WO1999051468A1 - Appareil de commande pour dispositif de securite des occupants d'un vehicule - Google Patents

Appareil de commande pour dispositif de securite des occupants d'un vehicule Download PDF

Info

Publication number
WO1999051468A1
WO1999051468A1 PCT/JP1999/001733 JP9901733W WO9951468A1 WO 1999051468 A1 WO1999051468 A1 WO 1999051468A1 JP 9901733 W JP9901733 W JP 9901733W WO 9951468 A1 WO9951468 A1 WO 9951468A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
value
occupant protection
protection device
threshold
Prior art date
Application number
PCT/JP1999/001733
Other languages
English (en)
French (fr)
Inventor
Hiromichi Fujishima
Masahide Sawada
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=13989138&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1999051468(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyota Jidosha Kabushiki Kaisha filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CA002291836A priority Critical patent/CA2291836C/en
Priority to EP99910808A priority patent/EP0987151B1/en
Priority to KR1019997011237A priority patent/KR100354661B1/ko
Priority to BR9906306-9A priority patent/BR9906306A/pt
Priority to DE69930103T priority patent/DE69930103T2/de
Priority to US09/445,032 priority patent/US6371515B1/en
Publication of WO1999051468A1 publication Critical patent/WO1999051468A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R2021/01006Mounting of electrical components in vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • B60R2021/01322Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value comprising variable thresholds, e.g. depending from other collision parameters

