WO1999043431A1 - Catalyseur d'oxydation partielle d'hydrocarbure insature - Google Patents

Catalyseur d'oxydation partielle d'hydrocarbure insature Download PDF

Info

Publication number
WO1999043431A1
WO1999043431A1 PCT/JP1999/000753 JP9900753W WO9943431A1 WO 1999043431 A1 WO1999043431 A1 WO 1999043431A1 JP 9900753 W JP9900753 W JP 9900753W WO 9943431 A1 WO9943431 A1 WO 9943431A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
catalyst
oxide
gold
containing oxide
Prior art date
Application number
PCT/JP1999/000753
Other languages
English (en)
French (fr)
Inventor
Toshio Hayashi
Masahiro Wada
Masatake Haruta
Susumu Tsubota
Original Assignee
Japan As Represented By Director-General Of Agency Of Industrial Science And Technology
Nippon Shokubai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan As Represented By Director-General Of Agency Of Industrial Science And Technology, Nippon Shokubai Co., Ltd. filed Critical Japan As Represented By Director-General Of Agency Of Industrial Science And Technology
Priority to US09/403,643 priority Critical patent/US6252095B1/en
Priority to EP99905251A priority patent/EP1005907A4/en
Publication of WO1999043431A1 publication Critical patent/WO1999043431A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/08Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase
    • C07D301/10Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the gaseous phase with catalysts containing silver or gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0274Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/72Epoxidation

