygen is small, the ammonium ion (NH 4 _) changes from nitrous acid to nitric acid due to digestive bacteria and becomes odorless.
  • DCP has excellent seston aggregation ability regardless of the type of seston.
  • DCP also has the function of decomposing sludge deposited on the bottom. It is not clear by what reaction mechanism the microbial-containing carrier of the present invention decomposes the head opening for such action, but the microorganism-containing carrier according to the present invention is used for water containing sludge deposited on the bottom. When the carrier was applied, the sludge deposited on the bottom was gradually removed within 2 weeks to 1 month after application.
  • OM and OME, DCP, RSC are applicable over the entire pH range. It also has the effect of returning pH to neutral (see Examples below).
  • OM and OME can exert these effects over the entire pH range. According to the experiment of the inventor, in the treatment of strongly acidic waste liquid generated during the production of umeboshi, When NaOH having a pH of 14 or more was treated, it was possible to treat each, and the pH after the treatment was close to neutral.
  • OME has the effect of reducing BOD and COD.
  • the OME, DCP, and RSC that have the unique effects described above can be applied to the following applications.
  • OME OME
  • OME enzyme OME
  • OME diluent DCP
  • RCS RCS
  • the soil matrix that can be used in this embodiment is a plant-derived cellulosic material that is applied to the soil to rejuvenate the aggregated structure, and that is capable of decomposing cellulose by OME or a diluent thereof into soil.
  • cellulosic materials include, for example, sawdust, coniferous forest leaves, hay, bark, husk (for example, rice husk, buckwheat husk, etc.), cut straw, primary-treated building waste, fallen trees, and the like.
  • it can be used as a mixture of two or more.
  • the sawdust is easily available and inexpensive, especially in coniferous forests that have been difficult to treat in the past.
  • the soil base material is applied to the soil to be treated.
  • soil depleted by pesticides soil in a dormant state in rotation, acidity It can be applied to soil acidified by rain, desertified soil, sandy soil around rivers, etc., and sandy soil with salt on beaches.
  • the amount of soil base material to be laid depends on the type of soil to be treated, the climate, the plant to be cultivated, etc., but it is usually 10 171 to 100 171, preferably 2 cm to 50 cm. is there.
  • OME preferably 0ME with enhanced cellulase-producing ability is sprayed onto the soil on which the soil base material is laid, and treated.
  • the object of the present invention is to use a culture solution in which anaerobic bacteria and aerobic bacteria are conventionally symbiotic and are said to have cellulose degradability. It was surprising that the desired effect was obtained by simultaneously using the basidiomycete culture solution.
  • 0 ME can be used in a stock solution, it is usually used by diluting it to 500 to 2000 times, preferably ⁇ 100 times with water.
  • the dry soil material may be sprayed until it is completely wet.
  • the soil matrix according to the present invention is applied to the target soil, and OME, preferably 0 ME with enhanced cellulase-producing ability, is sprayed on the soil matrix, and is sprayed for several days or more, preferably for one month or more. If left for more than 2 months, the soil is improved to be ready for plant cultivation. OME may be additionally sprayed when the progress of soil improvement is not remarkable. This fog process is performed as needed, but a good organic soil can be provided by mixing the soil base material with sewer sludge, livestock dung, etc., and performing the turning process about once or three times a month.
  • the first feature of these soil base materials is that they can completely decompose the harmful substances present in the fibrous materials and garbage to be treated by the toxic substance decomposition action of OME.
  • OM E is converted into fiber derived from crops harvested using fertilizers such as fallen leaves and straws of fruit trees and the like obtained by spraying pesticides, and manure obtained from livestock and poultry fertilizers administered antibiotics. These components are completely harmless by spraying diluent and composting Be transformed into
  • the second characteristic is that in addition to ordinary soil, soil depleted by pesticides, dormant soil during rotation, soil acidified by acid rain, desertified soil, sandy soil around rivers, etc. It can be applied to sandy soils containing salt on beaches, etc., and converted to good crop cultivation soils.
  • the soil becomes reduced soil, and it is possible to produce crops that are resistant to various pathogens and pests.
  • the cellulosic material derived from plants was applied to the soil in advance, and then the OME diluent was sprayed.
  • these cellulosic materials and 0ME were previously mixed. It is also possible.
  • a method for optimizing a plant system comprising a container for plant cultivation, a solid medium for plant cultivation, and a cultivated plant using OME is provided. That is, the system is completely placed in a sealed container, and the sealed container is completely filled with the OME or OME diluent, and then the sealed container is sealed.
  • the plant system is capable of controlling the above-mentioned pests by keeping it for a sufficient time to kill harmful microorganisms to the plant.
  • the sealed container is transparent and is kept under exposure to sunlight.
  • solid media for plants or cultivation of basidiomycetes can be treated using OMII. That is, by immersing the culture medium with ⁇ ⁇ ⁇ or ⁇ ⁇ ⁇ diluent for a time sufficient to kill the pests and their eggs present in the culture medium, the pests or the eggs in the solid medium can be killed. It becomes possible.
  • FIG. 1 is a cross-sectional view for explaining a method for optimizing a plant system comprising a container for plant cultivation, a solid medium for plant cultivation, and a cultivated plant of the present invention.
  • plant container 1 for plant cultivation The plant system S composed of the solid medium 2 and the cultivated plant 3 is placed in the sealed container 4.
  • the plant system applicable in the present invention is not particularly limited, and the container 1 in which the solid medium 2 is laid is Applies to all plants 3 grown within.
  • Representative examples of plants applicable to the present invention include trees such as pine and plum, various plants of annual and perennial plants, various herbs, potatoes, edible plants such as tomato, parsley, and eggplant.
  • the solid culture medium for plant cultivation includes, for example, culture soil obtained by spoiling black soil, fallen leaves, and the like. Usually, a suitable solid culture medium corresponding to these plants 3 is selected and cultivated.
  • containers 1 for cultivating these plants 3 are also diversified and various, and for example, various containers made of wood, ceramics, and plastics such as flowerpots and plantans are appropriately selected.
  • Such a plant S is placed in a sealed container.
  • the sealed container can completely seal the plant by completely inserting the plant, and even if the culture solution or the diluent described below is filled, the solution is not filled.
  • the shape and material are not particularly limited as long as they do not leak, and a bag-like material can be used in addition to a usual plastic container.
  • a container that is at least partially transparent can be held while being exposed to sunlight, and the state of the plant system can be observed at the time of holding. It is preferably used, and particularly preferably a transparent container as a whole. It is also possible to put one plant S in the container, but if there is an insertion space, it is possible to put two or more.
  • the inside of the sealed container 4 is filled with OME or OME diluent 5.
  • OME organic compound
  • Such an OME (diluent) 5 has the ability to kill pests, eggs, and harmful microorganisms, the ability to decompose chemicals such as pesticides, and the ability to improve media such as soil.
  • the plant system S is maintained using the culture solution described in Japanese Patent Publication No. 4-4-2325, the cultivated plant 3 causes root rot, whereas such an OME solution 5 is used. Surprisingly, it has been found that it does not cause root rot when used.
  • the container After filling the inside of the hermetic container 4 containing the plant with the OME (diluent) 5 in this way, the container is closed and kept for a predetermined time.
  • the treatment time at this time is maintained for a time sufficient to kill the pests and their eggs in the medium and the cultivated plants, but this time depends on the type of plant, the type of solid medium, the status of pests, etc. Different, but usually not a few minutes It is held for several hours, for example, 2 minutes to 10 hours.
  • This operation can be performed only once, but it can also be performed several times after a certain number of days. Furthermore, when the plant 3 is slightly withering, it can be reactivated and revived by the treatment of the present invention. In addition, when treated in this way, the solid medium 2 can be used repeatedly even after the life of the plant has ended.
  • not only the plant system but also a medium for plant cultivation or a medium for mushroom cultivation can be treated with OME to control the medium from pests.
  • the plant system described above is used except that it is not always necessary to use a closed container and there is no cultivated plant, so that the treatment time can be extended and the medium can be more completely activated. Therefore, the repeated description is omitted. It is also possible to eliminate and reuse harmful insects such as mites that have spread in the culture medium during mushroom cultivation.
  • OM or OME is sprayed and washed on a plant, especially a rhizosphere of a plant, which has been violated by a pathogen such as blight, clubroot, scab, scab, powdery mildew, rust, etc.
  • a pathogen such as blight, clubroot, scab, scab, powdery mildew, rust, etc.
  • the soil in which the rhizosphere of these plants was acidic and concreted was softened and changed to a reduced state, making it possible to prevent the transmission of pathogenic bacteria.
  • these pathogens are killed by the attack of basidiomycetes, the active ingredient of OME, and then degraded by hydrolytic enzymes. Specifically, the whole plant that has been violated by these pathogens and pests is immersed in the OME diluent. Plants treated in this way are revived.
  • the OME diluent or DCP By adding the OME diluent or DCP to livestock manure, these manure can be made odorless and good fertilizer can be obtained. At this time, the ideal compost can be obtained by constantly mixing and stirring the coniferous sawdust.
  • OME OME enzyme
  • OME diluent OME diluent
  • DCP OME diluent
  • Table 2 shows examples of environmental response based on 0 ME active ingredients.
  • the garbage can be treated using a garbage disposal material (garbage decomposition floor) produced based on OME.
  • a garbage disposal material garbage decomposition floor
  • the material for treating garbage in the present invention is based on a plant-derived cellulosic material.
  • the plant-derived cellulosic material are the same as the soil matrix described in the above item A-I. It is preferable to mix hard-to-decompose materials such as peach and so on, preferably in a ratio of about 1 to 0.3 to 2, since air circulation is improved.
  • the garbage disposal material thus produced When the garbage disposal material thus produced is brought into contact with the garbage, the garbage is decomposed and fermented by the OME hydrolase and microorganisms in the garbage disposal material. However, at the same time as the odor in the garbage is completely removed, the odor components of sulfide and nitride are completely decomposed.
  • the garbage disposal method it is possible to deodorize the garbage simply by putting the garbage into the garbage disposal material and stirring the garbage. It is also possible to further apply the above-mentioned plant-derived cellulosic material on garbage, and it is also possible to further apply an OME solution to this cellulosic material. Alternatively, the garbage disposal material of this embodiment can be applied. In particular, if the above-mentioned cellulosic substance is applied to the garbage and the OME solution is further applied, or if the garbage disposal material of this embodiment is applied, the odor is removed when the garbage is treated. preferable.
  • garbage disposal material of this aspect it is possible to dispose of garbage in the conventional composter and compoplanter, and it is also possible to apply the garbage disposal material of this aspect to, for example, a garbage landfill to treat garbage. It is possible. By treating in this way, garbage can be easily treated without generating offensive odor.
  • the garbage When left for several hours in this way, the garbage differs depending on the components of the garbage, but the garbage begins to decompose as soon as it is put in, becomes odorless, and becomes completely liquid after about 24 to 36 hours. This liquid can be applied as an excellent odorless liquid fertilizer.
  • the material for treating garbage according to this embodiment can be produced by a simple method of immersing a plant-derived cellulosic material and OME or a diluent thereof.
  • Materials for garbage disposal can be used as they are as existing composters, compo-planters, and garbage decomposition floors for garbage disposal equipment.
  • the obtained food waste material When the obtained food waste material is brought into contact with food waste, it can be processed into a liquid without generating odor, and food waste can be processed at low cost and easily.
  • the obtained liquid can be used as a good odorless liquid fertilizer.
  • the DCP is mixed with sand containing at least one component to be removed selected from the group consisting of salt, organic harmful substances and heavy metals, and stirred to substantially remove the components to be removed from the sand. It can be removed.
  • the sand containing at least one component to be removed selected from the group consisting of salt, organic harmful substances, and heavy metals is sand containing salt such as sea sand, and / or zinc, force dope, Sand containing harmful substances such as heavy metals such as nickel, aromatic halogen compounds (eg, PCBs, dioxins), halogenated hydrocarbons (eg, dichloromethane, trichloromethane, carbon tetrachloride, etc.), and azo compounds.
  • substantially removing means that these salts and harmful substances are removed to values below the administrative guidelines of the government and local governments.
  • the present invention relates to a method for treating incinerated ash, which comprises mixing and stirring DCP into incinerated ash to substantially remove harmful substances in the incinerated ash.
  • the treatment By performing the treatment in this manner, it is possible to substantially remove heavy metals such as lead and zinc and harmful substances such as organic halogen compounds in the incinerated ash, and to obtain the obtained incinerated ash and DCP.
  • the mixture can be reused as fine aggregate for structures such as concrete, and similarly, a reduced structure excellent in water purification action can be obtained.
  • the DCP is mixed and stirred with waste glass containing at least one component to be removed selected from the group consisting of salt, organic harmful substances and heavy metals, and waste glass discharged in the glass manufacturing process.
  • the present invention relates to a method for treating waste glass and cakes, which substantially removes components to be removed from sand.
  • waste glass such as soda lime glass and cake-like by-products mainly composed of calcium carbonate generated from a soda ash manufacturing plant in the glass manufacturing process
  • sodium chloride, lead, soda ash and the like are treated. It can be removed and can be used as coarse aggregate in the form of slag or can be refined and used as fine aggregate.
  • DCP is used to treat sand containing salt, incinerated ash, river sand, and the like to obtain a mixture of DCP and fine aggregate.
  • salty sands When treating salty sands, mix with at least 1 kg, preferably 1-4 kg, of DCP per ton of sand. When the salt-containing sand and DCP are mixed and stirred in this manner, salt such as sodium chloride contained in the sand is removed.
  • the amount of DCP added is less than the above amount, the removal of salts is insufficient. Also, there is no upper limit on the amount of addition because the obtained sand is used as fine aggregate, that is, That is, it can be appropriately selected depending on the degree of demand such as a case where the production of a strongly reduced structure is required or a case where it is sufficient to simply treat the salt. Generally, 2 to 5 kg per ton of sand is sufficient.
  • the mixing and stirring may be performed in a dry state, but it is preferable to add water and mix in a slurry. For example, it can be treated by mixing and stirring DCP and sand slurry to be treated using an ordinary kneader, a device marketed by Mixer Daiki Rubber Industries Co., Ltd. under the name of MD Cyclone. .
  • river sand and sea sand containing harmful substances can be further treated by DCP.
  • Treat chemical hazards such as heavy metals such as zinc, lead, chromium, and cadmium, and organic halogen compounds (aromatic organic halogen compounds such as PCB, dioxin, and chlorophenol, mono- or poly-halogen hydrocarbons) as the target harmful substances.
  • organic halogen compounds aromatic organic halogen compounds such as PCB, dioxin, and chlorophenol, mono- or poly-halogen hydrocarbons
  • the amount of DCP added is appropriately selected depending on the type and concentration of the harmful substance, but is generally the same as that of sand containing salt.
  • the treatment of river sand that contains almost no salt or harmful substances is also an object of this mode.
  • this embodiment encompasses all the mixture of sand and DCP.
  • a mixture is used as fine aggregate, an excellent reduced-type structure as described later can be obtained.
  • incineration ash means all incineration ash including fly ash.
  • incinerated ash contain metals such as lead, zinc, chromium, mercury, and other various heavy metals such as dioxins, and chemical hazards such as PCBs.
  • the amount of DCP to be added depends on the type and amount of harmful substances contained in the incinerated ash, but is generally about 1 to 5 kg DCP per ton of incinerated ash.
  • the treatment When the treatment is performed in this way, it is possible to stabilize the metal by adsorbing metals such as heavy metals such as lead, zinc, and chromium, and to substantially reduce organic halides such as dioxin and PCB. Is removed.
  • the treatment of the incinerated ash in this embodiment can be utilized not only as a fine aggregate using the treated mixture but also as a pretreatment for treating by a conventionally known method such as landfilling after removing the metal. It is.
  • the pH value is automatically adjusted by the action of microorganisms and enzymes of DCP, so that they can be used for landfills, etc., and reused as fine aggregate. It is also safe. The same method can be used for treating incinerated ash as for sand. If further safety is required, the used RCS should be washed and then immersed again in OME liquid to mix and use as fine aggregate.
  • the mixture of DCP and sand or incineration ash thus treated has excellent properties similar to OME, DCP, RSC and the like.
  • the structure manufactured with the DCP mixture when used for general sewerage and agricultural sewerage, it has the action of neutralizing pH and reducing BOD and COD. It can be used as a very good structure having a purifying action. It should be noted that a structure having the same effect can be produced by directly adding DCP to the raw concrete material.
  • salt and harmful substances are substantially removed from sand containing salt and harmful substances by a simple method of adding, mixing, and stirring DCP.
  • the resulting mixture can be used as a suitable fine aggregate.
  • DCP is added, mixed and stirred by a simple method. It is possible to remove harmful substances from the incineration ash, and the incineration ash thus treated can be secondarily treated by a conventional method or used directly as excellent fine aggregate.
  • the obtained DCP mixture can be used as fine aggregate for producing a reduced structure having excellent water purification action.
  • ready-mixed concrete for reduction-type structures at the same time as treating salt and harmful substances.
  • a process such as drying is not required, and the treatment of harmful substances is directly performed.
  • ready-mixed concrete can be manufactured.
  • Table 3 below shows examples of the correspondence to liquids based on the action of the OME active ingredient in the present invention.
  • Liquid treatment methods are roughly divided into: a) a method of spraying OME (removal of cocoa, etc.), b) a method of spraying DCP, c) a filter containing RCS after spraying DCP as a pretreatment if desired. Through the method.
  • water containing these sestons for example, organic wastewater including sewage treatment wastewater, food processing wastewater, human waste treatment wastewater such as swine and livestock raising, and eutrophic lake water and chemical plant wastewater.
  • organic wastewater including sewage treatment wastewater, food processing wastewater, human waste treatment wastewater such as swine and livestock raising, and eutrophic lake water and chemical plant wastewater.
  • water treatment can be performed by separating these sediment and / or suspended matter by filtration, etc., which is different from the case of using a conventional polymer flocculant or sulfate band. You don't have to.
  • various sestones can be treated regardless of whether they are inorganic or organic.
  • DCP also has the function of decomposing sludge deposited on the bottom. It is not clear by what reaction mechanism the microbial-containing carrier of the present invention decomposes the head opening for such action, but the microorganism-containing carrier according to the present invention is used for water containing sludge deposited on the bottom. When the carrier was applied, the sludge deposited on the bottom was gradually removed within 2 weeks to 1 month after application.
  • DCP selectively absorbs heavy oil.
  • the heavy oil adsorbed on the carrier of the present invention is decomposed into gaseous carbon dioxide, water, etc. by the 0 ME active component and made harmless.
  • sulfur content in heavy oil Sulfur dioxide and other components generated by the action of sulfur bacteria present in seawater are instantaneously decomposed and hydrogen sulfide is generated by the interaction of sulfur oxidizing bacteria and sulfate reducing bacteria. It is instantly decomposed and made harmless.
  • ME active components have a dehalogenating effect, heavy oils containing these components are also rendered harmless.
  • seawater treated in step a) can be desalinated by passing it through a filter made of RCS.
  • such DCP is mixed with seawater under forced stirring and then forcedly stirred, and the stirring means at this time is such that the DCP and seawater come into sufficient contact and seawater is desalinated by the action of DCP.
  • the stirring means at this time is such that the DCP and seawater come into sufficient contact and seawater is desalinated by the action of DCP.
  • examples thereof include stirring with a mixer or the like and stirring with a jet of water, particularly preferably forced stirring with an OHR line mixer sold by Seika Sangyo Co., Ltd.
  • This step of contacting DCP with seawater and forcibly stirring may be performed once or may be performed several times as necessary.
  • This is a forced stirring device of the type in which two types of fluids different from the OHR line mixer are passed through different spiral flow paths and then collided and contacted.
  • a fluid A in which DCP is added to a part of seawater in advance and an untreated seawater B are brought into contact with each other and reacted.
  • the seawater thus treated with about 80% salinity is passed through a filter containing RCS.
  • the filter made of the RCS thus formed the filter is completely desalinated.
  • saltwater in the seawater can be removed and desalinated simply by passing it through RCS.
  • DCP and RCS can be used for wastewater containing various harmful substances, wastewater containing strongly acidic or strongly alkaline pH values, wastewater containing metals, wastewater with odor, colored wastewater, and wastewater combining these. Wastewater treatment is possible. a) Waste liquid treatment by DCP
  • DCP which is a powder carrier
  • the treatment of waste liquid by DCP in this embodiment is 1) waste liquid with relatively low contamination, and 2) treatment through an RSC filter described later is difficult. It is used as a pretreatment for the treatment of natural liquids, for example, lakes, marshes, seawater, rivers, etc. with a large treatment area, and 3) the treatment with the RSC filter described later.
  • Waste liquid treatment is performed by passing waste liquid through a filter containing an adsorbent material. Waste liquid treatment by RCS is performed as final treatment. Especially for highly contaminated effluents, this can be done by passing them through an RCS filter several times.
  • the treatment of the wastewater of each of these DCP and RCS and the combined wastewater treatment are basically the same as the methods for desalination of seawater.
  • Such effluents include wastewater from chemical factories, especially wastewater containing toxic substances such as plating wastewater, photographic wastewater, dye wastewater, PCBs, dyes, etc., and wastewater from food factories.
  • Plum vinegar waste liquid discharged in Such seawater and harmful substances can be treated by a liquid treatment device as shown in Figs.
  • This device consists of a supply port 2 for supplying water to be treated, filtration means F composed of one or more RCS filters as claimed (Fig. 2), and a water storage tank 3 for storing the treated water. . Also connected to water tank 3 It is preferable to include a means for supplying the treated and treated liquid to the filtration means, and after a predetermined number of treatments, supply treated water to the filter to regenerate the filter.
  • a pretreatment water tank 5 provided with a stirring means 6 for treatment by the DCP, and to connect this with a filtration means F and a liquid transport means 7 such as a pump.
  • odors derived from organic compounds for example, odors caused by the deterioration of animals and plants, animal manure, methane, mercaptan and the like, and odors derived from inorganic compounds, for example, ammonia, hydrogen sulfide, etc. It can absorb, adsorb, decompose, and deodorize PCBs, nitrogen oxides, etc.
  • gas treatment methods are roughly: a) removing the OME diluent by spraying it on the gas, b) introducing DCP into the OME diluent and applying it to the gas source, and c. ) If the gas to be treated is a gas that passes through a closed environment, eg a flue, it can be treated by passing it through a filter containing one or more RSCs. Further, in the treatment of dioxin and the like, it is possible to treat with an OME mist trap or the like, or in the same manner as in the method described in Japanese Patent Application No. 91-291467.
  • the OME, DCP, and RCS in the present invention can be used in various forms other than the above applications. Hereinafter, examples of these uses will be described. Since the OME diluent has a deodorizing effect as described above, it can be used as a liquid deodorizer for households, chemical factories, etc., for example, in the livestock industry, etc., by putting it in a spray container such as an atomizer or sprayer. is there.
  • the OME diluent can be used in the form of a spray container in the same manner as an agent for controlling pathogenic bacteria of plants and an agent for plant fleas as described above.
  • insect repellent effects can be imparted by immersing a building material such as wood in an OME diluent for a short period of time, preferably within one day. At this time, care must be taken when immersed in the OME diluent for a long time because cellulose in wood and the like will be decomposed.
  • DCP or RCS or a mixture thereof can be used as a powder deodorant for refrigerators, shoes and the like.
  • RCS Since RCS has a function of removing harmful substances, especially chlorine, and has a bactericidal effect, it is necessary to introduce a filter incorporating RCS as a filter for water treatment into a filter for drinking water purification equipment and a shower head. It can be used as a filter for a shower or as a filter for an air purifier.
  • DCP can be put into a nonwoven fabric or the like and introduced into, for example, a tea bag-like bag, and used as a detergent for water in a tank or a pond, a detergent for bath water, or the like.
  • RCS is used as a filter agent for the purification device of the aquarium, it is possible to keep the water transparent without replacing it for more than 8 months.
  • Orient Green Co., Ltd. is based on broadleaf trees as a source of aerobic microorganisms per ton of bioactive material sold under the brand name Revitaly Aminone ⁇ 5% by weight of mulch and oyster mushrooms and Tamagotake mushrooms as basidiomycete sources. 5% by weight of the mushroom extract was added, and the mixture was cultured at normal temperature and normal pressure under aeration for 30 days. Different at the initial stage of culture It smelled, but after 30, it was odorless.
  • the photosynthetic bacteria group sold by Orient Green Co., Ltd. under the trade names of Green Amin and Red Amin under the same conditions as the photosynthetic bacteria group was added to the culture solution at 1.5 liters per ton of the culture solution, and then added to the culture solution.
  • the OM solution was produced by culturing for a day.
  • the culture solution thus obtained was diluted with three times the volume of the previously obtained 0 M solution to produce a 0 ME solution.
  • mice were tested. In this guideline, no death was observed at the maximum dose that could be administered (2 ml per 100 g body weight (20 mIg), and no abnormalities were observed at the time of the autopsy.
  • the lethal dose by oral administration was found to be 2 OmI / kg or more for both sexes.
  • the cultivation was carried out in the same manner as in Example 1 except that basidiomycetes were not introduced in the 0M liquid production method, and the aerobic microorganisms and anaerobic microorganisms described in A culture solution was prepared.
  • the carbon derived from the burned plants was immersed in a diluent obtained by diluting OME obtained in Example 1 with water 1000 times. After about 3 to 7 days, the carbonaceous material melted and DCP was obtained (DCP slurry). This DCP slurry was air-dried to obtain DCP powder. Similarly, carbon fines derived from plants burned at low temperature were immersed in a diluent obtained by diluting the culture solution obtained in Comparative Example 1 with water 1,000 times. No change was seen.
  • Example 4 Comparative Examples 2, 3 and Control Example 1 (Improvement of sandy soil containing salt)
  • Example 1 softwood sawdust was laid as a soil base material on a sandy beach so as to have a thickness of about 5 to 1 Ocm, and some chicken dung was put into it, and the OM E obtained in Example 1 was placed there. Was diluted about 100 times with water and sprayed so that the soil base material was sufficiently moistened (Example 1).
  • a culture solution of a microorganism conventionally known to have cellulose degradability (a culture solution according to Japanese Patent Publication No. 4-42555) (Comparative Example 2) and a culture solution of Comparative Example 1 (Comparative Example 2) were sprayed.
  • a control only chicken dung was added (Control Example 1).
  • Example 4 After leaving each of these treated soils for two weeks, tomato, edamame, watermelon, pumpkin, eggplant, komatsuna, and sweet potato were cultivated as plants, but the soil of Example 4 could yield good quality crops. , Comparative Examples 2 and 3, and Comparative Example 1 could not be harvested and Example 5, Comparative Examples 4 and 5, Control Example 2 (treatment of various soils)
  • Example 5 Similar microbes as in Example 1, Comparative Examples 2 and 3, and Control Example 1 for sandy soil made of commercially available sand, soil that has lost its reagglomeration structure due to pesticides, acidified soil, and slash-and-burn soil
  • OME Example 5
  • Example 4 and 5 the soil using the culture solution of Comparative Examples 2 and 3 was obtained.
  • Control Example 2 untreated soil
  • the method according to the present invention shows very excellent effects in a short period of time. It is noteworthy that the progress of the sandy soil to the soil can be visually observed (approximately 30% becomes soil three months after application).
  • Example 6 Relief of a plant caused by blight and scab Akamatsu, a blight disease blight disease of about 80 years old, was dug up, the affected area was excised by surgery, and the entire Akamatsu was diluted sufficiently with a 1,000-fold dilution of the OME solution obtained in Example 1 with water. Washed. Thereafter, the surgical portion was coated with DCP slurry and allowed to dry. Further, when the soil was thoroughly washed with a diluent obtained by diluting the OME solution of Example 1 with water 1,000 times and planted, emergence of new shoots 2 hours after the treatment was observed.
  • Example 2 a 1,000-fold dilution of the OM solution described in Example 1 was used.
  • the OM diluent obtained in Example 1 was sprayed with 300 liters of the OM diluted solution obtained in Example 1 on the cucumber at the end of the cultivation period, which was infected with the powdery mildew, and the leaf surface and the soil were treated. One week later, the spread of powdery mildew was suppressed. After about two weeks, 100 liters of OM diluent was similarly sprayed onto the soil and foliage. One week later, there was a harvest similar to a regular cucumber that was not affected by powdery mildew.
  • the pest control of 4a of the strawberry house (20a) in which the insects were generated was performed using the 1,000 times dilution of the OM solution described in Example 1.
  • 200 liters of OM diluent was sprayed on leaves and soil.
  • One week after spraying it was observed that plant growth was enhanced compared to unsprayed areas.
  • the leaves and stems of the strawberry had elasticity.
  • carcass of a insect was observed. Damage to the untreated portion due to the occurrence of beetles began to appear, so the entire house was sprayed with 350 liters of OM diluent and rinsed with 600 liters of OM diluent.
  • 500 liters of the OM diluent was sprayed on the entire house and rinsed with 500 liters of the OM diluent. No occurrence of leptopods was observed.
  • Example 9 garbage disposal
  • the diluted OME obtained by diluting the OME obtained in Example 1 by 1,000 times with water was sprayed and mixed on a mixture of coniferous sawdust and peaches in a ratio of 1: 1 to produce a garbage decomposed bed. .
  • OM 3 cc obtained in Example 1 was diluted with 200 cc of water and washed with 200 cc of incinerated ash containing 0.6 mg of Zr. Thereafter, washing with water was performed twice. As a result, the lead content in the incineration ash was 0.015 mgZ liter (measured according to JIS K01 0 261.2)
  • Example 1 (Removal of heavy metals in incineration ash by OM)
  • Table 5 The incineration ash containing heavy metals shown in Table 5 was subjected to the same method as in Example 9 to remove heavy metals.
  • Table 5 shows the amount of heavy metals in the OM cleaning solution before water washing and the heavy metal content in the incinerated ash after treatment.
  • the measurement is based on the atomic absorption spectrophotometry.
  • N. D. means below the detection limit.
  • Example 3 1 liter of waste liquid containing cyanide, acetic acid, mercury, etc. after photo printing from a small-scale DPE store was placed in a 2-liter transparent container, and 3 mg of the DCP obtained in Example 2 was added thereto. After stirring with a magnetic stirrer for 0 minutes, these harmful substances and odors were completely removed. Thereafter, the RCS obtained in Example 3 was caught in a funnel and passed therethrough. Table 6 shows the measurement results of COP, total nitrogen and COD treatment before and after DCP treatment and No. 3 treatment.
  • Example 17 The same treatment as in Example 17 was performed using a waste liquid containing 40,000 mg / L of PCB, and as a result, the content of PCB was 0.1 ppm.
  • Plum vinegar-containing waste liquid discharged during the production of umeboshi having the following characteristics: 1 ton. 4 liters of DCP obtained in Example 2 was added, stirred well, filtered with sand, and then RSC obtained in Example 3 was filtered twice through a filter containing 4 liters. Table 8 shows the results.
  • the solution of Example 3 was used. The treatment was performed using the filter containing the RCS obtained in the above. Table 9 shows the results.
  • Example 22 Removal of odor from protein spoilage
  • Example 21 1 and Comparative Example 6 Comparison of gas adsorption capacity between RCS and activated carbon
  • the present invention described above has the following excellent features.
  • An aerobic microorganism group, an anaerobic microorganism group, and a basidiomycete belonging to at least one kind of mushroom family coexist with microorganisms having different properties characterized in that these metabolites include enzymes.
  • a carrier obtained by adsorbing the components of the solution on the finely divided carbonaceous material, and a porous material obtained by adsorbing the components of the solution on the porous material absorb and absorb harmful substances It has various functions such as decomposition, deodorization, and decolorization, and is applicable to various uses in the agricultural and environmental fields.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mycology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Botany (AREA)
  • Plant Pathology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Epidemiology (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Medicinal Chemistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Soil Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Fertilizers (AREA)