Definitions

  • the present invention relates to an activation control device for an occupant protection device that controls activation of an occupant protection device such as an airbag device that protects an occupant in the vehicle when the vehicle collides.
  • the impact applied to the vehicle is normally detected as deceleration by an acceleration sensor installed on the floor tunnel, and the calculated value is calculated based on the detected deceleration. Is calculated, the calculated value is compared with a preset threshold value, and ignition control of the squib is performed based on the comparison result.
  • the type of vehicle collision depends on the type of collision, as shown in Figs.14A to 14F, head-on collision, oblique collision, pole collision, and offset collision. , And underride collisions.
  • head-on collision the vehicle is impacted by the two side members on the left and right, resulting in a significant reduction in the floor tunnel where the floor sensor is installed within a predetermined time after the collision.
  • Speed arises.
  • a collision other than a head-on collision such a shock is not received, so that no significant deceleration occurs on the floor tunnel within a predetermined time after the collision.
  • An object of the present invention is to provide an activation control device for an occupant protection device that can start the occupant protection device at an optimal timing. Disclosure of the invention
  • a first sensor is provided at a predetermined position in a vehicle, and detects a shock applied to the vehicle, and a calculated value obtained based on a value detected by the first sensor is a predetermined threshold value.
  • An activation control means of the occupant protection device for activating the occupant protection device when the vehicle speed exceeds the threshold, and disposed in the vehicle in front of the first sensor to detect a magnitude of an impact applied to the vehicle,
  • a second sensor for detecting at least two values of different magnitudes in accordance with the magnitude of the detected impact, and a threshold changing means for changing the predetermined threshold in accordance with a value detected by the second sensor
  • An activation control device for an occupant protection device comprising: a threshold change amount increasing unit that increases a change amount of the predetermined threshold value as a value based on a value detected by the second sensor increases. Equipped with The features.
  • the invention is characterized in that the value based on the detection value of the second sensor is obtained by integrating the detection value of the second sensor for a predetermined period.
  • the present invention is characterized in that the threshold value change amount increasing means subtracts a value based on a calculated value obtained by integrating the detection value of the second sensor for a predetermined period from the predetermined threshold value.
  • the present invention is characterized in that a calculation value obtained based on a detection value of the first sensor is obtained by integrating a detection value of the first sensor for a predetermined period.
  • the present invention is characterized in that the second sensor is constituted by two sensors, and a larger one of the detection values detected by the two sensors is set as a detection value by the second sensor. I do.
  • the present invention is characterized in that the second sensor is provided at a front central portion of the vehicle.
  • the present invention is characterized in that the second sensor detects the magnitude of an impact applied to the vehicle, and outputs the detected value as a linear value. Further, the present invention is characterized in that the second sensor is a mechanical sensor that detects the magnitude of an impact applied to the vehicle and outputs the detected value as two different values.
  • the threshold value changing means changes the predetermined threshold value used for determining the activation of the occupant protection device in accordance with the detection value of the second sensor
  • the threshold value changing amount increasing means changes the detection value of the second sensor. The larger the value is, the larger the change amount of the predetermined threshold value used for determining the activation of the occupant protection device is, so that the occupant protection device can be activated at an optimal timing.
  • the present invention is characterized in that the threshold value changing means reduces the threshold value changing amount reducing means for reducing the changing amount of the predetermined threshold value corresponding to the initial increase state of the calculated value based on the detection value of the first sensor. It is characterized by having.
  • the threshold change amount reducing means reduces the change amount of the predetermined threshold corresponding to the initial increase state of the calculated value based on the value detected by the first sensor. This can prevent the occupant protection device from being activated too quickly.
  • the present invention is characterized in that, when the threshold value changing means exceeds a predetermined value based on a value detected by the second sensor, an initial value of the calculation value based on the value detected by the first sensor is set. Characterized in that the predetermined threshold value corresponding to the increase state of is not changed.
  • the predetermined threshold value corresponding to the initial increase state of the calculated value based on the detection value of the first sensor is determined. Since the change is not performed, the start time of the change of the predetermined threshold value can be delayed, so that the occupant protection device can be prevented from being activated too quickly due to an impact or the like when traveling on a rough road.
  • the second sensor has a right sensor and a left sensor disposed at the front left and right of 3 $ both in front, and the threshold value changing means is configured by the right sensor and the left sensor.
  • the predetermined threshold value is changed according to the magnitude of the difference between the detected impacts.
  • the threshold value changing means determines the magnitude of the difference between the impacts detected by the right sensor and the left sensor.
  • the predetermined threshold value used for the determination of the activation of the occupant protection device is changed according to. Since the magnitude of the difference between the impacts detected by the right sensor and the left sensor varies depending on the collision location of the vehicle, a predetermined threshold is set according to the magnitude of the difference between the impacts detected by the right sensor and the left sensor.
  • the second sensor includes a right sensor and a left sensor disposed in front of the front and left sides of the front vehicle
  • the threshold value changing means includes an impact detected by the right sensor and the left sensor.
  • the predetermined threshold value is changed in accordance with the difference between the threshold values or the magnitude of the ratio of the impact detected by the right sensor and the left sensor.
  • the threshold value changing means changes the predetermined threshold value according to the difference between the impacts detected by the right sensor and the left sensor or the magnitude of the ratio of the impact detected by the right sensor and the left sensor. Therefore, it is possible to optimally control the activation of the occupant protection device according to the collision site of the vehicle.
  • FIG. 1 is a block diagram showing an activation control device of the occupant protection device according to the first embodiment.
  • FIG. 2 is an explanatory diagram showing locations of the satellite sensor and the floor sensor of the activation control device of the occupant protection device according to the first embodiment.
  • FIG. 3 is a diagram for explaining operations of a satellite sensor, a floor sensor, a CPU, and the like of the activation control device of the occupant protection device according to the first embodiment.
  • FIG. 4 is a diagram illustrating a determination map used in the activation control device of the occupant protection device according to the first embodiment.
  • FIG. 5 is a graph showing the detection values of the satellite sensor of the activation control device for the occupant protection device according to the first embodiment.
  • FIG. 6A is a diagram showing a determination map used in the activation control device of the occupant protection device according to the second embodiment, and a detection value at the time of a collision of the satellite sensor.
  • FIG. 6B is a graph showing the detection values of the satellite sensor of the activation control device for the occupant protection device according to the second embodiment.
  • FIG. 7A is a diagram showing a determination map used by the activation control device of the occupant protection device according to the second embodiment, and a detection value of the satellite sensor when traveling on a rough road.
  • FIG. 7B is a graph showing a detection value of a satellite sensor of the activation control device for the occupant protection device according to the second embodiment.
  • FIG. 8A is a diagram showing a determination map used in the activation control device of the occupant protection device according to the third embodiment and a detection value at the time of collision of the satellite sensor.
  • FIG. 8B is a graph showing the detection values of the satellite sensor of the activation control device for the occupant protection device according to the third embodiment.
  • FIG. 9A is a diagram showing a judgment map used in the activation control device of the occupant protection device according to the third embodiment and a detection value of the satellite sensor when traveling on a rough road.
  • FIG. 9B is a graph showing the detection values of the satellite sensor of the activation control device for the occupant protection device according to the third embodiment.
  • FIG. 1OA is a diagram showing a detection value of a satellite sensor of an activation control device for an occupant protection device according to a fourth embodiment.
  • FIG. 10B is a diagram showing the detection values of the satellite sensor of the activation control device for the occupant protection device according to the fourth embodiment.
  • FIG. 11 is a schematic diagram illustrating an activation control device of an occupant protection device according to a fifth embodiment.
  • FIG. 12 is a diagram showing a determination map used in the activation control device of the occupant protection device according to the fifth embodiment.
  • FIG. 13 is a block diagram showing a modification of the activation control device for the occupant protection device according to the fifth embodiment.
  • FIG. 14A is a diagram showing a state in which the vehicle has crashed.
  • FIG. 14B is a diagram showing a state in which the vehicle has leaned.
  • FIG. 14C is a diagram showing a state where the vehicle has collided with a pole.
  • FIG. 14D is a diagram showing a state where the vehicle has undergone an offset collision.
  • FIG. 14E is a diagram showing a state in which the vehicle has undergone an underride collision.
  • FIG. 14F is a diagram showing a state where the vehicle is traveling on a rough road.
  • FIG. 1 is a block diagram showing a start-up control device for an occupant protection system using a satellite sensor
  • FIG. 2 is an explanatory diagram showing locations of the satellite sensor and the floor sensor in FIG.
  • the activation control device of the occupant protection device is a device that controls the activation of the airbag device 36, which is a kind of occupant protection device.
  • the activation control device mainly includes a control circuit 20, a satellite sensor (second 30A and 30B, a floor sensor (first sensor) 32, and a drive circuit 34.
  • the satellite sensors 3OA and 30B are electronic sensors for detecting the magnitude of the impact applied to the vehicle 46, and specifically, detect and detect the deceleration applied to the vehicle 46. A detection signal corresponding to the magnitude of the deceleration is output.
  • the floor sensor 32 is a so-called acceleration sensor for measuring an impact applied to the vehicle 46. Specifically, the floor sensor 32 measures the deceleration applied to the vehicle 46 in the front-rear direction as needed, and measures the measurement. Output the value as a measurement signal.
  • the control circuit 20 includes a central processing unit (CPU) 22, a read only memory (R
  • the CPU 22 controls the activation of the airbag device 36 according to the program stored in the ROM 26.
  • the RAM 28 is a memory for storing data obtained from signals from the sensors 30A, 30B, and 32, results calculated by the CPU 22 based on the data, and the like.
  • the I / O circuit 24 is a circuit for inputting signals from the respective sensors 30A, 30B, 32 and outputting a start signal to the drive circuit 34.
  • the CPU 22 compares a value obtained based on the measurement result of the floor sensor 32 with a predetermined threshold value according to a program or the like stored in the ROM 26, and based on the comparison result, the airbag device 36 It functions as a start control unit 40 for controlling the start of the operation and a threshold changing unit 42 for changing a threshold according to the magnitude of the impact detected by the satellite sensors 3OA and 30B.
  • the drive circuit 34 starts the airbag device by the start signal from the control circuit 20.
  • the airbag device 36 includes a squib 38 as an ignition device, a gas generating agent (not shown) ignited by the squib 38, a bag (not shown) expanded by generated gas, and the like. ing.
  • the control circuit 20, the floor sensor 32, and the drive circuit 34 are housed in an ECU (electronic control device) 44 shown in FIG. 2 and mounted on a floor tunnel almost in the center of a vehicle 46. I have. As shown in FIG. 2, the satellite sensors 30 A and 30 OB are disposed at the front of a vehicle 46 which is obliquely right and forward and left obliquely forward with respect to the floor sensor 32 in the ECU 44. .
  • FIG. 3 is an explanatory diagram for explaining the operations of the satellite sensors 30A and 30B, the floor sensor 32, and the CPU 22 shown in FIG.
  • the activation control unit 40 in the CPU 22 includes an arithmetic unit 58 And a start determination unit 60.
  • the floor sensor 32 measures the deceleration applied to the vehicle 46 in the front-rear direction as needed, and outputs the deceleration as a measurement signal G (t).
  • Calculating portion 5 8 of the activation control section 40 predetermined calculation on the measured value outputted from the floor sensor 32 G (t), namely formula 1 is subjected to a calculation by Equation 2 obtains the calculation value V 15 V 2.
  • This calculated value V l 5 V 2 is input to the activation determination part 60, the value defined by the operation values V l5 V 2 is compared with the threshold V n in the determination map stored by the threshold changing unit 42.