Definitions

  • the present invention relates to a catalyst for partial oxidation of unsaturated hydrocarbons, and a method for producing an epoxide using the catalyst.
  • the present invention has been made to solve the above-mentioned problems of the prior art, and a main object of the present invention is to efficiently produce epoxides from unsaturated hydrocarbons with high selectivity.
  • An object of the present invention is to provide a catalyst for partial oxidation of unsaturated hydrocarbons, which has little deterioration over time and a long life.
  • the present invention provides a catalyst for partial oxidation of unsaturated hydrocarbons described below, and a method for producing an epoxide using the catalyst.
  • a catalyst for partial oxidation of unsaturated hydrocarbons which is a catalyst in which gold fine particles are immobilized on a titanium-containing oxide, and wherein the catalyst is subjected to a silylation treatment.
  • a catalyst for partial oxidation of unsaturated hydrocarbons which is a catalyst in which gold fine particles are immobilized on a titanium-containing oxide, wherein the catalyst is subjected to a hydrophobic treatment.
  • the catalyst according to the above item 2 which has been subjected to a hydrophobizing treatment with at least one hydrophobizing agent selected from an organic fluorinating agent and a silylating agent.
  • the titanium-containing oxide is composed of titanium oxide, titanate, a mixed oxide obtained by physically mixing titanium oxide and a manganese-containing oxide, and titanium and manganese are separated by oxygen. 3.
  • the titanium-containing oxide is at least one selected from the group consisting of alkali metals, alkaline earth metals, lanthanides and talmium. PC orchid 9/00753
  • the titanium-containing oxide is brought into contact with the hydrophobizing agent at a temperature of 450 ° C. or less.
  • Item 3 The catalyst according to the above item 2, which has been subjected to a hydrophobic treatment.
  • a method for producing an epoxide comprising partially oxidizing an unsaturated hydrocarbon with oxygen in the presence of the catalyst according to any one of the above items 1 to 8 and molecular hydrogen.
  • the catalyst of the present invention is a catalyst in which gold fine particles are immobilized on a titanium-containing oxide, and the catalyst is subjected to a silylation treatment or a hydrophobic treatment.
  • titanium-containing oxide examples include titanium oxide, titanate, and a mixed oxide obtained by physically mixing titanium oxide and a gayne-containing oxide (hereinafter, “titanium-containing mixed oxide”). object” ), And a composite oxide in which titanium and gay are chemically bonded via oxygen (hereinafter, referred to as “titanium-containing composite oxide”) and the like can be used. These titanium-containing oxides can be used alone or in combination of two or more. It is preferable that the titanium-containing oxide has a large specific surface area.
  • the shape is not particularly limited, and it may be used in the form of a powder, or may be used after being formed into another shape.
  • titanium-containing oxides the crystal structure, shape, dimensions, and the like of titanium oxide are not particularly limited, but, for example, those having a crystalline form such as anatase type or rutile type or amorphous type The anatase type or the amorphous type is preferred. Further, those having a relatively small primary particle size of about 10 to 200 nm and a relatively large specific surface area of about 5 m 2 g or more are preferred.
  • Is a titanium phosphate salts e.g., M g T i 0 3, C a T i 0 3, B a T i 0 3 P b T i O 3 F e T i 0 3 such as various metals titanium emissions of Acid salts can be used.
  • the titanium-containing mixed oxide and the titanium-containing composite oxide those having a high specific surface area and being porous are preferable, and the specific surface area is preferably lm 2 / g or more.
  • the specific surface area is preferably lm 2 / g or more.
  • the material include amorphous silica, crystalline silica, crystalline gay oxides such as metal silicates, and amorphous silica, and amorphous silica.
  • a complex oxide composed of a metal and another metal, such as gallium typified by zeolite or its crystal form, can be used.
  • Titanium-containing composite oxides include (1) those in which titanium oxide is supported only on the surface of a gay-containing oxide, and (2) composites in which titanium also exists inside a gay-containing oxide. Oxides, etc. can be used.
  • titanium emission is least for one of even [T i 0 4] 4 - having Yuni' bets It is a form of titanium oxide and is supported only on the surface of the oxide containing gayne.Titanium oxide exists in an amorphous form or in a crystalline form such as anatase or rutile. Can be done.
  • the gay-containing oxide the same gay-containing oxide as that used in the above-described titanium-containing mixed oxide can be used.
  • the state in which the titanium oxide is supported on the surface of the gay-containing oxide is not particularly limited, and is generally referred to as a state in which the titanium oxide is supported, that is, the titanium oxide is formed of the gay-containing oxide. Any state may be used as long as it is chemically bonded to the surface or immobilized by physical interaction.
  • the method for supporting titanium oxide on the surface of the silicon-containing oxide is not particularly limited, and generally, a titanium compound is obtained by an impregnation method, an ion exchange method, a chemical vapor deposition method, or the like. May be adsorbed or bonded to the surface of the silicon-containing oxide, and finally may be stably supported as an oxide by a method such as firing.
  • the titanium compound used for producing the titanium-containing composite oxide may be appropriately selected and used according to the production method.
  • titanium oxide titanium methoxide , Titan ethoxide, titan triisopropoxide, titan tra — n — butoxide, tetrakis (2 — ethinole hexinole) titan alkoxide such as onoleso titanate Titanium halides such as titanium trichloride, titanium tetrachloride, titanium tribromide, titanium tetrabromide, 3-futai-dai-tan, and 4-futi-dani-titanium; titanium bisammonium; Organic compounds such as dimethyl dihydroxide, titanyl acetyl acetate, titanium benzoyl bisacyl bis-acetyl acetate, titanocene dichloride, etc. Ru can and child to use a titanium down complex or the like you contain.
  • titanium oxide supported only on the surface of the silicon-containing oxide examples include amorphous silica having the titanium oxide supported on the surface thereof and crystalline silicate. (MCM—41, MCM—48) Etc.) with titanium oxide supported on the surface, or a composite oxide composed of two or more elements such as silica zirconia and silica alumina with titanium oxide supported on the surface. Can be used.
  • the composite oxide in which titanium is also present inside the manganese-containing oxide, as described in (2) above, is defined as the oxide of manganese-containing oxide when titanium is titanium oxide or as a titanium atom. What exists not only on the surface but also inside it. In the composite oxide, titanium emission are isolated T i 4 + or least for one of even
  • Such a composite oxide can be obtained, for example, from a homogeneous solution containing a titanium compound and a silicon compound by a coprecipitation method, a sol-gel method, or the like to obtain a mixed hydroxide containing titanium and gayne. It can be obtained by causing precipitation, and finally by sintering or the like to finally form an oxide.
  • the formed gallium-containing oxide can be, for example, of the same type as the gallium-containing oxide in the above-mentioned titanium-containing mixed oxide.
  • the titanium compound may be appropriately selected from the same compounds as the titanium compound used in the method (1) according to the production method and the like, and used.
  • Titanium down the isolated T i 4 + or least for one of even [T i 04] 4 - is a specific example of the complex oxide containing as a oxide having an Interview two Tsu DOO, alkoxysilane emissions and Chita Sol-gel method using titanium alkoxide and the like.
  • Chita When the content of the catalyst is less than T i / S i ⁇ O. 110, the catalytic properties are the same as those obtained when a silica carrier alone is used, and the selective oxidation of hydrocarbons is completely eliminated. It is inappropriate because it does not occur.
  • the above-mentioned titanium-containing oxide may further contain at least one kind of element selected from alkali metals, alkaline earth metals, lanthanides and thallium. When these elements are contained, the catalyst performance is further improved, and the life stability of the catalyst may be improved in some cases.
  • the alkali metal for example, Li, Na, K, Rb, Cs, Fr, etc. can be used.
  • the alkaline earth metal Be, Mg, C a, S r, B a, R a, etc. can be used. Among them, in particular, components selected from alkaline metals consisting of Na, K, 1 ⁇ 13 and 03, and alkaline earth metals consisting of Mg, Ca, Sr and Ba It is preferable to use.
  • La, Ce, Sm, etc. can be used as the lanthanoid.
  • At least one element selected from the above-mentioned alkali metals, alkaline earth metals, lanthanides and tertiary metals is present as a cation in the titanium-containing oxide, and It may be present on the surface of the oxide containing oxide, or may be incorporated into the crystal or inside.
  • the content of at least one element selected from the group consisting of alkali metals, alkaline earth metals, lanthanides and thallium in the titanium-containing oxide is based on the weight of the titanium-containing oxide. Preferably, it is from 0.001 to 20% by weight, more preferably from 0.005 to 5% by weight, and from 0.01 to 2% by weight. Something is even better.
  • titanium down-containing oxide M g T i 0 3, C a T i 0 3, when B is to contain a T i 0 3 titanium emission salts such as Al Ca Li metal, It can contain more of at least one element selected from alkaline earth metals, lanthanides and thallium, and is based on the weight of the titanium-containing oxide. The content is preferably about 0.1 to 50% by weight.
  • the various titanium-containing oxides described above can be used in a state of being fixed to a preformed support in order to further improve the activity of the catalyst.
  • a metal oxide containing no titanium or a material made of various metals can be used.
  • Aluminum Na oxide Aluminum Niumu: A 1 2 0 3
  • Shi Li mosquito silicon dioxide: S i 0 2
  • magnesia magnesium oxide: M g 0
  • Kojiera Lee Zirconium oxide
  • ceramics composed of these composite oxides foams composed of various metals, honeycomb supports composed of various metals, pellets of various metals, etc.
  • those containing at least one of alumina and silica are preferred, and those containing silica are particularly preferred.
  • the phrase "contains aluminum and silica” includes cases where it contains zeolite (alumino siligate) or silica alumina.
  • the crystal structure, shape, size, etc., of the above-mentioned support are not particularly limited.
  • the force, the specific surface area is preferably 50 m 2 ng or more. More preferably, it is Z g or more. In case a specific surface area of 5 0 m 2 Bruno g or more supports are further suppressed Ri good side reactions such as sequential oxidation can efficiently and this for partial oxidation of unsaturated hydrocarbon The catalyst performance is further improved.
  • the amount of the titanium-containing oxide is preferably about 0.5 to 20% by weight based on the support.
  • a carrier such as silica or alumina
  • a sol-gel method using an alkoxide, a kneading method, a coating method, or the like can be applied.
  • they can be dispersed and supported so as to form a so-called island-like structure.
  • the gold fine particles need to be immobilized on the titanium-containing oxide described above.
  • Gold is preferably an ultrafine particle having a particle size of 10 nm (nanometer) or less. Such ultrafine gold particles are firmly immobilized by using a titanium-containing oxide as a carrier, and are supported, whereby the catalyst activity becomes particularly good.
  • the content of gold is preferably 0.01% by weight or more, more preferably 0.01% to 20% by weight, based on the titanium-containing oxide. More preferably, it is in the range of 0.05% by weight to 10% by weight. If the amount of gold supported is less than 0.001% by weight, the activity of the catalyst becomes insufficient, which is not preferable. On the other hand, even if the amount of gold supported is more than 20% by weight, further improvement in the activity of the catalyst cannot be expected as compared with the case where gold is supported within the above range, and gold is wasted. Is not preferred.
  • any method for fixing the gold fine particles to the titanium-containing oxide any method can be employed without particular limitation as long as the method can stably fix the gold fine particles to the titanium-containing oxide.
  • the method for immobilizing the gold fine particles include, for example, precipitation according to the method for producing a titanium-based metal oxide immobilized with ultrafine gold particles described in JP-A-7-87997.
  • the precipitation method can be mentioned. The following is a brief description of this method.
  • the pH of the liquid containing the titanium-containing oxide is set to 7 to 11, preferably 7.5 to 10, and an aqueous solution of a gold compound is dropped into this liquid with stirring to obtain a titanic oxide.
  • Gold hydroxide on the oxide containing oxide is obtained.
  • ultrafine gold particles are precipitated on the titanium-containing oxide and fixed. .
  • the amount of the titanium-containing oxide to be added to water is not particularly limited.
  • the amount may be such that it can be uniformly dispersed or suspended in water.
  • a value of about 10 to 20.8 is appropriate.
  • the amount of addition is not particularly limited as long as the aqueous solution can sufficiently contact the surface according to the shape of the molded article.
  • Is a gold compound used in the form of an aqueous solution chloroauric acid (HA u C l 4), chloroauric acid Na Application Benefits um (N a A u C l 4 ), gold cyanide (A u CN), cyan gold Ca Li um ⁇ K [a u (CN) 2] ⁇ , illustrate the water-soluble gold salts such as trichloride Jechirua Mi emissions aurate [(C 2 H 5) 2 NH ⁇ a u C 1 3 ]
  • concentration of the aqueous gold compound solution used for dropping is not particularly limited. However, usually about 0.1 to 0 ⁇ 0 1 mo 11 is appropriate.
  • the aqueous solution of the gold compound may be gradually added dropwise to the above suspension or dispersion with stirring so that a large precipitation of gold hydroxide does not occur due to a rapid reaction.
  • the dripping time is usually in the range of about 3 to 60 minutes depending on the amount of dripping, and the dripping rate may be appropriately adjusted so that large precipitation of hydroxide does not occur.
  • the temperature of the liquid containing the titanium-containing oxide at the time of dropping is suitably about 20 to 80 ° C.
  • the drop amount of the aqueous solution of the gold compound is determined by the amount of the gold superparticles to be supported on the titanium-containing oxide.
  • the gold hydroxide By heating the titanium-containing oxide to which the gold hydroxide has adhered to 100 to 800 ° C., the gold hydroxide is decomposed to form on the titanium-containing oxide. Gold is uniformly precipitated as ultrafine particles and firmly fixed. The heating time is usually about 1 to 24 hours.
  • gold is contained in the liquid containing the above-mentioned titanium-containing oxide.
  • a method of adding a titanium-containing oxide to an aqueous solution containing a gold compound also causes the gold hydroxide to adhere to the titanium-containing oxide. be able to.
  • an aqueous solution containing a gold compound is heated to 30 to: L 00 ° (:, preferably 50 to 95 ° C.) with stirring, and the aqueous alkali solution is heated.
  • the pH is adjusted to pH 6 to 12, preferably 7 to 10, and the titanium-containing oxide may be added at once, or gradually added within a few minutes. If a change occurs, stirring may be continued at the same temperature while maintaining the pH at 6 to 12 and preferably at 7 to L0 using an aqueous alkali solution.
  • the amount of the aqueous solution containing the gold compound used is determined by the amount of the titanium-containing oxide used and the amount of the ultrafine gold particles supported on the titanium-containing oxide. Although it is not particularly limited, it is usually appropriate to set the concentration of the gold compound to about 0.001 to 0.1 Olmol Zl.
  • the titanium-containing oxide can be added to the aqueous solution containing the gold compound as it is or in a state of being dispersed or suspended in water at an appropriate concentration.
  • the addition amount of the titanium-containing oxide is not particularly limited. When an oxide is used, it is sufficient that the oxide can be uniformly dispersed or suspended in water.In general, the amount of the titanium-containing oxide in the aqueous solution is about 10 to 200 g Zl. Appropriate. When the titanium-containing oxide is used as a molded body, the amount of addition is not particularly limited as long as the aqueous solution can sufficiently contact the surface of the molded body according to the shape of the molded body.
  • a gold compound As a gold compound, a titanium-containing oxide, an alkaline compound for adjusting pH, etc., those similar to the above-mentioned method of dropping an aqueous solution of a gold compound into a liquid containing a titanium-containing oxide can be used. You.
  • the titanium-containing oxide to which the gold hydroxide has been adhered by such a method is, if necessary, washed by water washing or the like, separated by a method such as filtration, and then treated in the same manner as in the above method. Then, by heating to about 100 to 800 ° C., a titanium-containing oxide in which ultrafine gold particles are immobilized can be obtained.
  • a means for attaching the gold hydroxide to the metal it is also possible to combine the above two methods, for example, even if the gold compound and the titanium-containing oxide are added simultaneously or alternately. good. In this case, the concentration, pH, temperature, etc. of each solution may be appropriately set within the conditions of the above two methods. In this way, the titanium-containing oxide to which the gold hydroxide is adhered is also 100 By heating to about 800 ° C., the ultrafine gold particles can be immobilized on the titanium-containing oxide.
  • the gold compound is dissolved, and an aqueous solution of a reducing agent is added dropwise to an aqueous solution of pH 7 to 11 (preferably pH 7.5 to L 0) containing a titanium-containing oxide while stirring, Gold is reduced and deposited on the surface of the titanium-containing oxide to fix ultrafine gold particles.
  • a reducing agent preferably pH 7.5 to L 0
  • the gold compound the titanium-containing oxide, the alkaline compound for adjusting pH, and the like, those similar to those in the first method can be used.
  • the addition amount of the titanium-containing oxide may be the same as in the first method.
  • the concentration of the gold compound in the solution 1 XI 0 - and this to 2 ⁇ 1 x 1 0 _ 5 mo 1 1 about is appropriate.
  • the temperature of the aqueous solution containing the titanium-containing oxide during the reaction is suitably about 0 to 80 ° C.
  • Is a reducing agent, heat Dora di emissions, formalin Li down, etc. can be used Kuen acid Na Application Benefits um, concentration of the solution is, 1 X 1 0 - 1 ⁇ 1 X 1 0 - Sm ol About Z l. It is appropriate that the amount of the aqueous reducing agent added is about 1.5 to 10 times the stoichiometrically required amount. It is preferable that the reducing agent aqueous solution is gradually added dropwise so that rapid deposition of gold does not occur in the reaction solution, and it is usually sufficient to add the reducing agent over a period of about 3 to 60 minutes. .
  • the obtained titanium-containing oxide with ultrafine gold particles immobilized thereon can be used at room temperature as it is, but when it is used at high temperatures, it must be used before use to ensure stability at high temperatures. It is preferable that the titanium-containing oxide containing ultrafine gold particles is once heated to a temperature near the use temperature.
  • a carbon dioxide gas is blown into an aqueous solution of 11 or more (preferably pH 11 to 12) or an acidic aqueous solution is gradually added dropwise with stirring to adjust the pH of the solution to 7 to 11 And adhere gold hydroxide to the surface of the titanium-containing oxide.
  • the titanium-containing oxide is heated to 100 to 800 ° C. to precipitate ultrafine gold particles on the surface of the titanium-containing oxide.
  • the type and amount of the gold compound, the titanium-containing oxide and the alkaline compound may be the same as those in the first method.
  • the temperature of the liquid containing the titanium-containing oxide may be about 20 to 80 ° C.
  • the pH should be equal to or higher than the pH so that the gold compound is dissolved as a hydroxyl-containing complex ion. Adjust the pH of the solution containing the titanium-containing oxide.
  • the blowing speed of the carbon dioxide gas is not particularly limited as long as the reaction solution is uniformly bubbled.
  • Is an acidic aqueous solution, nitric acid, hydrochloric acid can be used an aqueous solution of sulfuric acid, acetic acid, these acidic aqueous solution, 1 X 1 0 one 1 ⁇ 1 X 1 0 - By using 3 mo 1/1 about a concentration Good.
  • the dropping amount may be within a range where the pH of the liquid containing the titanium-containing oxide does not become less than 7.
  • the dropping rate may be appropriately determined in accordance with the dropping amount within a dropping time of about 3 to 60 minutes so that a large precipitation of gold hydroxide does not occur.
  • the attached gold hydroxide is decomposed, and the titanium-containing oxidation is decomposed.
  • Ultrafine gold particles are uniformly deposited on the object and firmly fixed. The heating time is usually about 1 to 24 hours.
  • the gold compound is dropped or blown so as to sufficiently adhere to the titanium-containing oxide. It is preferable to stir the liquid containing the titanium-containing oxide for about 30 minutes to 2 hours after the completion.
  • the catalyst used in the present invention can be produced by a method according to the method for producing a substance for immobilizing ultrafine gold particles using vapor of an organic gold complex described in JP-A-9-1122478. You can do it. Hereinafter, this method will be briefly described.
  • Any organic gold complex can be used without particular limitation as long as it has volatility.
  • titanium-containing oxide can be used after heat treatment at about 200 ° C. in advance to remove moisture and the like on the surface.
  • the vaporization of the organic gold complex is usually performed at a temperature of about 0 to 90 ° C. I can.
  • heating it is preferable to set the heating temperature so as not to cause rapid vaporization, adsorption, decomposition, and the like.
  • the vaporization may also this carried out under reduced pressure, typically 1 X 1 0- 4 ⁇ 2 X 1 0 may be the one 3 T orr about is the pressure in this case.
  • the vaporized organic gold complex is adsorbed to the titanium-containing oxide under reduced pressure.
  • the term "under reduced pressure" in the present invention may be lower also Ri by atmospheric pressure: ⁇ , which is the pressure of usually 1 X 1 0- 4 ⁇ 2 0 0 T orr extent is appropriate.
  • the amount of the organic gold complex to be introduced varies depending on the type of the gold complex to be used, and may be appropriately adjusted so as to finally obtain the above-mentioned amount of immobilization.
  • the pressure may be adjusted with a known vacuum pump or the like.
  • the titanium-containing oxide to which the organic gold complex is adsorbed is heated in air at usually about 100 to 700 ° C, preferably 300 to 500 ° C.
  • the organic components in the organic gold complex are decomposed and oxidized, and at the same time, the organic gold complex is reduced to gold, and ultrafine gold particles are precipitated and fixed on the titanium-containing oxide.
  • the heating time can be appropriately set according to the amount of the organic gold complex supported, the heating temperature, and the like, but is usually about 1 to 24 hours. In this way, a titanium-containing oxide having gold fine particles immobilized thereon can be obtained.
  • the surface treatment of the titanium-containing oxide can also be carried out by heating at a temperature of usually about 100 to 700. Further, this surface treatment can be performed in an oxidizing gas or reducing gas atmosphere. This makes it easier to control the amount and state of defects on the surface of the titanium-containing oxide, and to finely control the particle size and the amount of gold carried.
  • oxidizing gas known ones can be used, and examples thereof include oxygen gas and nitric oxide gas.
  • reducing gas a known gas can be used, and examples thereof include hydrogen gas and carbon monoxide gas.
  • ultrafine gold particles can be firmly fixed on a titanium-containing oxide in a relatively uniform distribution. it can.
  • a method of fixing the gold after supporting the titanium-containing oxide on the support is preferable.
  • a support supporting a titanium-containing oxide may be used instead of the titanium-containing oxide.
  • ultrafine gold particles are hardly deposited on the support. This is advantageous in that it hardly precipitates and is immobilized only on the titanium-containing oxide (particularly where titanium exists).
  • the method of depositing and precipitating gold can be used only on titanium-containing oxides with particularly high selectivity. This is very advantageous in that ultrafine gold particles can be immobilized.
  • the silylation treatment may be performed by bringing the titanium-containing oxide into contact with the silylating agent at any time before or after immobilizing the fine gold particles on the titanium-containing oxide. It can be. That is, gold particles are immobilized on the titanium-containing oxide and then contacted with a silylating agent, or after the titanium-containing oxide is contacted with the silylating agent, gold is immobilized by the method described above. The fine particles may be immobilized.
  • the accumulation of high-boiling organic substances on the catalyst surface which is considered to be the cause of catalyst performance deterioration, can be significantly reduced, and the catalyst performance decreases over time. Not only can alleviate the catalyst, but also effectively bring out the original performance of the catalyst according to the reaction conditions such as reaction temperature and reaction pressure.
  • organic silane organic silylamine-organic silazane, other silylating agents, and the like can be used. Wear. Specific examples of organic silanes include chlorotrimethylsilane, dichlorodimethynoresilane, chlorobromodimethyzoresilane, and nitritoli.
  • Methynorezirane chlorotriethylinolan, chlorodimethizolepheninolesilane, dimethizolepropinolecrosilan, dimethinoleoctinolecrosilane, tributinolec Lorosilane, Dimethyloxymethylorosilane, Mexican trimethylolylane, Dimethyloxymethylsilylane, methyltrimethylolyl Silane, dimethyoxydiphenylsilane, trimethyxifenilinosilane, ethoxytrimethylsilylane, ethinoletrimethysilane , JET Tokishietinoreshiran, ethyltrietioxirane, trimethylisoproboxirane, methoxytripropyrene, butinotritrisilane Examples include run, octyl trimethyl silane, and acetyl trimethyl silane.