Description

明細書 性質の異なる微生物群が共生しかつこれらの代謝物を含む微生物培養液、 上記培養液の活性成分を含む担体及び吸着材料並びにこれらの用途 発明の詳細な説明
産業上の利用分野
本発明は、 微生物培養液、 その製造方法およびその用途に関する。 より詳しく は、 嫌気性微生物と好気性微生物という元来共生不能であつた微生物同士が共生 し、 かつその代謝物としての酵素を含む微生物培養液、 その製造方法、 及び上記 培養液中の活性成分を含有する担体及び吸着材料並びにこれらの農業分野や環境 分野における用途に関する。
背景技術
近年、 微生物の作用に基づいた、 農業分野や環境分野への適用が生態学的観点 力、ら非常に注目されている。
農薬等の大量に使用によリ疲弊化した土壌や輪作のェコフローにおける休眠状 態にある土壌に対して、 従来より微生物に基づいた土壌改良材を適用することが 試みられている。
例えば、 特公平 4— 4 2 3 5 5公報には、 根瘤菌とァゾトパクターまたは光合 成菌および硫黄菌を草木灰水溶液に蔗糖またはマルトースを加え、 滅菌した培地 に接種し、 2 5 °C前後で適当時間培養し、 これとは別に硝化菌、 酵母、 好熱菌、 枯草菌、 シュウドモナス菌の培養液をつくリ混合したものが堆肥の腐熟促進、 土 壌の改良、 肥効の増進、 残留農薬の無害化、 病害微生物を抑制する能力があるこ とを開示している。
しかしながら、 従来方法では適用可能な土壌が農薬汚染土壌や輪作における休 眠土壌に限られており、 また、 使用可能な母材も米ぬか等の高価なものに限定さ れていた。 さらに、 土壌が正常化するまで非常に時間のかかるものであった。 また、 最近地球環境の変化により、 砂漠化現象や酸性雨等により植物の生態系 の破壊が急速に進行しておリ、 世界的規模で問題となっている。 砂漠化した土壌を緑化するために、 高吸水性ポリマーを基材として、 そこに水 分を含ませて緑化を図る試みがなされているが、 高吸水性ポリマーは高価なもの であり、 また栽培可能な植物も極めて限定されている。 さらに、 このような方法 によっても一旦砂漠化された土壌は本来の土壌へと戻ることはない。
同様にして、 焼畑や森林の無計画な伐採等による人為的な植物環境破壊も重大 な問題となっている。 これらの人為的な環境破壊によリ団粒構造が失われた土壌 を元の状態に戻す方法は現在のところ見出されていない。
さらにまた、 海岸の砂浜等の塩分を含む土壌や、 河川の周辺に存在する砂地を 所望の植物を栽培可能な土壌として利用したいという要望があるが、 現在このよ うな要望に対応できる技術は存在していない。
農業問題に加えて、現在、盆栽、ガーデニング等の園芸が幅広く普及しており、 植物を栽培する業者は言うに及ばず一般家庭においても、観賞用植物、食用植物、 ハーブ等の植物が栽培されている。 これらの植物を栽培するに当たって、 通常プ ランタン、 植木魅等のいわゆる容器内に植物栽培用の固形培地を入れて、 植物の 種子や球根を植付けるかあるいは植物の苗を移植して植物を栽培しているのがー 般的である。
しかしながら、 このような植物を栽培するのに使用されている固形培地には植 物の育成を阻害する病害虫やその卵、 黴類等が多数存在しており、 これらは、 栽 培している植物に対して悪影響を与えている。 具体的には、 各種昆虫の卵、 昆虫 そのものや白絹病、 うどんこ病、 根こぶ病、 紋羽病、 ふらん病、 サビ病等の病原 菌により、 土壌等の固形植物培地から感染する場合が多い。 又、 かかる培地の出 所によっては、 農薬等の有害物質が混入している恐れがある。 更に、 植物の栽培 中に、 昆虫等が栽培している植物又は培地に卵を産み付け、 これらが繁殖して植 物に悪影響を及ぼすことがある。
このような、 土壌等の植物栽培用の固形培地に存在する病害虫や黴類等を殺傷 させるのは、 従来農薬等の散布により行っていた。 しかしながら、 例えば土壌に 農薬を散布することにより土壌中に存在する病害虫や有害微生物を殺傷すると、 土壌の本来あるべき団粒構造が失われて植物の栽培に適当でなくなるだけでなく、 特に容器内の栽培では水を散布した際に過剰な水が流出し、 流出した水の中に農 薬が残存するという問題がある。 更に食用植物の栽培においては人体に悪影響を 及ぼすので好ましくない。
また、 植物を栽培するために、 植物栽培用の固形培地に固形肥料や液体肥料を 投入していたが、 これらの肥料は化学肥料が主体であり、 植物栽培のための本来 の培地とは大きな隔たりがあった。 また施肥時期、 施肥量を厳密に管理する必要 がある等の不都合もあった。
また、 植物栽培と同様に茸等の担子菌類の栽培も同様にしておがくず、 ほだ木 等の固形培地が使用されており、 これらの培地にも真菌類や、 病害虫、 その卵等 が含まれている。
これに対して、 土壌等の植物栽培用固形培地や植物自体に各種微生物の混合溶 液を散布することが特公平 4- 4 2 3 5 5号公報に記載されている。 この公報に よると、 根瘤菌とァゾ卜パクターまたは光合成菌および硫黄菌を草木灰水溶液に 蔗糖またはマルトースおよび本発明による微生物の成長促進溶液を加え、 滅菌し た培地に接種し、 2 5 °C前後で適当時間培養し、 これとは別に本発明による微 生物の成長促進溶液中で硝化菌、 酵母、 好熱菌、 枯草菌、 シュウドモナス菌の培 養液をつくリ混合した微生物混合培養液は、 堆肥の腐熟促進、 土壌の改良、 肥効 の増進、 残留農薬の無害化、 病害微生物を抑制する能力があると言われている。 しかしながら、 これらの菌群を使用しても、 その適用してから効果を発揮する のに長時間を要し、 また効果の持続力も短いという欠点を有していた。 また、 こ れらの菌群は、 容器内で栽培された植物に対しては適用ができなかった。
更に、 これらの菌群の培養液を使用しても一年草の栽培した後の固形培地ゃ植 物を収穫した後の固形培地を、 次の植物栽培には適用できるものではなかった。 更に、 これらの菌群を使用しても、 例えば枯れかかった植物を賦活することは 不可能であった。
また、 微生物の作用に基づく臭気対策方法についても数多く提案されている。 例えば、 特開平 6 - 2 7 7 6 8 4号公報には、 微生物を使用した臭気ガスの脱 臭方法が記載している。
さらに、 特開昭 5 1 - 1 2 9 8 6 5号公報、 特開昭 5 3— 5 8 3 7 5号公報、 特開昭 6 0 - 3 4 7 9 9号公報等には屎尿、 糞尿等の脱色、 脱臭方法等が記載さ れている。
しかしながら、 これらの方法では、 嫌気性微生物と好気性微生物の異なる種類 の微生物を使用するために、 処理には少なくとも 2段階必要であるという欠点を 有していた。
これに対して、 E M菌群と呼ばれる嫌気性菌と好気性菌、 特に乳酸菌主体の菌 群の両方の菌群が共存しているとされる有効性菌群を使用した排水処理方法、 土 壌改良方法、 殺虫剤等が開発されているが、 E M菌群には、 好気性菌群と通気性 菌群の両者しか実質的に存在していないことから両者の相乗効果を望めるもので はなかった。 また、 E M菌を使用する場合には E Mぼかしと呼ばれる発酵資材を 使用しなければならず、 その用途範囲は極めて限定されていた。
現在、 湖沼、 河川等には多量のセストンが含まれている。 セストンとは、 水中 に懸濁する粒状物の総称であり、 漂泳生物由来の生物体セストンと土砂や微粒子 ら由来の非生物体セストンを示す。 これらのセストンは集まって集塊を形成して いる場合が多い。 有機性のセストンは、 微少生物の生息場所ともなり得るが、 水 の透明度を悪化させたり、 有機性セストンの腐敗によるァォコ等の発生因子とも なるのでこれを除去するのが望ましい。 また、 化学工場からの廃水等に含まれる 無機性のセストンは、 いわゆる有害物質を含む粒子の塊でありこれを除去するの が望ましい。
従来、 セストンを含む水を処理するには高分子系の凝集剤や硫酸バンド系の凝 集剤を使用してセストンを凝集させ、 沈降物または浮遊物として濾過等により除 去していた。 しかしながら、 これらの凝集剤を使用して処理を行う場合、 これら の凝集剤を二次処理しなければならず、 またこれらの凝集剤の処理能力も十分な ものとは言えなかった。 さらにこれらの凝集剤は生態系に対して悪影響を及ぼす 可能性があり、 良好なものとは言えなかった。 さらに、 対象とする水には下水道 処理廃水、 食品加工処理廃水、 養豚■畜産等の屎尿処理廃水、 富栄養化された湖 沼の水等の有機性廃水および化学工場からの廃水等の無機性の廃水等多岐にわた るために、 多種多様のセストンが存在し 1種類の凝集剤では対応できない場合が ある。
さらに、 上記の通り排水、 湖沼等の水処理を行う場合には、 セストンを処理す る以外に、 処理対象の水中に含まれている有害物質を除去したり脱臭および脱色 処理を行う等の別の処理を行う必要があった。
このような現状に鑑みて、 1 ) 凝集剤の除去等の二次処理を行う必要がなく、 2 ) 生態系に悪影響を及ぼさず、 3 ) 有機性'無機性を問わず各種のセストンに 対して幅広く適用可能であり、 さらに 4 ) 有害物質の処理および脱臭■脱色を行 うことができるセストン処理用の凝集組成物の開発が望まれている。
また、 さらに富栄養化した水圏中にはァォコが発生し、 これを除去することが 望まれていた。 また、 近年石油タンカー等の事故において海域に流出した油を除 去することが望まれているが、 これらに対する有効な手段を開発するという要望 がある。
さらに、 各種畜産、 例えば養豚場、 牛舎、 養鶏場等から排出される糞尿を含む 汚水や生活廃水、 化学工場、 食品工業等から排出される種々の成分が含む廃水の 処理等に微生物の作用に基づ〈方法が注目されている。
排水処理方法として、 例えば、 特開昭 5 5— 8 6 5 9 3号公報、 特開昭 6 0— 1 3 7 4 9 2号公報、 開平 6— 7 1 2 9 3号公報、 特開平 9一 2 0 6 7 8号公報 等には嫌気性微生物と好気性微生物とで別個に排水を処理する方法が記載されて いる。 これらの方法は処理対象が限られており、 また有効かつ充分な効果を発揮 しているものとは言い難かった。 また、 これらの由来の異なる汚染に対して一元 的に対応可能な処理方法については現在のところ開発されていない。
また、 微生物の作用に基づいて種々の有害物質の無害化が試みられている。 塩素、 臭素等を含む有機ハロゲン化合物の多くは特定化学物質または指定化学 物質に指定されるものも多く、 環境問題の原因物質となっているものも多い。 そ の代表例として、 ダイォキシン類、 ポリ塩化ビフエ二ル類、 クロ口ベンゼン等の /ヽ口ゲン置換された芳香族有機化合物ゃ亍卜ラクロ口エチレン、 トリクロロェチ レン、 ジクロロメタン、 四塩化炭素、 1 , 2—ジクロ口エチレン、 1, 1ージク ロロエチレン、 シス _ 1, 2—ジクロ口エチレン、 1, 1, 1 一トリクロ口エタ ン、 1, 1, 2—トリクロロェタン、 1, 3—ジクロ口プロペン等の脂肪族有機 ハロゲン化合物が挙げられる。
これら有機ハロゲン化合物を微生物の作用に基づいて分解する方法は各種提案 されている。
脂肪族有機化合物の分解方法については、 有機塩素系の汚染物質で汚染された 土壌又は地下水等の汚染部位にアンモニア酸化細菌を注入し、 前記汚染物質と前 記ァンモニァ酸化細菌とを接触させることを特徴とする有機塩素化合物の除去方 法が特開平 10— 1 80237号明細書に記載されている。
また、 有機塩素化合物の汚染物をを還元雰囲気状態でかつ中性条件で、 従属栄 養型嫌気性微生物の少なくとも 1種及び金属鉄の存在下で脱塩素させることを特 徴とする有機塩素化合物汚染物の浄化方法が特開平 10— 216694号明細書 に記載され、 土壌中に存在する従属栄養型嫌気性微生物としては、 メタン生成細 菌 (例えば、 Me t h a n o s a r c i n a属、 Me t h a n o t h r i x属、 Me t h a n o b a c t e r i u m属、 Me t h a n o b r e v i b a c t e r 属)、 硫酸還元細菌 (例えば、 De s u l f o v i b r i o属、 D e s u I f o t o ma c u I u m属、 De s u l f o b a c t e r i u m属、 D e s u I f o b a c t e r属、 De s u l f o c o c c u s属)、 酸生成細菌 (例えば、 C I o s t r i d i u m属、 A c e t i v i b r i o属、 Ba c t e r o i d e s属、 Rum i n o c o c c u s属)、通性嫌気性微細菌(例えば B a c i I I u s属、 La c t o b a c i I l u s厲、 Ae r omo n a s属、 S t r e p t o c o c c u s属、 M i c r o c o c c u s属) 等が例示されている。
しかしながら、 これらの方法では、 土壌や水溶液等の限られた系にしか適用で きず、 処理効率、 コスト、 簡便性等の点でいずれも問題があり、 処理を行う生物 の活性を維持するために、 温度、 pH、 栄養塩類、 溶存酸素等を適正にコント口 ールする必要があり、 酸素や栄養塩を連続的に環境中に添加する装置が必要とな る等の問題点があった。
また、 芳香族ハロゲン化合物の分解方法として、 微生物を使用した PCBの分 解法について記載されているが、塩素の置換位置により使用する微生物が異なり、 また分解も完全でなくクロ口ベンゼン等までしか分解できないという欠点を有し ている。 またこれらの微生物を使用した PC Bの分解はごく限られた適応範囲し か有していない。 更に、 ダイォキシン等の他の有機ハロゲン化合物の微生物によ る分解については確立されておらず、 化学的方法や物理的方法により分解してい るのが現状である。
また、 焼却灰、 ソーダガラス、 土壌、 半導体処理廃水、 めっき廃水等の固体、 液体にはクロム、 マンガン、 コバルト、 ニッケル、 亜鉛、 鉛、 水銀等の種々の重 金属を含んでいる。 これらの金属類を微生物の作用に基づいて除去したいという 要求がある。
さらに種々の有害物質を含有するものとして写真の廃液が挙げられる。
写真フィルムを現像し、現像したフィルムをプリン卜する一連の工程において、 まず、 ネガフィルム、 ポジフィルム、 リバーサルフィルム等の各種写真用フィル ムを現像し、 現像したフィルムを定着し、 水洗、 乾燥して印刷用フィルムを作成 する。 しかる後、 現像されたフィルムを印画紙にプリントし、 必要により後処理 を施して写真プリントを作成する。 現在、 一般写真の印刷においてはこの工程を 一連の行ういわゆる D P Eが主流となっている。
写真フィルムや印画紙、 これらを処理する各種用液には、 一般に感光材料とし てハロゲン化銀乳剤 (例えば、 臭化銀、 沃化銀、 沃臭化銀等)、 安定剤 (例えば ベンゾトリァゾール、 ァザインドリジン類等)、 色増感剤 (例えば、 オルソクロ マッチク系、 パンクロマチック系、 スーパーパンクロマチック系色素等)、 硬膜 剤 (例えばアルデヒド化合物) 等の種々の化学薬品が含まれている。
すなわち、 このようなフィルムを現像し、 現像したフィルムを印画紙にプリン 卜する際には発色現像、 流水水洗、 調整現像硬膜、 硬膜、 停止、 第一定着、 流水 水洗、 漂白、 流水水洗、 第二定着、 流水水洗、 水滴除去、 乾燥等の種々の工程を 経て行われ、 各工程において種々の有機■無機化合物が使用されている。
このようにして写真用フィルムをを現像し、 現像したフィルムを印画紙にプリ ン卜する際に、 これらの種々の化合物が反応した多種多様の化合物の混在する廃 液が排出される。
また、 通常現像したフィルムの状態により、 重クロム酸カリウム等のクロム系 化合物、 塩化第二水銀等の水銀系化合物等により補力作業を行ったり、 フエリシ アン化力リゥムとチォ硫酸ナ卜リゥムの混合物や過マンガン酸力リゥムによリ減 力作業を行っている場合もある。
近年、 写真が普及し、 その使用頻度が増加するにつれ、 このような廃液の量も 増加の一途をたどっている。 しかしながら、 これらの写真の廃液の処理について は、 もっぱら比較的高価な銀については回収されるものの、 その他の化合物につ いては多種多様であり、 また現像、 プリント処理は、 各社各様であり、 これらの 処理廃液に含まれる化合物の濃度、 種類も異なるため、 一度の処理によりこれら の化合物を分解することが可能な処理法については確立されていないのが現状で あ 。
さらに、 化学物質の無害化処理の要望のある分野として、 多孔質吸着材料が挙 げられる。
活性炭をはじめとする多孔質吸着材料は、 水処理用のフィルター、 脱臭用フィ ルター等の種々の分野において有害物質を処理するための吸着材料として使用さ れている。
これらの多孔質吸着材料は、 吸着材料自身が有する多数の孔に処理しょうとす る物質が吸着することによって吸着作用を示すが、 一定量の物質が吸着すると吸 着能が低減する。
係る使用済み多孔質材料は通常回収され、 再生されるが、 その際に吸着した有 害物質が多孔質吸着材料から系の外に放出してしまい、 再生の際に系外に放出さ れた有害物質を処理して無害化する手段を講じなければならず、 そのために莫大 なコストを要する。
現在、 川砂は、 コンクリート、 アスファルト等の細骨材として使用されてきて いるが、 その供給量は減少の傾向をたどっている。 また、 川砂それ自体も汚染が 進み種々の有害物質が含まれているのが現状である。
これに対して、 焼却灰、 ガラスの廃材を処理して骨材としてリサイクルする動 きがみられる。
焼却灰に含まれる鉛、 亜鉛、 重金属や有機塩素化合物等の有害物質が含有して いるためにこれを処理してスラグ状として骨材として使用している。 しかしなが ら、 このような処理方法においても有機塩素化合物等の有害物質が含まれてし、る 場合もあり、 前処理としてこのような有害物質を処理する必要があり、 また重金 属等の金属の除去が不充分である。 またもっぱら粒度の高い骨材として使用して いるのみであり、 細骨材として使用されるものではない。 また、 廃ガラスを粉砕して砂化して使用する方法では、 ガラス中に鉛等の不純 物を含んでいたり、粉砕して細骨材に使用するのには非常に高価なものであった。 また、 海岸の砂浜等に存在する塩分を含む砂は、 塩分を含んでいるので細骨材 には適さない。
—方最近になって、 コンクリート中に微生物を導入して下水等の水の浄化処理 能力を向上する方法が開発されている。 例えば、 セメントとにトルマリンを骨材 として使用し、 これに E M希釈液と E Mぼかしを混練した構造体素材が知られて し、る。 しかしながら、 この構造体素材は、 トルマリンという高価な物質を使用し ており、 その水の浄化作用も充分なものとは言えず、 さらに米糠等の E Mぼかし というものも導入しなければならないと言う欠点があった。 更に、 通常の骨材を トルマリンの代替品として使用することも記載されているが、 本発明者が調査し たところトルマリンを使用した場合に比較してその効果は格段に落ち、 実質的に 微生物を導入したことによる効果は認められなかった。
そこで、 安定した水の浄化作用を有する構造体に使用する骨材に対する要求が ある。
また、 微生物の作用を活用したいという要望のある分野として、 生ごみ処理が 挙げられる。
廃棄物は、 一般に家庭系の廃棄物と事業系の廃棄物とに分類され、 これらの廃 棄物は、 現在埋立て設備に投棄されるかあるいは焼却炉によリ燃焼して処理され ているのが現状である。 しかしながら、 埋立て用地の確保、 焼却炉から排出され る排煙中に含まれる有毒ガスや、焼却灰に含まれる有害物質等の処理問題があり、 廃棄物の処理問題は深刻化しつつある。
これらの廃棄物のうち、 家庭から排出されるごみの約 6 0 %以上を食べ残し、 料理かす等のいわゆる生ごみが占めていると言われており、 また事業系の一般廃 棄物において、飲食店、 食料品店、 コンビニエンスストアや宿泊施設、 医療施設 等の各種施設からも多量の生ごみが排出されている。 これらの生ごみは、 家庭系 のものと事業系のものとをあわせると処理すべき廃棄物全体の約 3 0 %を占める と言われている。
従って、 生ごみを有効に処理することは廃棄物を処理する観点から非常に重要 な課題であリ、 各地方自治体の最重要課題の一つとなっている。
生ごみを有効に処理する方法のうち、 微生物による生ごみの分解■発酵作用に 基づいた生ごみの処理方法が挙げられる。
このような微生物による生ごみ処理方法は、 1 ) 生ごみをコンポスト化する方 法と 2 ) 生ごみを C 02および H 20に分解して減容化または実質的に消滅させ る方法の二種類に大別される。
生ごみをコンポスト化する方法は、 一般にコンポスタと呼ばれるコンポス卜化 容器かあるいはコンポスタとプランターの両方の機能を併せ持つコンポプランタ 一と呼ばれる通気手段を有する容器を用いて行われる。 コンポスタは、 通気孔、 空間部、 保温層および蓋体からなる容器本体から構成され、 まず容器本体内に籾 殻等の資材 (±咅養土) を敷詰め、 その上に資材とほぼ同一の深さで生ごみを敷 め、その上にさらに培養土とバチルス菌、放線菌等を含んだ発酵剤をを投入する。 このようして、 培養土と生ごみを交互に積層して生ごみの発酵を促してコンポス ト化を行っている。 このようにして、 約 1ヶ月程度経過すると、 コンポスタ中の 生ごみが醱酵してコンポス卜が製造される。
このような生ごみの微生物によるコンポスト化方法は、 安価な設備で行うこと ができるが、 生ごみを堆肥化するために 1ヶ月以上という長期間を要し、 そして 一回で処理可能な生ごみの量が制限されているという欠点を有していた。 更に、 生ごみを処理した結果得られる肥料は悪臭が強く、 このような肥料を施肥した場 合、 フザリウム発生等の問題点があった。
一方、 微生物の生ごみの分解作用に基づいた家庭用や飲食店等の比較的少量の 生ごみ処理装置も開発されている。 このような生ごみ処理装置は、 通気孔、 保温 層、 曝気手段、 排水手段および攪拌手段を設けた密封容器から成り、 容器の底部 は、 多孔質プレー卜により仕切られている。 多孔質プレー卜の上には通気性を改 善するための資材が敷き詰められていて、 その上に微生物の菌床となり、 かつ生 ごみの水分を調整する目的でォガクズ等が敷き詰められている。 この容器内に所 定の微生物を投入して、 更に生ごみを投入した後に密閉し、 ポンプ等の通気手段 によリ曝気下で攪拌すると好気性微生物の作用によリ生ごみが二酸化炭素、 水と に分解され生ごみを減容■減量化するしくみとなつている。 このような処理装置においては、 1 曰に約 1 k gの生ごみを処理可能としてい るが、 実際の生ごみの減容率は 6 0 %~ 8 0 %と低く、 また使用する微生物ゃ媒 体も 3 ~ 4ヶ月に 1度交換する必要がある。また、生ごみを分解する際に亜硫酸、 窒素酸化物等が発生するためにその対策を講じる必要があり、 また処理装置も高 価なものであった。
また、 多量の生ごみを減量化する装置として、 生ごみの超減量化装置も開発さ れている。 この装置は、 攪拌手段、 通気手段、 脱臭手段等を有する容積約 5 0 0 〜6 0 0リツトルの密閉容器から成る。 この容器内にほぼ全量まで杉のチップ等 の木質材のチップを資材として投入し、約 2 0 k gの生ごみを投入して毎分 1 0 0 ~ 3 0 0リットルの空気を供給しながら間欠的に攪拌することによってチップ 内に生息する微生物により生ごみを分解している。
しかしながら、このような生ごみの超減量化装置も、 装置価格が非常に高く、 また小規模用の生ごみ処理装置と同様に生ごみを分解する際に亜硫酸、 窒素酸化 物等が発生するためにその対策を講じる必要があるという欠点を有していた。 上述の通りの微生物に基づく生ごみのコンポス卜化方法も生ごみの分解■減量 化処理方法もいずれも改善する余地がある。
ところで、 海水を淡水化する試みは数多く行われてきた。 海水を淡水化する方 法としては、 多段フラッシュ法や多重効用法や逆浸透法が挙げられる。 多段フラ ッシュ法や多重効用法は国家的プラント等の大規模プラントに有効であるが比較 的設備投資が少なくてすむ逆浸透法による海水の淡水化が現在主流となリつつあ る。
逆浸透法を用いた海水の淡水化としては、 例えば特開平 1 0— 1 2 8 3 2 5号 公報には海水を二段に直列配置した逆浸透膜分離装置に一台のポンプで通水して ホウ素濃度の低い淡水を得る方法が記載され、 特開平 1 0—1 2 8 3 2 5号公報 には逆浸透膜モジュールと逆浸透膜モジュールの集水管から製造された水を汲み 上げるための揚水ポンプを備えた淡水化装置が記載されている。
しかしながら、 これらの逆浸透法による海水の淡水化では海水を淡水化するの に莫大なエネルギーや複雑な設備が必要であり、 また処理可能な量も非常に制限 されていた。 また逆浸透膜そのものも非常に高価であり交換等のメンテナンスに 丄
も莫大な費用を要していた。
従って、 これらのアプローチとは別に微生物の作用に基づいた海水の淡水化方 法に対する要望がある。
以上述べたように、 微生物による作用に基づいて適用可能な用途分野は、 多種 多様である。 しかしながら、 いずれの用途分野においても、 全く確立されていな いかあるいはある程度確立されたものであってもその効果は充分なものではない。 このような観点から、 特に期待される菌群として本発明者が先に出願した特願 平 9一第 2 9 1 4 6 7号に記載の好気性微生物と嫌気性微生物とが共生した培養 液が挙げられる。 この培養液を使用したダイォキシン等のケミカルハザードの無 害化方法が提案されている。 しかしながらこれらの微生物群は、 セルラーゼ生産 性及び還元力について改善の余地があり、 また各種の用途を一元的に処理するた めに、 これらの菌群を担体として使用したいという要望がある。
発明の要約
従って、 本発明の目的は、 これらの用途に対応可能な微生物技術を確立し、 各 種農業分野や環境分野において優れた効果を奏する微生物群及びその代謝物を提 供することである。
本発明の別の目的は、 これらの微生物技術に基づいた農業分野や環境分野にお ける適用方法を提供することである。
また、 本発明のさらに別の目的は、 これらの微生物技術の新規の適用方法を見 出すことである。
すなわち、 本発明は、 下記の項目に関するものである。
1 . ( a ) 好気性微生物群、 (b ) 嫌気性微生物群、 (c ) 少なくとも 1種のヒ タタケ科に属する担子菌類とが共生し、 かつこれらの代謝物由来の酵素を含むこ とを特徴とする微生物培溶液。
2. 担子菌のヒラタケとタモギタケの交配により得られたものを含む上記第 1 項に記載の微生物培溶液。
3. さらに、 光合成菌類を含有する上記第 1項に記載の微生物培溶液。
4. さらに、 炭素分解酵素を含む上記第 3項に記載の微生物培溶液。
5. 上記第 1項に記載の微生物培溶液の製造方法であって、 下記段階: X 3