  • the threshold V n is or when an impact of about beyond the start of the air bag device is applied to the vehicle 46 by a head-on collision, the vehicle 46 is a rough road when you are, it is set to a value larger than the value of the impact applied to the vehicle 46. that is, when defining the threshold V n is first calculated value in the case where not extend to activation of the air bag device 36 drawing a plurality of curves showing changes in V 15 V 2, is greater than these songs line as the value, in. Specifically defining a pattern as close to these curves as possible, the envelope of the plurality of curves the obtained defined as the threshold V n.
  • the threshold value changing unit 42 includes detection values G, (t) from the satellite sensors 3OA and 30B. There are input, the detected value G, by performing the calculation of Equation 3 (t), obtains a computation value V 3, changes the threshold V n to the threshold V 'n according to Equation 4. That is, shows the relationship between the operation value V 3 and the operation value in the graph of FIG. 5, the threshold V n shown in FIG. 4, the threshold V of decrease threshold is determined according to the magnitude of the operation value V 3 'is changed to n .
  • the larger of the detection values G and (t) of the satellite sensors 30A and 30B is used between the detection value of the satellite sensor 3OA and the detection value of the satellite sensor 30B.
  • Vn V n -V a
  • the activation determination part 60 the detection value G from the satellite Tosensa 30 A, 30 B, (t), the in the case where the threshold V n is changed threshold V, and n is the threshold change part 42 acquires the threshold V, and n from the threshold V, and compares the value defined by the operation values V l5 V 2 obtained by n and the arithmetic unit 58, the value determined by the calculation value V 15 V 2
  • the start determination unit 60 outputs a start signal A to the drive circuit 34 (see FIG. 1).
  • the drive circuit 34 energizes the squib 38 to activate the airbag device 36, and the squib 38 ignites a gas generating agent (not shown).
  • the airbag device 36 can be activated at the time of ignition a. That is, when performing activation determination using the threshold V n is the air bag device 3 6 at the time of ignition b is to be started, the threshold V n in response to the magnitude of the operation value V 3 threshold because it has been changed to V 'n, Ru can activate the air bag device 3 6 at the time of the early ignition a than the time of ignition b. Therefore, the airbag device 36 can be started at an optimum timing according to the magnitude of the impact, that is, at an earlier timing when the impact is large.
  • the satellite sensors 3OA and 3OB are provided on the front left and right of the vehicle. However, only one satellite sensor may be provided at the front center of the vehicle.
  • the satellite sensors 3 OA and 3 OB in the first embodiment only need to be able to detect two or more different values, and linearly change the values based on the magnitude of the applied impact. It may be a sensor for detecting or a mechanical sensor capable of detecting the magnitude of two different types of impact. As a sensor capable of detecting a linear value, any sensor such as an electronic type, a semiconductor type, a diaphragm type, a capacitive type acceleration (deceleration) sensor, or the like may be used. May be various load sensors that detect the load.
  • the start signal output by the start determination unit 60 may be used as a start signal for door lock release, fuel cut, transmission of an emergency call in the event of an accident, and the like.
  • the reliability of the start signal can be improved by using the signals from the satellite sensors 30A and 30B for determining the output of the start signal.
  • FIGS. 6A to 7B An activation control device for an occupant protection device according to a second embodiment of the present invention will be described with reference to FIGS. 6A to 7B.
  • the configuration of the activation control device of the occupant protection device is the same as the activation control device of the occupant protection device according to the first embodiment (see FIGS. 1 and 3).
  • the control to change the change amount is performed.
  • Figure 6 A is the determination pine-flop having a threshold V n stored in the threshold changing section 42, the value determined by the calculation value V "V 2 based on the measurement value G of the floor sensor 32 (t) at the time of collision changes are those described by the solid line 70. Further, FIG.
  • the determination map V n stored in the threshold changing unit 42 when running on a bad road, the floor during the under hit during running the change in the value defined by the operation values V l5 V 2 measured value based on the G (t) of the sensor 32 are those described by the solid line 72.
  • the determination map V n stored in the threshold changing unit 42 This is the same as the determination map n in the first embodiment, and the operation values V and V 2 are calculated using the same mathematical expressions as in the first embodiment.
  • the V 12 as in the first embodiment, the threshold value is changed V n threshold V, and n by Equation 4, in vu Vi V, the threshold value V threshold V n by equation 5, change to n (see FIG. 6 a).
  • the time of V 12 to start the change of threshold is determined as follows. Immediate Chi, Fig 6 B the satellite Tosensa 3 OA, 3 OB of detection value G at the time of collision, which shows the relationship between the calculated value and the calculation value V 3 based on the (t), Fig. 7B, rough road when traveling, the detection value G of the satellite Tosensa 30A, 3 OB at the time the under hit during running, shows the relationship between the calculated value and the calculation value V 3 based on the (t).
  • the value determined by the calculated value V 15 V 2 based on the measured value G (t) of the floor sensor 32 Does not exceed the threshold values V, n, and it is possible to prevent the airbag device 36 from being activated too quickly.
  • the to Rukoto and a very large value Equation 5 Nohi ' so as to greatly reduce the reduction rate threshold V n in Vu Vi V (substantially zero) May be.
  • the effect that the airbag device 36 can be prevented from being activated too quickly can be further enhanced.
  • an activation control device for an occupant protection device according to a third embodiment of the present invention will be described with reference to FIGS. 8A to 9B.
  • the configuration of the activation control device of the occupant protection device is the same as the activation control device of the occupant protection device according to the first embodiment (see FIGS. 1 and 3). The control to change the change start time is performed.
  • Figure 8 A is a value determine the constant map that having a threshold V ⁇ VJ stored in the threshold changing section 42, defined by the calculated value YV 2 based on the measurement value G of the floor sensor 32 (t) at the time of collision Is indicated by the solid line 70.
  • FIG. 9 A is a determination maps having a threshold V n (VJ stored in the threshold changing section 42, measurement of the floor sensor 32 during running on a rough road, when under-hit during running The change in the value defined by the operation values V l5 V 2 based on the value G (t) is obtained by placing serial by the solid line 72. Note that the calculated value and V 2 are calculated using the same mathematical expressions as in the first embodiment.
  • the VJJ rather ⁇ Ku V 12, changes the threshold V n (V by Equation 6 the threshold value V, n (V. I.e., during which The threshold V, n (V is equal to the threshold V n (VJ, and the threshold is not changed.
  • V n V by Equation 7 to the threshold V, n (V!).
  • FIGS. 8 A and 9 thresholds from the point of V 12 as shown in A V n (threshold V V, n (change to V is started.
  • the time of V 12 to start the change of threshold is determined in the same manner as in the second embodiment.
  • the value defined by the operation values V l5 V 2 based on the measurement value G of the floor sensor 32 (t) (solid line 72) is the threshold value V , N, which can prevent the airbag device 36 from being activated too quickly.
  • an activation control device for an occupant protection device according to a fourth embodiment of the present invention will be described with reference to FIGS. 10A and 1OB.
  • the configuration of the activation control device of the occupant protection device is the same as the activation control device of the occupant protection device according to the first embodiment (see FIGS. 1 and 3). The control for changing the change amount is performed.
  • Figure 10 A is a satellite Tosensa 30A at symmetrical collision, 30B of the detection value G, and shows the relationship between the calculated value and the calculation value V 3 based on the (t),
  • FIG. 10 B at the time of asymmetric collision satellite Tosensa 30A, shows the relationship between the detection value G 'calculated value and calculation value V 3 based on the (t) of 30B in.
  • the calculation value V 15 V 3 are those calculated using the same formula as in the first embodiment. As shown in FIG.
  • the configuration of the activation control device of the occupant protection device is such that the threshold change unit 42 of the activation control device of the occupant protection device according to the first embodiment (see FIG. 1) has a threshold change pattern.
  • the threshold change pattern changing unit 43 stores a judgment map having a threshold 80 for head-on collision, a bad road threshold 80 and a threshold 82 for irregular collision shown in FIG.
  • the activation determination section 60 compares the value obtained by the calculation value V "V 2 based on the random measurements of the collision threshold 82 and the floor sensor 32, is more required for operation value V 15 V 2 value Outputs a start signal to the drive circuit 34 when the threshold value exceeds the irregular collision threshold value 82.
  • the drive circuit 34 supplies electricity to the squib 38 to activate the airbag device 36, and the squib 38 c ignites generator (not shown) the calculation value V l5 V 2 starting the occupant protection device according to c the fifth embodiment obtained by the same equation as in the first embodiment
  • the control apparatus obtains the detection value G of Satera I Tosensa 30 a, the detection value 0 of the arithmetic value V a and the satellite Tosensa 3 08 based on (t), and a calculation value V B based on the (t), (V a - If both V B) and (V a / V B) exceeds a predetermined value, the vehicle is irregular opposition Due to the determining that the can reliably determine the irregular collision of the vehicle, the site of the collision the vehicle, it is possible to perform activation control of the optimal occupant protection device according to the collision type state of the vehicle.
  • the detection value G of the satellite sensor 3OA, the calculation value VA based on (t) and the detection value G of the satellite sensor 30B obtains a calculated value V B based on the (t), - is determined that both the (V a V B) and (V a / V B) is the case of exceeding a predetermined value, the vehicle has an irregular collision but - it may be determined and when one of (V a V B) and (V a / V B) exceeds a predetermined value, the vehicle has an irregular collision.
  • the activation determination of the airbag device 36 is based on a value obtained from a calculation value V 15 V 2 based on a measurement value of the floor sensor 32. Is determined based on whether or not exceeds the threshold value of the judgment map.However, the floor sensor is abolished, and the calculated value VA based on the detected values G and (t) of satellite sensor 3OA and satellite sensor 30B are detected. value G, may be performed activation determination of airbags 3 6 depending on whether or not exceeding the threshold value of the computed value determination map obtained by the calculation value V B based on the (t).
  • the detection values of satellite sensors 3OA and 3OB are input to arithmetic section 58 and integral arithmetic section 90.
  • the collision type determination unit 92 determines the collision type based on the calculated value in the integration operation unit 90, and when it is determined that the collision is irregular, the threshold change pattern changing unit 94 generates the collision map. Switch the threshold to the threshold for irregular collision.
  • the calculation unit 58 performs a predetermined calculation based on the detection values of the satellite sensors 30A and 3OB, and the calculated value is compared with the threshold value of the determination map in the startup determination unit 60, and when the calculated value exceeds the threshold value. Then, the activation signal of the airbag device is output. Further, in the activation control device of the occupant protection device according to the fifth embodiment, the threshold change pattern changing unit 43 has a judgment map having a head-on collision, a bad road threshold 80, and an irregular collision threshold 82.
  • the threshold reduction width may be determined, and the threshold value 80 for head-on collision and rough road may be linearly reduced by the reduction width.
  • the threshold value changing means changes the predetermined threshold value used for determining the activation of the occupant protection device according to the value detected by the second sensor, and the threshold value changing means is detected by the second sensor Since the predetermined threshold value used for determining the activation of the occupant protection device by a predetermined size according to the value is changed, the occupant protection device can be activated at an optimum timing. Further, according to the present invention, the threshold value change amount reducing means reduces the change amount of the predetermined threshold value corresponding to the initial increase state of the calculated value based on the value detected by the first sensor. Thus, it is possible to prevent the occupant protection device from being activated too quickly.
  • the predetermined value corresponding to the initial increase state of the calculated value based on the value detected by the first sensor Since the threshold value is not changed, the start time for changing the predetermined threshold value can be delayed, and the occupant protection device can be prevented from being activated too quickly due to an impact or the like when traveling on a rough road.
  • the threshold value changing means changes the predetermined threshold value used for determining the activation of the occupant protection device in accordance with the magnitude of the difference between the impacts detected by the right sensor and the left sensor. Optimal start-up control of the occupant protection device can be performed according to the collision site.
  • the threshold value changing means changes the predetermined threshold value according to the difference between the impacts detected by the right sensor and the left sensor or the magnitude of the ratio of the impact detected by the right sensor and the left sensor. Therefore, it is possible to control the activation of the occupant protection device optimally according to the collision site of the vehicle.
  • the activation control device for an occupant protection device is suitable for use in an activation control device such as an airbag device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Bags (AREA)
  • Automotive Seat Belt Assembly (AREA)