  • organic silamines include dimethylaminotrimethylinsilane, getylaminotintrimethylinsilane, and N-trimethylinoletrimethylinsilane.
  • organic silazane include hexamethyldisilazane, heptamethyltilzirazan, 1,1,3,3—te Trametinoresi silazane, 1,3-diphenyltetramethylinoresi silazane and the like can be mentioned.
  • silylating agents include tetramethylsilan, tetraethoxysilane, 3-aminopuriltrimethoxysilane, 3 — cyanopropyl trichlorosilane, 2 — cyanoethyl trimethoxysilane, melcaptomethylentrimethoxysilane, dimethoxyl 3 — mentolecap Topopropylmethylsilan, 3 — Menolecaptoprovir trimethoxysilane, 3,3,4,4,5,5,6,6,6—Nonafluo Silane, trimethylinsilyl phenol, N, 0 — pistrimethylsilyl acetate amide, N — trimethylinsilyl acetate amide, N N, '-bistrimethylsilylurea It can be. These silylating agents can be used alone or as a mixture of two or more.
  • the silylating agent may be in a liquid or gas state, and the temperature at the time of contact is preferably 450 ° C. or less.
  • a method in which the above-mentioned titanium-containing oxide and a liquid silylating agent are mixed and heated, or a method in which the titan-containing oxide is heated to an appropriate temperature and the vapor of the silylating agent is vaporized The silylation process can be performed by, for example, a method of contacting the components.
  • Liquid silylating agents use liquid substances themselves, A solution in which a silylating agent is dissolved in an appropriate solvent may be used.
  • alcohols, ketones, ethers, esters, hydrocarbons, and the like can be used as the solvent, and specific examples include methanol, 2-Propanol, Acetone, Methynorethynoleketone, Diisopropyl, Tetrahydrofuran, Ethyl acetate, Butyl acetate, Toluene, Xylene You.
  • concentration of the silylating agent in the solution is preferably about 0.01 to 1 mol 1.
  • the silylation process can be carried out by any of the batch method, semi-batch method and continuous method.
  • the temperature of the silylation treatment is preferably in the range of 120 to 450 ° C, and more preferably in the range of 10 to 420 ° C, and 0 to 400 ° C.
  • the range of C is more preferable. If the treatment temperature exceeds 450 ° C, the effects of improving the catalytic reaction performance and the aging deterioration performance are not sufficiently exhibited, which is not preferable.
  • the time required for the silylation treatment is not constant depending on the conditions such as the silylating agent used, the treatment temperature, and the like.However, at the treatment temperature of about 0 to 400 ° C, it is usually 0. A processing time of about 1 second to 2 hours is appropriate.
  • the amount of the silylating agent to be used can be varied in a wide range, but is usually preferably about 0.01 to 100 parts by weight to 100 parts by weight of the titanium-containing oxide. Is about 0.1 to 10 parts by weight The amount used is appropriate.
  • the silylating agent reacts with a 0H group such as a silanol group on the catalyst surface, whereby the organic silylation is performed. Done. At this time, since the number of OH groups decreases, the acid-base property of the original catalyst changes. In particular, strong acid sites decrease. It is thought that this will further improve the life stability and hydrogen use efficiency.
  • Organic silylation can be qualitatively analyzed by optical means such as infrared spectroscopy.For example, with gold-titanium-series catalysts, the more organic silylization proceeds, 2 9 7 0 cm "peak based on CH vibration is increased in the vicinity of 1, 3 7 5 0 cm reduction in peak based on 0 H vibrations around one 1 is observed.
  • the hydration treatment of the gold and titanium-containing oxide to be treated prior to the above-mentioned silylation treatment is effective in increasing the efficiency of the silylation treatment (the degree of silylation). May be effective.
  • the hydration treatment involves contacting the catalyst with water before silylation and adding it. It can be carried out by a method of heating, a method of bringing the catalyst into contact with water vapor for about 0.1 to 2 hours in a temperature range of about 150 to 450 ° C, and the like.
  • the hydrophobization treatment is a treatment that lowers the water absorption of a catalyst in which gold fine particles are immobilized on a titanium-containing oxide.
  • the hydrophobicity was evaluated by the degree of hydrophobicity represented by the following equation.
  • the degree of hydrophobicity is 10 to 98%, preferably 20 to 95%, and more preferably 30 to 90%.
  • a standard method can be applied, such as a standardized water absorption measurement method such as JIS standard silica gel test method, thermal weight analysis (TG), and thermal desorption method. (TPD) etc. can be used.
  • a o Water absorption rate before hydrophobic treatment
  • the hydrophobizing treatment is performed, for example, by the following two types. This can be done by any method.
  • the first method is a method of performing a hydrophobizing treatment using a hydrophobizing agent.
  • the hydrophobizing agent is not particularly limited, and for example, an organic fluorinating agent can be used.
  • organic fluorinating agent include fluorine-containing polymer compounds such as polytetrafluoroethylene, polyvinylidenefluoride, etc., trifluorene methinoreal alcohol, Examples thereof include fluorine-containing compounds such as trifluorophenol acetic acid and trifluorenomethylethylenoxide.
  • the water absorption after the silylation may be lower than before the silylation, and in this case, the silylating agent Will also act as a hydrophobizing agent.
  • the hydrophobizing agent can be used alone or in combination of two or more.
  • the hydrophobizing treatment may be performed at any time before or after immobilizing the fine gold particles on the titanium-containing oxide. That is, after immobilizing the gold microparticles on the titanium-containing oxide and then contacting it with a hydrophobizing agent, a force for performing the hydrophobizing treatment, or by contacting the titanium-containing oxide with the hydrophobizing agent After the hydrophobization treatment, the gold fine particles may be immobilized by the method described above.
  • the hydrophobizing treatment the accumulation of high-boiling organic substances, which are considered to be the cause of catalyst performance deterioration, on the catalyst surface can be significantly reduced, and the deterioration of catalyst performance over time can be moderated. In addition to this, it is possible to effectively bring out the original performance of the catalyst according to the reaction conditions such as the reaction temperature and the reaction pressure.
  • the hydrophobizing agent may be in a liquid or gas state, and the temperature at the time of contact is preferably 450 ° C. or less.
  • the hydrophobic treatment can be performed by a method or the like.
  • a liquid hydrophobizing agent may be used by itself, or a solution in which the hydrophobizing agent is dissolved in an appropriate solvent may be used. In this case, alcohols, ketones, ethers, esters, hydrocarbons, etc.
  • the solvent can be used as the solvent, and specific examples include methanol, 2- Prono ,. Knol, aceton, methylethyl ketone, diisopropyl ether, tetrahydrofuran, ethyl acetate, butyl acetate, toluene, xylene and the like can be mentioned.
  • the concentration of the hydrophobizing agent in the solution is preferably about 0.01 to 1 mol // 1.
  • the hydrophobization treatment can be performed by any of a batch method, a semi-batch method, and a continuous method.
  • the temperature of the hydrophobizing treatment is preferably in the range of 120 to 450 ° C, more preferably in the range of 10 to 420 ° C, and in the range of 0 to 400 ° C. Is even more preferred. If the treatment temperature exceeds 450 ° C., the effect of improving the catalytic reaction performance and the aging performance is not sufficiently exhibited, which is not preferable.
  • the time required for the hydrophobization treatment is not constant depending on the conditions such as the hydrophobizing agent used and the treatment temperature.However, at a treatment temperature of about 0 to 400 ° C, it is usually 0.1 second to 2 hours. Appropriate processing time is appropriate.
  • the amount of the hydrophobizing agent may vary within a wide range, but is usually about 0.01 to 100 parts by weight, preferably about 0.1 part by weight, per 100 parts by weight of the titanium-containing oxide. An appropriate amount of 1 to 10 parts by weight is appropriate.
  • the reagent may react with an OH group such as a silanol group on the catalyst surface to cause an organic fluorination or the like. in this case
  • an OH group such as a silanol group on the catalyst surface
  • the acid-base property of the original catalyst changes. In particular, it has the additional effect of reducing strong acid sites. This may further improve the life stability and hydrogen use efficiency.
  • hydrating the gold and titanium-containing oxide to be treated prior to the above-mentioned hydrophobizing treatment may be effective in increasing the efficiency (hydrophobicity) of the hydrophobizing treatment.
  • the hydration treatment involves heating the catalyst by contacting it with water before hydrophobization, and bringing the catalyst into contact with steam for about 0.1 to 2 hours at a temperature range of about 150 to 450 ° C. It can be done by
  • the second method is a method of immobilizing fine gold particles and a titanium-containing oxide on the surface of a hydrophobic substance, and a method of physically mixing the hydrophobic substance with the fine gold particles and a titanium-containing oxide. Law.
  • the hydrophobic substance is not particularly limited, but those which can make the above-mentioned degree of hydrophobicity positive can be used.
  • fluorine-containing polymers, hydrocarbon polymers, activated carbon, hydrophobic silica, zeolite containing high silica, and the like can be used.
  • fluorine-containing polymer examples include fluorine-containing polymers such as porous Teflon (polytetrafluorophenol) and polyvinylidene phenololeide.
  • Polymers composed of hydrocarbons Can be used.
  • hydrocarbon polymer styrene-divinylbenzene copolymer ⁇ polypropylene or the like can be used.
  • hydrophobic silica commercially available products such as AEROS ILR 812, a hydrophobic silica manufactured by Nippon Aerosil Co., Ltd. can be used.
  • High silica-containing zeolite is obtained by reducing acid content of zeolite containing Si and A1, such as MFI-structured silicalite and MCM-41. Etc. can be used.
  • the method for immobilizing the fine gold particles and the titanium-containing oxide on the surface of the hydrophobic substance is not particularly limited, but the method includes immobilizing the titanium-containing oxide on the surface of the hydrophobic substance and further fixing the fine gold particles.
  • a method of immobilization, a method of immobilizing gold fine particles in advance on a titanium-containing oxide, and further immobilizing this on the surface of a hydrophobic substance can be applied.
  • immobilization as used herein includes not only a state of chemically strong binding but also a state of mechanically or physically weakly interacting.
  • the method of physically mixing the hydrophobic substance with the gold and titanium-containing oxide is not particularly limited, but a method of mixing the hydrophobic substance with the gold and titanium-containing oxide, A method of immobilizing gold on a mixture of a substance and a titanium-containing oxide can be applied.
  • powdered titanium-containing oxides After kneading the paste made with an organic solvent into granular porous Teflon, molding and fixing the gold fine particles, the powdery hydrophobic silica and the gold fine particles
  • a method in which the immobilized powdery titanium-containing oxide is mixed with an organic solvent such as alcohol to form the mixture can be applied.
  • the amount of the hydrophobic substance used in this second method is about 1 to 99.9% by weight, preferably 5 to 99.5% by weight, based on the weight of the finally prepared catalyst. %, More preferably about 10 to 99% by weight.
  • an unsaturated hydrocarbon having about 2 to 12 carbon atoms can be used as the hydrocarbon used as a raw material.
  • the raw material When the reaction is performed in the gas phase, the raw material must have a carbon number of up to about 6 that can easily desorb from the catalyst layer even at a low temperature of around 100 ° C. Suitable.
  • unsaturated hydrocarbon specifically, compounds having a double bond, for example, ethylene, propylene, 1-butene, 2-butene, isobutene, 1—penten, 2—penten, 2—methyl 1 1-butene, 3—methylene, 1—butene, cyclopentene, 1—hexene, 2—hexene, 3—hexene, 2—methylene 1-pentene, cyclohexene, 1-methylene 1-cyclopentene, 3—methylone 1-cyclopentene, 4 ⁇ Mehti Nole 1 — Can be used for penten and so on.
  • compounds having a double bond for example, ethylene, propylene, 1-butene, 2-butene, isobutene, 1—penten, 2—penten, 2—methyl 1 1-butene, 3—methylene, 1—butene, cyclopentene, 1—hexene, 2—hexene, 3—hexene, 2—methylene 1-penten
  • Epoxides can be produced with high selectivity by using these unsaturated hydrocarbons as raw materials.
  • the use amount of the above-mentioned catalyst of the present invention is not particularly limited, but practically, when performing a gas phase reaction, the space velocity (SV) is 100 to 100 hr. — I 'ml Z g • It is appropriate to set the amount in the range of about cat. C
  • the presence of hydrogen is essential. If hydrogen is not present, that is, if a mixed gas consisting of oxygen, unsaturated hydrocarbon, and possibly a diluent gas is allowed to react in the presence of the above catalyst, the reaction is carried out at 200 ° C or more. Although the reaction starts, only the production of carbon dioxide is mainly observed, and the production of partial oxidation products is not observed at all.
  • the amount of hydrogen present is not particularly limited, it is usually determined by the volume ratio of hydrogen / raw material, although it is practical within the range of about 1/10 to 100 Z1, the reaction rate generally increases as the proportion of hydrogen increases, so it is preferable to use a higher value within this range. .
  • the amount of oxygen is not particularly limited, it is usually appropriate that the oxygen content be in the range of about 10 to 10 in terms of the volume ratio of the oxygen raw material. An oxygen abundance lower than this range is not preferred because a smaller amount of the partial oxidation product is obtained, while an oxygen abundance higher than this range can be obtained.
  • the amount of the partial oxidation product does not increase, but rather decreases the selectivity of the partial oxidation product (increases the production amount of carbon dioxide), which is not preferable.
  • the reaction temperature in the present invention is generally in the range of about 0 to 350 ° C, preferably in the range of about 20 to 280 ° C.
  • the product When the reaction is performed in the gas phase, the product must be sufficiently supplied under the reaction pressure used (usually about 0.01 to 1 MPa) so that the product can be easily desorbed from the catalyst layer. It is necessary to choose a temperature that indicates volatility.
  • the reaction temperature if the reaction temperature is too high, the combustion reaction to carbon dioxide is likely to occur, and at the same time, the consumption of hydrogen by oxidation to water increases, which is not preferable. Therefore, although the optimum reaction temperature varies depending on the raw materials used, a suitable reaction temperature seems to be in the range of approximately 20 to 280 ° C.
  • a mixed gas containing hydrocarbon, hydrogen, oxygen and, if necessary, a diluent gas for example, nitrogen, argon, helium, carbon dioxide, etc.
  • a diluent gas for example, nitrogen, argon, helium, carbon dioxide, etc.
  • reaction in the present invention When the reaction in the present invention is carried out in the liquid phase, it is not necessary to consider the desorption from the catalyst layer as described above, and therefore, in many cases, the reaction can be carried out at 100 ° C. or less. .
  • the reaction pressure and reaction temperature should be selected so that the raw material can be maintained in a liquid state, or a solvent (for example, a hydrocarbon solvent such as benzene, methylene chloride, etc.).
  • Reaction by bubbling a mixture of raw materials, hydrogen, oxygen, and, in some cases, diluent gas, in the presence of a turbid catalyst. Can be performed.
  • the catalyst of the present invention is an excellent catalyst for the reaction of partially oxidizing unsaturated hydrocarbons in the presence of oxygen and hydrogen to form an epoxide in accordance with reaction conditions such as reaction temperature and reaction pressure. Performance can be demonstrated. In addition, the activity of the catalyst does not decrease with time, and excellent catalytic performance of high selectivity and high activity can be stably maintained for a long period of time.
  • silica powder (AER0ZIL 200, manufactured by Nippon Aerosil, specific surface area: 2 12 m 2 Z g) was filled into a reaction tube having an inner diameter of 2 O mm, and the silica layer temperature was reduced to 80 ° C. While maintaining the temperature at ° C, contact a He gas containing about 1 Vo 1% of titan lab toxide vapor at a flow rate of 500 m 1 / h for about 2 hours to convert the titanium compound. After being fixed on the surface of the silica, the powder was fired at 600 ° C for 3 hours.
  • aqueous solution 4 0 0 m 1 comprising chloroauric acid (HA u C 1 4) 0. 3 4 g to 7 0 ° C, p H 9 with hydroxide Na Application Benefits um aqueous solution Adjusted to 2.
  • 10 g of the above-mentioned titania-silica crushed into a mesh of 10 to 20 mesh was added thereto, and the mixture was stirred at 70 ° C for 30 minutes. Thereafter, the supernatant was removed from the aqueous solution containing the solid, and the obtained solid was washed with 500 ml of water three times and then filtered. Then, dry at 120 ° C for 12 hours. After that, the mixture was calcined in air at 400 ° C. for 3 hours to obtain a titanium-containing oxide catalyst supporting ultrafine gold particles.
  • the resulting catalyst has a maximum distribution of particle size 1 ⁇ 3 nm, ultrafine gold particles 0.0 5 wt%, Ding 1 1 3 ⁇ 4 0 2 and to 0.8 wt%, and N a is 0 It was a gold-titania-silica catalyst loaded with 14% by weight. This catalyst was designated as catalyst A. Then, 2 cc of the obtained gold-titania-silica catalyst A was filled in a reaction tube having an inner diameter of 10 mm, and the catalyst layer temperature was kept at 200 ° C. He gas containing about 10 V o 1% of toxic trimethylsilyl vapor was contacted for about 10 minutes at a flow rate of 500 ml Z hour to perform a silylation treatment. An increase of 2.6% by weight was observed by the silylation treatment. The catalyst after the silylation treatment is referred to as catalyst B.
  • the water absorption of the obtained catalyst B was determined by the following method. That is, after drying 2 g of catalyst B in air at 1 10 ° C. for 2 hours, the dry mass was measured, and then allowed to cool overnight in a desiccator, and the relative humidity was about 40% and about 25 °. After standing for 48 hours under the condition of C, the water absorption mass was measured. When the water absorption (A) was determined by the above equation, it was 0.5%.
  • Example 1 Using the catalyst A before the silylation treatment obtained in Example 1, an epoxidation reaction of trans—2-butene was performed in the same manner as in Example 1. Table 1 shows the results.
  • the resulting catalyst has a maximum distribution of particle size 1 ⁇ 3 nm, ultrafine gold particles 0.1 wt%, and a T i force T i 0 2 1. 0 wt%, N a is 0.0 It was a gold-titania-silica catalyst loaded with 9% by weight and 0.4% by weight of Cs. this Let the catalyst be catalyst C.
  • the time-dependent change in the yield from propylene to propylene oxide was examined. The results are shown in Table 2.o
  • the catalyst of the present invention acts stably for a long period of time on the partial oxidation reaction of unsaturated hydrocarbons.
  • the resulting catalyst has a maximum distribution with a particle size of 1 to 3 nm, ultrafine gold particles of 0.04% by weight, T i of 0.5% by weight as T i O 2 , and K of 0.5% by weight. It was a gold-titania silica catalyst loaded at 18% by weight. This catalyst is referred to as Catalyst E.
  • the catalyst of the present invention is excellent depending on the reaction conditions even when used continuously for a long period of time. Catalytic performance can be demonstrated effectively.
  • the catalyst performance deteriorates, and when the reaction conditions are changed, the catalyst performance according to the reaction conditions cannot be effectively exhibited.
  • Catalyst G For catalyst E of Example 3, the amount of titanium isopropyl titanate was 7.2 g, and the firing temperature of titanium per silica was 6.
  • a gold-titania silica catalyst was obtained in the same manner as in Example 3, except that the temperature was changed to 00 ° C. This catalyst is referred to as Catalyst G.
  • the amount of A u in the catalyst G is are two 1 wt% der 0.1, Ding 1 /: 1 and 0 2 to 1.0 9 wt%, K is 0. It was found that 22% by weight was contained.
  • catalyst H Spray twice with fluororesin at room temperature using a fluororesin-containing spray (CAT. No. SG — SX tent) manufactured by Sumitomo 3LM Co., Ltd. Then, heat treatment was performed in air at 200 ° C. for 2 hours. This catalyst is referred to as catalyst H.
  • 2 cc of the catalyst G was placed in 5 cc of a tonolenene solution containing 0.01 g of trimethyl methoxysilane, which is a silylating agent, and the solution was placed in a closed container at 50 ° C for 30 cc. After heating for one minute, the catalyst G was subjected to a silylation treatment by distilling off toluene.
  • the catalyst G was subjected to silylation in the same manner as in Example 5 except that dimethylethylmethoxysilane was used instead of trimethylmethoxysilane.
  • dimethylethylmethoxysilane was used instead of trimethylmethoxysilane.
  • an epoxidation reaction from propylene to propylene oxide was carried out in the same manner as in Example 5, and the change over time in the yield of propylene oxide was examined. The results are shown in Table 5 below.
  • the catalyst G was silylated in the same manner as in Example 5, except that diphenyldimethoxysilane was used instead of trimethylmethoxysilane.
  • diphenyldimethoxysilane was used instead of trimethylmethoxysilane.
  • an epoxidation reaction from propylene to propylene oxide was carried out in the same manner as in Example 5, and the change over time in the yield of propylene oxide was examined. The results are shown in Table 5 below.
  • the catalyst G was silylated in the same manner as in Example 5 except that phenyl trimethoxysilane was used instead of trimethinolemethoxysilane. Next, using this catalyst, an epoxidation reaction from propylene to propylene oxide was carried out in the same manner as in Example 5, and the change over time in the yield of propylene oxide was examined. The results are shown in Table 5 below. Comparative Example 4
  • the gas was circulated for 5 minutes at a flow rate of 600,000 m 1 Z-hour to perform a silylation treatment.
  • the catalyst H was silylated in the same manner as in Example 9 except that the catalyst layer temperature when the catalyst H was silylated was set to 220 ° C. Using this catalyst, an epoxidation reaction from propylene to propylene oxide was carried out in the same manner as in Example 9, and the change over time in the yield of propylene oxide was examined. The results are shown in Table 6 below.
  • the catalyst H was silylated in the same manner as in Example 9 except that the catalyst layer temperature when the catalyst H was silylated was set to 280 ° C. Using this catalyst, an epoxidation reaction from propylene carbonate to propylene oxide was carried out in the same manner as in Example 9, and the change over time in the yield of propylene oxide was examined. The results are shown in Table 6 below.
  • Example 9 the catalyst layer temperature during the silylation treatment of the catalyst H was kept at 280 ° C., and Ar gas containing about 9 vo 1% of trimethyl methoxysilane vapor was supplied at a flow rate of 60%.
  • the silylation treatment was carried out in the same manner as in Example 9 except that the mixture was allowed to flow for 15 minutes at a time of 00 ml and the catalyst H was brought into contact with the vapor of trimethyl methoxysilane.
  • the epoxidation reaction of propylene is carried out under the pressure of 2 kgcm2 at an oil bath temperature of 200 ° C using a reaction tube filled with the catalyst subjected to the silylation treatment in this way. Except for the above, the time-dependent change in the yield from propylene to propylene oxide was examined in the same manner as in Example 9. The results are shown in Table 7 below. Amount of propylene oxide 50 hours after the start of the reaction The molar ratio of the amount of consumed hydrogen to the total was 2.7.
  • Example 9 the catalyst layer temperature during the silylation treatment of the catalyst H was kept at 280 ° C., and Ar gas containing about 9 vo 1% of trimethyl methoxysilane vapor was supplied at a flow rate of 60%.
  • a silylation treatment was carried out in the same manner as in Example 9 except that the mixture was passed for 40 minutes at a time of 00 ml Z and the catalyst H was brought into contact with the vapor of trimethyl methoxysilane.
  • the propylene epoxidation reaction was performed using a reaction tube filled with the catalyst that had been subjected to the silylation treatment in this manner, at an oil bath temperature of 200 ° C and a pressure of 5 kgcm 2 under a pressure of 5 kgcm 2 .
  • the change over time in the yield from propylene to propylene oxide was examined. The results are shown in Table 7 below. 50 hours after the start of the reaction, the molar ratio of the amount of hydrogen consumed to the amount of propylene oxide produced was 2.9.
  • silica used in Example 9 instead of the silica used in Example 9, another commercially available silica (manufactured by Fuji Silica Chemical Co., Ltd., Carryact Q—30, 10-20 mesh, ratio Gold-titania-silica was obtained in the same manner as in Example 9 except that the surface area (79 mg) was used. This is designated as catalyst I.
  • An Ar gas containing about 9 vol% of trimethoxysilane vapor was charged by filling 2 cc of catalyst I into a reaction tube with an inner diameter of 10 mm and maintaining the catalyst layer temperature at 280 ° C in an electric furnace. Was circulated for 30 minutes at a flow rate of 600 m1 for a silylation treatment. Then, the reaction tube was immersed in a 200 ° C oil bath, and under a pressure of S kg Z cm 2 , a mixture of hydrogen and oxygen, propylene / argon was mixed in a volume ratio of 8/8 8/25/59. The gas is flowed at ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ time (flow rate at normal pressure and normal temperature).
  • the epoxidation reaction from propylene to propylene oxide was carried out in the same manner as in Example 14 without the silylation treatment using Catalyst I, and the propylene oxide was recovered. The rate of change over time was examined. The results are shown in Table 8 below. The molar ratio of the amount of hydrogen consumed to the amount of propylene oxide produced 50 hours after the start of the reaction was 4.8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Epoxy Compounds (AREA)