( 1 ) 動物の蛋白質を主成分とする蛋白質を破砕し、 前記破碎物と穀物および酵 母と混合して発酵させ、 前記発酵物を加熱し、 該加熱生成物を破砕し、 上記段階 により得られた破砕物に乳酸菌培養液または枯草菌培養液を添加して好気的条件 下で発酵を行うことによって調製された溶液中に好気性微生物群の供給源および 少なくとも 1種のヒタタケ科に属する担子菌類を含む担子菌のエキスとを投入し て、 好気的条件下、 常温、 常圧で無臭となるまで培養を行う段階、 及び
( 2 ) 上記培養液に嫌気性微生物群の供給源を投入し、 嫌気的条件下、 常温、 常圧で無臭となるまで培養を行う段階
を含むことを特徴とする微生物培溶液の製造方法。
6. 上記第 3項に記載の微生物培溶液の製造方法であって、 下記段階:
( 1 ) 動物の蛋白質を主成分とする蛋白質を破砕し、 前記破砕物と穀物および酵 母と混合して発酵させ、 前記発酵物を加熱し、 該加熱生成物を破碎し、 上記段階 により得られた破碎物に乳酸菌培養液または枯草菌培養液を添加して好気的条件 下で発酵を行うことによって調製された溶液中に好気性微生物群の供給源および 少なくとも 1種のヒタタケ科に属する担子菌類を含む担子菌のエキスとを投入し て、 好気的条件下、 常温、 常圧で無臭となるまで培養を行う段階、
( 2 ) 上記培養液に嫌気性微生物群の供給源を投入し、 嫌気的条件下、 常温、 常圧で無臭となるまで培養を行う段階、 及び
( 3 ) 光合成菌群を投入して嫌気的暗条件下で更に培養を続ける段階、 を含むことを特徴とする微生物培溶液の製造方法。
7. 上記第 4項に記載の微生物培溶液の製造方法であって、 下記段階:
( 1 ) 動物の蛋白質を主成分とする蛋白質を破砕し、 前記破砕物と穀物および酵 母と混合して発酵させ、 前記発酵物を加熱し、 該加熱生成物を破碎し、 上記段階 により得られた破砕物に乳酸菌培養液または枯草菌培養液を添加して好気的条件 下で発酵を行うことによって調製された溶液中に好気性微生物群の供給源および 少なくとも 1種のヒタタケ科に属する担子菌類を含む担子菌のエキスとを投入し て、 好気的条件下、 常温、 常圧で無臭となるまで培養を行う段階、
( 2 ) 上記培養液に嫌気性微生物群の供給源を投入し、 嫌気的条件下、 常温、 常圧で無臭となるまで培養を行う段階、 ( 3 ) 光合成菌群を投入して嫌気的暗条件下で更に培養を続ける段階、
( 4 ) 植物由来の炭素源を投入して培養を続ける段階、 及び
( 5 ) 段階 (4 ) で得られた培養液を段階 (3 ) で得られた溶液で 2〜4倍に希 釈する段階
を含む微生物培溶液の製造方法。
8. 溶解した炭素質中に上記第 4項に記載の微生物培溶液中に存在する微生物 群が共生し、 かつこれらの微生物の代謝物由来の酵素を含有する炭素質に基づく 担体。
9. 微細化した炭素質を上記第 4項に記載の微生物培溶液またはその水で希釈 した希釈液中に浸漬して上記炭素質を溶解させるとともに溶解した上記第 8項に 記載の担体の製造方法。
10. 多孔質吸着材料の孔中に上記第 4項に記載の微生物培溶液中に存在する微 生物群が共生し、 かつこれらの微生物の代謝物由来の酵素を含有する多孔質吸着 材料。
1 1. 上記多孔質吸着材料が活性炭に基づくものである上記第 10項に記載の多孔 質吸着材料。
12 多孔質吸着材料を上記第 4項に記載の微生物培溶液またはその水で希釈し た希釈液中に浸潰することを特徴とする上記第 1 1 項記載の多孔質吸着材料の製 造方法。
13. 上記多孔質吸着材料が活性炭である上記第 12項に記載の多孔質吸着材料 の製造方法。
14. 上記多孔質吸着材料が使用済多孔質吸着材料であり、 多孔質材料の孔中に 吸着された成分を分解するのに充分な時間、上記溶液又はその希釈液に浸潰して、 多孔質吸着材料の再生を同時に行う上記第 12 項に記載の多孔質吸着材料の製造 方法。
15. 上記第 10項に記載の吸着材料を含むフィルター。
16. 植物由来の繊維質を上記第 1項ないし第 4項のいずれか一つに記載の微生 物培溶液を水で希釈した溶液で噴霧又は漬浸して得られた土壌母材。
17. 植物由来の繊維質が針葉樹由来のォガクズ、 間伐材の破砕物、 倒木の破砕 物、 モミガラ、そば殻、 一次処理した建材またはこれらの混合物である上記第 16 項に記載の土壌母材。
18. 上記第 16項又は第 17項に記載の土壌母材を肥料と混合して、 処理すべき土 壌に 1 ~ 1 0 0 c m敷設することを特徴とする土壌の改良方法。
19. 処理すべき土壌が団粒構造を失った土壌である上記第 18項に記載の土壌の 改良方法。
20. 処理すべき土壌が砂漠化土壌または塩分を含有する砂地土壌である上記第 18 項に記載の土壌の改良方法。
21. 肥料を混合した植物由来の繊維質を処理すべき土壌に 1〜1 0 0 c m敷設 し、 上記繊維質に上記第 1項ないし第 4項のいずれか一つに記載の微生物培溶液 を水で希釈した溶液を噴霧することを特徴とする土壌の改良方法。
22. 処理すべき土壌が団粒構造を失った土壌である上記第 21 項に記載の土壌の 改良方法。
23. 処理すべき土壌が砂漠化土壌または塩分を含有する砂地土壌である上記第 2 1項に記載の土壌の改良方法。
24. 植物栽培用容器、 植物栽培用固形培地及び栽培植物から成る植物系を最適 化処理する方法であって
上記系を密封容器に完全に入れ、 上記密封容器を上記第 1項ないし第 4項のいず れか一つに記載の微生物培溶液を水で希釈した溶液で完全に満たした後に上記密 封容器を密封して、 培地中及び栽培植物に存在する病害虫及びその卵並びに植物 に対する有害微生物を殺傷するのに十分な時間保持することを特徴とする植物系 の最適化方法。
25. 栽培植物が若干かれかっているものであり、 上記植物系の蘇生を行う上記 第 24項に記載の植物の最適化方法。
26. 病原菌により犯された植物の蘇生方法であって、
( a ) 上記植物を掘り起こして、 植物全体を上記第 1項ないし第 4項のいずれか 一つに記載の微生物培溶液を水で希釈した溶液で十分に洗浄する段階、 及び
( b ) 上記掘リ起こした土壌に上記第 1項ないし第 4項のいずれか一つに記載の 微生物培溶液を水で希釈した溶液を噴霧する段階及び ( c ) 上記植物を植え直した後、 上記第 1項ないし第 4項のいずれか一つに記載 の微生物培溶液を水で希釈した溶液で浸潰した土壌をかける段階を含む植物の蘇 生方法。
27. 病原菌が胴枯病であり、 更に病原菌で犯された部分を外科的に削除し、 削 除した部分に上記第 8項に記載の担体のスラリーを適用して乾燥させる段階を含 む上記第 26項に記載の植物の蘇生方法。
28. 病原菌が菌核病、 根こぶ病、 紋羽病、 ふらん病、 うどんこ病またはサビ病 である上記第 26項に記載の植物の蘇生方法。
29. 上記第 1項ないし第 4項のいずれか一つに記載の微生物培溶液を水で希釈し た溶液又は上記第 8項に記載の担体を家畜の糞尿に添加して得られた有機肥料。
30. 更に針葉葉のォガクズを混合した上記第 29項に記載の肥料。
31 . 肥料が上記第 29項に記載の有機肥料を含む上記第 18項ないし第 21項のい ずれか一つに記載の土壌の改良方法。
32. 植物由来の繊維質を上記第 1項ないし第 4項のいずれか一つに記載の微生 物培溶液を水で希釈した溶液で漬浸して得られた生ごみ分解床。
33. 植物由来の繊維質が難分解繊維質を含む上記第 32項に記載の生ごみ分解床。
34. 上記第 32項又は第 33項に記載の生ごみ分解床に処理すべき生ごみを投入 して攪拌して生ごみを無臭の液体に分解することを特徴とする生ごみの処理方法。
35. 上記第 34項に記載の方法で得られた無臭の液体を含む液体肥料。
36. 上記第 8項に記載の担体を、 有害物質または塩分あるいはこれらの混合物 を含有する処理すベき固体と攪拌,混合し、 水洗することを特長とする固体の処 理方法。
37. 処理すべき固体が有害物質を含有する砂、 塩分を含有する砂である上記第 36項に記載の固体の処理方法。
38. 処理すべき固体が有害物質を含有する焼却灰又は飛灰である上記第 36項に 記載の方法。
39. 上記第 37項に記載の方法で処理された砂を含む細骨材。
40. 上記第 39項の細骨材から得られた還元型構造体。
41. 上記第 38項に記載の方法で処理された焼却灰又は飛灰を含む細骨材。 2. 上記第 39項の細骨材から得られた還元型構造体。
3. 上記第 8項記載の担体を含む還元型構造体。
44. 上記第 1項ないし第 4項のいずれか一つに記載の微生物培溶液を水で希釈 した溶液を富栄養化によって発生したァォコに噴霧することを特徴とするァォコ の除去方法。
45. 上記第 8項に記載の担体をセストンを含む水域に投入してセストンを凝集 させることを特徴とするセストンの処理方法。
46. 上記第 8項に記載の担体をへドロを含む水域に投入してへドロを分解する ことを特徴とする水域の処理方法。
47. 上記第 8項に記載の担体を含むセストン凝集剤。
48. 塩分を含む水を上記第 15項に記載の吸着材料を含むフィルターに 1回ない し複数回通過させて塩分を除去する段階を含むの液体の処理方法。
49. 前処理として、 上記第 8項に記載の担体を塩分を含む水に投入して攪拌す る段階を含む上記第 48項に記載の液体の処理方法。
50. 処理すべき塩分を含む水が海水であり海水の淡水化を行うことを特徴とす る上記第 48項又は第 49項に記載の液体の処理方法。
51. 上記第 8項に記載の担体を有害物質を含む液体に投入することを特徴とす る液体の処理方法。
52. 上記第 8項に記載の担体を有害物質を含む液体に投入して攪拌することを 特徴とする液体の処理方法。
53. 有害物質を含む液体を上記第 15項に記載の吸着材料を含むフィルタ一に 1 回ないし複数回通過させることを特徴とする液体の処理方法。
54. 有害物質を含む液体の処理方法であって、
a ) 有害物質を含む液体に上記第 8項に記載の担体を、 有害物質を含む液体に 投入する段階及び
b ) 段階 a ) で処理された液体を請求の上記第 15項に記載の吸着材料を含むフ ィルターに 1回ないし複数回通過させる段階を含む
液体の処理方法。
55. 段階 a ) を攪拌下で行う上記第 54項に記載の液体の処理方法。 56. 処理すべき有害物質を含む液体が、 重金属、 有機ハロゲン化合物、 または 石油を含む廃液、 メツキ廃液、 半導体廃液、 写真現像処理廃液、 染料含有廃液、 下水道水及びこれらを含む廃液である上記第 51項ないし第 55項のいずれか一つ に記載の液体の処理方法。
56. 処理すべき水を供給する供給口と、
1ないし複数本の上記第 15 項に記載の吸着材料を含むフィルターを含むろ過手 段と、
処理した水を溜める貯水槽と
を含む液体処理装置。
57. 更に貯水槽と接続されかつ処理した液体を上記ろ過手段へ供給する手段を含 み、 所定回数処理した後に処理水を上記フィルタ一に供給してフィルターを再生 する上記第 56項に記載の液体処理装置。
58. 攪拌手段を備えた前処理用の水槽を有し、 上記ろ過手段に液体を搬送する 手段を有する上記第 56項又は第 57項に記載の液体処理装置。
59. 上記第 1項ないし第 4項のいずれか一つに記載の微生物培溶液を水で希釈 した希釈液を処理すべき気体に噴霧することを特徴とする気体の処理方法。
60. 処理すべき気体を上記第 15項に記載の吸着材料を含むフィルターに通過さ せることを特徴とする気体の処理方法。
61. 処理すべき気体が有機化合物及び無機化合物由来の悪臭、 気体中に含まれる 有機化合物または無機化合物由来のケミカルハザードからなる群から選択される 上記第 59項又は第 60項記載の気体の処理方法。
62. 上記第 1項ないし第 4項のいずれか一つに記載の微生物培溶液を水で希釈 した希釈液を含む液体脱臭剤。
63. 上記第 4項に記載の微生物培溶液を水で希釈した希釈液を含む液体脱色剤。
64. 上記第 4項に記載の微生物培溶液を水で希釈した希釈液を建材に噴霧又は 浸漬することを特徴とする建材の有害物質の剥離方法。
65. 上記第 4項に記載の微生物培溶液を水で希釈した希釈液を含む防黴剤。
66. 上記第 4項に記載の微生物培溶液を水で希釈した希釈液を含む植物の蘇生 剤。 67. 上記第 8項に記載の担体を含む脱臭剤。
68. 上記第 10項に記載の多孔質吸着材料を含む脱臭剤。
69. 上記第 15項に記載の吸着材料を含むフィルターを含む水処理フィルター。
70. 上記第 69項に記載の水処理フィルターを含む水の浄水装置。
71 . 上記第 69項に記載の水処理フィルターをを内臓するシャワーヘッド。
72. 上記第 8項に記載の担体を含む水の清浄剤。
73. 上記第 10項に記載の多孔質吸着材料を含む水の清浄剤。
図面の簡単な説明
図 1は、 本発明の一実施態様において病害虫を処理するための装置の一例を説 明するための断面図であり、
図 2〜 3は、 本発明の一実施態様において液体処理を処理するための装置の 一例を示した断面図であり、 そして
図 4 ( a ) ~ ( d ) は、 本発明による吸着材料と従来の吸着材料の吸着能を 比較するためのグラフであり、 図 4 ( a ) は本発明の吸着材料にホルムアルデヒ ドを吸着させた際の吸着能を示すグラフであり、 図 4 ( b ) は従来の吸着材料に ホルムアルデヒドを吸着させた際の吸着能を示すグラフであり、 図 4 ( c ) は本 発明の吸着材料にアンモニアを吸着させた際の吸着能を示すグラフであり、 そし て図 4 ( d ) は従来の吸着材料にアンモニアを吸着させた際の吸着能を示すグラ フである。
発明を実施するための最良の態様
以下、 本発明を詳細に説明する。
微生物群と酵素との混合液 (O M E)
本発明の第一の形態は、 特定の培養基として本発明者が先に出願した生物活性 剤中で好気性微生物および特定の担子菌類とを培養し、 次いでこの培養液中で嫌 気性微生物を培養することによって得られた微生物群とその代謝物である酵素と の混合液 (以下、 O Mと略称する) およびさらにこれに植物由来の炭素源を添加 して炭素分解酵素を産生させた異なる微生物群が共生し、 これらの代謝物として の酵素と炭素分解酵素とを含む溶液 (以下、 O M Eと略称する) に関する。 (生物活性剤) 本発明における O M Eを調製するに当たって、 まず生物活性剤中に好気性微生 物群および担子菌類とを投入して、好気的条件下、即ちエアレーシヨン下、常温、 常圧で 2週間〜 5週間、 好ましくは 2 0日〜 3 0日、 これらの菌群の培養を行う が、 この際に使用される生物活性剤とは、 本発明者が先に出願した特開平 5— 2 4 4 9 6 2号公報に開示されている通り、 (1 ) 動物の蛋白質を主成分とする蛋 白質を破砕し、 (2 ) 前記破砕物と穀物および酵母と混合し、 (3 ) 前記発酵物を 加熱し、 (4 ) 該加熱生成物を破砕し、 (5 ) 段階 (4 ) により得られた破碎物に 乳酸菌培養液または枯草菌培養液を添加して好気的条件下で発酵を行うことによ つて調製される。 また、 このような生物活性剤は、 オリエントグリーン株式会社 よリバイタリーアミノンの商標名で販売されている。
(好気性微生物)
係る生物活性剤中に、 好気性微生物群および担子菌類を投入して培養を開始す るが、 この際の好気性微生物群は、 土壌等に一般に存在し酸素の存在下で生息す る微生物群を意味する。 これらの代表的な好気性菌群としてグラム陰性好気性細 菌群、 好気性有胞子細菌、 滑走性真正細菌等の群に属するバシラス、 サイトファ —ガセルロモナス等の自然界に一般に存在するものが挙げられ、 後述の本発明の 効果を阻害しないものなら特に制限されることはない。 最も一般的な好気性微生 物の供給源として、 広葉樹の葉等を自然界で腐葉化することによって得られた腐 葉土が挙げられ、 好ましくは腐葉化が進行中のものである。 このような好気性徴 生物供給源の生物活性剤への投入量は、 一般に生物活性剤 1 トン当たり、 腐葉土 1〜7重量%、 好ましくは 2 ~ 6重量%の範囲である。 供給源の投入量が上記範 囲より少ないと、 培養の進行に時間がかかる。 逆に上記範囲を超えると培養液が 粘稠し、 空気の通気が悪くなリ培養液が斑状となる。
(担子菌)
本発明において上記の好気性微生物群と一緒に投入する担子菌群として、 ヒラ タケ科に属するキノコ由来の担子菌類、 好ましくは本発明者が先に出願した 「新 規キノコ」 の名称で特開平 5第 2 5 2 8 4 2号公報に記載のヒラタケ科に属する キノコ由来の担子菌 (プレオロータスェヌと言う) を必須成分として用いる。 な お、 本発明の目的■効果を損ねない限り、 他のきのこ由来の担子菌を一緒に投入 してもよい。 なお、 このような担子菌は、 エキスの抽出エキスの形態で投入する のが一般的である。 この際の投入量も前記好気性微生物と同様に任意であるが、 好ましくは、生物活性剤 1 トン当たり、担子菌抽出エキスとして 1 ~ 7リットル、 より好ましくは 1〜5リットルの範囲である。 この担子菌の投入によりセルラー ゼ生産性が格段に高まる。
(好気性微生物および担子菌類の好気的培養)
このようにして生物活性剤中に上記好気性微生物群および担子菌類を投入して、 好気的条件下、 即ちエアレーシヨン下、 常温、 常圧で 2週間〜 5週間、 好ましく は 2 0曰〜 3 0日、 これらの菌群の培養を行う。 このようにして培養が完了する と、投入当初は異臭を放っていた培養液が無臭となる(以下、 OM原液と呼ぶ)。 この OM原液は、 上記の好気性微生物、 担子菌およびこれらの代謝物を含んだ培 養液である。
(嫌気性微生物)
弓 Iき続いてこのようにして調製されだ O M原液に嫌気性微生物を投入して更に 培養を続行する。 この際投入される嫌気性微生物として、 グラム陰性嫌気性真正 細菌及びグラム陽性発酵性真正細菌の二つのグループに属する菌群を含むことが 必須である。 このような嫌気性菌群の供給源として下水道汚泥が挙げられる。 こ のような嫌気性微生物供給源の生物活性剤への投入量は、 一般に O M原液 1 トン 当たり、 嫌気性微生物供給源 1〜 7重量%、 好ましくは 2〜6重量%の範囲であ る。 供給源の投入量が上記範囲より少ないと、 培養の進行に時間がかかり、 逆に 上記範囲を超えるとへドロ状物を含む粘稠度が増し培養液としては次工程の進行 を妨げる要素ともなり得る。 OM原液に嫌気性微生物供給源を投入した後に、 嫌 気的条件下、 即ちエアレーシヨンせずに放置、 一般には常温、 常圧で 2週間〜 5 週間、 好ましくは 2 0日〜 3 0日、 培養を続行する。 このようにして培養を続行 すると、 供給源に由来する異臭が消えて無臭の O M液が得られる。 この O M液中 には、 上記 OM原液の成分に加えて、 嫌気性微生物およびこれらの代謝物を含有 する。
(光合成菌群:任意成分)
なお、 嫌気性微生物の培養と同時に、 培養段階の途中、 または培養後のいずれ かの段階において、 所望に応じて、 光合成菌群を添加して嫌気的暗条件下で培養 を行うことが可能である。 このような光合成菌群の例としては、 シァノバクテリ ァ、 緑色硫黄細菌、 緑色非硫黄細菌、 紅色硫黄細菌等が挙げられ、 これらを培養 することによって、 還元力を増す。 また、 これらの任意の光合成菌群の添加量は 一般に、 ΟΜ液 1 トン当たり、 1 ~10リットル、 好まし〈は約 2〜5リットル の範囲である。
このようにして得られた ΟΜ液に約 2 ~ 4容量%の植物由来の炭素質を添加し て更に、 嫌気的条件下で約 3~10週間培養を続けると、 ΟΜ液中に炭素分解酵 素が産生されて 0 Μ Ε原液が製造される。
この ΟΜΕ原液を約 2〜4倍の容量の ΟΜ液で希釈することによって ΟΜΕ培 溶液 (以下、 ΟΜΕと略称する) が製造される。
さらに、 ΟΜΕは、 水または水性媒体で希釈して、 好ましくは 300〜500
0倍、 より好ましくは 500 ~ 3000倍に希釈して希釈液として使用すること もできる (以下、 ΟΜΕ希釈液と略称する)。
さらにまた、 ΟΜΕは下記の通りに担体中に吸着させて使用することも可能で ある。
(DCP: 0 ME成分含有粉末状担体)
本発明の第二の形態は、 微細化した炭素質を 0 M E又はその希釈液で処理して 炭素質を溶解させて得られた OME成分含有担体 (以下、 DC Pと略称する) に 関する。
OMEの特徴の一つとして、 前述の通り炭素質を溶解する作用を有する酵素が 含まれている。 即ち、 微細化した炭素質を OME (原液または水または水生媒体 で希釈した希釈液) で処理すると OM活性成分中の炭素分解酵素の作用によリ、 炭素質は溶解し、 OME活性成分 (酵素及び微生物) が炭素質中に吸収され特殊 の機能を有する OME活性成分を含有する担体が得られる。
DC Pの製造において使用される微細化した炭素質とは、 グラフアイ卜系炭素 および無定形炭素の微粉末を意味し、 一般に低温で、 好ましくは約 400°C以 下の低温で炭素源を燃焼して得られたものであり、 本発明の目的を達成するもの であればその出所は限定されるものではない。 DC Pの炭素源としては、 木質、 その破砕物 (木屑) および草木等のセルロー ス系カーボン、 炭水化物を含有する植物等に由来する植物系カーボン、 蛋白質を 含有する動植物に由来する蛋白質系カーボン、 石油を原料とする石油系カーボン が挙げられ、これらのカーボンを単独または組み合わせて使用することができる。 いわゆる生ごみとして廃棄されるこれらの各種由来のカーボンを使用するのが特 に好ましい。
上記微細化した炭素質と OME (またはその希釈液) とを混合■攪拌するに当 たって、 上記炭素質と OME希釈液との割合は、 本発明の目的■効果を損なわな い限り特に限定されるものではない。 また、 混合の手段も、 炭素質に微生物水溶 液を導入しても、 微生物水溶液中に炭素質を導入してもよい。 好ましくは、 微生 物水溶液中に攪拌下、 徐々に炭素質を導入する。
このようにして、 微細化された炭素質と菌群の水溶液とを混合 '攪拌すると、 炭素質が徐々に分解し、 攪拌下に 1〜 4週間程度保持すると炭素質がどろどろに とけたケーキ状またはスラッジ状の担体となり、攪拌の負荷が軽微なものとなる。 なお、 このケーキ状またはスラッジ状担体を、 そのまま使用することもできるが 例えば天日あるいは風乾によリ乾燥させて所望の水分量を含有するスラッジ状の 担体とすることもでき、 あるいは微粉末状の OM成分含有担体とすることもでき る。
(RCS :多孔質吸着材料)
本発明の第三の態様は、多孔質吸着材料を、 OME又はその希釈液中に浸漬し、 これを所定時間放置して、 0 ME活性成分を吸着材料の孔に存在する多孔質吸着 材料 (以下、 「RCS」 と略称する) に関する。
RCSにおける多孔質吸着材料を処理は、 OME活性成分を孔中に導入可能で あれば特に制限されるものではなく、 例えば、 活性炭、 SOGサンド、 泰澄石、 麦飯石、 医王石、 トルマリン、 各種セラミック類が挙げられるが、 好ましくは活 性炭である。 また、 本発明に使用される多孔質吸着材料の形状も特に制限される ものではなく、粒状であっても、繊維状であっても、また成形されていてもよい。 粒状であるのが特に好ましい。
また、 本発明に使用される多孔質吸着材料の多孔度は、 OME又はその希釈 液中に多孔質吸着材料を浸潰した際に、 孔中に 0 ME成分中の微生物群がハービ タツ卜 (住処) として生息し、 かつこれらの代謝物を吸着、 吸着して孔中に導入 することが可能であれば特に限定されるものではない。
また、 OMEまたはその希釈液を浸漬する多孔質吸着材料が使用済みの場合に は、 同時に吸着材料の再生も行うことが可能である。
この際の浸潰条件は、 特に制限されるものではないが水洗浄の後通常 8時間以 上、 好ましくは 24時間以上常温、 常圧下で、 曝気下あるいは曝気せずに行うこ とができる。 なお、 使用済の吸着材料の再生を同時に行う場合には 24〜72時 間浸漬するのが好ましい。 なお、 活性炭を吸着材料として使用する場合、 72時 間以上の浸漬を行うと、 炭素が溶け出してくるので好まし〈ない。
OM、 OME, DCP、 RCSの特徴:
1. 本発明において培養された OM中には、 OM活性成分、 即ち好気性微生物 群、 嫌気性微生物群、 担子菌類、 光合成菌群等の各種微生物に加えこれらの微生 物の代謝物である酵素が含まれている。
従来、 好気性微生物群と嫌気性微生物群とが共生することは不可能と言われて きており、 これらの微生物群が共生することは、 まったく驚くべきことである。 さらに驚くべきことに、 これらの微生物群が共生することによつて得られた代謝 物としての酵素を含む OMは、 これらの各種成分の相互作用によって下記の優れ た特徴を有する。 また、 OMの性質に加えて OMEは、 炭素質の溶解作用を有し ている。 OME活性成分中には、 炭素質分解酵素が含まれていると仮定できる。 このため、 本発明による独特の担体 (DCP) 及び吸着材料として使用すること が可能となる。
2. これらの OM活性成分は、 処理対象物によリ選択的に下記の微生物■酵素 反応を起こす (OM、 OME. DCP、 RCS)0
I . 加水分解反応
a. RCO-NHR' + H20 - RCOOH + R' NH2
b. RC0-0R' + H20 ^ RCOOH + 4R' OH
c. RCO-SR' + H20 ^ RCOOH + 4R' SH
d. R-CH-OR' + H20 -^RH +H0-CH-0R" (式中、 R、 R ' は各々独立して置換されてもよい炭化水素基を表す。)
I I . 開裂反応
a. RGOOH ^ RH +C02
b. HOCRH-CR' H-OH → RCH20H + R' CHO
(式中、 R、 R ' は各々独立して置換されてもよい炭化水素基を表す。)
I I I . 酸化還元反応
a. AH2 + B A + BH2
b. AH2 + 02 ^ A +H202
IV. 脱水素反応
a. CRR' H-CR"H-0H - RR" C=CR"H + H20
b. CRR' H-CR"H-NH2 RR" C=CR"H + NH2
(式中、 R、 R '、 R" は各々独立して置換されてもよい炭化水素基を表す。)
V. 脱水素ハロゲン化反応
a. RCX-CR' H →· RC=CR' + HX
(式中、 Rは置換されてもよい炭化水素基を表し、 そして Xはハロゲン原子を表 す。)
V I . 置換反応
a. RXCH2 + H20 RCH20H + HX
b. RXCH2 + HS— - RCH2SH + X—
(式中、 Rは置換されてもよい炭化水素基を表し、 そして Xはハロゲン原子を表 す。)
フエノ一ル性 0 Hおよびハロゲンの脱離反応
Figure imgf000028_0001
ア ピン酸塩
4. 難分解性物質の分解作用
針葉樹のおがくずやバーク等は植物の生育を阻害する物質であるフエノール類 やタンニン、 リグニン、 精油等を含有する。 生おがくず中のフエノール性酸や非 フエノール性酸、 高級脂肪酸等は種子根や側根の伸長を阻害する。 特におがくず の木質は、 CZN比 1 0 0 0〜1 5 0 0と極めて高く、 セルロースとリグニンが 強固に結合しているために難分解性である。 これらの難分解性成分を OM中の滑 走真正細菌、 粘液性細菌、 放線菌及び糸状菌等の連続的コメタボリズムによリ逐 次分解することが可能であり。このような微生物を共生させる資化性物質として、 OM、 OM E、 D C P, R C Sを使用することができる。