Description

明糸田書
乗員保護装置の起動制御装置 技術分野
この発明は、 車両が衝突した際に車両内の乗員を保護するエアバッグ装置など の乗員保護装置の起動を制御する乗員保護装置の起動制御装置に関するものであ る。 背景技術
従来、 乗員保護装置の起動を制御する起動制御装置においては、 車両に加わる 衝撃を通常フロアトンネル上に設置された加速度センサによって減速度として検 出し、 その検出された減速度を基にして演算値を求め、 その演算値を予め設定さ れた閾値と比較して、 その比較結果に基づいてスクイブの点火制御を行なってい る o
ところで車両の衝突形態は、 衝突の仕方、 衝突の方向、 衝突対象物の種類など によって、 図 1 4 A〜図 1 4 Fに示すように、 正突、 斜突、 ポール衝突、 オフセ ット衝突、 アンダーライ ド衝突などに分類される。 このうち、 正突の際には、 車 両は左右 2本のサイ ドメンバにより衝突による衝撃を受けるため、 衝突後の所定 時間内において、 フロアセンサの取り付けられているフロアトンネル上には多大 な減速度が生じる。 これに対して、 正突以外の衝突の際には、 そのような衝撃の 受け方をしないため、 衝突後の所定時間内においてフロアトンネル上にはそれほ ど大きな減速度は生じない。
従って、 正突以外の衝突を検出するためにはフロアセンサ以外のセンサを車両 前部に配置して正突以外の衝突による衝撃を確実に検出することが必用になる。 この発明は、 最適なタイミングで乗員保護装置の起動を行うことができる乗員 保護装置の起動制御装置を提供することを目的としている。 発明の開示
この発明は、 車両内の所定の位置に配設され、 この車両に加わる衝撃を検出す る第 1のセンサと、 前記第 1のセンサによる検出値を基にして得られる演算値が 所定の閾値を超えた場合に乗員保護装置を起動させる乗員保護装置の起動制御手 段と、 前記車両内において前記第 1のセンサよりも前方に配設され、 前記車両に 加わる衝撃の大きさを検出し、 この検出した衝撃の大きさに応じて少なくとも 2 つ以上の異なる大きさの値を検出する第 2のセンサと、 前記第 2のセンサによる 検出値に応じて前記所定の閾値を変更する閾値変更手段とを備える乗員保護装置 の起動制御装置であって、 前記閾値変更手段は、 前記第 2のセンサによる検出値 に基づく値が大きいほど前記所定の閾値の変更量を大きくする閾値変更量増大手 段を備えることを特徴とする。
また、 この発明は、 前記第 2のセンサによる検出値に基づく値が前記第 2のセ ンサの検出値を所定期間積分演算したものであることを特徴とする。
また、 この発明は、 前記閾値変更量増大手段が前記所定の閾値から前記第 2の センサの検出値を所定期間積分演算した演算値に基づく値を減算するものである ことを特徴とする。
また、 この発明は、 前記第 1のセンサによる検出値を基にして得られる演算値 が前記第 1のセンサの検出値を所定期間積分演算したものであることを特徴とす る o
また、 この発明は、 前記第 2のセンサが 2つのセンサにより構成され、 この 2 つのセンサにより検出された検出値の中で大きい方を前記第 2のセンサによる検 出値とすることを特徴とする。
また、 この発明は、 前記第 2のセンサが車両の前方中央部に設けられているこ とを特徴とする。
また、 この発明は、 前記第 2のセンサが車両に加わる衝撃の大きさを検出し、 この検出値をリニァな値として出力することを特徴とする。 また、 この発明は、 前記第 2のセンサが車両に加わる衝撃の大きさを検出し、 この検出値を異なる 2種類の値として出力するメカ式センサであることを特徴と する。
この発明によれば、 閾値変更手段が第 2のセンサによる検出値に応じて乗員保 護装置の起動判定に用いられる所定の閾値を変更し、 閾値変更量増大手段が第 2 のセンサによる検出値が大きいほど乗員保護装置の起動判定に用いられる所定の 閾値の変更量を大きくするため最適なタイミングで乗員保護装置の起動を行うこ とができる。
また、 この発明は、 前記閾値変更手段が前記第 1のセンサによる検出値に基づ く演算値の初期の増加状態に対応する前記所定の閾値の変更量を低減する閾値変 更量低減手段を備えることを特徴とする。
この発明によれば、 閾値変更量低減手段が第 1のセンサによる検出値に基づく 演算値の初期の増加状態に対応する所定の閾値の変更量を低減するため、 悪路走 行時における衝撃等により過敏に乗員保護装置の起動が行われるのを防止するこ とができる。
また、 この発明は、 前記閾値変更手段が前記第 2のセンサによる検出値に基づ く演算値が所定の値を超えた場合に、 前記第 1のセンサによる検出値に基づく演 算値の初期の増加状態に対応する前記所定の閾値の変更を行わないことを特徴と する。
この発明によれば、 第 2のセンサによる検出値に基づく演算値が所定の値を超 えた場合に、 第 1のセンサによる検出値に基づく演算値の初期の増加状態に対応 する所定の閾値の変更を行わないため、 所定の閾値の変更開始時期を遅らせるこ とができ悪路走行時における衝撃等により過敏に乗員保護装置の起動が行われる のを防止することができる。
また、 この発明は、 前記第 2のセンサが前 §3$両の前方左右に配置された右センサ及 び左センサを有し、 前記閾値変更手段は、 前記右センサ及び前記左センサにより 検出された衝撃の差の大きさに応じて前記所定の閾値を変更することを特徴とす この発明によれば、 閾値変更手段が右センサ及び左センサにより検出された衝 撃の差の大きさに応じて乗員保護装置の起動判定に用いられる所定の閾値を変更 する。 右センサ及び左センサにより検出される衝撃の差の大きさは車両の衝突部 位に応じて異なることから、 右センサ及び左センサにより検出された衝撃の差の 大きさに応じて所定の閾値を変更することにより、 車両の衝突部位に応じて最適 に乗員保護装置の起動制御を行うことができる。
また、 この発明は、 前記第 2のセンサが前君 両の前方左右に配置された右センサ及 び左センサを有し、 前記閾値変更手段は、 前記右センサ及び前記左センサにより 検出された衝撃の差又は前記右センサ及び前記左センサにより検出された衝撃の 比の大きさに応じて前記所定の閾値を変更することを特徴とする。
この発明によれば、 閾値変更手段が右センサ及び左センサにより検出された衝 撃の差又は右センサ及び左センサにより検出された衝撃の比の大きさに応じて所 定の閾値を変更するため、 車両の衝突部位に応じて最適に乗員保護装置の起動制 御を行うことができる。 図面の簡単な説明
図 1は、 第 1の実施の形態にかかる乗員保護装置の起動制御装置を示すプロッ ク図である。
図 2は、 第 1の実施の形態にかかる乗員保護装置の起動制御装置のサテライ ト センサとフロアセンサの配設箇所を示す説明図である。
図 3は、 第 1の実施の形態にかかる乗員保護装置の起動制御装置のサテライ ト センサ、 フロアセンサ及び C P U等の動作を説明するための図である。
図 4は、 第 1の実施の形態にかかる乗員保護装置の起動制御装置で用いる判定 マップを示す図である。 図 5は、 第 1の実施の形態にかかる乗員保護装置の起動制御装置のサテライ ト センサの検出値を示すグラフである。
図 6 Aは、 第 2の実施の形態にかかる乗員保護装置の起動制御装置で用いる判 定マップ、 サテライ トセンサの衝突時の検出値を示す図である。
図 6 Bは、 第 2の実施の形態にかかる乗員保護装置の起動制御装置のサテライ トセンサの検出値を示すグラフである。
図 7 Aは、 第 2の実施の形態にかかる乗員保護装置の起動制御装置で用いる判 定マップ、 サテライ トセンサの悪路走行時の検出値を示す図である。
図 7 Bは、 第 2の実施の形態にかかる乗員保護装置の起動制御装置のサテライ トセンサの検出値を示すグラフである。
図 8 Aは、 第 3の実施の形態にかかる乗員保護装置の起動制御装置で用いる判 定マップ、 サテライ 卜センサの衝突時の検出値を示す図である。
図 8 Bは、 第 3の実施の形態にかかる乗員保護装置の起動制御装置のサテライ トセンサの検出値を示すグラフである。
図 9 Aは、 第 3の実施の形態にかかる乗員保護装置の起動制御装置で用いる判 定マップ、 サテライ トセンサの悪路走行時の検出値を示す図である。
図 9 Bは、 第 3の実施の形態にかかる乗員保護装置の起動制御装置のサテライ トセンサの検出値を示すグラフである。
図 1 O Aは、 第 4の実施の形態にかかる乗員保護装置の起動制御装置のサテラ イ トセンサの検出値を示す図である。
図 1 0 Bは、 第 4の実施の形態にかかる乗員保護装置の起動制御装置のサテラ ィ トセンサの検出値を示す図である。
図 1 1は、 第 5の実施の形態にかかる乗員保護装置の起動制御装置を示すプ 口ック図である。
図 1 2は、 第 5の実施の形態にかかる乗員保護装置の起動制御装置で用いる 判定マップを示す図である。 図 13は、 第 5の実施の形態にかかる乗員保護装置の起動制御装置の変形例 を示すブロック図である。
図 14Aは、 車両が正突した状態を示す図である。
図 14Bは、 車両が斜突した状態を示す図である。
図 14 Cは、 車両がポール衝突した状態を示す図である。
図 14Dは、 車両がオフセット衝突した状態を示す図である。
図 14Eは、 車両がアンダーライ ド衝突した状態を示す図である。
図 14Fは、 車両が悪路を走行している状態を示す図である。 発明を実施するための最良の形態
以下、 図 1〜図 5を参照して、 この発明の第 1の実施の形態にかかる乗員保護 装置の起動制御装置について説明する。 図 1はサテライ トセンサを用いた乗員保 護装置の起動制御装置を示すプロック図、 図 2は図 1におけるサテライ トセンサ とフロアセンサの配設箇所を示す説明図である。
この乗員保護装置の起動制御装置は、 乗員保護装置の一種であるエアバッグ装 置 36の起動を制御する装置であって、 図 1に示すように、 主として、 制御回路 20、 サテライ トセンサ (第 2のセンサ) 30A, 30B、 フロアセンサ (第 1 のセンサ) 32及び駆動回路 34を備えている。
このうち、 サテライ トセンサ 3 OA, 30 Bは、 車両 46に加わる衝撃の大き さを検出するための電子式のセンサであって、 具体的には、 車両 46に加わる減 速度を検出して、 検出した減速度の大きさに応じた検出信号を出力する。 また、 フロアセンサ 32は、 車両 46に加わる衝撃を測定するためのいわゆる加速度セ ンサであって、 具体的には、 車両 46に対して前後方向に加わる減速度を随時測 定して、 その測定値を測定信号として出力する。
制御回路 20は、 中央処理装置 (CPU) 22, リード .オンリ .メモリ (R
