WO1998029365A1 - Verfahren zur herstellung von olefinen, insbesondere von propylen, durch dehydrierung - Google Patents

Verfahren zur herstellung von olefinen, insbesondere von propylen, durch dehydrierung Download PDF

Info

Publication number
WO1998029365A1
WO1998029365A1 PCT/EP1997/006858 EP9706858W WO9829365A1 WO 1998029365 A1 WO1998029365 A1 WO 1998029365A1 EP 9706858 W EP9706858 W EP 9706858W WO 9829365 A1 WO9829365 A1 WO 9829365A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
compound
catalyst according
subgroup
group
Prior art date
Application number
PCT/EP1997/006858
Other languages
English (en)
French (fr)
Inventor
Daniel Heineke
Michael Baier
Dirk Demuth
Klaus Harth
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to JP52957298A priority Critical patent/JP4287909B2/ja
Priority to AT97953761T priority patent/ATE235446T1/de
Priority to EP97953761A priority patent/EP0948475B1/de
Priority to DE59709647T priority patent/DE59709647D1/de
Priority to KR10-1999-7005839A priority patent/KR100522986B1/ko
Priority to US09/331,052 priority patent/US6576804B1/en
Publication of WO1998029365A1 publication Critical patent/WO1998029365A1/de
Priority to US10/340,282 priority patent/US6989346B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/62Platinum group metals with gallium, indium, thallium, germanium, tin or lead
    • B01J23/622Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead
    • B01J23/626Platinum group metals with gallium, indium, thallium, germanium, tin or lead with germanium, tin or lead with tin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3332Catalytic processes with metal oxides or metal sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • C07C5/3335Catalytic processes with metals
    • C07C5/3337Catalytic processes with metals of the platinum group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/42Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor
    • C07C5/48Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with a hydrogen acceptor with oxygen as an acceptor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/36Rhenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/26Chromium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/24Chromium, molybdenum or tungsten
    • C07C2523/30Tungsten
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • C07C2523/32Manganese, technetium or rhenium
    • C07C2523/36Rhenium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/42Platinum
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/44Palladium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals
    • C07C2523/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of noble metals of the platinum group metals
    • C07C2523/46Ruthenium, rhodium, osmium or iridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • propylene is essentially obtained from the product mixture resulting from steam cracking of light naphtha. Economic and other reasons make flexible the raw material base desirable.
  • An alternative to the production of propylene is the dehydrogenation of propane.
  • propylene can be dehydrogenated from propane over noble metal catalysts such as Pt / Al 2 0 3 , Pt / Sn / Al 0 3 or
  • a process has reached technical maturity in which work is carried out at low pressure and relatively high temperature and the catalyst is continuously regenerated with atmospheric oxygen 30 (Energy Prog. (1986), 6 (3) 171-6 and Chem. Eng. Today, Copying Uncertainty, Aust. Chem. Eng. Conf. Llth (1983), 663-71).
  • the process can be carried out with Pt / Al 0 3 catalysts in a moving bed at 600-700 ° C and a pressure of 2-5 bar.
  • Catalysts can be doped with potassium or magnesium. Doping with tin is said to slow down the deactivation despite coking (Stud. Surf. Sei. Catal. 1994, 88, 519-24).
  • EP-A-403 462 describes oxidic catalysts with redox-active elements which are not present in their lowest oxidation state.
  • the invention solves the problem of remedying the abovementioned disadvantages and of providing catalysts which enable a process for the production of, in particular, propylene and other low molecular weight olefins by dehydrogenating corresponding paraffinic hydrocarbons and which also achieve high selectivity with high conversion.
  • the object was achieved by using catalysts based on ceramic oxides of subgroup IV of the PS of the elements, which can contain a dehydrogenation-active element and possibly other elements.
  • Zirconium oxide (Zr0) and titanium oxide (Ti0) are particularly suitable as the ceramic oxide.
  • the ceramic oxide can with a metal of VI. and VIII. Subgroup be endowed.
  • Particularly suitable dehydrogenation elements are metals of main group VIII or subgroup VIII, the noble metals platinum and palladium being particularly suitable, preferably platinum.
  • a noble metal is used as the dehydrogenation-active element
  • metals which can slow the sintering of the noble metal such as Re, Ir and Sn, in particular Re and Sn, can additionally be used.
  • ceramic oxides of subgroup IV is essential for the purpose of the invention, while the other constituents are only important for the basic reaction and have a supporting effect.
  • a noble metal instead of a noble metal, other dehydrogenation-active metals, for example VI.
  • Subgroup especially with chromium or molybdenum.
  • the crystalline phase of the zirconium oxide is stable under the conditions of the dehydrogenation. If one assumes tetragonal Zr0 2 , this can be supported by doping with La or Y.
  • the catalysts according to the invention have the advantage of higher selectivity with simultaneously higher conversion in the dehydrogenation of propane to propylene. It also proves to be an advantage that the catalysts according to the invention can be operated without additional hydrogen, which would otherwise have to be used to suppress coking. Other advantages are their high mechanical strength, long service life and light shape.
  • amphoteric oxides of zircon and titanium or their mixtures or suitable precursors can be used, which can be converted into the oxides by calcining.
  • the manufacturing process can be selected according to known models, for example the sol-gel process, precipitation of the salts, dewatering of the corresponding acids, dry mixing, slurrying or spray drying.
  • the doping with a basic compound can be carried out either during production, for example by co-precipitation, or subsequently by impregnating the ceramic amphoteric oxide with a compound of the alkali metal or alkaline earth metal compound in question, etc.