5. 重金属除去作用
OM Eは、 亜鉛、 鉛、錫、 ニッケル、 クロム、 銅、 コノ ル卜、 マンガン、水銀、 カドミウム、 半導体中のドロス成分等の重金属を除去する作用がある。 どのよう な機構で重金属を除去するのか明らかではないが、 本発明者によるめつき廃液や 半導体廃液の処理実験の結果これらの重金属類は実質的に除去可能であることが わかった。
6. 有機化合物の分解作用 (有機性有害物質の無害化、 脱色、 脱臭作用) 上記の脱ハロゲン作用により、 有機ハロゲン化合物、 例えばダイォキシン類、 ポリ塩化ビフエ二ル類、 クロ口ベンゼン等のハロゲン置換された芳香族有機化合 物やテトラクロロエチレン、 トリクロロエチレン、 ジクロロメタン、四塩化炭素、 1, 2—ジクロ口エチレン、 1, 1ージクロ口エチレン、 シス一 1, 2—ジクロ 口エチレン、 1, 1, 1—トリクロロェタン、 1, 1, 2—トリクロロェタン、 1, 3—ジクロロプロペン等の脂肪族有機ハロゲン化合物の分解が可能である他、 ァゾ染料等の色素の分解 (後述の実施例参照)、 メチルメルカブタン、 カブタン 類、 ィドール、 スカトール等の有機化合物の分解作用を有している。
7. 無機化合物の分解作用
窒素の還元:
OM及び OME中に含まれる嫌気性及び通性嫌気性化学合成従属栄養菌は、 嫌 気的呼吸か発酵のどちらかのしくみを持つ。 嫌気的呼吸は、 好気的代謝 (好気的 呼吸) と本質的に同じ生化学経路であり、 電子伝達鎖の最終電子受容体が酸素の 代わりに、 硝酸 (N03— )、 硫酸 (S04 2— )、 フマル酸又は卜リメチルアミンォ キシドである。 N03一、 S04 2_の場合、還元産物お最終電子受容体として働く。
NO 3一の還元の際、 脱窒菌により、 N03ーはN02—となリ、 更に還元されて N20となり、 最終的には N2ガスを生産する、 OM及び OME中の脱窒能を持 つ代表的轴菌は、 Rh o d o b a c t e r. Cy a n o b a c t e r i a、 C y t o p h a g a等である。
アンモニアの分解
OM又は OME中で下記反応によりアンモニアは無臭となる。
2NH3 + H20 + C02 (NH4)2C03
2(NH40H) + H20 + C02 - (NH4)2C03 + 2H20
アンモニア水の場合も、 炭酸アンモニゥムを呈し、 酸素の供給が少ない場合はァ ンモニゥムイオン(NH4_)は、 消化細菌等により亜硝酸から硝酸へと変化し無臭 となる。
2NH3 + 202 -> 2NH0 + H20
2NH02 + 02 2NH03
硫化水素 (H2S) の分解 2H2S + 02 2NH02 + H20
メチルメルカブタン (CH3SH) の分解
2CH3SH + 02 2CH30H + S
2CH30H + 202 ^ 2C02 +H20
8. 脱塩作用
本発明者の実験の結果、 海水中の塩化ナトリウムを実質的に除去することが可 能であることがわかった (下記実施例参照)。
9. ァォコの除去
富栄養化に伴い発生するァォコに OM又は OM E希釈液を散布することによつ て藻類を瞬間的に分解■除去することが可能である。
10. 病原菌からの植物の防除作用
胴枯病、 根こぶ病、 紋羽病、 ふらん病、 うどんこ病、 サビ病等の病原菌にに犯 された植物、 特に植物の根圏に OM又は OMEを散布、 洗浄することによってこ れらの植物を還元状態に変化させて、 病原菌の繁殖を停止ことが可能である。 ま た、 これらの病原菌を OME活性成分のうち滑走真正細菌及び担子菌の作用によ リ加水分解して除去可能である。
1 1. セストンの凝集作用
DCPは、 セストンの種類を問わず非常に優れたセストンの凝集能を有してい る。
12. へドロの分解作用
DCPは、 さらに底部に堆積したヘドロを分解する作用を有している。 かかる 作用についてのどのような反応機構で本発明の微生物含有担体がへド口を分解す るのかは明らかではないが、 底部に堆積したへドロを含む水に対して本発明によ る微生物含有担体を適用したところ、 適用後 2週間ないし 1ヶ月で底に堆積され たへドロが徐々にに除去される。
1 3. OM及び OME、 DCP、 RSCは、 全 p H範囲にわたって適用可能で ある。 また、 pHを中性に戻す作用がある (下記、 実施例参照)。
OM及び OMEは、 全 p H範囲にわたってこれらの作用を奏することが可能で ある。 本発明者の実験によると、 梅干製造の際に生じる強酸性の廃液処理におい て及び p H 14以上を有する N a OHを処理したところ、 各々処理可能であり、 また処理後の p Hは中性に近づいていた。
14. BOD、 CODの低減作用
OMEは、 BOD、 CODの低減作用を有する。
1 5. OMEは無害である。
OM Eについてマウスを使用した急性毒性試験の結果無害であることが分かつ た (実施例 1参照)。
OME、 DCP、 RCSの用途
以上記載の独特の効果を有する OME、 DCP、 RSCは、 下記の用途に適用 することが可能である。
A:農業分野への用途
これらの OME、 OME酵素、 OME希釈液、 DCP、 RCSは農業分野にお いて種々の用途へ適用可能である。 以下、 代表的用途について下記表 1にまとめ る。
OME、 DCPおよび RCSの用途 1 :農業分野への適用
Figure imgf000032_0001
(A-1 : OME土壌母材)
この態様において使用可能な土壌母材とは、 土壌に適用して団粒構造を蘇生す る植物由来のセルロース質であって OMEまたはその希釈液によってセルロース が分解され土壌化されるものであれば特に限定されるものではない。 このような セルロース質として、例えばおがくず、針葉樹林の葉、干草、バーク、ハスク (例 えば、 籾殻、 そば殻等)、 切り藁、 一次処理した建築廃材、 倒木等が挙げられ、 これらを単独であるいは二種類以上の混合物として使用することができる。 好ま しくは、 入手が容易であり、 安価である点からおがくず、 特に従来処理が困難で あった針葉樹林のおがくずである。 なお、 建築廃材、 倒木等の比較的大きい材料 の場合は、 適度の大きさに破碎して使用する。 この態様において、 上記土壌母材を、 処理しょうとする土壌に適用するが、 こ の態様においては、 通常の土壌の他に農薬等により疲弊化した土壌、 輪作におけ る休眠状態における土壌、 酸性雨等により酸性化された土壌、 砂漠化土壌、 河川 等の周辺における砂地土壌、 海浜等における塩分を含む砂地土壌等いずれにも適 用可能である。
土壌母材の敷設量は、 処理すべき土壌の種類、 気候、 栽培しょうとする植物等 に依存するが通常、 1 0 171なぃし1 0 0 0 171、 好ましくは 2 c m〜5 0 c mであ る。
ついで、 上記の通り土壌母材を敷設した土壌に O M E、 好ましくはセルラーゼ 生産能が高められた 0 M Eを噴霧して処理される。
本発明者の実験によると、 どのような差異があるか判明できないが従来嫌気性 細菌群と好気性細菌群とが共生しかつセルロース分解能があるといわれる培養液 を使用しても本発明の目的とする効果は得られず、 担子菌培溶液を同時に使用す ることにより目的とする効果が得られたことは驚くべきことである。
0 M Eは、原液で使用することも可能であるが、通常水で 5 0 0〜 2 0 0 0倍、 好まし〈は約 1 0 0 0倍に希釈して使用される。 本発明においては、 乾燥した土 壌原料が完全に湿った状態になるまで噴霧すればよい。
このようにして、 目的とする土壌に本発明による土壌母材を適用し、 土壌母材 に O M E、好ましくはセルラーゼ生産能が高められた 0 M Eを噴霧し、数日以上、 好ましくは 1ヶ月以上、 より好ましくは 2ヶ月以上放置すると、 土壌は植物栽培 可能な状態へと改良される。 なお、 土壌の改良の進行が著しくないときには O M Eを追加噴霧してもよい。 この喷霧工程を必要に応じて行うが、 この土壌母材に 下水道汚泥、 家畜糞等を混合して月に 1〜3回程度切り返し工程を行うことで良 質な有機土壌を提供できる。
これらの土壌母材は、 OM Eの有害物質分解作用により、 処理すべき繊維質、 生ごみ等中に存在する有害物質を完全に分解可能である点を第一の特徴とする。 例えば、 農薬を散布して得られた果樹等の落ち葉、 ワラ等や、 抗生物質を投与し た家畜■家禽類の肥料から得られた糞尿を肥料として収穫された作物由来の繊維 質に OM E希釈液を噴霧して堆肥化することによってこれらの成分が完全に無害 化される。 また、 第二の特徴として、 通常の土壌以外に、 農薬等により疲弊化し た土壌、輪作における休眠状態における土壌、酸性雨等により酸性化された土壌、 砂漠化土壌、 河川等の周辺における砂地土壌、 海浜等における塩分を含む砂地土 壌等に適用して良好な作物栽培土壌へと転換できる点である。
この土壌母材を使用することによって還元化土壌となり、 種々の病原菌及び 害虫をよせっけない作物生産が可能になる。
特に驚くべきことに、 塩分を含有する砂地土壌、 すなわち、 砂浜においても 各種作物の栽培が可能となった。
なお、 この態様において、 植物由来のセルロース質を予め土壌に適用してか ら O M Eの希釈液を散布したが、 本発明の別の態様いおいて、 これらのセルロー ル質と 0 M Eを予め混合することも可能である。
A— 2 植物系の病害虫からの防除
O M Eを使用して植物栽培用容器、 植物栽培用固形培地及び栽培植物から成る 植物系の最適化処理方法が提供される。 即ち、 上記系を密封容器に完全に入れ、 上記密封容器を OM E又は O M E希釈液で完全に満たした後に上記密封容器を密 封して、 培地中及び栽培植物に存在する病害虫及びその卵並びに植物に対する有 害微生物を殺傷するのに十分な時間保持することにより植物系は、 上記病害虫の 防除が可能である。
また、 非健康体の栽培植物、 すなわち枯れかかった植物に対して処理すること が可能である。 また、 密封容器が透明であり、 かつ太陽光の曝露下で保持するこ と ή《好ましい。
同様に、 OM Εを使用して植物用又は担子菌類の栽培用の固形培地の処理を行 うことが可能である。 即ち、 培地を Ο Μ Ε又は Ο Μ Ε希釈液で培地中に存在する 病害虫及びその卵を殺傷するのに十分な時間浸潰することによって、 固形培地中 の病害虫又はその卵を殺傷することが可能となる。
以下、 植物の病害虫に対する Ο Μ Εの防除について図面に基づいて説明する。 図 1は、 本発明の植物栽培用容器、 植物栽培用固形培地及び栽培植物から成る 植物系の最適化処理方法を説明するための断面図である。
図 1に示す通り、 まず病害中の防除においては植物栽培用容器 1、 植物栽培用 固形培地 2及び栽培植物 3から成る植物系 Sを密封容器 4に入れるが、 この際に 本発明において適用可能な植物系 は、 特に限定されるものではなく、 固形培地 2が敷設された容器 1内で栽培される全ての植物 3に適用される。 本発明におい て適用可能な植物の代表例としては、 マツ、 ウメ等の樹木、 一年草及び多年草の 各種植物、 各種ハーブ類、 ィモ類、 トマ卜、 パセリ、 ナス等の食用植物等が挙げ られる。 植物栽培用固形培地は、 例えば黒土、 落ち葉等を腐敗させた培養土等が 挙げられ、 通常はこれらの植物 3に対応して好適な固形培地が選択されて栽培さ れている。 また、 これらの植物 3を栽培するための容器 1も多種多用であり、 例 えば植木蜂、 プランタン等、 木質、 セラミック、 プラスチック製の各種容器が適 宜選択される。
このような植物系 Sを密封容器に入れるが、 この際の密封容器は植物系を完全 に挿入して密封することが可能であり、 かつ後述の培養液または希釈液を充填し ても液が漏洩しないものであれば形状や材質は特に制限されず、 通常のプラスチ ック製容器の他、 袋状物を使用することも可能である。 植物系を挿入し、 培養液 又は希釈液を充填後に、 太陽光に曝しながら保持可能であり、 かつ保持の際に植 物系の状況が観察できるという観点から、 少なくとも一部が透明な容器を用いる のが好ましく、 特に全体が透明な容器が好ましい。 また、 植物系 Sを容器内に 1 つ入れることも可能であるが、 挿入空間がある場合には 2つ以上いれることも可 能である。
この態様において、 上記密封容器 4内を O M E又は O M E希釈液 5で満たす。 このような OM E (希釈液) 5は、 病害虫、 その卵、 有害微生物を殺傷する能 力、 農薬等の化学物質を分解する能力、 及び土壌等の培地を改善する能力を有し ている。 通常水ゃ特公平 4- 4 2 3 5 5号公報に記載の培養液を使用して植物系 Sを保持すると、 栽培植物 3が根腐れを起こすのに対してこのような OM E溶液 5を使用すると驚くべきことに、 根腐れをおこさないことを見出した。
このようにして O M E (希釈液) 5で植物系入りの密閉容器 4内を満たした後、 密閉して所定時間保持を行う。 この際の処理時間は、 培地中及び栽培植物に存在 する病害虫及びその卵を殺傷するのに十分な時間保持するが、 この時間は、 植物 の種類、 固形培地の種類、 病害虫の発生状況等により異なるが、 通常は数分ない し数時間のオーダー、 例えば 2分ないし 1 0時間保持される。 このようにして 0 M E (希釈液) 5に植物系 Sを浸すことによリ病害虫、 その卵は殺傷されるのと 同時に培地の活性化が行われる。
なお、 この操作は、 1回だけ行うことも可能であるが、 日数をおいて数回行う ことも可能である。 更に、 植物 3が若干枯れかかっている場合には、 本発明の処 理によリ賦活化され蘇生することも可能である。 また、 このようにして処理する と、 固形培地 2は、 植物の生命が終了した後も繰り返し使用することが可能とな る。
この態様において、 植物系だけでなく、 植物栽培用の培地又はきのこ栽培用の 培地を O M Eで処理して、 媒地の病害虫からの防除を行うことができる。 処理方 法については密閉容器を必ずしも使用する必要がない点と栽培植物がないので処 理時間を長くして培地の活性化をより完全に行うことができる点以外は上記の植 物系の態様とほぼ同様であるので繰り返しの説明は省略する。 また、 きのこ栽培 において培地中に伝播したダニ等の有害虫を駆除して再利用することも同様にし て可能である。
このようにして処理を行うと、 培地中に存在する病害虫及びその卵を殺傷し、 これらの繁殖を抑制するのと同時にその抑制効果を長時間持続させることが可能 であり、 また植物用又は菌糸類の栽培用の固形培地を繰リ返し使用することが可 能となる。
A— 3 植物系の病原菌からの防除
さらに、 同様にして OM Eを使用して植物の根の部分及び土壌を洗浄すること によって紋葉病、 胴枯病等の各種病害微生物によリ立枯れ状態の植物を蘇生する ことが可能である。
この態様において、 胴枯病、 根こぶ病、 紋羽病、 ふらん病、 うどんこ病、 サ ビ病等の病原菌に犯された植物、 特に植物の根圏に OM又は O M Eを散布、 洗浄 することによってこれらの植物の根圏が酸性でかつコンクリート化した土壌をや わらかいものとし、 還元状態に変化させて、 病原菌の伝播を阻止することが可能 となった。 また、 これらの病原菌を O M E活性成分の担子菌の攻撃を受けて死滅 した後、 加水分解酵素で分解する。 具体的には、 これらの病原菌や害虫に犯された植物全体、 OME希釈液の中に 漬浸する。 このように処理した植物は蘇生化してくる。
なお、 胴枯病に犯された植物においては、 犯された部分を削ぎ落とし、 DCP スラリーを塗布,乾燥してその部分を覆うことが好ましい。
A— 4 家畜 ·家禽由来の糞尿の堆肥化
OM E希釈液又は D C Pを家畜の糞尿に添加することによって、 これらの糞尿 が無臭化されるとともに、 良好な肥料が得られる。 この時針葉樹のォガクズをい つしよに混合 ·攪拌することで理想的な堆肥が得られる。
B. 環境分野への用途 (含む海水の淡水化)
これらの OME、 OME酵素、 OME希釈液、 DCP、 RCSは農業分野に加 えて環境分野において種々の用途へ適用可能である。
1 ) 固体への適用方法 (スラリー、 生ごみ処理を含む)
0 M E活性成分に基づいた環境への対応例を下記表 2に示す。
表 2
OME、 DCPおよび RCSの用途 2 :環境分野への適用
(固体に対する適用)
Figure imgf000037_0001
B— 1 ) 多孔質吸着材料の製造及び再生
多孔質吸着材料の製造及び再生は、 上記 RCSの項目において使用済みの吸着 材料の再生と同様であるので、 詳細は省略する。 B - 2 ) 生ごみ処理
この態様において、生ごみを O M Eに基づいて作製されだ生ごみ処理用資材 (生 ごみ分解床) を用いて、 生ごみを処理を行うことができる。
(植物由来セルロース質物質)
本発明における生ごみ処理用資材は、 植物由来セルロース質物質を基礎とする が、 この植物由来セルロース質物質としては、 上記 A— "I項に記載した土壌母材 と同様である他、 茸栽培の廃床が挙げられる。 これにモミガラ等の難分解性の素 材を混合すると、 好ましくは約 1対 0. 3〜 2の割合で混合すると、 空気の流通が よくなるので好ましい。
このようにして、 上記植物由来セルロース質物質に O M E又は O M E希釈液液 を適用すると、 上記植物由来セルロース質物質を菌床として上記嫌気性細菌と好 気性細菌とが共生した状態で菌群が生息する。 本発明において、 このような系を 生ごみ処理用資材 (生ごみ分解床) と呼ぶ。
(生ごみの処理方法)
このようにして製造された生ごみ処理用資材と生ごみとを接触させると、 生ご み処理用資材中の上記の O M Eの加水分解酵素及び微生物群によって、 生ごみが 分解,醱酵するとともに、 生ごみ中の悪臭が完全に除去されるのと同時に、 硫化 物、 窒化物の悪臭成分も完全に分解される。
なお、 この態様による生ごみ処理方法において、 上記生ごみ処理用資材を敷設 した中に単に生ごみを投入して攪拌するだけで、 生ごみを無臭化処理することが 可能である。 また、 生ごみの上に更に上記植物由来セルロース質物質を適用する ことも可能であリ、 このセルロース質物質に更に O M E液を適用することも可能 である。 あるいはこの態様の生ごみ処理用資材を適用することも可能である。 特 に生ごみの上に上記セルロース質物質を適用して更に O M E液を適用するかある いはこの態様の生ごみ処理用資材を適用すると、 生ごみの処理の際に悪臭が除去 されるので好ましい。
また、 生ごみの処理の際に、 間欠的に、 1曰 2〜3回、 5分〜 1 0分間攪拌す るのが好ましい。 なお、 この処理方法は、 開放系で行うことも密封容器内で行う ことも可能であり、 所望に応じて適宜選択される。 もちろん、 既存のコンポスタ 一、 コンポプランターにおける資材の代替としてこの態様の生ごみ処理用資材と 使用することも可能である。 また、 容器の下部を多孔質プレートで区切り、 分解 した液体を排出するための排出口を設けるのが好ましく、 攪拌手段を設けた容器 を使用するのがより好ましい。
従って、 従来のコンポスタゃコンポプランタ中で生ごみを処理することも可能 であり、 また例えば生ごみの埋め立て処分場にこの態様の生ごみ処理用資材を適 用して、 生ごみ処理することも可能である。 このように処理することによって、 悪臭を発することなしに生ごみが容易に処理可能となる。
このようにして数時間放置すると生ごみの成分によリ異なるが、 生ごみは投入 してすぐに分解が開始し無臭となり、 約 2 4〜 3 6時間後に完全に液体となる。 この液体は、 無臭の優れた液体肥料として適用することが可能である。
以上説明した通り、 この態様によると次の優れた効果を発揮することが可能で
1 ) この態様による生ごみ処理用の資材は、 植物由来セルロース質物質と O M E又はその希釈液液を浸漬するという簡単な方法で製造することが可能である。
2 ) 生ごみ処理用の資材は、 既存のコンポスター、 コンポプランター、 生ごみ 処理装置の生ごみ分解床としてそのまま使用可能である。
3 ) 得られた生ごみ処理用の資材と生ごみとを接触させると、 臭気の発生を伴 わず液体へと処理可能であり、 安価でかつ容易に生ごみを処理可能である。
4 ) 得られた液体は、 良好な無臭の液体肥料として使用可能である。
B— 3及び 4 D C Pによる固体処理
D C Pを、 塩分、 有機系有害物質及び重金属から成る群から選択された少なく とも 1種の除去すべき成分を含有する砂と混合 攪拌して、 上記砂中の除去すベ き成分を実質的に除去可能である。
この態様において、 塩分、 有機系有害物質及び重金属から成る群から選択され た少なくとも 1種の除去すべき成分を含有する砂とは、 海砂等の塩分を含有する 砂及び 又は亜鉛、力ドミゥム、ニッケル等の重金属や芳香族ハロゲン化合物(例 えば P C B、 ダイォキシン類)、 ハロゲン化炭化水素(例えば、 ジクロロメタン、 トリクロロメタン、四塩化炭素等)、ァゾ化合物等の有害物質を含む砂を意味し、 また実質的に除去するとは、 これらの塩分や有害物質が政府■地方公共団体によ る行政指針以下の値にまで除去されることを意味するものである。
このようにして処理を行うと、 塩分や有害物質を含有する砂から塩分や有害物 質を実質的に除去することが可能であリ、 得られた砂と D C Pの混合体をコンク リート等の構造体の細骨材の一部または全部として使用すると、 水の浄化作用に 優れた還元型の構造体が得られる。
D C Pを、 焼却灰に混合 '攪拌して、 上記焼却灰中の有害物質を実質的に除去 することを特徴とする焼却灰の処理方法に関する。
このようにして処理を行うと、 上記焼却灰中の鉛、 亜鉛等の重金属や有機ハロ ゲン系化合物等の有害物質を実質的に除去することが可能であり、 得られた焼却 灰と D C Pの混合物をコンクリート等の構造体の細骨材として再使用することが でき、 同様にして水の浄化作用に優れた還元型の構造体が得られる。
D C Pを、 塩分、 有機系有害物質及び重金属から成る群から選択された少なく とも 1種の除去すべき成分を含有する廃ガラスやガラス製造工程において排出さ れる廃ガラスと混合,攪拌して、 上記砂中の除去すべき成分を実質的に除去する ことを特徴とする廃ガラスやケーキ状物の処理方法に関する。
このようにして廃ガラス、 例えばソーダ石灰ガラスや、 ガラス製造工程におけ るソーダ灰製造プラントより発生する炭酸カルシウムを主成分とするケーキ状副 産物を処理すると、 塩化ナトリウム、 鉛、 ソーダ灰等の除去が可能であり、 スラ グの形態で粗骨材として使用したり、 微細化して細骨材として使用することが可 能となる。
B— 3 塩分を含有する砂
この態様において、 D C Pを用いて塩分を含有する砂、 焼却灰、 川砂等の処理 を行い D C Pと細骨材の混合物とする。
塩分を含有する砂を処理する場合、 砂 1 トン当たり、 少なくとも 1 k g、 好ま しくは 1〜4 k gの D C Pと混合する。 このようにして塩分を含有する砂と D C Pを混合■攪拌すると、 砂中に含まれる塩化ナ卜リゥム等の塩分が除去される。
D C Pの添加量が上記の量より少ないと塩分の除去が不充分である。 また添加量 の上限を設けないのは、 得られた砂を細骨材として使用する場合の用途、 すなわ ち、 還元型の強い構造体の製造を要求する場合や、 単に塩分を処理するだけでよ い場合等の要求の度合いにより適宜選択できるからである。 一般には砂 1 トン当 たり 2~5 kgで充分である。 また、 混合■攪拌は乾燥状態で行っても良いが、 水を添加してスラリー状で混合するのが好ましい。 例えば、 通常の混練機、 ミキ サーゃ大機ゴム工業株式会社より MDサイクロンの名前で市販されている装置を 用いて DCP、 処理すべき砂のスラリーを攪拌■接触させることによって処理可 能である。
有害物質を含有する砂
この態様において、 更に有害物質を含有する川砂や海砂を DC Pにより処理す ることも可能である。 対象となる有害物質として亜鉛、 鉛、 クロム、 カドミウム 等の重金属や有機ハロゲン化合物 (PCBやダイォキシン、 クロロフ Iノール等 芳香族有機ハロゲン化合物、 モノまたはポリハロゲン炭化水素等) のケミカルハ ザードを処理することが可能である。 この場合、 D CPの添加量は、 有害物質の 種類、濃度によって適宜選択されるが、一般には塩分を含有する砂と同様である。 また、 塩分や有害物質をほとんど含んでいない川砂等を処理することもこの態 様の対象となる。
すなわち、 この態様は、 砂と DCPとの混合物全てを包含するものであり、 こ のような混合物を細骨材として使用すると、 後述の通りの還元型の優れた構造体 が得られる。
B— 4 焼却灰
この態様において、 塩分や有害物質を含有する砂と同様に焼却灰を処理するこ とも可能である。 ここで焼却灰とは、 飛灰を含むすべの焼却灰を意味する。 これ らの焼却灰中には、 鉛、 亜鉛、 クロム、 水銀、 その他各種重金属等の金属類ゃダ ィォキシン、 PCB等のケミカルハザードが含まれている。 これらの焼却灰を処 理する場合、 D CPの添加量は焼却灰中に含まれる有害物質の種類やその量に依 存するが、 一般に焼却灰 1 トン当たり、 DCP1〜5k g程度である。 このよう にして処理を行うと、 鉛、 亜鉛、 クロム等の重金属等の金属を吸着して安定化し た状態とすることが可能であり、 またダイォキシン、 PCB等の有機ハロゲン化 合物が実質的に除去される。 なお、 この態様における焼却灰の処理は、 処理した混合物を細骨材として使用 する以外にも、 金属を除去した後に埋め立て等の従来公知の方法により処理する ための前処理として活用することも可能である。
また、 DC Pと焼却灰を混合した場合、 D CPの微生物群及び酵素の作用によ リ pH値が自動的に調整されるので、 埋め立て等に供するもにも、 細骨材として 再使用するのにも安全である。 また、 焼却灰の処理方法は、 砂の場合と同様の方 法を使用することができる。 更に安全性を求めるときは使用済みの R C Sを洗浄 後再度 OME液に浸潰して細骨材として混合使用する。
(D CP混合物の性質)
このようにして処理された DC Pと砂または焼却灰との混合物は、 OME、 D CP、 RSC等と同様な優れた性質を有する。
従って、 D CP混合物で製造された構造物は、 一般下水道、 農業用水用の下水 道等に用いると、 pHを中和し、 BOD、 CODを低減する作用を有しているの で、 汚水の浄化作用を有する極めて良好な構造体として使用可能である。 なお、 生コンクリート原料中に DC Pを直接添加しても同様の効果の構造体が作製でき る。
以上、 本発明において塩分や有害物質を含有する砂や焼却灰を DC Pに処理し て、得られた混合物を主として細骨材として使用することについて述べてきたが、 例えば場合により塩分や有害物質を含有する砂や焼却灰の一部または全部を細骨 材として使用し、 これに DC Pおよび通常のコンクリート原料を混ぜて、 例えば 混練機ゃコンクリートミキサー内で処理すると、 有害物質の処理と同時に生コン クリートの製造を行うことも可能であり、 これも本発明の範囲内である。 この方 法によると、 例えばスラリー化した砂や焼却灰等の処理物を乾燥する必要がなく なる点で利点を有する。