OM) 26 , ランダム ·アクセス ·メモリ (RAM) 28及び入出力回路 (1/ 0回路) 24などを備えており、 各構成要素はバスで接続されている。 このうち、 CPU 22は ROM26に記憶されたプログラムに従ってエアバッグ装置 36の 起動制御を行なう。 RAM 28は各センサ 30A, 3 OB, 32からの信号によ り得られたデータや、 それに基づいて CPU 22が演算した結果などを格納して おくためのメモリである。 また、 I/O回路 24は各センサ 30A, 30 B, 3 2から信号を入力すると共に駆動回路 34に起動信号を出力するための回路であ る。
また、 CPU 22は、 ROM 26に記憶されているプログラムなどに従って、 フロアセンサ 32の測定結果を基にして得られる値と所定の閾値とを比較し、 そ の比較結果に基づいてエアバッグ装置 36の起動を制御する起動制御部 40及び サテライ トセンサ 3 OA, 30 Bによって検出された衝撃の大きさに応じて閾値 を変更する閾値変更部 42として機能する。
また、 駆動回路 34は、 制御回路 20からの起動信号によってエアバッグ装置
36内のスクイブ 38に通電し点火させる回路である。 一方、 エアバッグ装置 3 6は、 点火装置であるスクイブ 38の他、 スクイブ 38により点火されるガス発 生剤 (図示せず) や、 発生したガスによって膨張するバッグ (図示せず) などを 備えている。
これら構成要素のうち、 制御回路 20、 フロアセンサ 32及び駆動回路 34は、 図 2に示す ECU (電子制御装置) 44に収納されて、 車両 46内のほぼ中央に あるフロアトンネル上に取り付けられている。 また、 サテライ トセンサ 30 A, 3 OBは、 図 2に示すように、 E CU 44内のフロアセンサ 32に対して、 右斜 め前方と左斜め前方の車両 46の前部に配設されている。
次に、 車両衝突の際におけるサテライ トセンサ 3 OA, 30B、 フロアセンサ 32及び CPU 22の動作について説明する。 図 3は図 1に示すサテライ トセン サ 30A, 30B, フロアセンサ 32及び C P U 22の動作を説明するための説 明図である。 図 3に示すように、 CPU 22内の起動制御部 40は、 演算部 58 と起動判定部 60とを備えている。
フロアセンサ 32は、 車両 46に対して前後方向に加わる減速度を随時測定し て、 その減速度を測定信号 G (t) として出力する。 起動制御部 40の演算部 5 8は、 フロアセンサ 32から出力された測定値 G (t ) に所定の演算、 即ち数式 1、 数式 2による演算を施して演算値 V15 V2を求める。 この演算値 Vl 5 V2 は、 起動判定部 60に入力され、 演算値 Vl5 V2により定められる値が閾値変更 部 42により記憶されている判定マップの閾値 Vnと比較される。
(数式 1 ) G(t) dt
Jt-l50ms
G(t):フロアセンサ出力
(数式 2) =Lmsdt
G (り:フロアセンサ出力 即ち、 閾値変更部 42には、 図 4に示すような閾値 Vnを有する判定マップが 記憶されている。 この判定マップは、 横軸に測定値 を採ると共に縦軸に測定 値 V2を採ったものである。 なお、 閾値 Vnは、 正突によってエアバッグ装置を 起動するに及ばない程度の衝撃が車両 46に加わった場合や、 車両 46が悪路を 走行している際に、 車両 46に加わる衝撃の値よりも大きな値に設定されている。 即ち、 閾値 Vnを定める場合には、 まず、 エアバッグ装置 36を起動するに及ば ない場合の演算値 V15 V2の変化を示す曲線を複数描いて、 値としてはこれら曲 線よりも大きいが、 できる限りこれら曲線に近接するようなパターンを定める。 具体的には、 これら複数の曲線の包絡線を得て閾値 Vnとして定める。
閾値変更部 42には、 サテライ トセンサ 3 OA, 30Bから検出値 G, (t ) が入力されており、 この検出値 G, (t ) に数式 3の演算を施すことにより、 演 算値 V3を求め、 数式 4により閾値 Vnを閾値 V' nに変更する。 即ち、 図 5の グラフに演算値 と演算値 V3の関係を示しているが、 図 4に示す閾値 Vnは、 演算値 V3の大きさに応じて閾値の下げ幅が求められ閾値 V' nに変更される。 なお、 サテライ トセンサ 30 A, 30 Bの検出値 G, (t ) は、 サテライ トセン サ 3 OAの検出値とサテライ トセンサ 30 Bの検出値の中で大きい方が用いられ る
(数式 3)
G'm dt
lQms
G'(t):サテライ トセンサ出力
(数式 4)
Vn=Vn-V a
a::定数 従って、 起動判定部 60は、 サテライ トセンサ 30 A, 30 Bからの検出値 G, (t ) に基づいて、 閾値 Vnが閾値 V, nに変更された場合には、 閾値変更 部 42から閾値 V, nを取得し、 閾値 V, nと演算部 58で求められた演算値 Vl5 V2により定められる値とを比較して、 演算値 V15 V2により定められる値が 閾値 V, nを超えた時に、 起動判定部 60は駆動回路 34 (図 1参照) に対して 起動信号 Aを出力する。 これにより、 駆動回路 34はエアバッグ装置 36を起動 すべくスクイブ 38に通電し、 スクイブ 38でガス発生剤 (図示せず) を点火さ せる。
この第 1の実施の形態にかかる乗員保護装置の起動制御装置によれば、 フロア センサ 32により測定された減速度 G (t ) に基づく演算値 V15 V2により定め られる値が図 4の実線 7 0で示すような変化をする場合に、 点火 aの時点でエア バッグ装置 3 6を起動させることができる。 即ち、 閾値 V nを用いて起動判定を 行う場合には、 点火 bの時点でエアバッグ装置 3 6が起動されることになるが、 閾値 V nが演算値 V 3の大きさに応じて閾値 V ' nに変更されているため、 点火 b の時点よりも 早い点火 aの時点でエアバッグ装置 3 6を起動させることができ る。 従って、 エアバッグ装置 3 6を衝撃の大きさに応じた最適なタイミング、 即 ち衝撃が大きい場合には早いタイミングで起動させることができる。
なお、 この第 1の実施の形態においては、 車両の前方左右にサテライ トセンサ 3 O A , 3 O Bを設けているが, 車両の前方中央部にサテライ トセンサを 1個だ け設けるようにしても良い。
また、 この第 1の実施の形態におけるサテライ トセンサ 3 O A , 3 O Bは、 2つ以上の異なる値を検出することができるものであればよく、 及ぼされる衝撃 の大きさに基づいてリニアに値を検出するセンサ又は異なる 2種類の衝撃の大き さを検出することができるメカ式のセンサ等でも良い。 ここでリニアな値を検出 することができるセンサとしては、 電子式、 半導体式、 ダイヤフラム式、 容量式 の加速度 (減速度) センサ等の何れかのセンサで良く、 また及ぼされる荷重の大 きさを検出する各種荷重センサであっても良い。
また、 起動判定部 6 0により出力される起動信号をドアロック解除、 燃料カツ ト、 事故発生時における緊急通報の発信等の起動信号として用いるようにしても 良い。 この場合にサテライ トセンサ 3 0 A, 3 0 Bからの信号を起動信号の出力 判定に用いることで起動信号の信頼性の向上を図ることができる。
次に、 図 6 A〜図 7 Bを参照して、 この発明の第 2の実施の形態にかかる乗員 保護装置の起動制御装置について説明する。 この乗員保護装置の起動制御装置の 構成は、 第 1の実施の形態にかかる乗員保護装置の起動制御装置 (図 1、 図 3参 照) と同一であるが、 衝突の形態に応じて閾値の変更量を変える制御を行うもの である。 図 6 Aは、 閾値変更部 42において記憶されている閾値 Vnを有する判定マツ プに、 衝突時におけるフロアセンサ 32の測定値 G (t ) に基づく演算値 V" V2により定められる値の変化を実線 70で記載したものである。 また、 図 7 A は、 閾値変更部 42において記憶されている閾値 Vnを有する判定マップに、 悪 路走行時、 走行中のアンダーヒッ ト時におけるフロアセンサ 32の測定値 G (t ) に基づく演算値 Vl5 V2により定められる値の変化を実線 72で記載した ものである。 なお、 閾値変更部 42において記憶されている判定マップ Vnは、 第 1の実施の形態の判定マップ nと同一のものであり、 演算値 V 及び V 2は、 第 1の実施の形態の場合と同一の数式を用いて演算されたものである。
この第 2の実施の形態にかかる乗員保護装置の起動制御装置においては、 V 12 では、 第 1の実施の形態の場合と同様に、 数式 4により閾値 Vnを閾値 V, nに変更し、 Vu Vi V では、 数式 5により閾値 Vnを閾値 V, nに変 更する (図 6 A参照) 。
(数式 5)
Figure imgf000013_0001
a,> a
α:定数, ひ':定数 ここで、 閾値の変更を開始する V12の時点は次のようにして定められる。 即 ち、 図 6 Bは、 衝突時におけるサテライ トセンサ 3 OA, 3 O Bの検出値 G, (t ) に基づく演算値 V3と演算値 との関係を示すものであり、 図 7Bは、 悪 路走行時、 走行中のアンダーヒット時におけるサテライ トセンサ 30A, 3 OB の検出値 G, (t) に基づく演算値 V3と演算値 との関係を示すものである。 なお、 演算値 V3は第 1の実施の形態の場合と同一の数式を用いて演算されたも のである。 図 6 B及び図 7 Bにおいて、 演算値 V3が閾値 V3thを超えた時点の演 算値 を Vnとした場合に、 閾値の変更を開始する V12は、 V12 =V11 + A Vとして定められる。
図 6 A, 図 6 Bに示されるように、 衝突時には、 演算値 V3に比較して演算値 V2が遅れて立ち上がるが、 図 7A, 図 7 Bに示されるように、 悪路走行時、 走 行中のアンダーヒット時には、 演算値 V3と演算値 V2が略同時に立ち上がり、 早 い時点において立ち下がる。 従って、 この第 2の実施の形態にかかる乗員保護装 置の起動制御装置においては、 数式 5のひ' が数式 4のひに比較して大きい値と されているため、 VU VL V における閾値 VNの下げ幅を V12< にお ける閾値 Vnの下げ幅に比較して小さくすることができる。 このため図 7 Aに示 されるように、 悪路走行時、 走行中のアンダーヒット時において、 フロアセンサ 32の測定値 G (t) に基づく演算値 Vl5 V2により定められる値 (実線 72) が閾値 V, nを超えることがなく、 過敏にエアバッグ装置 36が起動されるのを 防止することができる。
なお、 上述の第 2の実施の形態において、 数式 5のひ' を非常に大きい値とす ることにより、 Vu Vi V における閾値 Vnの下げ幅を非常に小さく (略 零) にするようにしても良い。 この場合には、 過敏にエアバッグ装置 36が起動 されるのを防止することができるという効果を更に大きくすることができる。 次に、 図 8 A〜図 9 Bを参照して、 この発明の第 3の実施の形態にかかる乗員 保護装置の起動制御装置について説明する。 この乗員保護装置の起動制御装置の 構成は、 第 1の実施の形態にかかる乗員保護装置の起動制御装置 (図 1、 図 3参 照) と同一であるが、 衝突の形態に応じて閾値の変更開始時期を変える制御を行 うものである。