Description

明 細 書
不飽和炭化水素の部分酸化用触媒
技術分野
本発明は、 不飽和炭化水素の部分酸化用触媒、 及び該 触媒を用いるエポキシ ドの製造方法に関する。
背景技術
工業的に実施されているエポキシ化方法と しては、 ク 口ルヒ ド リ ン、 有機過酸化物、 過酸化水素等の酸化剂を 用いる方法が一般的である。 しか しながら、 この方法で は、 多段反応が必要となる こ とや副生物が発生するなど の避け られない問題点がある。
酸化剤と して分子状酸素を使用 して不飽和炭化水素を 対応するエポキシ ドに変換する方法は、 よ り簡便な方法 ではあるが、 エチ レ ンからのエチ レ ンォキシ ドの製造が 唯一工業的に大規模に実施されているに過ぎず、 他の不 飽和炭化水素からのエポキシ ドの製造、 例えば、 プロ ピ レ ンからの直接酸素酸化によるプロ ピレ ンォキシ ドの製 造等は非常に困難である。 プロ ピレ ンからプロ ピレ ンォ キシ ドへの直接酸素酸化については、 文献上、 い く つか の提案があるが (特公昭 5 3 — 3 9 4 0 4 号、 特開平 7 — 9 7 3 7 8 号等) 、 いずれの方法も低選択性、 低活性 等の性能上の課題がある。 また、 高選択的に不飽和炭化水素からエポキシ ドを製 造する方法と して、 金及び酸化チタ ンからなる触媒を用 いて、 分子状水素の存在下に不飽和炭化水素を部分酸化 する方法が提案されている (特開平 8 — 1 2 7 5 5 0号、 特開平 1 0 — 5 5 9 0号) 。 しかしながら、 これらの方 法では、 反応初期には、 触媒がある程度の活性を示すも のの、 経時的に活性が低下して、 定常状態では活性が不 十分になる という 問題がある。
発明の開示
本発明は、 上記した従来技術の問題点を解消するため になされたものであ り、 その主な目的は、 不飽和炭化水 素類からエポキシ ド類を高い選択率で効率よ く 製造でき る不飽和炭化水素類の部分酸化用触媒であ って、 経時的 劣化の少ない長寿命の触媒を提供する こ とである。
本発明者は、 上述した如き従来技術の現状に鑑みて銳 意研究を重ねた結果、 チタ ン含有酸化物に金微粒子が固 定化された触媒であって、 該触媒をシ リ ル化処理又は疎 水化処理した ものは、 不飽和炭素類からエポキシ ド類を 製造する反応において、 反応温度や反応圧力等の反応条 件に応じた触媒本来の性能を有効に発揮でき、 しかも、 経時的な活性の低下が少な く、 高選択率、 高活性という 優れた触媒性能を長期間安定に維持でき る こ とを見出 し、 P T/JP99/00753
こ こに本発明を完成するに至つ た。
即ち、 本発明は、 以下に示す不飽和炭化水素の部分酸 化用触媒、 及び該触媒を用いるエポキシ ドの製造方法を 提供する ものである。
1 . チタ ン含有酸化物に金微粒子が固定化された触媒で あ って、 該触媒がシ リ ル化処理されている こ とを特徴と する不飽和炭化水素の部分酸化用触媒。
2 . チタ ン含有酸化物に金微粒子が固定化された触媒で あ って、 該触媒が疎水化処理されている こ とを特徴とす る不飽和炭化水素の部分酸化用触媒。
3 . 有機フ ッ素化剤及びシ リ ル化剤から選ばれた少な く と も一種の疎水化剤によって疎水化処理されたものであ る上記項 2 に記載の触媒。
4 . 金微粒子が粒子径 1 0 n m以下の超微粒子である上 記項 1 又は 2 に記載の触媒。
5 . チタ ン含有酸化物が、 酸化チタ ン、 チタ ン酸塩、 酸 化チタ ンとゲイ素含有酸化物とを物理的に混合した混合 酸化物、 及びチタ ンとゲイ素が酸素を介して化学的に結 合した複合酸化物から選ばれた少な く と も一種である上 記項 1 又は 2 に記載の触媒。
6 . チタ ン含有酸化物が、 アルカ リ金属、 アルカ リ 土類 金属、 ラ ンタ ノ ィ ド及びタ リ ゥムから選ばれた少な く と PC蘭 9/00753
4 も一種の元素を含有する ものである上記項 1 又は 2 に記 載の触媒。
7 . 金微粒子をチタ ン含有酸化物に固定化する前又は金 微粒子を固定化した後、 該チタ ン含有酸化物と シ リ ル化 剤とを 4 5 0 °C以下の温度で接触させる こ とによ ってシ リ ル化処理された ものである上記項 1 に記載の触媒。
8 . 金微粒子をチタ ン含有酸化物に固定化する前又は金 微粒子を固定化した後、 該チタ ン含有酸化物と疎水化剤 とを 4 5 0 °C以下の温度で接触させる こ とによ って疎水 化処理されたものである上記項 2 に記載の触媒。
9 . 上記項 1 〜 8 のいずれかに記載の触媒と分子状水素 の存在下に、 不飽和炭化水素を酸素で部分酸化する こ と を特徴とするエポキシ ドの製造方法。 本発明の触媒は、 チタ ン含有酸化物に金微粒子が固定 化された触媒であって、 該触媒がシ リ ル化処理又は疎水 化処理されている ものである。
以下に該触媒について詳細に説明する。
チタ ン含有酸化物
チタ ン含有酸化物と しては、 例えば、 酸化チタ ン、 チ タ ン酸塩、 酸化チタ ンとゲイ素含有酸化物とを物理的に 混合した混合酸化物 (以下、 「チタ ン含有混合酸化物」 という ) 、 チタ ンとゲイ素が酸素を介して化学的に結合 した複合酸化物 (以下、 「チタ ン含有複合酸化物」 とい う ) 等を用いる こ とができ る。 これらのチタ ン含有酸化 物は、 一種単独又は二種以上混合して用いる こ とができ る。 チタ ン含有酸化物は、 比表面積が大きいものが好ま しい。 その形状は、 特に限定される ものではな く、 粉体 状で用いて もよ く、 他の形状に成形 して用いてもよい。
チタ ン含有酸化物の内で、 酸化チタ ンについては、 結 晶構造、 形状、 寸法等は特に限定される ものではないが、 例えば、 アナターゼ型、 ルチル型などの結晶形を有する ものや無定形のものを用いる こ とができ、 アナターゼ型 又は無定形の ものが好ま しい。 また、 一次粒子径が 1 0 〜 2 0 0 n m程度と比較的小さ く、 5 m 2 g程度以上の 比較的大きい比表面積を有する ものが好ま しい。
チタ ン酸塩と しては、 例えば、 M g T i 0 3、 C a T i 0 3、 B a T i 0 3 P b T i O 3 F e T i 03等の各種 の金属チタ ン酸塩を用いる こ とができ る。
チタ ン含有混合酸化物、 及びチタ ン含有複合酸化物と しては、 高比表面積を有し、 多孔質である ものが好適で あ り、 比表面積が l m 2/ g以上である こ とが好ま し く、 5 0 〜 1 2 0 0 m 2/ gの範囲にある こ とがよ り好ま しい チタ ン含有混合酸化物において用いるゲイ素含有酸化 物と しては、 無定形のシ リ カ、 結晶性を示すシ リ カライ ト、 金属ゲイ酸塩等の酸化ゲイ素を主成分とするゲイ素 質酸化物、 無定形シ リ カ 一アル ミ ナやその結晶形である ゼォライ トに代表されるゲイ素と他の金属とからなる複 合酸化物等を用いる こ とができ る。
チタ ン含有複合酸化物と しては、 ( 1 ) 酸化チタ ンが ゲイ素含有酸化物の表面にのみ担持された もの、 ( 2 ) チタ ンがゲイ素含有酸化物の内部にも存在する複合酸化 物、 等を使用でき る。
上記 ( 1 ) で示 した、 酸化チタ ンがゲイ素含有酸化物 の表面にのみ担持されたものとは、 チタ ンが、 少な く と も一つの [ T i 0 4 ] 4—ュニッ トを有する酸化チタ ンの状 態で、 ゲイ素含有酸化物の表面にのみ担持されている も のであ り、 酸化チタ ンは、 無定形、 又はアナターゼ、 ル チル等の結晶形と して存在する こ とができ る。 ゲイ素含 有酸化物と しては、 上述したチタ ン含有混合酸化物で用 いる ものと同様のゲイ素含有酸化物を使用でき る。
酸化チタ ンがゲイ素含有酸化物の表面に担持されてい る状態については、 特に限定される ものではな く、 一般 に担持と称される状態、 即ち、 酸化チタ ンがゲイ素含有 酸化物の表面に化学的に強 く 結合している状態や物理的 に相互作用 して固定化されている状態等であればよい。 ゲイ 素含有酸化物の表面に酸化チタ ンを担持させる方 法は、 特に限定される ものではな く、 一般に、 含浸法、 イ オ ン交換法、 化学蒸着法等によ っ て、 チタ ン化合物を ゲイ 素含有酸化物の表面に吸着或いは結合させ、 更に、 焼成等の方法で最終的に酸化物と して安定に担持させれ ばよい。 チタ ン含有複合酸化物を製造する ために用いる チタ ン化合物については、 製造方法に応 じて適宜選択 し て使用すれば良 く、 例えば、 酸化チタ ンの他に、 チタ ン メ ト キ シ ド、 チタ ンエ トキ シ ド、 チタ ンテ ト ラ イ ソプロ ポキシ ド、 チタ ンテ ト ラ — n — ブ ト キシ ド、 テ ト ラキス ( 2 —ェチノレへキ シノレ) オノレソ チタ ナー ト 等のチタ ンァ ルコ キシ ド ; 3 塩化チタ ン、 4 塩化チタ ン、 3 臭化チタ ン、 4 臭化チタ ン、 3 フ ツ イ匕チタ ン、 4 フ ツ イ匕チタ ン等 のチタ ンハ ロゲ ン化物 ; チタニウ ム ビスア ンモニゥ ム ラ ク テ一 ト ジ ヒ ド ロキシ ド、 チタ ニルァセチルァセ ト ナー ト、 チタ ニウ ムジイ ソプロ ボキ シ ド ビスァセチルァセ ト ナ一 ト、 チタ ノ セ ン ジク ロ リ ド等の有機化合物を含有す る チタ ン錯体等を用いる こ とができ る。
酸化チタ ンがゲイ素含有酸化物の表面にのみ担持され た も の と しては、 例えば、 無定形 シ リ カの表面に酸化チ タ ンが担持さ れた もの、 結晶性珪酸塩であ る シ リ カ ラ イ トゃメ ソ ポーラ ス シ リ カ ( M C M— 4 1、 M C M— 4 8 等) の表面に酸化チタ ンが担持されたもの、 シ リ カ · ジ ルコニァ、 シ リ カ · アル ミ ナ等の 2 種以上の元素からな る複合酸化物の表面に酸化チタ ンが担持されたもの等を 用いる こ とができ る。
上記 ( 2 ) で示 した、 チタ ンがゲイ素含有酸化物の内 部にも存在する複合酸化物とは、 チタ ンが、 酸化チタ ン 又はチタ ン原子と して、 ゲイ素含有酸化物の表面だけで な く、 その内部に も存在する ものをいう。 該複合酸化物 では、 チタ ンは、 孤立 T i 4 +又は少な く と も一つの
[ T i 0 4 ] 4—ュニ ッ トを有する酸化物の状態で、 ゲイ素 含有酸化物の表面に存在する と共に、 ゲイ素含有酸化物 内部においても、 ゲイ素原子を置換した状態で存在する。 この場合、 T i 4 +又は [ T i O 4 は、 でき るだけ高分 散状態である こ とが望ま しい。
この様な複合酸化物は、 例えば、 チタ ン化合物及びケ ィ素化合物を含有する均一溶液から、 共沈法、 ゾルーゲ ル法等によ って、 チタ ン及びゲイ素を含む混合水酸化物 の沈殿を生じさせ、 更に、 焼成等の方法によ って、 最終 的に酸化物とする こ とによ って得る こ とができ る。 この 方法では、 形成されるゲイ素含有酸化物は、 例えば、 上 述したチタ ン含有混合酸化物におけるゲイ素含有酸化物 と同種のものとする こ とができ る。 また、 この方法にお いても、 チタ ン化合物と しては、 上記 ( 1 ) の方法で用 いるチタ ン化合物と同様の化合物から、 製造方法等に応 じて適宜選択 して使用すれば良い。
チタ ンを孤立 T i 4 +又は少な く と も一つの [ T i 04 ] 4—ュニ ッ トを有する酸化物と して含む複合酸化物の具体 例と しては、 アルコキシシラ ンとチタ ンアルコキシ ド等 を原料とする ゾルーゲル法ゃシ リ 力ゾルとチタ ン塩を原 料とする共沈法によ って調製されるチタ ンとゲイ素を含 む酸化物、 ゼォライ ト ( X、 Y型、 Z S M— 5、 Z S M — 4 8 など) 系材料のアル ミ ニウ ムの一部がチタ ンで置 き換わってチタ ンがゼォライ ト格子中に組み込まれた材 料、 大きな細孔 (メ ソポア) を有する メ ソポーラス シ リ 力 ( M C M— 4 1、 M C M— 4 8、 M C M— 5 0 など) の一部をチタ ン原子で置換した材料、 チタ ンとシ リ コ ン の複合酸化物で ミ ク ロポーラスなチタ ノ シ リ カライ ト
(いわゆる T S — 1、 T S — 2 ) 等を挙げる こ とができ る o
チタ ン含有混合酸化物及びチタ ン含有複合酸化物にお けるチタ ンの含有量は、 丁 と 3 1 の原子比率 (丁 1 // S i と表わすこ とにする) に換算して、 T i / S i = 0 1 1 0 0〜 5 0 / 1 0 0 の範囲内が好ま し く、 0. 5 ノ 1 0 0 〜 2 0 Z 1 0 0 の範囲内がよ り 好ま しい。 チタ ンの含有量が T i / S i ^ O. 1 1 0 0 よ り も少ない と、 シ リ カ単独の担体を用いた場合と同様の触媒特性と な り、 炭化水素の選択酸化が全 く 起こ らないので不適切 である。
上記したチタ ン含有酸化物は、 更に、 アルカ リ 金属、 アル力 リ 土類金属、 ラ ンタ ノ ィ ド及びタ リ ゥムから選ば れた少な く と も一種の元素を含有 しても よい。 これらの 元素を含有する場合には、 触媒性能が一層向上し、 また、 触媒の寿命安定性が向上する場合もある。 アルカ リ 金属 と しては、 例えば、 L i、 N a、 K、 R b、 C s、 F r 等を用いる こ とができ、 アルカ リ 土類金属と しては、 B e、 M g、 C a、 S r、 B a、 R a 等を用いる こ とがで きる。 これらの内で、 特に、 N a、 K、 1^ 13及び 0 3 か らなるアルカ リ 金属、 並びに M g、 C a、 S r及び B a からなるアル力 リ 土類金属から選ばれた成分を用いる こ とが好ま しい。 また、 ラ ンタ ノ イ ドと しては、 L a、 C e、 S m等を用いる こ とができ る。
上記したアルカ リ金属、 アルカ リ 土類金属、 ラ ンタ ノ ィ ド及びタ リ ゥムから選ばれた少な く と も一種の元素は、 チタ ン含有酸化物中でカチオンと して存在し、 チタ ン含 有酸化物の表面に存在して もよ く、 結晶中や内部に取り 込まれていてもよい。 チタ ン含有酸化物におけるアルカ リ金属、 アルカ リ 土 類金属、 ラ ンタ ノ イ ド及びタ リ ウムから選ばれた少な く と も一種の元素の含有量は、 チタ ン含有酸化物の重量に 対して、 0. 0 0 1 〜 2 0 重量%である こ とが好ま し く、 0. 0 0 5〜 5 重量%である こ とがよ り好ま し く、 0. 0 1 〜 2 重量%である こ とが更に好ま しい。 但し、 チタ ン含有酸化物が、 M g T i 0 3、 C a T i 0 3、 B a T i 0 3等のチタ ン酸塩を含有する ものである場合には、 アル カ リ 金属、 アルカ リ 土類金属、 ラ ンタ ノ イ ド及びタ リ ゥ ムから選ばれた少な く と も一種の元素をよ り多 く 含有す る こ とができ、 チタ ン含有酸化物の重量に対して、 0. 1 〜 5 0 重量%程度の含有量である こ とが好ま しい。
上記した各種のチタ ン含有酸化物は、 触媒の活性をよ り 向上させるために、 予め成形された支持体に固定化し た状態で用いる こ と もでき る。 支持体と しては、 チタ ン を含まない金属酸化物や各種金属からなる材料を用いる こ とができ る。 具体例と しては、 アル ミ ナ (酸化アル ミ ニゥム : A 1 20 3) 、 シ リ カ (二酸化珪素 : S i 02) 、 マグネ シア (酸化マグネ シウム : M g 0 ) 、 コージエラ イ ト、 酸化ジルコニウム、 これらの複合酸化物等からな るセラ ミ ッ クス、 各種金属からなる発泡体、 各種金属か らなるハニカム担体、 各種金属のペレ ツ ト等が挙げられ る o
上記支持体と しては、 アルミ ナ及びシ リ カの少な く と も一種を含有する ものが好ま し く、 シ リ カを含有する も のが特に好ま しい。 こ こで、 「アル ミ ナおよびシ リ カを 含有する」 とは、 ゼォライ ト (アル ミ ノ シ リ ゲー ト) や シ リ 力アル ミ ナを含有する場合も含む。
上記支持体の結晶構造、 形状、 大き さ等は、 特に限定 される ものではない力、'、 比表面積が 5 0 m 2ノ g以上であ る こ とが好ま し く、 l O O m S /Z g以上である こ とがよ り 好ま しい。 支持体の比表面積が 5 0 m 2ノ g以上である場 合には、 遂次酸化等の副反応がよ り一層抑制され、 効率 的に不飽和炭化水素類を部分酸化する こ とができ、 触媒 性能がよ り一層向上する。
チタ ン含有酸化物を支持体に固定化して用いる場合に は、 チタ ン含有酸化物の量は、 支持体を基準と して 0 . 5 〜 2 0 重量%程度である こ とが好ま しい。 チタ ン含有 酸化物をシ リ 力やアル ミ ナ等の担体に担持させるには、 例えば、 アルコキシ ドを用いたゾル一ゲル法、 混練法、 コーティ ング法などの方法を適用する こ とができ、 これ らの方法によ って、 いわゆる島状構造をなすよ う に分散 させて担持させる こ とができる。
金微粒子の固定化 金微粒子は、 上記したチタ ン含有酸化物に固定化され ている こ とが必要である。 金は、 粒子径 1 0 n m (ナノ メ ータ 一) 以下の超微粒子である こ とが好ま しい。 この 様な金超微粒子が、 チタ ン含有酸化物を担体と して強固 に固定化されて、 担持されている こ とによ って、 触媒活 性が特に良好になる。
金の含有量は、 チタ ン含有酸化物に対 して、 0 . 0 0 1 重量%以上が好ま し く、 0 . 0 1 重量%〜 2 0 重量% の範囲内がよ り好ま し く、 0 . 0 5 重量%〜 1 0 重量% の範囲内がさ らに好ま しい。 金の担持量が 0 . 0 0 1 重 量%よ り少ないと触媒の活性が不足するので好ま し く な い。 一方、 金の担持量を 2 0 重量%よ り多 く して も、 金 を上記の範囲内で担持させた場合と比較して、 触媒の活 性の更なる向上が望めず、 金が無駄になるので好ま し く ない。
金微粒子をチタ ン含有酸化物に固定化する方法と して は、 チタ ン含有酸化物に金微粒子を安定に固定でき る方 法であれば、 特に限定な く 採用でき る。
金微粒子を固定化する方法の具体例と しては、 例えば、 特開平 7 - 8 7 9 7号公報に記載された金超微粒子固定 化チタ ン系金属酸化物の製造方法に準 じた析出沈殿法を 挙げる こ とができ る。 以下に、 この方法を簡単に説明す る o
( I ) 第 1 方法 :
まず、 チタ ン含有酸化物を含有する液の p Hを 7 〜 1 1、 好ま し く は 7. 5 〜 1 0 と し、 攪拌下にこの液中に 金化合物の水溶液を滴下して、 チタ ン含有酸化物上に金 水酸化物を付着させる。 次いで、 こ の金水酸化物を付着 したチタ ン含有酸化物を 1 0 0 〜 8 0 0 °Cに加熱する こ とによ り、 金超微粒子をチタ ン含有酸化物に析出させて 固定化する。
チタ ン含有酸化物の水中への添加量は、 特に限定はな く、 例えば粉体状のチタ ン含有酸化物を用いる場合には、 それを水中に均一に分散乃至縣濁でき る量であればよ く、 通常 1 0 〜 2 0 0 8ノ 1 程度が適当である。 また、 チタ ン含有酸化物を成形体と して用いる場合には、 成形体の 形状に応じて、 その表面に水溶液が充分に接触でき る状 態であれば、 添加量は、 特に限定されない。
水溶液の形態で使用する金化合物と しては、 塩化金酸 ( H A u C l 4) 、 塩化金酸ナ ト リ ウム ( N a A u C l 4) 、 シアン化金 ( A u C N ) 、 シア ン化金カ リ ウム { K 〔 A u ( C N ) 2〕 } 、 三塩化ジェチルァ ミ ン金酸 〔 ( C 2H 5 ) 2 N H · A u C 1 3 〕 などの水溶性金塩を例示でき る 滴下に用いる金化合物水溶液の濃度は、 特に限定されな いが、 通常 0 . 1 〜 0 · 0 0 1 m o 1 1 程度が適当で め る。