以上の述べたように、 第一の態様によると、 D CPを添加、 混合して攪拌する という単純な方法で、 塩分や有害物質を含有する砂から塩分や有害物質を実質的 に除去することが可能であり、 得られた混合物は好適な細骨材として使用するこ とができる。
また、 別の態様によると DC Pを添加、 混合して攪拌するという単純な方法で 焼却灰から有害物質を除去することが可能であり、 このようにして処理された焼 却灰を従来の方法で二次処理したり、 あるいは直接優れた細骨材として使用する ことができる。
また、 得られた DC P混合物は、 水の浄化作用に優れた還元型の構造体を製造 するための細骨材として使用することが可能である。
また、 この態様において、 塩分や有害物質の処理と同時に還元型の構造体用の 生コンクリートを製造することも可能であり、 このようにすると乾燥等の工程を 必要とせず、 直接有害物質の処理と同時に生コンクリートを製造可能となる。
40. 請求の範囲第 39項の細骨材から得られた還元型構造物。
2 ) 液体への適用方法
環境分野への用途 (含む海水の淡水化)
本発明における OME活性成分の作用に基づいた液体への対応例について下記 の表 3に示す。
表 3
OME、 D CPおよび RCSの用途 3 :環境分野への適用
(液体に対する適用)
適用技 適用 !方法 内容
6 ァォコの除去 OME ί a OMEの散布
7 セストンの凝 DC P i b D CPの散布
8 へドロの除去 DC P I b D CPの散布、
9 石油等による DC P、 b、 DC Pの散布、 RCSを含むフィルターに通 汚染海域の処 RCS c 過
10 海水の淡水化 DC P、 DC Pによる予備処理、 RCSを含むフィル
RCS ターに通過
11 廃液処理 DCP、 b、 DC Pによる予備処理、 RCSを含むフィル
RCS c ターに通過。 写真廃液、 半導体廃液、 めっき 廃液等の化学品由来の廃液、 漬物等の食品由 来の廃液、 染料等の色素廃液の無害化■脱臭 に対応可能、 更に養豚、養鶏、 畜産由来廃液、 下水等の処理にも対応可能 液体の処理方法は、 大別して、 a) OMEを散布する方法(ァォコの除去等)、 b) DC Pを散布する方法、 c)所望により予備処理として DC Pを散布した後、 RCSを含むフィルターに通過させる方法に分けられる。
B-6 ァォコの除去:方法 a)
湖沼、 池等の富栄養化によりした発生したァォコ等の藻類が水面に浮遊してい る処理液体に OME希釈液を噴霧すると、 瞬間的にァォコが除去される。
B— 7 セストンの凝集:方法 b
この態様においては、 これらのセストンを含む水、 例えば、 下水道処理廃水、 食品加工処理廃水、 養豚および畜産等の屎尿処理廃水、 富栄養化された湖沼の水 を含む有機性廃水および化学工場からの廃水を含む無機性の廃水等の水に上記微 生物含有担体を適用することによって、 セストンが凝集し、 成分の比重により、 沈降または浮遊する。 これらの沈降物および まはた浮遊物をろ過等により分離 することによって水の処理を行うことが可能であり、 従来の高分子系の凝集剤や 硫酸バンドを使用する場合と異なって二次処理する必要がなくなる。 本発明にお いては、 無機系■有機系に関わらず各種セストンを処理することができる。 例え ば、 セストンを多量に含有する濁った湖沼由来の水 1リットルに対して DCP数 ミリグラムを適用して攪拌すると、 水の透明度が増加し、 上層および下層には D C Pによリ浮遊した浮遊物および沈殿物が観察される。
B-8 ヘドロの除去:方法 b)
DCPは、 さらに底部に堆積したヘドロを分解する作用を有している。 かかる 作用についてのどのような反応機構で本発明の微生物含有担体がへド口を分解す るのかは明らかではないが、 底部に堆積したへドロを含む水に対して本発明によ る微生物含有担体を適用したところ、 適用後 2週間ないし 1ヶ月で底に堆積され たへドロ分が徐々にに除去される。
B— 9 石油を含む水の処理 方法 b)
DCPを使用して、 セストンと同様に 石油を含む水、 特に重油に汚染された 海水や河川から重油を除去することが可能である。 すなわち、 DC Pは重油を選 択的に吸着する。 本発明の担体に吸着された重油は 0 ME活性成分により炭酸ガ ス、 水等へと分解し無害化される。 また、 重油中に存在する硫黄分についても、 海水中に存在する硫黄細菌等の作用により発生した亜硫酸ガス等の成分を瞬時に 分解するとともに、 硫黄酸化細菌、 硫酸還元菌の相互作用により硫化水素の発生 をみるが、 OME希釈液を散布することによって瞬時に分解して無害化する。 0 ME活性成分は脱ハロゲン作用を有しているのでこれらの成分を含んだ重油も無 害化される。
B-1 0 海水の淡水化:方法 c)
a) DCPを、 処理すべき海水に強制攪拌下に適量投入し、 適当な時間強制 攪拌し、 そして
b) 必要に応じて工程 a) を繰り返し行った後、 工程 a) で処理された海水 を RCSから成るフィルターに通過させることによって海水を淡水化するこ とが可能である。
(海水の DC P処理段階)
本発明者の更なる研究の結果一定の条件下で海水中の塩分を除去する作用を有 することを見出した。
すなわち、 かかる DC Pを強制攪拌下に海水と混合■強制攪拌するが、 その 際の攪拌手段は、 DC Pと海水とが十分接触し、 D CPの作用により海水の淡水 化が行われるものであれば特に制限はなく、 例えば、 ミキサー等による攪拌、 ジ エツト水流による攪拌が挙げられ、 特に好ましくは西華産業株式会社より販売さ れている OHRラインミキサーによる強制攪拌が挙げられる。 この DC Pと海水 とを接触■強制攪拌する工程は、 一回でもよいが必要に応じて数回行うことも可 能である。
0 H Rラインミキサーとは異なる二種類の流体をおのおの別の螺旋状の流路 を通過させた後衝突させて接触させる様式の強制攪拌装置である。 本発明におい てこの方式を使用する場合には予め海水の一部に DC Pを添加した流体 Aと未処 理の海水 Bとを接触させて反応させる。
この方式で海水と D C Pとを接触させると海水中の塩分の約 80%が除去され ることを見出した。 また、 D CPには上述のごとく非常に高い各種有害物質除去 能力があるのである程度まで汚染された海水であっても汚染物が処理されるとい う別の効果も奏する。 (RCSによる処理)
このようにして約 80 %塩分が処理された海水を R C Sを含むフィルターに通 過させる。 このようにして成形された RCSから成るフィルタ一に上記の段階で 処理された海水を通過させると完全に淡水化処理される。 なお、 汚染の程度の低 い海水の場合は RCSを通過させるだけで海水中の塩分を除去して淡水化するこ とができる。
B— 1 1 廃液処理
DCPおよび RCSあるいは両者を組み合わせて、 各種有害物質を含む廃液、 p H値が強酸性又は強アルカリ性の廃液、 金属含有廃液、 臭気を伴う廃液、 着色 した廃液及びこれらの組み合わさった廃液等の種々の廃液処理が可能である。 a) DCPによる廃液処理
粉末担体である DC Pは、 散布して廃液処理を行うものであるので、 この態様 における DCPによる廃液の処理は、 1 ) 比較的汚染が少ない廃液、 2) 後述の RSCフィルターを通しての処理が困難な液体、 例えば処理面積の広い湖沼、 海 水、 河川等の処理、 及び 3) 後述の RSCフィルターによる処理の前処理等とし て用いられる。
b) RCSによる廃液
吸着材料を含むフィルターに廃液を通過させることによって廃液処理を行う R CSによる廃液処理は、 最終処理として行われる。 特に汚染のひどい廃液につい ては、 数回 RCSフィルターに通過させることによって行うことができる。 これらの DCPと R C Sの各々の廃液の処理及び組み合わせた廃液処理につ いても、 基本的に海水の淡水化と同様な方法である。
このような廃液の一例として、 化学工場からの廃水、 特にメツキ廃液、 写真 廃液、 染料廃液、 PCB、 ダイ才キシン等の有害物質を含む廃液、 食品工場から の廃液の処理、 例えば梅干しの製造工程で排出される梅酢廃液が挙げられる。 このような海水や有害物質は、 例えば図 2〜 4に示されるような液体処理装 置により処理することが可能である。 この装置は処理すべき水を供給する供給口 2と、 1ないし複数本の請求の R C Sフィルターから構成されたろ過手段 Fと(図 2)、 処理した水を溜める貯水槽 3とから構成される。 また、 貯水槽 3と接続さ れかつ処理した液体を上記ろ過手段へ供給する手段を含み、 所定回数処理した後 に処理水を上記フィルターに供給してフィルターを再生することが好ましい (図
3)。 更に、 D CPにより処理するために攪拌手段 6を備えた前処理用の水槽 5 を備え、これをろ過手段 Fとポンプ等の液体搬送手段 7で接続するのが好ましい。
3 ) 気体への適用方法
表 4
OME、 D CPおよび RCSの用途 4 :環境分野への適用
(気体に対する適用)
Figure imgf000047_0001
B-1 2 気体の吸収■ P及着■分解'脱臭
この態様において、 有機化合物由来の悪臭、 例えば動植物の腐乱による悪臭、 動物の糞尿、 メタン、 メルカブタン等や無機化合物由来の悪臭、 例えばアンモニ ァ、 硫化水素等、 その他大気中に含まれる有害物質、 ダイォキシン、 PCB, 窒 素酸化物等を吸収■吸着■分解■脱臭することが可能である。
これらの気体の処理方法は、 大まかに a) OME希釈液を気体に散布すること によって除去する方法、 b) OME希釈液中に DC Pを投入して気体の発生源に 適用する方法、 及び c) 処理すべき気体が閉鎖環境、 例えば煙道中を通過させる 気体である場合には 1個以上の R S Cを含むフィルターに通過させることによつ て処理することが可能である。 また、 ダイォキシン等の処理においては、 OME ミス卜トラップ等により、 あるいは特願平 9一第 291 467号に記載の方法と 同様にして処理することが可能である。
C) その他の用途
本発明における OME、 DCP、 RCSは、 上記の用途の他種々の形態で用い ることが可能である。 以下にこれらの使用例を記載する。 O M E希釈液は、 上記の通り脱臭作用を有しているので、 アトマイザ一、 スプ レー等の噴霧容器に入れて、 例えば、 畜産業等、 家庭用、 化学工場用の液体脱臭 剤として使用可能である。
また、 O M E希釈液は、 上記の通り植物の病原菌の防除剤及び植物ふかつ剤と して、 同様にして噴霧容器に入れて使用可能である。
また、 木材等の建築材料を短期間、 好ましくは 1 日以内 O M E希釈液中に浸漬 することによって、 防虫効果を付与することが可能である。 この際、 長期間 O M E希釈液中に浸漬すると、 木材等中のセルロースが分解するので注意を要する。
D C P又は R C Sあるいはこれらの混合物を、 冷蔵庫、 靴用等の粉末脱臭剤と して使用することができる。
R C Sには有害物質、 特に塩素除去作用を有するとともに殺菌作用を有するの で R C Sを導入したフィルターを水処理用のフィルターとして、 飲料水用の浄水 装置用のフィルター、シャワーへッドに導入してシャワー用のフィルターとして、 あるいは空気清浄器のフィルタ一として使用することができる。
D C Pを不織布等に投入して、 例えばティーバッグ状の袋状物に導入して、 水 槽ゃ池の水の清浄剤、 風呂水用の清浄剤等として使用することもできる。
D C P含有の細骨材を使用したコンクリートを使用して水槽、 池等の水質調 整構造物とすることも可能である。
更に R C Sを鑑賞用水槽の浄化装置のフィルター剤として使用すると、 水を 8ヶ月以上交換せずに透き通った状態を保つことが可能である。
実施例
以下、 本発明を実施例に基づいて具体的に説明するが、 本発明はこれらの実施 例に限定されるものではない。
(製造例)
実施例 1 (O M、 O M Eの製造)
オリエン卜グリーン株式会社よリバイタリーアミノンの商品名で販売されてい る生物活性材 1 トン当たり、 好気性微生物の供給源として広葉樹に基づ〈腐葉土 5重量%及び担子菌供給源としてヒラタケとタモギタケに由来するきのこの抽出 液 5重量%を加え常温、 常圧下で曝気下で 3 0日培養した。 培養初期段階では異 臭があつたが 30曰後には無臭となっていた。
この時点で曝気を中止し、 この培養液 1 トン当たりに下水道由来の汚泥 5重 量%を嫌気性微生物供給源として投入して、 常温、 常圧下で 30曰培養した。 同 様に汚泥由来の異臭は 30日後には無臭となっていた。
この培養液に同一の条件で光合成菌群としてオリエン卜グリーン株式会社から グリーンアミノン及びレツドアミノンの商品名で販売されている光合成菌群を培 養液 1 トン当たり各々 1. 5リットルを加えて更に 30日間培養して OM液を製 造した。
更に、 この OM液に炭素源として炭素微粉 1 Ok gを投入して約 60日培養し た。 このようにして培養を続けると炭素微粉が分解していた。
このようにして得られた培養液を 3倍容量の先に得られた 0 M液で希釈して 0 ME液を製造した。
OMEを化学物質毒性試験指針 (1 987) に準拠し、 マウスにおける急性毒 性経口試験を試験を行った。 なお、 この指針における投与投与し得る最高量 (体 重 100 g当たり 2m l (20m I g) で死亡例は認められず、 部検時にも 異常は認められなかった。 従って、 検体マウスにおける単回経口投与における致 死量は、 雌雄ともに 2 Om I /k g以上であるものと認められた。
比較例 1 (比較培養液の製造)
実施例 1の 0M液の製造方法において担子菌を導入しなかった以外は同様の方 法で培養を行い特願平 9一第 291467号に記載の好気性微生物と嫌気性微生 物とが共生した培養液を製造した。
この培養液を用いて同様に炭素粉を投入して更に培養を続けたところ炭素微粉 の分解は見られなかった。
実施例 2 (D CPの製造)
燃焼した植物由来の炭素を実施例 1で得られた OMEを水で 1000倍に希 釈した希釈液で浸潰した。 約 3〜7 日後、 炭素質がどろどろにとけ DC Pが得ら れた(D CPスラリー)。 この DC Pスラリーを自然乾燥して DC P粉末とした。 同様にして、 低温で燃焼した植物由来の炭素微粉を比較例 1で得られた培溶液 を水で 1 000倍に希釈した希釈液で浸潰しが、 約 30曰後にも炭素質の状態変 化は見られなかった。
実施例 3 ( R C Sの製造)
活性炭を実施例 1で得られた 0 M E液で 3曰〜 7日間浸漬して R C Sを製造し (農業分野への適用)
実施例 4、 比較例 2、 3、 対照例 1 (塩分を含む砂地土壌の改良)
佐賀県唐津市鏡山町の虹の松原海浜における塩分を含んだ砂浜の土壌改良を行 つに。
まず、 砂浜上に厚さ約 5〜1 O c mとなるように土壌母材として針葉樹のおが くずを敷設し、 それに若干の鶏糞を投入して、 そこに実施例 1で得られた OM E を水で約 1 0 0 0倍に希釈した希釈液を土壌母材が十分湿るように噴霧した (実 施例 1 )。 同様にして従来セルロース分解能があるといわれる微生物培養液 (特 公平 4— 4 2 3 5 5公報による培養液) (比較例 2 )、 比較例 1による培養液 (比 較例 2 )を噴霧した。 さらに対照として、 鶏糞のみを添加した (対照例 1 )。
これらの各処理土壌を 2週間放置した後、 植物として、 トマト、 枝豆、 すいか、 かぼちゃ、 ナス、 小松菜、 サツマィモを栽培したところ、 実施例 4の土壌では良 質な作物が収穫可能であつたが、 比較例 2及び 3、 対照例 1では収穫できなかつ 実施例 5、 比較例 4及び 5、 対照例 2 (各種土壌の処理)
市販の砂から成る砂地土壌、 農薬によリ団粒構造を失った土壌、 酸性化された 土壌、 焼畑土壌等についても実施例 1、 比較例 2及び 3、 対照例 1と同様な微生 物処理を行い、 植物を栽培したところ、 O M Eを使用した実施例 5の土壌では良 質な作物が収穫可能であつたが (実施例 5 )、 比較例 2及び 3の培養液を使用し た土壌 (比較例 4及び 5 ) 及び何も処理しない土壌 (対照例 2 ) では収穫できな かった。
以上の結果から、 本発明による方法は、 短期間で非常に優れた効果を示すこと がわかる。 特筆すべきことは砂地の土壌への進行が目視できることである (適用 3ヶ月後に約 3割が土壌化)。
実施例 6 胴枯れ病、 紋羽病に犯された植物の救済 樹齢約 80年の胴枯れ病に犯された赤松を掘り起こし、 患部を外科手術により 摘出し、 赤松全体を実施例 1で得られた OME液を水で 1 000倍に希釈した希 釈液で十分に洗浄した。 しかる後、 外科手術部分に DCPスラリーを塗り付けて そのまま乾燥させた。 更に、 土壌を実施例 1の OME液を水で 1 000倍に希釈 した希釈液でよく洗浄して植え付けたところ、 処理 2時間後に、 新たな芽の出現 が観察された。
樹齢約 30年の胴枯れ病のなしの木、 紋羽病に犯されたなしの木、 樹齢約 20 年の胴枯れ病のリんごの木及び紋羽病に犯されたりんごの木に対して同様の処理 を行ったところ各々 2 ~ 3時間で新芽が現れたことを確認した。
実施例 7 (うどんこ病の処理)
この実施例において実施例 1に記載の OM液の 1 000倍希釈液を用いた。 う どんこ病に犯された栽培終了期のキユウリに実施例 1で得られた OM希釈液をキ ユウリ栽培土壌 8 aに対して 300リツトル噴霧して葉面及び土壌処理した。 1 週間後、 うどんこ病の広がりが抑制された。 約 2週間後、 同様に 1 00リットル の OM希釈液土壌及び葉面に散布した。 更に 1週間後、 うどんこ病に犯されてい ない通常のきゅうりと同様の収穫があった。
実施例 8 (病害虫の駆除)
この実施例において、 ョ卜ゥ虫の発生したいちごハウス (20 a) のうち 4 aの害虫駆除を実施例 1に記載の OM液の 1 000倍希釈液を用いて行った。 葉 面及び土壌に 200リットルの OM希釈液を散布した。 散布 1週間後、 散布して いない個所と比較して植物の成長が促進されているのが観察された。 更にいちご の葉及び茎に弾力性を有していることも観察された。 散布約 3週間後、 ョトウ虫 の死骸が観察された。 未処理部分にョトウ虫の発生による被害が出始めたので、 ハウス全体に 350リツトルの OM希釈液を散布し、 かつ OM希釈液 600リツ トルの濯水を行った。 同様にして週間後ハウス全体に 500リットルの OM希釈 液を散布し、 かつ OM希釈液 500リツトルの濯水を行ったところョトウ虫の発 生が観察されなかった。
(環境分野への適用:固体への適用)
実施例 9 (生ごみ処理) 実施例 1で得られた OMEを水で 1 000倍に希釈した希釈液を針葉樹由来の おがくずとモミガラを 1 : 1の割合で混合した混合物に散布 ·攪拌して生ごみ分 解床を作製した。
この生ごみ床約 25リットルを底部に金網を敷いた 30リットルのポリバケツ に入れた。 しかる後、 家庭より排出される生ごみを 3リットルを投入して充分に 攪拌した。 処理直後に、 生ごみ由来の異臭が消失し、 1〜3日後、 生ごみが完全 に消失した。 ポリバケツの底部には生ごみ醱酵分解液が溜まっていた。 この液は ミネラルを含有する良好な液肥として使用できた。
実施例 1 0 (OMによる焼却灰中の鉛の除去)
鉛 0. 6mgZリツトルを含有する焼却灰 200 gに実施例 1で得られた OM 3c cを水 600 c cで希釈して洗浄した。 その後水洗を 2回行った。 その結果 焼却灰中の鉛の含有量は 0. 01 5mgZリットルとなった ( J I S K01 0 2 61. 2により測定)
実施例 1 1 (OMによる焼却灰中の重金属の除去)
表 5に示す重金属を含有する焼却灰を実施例 9と同様の方法を繰リ返して重金 属の除去を行った。 水洗前の OM洗浄液中に含有する重金属の量及び処理後の焼 却灰中の重金属含有量を表 5に示す。
表 5
単位: mg/k g
Figure imgf000052_0001
測定は原子吸光光度法による。
N. D.は検出限界値未満をあらわす。
(液体処理) 実施例 12 (ァォコの除去)
ァォコの発生した水耕栽培用貯水場、 養豚場からの廃液が流出した河川及びゴ ルフ場の池に実施例 1で得られた OMEを 1 000倍に希釈した希釈液を散布し たところ、 ァォコが瞬間的に除去された。
実施例 1 3 (ァゾ染料の分解)
2リツトルの透明容器中に約 1 リツトルの水道水を入れそこに藍色、 橙色、 赤 色、 黄色、 青色の各種ァゾ染料を各々 1 gを入れ十分に攪拌してサンプル廃水を 作成した。 この廃水中に各々 3mgの DCPを投入し、 この容器をマグネットス ターラーにて攪拌したところ約 2〜5分後には完全に無色となった。 なお、 BO D、 CODを測定したところ処理前は各々 BOD約 650、 COD約 450であ つたが処理後には各々 5以下となつた。
実施例 1 4 (写真廃液の処理)
小規模 DP E店舗からの写真プリン卜後のシアン、 酢酸、 水銀等を含む廃液 1 リットルを 2リットルの透明容器中に入れ、 これに実施例 2で得られた DC Pを 3mg投入し、 1 0分間マグネットスターラーにて攪拌したところこれらの有害 物質、 臭気は完全に除去されていた。 しかる後、 実施例 3で得られた RCSを漏 斗につめ通過させた。 処理前、 DCP処理、 〇3処理の巳00、 COD、 全窒 素量を測定した結果を表 6に示す。
表 6
(mg/l)
Figure imgf000053_0001
実施例 1 5 (汚染水域の処理)
セストン、 へドロを含む湖沼からの水 1 リットルを 2リットルの透明容器中 に入れ、 これに DCPを 3mg投入し、 1 0分間マグネットスターラーにて攪拌 したところ水は透明に変化した。 ヘドロは、 処理後徐々に分解し、 約 1ヶ月後に は肉眼では観察されなかった。 実施例 1 6 (下水道廃水の処理)
下水道廃水をフィルターでろ過した水 1 リットルを 2リットルの透明容器中 に入れ、 これに DCPを 3mg投入し、 10分間マグネットスターラーにて攪拌 したところ水は透明に変化した。 なお、 処理前は激しい臭気があつたが DCPを 投入して攪拌すると臭気はまつたく感じられなかつだ。
実施例 1 7 ( PC B含有廃液)
PCB40000mg/Lを含有する廃液を用いて実施例 1 7と同様な処理を 行った結果 PCBの含有量は 0. 1 p pmとなった。
実施例 1 8 (めっき廃液)
p H8. 7、 COD 22000p pm、 P b 164000 p p mを含む酢酸 鉛廃液 1 リットルを実施例 1 7と同様にして処理をその結果、 CODは 320 p pmに低減したが、 Pb化合物の沈殿が多数みられた。 そこで同様な操作をもう 一度繰り返したところ、 P bの含有量は 1〜2 p pmとなり、 CODも 4p pm に低減し、 pHも 7. 7となった。
実施例 1 9 (海水の淡水化)
海水 (相模湾) 1 0リットルをミキサーに投入し、 攪拌下に DCP3 gを投 入し約 30秒間攪拌した。 しかる後この海水の塩分は約 80%減少していた。
このようにして処理した海水を実施例 3で得られた R C Sを充填した二 ターに通過させたところ塩分は完全に除去されていた。 結果を表 7に示す。 の 実験を数回繰り返したが同様な結果が得られた。
表 7
処理前 処理後 試験法
C に 17 g/L 240 mg/L JIS K 0102-35-1
N a+ 13 g/L 90 mg/L JIS K 0102-48-2 実施例 20 (梅酢の処理)
下記の特性を有する梅干し製造の際に排出される梅酢含有廃液 1 卜ン実施例 2 で得られた DCP4リットルを加えてよく攪拌した後、 砂により濾過し、 次いで 実施例 3で得られた RSCを 4リットル入れたフィルタ一により 2回濾過した。 結果を表 8に示す。
表 8
処理前 処理後
適定酸度 [クェン酸換算] 30.02g/L ND
糖度 30.1度 0度
Ca 296mg/L ND
N a 44.3 g/L 39mg/L
塩分 [N a換算] 113 g/L 99mg/L
K 2.05 g/L 30mg/L
Mg 161mg/L ND
ブドウ糖 3.14% ND
BOD 160000mg/L 13mg/L
COD 120000mg/L 16mg/L
PH 2.6 (20°C) 6.3(21°C)
表 8の結果より、 DCPは pH2. 6でも有効に作用すること、 及び BOD、 CODの低減能力があることが判る。
実施例 20 (めっき廃液の処理)
ニッケルめっき液 (ヮッ卜浴) 1 0 Om I、 ハンダめっき浴 1 0 Om I、 電解 銅めつき浴 1 0 Om I、 アルカリ脱脂液 (エースクリン 200 1 0溶液) 1 0 Omし 第 3リン酸ソーダ 5%溶液 1 OOm l及び 5%硫酸を水道水で 2リッ卜 ルに希釈しためつき混合浴の希釈液に実施例 2で得られた D C P 1 0 gを投入し た後、 実施例 3で得られた RCSを含むフィルターを用いて処理を行った。 結果 を表 9に示す。
表 9
廃水名 PH COD n Pb
酢酸鉛廃水 3.7 22000 164000
処理後 6.7 3 1以下
ナイ口ン系廃水 10.6 284000 なし
処理後 6.4 8 なし 実施例 21 (有害物質含有廃液の処理)
下記の物質を含有する産業廃棄物最終処分場地下浸水液にに実施例 2で得られ た DCP1 Ogを投入した後、 実施例 3で得られた RCSを含むフィルタ一を用 いて 2回処理を行った。 結果を表 1 0に示す。 表 1 0
(mg/L)
Figure imgf000056_0001
(気体への適用)
実施例 22 蛋白質腐敗に由来する臭気の除去 腐敗したムラサキ貝を三角フラスコに入れ、 未処理検体と実施例例 1で得られ た O Mの 1 0 0 0倍希釈液を一滴滴下した検体とをサンプリングポンプにて袋に 採取して北川式ガス検知管により測定を行った。 結果を表 1 1に示す。
表 1 1
Figure imgf000057_0001
実施例 2 1及び比較例 6 R C Sと活性炭との気体吸着能の比較
ホルムアルデヒド及びアンモニアを実施例 3で得られた D C P及び処理前の活 性炭を使用して吸着能を比較した。 結果を図 4に示す。
図 4から明らかな通り、 D C Pは未処理の活性炭に比較して吸着能が格段に優 れていることが判る。
産業上の利用可能性
以上説明した通リ本発明は次の優れた特徴を有する。
好気性微生物群と、 嫌気性微生物群と、 少なくとも 1種のヒタタケ科に属する 担子菌類とが共生し、 かつこれらの代謝物を酵素を含むことを特徴とする性質の 異なる微生物が共生しかつ酵素を含む溶液、 当該溶液の成分を微細化した炭素質 に吸着して得られた担体及び当該溶液の成分を多孔質材料に吸着して得られた多 孔質材料は、 有害物質の吸収、 吸着、 分解及び脱臭、 脱色作用等の種々の作用を 有しており、 農業分野、 環境分野における種々の用途に適用可能である。