  • the dehydrogenation-active component is generally applied by impregnation with a suitable compound of the element in question. Such a compound is chosen so that it can be converted into the corresponding metal oxide by calcining. Instead of impregnation, the dehydrogenation component can also be carried out by other methods such as spraying. Suitable metal salts are, for example, the nitrates, acetates and Chlorides of the corresponding metals, are also possible complex "anions of the metals used. Preferred are 2 PtCl 6 or Pt (N0 3) 2 used for platinum and Cr (N0 3) 3 or (NH 4) 2 Cr0 4 for chromium H.
  • Suitable Precursors when noble metals are used as the dehydrogenation-active component are also the corresponding noble metal sols, which can be prepared by a known method, for example by reducing a metal salt in the presence of a stabilizer such as PVP with a reducing agent 00 366 treated in detail.
  • the catalyst can be fixed or e.g. be used in the form of a fluidized bed and have a corresponding shape. Suitable are e.g. Shapes such as grit, tablets, monoliths, spheres or extrudates (strands with a corresponding cross-section such as wagon wheel, star, ring).
  • the content of alkali metal, alkaline earth metal or a metal of the third main or subgroup or a rare earth metal or zinc is up to 20% by weight, preferably between 1 and 15% by weight, particularly preferably between 1 and 10 % By weight.
  • alkali and alkaline earth metal precursors it is expedient to use compounds which can be converted directly into the corresponding oxides by calcining. For example, hydroxide, carbonate, oxalate, acetate or mixed hydroxycarbonates are suitable.
  • the ceramic support is additionally or exclusively doped with a metal of the third main or subgroup, then one should also start from compounds in this case that can be converted into the corresponding oxides by calcining.
  • lanthanum for example lanthanum oxide carbonate, La (OH) 3 La 3 (C0 3 ) 2 , La (N0 3 ) 3 or lanthanum compounds which contain organic anions, such as La acetate, La formate or La Suitable for oxalate.
  • the content of a dehydrogenation component in the catalysts is up to 10% by weight. Catalysts that do not contain a dehydrogenation-active element can also be used. If the catalyst is doped with a dehydrogenation element of subgroup VIII as a dehydrogenation element, the content is 0 to 10% by weight, preferably 0.2 to 8% by weight, particularly preferably 0.5 to 2% by weight. If the catalyst is doped with a noble metal as a dehydrogenation-active component, the content is 0 to 5% by weight, preferably 0.2 to 2% by weight, particularly preferably 0.5 to 1.5% by weight.
  • the catalysts have a BET surface area of up to 500 m 2 / g or more, preferably 10-300 m 2 / g, particularly preferably 20-100 m 2 / g.
  • the pore volume is generally between 0.1 and 1 ml / g, preferably from 0.15 to 0.6 ml / g, particularly preferably from 0.2 to 0.4 ml / g.
  • the mean pore diameter which can be determined by mercury penetration analysis, is between 0.008 and 0.06 ⁇ m, preferably between 0.01 and 0.04 ⁇ m.
  • the propane dehydrogenation is carried out at temperatures of 300-800 ° C., preferably 450-700 ° C., and at pressures from 10 mbar to 100 bar, preferably 100 mbar to 40 bar, with a WHSV (Weight Hourly Space Velocity; in [(g Educt) • (g Kat) ⁇ -h "1 ]) from 0.01 to 100, preferably 0.1 to 20.
  • WHSV Weight Hourly Space Velocity; in [(g Educt) • (g Kat) ⁇ -h "1 ]
  • hydrogen can be added to the hydrocarbon stream, the ratio of hydrogen to hydrocarbon stream preferably being from 0.1 to 100. The added hydrogen serves to remove the carbon formed on the surface of the catalyst by coking.
  • the regeneration itself takes place at temperatures in the range 300-900 ° C., preferably 400-800 ° C. with a free oxidizing agent, preferably with air or in a reductive atmosphere, preferably with hydrogen.
  • the regeneration can be operated at negative pressure, atmospheric pressure or positive pressure. Pressures in the range from 500 mbar to 100 bar are preferred.
  • the fresh catalyst was used.
  • the same catalyst was used after regeneration at 500 ° C. with air.
  • a catalyst was prepared by impregnating Zr0 2 (support SN 9316335, Norton, 46 m 2 / g, largely monoclinic) with Pt (N0 3 ) 2 and Sn (OAc) 2. The Pt content was 1% by weight and the Sn content was 0.5% by weight. The catalyst was calcined at 650 ° C for 3 hours.
  • a catalyst was obtained by impregnating a largely monoclinic Zr0 2 (carrier SN 9316321, Norton, 49 m 2 / g) with a solution of 0.821 g Cr (N0 3 ) 3 x 9H 2 0 in 2.5 ml of water and subsequent impregnation with a Solution of 1.763 g La (N0 3 ) in 2.5 ml water.
  • the catalyst was dried at 120 ° C. for 16 hours and calcined at 500 ° C. for 2 hours.
  • the finished catalyst had a chromium content of 0.9% and a lanthanum content of 4.5% by weight.
  • the comparative catalysts (VI: 10% Cr / Al 2 0 3 , V2: 1% Cr / Al 2 0 3 and V3: 5% Cr / Al 2 ⁇ 3 ) were obtained by impregnating ⁇ -Al 2 03 (9.5 m 2 / g) made with different amounts of Cr (N ⁇ 3 ) 3 . These catalysts were dried at 120 ° C. for 6 hours and then calcined at 500 ° C. for 2 hours.
  • the comparative catalyst V4 was produced by impregnating the same Al 2 0 3 support with Pt (N0 3 ) 2. The catalyst was dried at 120 ° C. for 16 hours and then calcined at 500 ° C. for 2 hours.
  • the dehydration was carried out in a microfixed bed pulse reactor at a temperature of 500 ° C. About 0.6 g of the catalyst was weighed into a microfixed bed and pulsed, ie with a regularly interrupted flow of propane gas without the addition of residual water (without H 2 ) at atmospheric Pressure applied. The reaction products were determined quantitatively for each Pul "s ⁇ by on-line GC. Between two successive pulses propane (1.5 min interval) flowing helium carrier gas through the reactor.
  • a single pulse contained approximately 100 ul propane.
  • the flow rate of the carrier gas was approximately 21.5 ml / min.
  • the residence time was about 1 to 2 seconds.
  • the load on the catalyst WHSV; see above) during a pulse also depending on the height of the bed, 1.7 to 3.4.
  • the results obtained can be seen in Table 1 and relate to the maximum sales achieved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