チタ ン含有酸化物を含む縣濁液乃至分散液を所定の p H範囲に調整するためには、 通常、 炭酸ナ ト リ ウム、 水酸化ナ ト リ ウム、 炭酸カ リ ウム、 アンモニアなどのァ ルカ リ 化合物を用いればよい。
金化合物の水溶液は、 急激な反応によ っ て金の水酸化 物の大きな沈殿が生じないよ う に、 攪拌下に上記の縣濁 液乃至分散液に対 して徐々 に滴下する こ とが好ま し く、 通常滴下量に応じて滴下時間を 3 〜 6 0 分程度の範囲内 と し、 水酸化物の大きな沈殿が生じないよ う に滴下速度 を適宜調節すればよい。
滴下時のチタ ン含有酸化物を含む液の液温は、 2 0 〜 8 0 °C程度が適当である。
金化合物の水溶液の滴下量は、 チタ ン含有酸化物上に 担持させる金超粒子の量によ っ て決定される。
金の水酸化物が付着したチタ ン含有酸化物を 1 0 0 〜 8 0 0 °Cに加熱する こ とによ っ て、 金の水酸化物が分解 されて、 チタ ン含有酸化物上に金が均一に超微粒子と し て析出 し、 強固に固定される。 加熱時間は通常 1 〜 2 4 時間程度とすればよい。
また、 上記したチタ ン含有酸化物を含有する液中に金 化合物の水溶液を滴下する方法に代えて、 金化合物を含 有する水溶液中にチタ ン含有含有酸化物を添加する方法 によ っ ても、 チタ ン含有酸化物に金の水酸化物を付着さ せる こ とができる。
こ の方法では、 通常、 金化合物を含有する水溶液を、 攪拌下に、 3 0〜 : L 0 0 ° (:、 好ま し く は 5 0 〜 9 5 °Cに 加温し、 アルカ リ 水溶液を用いて p H 6 〜 1 2、 好ま し く は 7 〜 1 0 と し、 チタ ン含有含有酸化物を一度に添加 するか或いは数分以内に徐々 に添加すればよい。 こ の際、 p H変化が生じる場合には、 アルカ リ 水溶液を用いて p Hを 6 〜 : 1 2、 好ま し く は 7 〜 : L 0 に保ちながら、 同温 度において攪拌を続ければよい。
金化合物を含有する水溶液の使用量ゃ該水溶液におけ る金化合物濃度は、 使用するチタ ン含有酸化物の量ゃチ 夕 ン含有酸化物上に担持させる金超微粒子の量によ って 決めれば良く、 特に限定的ではないが、 通常、 0. 0 0 0 1 〜 0. O l m o l Z l 程度の金化合物濃度とする こ とが適当である。
チタ ン含有酸化物は、 そのまま或いは適当な濃度で水 中に分散乃至懸濁させた状態で、 金化合物を含有する水 溶液に添加する こ とができ る。 チタ ン含有酸化物の添加 量は、 特に限定的ではな く、 例えば、 粉体状のチタ ン含 有酸化物を用いる場合には、 水中に均一に分散乃至懸濁 できる量であれば良く、 通常、 水溶液中のチタ ン含有酸 化物量と して、 1 0 〜 2 0 0 g Z l 程度が適当である。 また、 チタ ン含有酸化物を成形体と して用いる場合には、 成形体の形状に応じて、 その表面に水溶液が十分に接触 できる状態であれば、 添加量は特に限定されない。
金化合物、 チタ ン含有酸化物、 p H調整用のアルカ リ 性化合物な どは、 上記したチタ ン含有酸化物を含有する 液中に金化合物の水溶液を滴下する方法と同様の ものが 使用でき る。
この様な方法で金の水酸化物を付着させたチタ ン含有 酸化物については、 必要に応じて、 水洗な どによ り洗浄 し、 ろ過等の方法で分離した後、 上記方法と同様に して、 1 0 0 〜 8 0 0 °C程度に加熱する こ とによ って、 金超微 粒子を固定化したチタ ン含有酸化物とする こ とができ る また、 チタ ン含有酸化物に金の水酸化物を付着させる 手段と しては、 上記した 2種類の方法を組み合わせる こ と も可能であ り、 例えば、 金化合物とチタ ン含有酸化物 を同時に或いは交互に添加 して も良い。 この場合の、 各 溶液の濃度、 P H、 温度などは、 上記した 2 種類の方法 の条件内で適宜設定すればよい。 こ の様に して金の水酸 化物を付着させたチタ ン含有酸化物についても、 1 0 0 〜 8 0 0 °C程度に加熱する こ とによ って、 金超微粒子を チタ ン含有酸化物に固定化する こ とができ る。
( II) 第 2 方法 :
金化合物を溶解し、 チタ ン含有酸化物を含有する p H 7 〜 1 1 (好ま し く は p H 7. 5 〜 ; L 0 ) の水溶液に、 還元剤の水溶液を攪拌下に滴下 し、 チタ ン含有酸化物表 面に金を還元析出させて、 金の超微粒子を固定化する。
金化合物、 チタ ン含有酸化物、 p H調整用のアルカ リ 性化合物などは、 上記第 1 方法と同様の ものが使用でき る。 チタ ン含有酸化物の添加量も、 上記第 1 方法と同様 でよい。 本第 2方法では、 液中の金化合物の濃度は、 1 X I 0 — 2〜 1 x 1 0 _ 5m o 1 1 程度とする こ とが適当 である。 チタ ン含有酸化物を含有する水溶液の反応時の 液温は、 0 〜 8 0 °C程度が適当である。
還元剤と しては、 ヒ ドラ ジ ン、 ホルマ リ ン、 クェン酸 ナ ト リ ウムなどが使用でき、 その溶液と しての濃度は、 1 X 1 0 ― 1〜 1 X 1 0 — Sm o l Z l 程度である。 還元剤 水溶液の添加量は、 化学量論的に必要な量の 1. 5 〜 1 0倍程度とする こ とが適当である。 還元剤水溶液は、 反 応液中で急激な金の析出が生じないよ う に徐々 に滴下す る こ とが好ま し く、 通常、 3 〜 6 0分程度の時間をかけ て滴下すればよい。 なお、 得られた金超微粒子固定化チタ ン含有酸化物は そのま までも常温で使用できるが、 これを高温で使用す る場合には、 高温での安定性確保のために、 使用に先立 つて、 一旦使用温度付近の温度に該金超微粒子固定化チ タ ン含有酸化物を加熱してお く こ とが好ま しい。
( III) 第 3方法 :
金化合物を溶解し、 チタ ン含有酸化物を含有する p H
1 1 以上 (好ま し く は p H l 1 〜 1 2 ) の水溶液に、 二 酸化炭素ガスを吹き込むか、 或いは攪拌下に酸性水溶液 を徐々 に滴下 して、 液の p Hを 7〜 1 1 に低下させ、 チ タ ン含有酸化物の表面に金水酸化物を付着させる。 次い で、 こ のチタ ン含有酸化物を 1 0 0〜 8 0 0 °Cに加熱し て、 チタ ン含有酸化物表面に金超微粒子を析出させる。
金化合物、 チタ ン含有酸化物、 アルカ リ 性化合物の種 類及び使用量などは、 第 1 方法と同様でよい。 チタ ン含 有酸化物を含有する液の液温は、 2 0 〜 8 0 °C程度とす ればよい。
こ の方法では、 金化合物は、 水酸基が過剰に結合した 錯イオ ンと して、 チタ ン含有酸化物を含有する液中に溶 解した状態で存在する こ とが必要である。 従って、 使用 する金化合物に応じて、 p H l l 以上であ って金化合物 が水酸基含有錯イオンと して溶解する状態となるよ う に チタ ン含有酸化物の含有液の p Hを調整する。
この様な状態に調整した液中に二酸化炭素ガスを吹き 込むか、 または酸性水溶液を徐々 に滴下して、 溶液の p Hを徐々 に低下させて、 p H 7 〜 1 1 とする こ とによ り、 チタ ン含有酸化物を核と して、 金の水酸化物が析出 し、 チタ ン含有酸化物の表面に付着する。
二酸化炭素ガスの吹き込み速度は、 特に限定されず、 反応液が均一にバプリ ングされる状態であればよい。
酸性水溶液と しては、 硝酸、 塩酸、 硫酸、 酢酸などの 水溶液が使用でき、 これらの酸性水溶液は、 1 X 1 0 一 1 〜 1 X 1 0 - 3 m o 1 / 1 程度の濃度で用いればよい。 滴 下量は、 チタ ン含有酸化物を含有する液の p Hが 7 未満 にな らない範囲であればよい。 滴下速度は、 金の水酸化 物の大きな沈殿が生じないよ う に、 滴下時間 3 〜 6 0分 間程度の範囲で滴下量に応じて適宜決定すればよい。
次いで、 金の水酸化物が付着したチタ ン含有酸化物を 1 0 0 〜 8 0 0 °Cに加熱する こ とによ っ て、 付着 した金 の水酸化物が分解され、 チタ ン含有酸化物上に均一に金 超微粒子が析出 し、 強固に固定化される。 加熱時間は、 通常 1 〜 2 4 時間程度とすればよい。
なお、 上記の各方法において、 金化合物がチタ ン含有 酸化物上に充分に付着するよ う に、 滴下または吹き込み 終了後に 3 0 分〜 2 時間程度の間チタ ン含有酸化物を含 有する液の攪拌を行う こ とが好ま しい。
又、 本発明で用いる触媒は、 特開平 9 一 1 2 2 4 7 8 号公報に記載された有機金錯体の蒸気を用いる金超微粒 子固定化物質の製造方法に準じた方法で製造する こ と も でき る。 以下、 この方法について簡単に説明する。
この方法では、 気化した有機金錯体を、 チタ ン含有酸 化物に減圧下で吸着させた後、 1 0 0 〜 7 0 0 °Cに加熱 する こ とによ り金超微粒子を固定化したチタ ン含有酸化 物を得る こ とができる。
有機金錯体と しては、 揮発性を有する ものであれば特 に制限されず用いる こ とができ、 例えば ( C H 3 ) 2 A u ( C H 3 C O C H C O C H 3) 、 ( C H 3) 2 A u ( C F 3 C O C H C O C H 3) 、 ( C H 3) 2 A u ( C F 3 C O C H C O C F 3) 、 ( C 2H 5) 2 A u ( C H s C O C H C O C H 3) 、 ( C H 3) 2 A u ( C 6H 5 C O C H C O C F 3) 、 C H 3 C H 2 A u P ( C H 3) 3及び C H 3A u P ( C H 3) 3等 の少な く と も 1 種を用いる こ とができ る。
なお、 チタ ン含有酸化物は、 予め 2 0 0 °C程度で加熱 処理する こ とによ り、 表面にある水分等を除去して用い る こ と もできる。
有機金錯体の気化は、 通常 0 〜 9 0 °C程度の温度で行 う こ とができる。 加熱する場合には、 急激な気化や吸着、 分解等を起こ さないよう に加熱温度を設定する こ とが好 ま しい。 また、 上記気化は、 減圧下で行う こ と もでき、 この場合に圧力と しては通常 1 X 1 0—4〜 2 X 1 0一3 T o r r 程度とすれば良い。
気化 した有機金錯体は、 減圧下でチタ ン含有酸化物に 吸着させる。 本発明でいう 「減圧下」 とは、 大気圧よ り も低ければ良い:^、 通常 1 X 1 0— 4〜 2 0 0 T o r r 程 度の圧力が適当である。 有機金錯体の導入量は、 用いる 金錯体の種類によ り異な り、 最終的に前記 した固定化量 となる よう に適宜調節すれば良い。 また、 圧力は、 公知 の真空ポ ンプ等で調節すれば良い。
次いで、 有機金錯体が吸着したチタ ン含有酸化物を空 気中で通常 1 0 0 〜 7 0 0 °C程度、 好ま し く は 3 0 0 〜 5 0 0 °Cで加熱する。 これによ り、 有機金錯体中の有機 成分が分解 · 酸化される と と もに有機金錯体が金に還元 され、 チタ ン含有酸化物上に金超微粒子 して析出 して 固定される。 加熱時間は、 有機金錯体の担持量、 加熱温 度等に応じて適宜設定する こ とができ るが、 通常は 1 〜 2 4 時間程度で良い。 このよ う に して金微粒子を固定化 したチタ ン含有酸化物が得られる。
上記製造方法では、 有機金錯体の吸着に先立って、 通 常 1 0 0 〜 7 0 0 て程度で加熱する こ とによ り チタ ン含 有酸化物を表面処理する こ と もでき る。 さ らに、 この表 面処理は、 酸化性ガス又は還元性ガス雰囲気下で行う こ と もでき る。 これによ り、 チタ ン含有酸化物表面の欠陥 量と状態の制御がよ り容易とな り、 金の粒径及び担持量 をよ り細かく 制御する こ とができる。
酸化性ガスと しては、 公知の ものが使用でき、 例えば 酸素ガス、 一酸化窒素ガス等が挙げられる。 また、 還元 性ガスと しては、 公知のものが使用でき、 例えば水素ガ ス、 一酸化炭素ガス等が挙げられる。
以上説明 した金を析出沈殿させる方法、 及び有機金錯 体の蒸気を用いる方法によれば、 金超微粒子を比較的均 一な分布でチタ ン含有酸化物上に強固に固定化する こ と ができ る。
上記触媒を支持体に担持させて用いる場合には、 チタ ン含有酸化物を支持体に担持させた後、 金を固定化する 方法が好適である。 支持体に担持されたチタ ン含有酸化 物に金を固定化するには、 上記した金を析出沈殿させる 方法、 及び有機金錯体の蒸気を用いる方法において、 チ タ ン含有酸化物に代えて、 チタ ン含有酸化物を担持した 支持体を使用すればよい。 特に、 金を析出沈殿させる方 法によ って製造すれば、 金超微粒子は、 支持体上にはほ とんど析出せず、 チタ ン含有酸化物上 (特に、 チタ ンィ オンの存在する場所) にのみ固定化される点で有利であ る。 又、 シ リ カ単独の支持体又はシ リ カを含む支持体を 用いる場合には、 金を析出沈殿させる方法によれば、 特 に高い選択性をも ってチタ ン含有酸化物上にのみ金超微 粒子を固定化する こ とができる点で非常に有利である。 シ リ ル化処理
シ リ ル化処理は、 チタ ン含有酸化物に金微粒子を固定 化する前又は後の任意の時期に、 チタ ン含有酸化物をシ リ ル化剤と接触させる こ とによ って行う こ とができ る。 即ち、 チタ ン含有酸化物に金微粒子を固定化 した後、 シ リ ル化剤と接触させるか、 或いは、 チタ ン含有酸化物に シ リ ル化剤を接触させた後、 上記 した方法で金微粒子を 固定化すればよい。
シ リ ル化処理を行う こ とによ って、 触媒性能の劣化原 因と考え られる高沸有機物質の触媒表面への蓄積を大幅 に軽減する こ とができ、 触媒性能の経時的な低下を緩和 でき るだけでな く、 反応温度、 反応圧力等の反応条件に 応じた触媒本来の性能を有効に引き出すこ とが可能とな る o
シ リ ル化剤と しては、 有機シラ ン、 有機シ リ ルァ ミ ン- 有機シラザン、 その他のシ リ ル化剤等を用いる こ とがで き る。 有機シ ラ ンの具体例 と しては、 ク ロ ロ ト リ メ チル シ ラ ン、 ジ ク ロ ロ ジ メ チノレシ ラ ン、 ク ロ ロ ブ ロ ム ジメ チ ゾレシ ラ ン、 ニ ト ロ ト リ メ チノレシ ラ ン、 ク ロ ロ ト リ エチノレ シ ラ ン、 ク ロ ロ ジ メ チゾレフ エ ニノレシ ラ ン、 ジメ チゾレプロ ピノレク ロ ロ シ ラ ン、 ジ メ チノレオ ク チノレク ロ ロ シ ラ ン、 ト リ ブチノレ ク ロ ロ シ ラ ン、 ジ メ ト キ シ メ チノレ ク ロ ロ シ ラ ン、 メ ト キ シ ト リ メ チノレシ ラ ン、 ジ メ ト キ シ ジ メ チルシ ラ ン、 メ チル ト リ メ ト キ シ シ ラ ン、 ジ メ ト キ シ ジ フ ヱ 二ルシ ラ ン、 ト リ メ ト キ シ フ エ ニノレシ ラ ン、 エ ト キ シ ト リ メ チル シラ ン、 ェチノレ ト リ メ ト キ シ シ ラ ン、 ジエ ト キ シ ジ メ チ ノレシ ラ ン、 ジェ ト キ シ ジェチノレ シ ラ ン、 ェチル ト リ エ ト キ シ シ ラ ン、 ト リ メ チルイ ソ プロ ボキ シ シ ラ ン、 メ ト キ シ ト リ プロ ピノレシ ラ ン、 ブチノレ ト リ メ ト キ シ シ ラ ン、 ォ ク チル ト リ メ ト キ シ シ ラ ン、 ァセ ト キ シ ト リ メ チノレシ ラ ン等を挙げる こ とができ る。 有機シ リ ルァ ミ ンの具体例 と して は、 ジ メ チルア ミ ノ ト リ メ チノレシ ラ ン、 ジェチル ァ ミ ノ ト リ メ チノレシ ラ ン、 N — ト リ メ チノレ シ リ ノレジ メ チ ルァ ミ ン、 ビス ( ジ メ チノレア ミ ノ ) ジメ チルシ ラ ン、 メ チノレシ ラ ト ラ ン、 N— ト リ メ チノレシ リ ルィ ミ ダゾ一ル、 N— ト リ メ チノレシ リ ノレ ピ ロ リ ジ ン等を挙げ る こ とができ る。 有機シ ラ ザ ンの具体例 と しては、 へキサメ チルジ シ ラ ザ ン、 ヘプタ メ チルジ シ ラ ザ ン、 1, 1 , 3 , 3 —テ ト ラ メ チノレジ シ ラザン、 1, 3 — ジフ ヱ ニルテ ト ラ メ チ ノレジ シラザ ン等を挙げる こ とができ る。 その他の シ リ ル 化剤の具体例 と しては、 テ ト ラ メ ト キシ シ ラ ン、 テ ト ラ エ ト キ シ シ ラ ン、 3 — ァ ミ ノ プロ ビル ト リ メ トキシ シラ ン、 3 — シァ ノ プロ ピル ト リ ク ロ ロ シ ラ ン、 2 — シァ ノ ェチル ト リ メ ト キシ シラ ン、 メ ルカプ ト メ チノレ ト リ メ ト キシ シ ラ ン、 ジメ ト キシ 一 3 — メ ノレカプ ト プロ ピルメ チ ルシラ ン、 3 — メ ノレカプ ト プロ ビル ト リ メ ト キシ シラ ン、 3, 3 , 4, 4, 5, 5, 6, 6, 6 — ノ ナフルォ口へ キシゾレ ト リ ク ロ ロ シラ ン、 ト リ メ チノレシ リ ノレ ト リ フゾレオ ロ メ タ ンスルホナ一 ト、 N, 0 — ピス ト リ メ チルシ リ ル ァセ ト ア ミ ド、 N — ト リ メ チノレシ リ ノレアセ ト ア ミ ド、 N, ' - ビス ト リ メ チルシ リ ル尿素等を挙げる こ とができ る。 こ れ らの シ リ ル化剤は、 一種単独又は二種以上混合 して用いる こ とができ る。
シ リ ル化剤は、 液体又は気体のいずれの状態でも良 く、 接触時の温度は、 4 5 0 °C以下とする こ とが好ま しい。 例えば、 上記 したチタ ン含有酸化物と液状 シ リ ル化剤 と を混合 し加熱する方法、 チタ ン含有酸化物を適切な温度 に加熱 した状態に しておいて、 シ リ ル化剤の蒸気を接触 させる方法等によ っ てシ リ ル化処理を行 う こ とができ る。 液状の シ リ ル化剤は、 それ自体で液体の も のを用いる他、 適当な溶剤にシ リ ル化剤を溶解したものを用いても良い。 この場合、 溶剤と しては、 アルコール類、 ケ ト ン類、 ェ 一テル類、 エステル類、 炭化水素類等を用いる こ とがで き、 具体例と しては、 メ タ ノ ール、 2 —プロパノ ール、 アセ ト ン、 メ チノレエチノレケ ト ン、 ジイ ソプロ ピルェ一テ ル、 テ ト ラ ヒ ドロ フ ラ ン、 酢酸ェチル、 酢酸ブチル、 ト ルェン、 キシ レ ン等を挙げる こ とができ る。 溶液中のシ リ ル化剤濃度は、 0 . 0 1 〜 1 モル 1 程度とする こ と が好ま しい。 シ リ ル化処理は、 回分法、 半回分法、 連続 法のいずれによっても実施でき る。
シ リ ル化処理の温度は、 一 2 0 〜 4 5 0 °Cの範囲が好 ま し く、 — 1 0〜 4 2 0 °Cの範囲がよ り好ま し く、 0 〜 4 0 0 °Cの範囲が更に好ま しい。 処理温度が 4 5 0 °Cを 上回る と、 触媒反応性能及び経時劣化性能を改善する効 果が十分には発揮されないので好ま し く ない。 シ リ ル化 処理に要する時間は、 使用する シ リ ル化剤、 処理温度等 の条件によ って一定ではないが、 0〜 4 0 0 °C程度の処 理温度では、 通常、 0 . 1 秒〜 2 時間程度の処理時間が 適当である。
シ リ ル化剤の使用量は、 広い範囲で変更 し得るが、 通 常、 チタ ン含有酸化物 1 0 0 重量部に対して、 0 . 0 1 〜 1 0 0 重量部程度、 好ま し く は 0 . 1 〜 1 0 重量部程 度の使用量が適当である。
尚、 シ リ ル化処理の程度が少なすぎる と、 触媒性能の 改善効果が十分ではな く、 一方、 過度にシ リ ル化処理を 行う と、 シ リ ル基によ って触媒表面が覆われて しまい活 性が低 く なるので、 使用する触媒の種類や反応条件に応 じて、 上記した処理条件から適度な条件を適宜選択する こ とが必要である。