Claims

請求の範囲
1 . ( a ) 好気性微生物群、 ( b ) 嫌気性微生物群、 ( c ) 少なくとも 1種のヒ タタケ科に属する担子菌類とが共生し、 かつこれらの代謝物由来の酵素を含むこ とを特徴とする微生物培溶液。
2. 担子菌のヒラタケとタモギタケの交配により得られたものを含む請求の範 囲第 1項に記載の微生物培溶液。
3. さらに、 光合成菌類を含有する請求の範囲第 1項に記載の微生物培溶液。
4. さらに、 炭素分解酵素を含む請求の範囲第 3項に記載の微生物培溶液。
5. 請求の範囲第 1項に記載の微生物培溶液の製造方法であって、 下記段階:
( 1 ) 動物の蛋白質を主成分とする蛋白質を破砕し、 前記破砕物と穀物および酵 母と混合して発酵させ、 前記発酵物を加熱し、 該加熱生成物を破砕し、 上記段階 により得られた破砕物に乳酸菌培養液または枯草菌培養液を添加して好気的条件 下で発酵を行うことによって調製された溶液中に好気性微生物群の供給源および 少なくとも 1種のヒタタケ科に属する担子菌類を含む担子菌のエキスとを投入し て、 好気的条件下、 常温、 常圧で無臭となるまで培養を行う段階、 及び
( 2 ) 上記培養液に嫌気性微生物群の供給源を投入し、 嫌気的条件下、 常温、 常圧で無臭となるまで培養を行う段階
を含むことを特徴とする微生物培溶液の製造方法。
6. 請求の範囲第 3項に記載の微生物培溶液の製造方法であって、 下記段階:
( 1 ) 動物の蛋白質を主成分とする蛋白質を破砕し、 前記破砕物と穀物および酵 母と混合して発酵させ、 前記発酵物を加熱し、 該加熱生成物を破砕し、 上記段階 により得られた破砕物に乳酸菌培養液または枯草菌培養液を添加して好気的条件 下で発酵を行うことによって調製された溶液中に好気性微生物群の供給源および 少なくとも 1種のヒタタケ科に属する担子菌類を含む担子菌のエキスとを投入し て、 好気的条件下、 常温、 常圧で無臭となるまで培養を行う段階、
( 2 ) 上記培養液に嫌気性微生物群の供給源を投入し、 嫌気的条件下、 常温、 常圧で無臭となるまで培養を行う段階、 及び
( 3 ) 光合成菌群を投入して嫌気的暗条件下で更に培養を続ける段階、 を含むことを特徴とする微生物培溶液の製造方法。
7 . 請求の範囲第 4項に記載の微生物培溶液の製造方法であって、 下記段階:
( 1 ) 動物の蛋白質を主成分とする蛋白質を破砕し、 前記破砕物と穀物および酵 母と混合して発酵させ、 前記発酵物を加熱し、 該加熱生成物を破砕し、 上記段階 によリ得られた破砕物に乳酸菌培養液または枯草菌培養液を添加して好気的条件 下で発酵を行うことによって調製された溶液中に好気性微生物群の供給源および 少なくとも 1種のヒタタケ科に属する担子菌類を含む担子菌のエキスとを投入し て、 好気的条件下、 常温、 常圧で無臭となるまで培養を行う段階、
( 2 ) 上記培養液に嫌気性微生物群の供給源を投入し、 嫌気的条件下、 常温、 常圧で無臭となるまで培養を行う段階、
( 3 ) 光合成菌群を投入して嫌気的暗条件下で更に培養を続ける段階、
( 4 ) 植物由来の炭素源を投入して培養を続ける段階、 及び
( 5 ) 段階 (4 ) で得られた培養液を段階 (3 ) で得られた溶液で 2 ~ 4倍に希 釈する段階
を含む微生物培溶液の製造方法。
8 . 溶解した炭素質中に請求の範囲第 4項に記載の微生物培溶液中に存在する 微生物群が共生し、 かつこれらの微生物の代謝物由来の酵素を含有する炭素質に 基づく担体。
9 . 微細化した炭素質を請求の範囲第 4項に記載の微生物培溶液またはその水 で希釈した希釈液中に浸漬して上記炭素質を溶解させるとともに溶解した請求の 範囲第 8項に記載の担体の製造方法。
10. 多孔質吸着材料の孔中に請求の範囲第 4項に記載の微生物培溶液中に存在 する微生物群が共生し、 かつこれらの微生物の代謝物由来の酵素を含有する多孔 質吸着材料。
11. 上記多孔質吸着材料が活性炭に基づくものである請求の範囲第 10項に記載 の多孔質吸着材料。
12 多孔質吸着材料を請求の範囲第 4項に記載の微生物培溶液またはその水で 希釈した希釈液中に浸漬することを特徴とする請求の範囲第 11 項記載の多孔質 吸着材料の製造方法。
13. 上記多孔質吸着材料が活性炭である請求の範囲第 12項に記載の多孔質吸 着材料の製造方法。
14. 上記多孔質吸着材料が使用済多孔質吸着材料であり、 多孔質材料の孔中に 吸着された成分を分解するのに充分な時間、上記溶液又はその希釈液に浸潰して、 多孔質吸着材料の再生を同時に行う請求の範囲第 12項に記載の多孔質吸着材料 の製造方法。
15. 請求の範囲第 10項に記載の吸着材料を含むフィルター。
16. 植物由来の繊維質を請求の範囲第 1項ないし第 4項のいずれか一つに記載 の微生物培溶液を水で希釈した溶液で噴霧又は漬浸して得られた土壌母材。
17. 植物由来の繊維質が針葉樹由来のォガクズ、 間伐材の破砕物、 倒木の破砕 物、 モミガラ、そば殻、 一次処理した建材またはこれらの混合物である請求の範 囲第 16項に記載の土壌母材。
18. 請求の範囲第 16項又は第 17項に記載の土壌母材を肥料と混合して、 処理す べき土壌に 1 ~ 1 0 0 c m敷設することを特徴とする土壌の改良方法。
19. 処理すべき土壌が団粒構造を失った土壌である請求の範囲第 18項に記載の 土壌の改良方法。
20. 処理すべき土壌が砂漠化土壌または塩分を含有する砂地土壌である請求の範 囲第 18項に記載の土壌の改良方法。
21. 肥料を混合した植物由来の繊維質を処理すべき土壌に 1〜1 0 0 c m敷設 し、 上記繊維質に請求の範囲第 1項ないし第 4項のいずれか一つに記載の微生物 培溶液を水で希釈した溶液を噴霧することを特徴とする土壌の改良方法。
22. 処理すべき土壌が団粒構造を失った土壌である請求の範囲第 21 項に記載の 土壌の改良方法。
23. 処理すべき土壌が砂漠化土壌または塩分を含有する砂地土壌である請求の範 囲第 2 1項に記載の土壌の改良方法。
24. 植物栽培用容器、 植物栽培用固形培地及び栽培植物から成る植物系を最適 化処理する方法であって
上記系を密封容器に完全に入れ、 上記密封容器を請求の範囲第 1項ないし第 4項 のいずれか一つに記載の微生物培溶液を水で希釈した溶液で完全に満たした後に 上記密封容器を密封して、 培地中及び栽培植物に存在する病害虫及びその卵並び に植物に対する有害微生物を殺傷するのに十分な時間保持することを特徴とする 植物系の最適化方法。
25. 栽培植物が若干かれかっているものであり、 上記植物系の蘇生を行う請求 の範囲第 24項に記載の植物の最適化方法。
26. 病原菌によリ犯された植物の蘇生方法であって、
( a ) 上記植物を掘り起こして、 植物全体を請求の範囲第 1項ないし第 4項のい ずれか一つに記載の微生物培溶液を水で希釈した溶液で十分に洗浄する段階、 及 び
( b ) 上記掘り起こした土壌に請求の範囲第 1項ないし第 4項のいずれか一つに 記載の微生物培溶液を水で希釈した溶液を噴霧する段階及び
( c ) 上記植物を植え直した後、 請求の範囲第 1項ないし第 4項のいずれか一つ に記載の微生物培溶液を水で希釈した溶液で浸潰した土壌をかける段階を含む植 物の蘇生方法。
27. 病原菌が胴枯病であり、 更に病原菌で犯された部分を外科的に削除し、 削 除した部分に請求の範囲第 8項に記載の担体のスラリーを適用して乾燥させる段 階を含む請求の範囲第 26項に記載の植物の蘇生方法。
28. 病原菌が菌核病、 根こぶ病、 紋羽病、 ふらん病、 うどんこ病またはサビ病 である請求の範囲第 26項に記載の植物の蘇生方法。
29. 請求の範囲第 1項ないし第 4項のいずれか一つに記載の微生物培溶液を水で 希釈した溶液又は請求の範囲第 8項に記載の担体を家畜の糞尿に添加して得られ た有機肥料。
30. 更に針葉葉のォガクズを混合した請求の範囲第 29項に記載の肥料。
31. 肥料が請求の範囲第 29項に記載の有機肥料を含む請求の範囲第 18項ないし 第 21項のいずれか一つに記載の土壌の改良方法。
32. 植物由来の繊維質を請求の範囲第 1項ないし第 4項のいずれか一つに記載 の微生物培溶液を水で希釈した溶液で漬浸して得られた生ごみ分解床。
33. 植物由来の繊維質が難分解繊維質を含む請求の範囲第 32項に記載の生ごみ 分解床。
34. 請求の範囲第 32項又は第 33項に記載の生ごみ分解床に処理すべき生ごみ を投入して攪拌して生ごみを無臭の液体に分解することを特徴とする生ごみの処 理方法。
35. 請求の範囲第 34項に記載の方法で得られた無臭の液体を含む液体肥料。
36. 請求の範囲第 8項に記載の担体を、 有害物質または塩分あるいはこれらの 混合物を含有する処理すべき固体と攪拌■混合し、 水洗することを特長とする固 体の処理方法。
37. 処理すべき固体が有害物質を含有する砂、 塩分を含有する砂である請求の 範囲第 36項に記載の固体の処理方法。
38. 処理すべき固体が有害物質を含有する焼却灰又は飛灰である請求の範囲第 36項に記載の方法。
39. 請求の範囲第 37項に記載の方法で処理された砂を含む細骨材。
40. 請求の範囲第 39項の細骨材から得られた還元型構造体。
41. 請求の範囲第 38項に記載の方法で処理された焼却灰又は飛灰を含む細骨材。
42. 請求の範囲第 39項の細骨材から得られた還元型構造体。
43. 請求の範囲第 8項記載の担体を含む還元型構造体。
44. 請求の範囲第 1項ないし第 4項のいずれか一つに記載の微生物培溶液を水 で希釈した溶液を富栄養化によって発生したァォコに噴霧することを特徴とする ァォコの除去方法。
45. 請求の範囲第 8項に記載の担体をセストンを含む水域に投入してセストン を凝集させることを特徴とするセストンの処理方法。
46. 請求の範囲第 8項に記載の担体をへドロを含む水域に投入してへドロを分 解することを特徴とする水域の処理方法。
47. 請求の範囲第 8項に記載の担体を含むセストン凝集剤。
48. 塩分を含む水を請求の範囲第 15項に記載の吸着材料を含むフィルタ一に 1 回ないし複数回通過させて塩分を除去する段階を含むの液体の処理方法。
49. 前処理として、 請求の範囲第 8項に記載の担体を塩分を含む水に投入して 攪拌する段階を含む請求の範囲第 48項に記載の液体の処理方法。
50. 処理すべき塩分を含む水が海水であリ海水の淡水化を行うことを特徴とす る請求の範囲第 48項又は第 49項に記載の液体の処理方法。
51. 請求の範囲第 8項に記載の担体を有害物質を含む液体に投入することを特 徴とする液体の処理方法。
52. 請求の範囲第 8項に記載の担体を有害物質を含む液体に投入して攪拌する ことを特徴とする液体の処理方法。
53. 有害物質を含む液体を請求の範囲第 15項に記載の吸着材料を含むフィルタ 一に 1回ないし複数回通過させることを特徴とする液体の処理方法。
54. 有害物質を含む液体の処理方法であって、
a ) 有害物質を含む液体に請求の範囲第 8項に記載の担体を、 有害物質を含む 液体に投入する段階及び
b ) 段階 a ) で処理された液体を請求の請求の範囲第 15項に記載の吸着材料を 含むフィルターに 1回ないし複数回通過させる段階を含む
液体の処理方法。
55. 段階 a ) を攪拌下で行う請求の範囲第 54項に記載の液体の処理方法。
56. 処理すべき有害物質を含む液体が、 重金属、 有機ハロゲン化合物、 または 石油を含む廃液、 メツキ廃液、 半導体廃液、 写真現像処理廃液、 染料含有廃液、 下水道水及びこれらを含む廃液である請求の範囲第 51項ないし第 55項のいずれ か一つに記載の液体の処理方法。
56. 処理すべき水を供給する供給口と、
1ないし複数本の請求の範囲第 15 項に記載の吸着材料を含むフィルターを含む ろ過手段と、
処理した水を溜める貯水槽と
を含む液体処理装置。
57. 更に貯水槽と接続されかつ処理した液体を上記ろ過手段へ供給する手段を含 み、 所定回数処理した後に処理水を上記フィルタ一に供給してフィルターを再生 する請求の範囲第 56項に記載の液体処理装置。
58. 攪拌手段を備えた前処理用の水槽を有し、 上記ろ過手段に液体を搬送する 手段を有する請求の範囲第 56項又は第 57項に記載の液体処理装置。
59. 請求の範囲第 1項ないし第 4項のいずれか一つに記載の微生物培溶液を水 で希釈した希釈液を処理すべき気体に噴霧することを特徴とする気体の処理方法。
60. 処理すべき気体を請求の範囲第 15項に記載の吸着材料を含むフィルターに 通過させることを特徴とする気体の処理方法。
61. 処理すべき気体が有機化合物及び無機化合物由来の悪臭、 気体中に含まれる 有機化合物または無機化合物由来のケミカルハザードからなる群から選択される 請求の範囲第 59項又は第 60項記載の気体の処理方法。
62. 請求の範囲第 1項ないし第 4項のいずれか一つに記載の微生物培溶液を水 で希釈した希釈液を含む液体脱臭剤。
63. 請求の範囲第 4項に記載の微生物培溶液を水で希釈した希釈液を含む液体 脱色剤。
64. 請求の範囲第 4項に記載の微生物培溶液を水で希釈した希釈液を建材に噴 霧又は浸漬することを特徴とする建材の有害物質の剥離方法。
65. 請求の範囲第 4項に記載の微生物培溶液を水で希釈した希釈液を含む防黴 剤。
66. 請求の範囲第 4項に記載の微生物培溶液を水で希釈した希釈液を含む植物 の蘇生剤。
69. 請求の範囲第 8項に記載の担体を含む脱臭剤。
70. 請求の範囲第 10項に記載の多孔質吸着材料を含む脱臭剤。
69. 請求の範囲第 15項に記載の吸着材料を含むフィルターを含む水処理フィル タ- 74. 請求の範囲第 69項に記載の水処理フィルターを含む水の浄水装置。
75. 請求の範囲第 69項に記載の水処理フィルターをを内臓するシャワーへッド< 76. 請求の範囲第 8項に記載の担体を含む水の清浄剤。
77. 請求の範囲第 10項に記載の多孔質吸着材料を含む水の清浄剤。 補正書の請求の範囲
[ 1 9 9 9年 1 0月 6日 (0 6 . 1 0 . 9 9 ) 国際事務局受理:出願当初の請求の範囲 5 6 (第 は 取り下げられた;出願当初の請求の範囲 1, 5— 7及び 1 5は補正された;新しい請求の範囲 7 4 - 1 2 7が加えられた;出願当初の請求の範囲 6 9— 7 7は請求の範囲 6 7— 7 3に番号が付け替 えられた ;他の請求の範囲は変更なし。 (1 2頁) ]
1 . (補正後) (a ) 好気性微生物群、 (b ) 嫌気性微生物群、 (c ) 少なくと も 1種のヒタラケ科に する担子菌類とが共生し、 かつこれらの代謝物由来の酵 δ 素を含むことを特 ®とする微生物培溶液。
2. 担子菌のヒラタケとタモギタケの交配により得られたものを含む請求の範 囲第 1項に記載の微生物培溶液。
3. さらに、 光合成菌類を含有する請求の範囲第 1項に記載の微生物培溶液。
4. さらに、 炭素分解酵素を含む請求の範囲第 3項に記載の微生物培溶液。
10 5. (補正後) 請求の範囲第 1項に記載の微生物培溶液の製造方法であって、 下記段階:
( 1 ) 動物の蛋白 Sを主成分とする蛋白貧を破碎し、 前記破砕物と穀物および酵 母と混合して発酵させ、 前記発酵物を加熱し、 該加熱生成物を破砕し、 上記段階 により得られた破砕物に乳酸菌培養液または枯草菌培養液を添加して好気的条件
15 下で発酵を行うことによって調製された溶液中に好気性微生物群の供給源および 少なくとも 1種のヒラタケ科に震する担子菌類を含む担子菌のエキスとを投入し て、 好気的条件下、 ffi温、 常圧で無臭となるまで培養を行う段階、 及び
(2 ) 上記培養液に嫌気性徴生物群の供給源を投入し、 嫌気的条件下、 常温、 常圧で無臭となるまで培養を行う段階
20 を含むことを特徴とする微生物培溶液の製造方法。
6. (補正後) 諝求の範囲第 3項に記載の微生物培溶液の製造方法であって、 下記段階:
( 1 ) 動物の蛋白 Sを主成分とする蛋白貧を破砕し、 前! 5破碎物と殺物および酵 母と混合して発酵させ、 前記発酵物を加熱し、 該加熱生成物を破砕し、 上 IBS階
25 によリ得られた破砕物に乳酸菌培餮液または枯草菌培養液を添加して好気的条件 下で発酵を行うことによって調製された溶液中に好気性微生物群の供給源および 少なくとも 1種のヒラタケ科に JSする担子菌類を含む担子笛のエキスとを投入し て、 好気的条件下、 常温、 常圧で無臭となるまで培養を行う段階、
(2) 上記培養液に嫌気性徴生物群の供給源を投入し、 嫌気的条件下、 常温、
補正された用紙 (条約第 19条) 常圧で無臭となるまで培養を行う段階、 及び
( 3 )光合成菌群を投入して嫌気的暗条件下で更に培養を続ける段階、 を含むことを特徴とする微生物培溶液の製造方法。
7. (補正後) 請求の範囲第 4項に記載の微生物培溶液の製造方法であって、 下記段階:
( 1 ) 動物の蛋白質を主成分とする蛋白質を破砕し、 前記破砕物と穀物および酵 母と混合して発酵させ、 前記発酵物を加熱し、 該加熱生成物を破砕し、 上記段階 により得られた破砕物に乳酸菌培養液または枯草菌培養液を添加して好気的条件 下で発酵を行うことによって調製された溶液中に好気性微生物群の供給源および 少なくとも 1種のヒラタケ科に属する担子菌類を含む担子菌のエキスとを投入し て、 好気的条件下、 常温、 常圧で無臭となるまで培養を行う段階、
( 2 ) 上記培養液に嫌気性微生物群の供給源を投入し、 嫌気的条件下、 常温、 常圧で無臭となるまで培養を行う段階、
( 3 ) 光合成菌群を投入して嫌気的暗条件下で更に培養を続ける段階、
( 4 ) 植物由来の炭素源を投入して培養を続ける段階、 及び
( 5 ) 段階(4 ) で得られた培養液を段階 (3 ) で得られた溶液で 2 ~ 4倍に希 釈する段階
を含む微生物培溶液の製造方法。
8. 溶解した炭素質中に請求の範囲第 4項に記載の微生物培溶液中に存在する 微生物群が共生し、 かつこれらの微生物の代謝物由来の を含有する炭素質に 基づく担体。
9. 微細化した炭素質を請求の範囲第 4項に記載の微生物培溶液またはその水 で希釈した希釈液中に浸滇して上記炭素質を溶解させるとともに溶解した請求の 範囲第 8項に記載の担体の製造方法。
10. 多孔霣吸着材料の孔中に請求の範囲第 4項に記載の微生物培溶液中に存在 する微生物群が共生し、 かつこれらの微生物の代謝物由来の酵素を含有する多孔 質吸着材料。
11. 上記多孔質吸着材料が活性炭に基づくものである請求の範囲第 10項に記載 の多孔質吸着材料。
補正された用紙 (条約第 19条) 12 多孔質吸着材料を請求の範囲第 4項に記載の微生物培溶液またはその水で 希釈した希釈液中に浸滇することを特徴とする請求の範囲第 υ 項記載の多孔質 吸着材料の製造方法。
13. 上記多孔質吸着材料が活性炭である請求の範囲第 12項に記載の多孔質吸 着材料の製造方法。
14. 上記多孔質吸着材料が使用済多孔質吸着材料であり、 多 ¾質材料の孔中に 吸着された成分を分解するのに充分な時間、上記溶液又はその希釈液に浸滇して、 多 ¾質吸着材料の再生を同時に行う請求の範囲第 12項に記載の多孔質吸着材料 の製造方法。
15. (補正後) 請求の範囲第 10項に記載の多孔質吸着材料を含むフィルター。
16. 植物由来の繊維質を請求の範囲第 1項ないし第 4項のいずれか一つに記載 の微生物培溶液を水で希釈した溶液で噴霧又は漬浸して得られた土壌母材。
17. 植物由来の繊維質が針葉樹由来のォガクズ、 間伐材の破砕物、 倒木の破砕 物、 モミガラ、そば殼、 一次処理した建材またはこれらの混合物である請求の範 囲第 16項に記載の土壌母材。
18. 請求の範囲第 16項又は第 17項に記載の土壌母材を肥料と混合して、 処理す べき土壌に 1 ~ 1 0 0 c m敷設することを特徴とする土壌の改良方法。
19. 処理すべき土壌が団粒構造を失った土壌である請求の範囲第 18項に記載の 土壌の改良方法。
20. 処理すべき土壌が砂漠化土壌または塩分を含有する砂地土壌である請求の範 囲第 18項に記載の土壌の改良方法。
21. 肥料を混合した植物由来の繊維質を処理すべき土壌に"!〜 1 0 0 c m敷設 し、 上記織維質に請求の範囲第 1項ないし第 4項のいずれか一つに記載の微生物 培溶液を水で希釈した溶液を噴霧することを特徴とする土壌の改良方法。
22. 処理すべき土壌が団粒構造を失った土壌である請求の範囲第 2〗 項に記載の 土壌の改良方法。
23. 処理すべき土壌が砂漠化土壌または塩分を含有する砂地土壌である請求の範 囲第 2 1項に記載の土壌の改良方法。
24. 植物栽培用容器、 植物栽培用固形培地及び栽培植物から成る植物系を最適
補正された用紙 (条約第 19条) 化処理する方法であって
上記系を密封容器に完全に入れ、 上記密封容器を請求の範囲第 1項ないし第 4項 のいずれか一つに記載の微生物培溶液を水で希釈した溶液で完全に満たした後に 上記密封容器を密封して、 培地中及び栽培植物に存在する病害虫及びその卵並び に植物に対する有害微生物を殺傷するのに十分な時間保持することを特徴とする 植物系の最適化方法。
25. 栽培植物が若干かれかっているものであり、 上記植物系の蘇生を行う請求 の範囲第 24項に記載の植物の最適化方法。
26. 病原菌によリ犯された植物の蘇生方法であって、
( a ) 上記植物を掘り起こして、 植物全体を請求の範囲第 1項ないし第 4項のい ずれか一つに記載の微生物培溶液を水で希釈した溶液で十分に洗净する段階、 及 び
( b ) 上記掘リ起こした土壌に請求の範囲第 1項ないし第 4項のいずれか一つに 記載の微生物培溶液を水で希釈した溶液を噴霧する段階及び
( c ) 上記植物を植え直した後、 請求の範囲第 1項ないし第 4項のいずれか一つ に記載の微生物培溶液を水で希釈した溶液で浸漬した土壌をかける段階を含む植 物の蘇生方法。
27. 病原菌が胴枯病であり、 更に病原菌で犯された部分を外科的に削除し、 削 除した部分に請求の範囲第 8項に記載の担体のスラリ一を適用して乾燥させる段 階を含む請求の範囲第 26項に記載の植物の蘇生方法。
28. 病原菌が菌核病、 根こぶ病、 紋羽病、 ふらん病、 うどんこ病またはサビ病 である請求の範囲第 26項に記載の植物の蘇生方法。
29. 請求の範囲第 1項ないし第 4項のいずれか一つに記載の微生物培溶液を水で 希釈した溶液又は請求の範囲第 8項に記載の担体を家畜の糞尿に添加して得られ た有 ¾BE料。
30. 更に針葉葉のォガクズを混合した請求の範囲第 29項に記載の肥料。
31. 肥料が請求の範囲第 29項に記載の有機肥料を含む請求の範囲第 18項ないし 第 21項のいずれか^ "つに記載の土壌の改良方法。
32. 植物由来の接維質を請求の範囲第 1項ないし第 4項のいずれか一つに記載
補正された用紙 (条約第 19条) の微生物培溶液を水で希釈した溶液で滇浸して得られた生ごみ分解床。