Verfahren insbesondere zur Herstellung von Propylen aus Propan oder anderen olefinisch ungesättigten Kohlenwasserstoffen aus entsprechenden Paraffinkohlenwasserstoffen durch Dehydrierung, an einem Katalysator, der ein Oxid eines Übergangsmetalles der Gruppe IV B des Periodensystems wie TiO2 oder ZrO2 sowie eventuell mindestens ein Element ausgewählt aus Elementen der VIII. Nebengruppe wie Palladium, Platin, Rhodium und/oder ein Element der sechsten Nebengruppe wie Chrom, Molybdän oder Wolfram und/oder Rhenium und/oder Zinn sowie eventuell eine Verbindung eines Alkali- oder Erdalkalimetalls, eine Verbindung der dritten Haupt- oder Nebengruppe oder Zink enthält.

Description

Verfahren zur Herstellung von Olefinen, insbesondere von Propylen, durch Dehydrierung
5 Beschreibung
Propylen wird gegenwärtig im wesentlichen aus dem beim Steam- cracking von leichtem Naphtha anfallenden Produktgemisch gewonnen. Wirtschaftliche und andere Gründe machen eine Flexi- 10 bilisierung der Rohstoffbasis wünschenswert. Eine Alternative zur Gewinnung von Propylen ist die Dehydrierung von Propan.
Auf nichtoxidativem Weg kann Propylen durch Dehydrierung von Propan an Edelmetall-Katalysatoren wie Pt/Al203, Pt/Sn/Al 03 oder
15 an edelmetallfreien Katalysatoren wie Cr/Al203 erhalten werden. Die Umsetzung ist stark endotherm und läuft nur bei hoher Temperatur mit befriedigender Geschwindigkeit ab. Dabei werden Nebenreaktionen begünstigt, z.B. Abbau des Propans zu Ethylen und Methan; gleichzeitig wird Ethylen durch den bei der Dehydrierung
20 freigesetzten Wasserstoff hydriert. Die Selektivität der Umsetzung nimmt wegen der nebenproduktabhängigen Konkurrenzreaktionen mit steigendem Umsatz stark ab, was die technische Durchführbarkeit des Verfahrens infragestellt. Nebenreaktionen führen außerdem zur Verkokung der verwendeten Katalysatoren, die nach relativ
25 kurzen Betriebszeiten regeneriert werden müßten.
Zur technischen Reife ist ein Verfahren gelangt, in dem bei niedrigem Druck und relativ hoher Temperatur gearbeitet und der Katalysator kontinuierlich mit Luftsauerstoff regeneriert wird 30 (Energy Prog. (1986), 6(3) 171-6 und Chem. Eng. Today, Copying Uncertainty, Aust. Chem. Eng. Conf . llth (1983), 663- 71). Das Verfahren kann mit Pt/Al 03-Katalysatoren in einem Wanderbett bei 600-700°C und einem Druck von 2-5 bar ausgeübt werden.
35 Bei dem in WO 9523123 beschriebenen Verfahren werden
Cr/Al203-Katalysatoren verwendet, die cyclisch, d.h. im Regenerativ-Verfahren betrieben werden. Dabei wird mit der Abwärme, die beim Abbrennen des Kohlenstoffs frei wird, das Propan vorgeheizt. Pt/Sn/Al203-Katalysatoren sind bekannt aus Shiyou Huagong (1992) ,
40 21(8), 511-515. Dort ist auch beschrieben, daß diese
Katalysatoren mit Kalium oder Magnesium dotiert werden können. Durch Dotierung mit Zinn soll die Desaktivierung trotz Verkokung verlangsamt werden (Stud. Surf. Sei. Catal. 1994, 88, 519-24).
45 Oxidische Katalysatoren mit redoxaktiven Elementen, die nicht irr ihrer niedrigsten Oxidationsstufe vorliegen, beschreibt EP-A-403 462.
Die Dehydrierung von Propan mit Zeolithen vom ZSM-5-Typ ist ebenfalls bekannt. Werden diese Zeolithe mit Zink dotiert, so hat dies Einfluß auf das Säure-Basen-Verhalten der Zeolithe: Crack- reaktionen sollen weitgehend unterdrückt werden (J. Chin. Inst. Chem. Eng. (1990), 21(3), 167-72).
Die bekanntgewordenen Verfahren haben vor allem den Nachteil, daß mit steigendem Umsatz die Selektivität stark nachläßt. Außerdem müssen die Katalysatoren häufig regeneriert werden,was äußerst nachteilig für ein technisches Verfahren ist.
Die Erfindung löst die Aufgabe, den vorgenannten Nachteilen abzuhelfen und Katalysatoren bereitzustellen, die ein Verfahren zur Herstellung insbesondere von Propylen und anderen niedermolekularen Olefinen durch Dehydrierung entsprechender Paraffin- kohlenwasserstoffe ermölgichen und auch bei hohem Umsatz hohe Selektivität erzielen.
Die Aufgabe wurde gelöst durch die Verwendung von Katalysatoren auf Basis von keramischen Oxiden der IV. Nebengruppe des PS der Elemente, die ein dehydrieraktives Element und eventuell weitere Elemente enthalten können.
Als keramisches Oxid eignen sich insbesondere Zirkonoxid (Zr0 ) und Titanoxid (Ti0 ) . Das keramische Oxid kann mit einem Metall der VI. und VIII. Nebengruppe dotiert sein. Als dehydrieraktive Elemente sind vor allem Metalle der VIII. Haupt- oder Nebengruppe geeignet, wobei sich insbesondere die Edelmetalle Platin und Palladium eignen, bevorzugt Platin.
Wenn ein Edelmetall als dehydrieraktives Element verwendet wird, können zusätzlich Metalle eingesetzt werden, die das Sintern des Edelmetalls verlangsamen können, wie Re, Ir und Sn, insbesondere Re und Sn.
Als weitere Elemente kommen solche infrage, von denen bekannt ist, daß sie die Azidität der Katalysatoroberfläche beeinflussen oder Edelmetalle gegen Sintern stabilisieren können. Solche weiteren Elemente sind alle Elemente der 1. und 2. Hauptgruppe, d.h. Li, Na, K, Rb, Cs einerseits und Mg, Ca, Sr und Ba anderer- seits. Als Elemente der 3. Nebengruppe kommen insbesondere Y und La sowie Seltenerd-Elemente infrage. Als wirksam hat sich auch—* Zink erwiesen.