図 8 Aは、 閾値変更部 42において記憶されている閾値 V^VJを有す る判 定マップに、 衝突時におけるフロアセンサ 32の測定値 G (t ) に基づく演算値 Y V2により定められる値の変化を実線 70で記載したものである。 また、 図 9 Aは、 閾値変更部 42において記憶されている閾値 Vn(V Jを有する判定マ ップに、 悪路走行時、 走行中のアンダーヒット時におけるフロアセンサ 32の測 定値 G (t ) に基づく演算値 Vl5 V2により定められる値の変化を実線 72で記 載したものである。 なお、 演算値 及び V2は、 第 1の実施の形態の場合と同一 の数式を用いて演算されたものである。
この第 3の実施の形態にかかる乗員保護装置の起動制御装置においては、 V J J く 丄く V12では、 数式 6により閾値 Vn (V を閾値 V, n (V に変更する。 即ち、 この間は、 閾値 V, n (V は閾値 Vn (VJ に一致し閾値の変更は行 われない。 また
Figure imgf000015_0001
では、 数式 7により閾値 Vn (V を閾値 V, n (V !) に変更する。 従って、 図 8 A及び図 9 Aに示すように V12の時点から閾値 V n (V の閾値 V, n (V への変更が開始される。 なお、 閾値の変更を開始 する V12の時点は第 2の実施の形態の場合と同様にして定められる。
(数式 6)
Figure imgf000015_0002
(数式 7) [v12 < νλ
Figure imgf000015_0003
α:定数 図 8Α, 図 8 Βに示されるように、 衝突時には、 演算値 V3に比較して演算値 V2が遅れて立ち上がるが、 図 9A, 図 9 Bに示されるように、 悪路走行時、 走 行中のアンダーヒット時には、 演算値 V3と演算値 V2が略同時に立ち上がり、 早 い時点において立ち下がる。 従って、 この第 3の実施の形態にかかる乗員保護装 置の起動制御装置においては、 V12の時点から閾値 Vn (VJ の閾値 V, n (Vx) への変更を開始することにより、 図 9Aに示されるように、 悪路走行 時、 走行中のアンダーヒット時において、 フロアセンサ 32の測定値 G (t) に 基づく演算値 Vl5 V2により定められる値 (実線 72) が閾値 V, nを超えるこ とがなく、 過敏にェアバッグ装置 36が起動されるのを防止することができる。 次に、 図 10A, 図 1 OBを参照して、 この発明の第 4の実施の形態にかかる 乗員保護装置の起動制御装置について説明する。 この乗員保護装置の起動制御装 置の構成は、 第 1の実施の形態にかかる乗員保護装置の起動制御装置 (図 1、 図 3参照) と同一であるが、 衝突の形態に応じて閾値の変更量を変化させる制御を' 行うものである。
図 10 Aは、 左右対称衝突時におけるサテライ トセンサ 30A, 30Bの検出 値 G, (t ) に基づく演算値 V3と演算値 との関係を示すものであり、 図 10 Bは、 左右非対称衝突時におけるサテライ トセンサ 30A, 30Bの検出値 G' (t ) に基づく演算値 V3と演算値 との関係を示すものである。 なお、 演算値 V15 V3は第 1の実施の形態の場合と同一の数式を用いて演算されたものである。 この図 1 OAに示されるように、 左右対称衝突時におけるサテライ トセンサ 3 OAの検出値 G, (t ) に基づく演算値 V3Aとサテライ トセンサ 30Bの検出値 G, (t) に基づく演算値 V3Bとは、 略同様の波形を示すが、 左右非対称衝突時 におけるサテライ トセンサ 3 OAの検出値 G, (t ) に基づく演算値 V3Aとサテ ライ トセンサ 30 Bの検出値 G, (t) に基づく演算値 V3Bとでは、 衝突側の値 が大きくなる。
従って、 演算値 V3Aと V3Bの差 AV3が所定の値を超えた場合には、 閾値変更 に用いる演算値 V3として、 演算値 V3Aと演算値 V3Bとの中で値の大きいものを 用いる。 また、 閾値の変更量を求める数式 4のひをより小さい値に変更する。 こ れによりエアバッグ装置 36の起動を的確に行うことができる。 なお、 演算値 V 3Aと V3Bの差 AV3が所定の値を超えない場合には、 閾値変更に用いる演算値 V3 として、 演算値 V3Aと演算値 V3Bとの平均値又は大きい方の値が用いられる。 次に、 図 1 1〜図 12を参照して、 この発明の第 5の実施の形態にかかる乗員 保護装置の起動制御装置について説明する。 この乗員保護装置の起動制御装置の 構成は、 図 1 1に示すように、 第 1の実施の形態にかかる乗員保護装置の起動制 御装置 (図 1参照) の閾値変更部 42を閾値変化パターン変更部 43に置き換え たものであり、 閾値変化パターン変更部 43により、 図 12に示す正突、 悪路用 閾値 80及び不規則衝突用閾値 82有する判定マップが記憶されている。
この乗員保護装置の起動制御装置においては、 サテライ トセンサ 3 OAの検出 値 G, (t) に基づく演算値 (積分値) VAとサテライ トセンサ 30Bの検出値 G, (t ) に基づく演算値 (積分値) VBとを求め、 演算値 VAと演算値 VBとの 差 (VA— VB) と演算値 VAと演算値 VBとの比 (VA/VB) との両方が所定値超 えた場合に、 車両が不規則衝突したと判断して、 判定マップの閾値を不規則衝突 用閾値 82に切り換える。
従って、 起動判定部 60は、 不規則衝突用閾値 82とフロアセンサ 32の測定 値に基づく演算値 V" V2により求められる値とを比較して、 演算値 V15 V2に より求められる値が不規則衝突用閾値 82を超えた時に駆動回路 34に対して起 動信号を出力する。 これにより、 駆動回路 34はエアバッグ装置 36を起動すベ くスクイブ 38に通電し、 スクイブ 38でガス発生剤 (図示せず) を点火させる c なお、 演算値 Vl5 V2は第 1の実施の形態の場合と同一の数式により求められる c この第 5の実施の形態にかかる乗員保護装置の起動制御装置によれば、 サテラ ィ トセンサ 30 Aの検出値 G, (t ) に基づく演算値 VAとサテライ トセンサ 3 08の検出値0, (t ) に基づく演算値 VBとを求め、 (VA— VB) と (VA/V B) との両方が所定値超えた場合に、 車両が不規則衝突したと判断しているため、 車両の不規則衝突を確実に判断することができ、 車両の衝突部位、 車両の衝突形 態に応じて最適な乗員保護装置の起動制御を行うことができる。
なお、 この第 5の実施の形態にかかる乗員保護装置の起動制御装置においては、 サテライ トセンサ 3 OAの検出値 G, (t ) に基づく演算値 VAとサテライ トセ ンサ 30 Bの検出値 G, (t) に基づく演算値 VBとを求め、 (VA— VB) と (VA/VB) との両方が所定値超えた場合に、 車両が不規則衝突したと判断して いるが、 (VA— VB) と (VA/VB) とのいずれか一方が所定値超えた場合に、 車両が不規則衝突したと判断するようにしても良い。 また、 この第 5の実施の形態にかかる乗員保護装置の起動制御装置においては、 ェアバッグ装置 3 6の起動判定は、 フロアセンサ 3 2の測定値に基づく演算値 V 1 5 V 2により求められる値が判定マップの閾値を超えたか否かにより行っている が、 フロアセンサを廃止して、 サテライ トセンサ 3 O Aの検出値 G, ( t ) に基 づく演算値 V Aとサテライ トセンサ 3 0 Bの検出値 G, ( t ) に基づく演算値 V Bとにより求められた演算値が判定マップの閾値を超えたか否かによりエアバ ッグ装置 3 6の起動判定を行うようにしても良い。
この場合には、 図 1 3に示すように、 サテライ トセンサ 3 O A , 3 O Bの検 出値が演算部 5 8と積分演算部 9 0に入力される。 衝突形態判定部 9 2において は、 積分演算部 9 0における演算値に基づいて衝突形態の判定を行い、 不規則衝 突と判定された場合には、 閾値変化パターン変更部 9 4により判定マップの閾値 を不規則衝突用の閾値に切り換える。
演算部 5 8においては、 サテライ トセンサ 3 0 A, 3 O Bの検出値に基づい て所定の演算を行い、 この演算値が起動判定部 6 0において判定マップの閾値を 比較され、 閾値を超えた場合にエアバッグ装置の起動信号の出力が行われる。 また、 この第 5の実施の形態にかかる乗員保護装置の起動制御装置においては、 閾値変化パターン変更部 4 3において正突、 悪路用閾値 8 0及び不規則衝突用閾 値 8 2有する判定マップを記憶しておき、 正突、 悪路用閾値 8 0と不規則衝突用 閾値 8 2とを切り替えているが、 これに限らず演算値 VAと演算値 V Bとの差の大 きさによって、閾値の下げ幅を決定し、この下げ幅分だけ正突、 悪路用閾値 8 0を リニアに下げるようにしても良い。
この発明によれば、 閾値変更手段が第 2のセンサにより検出される値に応じて 乗員保護装置の起動判定に用いられる所定の閾値を変更し、 閾値変更手段が第 2 のセンサにより検出される値に応じた所定の大きさだけ乗員保護装置の起動判定 に用いられる所定の閾値を変更するため最適なタイミングで乗員保護装置の起動 を行うことができる。 また、 この発明によれば、 閾値変更量低減手段が第 1のセンサによる検出値に 基づく演算値の初期の増加状態に対応する所定の閾値の変更量を低減するため、 悪路走行時における衝撃等により過敏に乗員保護装置の起動が行われるのを防止 することができる。
また、 この発明によれば、 第 2のセンサによる検出値に基づく演算値が所定の 値を超えた場合に、 第 1のセンサによる検出値に基づく演算値の初期の増加状態 に対応する所定の閾値の変更を行わないため、 所定の閾値の変更開始時期を遅ら せることができ悪路走行時における衝撃等により過敏に乗員保護装置の起動が行 われるのを防止することができる。
また、 この発明によれば、 閾値変更手段が右センサ及び左センサにより検出さ れた衝撃の差の大きさに応じて乗員保護装置の起動判定に用いられる所定の閾値 を変更するため、 車両の衝突部位に応じて最適な乗員保護装置の起動制御を行う ことができる。
また、 この発明によれば、 閾値変更手段が右センサ及び左センサにより検出さ れた衝撃の差又は右センサ及び左センサにより検出された衝撃の比の大きさに応 じて所定の閾値を変更するため、 車両の衝突部位に応じて最適な乗員保護装置の 起動制御を行うことができる。 産業上の利用可能性
この発明にかかる乗員保護装置の起動制御装置は、 エアバッグ装置等の起動制 御装置に用いるのに適している。