33. 植物由来の繊維質が難分解繊維貧を含む請求の範囲第 32項に記載の生ごみ 分解床。
34. 請求の範囲第 32項又は第 33項に記載の生ごみ分解床に処理すべき生ごみ を投入して攙拌して生ごみを無臭の液体に分解することを特徴とする生ごみの処 理方法。
35. 請求の範囲第 34項に記載の方法で得られた無臭の液体を含む液体肥料。
36. 請求の範囲第 8項に記載の担体を、 有害物質または塩分あるいはこれらの 混合物を含有する処理すべき固体と攬拌■混合し、 水洗することを特長とする固 体の処理方法。
37. 処理すべき固体が有害物質を含有する砂、 塩分を含有する砂である請求の 範囲第 36項に記載の固体の処理方法。
38. 処理すべき固体が有害物質を含有する焼却灰又は飛灰である請求の範囲第 36項に記載の方法。
39. 請求の範囲第 37項に記載の方法で処理された砂を含む細骨材。
40. 請求の範囲第 39項の細骨材から得られた還元型構造体。
41. 請求の範囲第 38項に記載の方法で処理された焼却灰又は飛灰を含む細骨材。
42. 請求の範囲第 39項の細骨材から得られた還元型構造体。
43. 請求の範囲第 8項記載の担体を含む還元型構造体。
44. 請求の範囲第 1項ないし第 4項のいずれか一つに記載の微生物培溶液を水 で希釈した溶液を富栄養化によつて発生したァォコに噴霧することを特徴とする ァォコの除去方法。
45. 請求の範囲第 8項に記載の担体をセストンを含む水域に投入してセストン を凝集させることを特徴とするセストンの処理方法。
46. 請求の範囲第 8項に記載の担体をへドロを含む水域に投入してへドロを分 解することを特徴とする水域の処理方法。
47. 請求の範囲第 8項に記載の担体を含むセストン凝集剤。
48. 塩分を含む水を請求の範囲第 15項に記載の吸着材料を含むフィルターに 1 回ないし複数回通過させて塩分を除去する段階を含むの液体の処理方法。
補正された用紙 (条約第 19条)
49. 前処理として、 請求の範囲第 8項に記載の担体を塩分を含む水に投入して 攪拌する段階を含む請求の範囲第 48項に記載の液体の処理方法。
50. 処理すべき塩分を含む水が海水であり海水の淡水化を行うことを特徴とす る請求の範囲第 48項又は第 49項に記載の液体の処理方法。
51. 請求の範囲第 8項に記載の担体を有害物質を含む液体に投入することを特 徴とする液体の処理方法。
52. 請求の範囲第 8項に記載の担体を有害物質を含む液体に投入して摱拌する ことを特徴とする液体の処理方法。
53. 有害物質を含む液体を請求の範囲第 15項に記載の吸着材料を含むフィルタ 一に 1回ないし複数回 i! させることを特徴とする液体の処理方法。
54. 有害物質を含む液体の処理方法であって、
a ) 有害物質を含む液体に請求の範囲第 8項に記載の担体を、 有害物質を含む 液体に投入する段階及び
b ) 段階 a ) で処理されだ液体を請求の請求の範囲第 15項に記載の吸着材料を 含むフィルターに 1回ないし複数回通過させる段階を含む
液体の処理方法。
55. 段階 a ) を摱拌下で行う請求の範囲第 54項に記載の液体の処理方法。
56. (削除)
56. 処理すべき水を供給する供給口と、
1ないし複数本の請求の範囲第 15項に記載の吸着材料を含むフィルターを含む ろ過手段と、
処理した水を溜める貯水槽と
を含む液体処理装置。
57. 更に貯水槽と接続されかつ処理した液体を上記ろ過手段へ供給する手段を含 み、 所定回数処理した後に処理水を上記フィルターに供給してフィルターを再生 する請求の範囲第 56項に記載の液体処理装置。
58. 援拌手段を備えた前処理用の水槽を有し、 上記ろ過手段に液体を搬送する 手段を有する請求 範囲第 56項又は第 57項に記載の液体処理装置。
59. 請求の範囲第 1項ないし第 4項のいずれか一つに記載の微生物培溶液を水
補正された用紙 (条約第 19条) で希釈した希釈液を処理すべき気体に噴霧することを特徴とする気体の処理方法。
60. 処理すべき気体を請求の範囲第 15項に記載の吸着材料を含むフィルターに 通過させることを特徴とする気体の処理方法。
61. 処理すべき気体が有機化合物及び無機化合物由来の悪臭、 気体中に含まれる 有機化合物または無機化合物由来のケミカルハザードからなる群から選択される 請求の範囲第 59項又は第 60項記載の気体の処理方法。
62. 請求の範囲第 1項ないし第 4項のいずれか一つに記載の微生物培溶液を水 で希釈した希釈液を含む液体脱臭剤。
63. 請求の範囲第 4項に記載の微生物培溶液を水で希釈した希釈液を含む液体 脱色剤。
64. 請求の範囲第 4項に記載の微生物培溶液を水で希釈した希釈液を建材に噴 霧又は浸潰することを特徴とする建材の有害物質の剥離方法。
65. 請求の範囲第 4項に記載の微生物培溶液を水で希釈した希釈液を含む防黴 剤。
66. 請求の範囲第 4項に記載の微生物培溶液を水で希釈した希釈液を含む植物 の蘇生剤。
67. (補正後) 請求の範囲第 8項に記載の担体を含む脱臭剤。
68. (補正後) 請求の範囲第 10項に記載の多孔質吸着材料を含む脱臭剤。
69. (補正後) 請求の範囲第 15項に記載の吸着材料を含むフィルターを含む水 処理フィルター。
70. (補正後) 請求の範囲第 69項に記載の水処理フィルターを含む水の浄水装 置。
71. (補正後) 請求の範囲第 69項に記載の水処理フィルターを内臓するシャヮ 一へッド。
72. (補正後) 請求の範囲第 8項に記載の担体を含む水の清浄剤。
73. (補正後) 請求の範囲第 10項に記載の多孔質吸着材料を含む水の清浄剤。
74. GI¾0 請求の範囲第 51項に記載の液体の処理方法であって、 処理すべき 有害物質が重金属であることを特徴とする、 液体の処理方法。
75. (追加) 重金属が亜鉛、 ニッケル、 クロム、 銅、 コバルト、 マンガン、 水
補正された用紙 (条約第 19条) 銀、 力ドミゥムまたはこれらの混合物である、 請求の範囲第 74項に記載の液体 の処理方法。
76 Giin) . 請求の範囲第 51項に記載の液体の処理方法であって、 処理すべき 有害物質が有機/ \口ゲン化合物を含むことを特徴とする、 液体の処理方法。
77 (追加) . 有機ハロゲン化合物がダイォキシン、 ポリ塩化ビフエ二ル、 クロ 口ベンゼン、 亍卜ラクロ口エチレン、 トリクロロエチレン、 ジクロロメタン、 四 塩化炭素、 1, 2-ジクロロエチレン、 1, 3-ジクロロエチレン、 シス一 1 , 2-ジクロ 口エチレン、 1, 1,1-トリクロロエチレン、 1, 3-ジクロロエチレンまたはこれらの 混合物である請求の範囲第 76項に記載の液体の処理方法。
78. (追加) 請求の範囲第 51項に記載の液体の処理方法であって、 処理すべき 有害物質が石油を含むことを特徴とする、 液体の処理方法。
79. (追加) 請求の範囲第 51項に記載の液体の処理方法であって、 処理すべき 有害物質を含む液体がメツキ廃液であることを特徴とする、 液体の処理方法。
80. (追加) 請求の範囲第 51項に記載の液体の処理方まであって、 処理すべき 有害物貧を含む液体が半導体廃液であることを特徴とする、 液体の処理方法。
81. (追加) 請求の範囲第 51項に記載の液体の処理方法であって、 処理すべき 有害物質を含む液体が写真現像処理廃液であることを特徴とする、 液体の処理方 法。
82. (追加) 請求の範囲第 51項に記載の液体の処理方法であって、 処理すべき 有害物質を含む液体が染料含有廃液であることを特徴とする、 液体の処理方法。
83. (追加) 請求の範囲第 5〗項に記載の液体の処理方法であって、 処理すべき 有害物質を含む液体が下水道水であることを特徴とする、 液体の処理方法。
84. (追加) 請求の範囲第 51項に記載の液体の処理方法であって、 処理すべき 有害物質を含む液体が、 重金属、 有機ハロゲン化合物、 または石油を含む廃液、 メツキ廃液、 半導体廃液、 写真現像処理廃液、 染料含有廃液、 下水道水及びこれ らを含む廃液であることを特徴とする、 液体の処理方法。
85. (追加) 請求の範囲第 52項に記載の液体の処理方法であって、 処理すべき 有害物質が重金属であることを特徴とする、 液体の処理方法。
86. (追加) 重金属が亜鉛、 ニッケル、 クロム、 銅、 コバルト、 マンガン、 水
補正された用紙 (条約第 19条) 銀、 力ドミゥムまたはこれらの混合物である、 請求の範囲第 85項に記載の液体 の処理方法。
87. (追加) 請求の範囲第 52項に記載の液体の処理方法であって、 処理すべき 有害物質が有機ハロゲン化合物を含むことを特徴とする、 液体の処理方法。
88. (追加) 有機ハロゲン化合物がダイォキシン、 ポリ塩化ビフエニル、 クロ 口ベンゼン、 テトラクロロエチレン、 トリクロロエチレン、 ジクロロメタン、 四 塩化炭素、 1 , 2-ジクロロエチレン、 1 , 3-ジクロロエチレン、 シス一 1,2-ジクロ 口エチレン、 1 , 1 , 1-トリクロロエチレン、 1 , 3-ジクロロエチレンまたはこれらの 混合物である請求の範囲第 87項に記載の液体の処理方法。
89. (追加) 請求の範囲第 52項に記載の液体の処理方法であって、 処理すべき 有害物質が石油を含むことを特徴とする、 液体の処理方法。
90. (追加) 請求の範囲第 52項に記載の液体の処理方法であって、 処理すべき 有害物質を含む液体がメツキ廃液であることを特徴とする、 液体の処理方法。
91. (追加) 請求の範囲第 52項に記載の液体の処理方法であって、 処理すべき 有害物質を含む液体が半導体廃液であることを特徴とする、 液体の処理方法。
82. (追加) 請求の範囲第 52項に記載の液体の処理方法であって、 処理すべき 有害物質を含む液体が写真現像処理廃液であることを特徴とする、 液体の処理方 法。
93. (追加) 請求の範囲第 52項に記載の液体の処理方法であって、 処理すべき 有害物質を含む液体が染料含有廃液であることを特徴とする、 液体の処理方法。
94. (追加) 請求の範囲第 52項に記載の液体の処理方法であって、 処理すべき 有害物質を含む液体が下水道水であることを特徴とする、 液体の処理方法。
95. (追加) 請求の範囲第 52項に記載の液体の処理方法であって、 処理すべき 有害物質を含む液体が、 重金属、 有機ハロゲン化合物、 または石油を含む廃液、 メツキ廃液、 半導体廃液、 写真現像処理廃液、 染料含有廃液、 下水道水及びこれ らを含む廃液であることを特徴とする、 液体の処理方法。
96. (追加) 請求の範囲第 53項に記載の液体の処理方法であって、 処理すべき 有害物質が重金属であることを特徴とする、 液体の処理方法。
97. (追加) 重金属が亜鉛、 ニッケル、 クロム、 銅、 コバルト、 マンガン、 水
補正された用紙 (条約第 19条) 銀、 力ドミゥムまたはこれらの混合物である、 請求の範囲第 96項に iamの液体 の処理方法。
98. (追加) 請求の範囲第 53項に記載の液体の処理方まであって、 処理すべき 有害物質が有機/、口ゲン化合物を含むことを特徴とする、 液体の処理方法。
99. (追加) 有機ハロゲン化合物がダイォキシン、 ポリ塩化ビフエニル、 クロ 口ベンゼン、 亍卜ラクロ口エチレン、 トリクロロエチレン、 ジクロロメタン、 四 塩化炭素、 1 , 2-ジクロロエチレン、 1 , 3-ジクロロエチレン、 シス一 1 , 2-ジクロ 口エチレン、 1 , 1 , 1-トリクロロエチレン、 1 , 3-ジクロロエチレンまたはこれらの 混合物である請求の範囲第 98項に記載の液体の処理方法。
100. (追加) 請求の範囲第 53項に記載の液体の処理方法であって、 処理すベ き有害物質が石油を含むことを特徴とする、 液体の処理方法。
101. (追加) 請求の範囲第 53項に記載の液体の処理方法であって、 処理すベ き有害物質を含む液体がメツキ廃液であることを特徴とする、 液体の処理方法。
102. (追加) 請求の範囲第 53項に記載の液体の処理方法であって、 処理すぺ き有害物質を含む液体が半導体廃液であることを特徴とする、 液体の処理方法。
103. (追加) 請求の範囲第 53項に記載の液体の処理方法であって、 処理すベ き有害物質を含む液体が写真現像処理廃液であることを特徴とする、 液体の処理 方法。
104. (追加) 請求の範囲第 53項に記載の液体の処理方法であって、 処理すベ き有害物質を含む液体が染料含有廃液であることを特徴とする、液体の処理方法。
105. (追加) 請求の範囲第 53項に記載の液体の処理方法であって、 処理すベ き有害物貧を含む液体が下水道水であることを特徴とする、 液体の処理方法。
106. (追加) 請求の範囲第 53項に記載の液体の処理方法であって、 処理すベ き有害物質を含む液体が、重金属、有機ハロゲン化合物、または石油を含む廃液、 メツキ廃液、 半導体廃液、 写真現像処理廃液、 染料含有廃液、 下水道水及びこれ らを含む廃液であることを特徴とする、 液体の処理方法。
107. (追加) 請求の範囲第 54項に記載の液体の処理方法であって、 処理すベ き有害物質が重金属であることを特徴とする、 液体の処理方法。
108. (追加) 重金属が亜鉛、 ニッケル、 クロム、 銅、 コバルト、 マンガン、 水
補正された用紙 (条約第 19条) 銀、 カドミウムまたはこれらの混合物である、 請求の範囲第 107項に記載の液体 の処理方法。
109. (追加) 請求の範囲第 54項に記載の液体の処理方法であって、 処理すベ き有害物質が有機/ゝ口ゲン化合物を含むことを特徴とする、 液体の処理方法。
110. (追加) 有機ハロゲン化合物がダイォキシン、 ポリ塩化ビフエニル、 クロ 口ベンゼン、 テトラクロロエチレン、 トリクロロエチレン、 ジクロロメタン、 四 塩化炭素、 1 , 2-ジクロロエチレン、 1 , 3-ジクロロエチレン、 シス一 1 , 2-ジクロ 口エチレン、 1 , 1 , 1-トリクロロエチレン、 1, 3-ジクロロエチレンまたはこれらの 混合物である請求の範囲第 109項に記載の液体の処理方法。
111. (追加) 請求の範囲第 54項に記載の液体の処理方法であって、 処理すベ き有害物質が石油を含むことを特徴とする、 液体の処理方法。
112. (追加) 請求の範囲第 54項に記載の液体の処理方法であって、 処理すベ き有害物質を含む液体がメツキ廃液であることを特徴とする、 液体の処理方法。
113. (追加) 請求の範囲第 54項に記載の液体の処理方法であって、 処理すベ き有害物質を含む液体が半導体廃液であることを特徴とする、 液体の処理方法。
114. (追加) 請求の範囲第 54項に記載の液体の処理方法であって、 処理すベ き有害物質を含む液体が写真現像処理廃液であることを特徴とする、 液体の処理 方法。
115. (追加) 請求の範囲第 54項に記載の液体の処理方法であって、 処理すベ き有害物質を含む液体が染料含有廃液であることを特徴とする、液体の処理方法。
116. (追加) 請求の範囲第 54項に記載の液体の処理方法であって、 処理すベ き有害物質を含む液体が下水道水であることを特徴とする、 液体の処理方法。
117. (追加) 請求の範囲第 54項に記載の液体の処理方法であって、 処理すベ き有害物質を含む液体が、重金属、有機ハロゲン化合物、または石油を含む廃液、 メツキ廃液、 半導体廃液、 写真現像処理廃液、 染料含有廃液、 下水道水及びこれ らを含む廃液であることを特徴とする、 液体の処理方法。
118. (追加) 請求の範囲第 55項に記載の液体の処理方法であって、 処理すベ き有害物質が重金属であることを特徴とする、 液体の処理方法。
119. (追加) 重金属が亜鉛、 ニッケル、 クロム、 銅、 コバルト、 マンガン、 水
補正された用紙 (条約第 19条) 銀、 カドミウムまたはこれらの混合物である、 請求の範囲第 118項に記載の液体 の処理方法。
120. (追加) 請求の範囲第 55項に記載の液体の処理方法であって、 処理すベ き有害物質が有機ハロゲン化合物を含むことを特徴とする、 液体の処理方ま。
121. (追加) 有機ハロゲン化合物がダイォキシン、 ポリ塩化ビフエ二ル、 クロ 口ベンゼン、 亍卜ラクロ口エチレン、 卜リクロロエチレン、 ジクロロメタン、 四 塩化炭素、 1 , 2-ジクロロエチレン、 1 , 3-ジクロロエチレン、 シス一 1 , 2-ジクロ 口エチレン、 1 , 1 , 1-トリクロロエチレン、 1 , 3 -ジクロ口エチレンまたはこれらの 混合物である請求の範囲第 120項に記載の液体の処理方法。
121. (追加) 請求の範囲第 55項に記載の液体の処理方法であって、 処理すベ き有害物質が石油を含むことを特徴とする、 液体の処理方法。
122. (追加) 請求の範囲第 55項に記載の液体の処理方法であって、 処理すベ き有害物質を含む液体がメツキ廃液であることを特徴とする、 液体の処理方法。
123. (追加) 請求の範囲第 55項に記載の液体の処理方法であって、 処理すベ き有害物質を含む液体が半導体廃液であることを特徴とする、 液体の処理方法。
124. (追加) 請求の範囲第 55項に記載の液体の処理方法であって、 処理すベ き有害物質を含む液体が写真現像処理廃液であることを特徴とする、 液体の処理 方法。
125. (追加) 請求の範囲第 55項に記載の液体の処理方法であって、 処理すベ き有害物質を含む液体が染料含有廃液であることを特徴とする、液体の処理方法。
126. (追加) 請求の範囲第 55項に記載の液体の処理方法であって、 処理すベ き有害物質を含む液体が下水道水であることを特徴とする、 液体の処理方法。
127. (追加) 請求の範囲第 55項に記載の液体の処理方法であって、 処理すベ き有害物質を含む液体が、重金属、有機ハロゲン化合物、または石油を含む廃液、 メツキ廃液、 半導体廃液、 写真現像処理廃液、 染料含有廃液、 下水道水及びこれ らを含む廃液であることを特徴とする、 液体の処理方法。
補正された用紙 (条約第 19条) 条約第 19条(1 ) に基づ〈説明書 請求の範囲第 1項、 第 5項、 第 6項および第 7項は、 誤記による Γヒタタケ」 を Γヒラタケ」 に訂正した。
請求の範囲第 15項は、 Γ吸着材料」 の前に 「多孔質 j を追加した。
請求の範囲第 56項は、 二箇所あるので最初の請求の範囲第 56項を削除した。 請求の範囲第 66項以降の請求項の順番が不明確であったので、 再度番号を付 与し直した。
請求の範囲第 74項〜第 127項は、 削除した請求の範囲第 56項の内容を具体化 することによって処理対象を明確にした。
引用例は、 これらの処理対象を処理できることについて記載されていない。 本発明によりはじめてこれらの種々の有害物質を処理可能とする効果を得たも のである。
PCT/JP1999/002346 1998-05-06 1999-05-06 Liqueurs de culture microbienne contenant des micro-organismes de caracteristiques differentes vivant en symbiose et des metabolites de ceux-ci, vecteurs et adsorbants contenant les composants actifs de ces liqueurs de culture et leur utilisation WO1999057243A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU36285/99A AU771630B2 (en) 1998-05-06 1999-05-06 Microbial culture liquors containing microorganisms differing in characteristics and living in symbiosis and metabolites thereof, carriers and adsorbents containing the active components of the culture liquors and utilization of the same
EP99918307A EP1077252A1 (en) 1998-05-06 1999-05-06 Microbial culture liquors containing microorganisms differing in characteristics and living in symbiosis and metabolites thereof, carriers and adsorbents containing the active components of the culture liquors and utilization of the same
CA002331966A CA2331966A1 (en) 1998-05-06 1999-05-06 Microbial culture liquors containing microorganisms differing in characteristics and living in symbiosis and metabolites thereof, carriers and absorbents containing the active components of the culture liquors and utilization of the same
US09/673,655 US6649397B1 (en) 1998-05-06 1999-05-06 Microbial culture liquors containing microorganisms differing in characteristics and living in symbiosis and metabolites thereof, carriers and adsorbents containing the active components of the culture liquors and utilization of the same
US10/601,668 US20050101003A1 (en) 1998-05-06 2003-06-24 Microbe culture containing microgrobes having different characters living in symbosis with each other and metabolites therefrom, carrier and absorbing material containing the active ingredients of the culture and utilization thereof