Die Verwendung der keramischen Oxide der IV. Nebengruppe ist für die Zweck der Erfindung wesentlich, während die anderen Bestandteile lediglich für die Grundreaktion von Bedeutung sind und unterstützend wirken. So können anstelle eines Edelmetalls auch andere dehydrieraktive Metalle, zum Beispiel der VI. Nebengruppe, insbesondere mit Chrom oder Molybdän zugegen sein.
Wesentlich für die Erfindung ist, daß die kristalline Phase des Zirkonoxids unter den Bedingungen der Dehydrierung stabil ist. Geht man von tetragonalem Zr02 aus, so kann dies durch die Dotierung mit La oder Y unterstützt werden.
Gegenüber den bekannten Katalysatoren weisen die erfindungs- gemäßen Katalysatoren bei der Dehydrierung von Propan zu Propylen den Vorteil höherer Selektivität bei gleichzeitig höherem Umsatz auf. Außerdem erweist sich als Vorteil, daß die erfindungsgemäßen Katalysatoren ohne zusätzlichen Wasserstoff betrieben werden können, der sonst zur Unterdrückung der Verkokung eingesetzt werden müßte. Weitere Vorteile sind ihre hohe mechanische Festigkeit, hohe Standzeit und leichte Formgebung.
Zur Herstellung der erfindungsgemäßen Katalysatoren können ampho - tere Oxide des Zirkons und des Titans oder deren Mischungen oder geeignete Vorprodukte (Precursoren) eingesetzt werden, die sich durch Calcinieren in die Oxide umwandeln lassen.
Das Herstellverfahren kann nach bekannten Vorbildern gewählt werden, zum Beispiel nach dem Sol-Gel-Verfahren, Fällung der Salze, Entwässern der entsprechenden Säuren, Trockenmischen, Aufschlämmen oder Sprühtrocknen.
Die Dotierung mit einer basischen Verbindung kann entweder während der Herstellung, zum Beispiel durch gemeinsames Fällen oder nachträglich durch Tränken des keramischen amphoteren Oxids mit einer Verbindung der betreffenden Alkali- oder Erdalkalime- tallverbindung etc. erfolgen.
Der dehydrieraktive Bestandteil wird in der Regel durch Tränkung mit einer geeigneten Verbindung des betreffenden Elements aufgebracht. Eine solche Verbindung wird so gewählt, daß sie sich durch Calcinieren in das entsprechende Metalloxid umwandeln läßt. Statt durch Tränkung kann die dehydrieraktive Komponente aber auch durch andere Verfahren wie beispielsweise Aufsprühen erfolgen. Geeignete Metallsalze sind z.B. die Nitrate, Acetate und Chloride der entsprechenden Metalle, möglich sind auch komplexe" Anionen der verwendeten Metalle. Bevorzugt werden H2PtCl6 oder Pt(N03)2 für Platin und Cr(N03)3 oder (NH4)2Cr04 für Chrom eingesetzt. Geeignete Precursoren im Falle der Verwendung von Edel- metallen als dehydrieraktive Komponente sind auch die entsprechenden Edelmetallsole, die nach einem der bekannten Verfahren, zum Beispiel durch Reduktion eines Metallsalzes in Gegenwart eines Stabilisators wie PVP mit einem Reduktionsmittel hergestellt werden können. Die Herstellung wird in DE 195 00 366 ausführlich behandelt.
Der Katalysator kann fest angeordnet oder z.B. in Form eines Wirbelbetts verwendet werden und eine entsprechende Gestalt haben. Geeignet sind z.B. Formen wie Splitt, Tabletten, Mono- lithe, Kugeln oder Extrudate (Stränge mit entsprechendem Querschnitt wie Wagenrad, Stern, Ring) .
Der Gehalt an Alkali-, Erdalkalimetall oder an einem Metall der dritten Haupt- oder Nebengruppe oder einem seltenen Erdmetall oder Zink liegt im bei bis zu 20 Gew.-%, bevorzugt zwischen 1 und 15 Gew.-%, besonders bevorzugt zwischen 1 und 10 Gew.-%. Als Alkali- und Erdalkalimetallprecursor verwendet man zweckmäßig Verbindungen, die sich durch Calcinieren direkt in die entsprechenden Oxide umwandeln lassen. Geeignet sind zum Beispiel Hydroxid, Carbonat, Oxalat, Acetat oder gemischte Hydroxycar- bonate.
Wird der keramische Träger zusätzlich oder ausschließlich mit einem Metall der dritten Haupt- oder Nebengruppe dotiert, so sollte man auch in diesem Fall von Verbindungen ausgehen, die sich durch Calcinieren in die entsprechenden Oxide umwandeln lassen. Wird Lanthan verwendet, so sind beispielsweise Lanthan- Oxid-Carbonat, La(OH)3 La3(C03)2, La(N03)3 oder Lanthanverbindungen die organische Anionen enthalten, wie La-Acetat, La-Formiat oder La-Oxalat geeignet.
Der Gehalt der Katalysatoren an einer dehydrieraktiven Komponente beträgt bis zu 10 Gew.-%. Es können auch Katalysatoren verwendet werden, die kein dehydrieraktives Element enthalten. Wird der Katalysator mit einem dehydrieraktiven Element der VIII. Nebengruppe als dehydrieraktivem Element dotiert, so beträgt der Gehalt 0 bis 10 Gew.-%, bevorzugt 0.2 bis 8 Gew.-%, besonders bevorzugt 0.5 bis 2 Gew.-%. Wird der Katalysator mit einem Edelmetall als dehydrieraktive Komponente dotiert, so beträgt der Gehalt 0 bis 5 Gew.-%, bevorzugt 0.2 bis 2 Gew.-%, besonders bevorzugt 0.5 bis 1.5 Gew.-%. Die Katalysatoren weisen eine BET-Oberflache von bis zu 500 m2/g- oder mehr, bevorzugt von 10-300 m2/g, besonders bevorzugt von 20-100 m2/g auf. Das Porenvolumen liegt in Regel zwischen 0.1 und 1 ml/g, bevorzugt von 0.15 bis 0.6 ml/g, besonders bevorzugt von 0.2 bis 0.4 ml/g. Der mittlere, durch Hg-Penetrationsanalyse bestimmbare Porendurchmesser liegt zwischen 0.008 und 0.06 um, bevorzugt zwischen 0.01 und 0.04 μm.