Claims

言青求の範囲
1 . 車両内の所定の位置に配設され、 この車両に加わる衝撃を検出する第 1 のセンサと、 前記第 1のセンサによる検出値を基にして得られる演算値が所定の 閾値を超えた場合に乗員保護装置を起動させる乗員保護装置の起動制御手段と、 前記車両内において前記第 1のセンサよりも前方に配設され、 前記車両に加わる 衝撃の大きさを検出し、 この検出した衝撃の大きさに応じて少なくとも 2つ以上 の異なる大きさの値を検出する第 2のセンサと、 前記第 2のセンサによる検出値 に応じて前記所定の閾値を変更する閾値変更手段とを備える乗員保護装置の起動 制御装置であって、
前記閾値変更手段は、 前記第 2のセンサによる検出値に基づく値が大きいほど 前記所定の閾値の変更量を大きくする閾値変更量増大手段を備えることを特徴と する乗員保護装置の起動制御装置。
2 . 前記第 2のセンサによる検出値に基づく値は、 前記第 2のセンサの検出値 を所定期間積分演算したものであることを特徴とする請求項 1記載の乗員保護装 置の起動制御装置。
3 . 前記閾値変更量増大手段は、 前記所定の閾値から前記第 2のセンサの検出 値を所定期間積分演算した演算値に基づく値を減算するものであることを特徴と する請求項 1又は請求項 2記載の乗員保護装置の起動制御装置。
4 . 前記第 1のセンサによる検出値を基にして得られる演算値は、 前記第 1の センサの検出値を所定期間積分演算したものであることを特徴とする請求項 1〜 請求項 3の何れか一項に記載の乗員保護装置の起動制御装置。
5 . 前記第 2のセンサは 2つのセンサにより構成され、 この 2つのセンサによ り検出された検出値の中で大きい方を前記第 2のセンサによる検出値とすること を特徴とする請求項 1〜請求項 4の何れか一項に記載の乗員保護装置の起動制御
6 . 前記第 2のセンサは、 車両の前方中央部に設けられていることを特徴とす る請求項 1〜請求項 4の何れか一項に記載の乗員保護装置の起動制御装置。
7 . 前記第 2のセンサは、 車両に加わる衝撃の大きさを検出し、 この検出値 をリニアな値として出力することを特徴とする請求項 2〜請求項 6の何れか一項 に記載の乗員保護装置の起動制御装置。
8 . 前記第 2のセンサは、 車両に加わる衝撃の大きさを検出し、 この検出値を 異なる 2種類の値として出力するメカ式センサであることを特徴とする請求項 1、 請求項 5及び請求項 6の何れか一項に記載の乗員保護装置の起動制御装置。
9 . 前記閾値変更手段手段は、 前記第 1のセンサによる検出値に基づく演算値 の初期の増加状態に対応する前記所定の閾値の変更量を低減する閾値変更量低減 手段を備えることを特徴とする請求項 1〜請求項 8の何れか一項に記載の乗員保 護装置の起動制御装置。
1 0 . 前記閾値変更手段は、 前記第 2のセンサによる検出値に基づく演算値 が所定の値を超えた場合に、 前記第 1のセンサによる検出値に基づく演算値の初 期の増加状態に対応する前記所定の閾値の変更を行わないことを特徴とする請求 項 1〜請求項 9の何れか一項に記載の乗員保護装置の起動制御装置。
1 1 . 15 ^第2のセンサは、 編 3車両の前方左右に配置された右センサ及び左センサを 有し、 前記閾値変更手段は、 前記右センサ及び前記左センサにより検出された衝 撃の差の大きさに応じて前記所定の閾値を変更することを特徴とする請求項 1記 載の乗員保護装置の起動制御装置。
1 2 . 編 3第 2のセンサは、 編 両の前方左右に配置された右センサ及び左センサを 有し、 前記閾値変更手段は、 前記右センサ及び前記左センサにより検出された衝 撃の差又は前記右センサ及び前記左センサにより検出された衝撃の比の大きさに 応じて前記所定の閾値を変更することを特徴とする請求項 1記載の乗員保護装置 の起動制御装置。
PCT/JP1999/001733 1998-04-02 1999-04-01 Appareil de commande pour dispositif de securite des occupants d'un vehicule WO1999051468A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002291836A CA2291836C (en) 1998-04-02 1999-04-01 Activation control apparatus for an occupant safety system
EP99910808A EP0987151B1 (en) 1998-04-02 1999-04-01 Control apparatus of safety device for crew
KR1019997011237A KR100354661B1 (ko) 1998-04-02 1999-04-01 승무원보호장치의 기동제어장치
BR9906306-9A BR9906306A (pt) 1998-04-02 1999-04-01 Aparelho de controle para ativação de sistema de segurança dos ocupantes
DE69930103T DE69930103T2 (de) 1998-04-02 1999-04-01 Steuerapparat für eine fahrzeuginsassen-sicherheitsvorrichtung
US09/445,032 US6371515B1 (en) 1998-04-02 1999-04-01 Activation control apparatus of occupant safety system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP10090101A JP3063731B2 (ja) 1998-04-02 1998-04-02 乗員保護装置の起動制御装置
JP10/90101 1998-04-02

Publications (1)

Publication Number Publication Date
WO1999051468A1 true WO1999051468A1 (fr) 1999-10-14

Family

ID=13989138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/001733 WO1999051468A1 (fr) 1998-04-02 1999-04-01 Appareil de commande pour dispositif de securite des occupants d'un vehicule

Country Status (10)