有機シ リ ル化剤を用いてシ リ ル化する方法によれば、 シ リ ル化剤が触媒表面のシラ ノ 一ル基等の 0 H基と反応 する こ とで有機シ リ ル化がなされる。 この際に、 O H基 が減少するので、 本来の触媒の持つ酸塩基性が変化する。 特に、 強酸点が減少する。 これによ り、 寿命安定性や水 素利用効率等が更に改善される ものと考え られる。
有機シ リ ル化は、 赤外分光分析等の光学的手段によ つ て定性分析が可能であ り、 例えば、 金一チタ二アー シ リ 力系触媒では、 有機シ リ ル化が進むほど 2 9 7 0 c m " 1 付近に C H振動に基づく ピークが増加 し、 3 7 5 0 c m 一 1付近の 0 H振動に基づく ピークの減少が観察される。
尚、 上記シ リ ル化処理に先立って、 処理される金及び チタ ン含有酸化物に水和処理を施すこ とが、 シ リ ル化処 理の効率 (シ リ ル化度) を高める上で効果的な場合があ る。 水和処理は、 シ リ ル化前に触媒を水と接触させて加 熱する方法、 触媒を 1 5 0 〜 4 5 0 °C程度の温度範西で 0. 1 〜 2 時間程度水蒸気と接触させる方法等によ って 行う こ とができる。
疎水化処理
疎水化処理は、 チタ ン含有酸化物に金微粒子が固定化 された触媒の吸水率を低下させる処理である。
本発明では、 疎水化処理される前の触媒の吸水率と疎 水化処理された後の触媒の吸水率との比を用いて、 次式 に示す疎水化度によ り疎水性を評価 した場合に、 疎水化 度が 1 0〜 9 8 %、 好ま し く は 2 0 〜 9 5 %、 よ り好ま し く は 3 0〜 9 0 %である こ とが望ま しい。 尚、 吸水率 の測定には、 通常行われる方法が適用でき、 J I S規格 シ リ 力ゲル試験法等の規格化された吸水率測定法や熱重 量分析法 ( T G ) 、 昇温脱離法 ( T P D ) 等を使用でき る。
疎水化度 (W p ) ( % ) = 1 0 0 ( A 0 - A r ) / A o
A o : 疎水化処理前の吸水率
A r : 疎水化処理後の吸水率
吸水率 ( A ) ( % ) = 1 0 0 (W。― W) ZW
W : 乾燥試料の質量 ( g )
W。 : 吸水試料の質量 ( g )
本発明では、 疎水化処理は、 例えば、 下記の 2種類の 方法によ って行う こ とができる。
( 1 ) 第一の方法は、 疎水化剤を用いて疎水化処理する 方法である。
疎水化剤と しては、 特に限定的ではないが、 例えば、 有機フ ッ素化剤等を用いる こ とができ る。 有機フ ッ素化 剤と しては、 例えば、 ポ リ テ ト ラ フルォロエチレ ン、 ポ リ ビニ リ デンフルオラィ ド等の含フ ッ素系高分子化合物、 ト リ フ ノレオ ロ メ チノレアル コ ー ル、 ト リ フ ノレオ 口酢酸、 ト リ フ ノレオロメ チルエチレ ンォキシ ド等の含フ ッ素化合物 等を例示でき る。
また、 前述したシ リ ル化処理によ って も、 シ リ ル化前 と比べてシ リ ル化後の吸水率が低下する場合があ り、 こ の場合には、 シ リ ル化剤が疎水化剤と して も作用する こ とになる。
疎水化剤は、 一種単独又は二種以上混合 して用いる こ とが.できる。
疎水化処理の時期は、 チタ ン含有酸化物に金微粒子を 固定化する前又は後の任意の時期でよい。 即ち、 チタ ン 含有酸化物に金微粒子を固定化した後、 疎水化剤と接触 させる こ とによ って疎水化処理を行う 力、、 或いは、 チタ ン含有酸化物に疎水化剤を接触させて疎水化処理を行つ た後、 上記した方法で金微粒子を固定化すればよい。 疎水化処理を行う こ とによ って、 触媒性能の劣化原因 と考え られる高沸有機物質の触媒表面への蓄積を大幅に 軽減する こ とができ、 触媒性能の経時的な低下を緩和で き るだけでな く、 反応温度、 反応圧力等の反応条件に応 じた触媒本来の性能を有効に引き出すこ とが可能となる。
疎水化剤は、 液体又は気体のいずれの状態でも良く、 接触時の温度は、 4 5 0 °C以下とする こ とが好ま しい。 例えば、 上記したチタ ン含有酸化物と液状疎水化剤とを 混合し加熱する方法、 チタ ン含有酸化物を適切な温度に 加熱した状態に しておいて、 疎水化剤の蒸気を接触させ る方法等によ って疎水化処理を行う こ とができる。 液状 の疎水化剤は、 それ自体で液体のものを用いる他、 適当 な溶剤に疎水化剤を溶解したものを用いて も良い。 こ の 場合、 溶剤と しては、 アルコール類、 ケ ト ン類、 エーテ ル類、 エステル類、 炭化水素類等を用いる こ とができ、 具体例と しては、 メ タノ ール、 2 —プロノ、。ノ ール、 ァセ ト ン、 メ チルェチルケ ト ン、 ジイ ソプロ ピルエーテル、 テ ト ラ ヒ ドロ フ ラ ン、 酢酸ェチル、 酢酸ブチル、 トルェ ン、 キシ レ ン等を挙げる こ とができる。 溶液中の疎水化 剤濃度は、 0 . 0 1 〜 1 モル/ / 1 程度とする こ とが好ま しい。 疎水化処理は、 回分法、 半回分法、 連続法のいず れによ っても実施できる。 疎水化処理の温度は、 一 2 0 〜 4 5 0 °Cの範囲が好ま し く、 — 1 0 〜 4 2 0 °Cの範囲がよ り好ま し く、 0 〜 4 0 0 °Cの範囲が更に好ま しい。 処理温度が 4 5 0 °Cを上 回る と、 触媒反応性能及び経時劣化性能を改善する効果 が十分には発揮されないので好ま し く ない。 疎水化処理 に要する時間は、 使用する疎水化剤、 処理温度等の条件 によ っ て一定ではないが、 0 〜 4 0 0 °C程度の処理温度 では、 通常、 0. 1 秒〜 2 時間程度の処理時間が適当で ある。
疎水化剤の使用量は、 広い範囲で変更し得るが、 通常、 チタ ン含有酸化物 1 0 0 重量部に対して、 0. 0 1 〜 1 0 0 重量部程度、 好ま し く は 0. 1 〜 1 0 重量部程度の 使用量が適当である。
尚、 疎水化処理の程度が少なすぎる と、 触媒性能の改 善効果が十分ではな く、 一方、 過度に疎水化処理を行う と、 疎水化によって触媒表面が覆われて しまい活性が低 く なるので、 使用する触媒の種類や反応条件に応じて、 上記した処理条件から適度な条件を適宜選択する こ とが 必要である。
有機フ ッ素化剤で処理する疎水化方法によれば、 これ ら試剤が触媒表面のシラノ ール基等の O H基と反応する こ とで有機フ ッ素化等がなされる場合がある。 この場合 には、 同時にそれら O H基の減少を伴う ので、 本来の触 媒の持つ酸塩基性が変化する。 特に、 強酸点が減少する という 付加的効果がある。 これによ り、 寿命安定性や水 素利用効率等が更に改善される こ とがある。
尚、 上記疎水化処理に先立っ て、 処理される金及びチ タ ン含有酸化物に水和処理を施すこ と力 疎水化処理の 効率 (疎水化度) を高める上で効果的な場合がある。 水 和処理は、 疎水化前に触媒を水と接触させて加熱する方 法、 触媒を 1 5 0 〜 4 5 0 °C程度の温度範囲で 0 . 1 〜 2 時間程度水蒸気と接触させる方法等によ つて行う こ と ができ る。
( 2 ) 第二の方法は、 疎水性物質の表面に、 金微粒子お よびチタ ン含有酸化物を固定化する方法、 疎水性物質を 金微粒子およびチタ ン含有酸化物と物理的に混合する方 法等である。 疎水性物質と しては、 特に限定はないが、 上記 した疎水化度を正とする こ とができる ものを使用で き る。 例えば、 含フ ッ素系高分子、 炭化水素系高分子、 活性炭、 疎水性シ リ カ、 高シ リ カ含有ゼォライ ト等を用 いる こ とができる。
含フ ッ素系高分子と しては、 多孔質テフ ロ ン (ポ リ テ ト ラ フノレォ ロエチ レ ン) やポ リ ビニ リ デ ン フノレオラ イ ド 等に代表される様な含フ ッ素系炭化水素からなる高分子 を用いる こ とができる。 炭化水素系高分子と しては、 スチ レ ン — ジ ビニルベンゼン共重合体ゃポ リ プロ ピレ ン 等を用いる こ とができ る。 疎水性シ リ カ と しては、 日本 ァエロ ジル (株) の疎水性シ リ カ AEROS I L R 812 等の市 販品を用いる こ とができる。 高シ リ カ含有ゼォライ ト と しては、 MF I構造のシ リ カライ トや M C M— 4 1 等、 S i と A 1 を含有するゼォライ トを酸処理して A 1 量を減少 させた もの等を使用でき る。
疎水性物質の表面に、 金微粒子及びチタ ン含有酸化物 を固定化する方法については、 特に、 限定はされないが、 疎水性物質の表面にチタ ン含有酸化物を固定化し、 更に、 金微粒子を固定化する方法、 予め金微粒子をチタ ン含有 酸化物に固定化し、 これを更に疎水性物質の表面に固定 化する方法などを適用でき る。 こ こ でいう 固定化とは、 化学的に強く 結合 した状態だけでな く、 機械的又は物理 的に弱 く 相互作用 した状態も含むものとする。
また、 疎水性物質を金及びチタ ン含有酸化物と物理的 に混合する方法については、 特に限定されないが、 疎水 性物質と金及びチタ ン含有酸化物とを混鍊する方法、 予 め疎水性物質とチタ ン含有酸化物とを混鍊 したものに金 を固定化する方法などを適用でき る。
例えば、 粉末状のチタ ン含有酸化物をアルコール等の 有機溶剤を用いてペース ト化したものを粒状の多孔質テ フ ロ ン に練り込んだ後、 成形 し、 金微粒子を固定化する 方法、 粉体状の疎水性シ リ カ と、 金微粒子が固定化され た粉体状のチタ ン含有酸化物とをアルコール等の有機溶 剤を用いて混鍊して成形する方法等を適用でき る。
この第二の方法で用いる疎水性物質の使用量は、 最終 的に調製された触媒の重量に対 して、 1 〜 9 9 . 9 重量 %程度、 好ま し く は 5 〜 9 9 . 5 重量%程度、 よ り好ま し く は 1 0 〜 9 9 重量%程度とすればよい。 不飽和炭化水素の部分酸化方法
上記した本発明の触媒を用いて、 不飽和炭化水素を部 分酸化させてエポキシ ドを製造する方法について以下に 説明する。
原料とする炭化水素と しては、 炭素数 2 〜 1 2程度の 不飽和炭化水素を用いる こ とができる。 また、 気相で反 応を行なう場合には、 生成物が 1 0 0 °C前後の低温にお いて も容易に触媒層から脱離しう る炭素数が 6程度まで の ものが、 原料と して適している。 不飽和炭化水素と し ては、 具体的には、 2 重結合を有する化合物、 例えば、 エチ レ ン、 プロ ピ レ ン、 1 —ブテ ン、 2 —ブテ ン、 イ ソ ブテ ン、 1 —ペンテ ン、 2 —ペンテ ン、 2 — メ チルー 1 ー ブテ ン、 3 — メ チル 一 1 — ブテ ン、 シ ク ロ ペ ンテ ン、 1 —へキセ ン、 2 — へキセ ン、 3 — へキセ ン、 2 — メ チ ル一 1 一 ペ ンテ ン、 3 — メ チル一 1 —ペ ンテ ン、 シ ク ロ へキセ ン、 1 — メ チノレー 1 ー シ ク ロ ペ ンテ ン、 3 — メ チ ノレ一 1 — シ ク ペ ンテ ン、 4 ー メ チノレー 1 — ペ ンテ ンな ど を举げる こ とができ る。
これ らの不飽和炭化水素を原料とする こ とによ って、 高い選択性でエポキシ ドを製造でき る。
上記 した本発明触媒の使用量は、 特に限定される もの ではないが、 実用的には、 気相反応を行う場合には、 空 間速度 ( S V ) が 1 0 0 〜 1 0 0 0 0 h r — i ' m l Z g • c a t 程度の範囲内となる量とする こ とが適している c 本発明では、 水素の存在が必須である。 仮に水素が存 在しない状態、 即ち、 酸素、 不飽和炭化水素そ して場合 によ り希釈ガスか らなる混合ガスを上記触媒の存在下に 反応させる場合には、 2 0 0 °C以上で反応が起こ り は じ める ものの、 二酸化炭素の生成が主に認め られるのみで, 部分酸化生成物の生成は、 全 く 認められない。 しかるに- 水素を反応系内に存在させる と、 反応の様相は一変し、 5 0 °C程度の低温においてでさえ、 部分酸化生成物の生 成が認められるよ う になる。 水素の存在量は、 特に限定 される ものではないが、 通常、 水素/原料の体積比で、 1 / 1 0 〜 1 0 0 Z 1 程度の範囲内で実用的であるが、 一般に水素の割合が大きい程反応速度が上昇するので、 この範囲内で高めの値を採用する こ とが好ま しい。
酸素の存在量は、 特に限定される ものではないが、 通 常、 酸素 原料の体積比で、 1 ノ 1 0 〜 1 0 ノ 1 程度の 範囲が適当である。 この範囲よ り 酸素の存在量が少ない と、 得られる部分酸化生成物の量が少な く なるので好ま し く な く、 一方、 この範囲よ り酸素の存在量を多 く して も、 得られる部分酸化生成物の量は増加せず、 かえ って、 部分酸化生成物の選択率の低下 (二酸化炭素の生成量の 増加) を生じるので好ま し く ない。
本発明における反応温度は、 通常 0 〜 3 5 0 °C程度、 好ま し く は 2 0 〜 2 8 0 °C程度の範囲が適 している。 気 相で反応を行なう場合には、 触媒層からの生成物の脱離 が容易に行われる様に、 採用する反応圧 (通常 0 . 0 1 〜 1 M P a程度) 下で生成物が十分に揮発性を示す温度 を選ぶ必要がある。 一方、 反応温度をあま り 高温にする と、 二酸化炭素への燃焼反応が起こ り易 く なる と同時に- 水素の水への酸化による消費が増大するため、 好ま し く ない。 従って、 用いる原料によ り、 最適反応温度が異な る ものの、 好適な反応温度は、 ほぼ 2 0 〜 2 8 0 °Cの範 囲に入る と思われる。 気相反応は、 本発明触媒を充填 した反応装置に炭化水 素、 水素、 酸素および必要な らば希釈ガス (例えば、 窒 素、 アルゴン、 ヘ リ ウム、 二酸化炭素な ど) を含む混合 ガスを供給 し、 所定の反応条件で反応させればよい。
本発明における反応を液相で行なう場合には、 上記の 様な触媒層からの脱離を考慮する必要がないので、 多 く の場合 1 0 0 °c以下で行な う こ とができ る。 また、 液相 で反応を行う場合には、 原料が液体状態を保持でき る よ うな反応圧と反応温度を選ぶか、 或いは溶媒 (例えば、 ベンゼ ンなどの炭化水素系溶媒、 塩化メ チ レンなどのハ ロゲン化炭化水素系溶媒など) を用いて、 魅濁した触媒 の存在下に原料、 水素、 酸素、 場合によ っ ては希釈ガス の混合ガスをバブ リ ングさせる こ とによ り反応を行な う こ とができ る。
本発明触媒は、 酸素及び水素の存在下に、 不飽和炭化 水素類を部分酸化 してエポキシ ドを生成する反応に対 し て、 反応温度、 反応圧力等の反応条件に応じて優れた触 媒性能を発揮でき る。 しかも、 経時的な活性の低下が少 な く、 高選択率、 高活性という 優れた触媒性能を長期間 安定に維持できる。
発明 実施するための最良の形態 以下に、 実施例を挙げて、 本発明を更に詳細に説明す る。
実施例 1
市販のシ リ カ粉体 (日本ァエロ ジル製、 AER0ZIL 200、 比表面積 2 1 2 m 2 Z g ) 1 0 gを、 内径 2 O m mの反応 管に充填し、 シ リ カ層温度を 8 0 °Cに保ちながら、 チタ ンテ ト ラブ トキシ ド蒸気を約 1 V o 1 %含有する H e ガ スを流量 5 0 0 0 m 1 /時間にて約 2 時間接触させ、 チ タ ン化合物をシ リ カ表面に固定 した後、 こ の粉体を 6 0 0 °Cで 3 時間焼成 した。 得られた粉体を市販のシ リ 力ゾ ル ( 日産化学製、 スノ ーテ ッ ク ス N, S i 02を 2 0 重量 %含有) 2 O g及び水 2 0 0 g と混合し、 加熱して水分 を減少させてペース ト状と した後、 1 2 0 °Cで 1 2 時間 乾燥し、 6 0 0 °Cにて 3 時間焼成する こ とによ り、 チタ ン · ゲイ素複合酸化物であるチタ二アー シ リ カを得た。
次に、 塩化金酸 ( H A u C 1 4) 0. 3 4 g を含む水溶 液 4 0 0 m 1 を 7 0 °Cに加熱し、 水酸化ナ ト リ ウム水溶 液を用いて p H 9. 2 に調節した。 その後、 この水溶液 を攪拌 しながら、 1 0 〜 2 0 メ ッ シュに粉砕 した上記の チタニア— シ リ カ 1 0 gを投入 し、 7 0 °Cで 3 0分間攪 拌した。 その後、 この固形物を含む水溶液から上澄みを 除去し、 得られた固形物を 5 0 0 m l の水で 3 回水洗し た後、 濾過した。 その後、 1 2 0 °Cで 1 2 時間乾燥させ た後、 空気中、 4 0 0 °Cで 3 時間焼成する こ とによって、 金超微粒子が担持されたチタ ン含有酸化物触媒を得た。
得られた触媒は、 粒径 1 〜 3 n mに極大分布を持ち、 金超微粒子が 0. 0 5 重量%、 丁 1 が 1¾ 0 2と して 0. 8 重量%、 及び N a が 0. 1 4 重量%担持された、 金一 チタニア— シ リ カ触媒であ っ た。 この触媒を触媒 Aとす 次いで、 得られた金—チタニア— シ リ カ触媒 A 2 c c を、 内径 1 0 m mの反応管に充填 し、 触媒層温度を 2 0 0 °Cに保ちながら、 メ トキシ ト リ メ チルシラ ン蒸気を約 1 0 V o 1 %含有する H e ガスを流量 5 0 0 0 m l Z時 間にて、 約 1 0分間接触させ、 シ リ ル化処理を行った。 シ リ ル化処理によ って 2. 6 重量%の増量が認められた。 こ のシ リ ル化処理後の触媒を触媒 B とする。
得られた触媒 B について、 吸水率を次の方法で求めた。 即ち、 触媒 B 2 g を空気中 1 Ί 0 °Cで 2 時間乾燥した後、 乾燥質量を測定し、 次いでデシケ一夕一中で放冷後、 相 対湿度約 4 0 %、 約 2 5 °Cの条件下で、 4 8 時間放置し た後、 吸水質量を測定した。 そ して、 吸水率 ( A ) を上 記式によ り求めたとこ ろ、 0. 5 %であっ た
次いで、 触媒 Bを用いて、 t r a n s — 2 —ブテ ンの エポキシ化反応を行った。 即ち、 触媒 Bを 2 c c 充填し た触媒層を 2 1 0 °Cに加熱し、 水素 Z酸素 Z t r a n s — 2 — ブテ ン アルゴン = 2 0 / 2 0 / 2 0 / 4 0 の体 積比の混合ガスを 5 0 0 0 m 1 時間の流量で流通し、 出口ガスを分析する こ とによ って、 t r a n s — 2 —ブ テンから 2, 3 —エポキシブタ ンへの収率の経時変化を 調べた。 その結果を表 1 に示す。
比較例 1
実施例 1 で得たシ リ ル化処理前の触媒 Aを用いて、 実 施例 1 と同様に して、 t r a n s — 2 —ブテンのェポキ シ化反応を行った。 結果を表 1 に示す。
尚、 触媒 Aについて、 実施例 1 と同様に して吸水率を 求めたところ、 1. 2 %であっ た。
表 1
Figure imgf000043_0001
実施例 2
チタニウム ビスア ンモニゥムラ クテ一 ト ジ ヒ ドロキシ ドの 5 0 重量%水溶液 ( aldrich社製) 7. 4 gを含む水 4 0 0 m 1 中に、 市販のシ リ カ (富士シ リ シァ化学 (株) 製、 キ ャ リ ア タ ト Q — 1 5、 1 0〜 2 0 メ ッ シュ、 比表 面積 1 9 6 m 2 Z g ) 1 0 0 gを入れて、 約 1 0分間浸漬 した後、 水を減圧下で留去した ものを 1 2 0 °Cにて 1 2 時間乾燥し、 さ らに、 9 0 0 °Cにて 3 時間焼成して、 チ タ ン · ゲイ素複合酸化物 (チタ二アー シ リ カ) を得た。
次に、 塩化金酸 ( H A u C l 4 ) 0. 3 4 gを含む水 溶液 9 0 0 m 1 を 7 0 °Cに加熱 し、 水酸化ナ ト リ ウム水 溶液を用いて P H 9. 5 に調節 した。 その後、 この水溶 液を攪拌 しながら、 上記のチタニア— シ リ カ 2 0 gを投 入し、 6 5 °Cで 3 0分間攪拌した。 その後、 この固形物 を含む水溶液から上澄みを除去し、 得られた固形物を、 1 0 0 0 m 1 の水で 3 回水洗した後、 濾過した。 その後、 炭酸セ シウ ム 0. 9 9 gを含む水溶液 2 0 0 m l に、 上 記固形物を投入 し、 水を減圧下に留去 した。 次いで、 1 2 0 °Cで 1 2 時間乾燥させた後、 空気中、 4 0 0 °Cで 3 時間焼成する こ とによ っ て、 金超微粒子が担持されたチ タ ン含有酸化物触媒を得た。