Die Propan-Dehydrierung wird bei Temperaturen von 300-800°C, bevorzugt 450-700°C,und bei Drücken von 10 mbar bis 100 bar, bevorzugt 100 mbar bis 40 bar mit einer WHSV (Weight Hourly Space Velocity; in [ (g Edukt) (g Kat) ^-h"1] ) von 0.01 bis 100, bevorzugt 0.1 bis 20 durchgeführt. Neben dem zu dehydrierenden Kohlenwasserstoff können Verdünnungsmittel wie beispielsweise C02, N2, Edelgase oder Dampf zugegen sein. Gegebenenfalls, d.h bei scharfen Reaktionsbedingungen kann zum Kohlenwasserstoffström Wasserstoff zugegeben werden, wobei das Verhältnis von Wasserstoff zu Kohlenwasserstoffström von 0.1 bis 100 bevorzugt von 1-20 betragen kann. Der zugesetzte Wasserstoff dient dazu, den auf der Oberfläche des Katalysators durch Verkokung entstehenden Kohlenstoff zu entfernen.
Neben der kontinuierlichen Zugabe eines Gases, welches die Verkokung während der Reaktion verhindert, gibt es die Möglichkeit, den Katalysator durch Überleiten von Wasserstoff oder Luft von Zeit zu Zeit zu regenerieren. Die Regenerierung selbst findet bei Temperaturen im Bereich 300-900°C, bevorzugt 400-800°C mit einem freien Oxidationsmittel, vorzugsweise mit Luft oder in reduktiver Atmosphäre vorzugsweise mit Wasserstoff statt. Die Regenerierung kann bei Unterdruck, atmosphärischem Druck oder Überdruck betrieben werden. Bevorzugt sind Drucke im Bereich 500 mbar bis 100 bar.
Beispiele:
Katalysatorherstellung:
Beispiel 1-4
Zu einer Lösung von 24.85 g ZrOCl2-H20 und 1.33 g La (N03) 3-6H20 in 50 ml Wasser wurde unter Rühren eine 4 M NH3-Lösung gegeben, bis keine Niederschlagsbildung mehr zu beobachten war. Der Niederschlag wurde abfiltriert, mit Wasser chloridfrei gewaschen und 16 Stunden bei 120°C getrocknet. Der getrocknete Niederschlag wurde in 50 ml einer 0.02 M (NH4) 2Cr04-Lösung suspendiert und die überstehende Lösung bei 50°C eingedampft. Der Rückstand wurde 16 Stunden bei 120°C getrocknet und 4 Stunden bei 600°C calciniert. Der fertige Katalysator enthielt 0.66% Chrom und 5.3% Lanthan. Die— kristalline Phase der Zirkondioxide wurde röntgenographisch als überwiegend tetragonal bestimmt. Die Primärteilchengröße des Zirkondioxids wurde mit TEM zu etwa 5 nm bestimmt.
In Beispiel 1 wurde der frische Katalysator verwendet. Für Beispiel 2 wurde der gleiche Katalysator nach Regenerierung bei 500°C mit Lu tsauerstoff verwendet. Für Beispiel 3 wurde der zum zweiten Mal, für Beispiel 4 zum dritten Mal mit Luftsauerstoff regenerierte Katalysator eingesetzt.
Beispiel 5 und 6
Ein Katalysator wurde durch Tränkung von Zr02 (Träger SN 9316335, Fa. Norton, 46 m2/g, weitgehend monoklin) mit Pt(N03)2 und Sn(OAc) 2 hergestellt. Der Pt-Gehalt betrug 1 Gew.-%, der Sn-Gehalt 0.5 Gew.-%. Der Katalysator wurde 3 Stunden bei 650°C calciniert.
Beispiel 7
Ein Katalysator wurde durch Tränkung eines weitgehend monoklinen Zr02 (Träger SN 9316321, Fa. Norton, 49 m2/g) mit einer Lösung von 0.821 g Cr(N03)3 x 9H20 in 2.5 ml Wasser und anschließendes Tränken mit einer Lösung von 1.763 g La(N03) in 2.5 ml Wasser herge- stellt. Der Katalysator wurde 16 Stunden bei 120°C getrocknet und 2 Stunden bei 500°C calciniert. Der fertige Katalysator wies einen Chrom-Gehalt von 0.9% und einen Lanthan-Gehalt von 4.5 Gew.-% auf .
Vergleichsversuche VI - V4
Die Vergleichskatalysatoren (VI: 10% Cr/Al203, V2 : 1% Cr/Al203 und V3 : 5% Cr/Al2θ3) wurden durch Tränkung von α-Al203 (9.5 m2/g) mit unterschiedlichen Mengen Cr(Nθ3)3 hergestellt. Diese Katalysatoren wurden 6 Stunden bei 120°C getrocknet und anschließend 2 Stunden bei 500°C calciniert. Der Vergleichskatalysator V4 wurde durch Tränkung des gleichen Al203-Trägers mit Pt(N03)2 hergestellt. Der Katalysator wurde 16 Stunden bei 120°C getrocknet und anschließend 2 Stunden bei 500°C calciniert.
Dehydrierung
Die Dehydrierung wurde in einem Mikrofestbett-Pulsreaktor bei einer Temperatur von 500°C durchgeführt. Dabei wurden etwa 0.6 g des Katalysators in ein Mikrofestbett eingewogen und pulsierend d.h. mit einem regelmäßig unterbrochenen Strom von einem Propangas ohne Zusatz von Wassrestoff (ohne H2) bei atmosphärischem Druck beaufschlagt. Die Reaktionsprodukte wurden für jeden Pul"s~ mittels on-line GC quantitativ erfaßt. Zwischen zwei aufeinanderfolgenden Propan-Pulsen (ca. 1,5 min Abstand) strömte Helium-Trägergas durch den Reaktor.
Ein einzelner Puls enthielt ca. 100 μl Propan. Die Strömungsgeschwindigkeit des Trägergases betrug ca. 21,5 ml/min. Die Verweilzeit betrug je nach Schütthöhe des Katalysators (lObis 25 mm) etwa 1 bis 2 Sekunden. Die Belastung des Katalysators WHSV; siehe oben) während eines Pulses betrug, ebenfalls in Abhängigkeit von der Schütthöhe, 1.7 bis 3.4. Die erzielten Ergebnisse können Tabelle 1 entnommen werden und beziehen sich auf den maximal erreichten Umsatz.
Tab. 1:
Katalysatorleistung bei Propan-Dehydrierung im Pulsreaktor
Beispiel Katalysator Verweilzeit [s] Schütthöhe A [%] U [%] Sei. [%]