Applications Claiming Priority (26)

Application Number Priority Date Filing Date Title
JP15979998 1998-05-06
JP10/159799 1998-05-06
JP18799398 1998-06-01
JP10/187993 1998-06-01
JP10/194906 1998-06-08
JP19490698 1998-06-08
JP23792098 1998-07-21
JP10/237920 1998-07-21
JP10/244323 1998-07-28
JP24432398 1998-07-28
JP24432498 1998-07-28
JP10/244324 1998-07-28
JP10/250301 1998-08-01
JP25030198 1998-08-01
JP10/279282 1998-08-25
JP27928298 1998-08-25
JP10/294400 1998-09-09
JP29440098 1998-09-09
JP10/316764 1998-10-05
JP31676498 1998-10-05
JP11/33348 1999-01-04
JP3334899 1999-01-04
JP11/105704 1999-03-09
JP10570499 1999-03-09
JP11/156926 1999-04-26
JP15692699 1999-04-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/601,668 Division US20050101003A1 (en) 1998-05-06 2003-06-24 Microbe culture containing microgrobes having different characters living in symbosis with each other and metabolites therefrom, carrier and absorbing material containing the active ingredients of the culture and utilization thereof

Publications (1)

Publication Number Publication Date
WO1999057243A1 true WO1999057243A1 (fr) 1999-11-11

Family

ID=27584206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/002346 WO1999057243A1 (fr) 1998-05-06 1999-05-06 Liqueurs de culture microbienne contenant des micro-organismes de caracteristiques differentes vivant en symbiose et des metabolites de ceux-ci, vecteurs et adsorbants contenant les composants actifs de ces liqueurs de culture et leur utilisation

Country Status (6)

Country Link
US (2) US6649397B1 (ja)
EP (1) EP1077252A1 (ja)
CN (1) CN1300318A (ja)
AU (1) AU771630B2 (ja)
CA (1) CA2331966A1 (ja)
WO (1) WO1999057243A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005234A1 (en) * 1999-07-14 2001-01-25 Palmrow Pty Ltd A nematicide composition
WO2001005927A1 (fr) * 1999-07-19 2001-01-25 Keijiro Nakamura Tensioactifs et detergents, et procede de lavage a base de milieu de culture complexe de microorganismes/enzymes
JP2002212154A (ja) * 2001-01-16 2002-07-31 Dainippon Ink & Chem Inc 2,5−ジアリールアミノテレフタル酸の製造方法
KR20030046535A (ko) * 2001-11-13 2003-06-18 (주)이씨테크 폐어망에 효율적인 생물막 형성을 위한 영양분 코팅 방법및 생물막 오수정화장치
WO2003101472A1 (en) * 2002-05-31 2003-12-11 Calpis Co., Ltd. Dioxin elimination promoter
WO2005080539A1 (ja) * 2004-02-20 2005-09-01 Em Research Organization, Inc. 発酵技術を応用した洗浄剤及びその製造方法
CN101157860B (zh) * 2007-02-14 2011-06-01 林文辉 一种土壤生物氧化剂的配方及其制作方法
CN102405770A (zh) * 2011-09-19 2012-04-11 河南农业大学 一种利用大豆慢生根瘤菌促进平菇生长的方法
CN104548175A (zh) * 2014-12-31 2015-04-29 北京沃土天地生物科技有限公司 一种复合生物除臭剂及其制备方法与应用
JP2015136677A (ja) * 2014-01-24 2015-07-30 新日鐵住金株式会社 排水処理方法
WO2016098711A1 (ja) * 2014-12-15 2016-06-23 大谷 洋 浄化システムおよびそれを用いた浄化方法、および、藻類増殖抑制方法、および水流発生装置、および浄化装置

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1077252A1 (en) * 1998-05-06 2001-02-21 Keijiro Nakamura Microbial culture liquors containing microorganisms differing in characteristics and living in symbiosis and metabolites thereof, carriers and adsorbents containing the active components of the culture liquors and utilization of the same
AUPQ899700A0 (en) 2000-07-25 2000-08-17 Borody, Thomas Julius Probiotic recolonisation therapy
US6878179B2 (en) * 2001-12-31 2005-04-12 Microbes, Inc. Fertilizer compositions and methods of making and using same
US6991671B2 (en) * 2002-12-09 2006-01-31 Advanced Technology Materials, Inc. Rectangular parallelepiped fluid storage and dispensing vessel
GT200500050A (es) * 2004-03-16 2005-10-24 Composiciones pesticidas para el tratamiento de semillas
CN101967449B (zh) * 2005-10-22 2013-01-09 朴世俊 具有除去有机废物难闻气味的活性的微生物及其应用
EP1948781B1 (en) * 2005-10-22 2009-12-30 Se Joon Park Microorganisms having bad smell removal activity of organic waste and use thereof
BRPI0708008A2 (pt) * 2006-01-30 2011-05-17 Univ Georgia State Res Found indução e estabilização de atividade enzimática em microorganismos
US20100272701A1 (en) * 2007-01-17 2010-10-28 Bion Tech Inc. Method for producing bactericide or soil conditioner containing bacillus subtilis
US7943549B2 (en) * 2007-04-02 2011-05-17 Georgia State University Research Foundation, Inc. Biological-based catalyst to delay plant development processes
KR100870880B1 (ko) 2007-10-30 2008-11-28 박세준 락토바실루스속 에스제이피미생물
KR100870879B1 (ko) 2007-10-30 2008-11-28 박세준 락토바실루스속 에스제이피미생물
KR100870881B1 (ko) 2007-10-30 2008-11-28 박세준 브레비바실루스 속 에스제피미생물
KR100870878B1 (ko) 2007-10-30 2008-11-28 박세준 락토바실루스 속 에스제피미생물
KR100870877B1 (ko) 2007-10-30 2008-11-28 박세준 카모박테리움속 에스제피미생물
KR100870882B1 (ko) 2007-10-30 2008-11-28 박세준 페니바실루스속 에스제피미생물
US8052873B1 (en) 2007-10-31 2011-11-08 Environmental Business Specialists, LLC Bacterial cultivation system for growth of substrate specific micro-organisms for use in industrial wastewater remediation
AU2008334090A1 (en) * 2007-11-30 2009-06-11 Daniel V. Santi Industrial production of organic compounds using recombinant organisms expressing methyl halide transferase
JP2009160492A (ja) * 2007-12-28 2009-07-23 Ryncosmos Llc 有害物質除去方法
CN101416641B (zh) * 2008-09-12 2011-08-17 云南农业大学 防治十字花科根肿病的生物制剂及其应用
US9040266B2 (en) 2009-07-22 2015-05-26 The Regents Of The University Of California Cell-based systems for production of methyl formate
EP2600877A4 (en) 2010-08-04 2014-05-07 Borody Thomas J COMPOSITIONS FOR FLORAL TRANSPLANTATION OF FECAL MATERIALS AND METHODS OF MAKING AND USING SAME, AND DEVICES FOR THEIR ADMINISTRATION
JP2014507481A (ja) 2011-03-09 2014-03-27 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 結腸微生物相移植のための組成物及び方法
KR101300438B1 (ko) * 2011-04-11 2013-08-26 (주) 에덴 패키지형 상수도 고도정수처리시설
WO2013176774A1 (en) 2012-05-25 2013-11-28 Arizona Board Of Regents Microbiome markers and therapies for autism spectrum disorders
CN103570139B (zh) * 2012-08-03 2014-11-26 云南昊戌生物科技有限公司 感染性废水生态处理系统
CN103011425B (zh) * 2012-12-27 2014-05-28 上海泓宝绿色水产科技发展有限公司 颗粒型复合底改菌及其制备方法
WO2014160354A1 (en) 2013-03-14 2014-10-02 Georgia State University Research Foundation, Inc. Inhibiting or reducing fungal growth
EP2970889A4 (en) 2013-03-14 2016-10-19 Univ Georgia State Res Found PREVENTING OR DELAYING RESPONSE TO COLD-DAMAGE IN PLANTS
US9174882B2 (en) * 2014-01-13 2015-11-03 Houston E. Hill, JR. Method for converting oil-based drilling fluids, fracking fluids, and produced waters into fertile indigenous top soil
CN104059671B (zh) * 2014-06-03 2016-03-23 河海大学 设施次生no3-盐化土壤改良剂、制备方法及改良方法
CN104248945A (zh) * 2014-09-17 2014-12-31 华中科技大学 一种重金属吸附剂、其制备方法及应用
KR102561989B1 (ko) 2015-05-14 2023-07-31 핀치 테라퓨틱스 홀딩스 엘엘씨 대변 균무리 이식용 조성물, 및 이의 제조 및 사용 방법, 및 이의 전달을 위한 장치
AU2016268158B2 (en) 2015-05-22 2022-03-17 Arizona Board Of Regents On Behalf Of Arizona State University Methods for treating autism spectrum disorder and associated symptoms
CN105254419A (zh) * 2015-10-16 2016-01-20 阜南县阜合种养农民专业合作联合社 一种液态发酵的梨树肥料及其制备方法
CN105254418A (zh) * 2015-10-16 2016-01-20 阜南县阜合种养农民专业合作联合社 一种梨树移植快速生根肥料及其制备方法
CN105272572A (zh) * 2015-10-16 2016-01-27 阜南县阜合种养农民专业合作联合社 一种梨树幼年期栽培基肥及其制备方法
JP7016803B2 (ja) * 2015-12-29 2022-02-07 ヒョンダイ モーター カンパニー 無臭微生物を含む臭気防止用組成物
US20170360848A1 (en) 2016-06-15 2017-12-21 Arizona Board Of Regents On Behalf Of Arizona State University Methods for treating autism spectrum disorder and associated symptoms
US10849936B2 (en) 2016-07-01 2020-12-01 Regents Of The University Of Minnesota Compositions and methods for C. difficile treatment
CN106047854A (zh) * 2016-07-20 2016-10-26 申昱环保科技股份有限公司 具有杆状活性炭的污水处理菌剂的制备方法
US20180036352A1 (en) 2016-08-03 2018-02-08 Crestovo Holdings Llc Methods for treating ulcerative colitis
IT201600093554A1 (it) * 2016-09-16 2018-03-16 Yurie Orimoto Metodo di trattamento di suoli contaminati
WO2018071536A1 (en) 2016-10-11 2018-04-19 Crestovo Holdings Llc Compositions and methods for treating primary sclerosing cholangitis and related disorders
US10092601B2 (en) 2016-10-11 2018-10-09 Crestovo Holdings Llc Compositions and methods for treating multiple sclerosis and related disorders
US11026978B2 (en) 2016-10-11 2021-06-08 Finch Therapeutics Holdings Llc Compositions and methods for treating multiple sclerosis and related disorders
CN110831606A (zh) 2017-04-05 2020-02-21 克雷斯顿沃控股公司 治疗帕金森氏病(pd)和相关疾病的组合物和方法
US11040073B2 (en) 2017-04-05 2021-06-22 Finch Therapeutics Holdings Llc Compositions and methods for treating diverticulitis and related disorders
CN106966836A (zh) * 2017-05-09 2017-07-21 广东丰康生物科技有限公司 一种用于盐碱土壤改良的功能性水溶肥料及其应用
EP3630190B1 (en) 2017-05-26 2024-02-21 Finch Therapeutics Holdings LLC Lyophilized compositions comprising fecal microbe-based therapeutic agents and methods for making and using same
CN107470334B (zh) * 2017-07-03 2020-11-20 浙江海洋大学 一种用于清理受石油污染土壤的复配修复剂
US11865145B2 (en) 2017-08-07 2024-01-09 Finch Therapeutics Holdings Llc Compositions and methods for maintaining and restoring a healthy gut barrier
WO2019133923A1 (en) * 2017-12-28 2019-07-04 Sustainable Community Development, Llc. Microbial-based composition and method of use
CN108421822B (zh) * 2018-02-24 2019-11-08 鸿灌环境技术有限公司 药剂雾化喷淋治理污染土壤的修复治理装置及其治理方法
US11166990B2 (en) 2018-07-13 2021-11-09 Finch Therapeutics Holdings Llc Methods and compositions for treating ulcerative colitis
CN108913632B (zh) * 2018-08-06 2022-05-17 福建省农业科学院农业质量标准与检测技术研究所 一种水产养殖用复合微生物发酵液及其制备方法和应用
US11911419B2 (en) 2018-09-27 2024-02-27 Finch Therapeutics Holdings Llc Compositions and methods for treating epilepsy and related disorders
CN109250883B (zh) * 2018-11-27 2021-09-14 内蒙古济世源环保生物科技有限公司 污泥处理方法
CN109504628A (zh) * 2018-12-11 2019-03-22 南开大学 一种微生物除臭菌剂的制备方法
CN109694134A (zh) * 2019-01-24 2019-04-30 张庆堂 一种多孔性污水净化竹球及其加工方法
CN111204882A (zh) * 2020-01-21 2020-05-29 福建农林大学 一种有机质类化合物驱动的水体脱氮的方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586593A (en) * 1978-12-25 1980-06-30 Kubota Ltd Treating method of waste water of garbage incinerating plant
JPS6027672A (ja) * 1983-07-25 1985-02-12 日本ライフ株式会社 微生物の培養物を利用して、堆肥の腐熟促進、土壌の改良、肥効の増進、残留農薬の無害化、病害微生物を抑制する資料を製造する方法
JPS60137492A (ja) * 1983-12-23 1985-07-22 Meidensha Electric Mfg Co Ltd 排水処理装置
JPH0372879A (ja) * 1989-08-09 1991-03-28 Mitsubishi Rayon Co Ltd 微生物固定化繊維の製造法
JPH05244962A (ja) * 1992-03-09 1993-09-24 Keijiro Nakamura 生物活性化剤の製造方法
JPH05252842A (ja) * 1992-03-10 1993-10-05 Keijiro Nakamura 新規キノコ
JPH0671293A (ja) * 1992-05-22 1994-03-15 Ebara Infilco Co Ltd 固形廃棄物と廃水の処理方法
JPH06239608A (ja) * 1993-02-17 1994-08-30 Takeda Chem Ind Ltd 微生物菌体を固定した活性炭、その製法および用途
JPH0748193A (ja) * 1993-04-28 1995-02-21 Kazuo Takahashi 廃棄物の新聞紙等を再利用した、有機質肥料の製造方法
JPH07274942A (ja) * 1994-04-08 1995-10-24 Mutenka Shokuhin Hanbai Kyodo Kumiai 好気性微生物及び嫌気性微生物の複合大量培養法
JPH0824828A (ja) * 1994-07-08 1996-01-30 Hiromitsu Uchibori 生ゴミ処理悪臭消化の脱臭剤
JPH08119780A (ja) * 1994-10-13 1996-05-14 Shuichi Kitamura コンポスター
JPH08196265A (ja) * 1995-01-24 1996-08-06 Yutaka Jisho:Kk 有用微生物群元菌増殖法
JPH08209669A (ja) * 1995-01-31 1996-08-13 Ube Ind Ltd 海底泥土層の改良方法
JPH08252086A (ja) * 1995-03-16 1996-10-01 Yuutoku:Kk 多孔質物質に有用微生物群を増殖する方法
JPH08277002A (ja) * 1995-04-10 1996-10-22 Kazuo Kogo ネット付きゴミ受け
JPH08280378A (ja) * 1995-04-14 1996-10-29 Netsu Nachiyuraru Farm:Kk Em効果が飛躍的に増大するem拡大培養液並びにem混入菌床並びにem拡大培養液の利用方法並びに肥料
JPH1046146A (ja) * 1996-08-08 1998-02-17 Marui Hosou:Kk 土壌改良剤
JPH10155476A (ja) * 1996-11-27 1998-06-16 Konsaruteeshiyon Nagaoka:Kk Em拡大培養液,em混入ゴム,em混入接着剤並びにem混入塗料
JPH10167921A (ja) * 1996-12-05 1998-06-23 Michio Iriguchi 病害虫殺菌忌避剤の製造法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US372879A (en) * 1887-11-08 Teeeitoky
US671293A (en) * 1900-07-11 1901-04-02 William Quinby Machine for setting lacing-studs.
US748193A (en) * 1903-04-22 1903-12-29 John Peter Knuehmann Paint-brush.
US824828A (en) * 1906-03-05 1906-07-03 William L Silvey Secondary-battery plate.
US1046146A (en) * 1907-03-18 1912-12-03 Franz De Buigne Step in the mode of making die-stamps or the like.
US5244962A (en) * 1989-12-01 1993-09-14 Avery Dennison Corporation Olefin polymer based pressure-sensitive adhesives
US5252842A (en) * 1991-07-26 1993-10-12 Westinghouse Electric Corp. Low-loss semiconductor device and backside etching method for manufacturing same
US5586593A (en) * 1995-06-30 1996-12-24 Hunt Holdings, Inc. Partitioning system
JP3685429B2 (ja) * 1996-08-06 2005-08-17 シャープ株式会社 ショットキー接合の解析方法、半導体ウェーハの評価方法、絶縁膜の評価方法、およびショットキー接合解析装置
US6137492A (en) * 1997-04-03 2000-10-24 Microsoft Corporation Method and system for adaptive refinement of progressive meshes
US6027672A (en) * 1997-12-31 2000-02-22 Lightpath Technologies, Inc. Method of producing large polymer optical blanks with predictable axil refractive index profile
EP1077252A1 (en) * 1998-05-06 2001-02-21 Keijiro Nakamura Microbial culture liquors containing microorganisms differing in characteristics and living in symbiosis and metabolites thereof, carriers and adsorbents containing the active components of the culture liquors and utilization of the same

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5586593A (en) * 1978-12-25 1980-06-30 Kubota Ltd Treating method of waste water of garbage incinerating plant
JPS6027672A (ja) * 1983-07-25 1985-02-12 日本ライフ株式会社 微生物の培養物を利用して、堆肥の腐熟促進、土壌の改良、肥効の増進、残留農薬の無害化、病害微生物を抑制する資料を製造する方法
JPS60137492A (ja) * 1983-12-23 1985-07-22 Meidensha Electric Mfg Co Ltd 排水処理装置
JPH0372879A (ja) * 1989-08-09 1991-03-28 Mitsubishi Rayon Co Ltd 微生物固定化繊維の製造法
JPH05244962A (ja) * 1992-03-09 1993-09-24 Keijiro Nakamura 生物活性化剤の製造方法
JPH05252842A (ja) * 1992-03-10 1993-10-05 Keijiro Nakamura 新規キノコ
JPH0671293A (ja) * 1992-05-22 1994-03-15 Ebara Infilco Co Ltd 固形廃棄物と廃水の処理方法
JPH06239608A (ja) * 1993-02-17 1994-08-30 Takeda Chem Ind Ltd 微生物菌体を固定した活性炭、その製法および用途
JPH0748193A (ja) * 1993-04-28 1995-02-21 Kazuo Takahashi 廃棄物の新聞紙等を再利用した、有機質肥料の製造方法
JPH07274942A (ja) * 1994-04-08 1995-10-24 Mutenka Shokuhin Hanbai Kyodo Kumiai 好気性微生物及び嫌気性微生物の複合大量培養法
JPH0824828A (ja) * 1994-07-08 1996-01-30 Hiromitsu Uchibori 生ゴミ処理悪臭消化の脱臭剤
JPH08119780A (ja) * 1994-10-13 1996-05-14 Shuichi Kitamura コンポスター
JPH08196265A (ja) * 1995-01-24 1996-08-06 Yutaka Jisho:Kk 有用微生物群元菌増殖法
JPH08209669A (ja) * 1995-01-31 1996-08-13 Ube Ind Ltd 海底泥土層の改良方法
JPH08252086A (ja) * 1995-03-16 1996-10-01 Yuutoku:Kk 多孔質物質に有用微生物群を増殖する方法
JPH08277002A (ja) * 1995-04-10 1996-10-22 Kazuo Kogo ネット付きゴミ受け
JPH08280378A (ja) * 1995-04-14 1996-10-29 Netsu Nachiyuraru Farm:Kk Em効果が飛躍的に増大するem拡大培養液並びにem混入菌床並びにem拡大培養液の利用方法並びに肥料
JPH1046146A (ja) * 1996-08-08 1998-02-17 Marui Hosou:Kk 土壌改良剤
JPH10155476A (ja) * 1996-11-27 1998-06-16 Konsaruteeshiyon Nagaoka:Kk Em拡大培養液,em混入ゴム,em混入接着剤並びにem混入塗料
JPH10167921A (ja) * 1996-12-05 1998-06-23 Michio Iriguchi 病害虫殺菌忌避剤の製造法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001005234A1 (en) * 1999-07-14 2001-01-25 Palmrow Pty Ltd A nematicide composition
WO2001005927A1 (fr) * 1999-07-19 2001-01-25 Keijiro Nakamura Tensioactifs et detergents, et procede de lavage a base de milieu de culture complexe de microorganismes/enzymes
JP2002212154A (ja) * 2001-01-16 2002-07-31 Dainippon Ink & Chem Inc 2,5−ジアリールアミノテレフタル酸の製造方法
KR20030046535A (ko) * 2001-11-13 2003-06-18 (주)이씨테크 폐어망에 효율적인 생물막 형성을 위한 영양분 코팅 방법및 생물막 오수정화장치
WO2003101472A1 (en) * 2002-05-31 2003-12-11 Calpis Co., Ltd. Dioxin elimination promoter
US8877483B2 (en) 2002-05-31 2014-11-04 Calpis Co., Ltd. Dioxin elimination promoter
US7745202B2 (en) 2004-02-20 2010-06-29 Em Research Organization, Inc. Detergent made use of fermentation technology and production method thereof
CN1922300B (zh) * 2004-02-20 2011-03-16 株式会社Em研究机构 应用发酵技术的净洗剂及其制造方法
WO2005080539A1 (ja) * 2004-02-20 2005-09-01 Em Research Organization, Inc. 発酵技術を応用した洗浄剤及びその製造方法
CN101157860B (zh) * 2007-02-14 2011-06-01 林文辉 一种土壤生物氧化剂的配方及其制作方法
CN102405770A (zh) * 2011-09-19 2012-04-11 河南农业大学 一种利用大豆慢生根瘤菌促进平菇生长的方法
JP2015136677A (ja) * 2014-01-24 2015-07-30 新日鐵住金株式会社 排水処理方法
WO2016098711A1 (ja) * 2014-12-15 2016-06-23 大谷 洋 浄化システムおよびそれを用いた浄化方法、および、藻類増殖抑制方法、および水流発生装置、および浄化装置
CN104548175A (zh) * 2014-12-31 2015-04-29 北京沃土天地生物科技有限公司 一种复合生物除臭剂及其制备方法与应用
CN104548175B (zh) * 2014-12-31 2019-06-21 北京沃土天地生物科技有限公司 一种复合生物除臭剂及其制备方法与应用

Also Published As

Publication number Publication date
CN1300318A (zh) 2001-06-20
EP1077252A1 (en) 2001-02-21
US6649397B1 (en) 2003-11-18
US20050101003A1 (en) 2005-05-12
AU771630B2 (en) 2004-04-01
AU3628599A (en) 1999-11-23
CA2331966A1 (en) 1999-11-11

Similar Documents

Publication Publication Date Title
WO1999057243A1 (fr) Liqueurs de culture microbienne contenant des micro-organismes de caracteristiques differentes vivant en symbiose et des metabolites de ceux-ci, vecteurs et adsorbants contenant les composants actifs de ces liqueurs de culture et leur utilisation
Cameron et al. Is soil an appropriate dumping ground for our wastes?
US10342189B2 (en) Aerobic, bioremediation treatment system comprising floating inert media in an aqueous environment
US7416668B1 (en) Wastewater chemical/biological treatment plant recovery apparatus and method
US5736032A (en) Stabilization of biowastes
CA2134776C (en) Stabilization of biowastes
US7297273B2 (en) Method of intensified treatment for the wastewater containing excreta with highly concentrated nitrogen and COD
JP2003335792A (ja) 腐植前駆体フェリハイドライト前駆体複合体及びその製造方法並びに腐植前駆体フェリハイドライト前駆体複合体を用いた畜産廃棄物処理方法及び汚水処理システム
AU2003262294B2 (en) Method of sludge recycling
US6361698B1 (en) Industrial lagoon treatment
Alredaisy Ecological benefits of bioremediation of oil contaminated water in rich savannah of Palogue, upper Nile area southern Sudan
CN1302711C (zh) 具有除臭活性和对于抗多种药物的细菌具有杀菌活性的功能水及其制备方法
Ezaz et al. Current trends of phytoremediation in wetlands: mechanisms and applications
Husain et al. Microorganisms: An eco-friendly tools for the waste management and environmental safety
El-Zohri et al. 42 Use of Sewage in Agriculture and Related Activities
JP2002145686A (ja) 産業廃棄物の無公害処理とその有効利用
AU2004200600A1 (en) Microbe culture containing microgrobes having different characters living in symbosis with each other and metabolites therefrom, carrier and absorbing material containing the active ingredients of the culture and utilization thereof
Ingole et al. Utilization of water hyacinth relevant in water treatment and resource recovery with special reference to India
US20220401348A1 (en) Wood vinegar containing product and methods to control algae blooms, reduce odors, and other applications
Chhabra et al. Wastewaters as Non-conventional Sources of Irrigation
Sinha et al. Vermiculture Technology for Recycling of Solid Wastes & Wastewater by Earthworms into Valuable Resources for Their Reuse in Agriculture While Saving Water & Fertilizer
Pukallenthy Harlina Ahmad*, Mardiana Idayu Ahmad, Rekah Nadarajah, Nishalini Ratha Pukallenthy, Norli Ismail Bioremediation of Pesticides in the Environment
Ahmad et al. Bioremediation of pesticides in the environment
Kumar Synergism between microbes and plants for soil contaminants mitigation
EP0520239B1 (en) Detoxication of vegetation liquors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99805857.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref document number: 2331966

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1999918307

Country of ref document: EP

Ref document number: 36285/99

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 09673655

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999918307

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 36285/99

Country of ref document: AU

WWW Wipo information: withdrawn in national office

Ref document number: 1999918307

Country of ref document: EP