得られた触媒は、 粒径 1 〜 3 n mに極大分布を持ち、 金超微粒子が 0. 1 重量%、 T i 力 T i 0 2と して 1. 0 重量%、 N a が 0. 0 9 重量%及び C s が 0. 4 重量% 担持された、 金ーチタニア — シ リ カ触媒であ っ た。 こ の 触媒を触媒 C とする。
次いで、 得られた金—チタ二アー シ リ カ触媒 C 1 0 c c、 1 , 1, 1, 3, 3, 3 —へキサメ チノレジシラザン l g、 及び トルエン 5 0 c c を混合し、 加圧下 1 5 0。C で 1 時間加熱攪拌 した。 濾過後、 トルエンで洗浄し、 1 0 0 °C、 1 0 m m H g にて真空乾燥した。 シ リ ル化処理 によ っ て 3. 6 重量%の増量が認められた。 この様に し てシ リ ル化された触媒を触媒 D とする。
得られた触媒 D 2 c c を内径 1 0 m mの反応管に充填 し、 触媒層温度を 1 8 5 °Cと して、 水素ノ酸素ノプロ ピ レ ン アルゴン = 2 0 / 2 0 / 8 / 5 2 の体積比の混合 ガスを 5 0 0 0 m l ノ時間の流量で流通 し、 出口ガスを 分析する こ とによ って、 プロ ピ レ ンからプロ ピレ ンォキ シ ドへの収率の経時変化を調べた。 その結果を表 2 に示 す o
尚、 触媒 D について、 実施例 1 と同様に して吸水率を 求めたと こ ろ、 0. 4 %であっ た。
比較例 2
実施例 2 で得たシ リ ル化処理前の触媒 C を用いて、 実 施例 2 と同様に して、 プロ ピレ ンからプロ ピレ ンォキシ ドへのエポキシ化反応を行った。 結果を表 2 に示す。 尚、 触媒 C について、 実施例 1 と同様に して吸水率を 求めた と こ ろ、 7 %であ つ た <
表 2
Figure imgf000046_0001
以上の結果か ら明 らかな通 り、 本発明触媒は、 不飽和 炭化水素類の部分酸化反応に対 して、 長期間安定に作用 する こ とが判る。
実施例 3
テ ト ラ イ ソ プロ ピルチタ ナー ト 3. 6 g と ァセチルァ セ ト ン 5. 0 g を 3 0 0 m 1 の メ チルアルコ ールに溶解 した溶液中に、 市販の シ リ カ (富士シ リ シァ化学 (株) 製、 キ ャ リ ア ク ト Q — 1 0、 1 0〜 2 0 メ ッ シュ、 比表 面積 S S G n^Z g ) 2 0 0 g を入れて、 1 0 分間浸漬 し た後、 メ チルアルコ ールを減圧下に留去 した。 次いで、 これを 1 2 0 °Cにて 1 2 時間乾燥 し、 さ ら に、 9 0 0 °C にて 3 時間焼成 して、 チタ ン · ゲイ素複合酸化物 (チタ 二ア ー シ リ カ ) を得た。 次いで、 塩化金酸 ( H A u C 1 4 ) 0. 3 4 gを含む水 溶液 9 0 0 m 1 を 7 0 °Cに加熱し、 水酸化カ リ ウム水溶 液を用いて p H 9. 5 に調節した。 その後、 この水溶液 を攪拌 しながら、 上記のチタ二アー シ リ カ 2 0 gを投入 し、 7 0 °Cで 3 0 分間攪拌した。 その後、 こ の固形物を 含む水溶液から上澄みを除去し、 得られた固形物を、 1 0 0 0 m 1 の水で 3 回水洗した後、 濾過した。 その後、 1 2 0 °Cで 1 2 時間乾燥させた後、 空気中、 4 0 0 °Cで 3 時間焼成する こ とによっ て、 金超微粒子が担持された チタ ン含有酸化物触媒を得た。 得られた触媒は、 粒径 1 〜 3 n mに極大分布を持ち、 金超微粒子が 0. 0 4 重量 %、 T i が T i 0 2と して 0. 5 重量%、 及び Kが 0. 1 8 重量%担持された、 金—チタ二アー シ リ カ触媒であつ た。 こ の触媒を触媒 E とする。
次いで、 得られた金—チタ二アー シ リ カ触媒 E 2 c c を、 内径 1 0 m mのステ ン レス製反応管に充填 し、 触媒 層温度を 2 0 0 °Cに保ちながら、 メ トキシ ト リ メ チルシ ラ ン蒸気を約 1 0 V o 1 %含有する H e ガスを流量 5 0 0 0 m 1 ノ時間にて、 約 1 0分間接触させ、 シ リ ル化処 理を行った。 シ リ ル化処理によ っ て 2. 3 重量%の増量 が認め られた。 シ リ ル化処理後の触媒を触媒 F という。
得られた触媒 F を用いて、 プロ ピレ ンからプロ ピレ ン ォキシ ドへのエポキシ化反応を行った。 即ち、 触媒 Fを
2 c c 充填 した触媒層を、 表 3 に示す反応温度に加熱し、 表 3 に示す加圧条件と して、 水素 酸素 プロ ピレ ン アルゴン = 2 0 / 2 0 / 2 0 / 4 0 の体積比の混合ガス を 5 0 0 0 m l Z時間の流量で流通し、 出口ガスを分析 する こ とによ って、 プロ ピレンからプロ ピレ ンォキシ ド への収率及び水素転化率の経時変化を調べた。 その結果 を表 3 に不す。
尚、 触媒 F について、 実施例 1 と同様に して吸水率を 求めたと こ ろ、 0 . 7 %であ っ た。
比較例 3
実施例 3 で得たシ リ ル化処理前の触媒 E を用いて、 実 施例 3 と同様に して、 プロ ピレ ン力、らプロ ピレ ンォキシ ドへのエポキシ化反応を行った。 結果を表 3 に示す。
尚、 触媒 E について、 実施例 1 と同様に して吸水率を 求めたと こ ろ、 1 . 4 %であっ た。
3
実施例 3 比較例 3
触媒 F 触媒 E
i5U'し、闕 口 ん、 ノ JUtti宋 1干 プロピレン 水素 プロピレン マレ率 ォキシド 転化率 ォキシド 早 S1L>申 fopヽ
問 し 収率 収率
f B¾簡、 (%) (%) (%) (%)
2 190 常圧 2 6 1 0. 3 2. 8 9. 2
4 200 常圧 3 0 1 3. 2 3. 2 1 2. 3
6 21 0 常圧 3 8 16. 4 2 9 14. 1
8 21 0 0. IMPa加圧 5 0 22. 2 3 4 20. 1
1 0 21 0 0.2MPa加圧 5 . 5 24. 6 3 . 1 22. 7 以上の結果から明 らかな通り、 本発明触媒は、 長期間 連続使用 した場合にも、 反応条件に応じて優れた触媒性 能を有効に発揮できる。 一方、 比較例 3 で用いた触媒 E は、 長期間連続使用する と触媒性能が低下 し、 反応条件 を変化させた場合に、 反応条件に応じた触媒性能を有効 に発揮できない。
実施例 4
実施例 3 の触媒 E について、 チタ ンイ ソプロ ピルチタ ナー トの量を 7. 2 g、 チタ ン 一 シ リ カの焼成温度を 6 0 0 °Cと したこ と以外は、 実施例 3 と同様に して、 金一 チタ二アー シ リ カ触媒を得た。 こ の触媒を触媒 G とする。
蛍光 X線分析によ り、 触媒 Gにおける A u の量は 0. 2 1 重量%であ り、 丁 1 が /]: 1 0 2と して 1. 0 9 重量% と、 Kが 0. 2 2 重量%含まれている こ とが判った。
触媒 G 1 0 gに対して、 住友ス リ ーェム (株) 製フ ッ 素樹脂含有スプレー ( C A T. N o. S G — S Xテン ト) を用いて、 室温でフ ッ素樹脂を 2 回噴霧し、 2 0 0 °Cで 空気中で 2 時間熱処理した。 こ の触媒を触媒 H とする。
次いで、 得られた触媒 H 2 c c を用いて、 プロ ピレ ン のエポキシ化反応を行った。 即ち、 触媒 Hを 2 c c 充填 した触媒層を、 1 7 0 °Cに加熱し、 水素 Z酸素ノプロ ピ レン Zアルゴン = 2 0 / 2 0 / 2 0 / 4 0 の体積比の混 合ガスを 5 0 0 0 m 1 ノ時間の流量で流通 し、 出口ガス を分析する こ とによ って、 プロ ピレ ン力、らプロ ピレ ンォ キシ ドへの収率及び水素 $云化率の経時変化を調べた。 そ の結果を表 4 に示す。
尚、 触媒 Hについて、 実施例 1 と同様に して吸水率を 求めたと ころ、 0. 6 %であっ た。
比較例 4
実施例 4 で得た触媒 Gを用いて、 実施例 4 と同様に し て、 プロ ピレンからプロ ピレ ンォキシ ドへのエポキシィ匕 反応を行っ た。 結果を表 4 に示す。
尚、 触媒 Gについて、 実施例 1 と同様に して吸水率を 求めたと こ ろ、 0. 8 %であっ た。
表 4
Figure imgf000051_0001
実施例 5
チタニルァセチルァセ トナー ト 6. 5 6 gをメ タ ノ ー ル 6 5 0 m 1 に溶解した溶液に、 市販のシ リ カ (富士シ リ シァ化学 (株) 製、 キャ リ アク ト Q — 1 0、 1 0 〜 2 0 メ ッ シュ) 3 0 0 gを入れて、 常圧下、 メ タ ノ ールを 留去した。 次いで、 これを 1 2 0 °Cで 1 2 時間乾燥し、 更に、 8 0 0。Cで 3 時間焼成して、 チタ二アー シ リ カ ( T i 一 S i 02) を得た。 次いで、 硝酸マグネシウム · 6水塩 0 . 3 3 gを溶解 した水溶液 5 0 m 1 に、 上記チタ二アー シ リ カ ( T i — S i 0 2 ) 2 5 g を浸潸し、 加温して水分を留去 した。 次 いで、 これを 1 2 0 °Cで 1 2 時間乾燥し、 さ らに、 8 0 0 °Cで 3 時間焼成して、 マグネシウム修飾チタ二アー シ リ カ ( M g — T i — S i 0 2 ) を得た。
次いで、 実施例 1 と同様の方法で、 マグネ シウム修飾 チタニア— シ リ カに金超微粒子を担持させて、 金ーマグ ネシゥ ム修飾チタニア— シ リ カ ( A u — M g — T i — S i 0 2 ) を得た。 これを触媒 G とする。
次いで、 触媒 G 2 c c を、 シ リ ル化剤である ト リ メ チ ルメ トキシ シ ラ ン 0 . 0 1 gを含む トノレエ ン溶液 5 c c に入れ、 密閉容器中で 5 0 °Cで 3 0分間加温 した後、 ト ルェンを留去する こ とによ っ て、 触媒 Gのシ リ ル化処理 を行っ た。
こ の様に してシ リ ル化処理した触媒を内径 1 0 m mの 反応管に充填 し、 オイルバス中で 2 2 0 °Cに保ちながら、 A r ガスを流量 5 0 0 0 m 1 /時間で 3 0 分間流通させ、 次いで、 水素 Z酸素/プロ ピレ ン Zアルゴン = 2 0 / 2 0 / 2 0 / 4 0 の体積比の混合ガスを 5 0 0 0 m 1 Z時 間の流量で流通させ、 出口ガスを分析する こ とによ っ て、 プロ ピレ ンからプロ ピレ ンォキシ ドへの収率の経時変化 を調べた。 結果を下記表 5 に示す。
実施例 6
ト リ メ チルメ トキシシラ ンに代えて、 ジメ チルジメ ト キシシラ ンを用いる以外は、 実施例 5 と同様に して触媒 Gのシ リ ル化処理を行った。 次いで、 この触媒を用いて、 実施例 5 と同様に してプロ ピレ ンからプロ ピレ ンォキシ ドへのエポキシ化反応を行い、 プロ ピレ ンォキシ ドの収 率の経時変化を調べた。 結果を下記表 5 に示す。
実施例 7
ト リ メ チルメ トキシシラ ンに代えて、 ジフ エ二ルジメ トキシ シラ ンを用いる以外は、 実施例 5 と同様に して触 媒 Gの シ リ ル化処理を行っ た。 次いで、 こ の触媒を用い て、 実施例 5 と同様に してプロ ピレ ンからプロ ピレ ンォ キシ ドへのエポキシ化反応を行い、 プロ ピ レ ンォキシ ド の収率の経時変化を調べた。 結果を下記表 5 に示す。
実施例 8
ト リ メ チノレメ トキシシラ ンに代えて、 フ ヱニル ト リ メ トキシシラ ンを用いる以外は、 実施例 5 と同様に して触 媒 Gの シ リ ル化処理を行っ た。 次いで、 こ の触媒を用い て、 実施例 5 と同様に してプロ ピレ ンからプロ ピレ ンォ キシ ドへのエポキシ化反応を行い、 プロ ピ レ ンォキシ ド の収率の経時変化を調べた。 結果を下記表 5 に示す。 比較例 4
実施例 5 で得 られた触媒 Gを用いて、 シ リ ル化処理を 行う こ とな く、 実施例 5 と同様に してプロ ピ レ ンからプ ロ ピ レ ンォキ シ ドへのエポキシ化反応を行い、 プロ ピ レ ンォキ シ ドの収率の経時変化を調べた。 結果を下記表 5 に示す。
表 5
Figure imgf000054_0001
実施例 9
テ ト ライ ソ プロ ピルチタナー ト 4 . 4 g及びァセチル アセ ト ン 3 . 3 g を含むイ ソプロノ、0ノ ール溶液 4 0 0 m 1 に、 市販の シ リ カ (富士シ リ シァ化学 (株) 製、 キヤ リ アク ト Q — 3 0、 1 0 〜 2 0 メ ッ シ ュ、 比表面積 1 0 3 m g ) 2 0 0 gを入れ、 1 時間攪拌 した後、 濾過し た。 得られた固体部分をイ ソプロパノ ール 4 0 0 m 1 で 2 回洗浄した後、 1 2 0 °Cで 1 2時間乾燥 し、 さ らに 9 0 0 °Cで 3 時間焼成する こ とによ って、 チタ二アー シ リ 力を得た。
塩化金酸 0. 0 2 6 g及びラ ウ リ ン酸ナ ト リ ウム 0. 1 5 g を含む水溶液 3 0 0 m 1 を 7 0 °Cに保ちながら、 水酸化ナ ト リ ウム水溶液を用いて p H 8 に調整し、 これ に上記チタ二アー シ リ カ 2 0 g を入れ、 p H 7 〜 8 の範 囲に維持しながら、 3 0分間攪拌した。 次いで、 上澄み を除去 し、 固体部分を水 3 0 0 m l を用いて 3 回洗浄し た後濾過し、 1 2 0 。Cで 1 0 時間乾燥し、 3 0 0 °Cで 3 時間焼成した。 こ の様に して、 金一チタニア一 シ リ カを 得た。 これを触媒 Hとする。
触媒 H 2 c c を内径 1 0 m mの反応管に充填 し、 電気 炉中で触媒層温度を 1 6 0 °Cに保ちながら、 ト リ メ チル メ トキシシラ ン蒸気を約 5 v o 1 %含む A r ガスを、 流 量 6 0 0 0 m 1 Z時間で 5分間流通させて、 シ リ ル化処 理を行っ た。 その後、 この反応管を 2 2 0 °Cのオイルバ スに浸漬し、 水素 Z酸素 Zプロ ピレン アルゴン = 2 0 / 0 / 2 0 / 4 0 の体積比の混合ガスを 5 0 0 0 m 1 /時間の流量で流通させ、 出口ガスを分析する こ とによ つて、 プロ ピレ ンからプロ ピレ ンォキシ ドへの収率の経 時変化を調べた。 結果を下記表 6 に示す。
実施例 1 0
触媒 Hをシ リ ル化処理する際の触媒層温度を 2 2 0 °C とする こ と以外は、 実施例 9 と同様に して触媒 Hをシ リ ル化処理した。 こ の触媒を用いて、 実施例 9 と同様に し てプロ ピレ ンからプロ ピレ ンォキシ ドへのエポキシ化反 応を行い、 プロ ピレ ンォキシ ドの収率の経時変化を調べ た。 結果を下記表 6 に示す。
実施例 1 1
触媒 Hをシ リ ル化処理する際の触媒層温度を 2 8 0 °C とする こ と以外は、 実施例 9 と同様に して触媒 Hをシ リ ル化処理した。 こ の触媒を用いて、 実施例 9 と同様に し てプロ ピレ ンカヽらプロ ピレ ンォキシ ドへのエポキシ化反 応を行い、 プロ ピレ ンォキシ ドの収率の経時変化を調べ た。 結果を下記表 6 に示す。
比較例 5
実施例 9 で得た触媒 Hを用いて、 シ リ ル化処理を行う こ とな く、 実施例 9 と同様に してプロ ピレ ンからプロ ピ レンォキシ ドへのエポキシ化反応を行い、 プロ ピレ ンォ キシ ドの収率の経時変化を調べた。 結果を下記表 6 に示 す。 6
Figure imgf000057_0001
実施例 1 2
実施例 9 において、 触媒 Hをシ リ ル化処理する際の触 媒層温度を 2 8 0 °Cに保ち、 ト リ メ チルメ トキシシラ ン 蒸気を約 9 v o 1 %含む A r ガスを流量 6 0 0 0 m l 時間で 1 5 分間流通させて、 触媒 Hに ト リ メ チルメ トキ シシラ ン蒸気を接触させた以外は、 実施例 9 と同様に し てシ リ ル化処理を行つた。
この様に してシ リ ル化処理した触媒を充填 した反応管 を用い、 オイルバス温度 2 0 0 °Cで 2 k gノ c m 2の加圧 下でプロ ピレ ンのエポキシ化反応を行う こ と以外は、 実 施例 9 と同様に して、 プロ ピレ ンからプロ ピレ ンォキシ ドへの収率の経時変化を調べた。 結果を下記表 7 に示す。 反応開始 5 0 時間後における生成プロ ピレ ンォキシ ド量 に対する消費水素量のモル比は 2 . 7 であ っ た。
実施例 1 3
実施例 9 において、 触媒 Hをシ リ ル化処理する際の触 媒層温度を 2 8 0 °Cに保ち、 ト リ メ チルメ トキシシラ ン 蒸気を約 9 v o 1 %含む A r ガスを流量 6 0 0 0 m l Z 時間で 4 0 分間流通させて、 触媒 Hに ト リ メ チルメ トキ シシラ ン蒸気を接触させた以外は、 実施例 9 と同様に し てシ リ ル化処理を行つた。
この様に してシ リ ル化処理した触媒を充填 した反応管 を用い、 オイルバス温度 2 0 0 °Cで 5 k g c m 2の加圧 下でプロ ピレンのエポキシ化反応を行う こ と以外は、 実 施例 9 と同様にして、 プロ ピレ ンからプロ ピレ ンォキシ ドへの収率の経時変化を調べた。 結果を下記表 7 に示す。 反応開始 5 0 時間後における生成プロ ピレ ンォキシ ド量 に対する消費水素量のモル比は 2 . 9 であ った。
比較例 6
実施例 9 で得た触媒 Hを用いて、 シ リ ル化処理を行う こ とな く、 実施例 1 3 と同様に してプロ ピ レ ンからプロ ピレ ンォキシ ドへのエポキシ化反応を行い、 プロ ピレン ォキシ ドの収率の経時変化を調べた。 結果を下記表 7 に 示す。 反応開始 5 0 時間後における生成プロ ピレンォキ シ ド量に対する消費水素量のモル比は 4 . 0 であった。 7
Figure imgf000059_0001
実施例 1 4
実施例 9で用いたシ リ カに代えて、 別の市販のシ リ カ (富士シ リ シァ化学 (株) 製、 キャ リ アク ト Q — 3 0、 1 0〜 2 0 メ ッ シュ、 比表面積 7 9 m g ) を用いる以 外は、 実施例 9 と同様に して、 金ーチタニア— シ リ カを 得た。 これを触媒 I とする。
触媒 I 2 c c を内径 1 0 m mの反応管に充填 し、 電気 炉中で触媒層温度を 2 8 0 °Cに保ちながら、 ト リ メ トキ シ シラ ン蒸気を約 9 v o l %含む A r ガスを、 流量 6 0 0 0 m 1 ノ時間で 3 0分間流通させて、 シ リ ル化処理を 行っ た。 その後、 この反応管を 2 0 0 °Cのオイルバスに 浸潰し、 S k g Z c m 2の加圧下、 水素 Z酸素 プロ ピレ ン /アルゴン = 8ノ 8ノ 2 5 / 5 9の体積比の混合ガス を δ Ο Ο Ο πι Ι Ζ時間 (常圧常温下での流量) の流量で 流通させ、 出口ガスを分析する こ とによって、 プロ ピレ ンからプロ ピレ ンォキシ ドへの収率の経時変化を調べた。 結果を下記表 8 に示す。 反応開始 5 0 時間後における生 成プロ ピレ ンォキシ ド量に対する消費水素量のモル比は , 8 であった。
比較例 7
触媒 I を用いて、 シ リ ル化処理を行う こ とな く、 実施 例 1 4 と同様に してプロ ピレ ンからプロ ピ レ ンォキシ ド へのエポキシ化反応を行い、 プロ ピレ ンォキシ ドの収率 の経時変化を調べた。 結果を下記表 8 に示す。 反応開始 5 0 時間後における生成プロ ピレ ンォキシ ド量に対する 消費水素量のモル比は 4 . 8 であった。
表 8
プロ ピレ ンォキシ ド収率 (% )
反応開始 反応開始
1 時間後 5 0 時間後
実施例 1 4 4 . 6 4 . 3
比較例 7 3 . 1 1 . 6