1 La/Cι7Zr02 0.8 15 mm 50 54 92
2 La/Cr/ Zr02 0.8 15 mm 49 53 92
3 La/Cr/ Zr02 0.8 15 mm 47 51 92
4 La/Cr/ 2r02 0.8 15 mm 49 53 92
5 1 % Pt/0.5% Sn/ ZrO2 1 .2 23 mm 49 53 92
6 1 % Pt/0.5% Sn/ ZrO2 1 .2 23 mm 43 44 97
7 La/Cr/ Zr02 1 .3 24 mm 35 36 96
V 1 10 % Cr/AI2O3 1 .3 25 mm 25 26 96
V 2 1 % Cr/ AI203 1 .3 24 mm 14 18 79
V 3 5 % Cr/ Al203 1 .2 23 mm 22 23 95
V 4 1 % Pt/ AI203 1 .3 24 mm 5 59 9
Es ist darauf hinzuweisen, daß der gegenüber der Gleichgewichts- läge (500°C) wesentlich höheren Umsatz durch den Pulsbetrieb Puls- fahrweise erzielt wird, bei dem sich aufgrund der kurzen Verweil - zeit und dem Abstand von etwa 1.5 min zwischen den Pulsen kein thermodynamisches Gleichgewicht einstellt. Dennoch gestattet diese Methode eine gute Vergleichbarkeit der Selektivität bei ho- hem Umsatz .
Mit den erfindungsgemäßen Katalysatoren werden bei gleicher Temperatur höhere Umsätze als bei den Vergleichskatalysatoren bei vergleichbar hoher Selektivität erzielt. Die Ausbeuten liegen deshalb bei den erfindungsgemäßen Katalysatoren signifikant höher als bei den Vergleichskatalysatoren.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Olefinen mit zwei bis fünf Kohlenstoffatomen in der längsten Kette durch Dehydrierung entsprechender Paraffinkohlenwasserstoffe an einem Katalysator, dadurch gekennzeichnet, daß ein Katalysator eingesetzt wird, der ein Oxid eines Elements der Gruppe IV B des Periodensystems enthält.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß ein Katalysator eingesetzt wird, der ferner mindestens ein Element ausgewählt aus Elementen der VIII. Nebengruppe und/oder ein Element der sechsten Nebengruppe und/oder Rhenium und/ oder Zinn und/oder eine Verbindung eines Alkali- oder Erdalkalimetalls, eine Verbindung der dritten Haupt- oder Nebengruppe und/oder Zink enthält.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß Propylen aus Propan gewonnen wird.
4. Katalysator insbesondere zur Herstellung von Propylen aus Propan oder anderen olefinisch ungesättigten Kohlenwasserstoffen aus entsprechenden gesättigten Kohlenwasserstoffen durch Dehydrierung, enthaltend ein Oxid eines Elements der Gruppe IV B des Periodensystems.
5. Katalysator nach Anspruch.4 , enthaltend ferner mindestens ein Element ausgewählt aus Elementen der achten Nebengruppe und/ oder ein Element der sechsten Nebengruppe und/oder Rhenium und/oder Zinn und/oder eine Verbindung eines Alkali- oder Erdalkalimetalls und/oder eine Verbindung der dritten Hauptoder Nebengruppe und/oder Zink.
6. Katalysator nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß die kristalline Modifikation des Übergangsmetalloxids zu mehr als 90% aus einer einheitlichen Phase besteht.
7. Katalysator nach Anspruch 4 oder 5, enthaltend Zirkonoxid.
8. Katalysator nach Anspruch7 , enthaltend Zirkonoxid in der tetragonalen Modifikation.
9. Katalysator nach Anspruch 4 oder 5, enthaltend Titanoxid.
10. Katalysator nach Anspruch 4 oder 5, enthaltend 0.005 bis —- 5 Gew.-% Palladium, Platin, Rhodium und/oder Rhenium.
11. Katalysator nach Anspruch 4 oder 5, enthaltend als Alkalime- 5 tall Natrium oder Kalium.
12. Katalysator nach Anspruch 4 oder 5, enthaltend als Verbindung der dritten Haupt- oder Nebengruppe eine Lanthan-, Yttrium-, Gallium-, Indium- oder Thalliumverbindung.
10
13. Katalysator nach Anspruch 4 oder 5, enthaltend als Verbindung der sechsten Nebengruppe eine Chrom- und/oder Wolframverbind- nung.
15 14. Katalysator nach einem der Ansprüche 1 bis 13, gekennzeichnet durch eine BET-Oberflache zwischen 10 und 500 m2/g.
15. Katalysator nach einem der Ansprüche 1 bis 14, gekennzeichnet durch Poren einer Weite von 2 bis 60 nm, wobei mindestens 10% 20 der Poren eine Weite von mehr als 20 nm aufweisen und das spezifische Porenvolumen 0.1 bis 1 ml/g beträgt.
25
30
35
40
45
PCT/EP1997/006858 1996-12-27 1997-12-09 Verfahren zur herstellung von olefinen, insbesondere von propylen, durch dehydrierung WO1998029365A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP52957298A JP4287909B2 (ja) 1996-12-27 1997-12-09 脱水素によるオレフィン、特にプロピレンの製造方法
AT97953761T ATE235446T1 (de) 1996-12-27 1997-12-09 Verfahren zur herstellung von olefinen, insbesondere von propylen, durch dehydrierung
EP97953761A EP0948475B1 (de) 1996-12-27 1997-12-09 Verfahren zur herstellung von olefinen, insbesondere von propylen, durch dehydrierung
DE59709647T DE59709647D1 (de) 1996-12-27 1997-12-09 Verfahren zur herstellung von olefinen, insbesondere von propylen, durch dehydrierung
KR10-1999-7005839A KR100522986B1 (ko) 1996-12-27 1997-12-09 탈수소화에 의한 올레핀, 특히 프로필렌의 제조 방법
US09/331,052 US6576804B1 (en) 1996-12-27 1997-12-09 Method and catalyst for producing olefins, in particular propylenes, by dehydrogenation
US10/340,282 US6989346B2 (en) 1996-12-27 2003-01-13 Preparation of olefins, particularly of propylene, by dehydrogenation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19654391.6 1996-12-27
DE19654391A DE19654391A1 (de) 1996-12-27 1996-12-27 Katalysator zur selektiven Herstellung von Propylen aus Propan