Country Link
US (1) US6371515B1 (ja)
EP (1) EP0987151B1 (ja)
JP (1) JP3063731B2 (ja)
KR (1) KR100354661B1 (ja)
CN (1) CN1146512C (ja)
BR (1) BR9906306A (ja)
CA (1) CA2291836C (ja)
DE (1) DE69930103T2 (ja)
ES (1) ES2255753T3 (ja)
WO (1) WO1999051468A1 (ja)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3436185B2 (ja) * 1999-02-09 2003-08-11 トヨタ自動車株式会社 乗員保護装置の起動制御装置
JP2001109738A (ja) 1999-10-13 2001-04-20 Toyota Motor Corp ピーク時刻検出装置およびピーク時刻検出方法
US6970778B1 (en) 2000-07-07 2005-11-29 Siemens Aktiengesellschaft Passenger restraint system for a motor vehicle
JP3487270B2 (ja) 2000-08-02 2004-01-13 トヨタ自動車株式会社 エアバッグ装置の起動制御装置
JP3608044B2 (ja) 2000-08-03 2005-01-05 トヨタ自動車株式会社 エアバッグ装置の起動制御装置
DE10040111A1 (de) 2000-08-17 2002-02-28 Bosch Gmbh Robert Verfahren zur Bildung einer Auslöseentscheidung für Rückhaltemittel
JP3487274B2 (ja) 2000-08-23 2004-01-13 トヨタ自動車株式会社 エアバッグ装置の起動制御装置
JP3459625B2 (ja) 2000-08-24 2003-10-20 トヨタ自動車株式会社 エアバッグ装置の起動制御装置
JP3487279B2 (ja) 2000-10-02 2004-01-13 トヨタ自動車株式会社 乗員保護装置の起動制御装置
US7625006B2 (en) * 2001-04-09 2009-12-01 Trw Automotive U.S. Llc Method and apparatus for controlling an actuatable restraining device using crush zone sensors for safing function
US6776435B2 (en) * 2001-04-09 2004-08-17 Trw Inc. Method and apparatus for controlling an actuatable restraining device using switched thresholds based on crush zone sensors
JP3695351B2 (ja) * 2001-05-14 2005-09-14 トヨタ自動車株式会社 乗員保護装置の起動装置
US6701238B2 (en) 2001-07-24 2004-03-02 Siemens Vdo Automotive Corporation Vehicle impact detection system and control method
JP3608052B2 (ja) 2001-08-09 2005-01-05 トヨタ自動車株式会社 乗員保護装置の起動制御装置
JP3778833B2 (ja) 2001-09-19 2006-05-24 トヨタ自動車株式会社 衝突形態判別装置
JP3819274B2 (ja) * 2001-10-16 2006-09-06 三菱電機株式会社 衝突形態判定装置および判定方法
DE10155662A1 (de) 2001-11-13 2003-05-22 Bayerische Motoren Werke Ag Verfahren zum Aktivieren von Sicherheitseinrichtungen
GB2396942A (en) * 2002-12-31 2004-07-07 Autoliv Dev Impact detector with varying stiffness
US6961645B2 (en) * 2002-06-18 2005-11-01 Siemens Vdo Automotive Corporation Multiple-satellite sensor algorithm wake up and reset strategy for an inflatable restraint system
DE10243514A1 (de) * 2002-09-19 2004-04-01 Robert Bosch Gmbh Verfahren zur Erkennung eines Aufpralls
DE10244095A1 (de) * 2002-09-23 2004-04-01 Robert Bosch Gmbh Anordnung zum Ansteuern von Rückhaltemitteln
JP4000519B2 (ja) * 2002-12-20 2007-10-31 株式会社デンソー 車両用衝突体判別装置
DE10317212A1 (de) * 2003-04-15 2004-11-04 Robert Bosch Gmbh Verfahren zur Überwachung der Funktionsfähigkeit eines Steuergerätes und Diagnosevorrichtung
JP4449409B2 (ja) * 2003-10-27 2010-04-14 日産自動車株式会社 車両用乗員保護装置
JP2005306185A (ja) * 2004-04-21 2005-11-04 Bosch Corp 乗員拘束装置の制御装置
US7207410B2 (en) * 2004-04-29 2007-04-24 Daimlerchrysler Corporation Apparatus and method for enhanced impact sensing
US20070296564A1 (en) * 2006-06-27 2007-12-27 Howell Mark N Rear collision warning system
JP4946684B2 (ja) * 2007-07-13 2012-06-06 トヨタ自動車株式会社 移動体
US8374751B2 (en) * 2008-06-06 2013-02-12 Chrysler Group Llc Automotive impact sensing system
JP5447984B2 (ja) * 2010-11-19 2014-03-19 株式会社デンソー 車両用衝突検知装置
EP2674341B1 (en) 2011-02-10 2016-02-10 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and method for controlling hybrid vehicle
DE102011085843B4 (de) * 2011-11-07 2020-10-15 Robert Bosch Gmbh Verfahren und Vorrichtung zur Analyse einer Kollision eines Fahrzeugs
JP5792030B2 (ja) * 2011-11-11 2015-10-07 富士通テン株式会社 エアバッグ制御装置、および、エアバッグ制御方法
DE102013101342B4 (de) 2012-02-20 2022-06-15 Continental Automotive Gmbh Verfahren zur Steuerung von Schutzeinrichtungen für Fahrzeuginsassen und/oder Personen außerhalb des Fahrzeugs
DE102012224451B4 (de) * 2012-12-27 2023-09-28 Robert Bosch Gmbh Verfahren zum Betreiben einer Fahrzeuginsassensicherheitseinrichtung eines Kraftfahrzeug sowie entsprechende Fahrzeuginsassensicherheitseinrichtung
KR101526715B1 (ko) * 2013-11-26 2015-06-05 현대자동차주식회사 자동차용 측면 에어백 전개 시스템 및 방법
JP6620773B2 (ja) * 2017-02-13 2019-12-18 トヨタ自動車株式会社 車両用衝突検出システム
CN111572485B (zh) * 2020-04-29 2021-07-06 东风汽车集团有限公司 一种碰撞保护装置控制系统和控制方法
KR20210153266A (ko) * 2020-06-10 2021-12-17 현대모비스 주식회사 에어백 전개 제어 방법 및 장치
CN111976638B (zh) * 2020-08-28 2021-04-13 广州市网优优信息技术开发有限公司 一种基于车载智能终端的车辆碰撞检测方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04503339A (ja) * 1989-02-18 1992-06-18 ローベルト・ボッシュ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 拘束手段を起動する方法
JPH0472060U (ja) * 1990-11-06 1992-06-25
JPH05213150A (ja) * 1992-01-31 1993-08-24 Suzuki Motor Corp エアバッグ制御監視装置
JPH0565706U (ja) * 1992-02-19 1993-08-31 三菱自動車工業株式会社 エアバッグ装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2843125B2 (ja) 1990-07-10 1999-01-06 株式会社リコー 薄膜形成装置
DE4239582A1 (en) 1991-11-26 1993-05-27 Delco Electronics Corp Triggering inflation of vehicle safety restraining system, e.g. air-bag - comparing vehicle speed with time-dependent speed value after acceleration threshold is exceeded
US5322323A (en) * 1991-12-20 1994-06-21 Toyota Jidosha Kabushiki Kaisha Collision sensing system for side air bag system
JP3082878B2 (ja) 1992-04-30 2000-08-28 スズキ株式会社 エアバック起動制御装置
JP3036278B2 (ja) 1993-01-25 2000-04-24 日産自動車株式会社 乗員拘束装置の制御装置
JP3392180B2 (ja) 1993-05-10 2003-03-31 ボッシュ エレクトロニクス株式会社 車両用安全装置の制御システム
JPH06340244A (ja) 1993-06-01 1994-12-13 Nippon Seiko Kk 安全装置の起動時期決定方法
US5496979A (en) 1994-03-11 1996-03-05 Automotive Systems Laboratory, Inc. Accelerometer with optical switch
US5668720A (en) 1994-04-28 1997-09-16 Toyoda Gosei Co., Ltd. Air bag controlling apparatus
GB2293681B (en) 1994-09-29 1998-08-12 Autoliv Dev Improvements in or relating to a safety arrangement
KR970001747B1 (ko) 1994-10-31 1997-02-15 대우전자 주식회사 3방향(3축) 감속신호와 가변 기준치를 이용한 자동차용 에어백 제어장치
US5559697A (en) 1994-12-14 1996-09-24 General Motors Corporation Method for controlling actuation of a vehicle safety device
KR0130661B1 (ko) * 1995-02-09 1998-04-10 배순훈 타이어 공기 압력감지 에어백 시스템
US5995892A (en) * 1995-06-12 1999-11-30 Denso Corporation Triggering device for safety apparatus
DE19644975B4 (de) 1995-10-31 2004-07-22 Honda Giken Kogyo K.K. Verfahren zur Beurteilung einer Fahrzeugkollision
JP2973902B2 (ja) * 1995-11-06 1999-11-08 トヨタ自動車株式会社 乗員保護装置の起動制御装置
JP3014313B2 (ja) 1995-12-25 2000-02-28 富士通テン株式会社 エアバッグの衝突判別装置
US6023664A (en) * 1996-10-16 2000-02-08 Automotive Systems Laboratory, Inc. Vehicle crash sensing system
US5785347A (en) 1996-10-21 1998-07-28 Siemens Automotive Corporation Occupant sensing and crash behavior system
JP3333813B2 (ja) 1996-11-20 2002-10-15 トヨタ自動車株式会社 乗員保護装置の起動制御装置
JPH11263187A (ja) * 1998-03-19 1999-09-28 Asuko Kk 乗員保護装置の起動制御方法及び乗員保護装置の起動制御装置並びに乗員保護装置の起動制御プログラムを記録した記録媒体
US5969599A (en) 1998-11-09 1999-10-19 Delco Electronics Corp. Restraint deployment control method having an adaptable deployment threshold
CN1134356C (zh) * 1998-12-15 2004-01-14 美国西门子汽车公司 气囊启动事件判断系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04503339A (ja) * 1989-02-18 1992-06-18 ローベルト・ボッシュ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 拘束手段を起動する方法
JPH0472060U (ja) * 1990-11-06 1992-06-25
JPH05213150A (ja) * 1992-01-31 1993-08-24 Suzuki Motor Corp エアバッグ制御監視装置
JPH0565706U (ja) * 1992-02-19 1993-08-31 三菱自動車工業株式会社 エアバッグ装置

Also Published As

Publication number Publication date
CA2291836A1 (en) 1999-10-14
KR100354661B1 (ko) 2002-10-04
EP0987151A4 (en) 2004-05-19
EP0987151B1 (en) 2006-03-01
BR9906306A (pt) 2000-06-20
JP3063731B2 (ja) 2000-07-12
EP0987151A1 (en) 2000-03-22
CN1146512C (zh) 2004-04-21
JPH11286257A (ja) 1999-10-19
ES2255753T3 (es) 2006-07-01
KR20010013246A (ko) 2001-02-26
DE69930103D1 (de) 2006-04-27
US6371515B1 (en) 2002-04-16
CA2291836C (en) 2004-10-26
DE69930103T2 (de) 2006-09-21
CN1272820A (zh) 2000-11-08

Similar Documents

Publication Publication Date Title
WO1999051468A1 (fr) Appareil de commande pour dispositif de securite des occupants d&#39;un vehicule
JP3436185B2 (ja) 乗員保護装置の起動制御装置
JP3608050B2 (ja) ロールオーバ判別装置
JP2952209B2 (ja) 車両の搭乗者を保護する装置を起動する方法
US7684914B2 (en) Collision determining apparatus for a vehicle
US7422086B2 (en) Vehicle impact sensor using both accelerometer and pressure sensing for side impact detection
JP3346472B2 (ja) 乗員保護装置の起動制御装置
JP3044709B2 (ja) 乗員保護装置の起動制御装置
JP2877145B2 (ja) 乗員保護装置の制御装置
EP0900702A2 (en) Occupant protective device
JP2001030873A (ja) 乗員保護装置の起動制御装置
JP3364920B2 (ja) 乗員保護装置の起動制御装置
US7140464B2 (en) Triggering unit
JP3438774B2 (ja) 乗員保護装置の起動制御装置
JP3300668B2 (ja) 衝突形態判別装置及び乗員保護装置の起動制御装置
GB2369708A (en) Control system for vehicle safety device
JP3452012B2 (ja) 乗員保護装置の起動制御装置
KR100362098B1 (ko) 자동차의 에어백 작동을 위한 충돌판별 방법
JP3452013B2 (ja) 乗員保護装置の起動制御装置
JP3440995B2 (ja) 車両のフロントボデー構造
JP2003040077A (ja) エアバッグ作動装置
JP2000168489A (ja) 乗員保護装置の起動制御装置
JP2000071929A (ja) 乗員保護装置の起動制御装置
JP2000233706A (ja) 乗員保護装置の起動制御装置
JP2001106021A (ja) 衝突形態の判定装置および判定方法並びに乗員保護装置の起動装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99800893.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CA CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2291836

Country of ref document: CA

Ref document number: 2291836

Country of ref document: CA

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997011237

Country of ref document: KR

Ref document number: 09445032

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999910808

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999910808

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997011237

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997011237

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1999910808

Country of ref document: EP