Claims

請 求 の 範 囲
1 . チタ ン含有酸化物に金微粒子が固定化された触媒で あって、 該触媒がシ リ ル化処理されている こ とを特徴と する不飽和炭化水素の部分酸化用触媒。
2 . チタ ン含有酸化物に金微粒子が固定化された触媒で あって、 該触媒が疎水化処理されている こ とを特徴とす る不飽和炭化水素の部分酸化用触媒。
3 . 有機フ ッ素化剤及びシ リ ル化剤から選ばれた少な く と も一種の疎水化剤によ って疎水化処理されたものであ る請求項 2 に記載の触媒。
4 . 金微粒子が粒子径 1 0 n m以下の超微粒子である請 求項 1 又は 2 に記載の触媒。
5 . チタ ン含有酸化物が、 酸化チタ ン、 チタ ン酸塩、 酸 化チタ ンとゲイ素含有酸化物とを物理的に混合した混合 酸化物、 及びチタ ンとゲイ素が酸素を介して化学的に結 合した複合酸化物から選ばれた少な く と も一種である請 求項 1 又は 2 に記載の触媒。
6 . チタ ン含有酸化物が、 アルカ リ 金属、 アルカ リ 土類 金属、 ラ ンタ ノ ィ ド及び夕 リ ゥムから選ばれた少な く と も一種の元素を含有する ものである請求項 1 又は 2 に記 載の触媒。
7 . 金微粒子をチタ ン含有酸化物に固定化する前又は金 微粒子を固定化した後、 該チタ ン含有酸化物とシ リ ル化 剤とを 4 5 0 °C以下の温度で接触させる こ とによ ってシ リ ル化処理された ものである請求項 1 に記載の触媒。
8 . 金微粒子をチタ ン含有酸化物に固定化する前又は金 微粒子を固定化した後、 該チタ ン含有酸化物と疎水化剤 とを 4 5 0 °C以下の温度で接触させる こ とによって疎水 化処理されたものである請求項 2 に記載の触媒。
9 . 請求項 1 〜 8 のいずれかに記載の触媒と分子状水素 の存在下に、 不飽和炭化水素を酸素で部分酸化する こ と を特徴とするエポキシ ドの製造方法。
PCT/JP1999/000753 1998-02-24 1999-02-19 Catalyseur d'oxydation partielle d'hydrocarbure insature WO1999043431A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/403,643 US6252095B1 (en) 1998-02-24 1999-02-19 Catalyst for partially oxidizing unsaturated hydrocarbon
EP99905251A EP1005907A4 (en) 1998-02-24 1999-02-19 UNSATURATED HYDROCARBON PARTIAL OXIDATION CATALYST

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP4183398 1998-02-24
JP10/41833 1998-02-24

Publications (1)

Publication Number Publication Date
WO1999043431A1 true WO1999043431A1 (fr) 1999-09-02

Family

ID=12619276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000753 WO1999043431A1 (fr) 1998-02-24 1999-02-19 Catalyseur d'oxydation partielle d'hydrocarbure insature

Country Status (5)

Country Link
US (1) US6252095B1 (ja)
EP (1) EP1005907A4 (ja)
KR (1) KR20010020209A (ja)
CN (1) CN1256646A (ja)
WO (1) WO1999043431A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000059632A1 (en) * 1999-04-08 2000-10-12 The Dow Chemical Company Process for the hydro-oxidation of olefins to olefin oxides using oxidized gold catalyst
DE19959525A1 (de) * 1999-12-09 2001-06-13 Bayer Ag Katalysatoren auf Basis Edelmetall- und Titan-haltiger, organisch-anorganisch Hybridmaterialien zur selektiven Oxidation von Kohlenwasserstoffen
WO2001087479A1 (de) * 2000-05-17 2001-11-22 Bayer Aktiengesellschaft Formkörper enthaltend organisch-anorganische hybridmaterialen, seine herstellung und seine verwendung zur selektiven oxidation von kohlenwasserstoffen
US6504039B2 (en) 1998-02-06 2003-01-07 Bayer Aktiengesellschaft Supported catalyst and the process for preparing the same
WO2006098421A1 (ja) * 2005-03-17 2006-09-21 Sumitomo Chemical Company, Limited チタン含有珪素酸化物触媒の保存方法
US10004243B2 (en) 2011-12-22 2018-06-26 3M Innovative Properties Company Ethylene removal agent
CN112973788A (zh) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 烃类催化选择氧化的方法
WO2021177219A1 (ja) * 2020-03-04 2021-09-10 国立大学法人東京工業大学 還元的アミノ化を促進する酸化物担持コバルト触媒

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998000413A1 (en) * 1996-07-01 1998-01-08 The Dow Chemical Company Process for the direct oxidation of olefins to olefin oxides
JP2000279809A (ja) * 1999-03-30 2000-10-10 Nippon Shokubai Co Ltd エポキシド製造用触媒及びエポキシドの製法
DE19918431A1 (de) * 1999-04-23 2000-10-26 Bayer Ag Verfahren zur Herstellung eines Katalysators zur selektiven Oxidation von Kohlenwasserstoffen
FR2803540B1 (fr) * 2000-01-12 2002-03-29 Suez Lyonnaise Des Eaux Procede de fixation et d'immobilisation d'un catalyseur sur un support
DE10033572A1 (de) * 2000-07-11 2002-01-24 Basf Ag Verfahren zur Herstellung eines Epoxidierungskatalysators
DE10107777A1 (de) 2001-02-16 2002-09-05 Bayer Ag Kontinuierlicher Prozess für die Synthese von nanoskaligen Edelmetallpartikeln
ES2260459T3 (es) 2001-08-01 2006-11-01 Dow Global Technologies Inc. Metodo para aumentar la duracion de un catalizador de hidro-oxidacion.
DE10137826A1 (de) * 2001-08-02 2003-02-13 Bayer Ag Verfahren zur Herstellung und Isolierung von Alkenoxiden aus Alkenen
DE10201241A1 (de) * 2002-01-15 2003-07-24 Bayer Ag Katalysator
US8143189B2 (en) * 2008-03-12 2012-03-27 Uchicago Argonne, Llc Subnanometer and nanometer catalysts, method for preparing size-selected catalysts
BRPI0414788B1 (pt) 2003-09-26 2015-12-22 3M Innovative Properties Co método de preparar um sistema de catalisador, e, sistemas de catalisador heterogêneo, e de proteção respiratória
CA2546558A1 (en) * 2003-11-19 2005-06-02 Scf Technologies A/S A method and process for controlling the temperature, pressure-and density profiles in dense fluid processes
US7923072B2 (en) * 2004-01-14 2011-04-12 University Of South Florida Silver crystals through Tollen's reaction
US7030255B2 (en) * 2004-03-09 2006-04-18 Lyondell Chemical Technology, L.P. Oxidation process with in-situ H202 generation and polymer-encapsulated catalysts therefor
WO2006003450A1 (en) * 2004-07-06 2006-01-12 University College Cardiff Consultants Limited Supported gold catalysts
US7329624B1 (en) * 2004-08-16 2008-02-12 Uop Llc Regenerable adsorbents for the purification of silicone based solvents
US20060122057A1 (en) * 2004-12-03 2006-06-08 Ming-Theng Wang Preparation of nanometered gold catalyzer
US8058202B2 (en) 2005-01-04 2011-11-15 3M Innovative Properties Company Heterogeneous, composite, carbonaceous catalyst system and methods that use catalytically active gold
ES2261080B1 (es) * 2005-04-19 2007-12-16 Universidad Politecnica De Valencia Procedimiento y catalizadores para la expoxidacion de compuestos olefinicos en presencia de oxigeno.
US20100125036A1 (en) * 2006-09-19 2010-05-20 Sharma Ramesh K Method and apparatus for continuous catalyst synthesis
US7453003B1 (en) * 2007-08-29 2008-11-18 Lyondell Chemical Technology, L.P. Direct epoxidation catalyst and process
US8222145B2 (en) * 2009-09-24 2012-07-17 Dupont Air Products Nanomaterials, Llc Method and composition for chemical mechanical planarization of a metal-containing substrate
CN102875495B (zh) * 2011-07-12 2015-02-11 中国石油化工股份有限公司 生产环氧环己烷的方法
CN103030611B (zh) * 2011-09-30 2015-02-11 中国石油化工股份有限公司 生产环氧丙烷的方法
TWI432262B (zh) * 2012-08-10 2014-04-01 China Petrochemical Dev Corp Taipei Taiwan Method for making epoxides
CN103896801B (zh) * 2012-12-25 2016-03-16 中国石油化学工业开发股份有限公司 制造酮肟的方法
US20150182959A1 (en) * 2013-12-30 2015-07-02 Shell Oil Company Relating to epoxidation catalysts
US11123711B2 (en) 2017-12-28 2021-09-21 University Of Kentucky Research Foundation System and method for alcohol oxidation reaction of lignins
WO2020037054A1 (en) * 2018-08-14 2020-02-20 William Marsh Rice University Distortion mitigation during sintering of ceramics through the incorporation of ceramic precursor solutions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256079A (ja) * 1996-03-21 1997-09-30 Nippon Shokubai Co Ltd 金超微粒子の固定化方法および金超微粒子固定化触媒の調製方法
JPH1066870A (ja) * 1996-08-27 1998-03-10 Mitsubishi Chem Corp 担持金触媒の製造方法
JPH10244156A (ja) * 1997-03-03 1998-09-14 Agency Of Ind Science & Technol 炭化水素の部分酸化用触媒および炭化水素の部分酸化方法
JPH11128743A (ja) * 1997-11-05 1999-05-18 Agency Of Ind Science & Technol 炭化水素の部分酸化用触媒及び含酸素有機化合物の製法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1002056A (en) 1970-10-01 1976-12-21 Harald P. Wulff Catalyst for producing oxirane compounds by epoxidizing olefins with hydroperoxides
US3923843A (en) 1972-03-13 1975-12-02 Shell Oil Co Epoxidation process with improved heterogeneous catalyst
JPS5339404A (en) 1976-09-22 1978-04-11 Hitachi Ltd Stator for rotary machine
US5506273A (en) * 1991-12-06 1996-04-09 Agency Of Industrial Science And Technology Catalyst for hydrogenation and method for hydrogenation therewith
JP3763147B2 (ja) 1993-08-06 2006-04-05 住友化学株式会社 酸化オレフィンの製造方法及びそのための触媒
DE4425672A1 (de) 1994-07-20 1996-01-25 Basf Ag Oxidationskatalysator, Verfahren zu seiner Herstellung und Oxidationsverfahren unter Verwendung des Oxidationskatalysators
JP2615432B2 (ja) 1994-10-28 1997-05-28 工業技術院長 金−酸化チタン含有触媒による炭化水素の部分酸化方法
US5550093A (en) * 1995-06-14 1996-08-27 National Science Council Preparation of supported gold catalysts for carbon monoxide oxidation
JP2832336B2 (ja) * 1995-11-07 1998-12-09 工業技術院長 金超微粒子固定化物質及びその製造方法
JP3777437B2 (ja) 1996-03-21 2006-05-24 独立行政法人産業技術総合研究所 炭化水素の部分酸化方法および部分酸化用触媒
US5932750A (en) * 1996-03-21 1999-08-03 Agency Of Industrial Science And Technology Catalysts for partial oxidation of hydrocarbons and method of partial oxidation of hydrocarbons
WO1998000413A1 (en) * 1996-07-01 1998-01-08 The Dow Chemical Company Process for the direct oxidation of olefins to olefin oxides

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09256079A (ja) * 1996-03-21 1997-09-30 Nippon Shokubai Co Ltd 金超微粒子の固定化方法および金超微粒子固定化触媒の調製方法
JPH1066870A (ja) * 1996-08-27 1998-03-10 Mitsubishi Chem Corp 担持金触媒の製造方法
JPH10244156A (ja) * 1997-03-03 1998-09-14 Agency Of Ind Science & Technol 炭化水素の部分酸化用触媒および炭化水素の部分酸化方法
JPH11128743A (ja) * 1997-11-05 1999-05-18 Agency Of Ind Science & Technol 炭化水素の部分酸化用触媒及び含酸素有機化合物の製法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1005907A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6504039B2 (en) 1998-02-06 2003-01-07 Bayer Aktiengesellschaft Supported catalyst and the process for preparing the same
US6548682B1 (en) 1998-02-06 2003-04-15 Bayer Aktiengesellschaft Method for the direct catalytic oxidation of unsaturated hydrocarbons in gaseous phase
US6255499B1 (en) 1999-04-08 2001-07-03 The Dow Chemical Company Process for the hydro-oxidation of olefins to olefin oxides using oxidized gold catalyst
WO2000059632A1 (en) * 1999-04-08 2000-10-12 The Dow Chemical Company Process for the hydro-oxidation of olefins to olefin oxides using oxidized gold catalyst
WO2001041921A1 (de) * 1999-12-09 2001-06-14 Bayer Aktiengesellschaft Katalysatoren auf basis edelmetall- und titan-haltiger, organisch-anorganischer hybridmaterialien zur selektiven oxidation von kohlenwasserstoffen
DE19959525A1 (de) * 1999-12-09 2001-06-13 Bayer Ag Katalysatoren auf Basis Edelmetall- und Titan-haltiger, organisch-anorganisch Hybridmaterialien zur selektiven Oxidation von Kohlenwasserstoffen
US6995113B1 (en) 1999-12-09 2006-02-07 Bayer Aktiengesellschaft Catalysts which are based on organic-inorganic hybrid materials containing noble metals and titanium and which are used for selectively oxidizing hydrocarbons
WO2001087479A1 (de) * 2000-05-17 2001-11-22 Bayer Aktiengesellschaft Formkörper enthaltend organisch-anorganische hybridmaterialen, seine herstellung und seine verwendung zur selektiven oxidation von kohlenwasserstoffen
WO2006098421A1 (ja) * 2005-03-17 2006-09-21 Sumitomo Chemical Company, Limited チタン含有珪素酸化物触媒の保存方法
JP2006289341A (ja) * 2005-03-17 2006-10-26 Sumitomo Chemical Co Ltd チタン含有珪素酸化物触媒の保存方法
US8470729B2 (en) 2005-03-17 2013-06-25 Sumitomo Chemical Company, Limited Method for storing titanium-containing silicon oxide catalyst
US10004243B2 (en) 2011-12-22 2018-06-26 3M Innovative Properties Company Ethylene removal agent
CN112973788A (zh) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 烃类催化选择氧化的方法
WO2021177219A1 (ja) * 2020-03-04 2021-09-10 国立大学法人東京工業大学 還元的アミノ化を促進する酸化物担持コバルト触媒

Also Published As

Publication number Publication date
EP1005907A4 (en) 2000-12-27
US6252095B1 (en) 2001-06-26
CN1256646A (zh) 2000-06-14
EP1005907A1 (en) 2000-06-07
KR20010020209A (ko) 2001-03-15

Similar Documents

Publication Publication Date Title
WO1999043431A1 (fr) Catalyseur d&#39;oxydation partielle d&#39;hydrocarbure insature
CN1122566C (zh) 用氧化金催化剂使烯烃加氢氧化成为氧化烯烃的方法
TW539574B (en) Surface-modified catalyst containing gold and/or silver particles, titanium oxide and a support containing silicon, process for its production and its use
JP2000501371A (ja) 物質の選択的不均一系触媒作用、吸着及び分離のための制御された表面極性を有する無定形微孔質混合酸化物触媒
JP4000392B2 (ja) 炭化水素の部分酸化用触媒及び含酸素有機化合物の製法
KR20070102713A (ko) 광촉매, 그 제조 방법, 광촉매를 함유하는 분산액 및광촉매 도료 조성물
TWI245668B (en) A composition containing gold and/or silver particles on titanium-containing organic/inorganic hybrid materials, its preparation process and use
CN1133628C (zh) 用作部分氧化烃的催化剂的含贵金属的溶胶-凝胶混合材料
KR20090127084A (ko) 광촉매체 분산액 및 그 제조 방법
CN1349430A (zh) 含有金和钛的催化剂的制备方法
JP4307253B2 (ja) 水素化−酸化触媒の寿命を増加する方法
CN1134382C (zh) 烯烃氧化方法、所用含银催化剂及其应用
JP4016121B2 (ja) 炭化水素部分酸化用触媒及び含酸素有機化合物の製造方法
WO2012036445A4 (ko) 선택산화탈황용 촉매 및 그의 제조방법
CZ20023732A3 (cs) Tvarová tělesa obsahující organicko-anorganické hybridní materiály, způsob jejich výroby a jejich použití k selektivní oxidaci uhlovodíků
EP1040869A2 (en) Gold-containing catalyst and method of manufacturing epoxide using the same
JP3886594B2 (ja) 酸化チタンを担持したシリカ三次元網状構造光触媒の製造方法
JP5313051B2 (ja) 蓚酸ジルコニウムゾル
EP3970851A1 (en) Cobalt-based single-atom dehydrogenation catalysts having high selectivity and regenerability and method for producing corresponding olefins from paraffins using the same
JP5126731B2 (ja) 炭化水素部分酸化用金触媒
JP4512688B2 (ja) 含酸素有機化合物の製造方法
JP4711731B2 (ja) 排ガス浄化用触媒組成物
JP3606995B2 (ja) 金超微粒子の固定化方法および金超微粒子固定化触媒の調製方法
CN117399024A (zh) 催化剂及其制备方法和异丁烯氧化制备甲基丙烯醛的方法
CN116586051A (zh) 一种用于丙烯和过氧化氢气相环氧化反应的无定型Ti/SiO2催化剂的制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99800171.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019997009790

Country of ref document: KR

Ref document number: 09403643

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999905251

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999905251

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999905251

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997009790

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019997009790

Country of ref document: KR