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/331,052 A-371-Of-International US6576804B1 (en) 1996-12-27 1997-12-09 Method and catalyst for producing olefins, in particular propylenes, by dehydrogenation
US09331052 A-371-Of-International 1997-12-09
US10/340,282 Division US6989346B2 (en) 1996-12-27 2003-01-13 Preparation of olefins, particularly of propylene, by dehydrogenation

Publications (1)

Publication Number Publication Date
WO1998029365A1 true WO1998029365A1 (de) 1998-07-09

Family

ID=7816238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/006858 WO1998029365A1 (de) 1996-12-27 1997-12-09 Verfahren zur herstellung von olefinen, insbesondere von propylen, durch dehydrierung

Country Status (9)

Country Link
US (2) US6576804B1 (de)
EP (1) EP0948475B1 (de)
JP (1) JP4287909B2 (de)
KR (1) KR100522986B1 (de)
AT (1) ATE235446T1 (de)
DE (2) DE19654391A1 (de)
ES (1) ES2196390T3 (de)
MY (1) MY118017A (de)
WO (1) WO1998029365A1 (de)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074298A2 (de) * 1999-08-06 2001-02-07 Basf Aktiengesellschaft Oxidkatalysatoren enthaltend zumindest Silika und Gruppe IVB Oxid
EP1074299A2 (de) * 1999-08-06 2001-02-07 Basf Aktiengesellschaft Multikomponenten-Dehydrierungskatalysatoren
EP1318127A2 (de) * 2001-12-04 2003-06-11 Rohm And Haas Company Verbessertes Verfahren zu Herstellung von Olefinen, ungesättigten Carbonsäuren und ungesättigten Nitrilen ausgehend von Alkanen
WO2005004842A2 (en) 2003-06-30 2005-01-20 Alza Corporation Formulations for coated microprojections containing non-volatile counterions
US6855131B2 (en) 2000-10-13 2005-02-15 Alza Corporation Microprotrusion member retainer for impact applicator
WO2005042054A2 (en) 2003-10-24 2005-05-12 Alza Corporation Pretreatment method and system for enhancing transdermal drug delivery
US7131960B2 (en) 2000-10-13 2006-11-07 Alza Corporation Apparatus and method for piercing skin with microprotrusions
US7291761B2 (en) * 2002-03-13 2007-11-06 Basf Aktiengesellschaft Partial dehydrogenation method using continuous heterogeneous catalysis
US7419481B2 (en) 2000-10-13 2008-09-02 Alza Corporation Apparatus and method for piercing skin with microprotrusions
US7438926B2 (en) 2000-09-08 2008-10-21 Alza Corporation Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure
US7455654B2 (en) 2003-10-28 2008-11-25 Alza Corporation Method and apparatus for reducing the incidence of tobacco use
US7537795B2 (en) 2000-10-26 2009-05-26 Alza Corporation Transdermal drug delivery devices having coated microprotrusions
US7963935B2 (en) 2001-04-20 2011-06-21 Alza Corporation Microprojection array having a beneficial agent containing coating
WO2015017561A1 (en) 2013-07-30 2015-02-05 Zosano Pharma, Inc. Low-profile microneedle patch applicator
US9192749B2 (en) 2000-10-13 2015-11-24 Alza Corporation Microblade array impact applicator
US9421351B2 (en) 2003-10-31 2016-08-23 Alza Corporation Self-actuating applicator for microprojection array
EP3251722A1 (de) 2001-04-20 2017-12-06 ALZA Corporation Mikroprojektionsanordnung mit einer beschichtung, der ein vorteilhaftes mittel enthält und beschichtungsverfahren dafuer
WO2024141479A1 (en) * 2022-12-26 2024-07-04 Basf Se A method for preparation of an olefin from an alcohol

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6696388B2 (en) * 2000-01-24 2004-02-24 E. I. Du Pont De Nemours And Company Gel catalysts and process for preparing thereof
DE10047642A1 (de) * 2000-09-26 2002-04-11 Basf Ag Verfahren zur Dehydrierung von Kohlenwasserstoffen
CN1193824C (zh) * 2001-10-19 2005-03-23 松下电器产业株式会社 纯化催化剂、其制备方法和气体纯化装置
US7390768B2 (en) * 2002-01-22 2008-06-24 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Stabilized tin-oxide-based oxidation/reduction catalysts
DE10219879A1 (de) * 2002-05-03 2003-11-20 Basf Ag Katalysatorträger und Verfahren zu seiner Herstellung
JP4562360B2 (ja) * 2003-07-18 2010-10-13 旭化成株式会社 多孔質結晶性ジルコニア材料、及びその製造方法
US7309480B2 (en) * 2004-04-16 2007-12-18 H2Gen Innovations, Inc. Catalyst for hydrogen generation through steam reforming of hydrocarbons
WO2007033934A2 (de) * 2005-09-20 2007-03-29 Basf Se Verfahren zur ermittlung der tortuosität, katalysatorträger, katalysator und verfahren zur dehydrierung von kohlenwasserstoffen
JP2009167171A (ja) * 2008-01-11 2009-07-30 Rohm & Haas Co プロパンをプロペンに転化するための担持触媒およびその転化のためのプロセスにおけるその使用
US8404104B2 (en) * 2008-06-27 2013-03-26 Uop Llc Hydrocarbon dehydrogenation with zirconia
US20090325791A1 (en) * 2008-06-27 2009-12-31 Wei Pan Hydrocarbon Dehydrogenation with Zirconia
US8431761B2 (en) * 2008-06-27 2013-04-30 Uop Llc Hydrocarbon dehydrogenation with zirconia
US8101541B2 (en) * 2008-07-14 2012-01-24 Sud-Chemie Inc. Catalyst for dehydrogenation of hydrocarbons
US20100331590A1 (en) * 2009-06-25 2010-12-30 Debarshi Majumder Production of light olefins and aromatics
US8293670B2 (en) * 2009-12-09 2012-10-23 Uop Llc Process for the production of propylene
US8624074B2 (en) * 2010-03-22 2014-01-07 Uop Llc Reactor flowscheme for dehydrogenation of propane to propylene
US8680005B2 (en) 2011-01-25 2014-03-25 Basf Se Catalyst from flame-spray pyrolysis and catalyst for autothermal propane dehydrogenation
BR112013019046A2 (pt) * 2011-01-25 2017-05-02 Basf Se método de produção de partículas de catalisador, partículas de catalisador, e, uso das mesmas.
WO2012157578A1 (ja) * 2011-05-13 2012-11-22 国立大学法人東京工業大学 アルコール化合物およびオレフィン化合物の製造用触媒、並びにアルコール化合物およびオレフィン化合物の製造方法
EP2689843A1 (de) 2012-07-26 2014-01-29 Saudi Basic Industries Corporation Alkan-Dehydrierungskatalysator und Prozess für dessen Herstellung
DE102015112612A1 (de) * 2015-07-31 2017-02-02 Leibniz-Institut Für Katalyse E.V. An Der Universität Rostock Verfahren zur Herstellung von Olefinen sowie Katalysator
US10221110B2 (en) * 2016-12-08 2019-03-05 Evonik Degussa Gmbh Dehydrogenation of olefin-rich hydrocarbon mixtures
JP2018177750A (ja) * 2017-04-21 2018-11-15 Jxtgエネルギー株式会社 不飽和炭化水素の製造方法及び脱水素触媒の再生方法
MX2021002182A (es) 2018-08-31 2021-05-14 Dow Global Technologies Llc Metodos para la deshidrogenacion de hidrocarburos.
BR112021003227A2 (pt) 2018-08-31 2021-05-18 Dow Global Technologies Llc método de produção de um material transportador de oxigênio seletivo para hidrogênio.
EP3856408A1 (de) 2018-09-28 2021-08-04 Exelus, Inc. Verbesserter mischmetalloxidkatalysator zur dehydrierung von paraffinen
KR20210104656A (ko) 2018-09-28 2021-08-25 엑슬루스 인크 파라핀 탈수소화에 유용한 개선된 혼합 금속 산화물 촉매
ZA201906807B (en) 2018-11-21 2020-07-29 Indian Oil Corp Ltd Highly active catalyst for dehydrogenation of alkanes and method of preparation thereof
US20220250049A1 (en) * 2019-03-21 2022-08-11 Kellogg Brown & Root Llc Processes for catalytic paraffin dehydrogenation and catalyst recovery
US11168039B2 (en) 2019-05-17 2021-11-09 Exelus, Inc. Mixed metal oxide catalyst useful for paraffin dehydrogenation
WO2020236738A1 (en) * 2019-05-17 2020-11-26 Exelus, Inc. Improved mixed metal oxide catalyst useful for paraffin dehydrogenation
US11364482B2 (en) 2019-05-17 2022-06-21 Exelus, Inc. Mixed metal oxide catalyst useful for paraffin dehydrogenation
WO2020236707A1 (en) * 2019-05-17 2020-11-26 Exelus, Inc. Improved mixed metal oxide catalyst useful for paraffin dehydrogenation
CN110237849A (zh) * 2019-07-03 2019-09-17 福州大学 一种用于丙烷脱氢制丙烯的铂基催化剂及其制备方法
CN110237840B (zh) * 2019-07-04 2020-09-15 中国科学院大连化学物理研究所 一种铂单原子催化剂的制备及其在丙烷脱氢制丙烯反应中的应用
US20230090704A1 (en) * 2020-02-26 2023-03-23 Basf Corporation Catalyst compositions and methods of preparation and use thereof
WO2021178115A1 (en) * 2020-03-06 2021-09-10 Exxonmobil Chemical Patents Inc. Processes for upgrading alkanes and alkyl aromatic hydrocarbons
KR20220137945A (ko) * 2020-03-06 2022-10-12 엑손모빌 케미칼 패턴츠 인코포레이티드 알칸 및 알킬 방향족 탄화수소의 업그레이드 방법
US20240316544A1 (en) 2021-08-11 2024-09-26 Exxonmobil Chemical Patents Inc. Processes for Regenerating Catalysts and for Upgrading Alkanes and/or Alkyl Aromatic Hydrocarbons
WO2024059600A1 (en) 2022-09-14 2024-03-21 Dow Global Technologies Llc Methods for dehydrogenating hydrocarbons utilizing regenerators
WO2024059553A1 (en) 2022-09-14 2024-03-21 Dow Global Technologies Llc Methods for dehydrogenating hydrocarbons
WO2024059552A1 (en) 2022-09-14 2024-03-21 Dow Global Technologies Llc Methods for dehydrogenating hydrocarbons utilizing combustion units
WO2024059551A1 (en) 2022-09-14 2024-03-21 Dow Global Technologies Llc Methods for dehydrogenating hydrocarbons utilizing countercurrent flow regenerators

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE421888A (de) *
US2098959A (en) * 1934-05-02 1937-11-16 Phillips Petroleum Co Processes for converting hydrocarbons
US2375021A (en) * 1939-03-25 1945-05-01 Universal Oil Prod Co Treatment of hydrocarbons
BE809873A (en) * 1972-05-03 1974-05-16 Chromium oxide/alumina hydrocarbon conversion catalysts - contg titanium dioxide for increased selectivity and activity
WO1989004717A1 (en) * 1987-11-17 1989-06-01 Veba Oel Aktiengesellschaft Metallic oxide powders, their mixtures, systems of mixed metallic oxide powders, their mixtures and their use for catalytic dehydration of hydrocarbons
WO1990006907A1 (de) * 1988-12-12 1990-06-28 Linde Aktiengesellschaft Verfahren und katalysator zur dehydrierung oder dehydrozyklisierung von kohlenwasserstoffen
EP0441430A1 (de) * 1990-02-07 1991-08-14 SNAMPROGETTI S.p.A. Katalytische Dehydrierung von C2-C5-Paraffinen
EP0559509A1 (de) * 1992-03-02 1993-09-08 Institut Francais Du Petrole Verfahren zur Dehydrierung von aliphatischen, gesättigten Kohlenwasserstoffen zu olefinischen Kohlenwasserstoffen
EP0730906A1 (de) * 1995-03-08 1996-09-11 Mitsubishi Chemical Corporation Katalysator und Verfahren für die selektive Oxidation von Wasserstoff und für die Dehydrierung von Kohlenwasserstoffen

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4131628A (en) * 1977-02-22 1978-12-26 Uop Inc. Hydrocarbon dehydrogenation using nonacidic multimetallic catalyst
US4677237A (en) * 1984-11-29 1987-06-30 Uop Inc. Dehydrogenation catalyst compositions
JPS63139050A (ja) * 1986-11-28 1988-06-10 住友化学工業株式会社 ジルコニア質セラミツクス
DE3803894A1 (de) * 1988-02-09 1989-08-10 Degussa Presslinge auf basis von pyrogen hergestelltem titandioxid, verfahren zu ihrer herstellung und ihre verwendung
US4891343A (en) * 1988-08-10 1990-01-02 W. R. Grace & Co.-Conn. Stabilized zirconia
US5510553A (en) 1989-05-12 1996-04-23 Fina Research, S.A. Catalytic dehydrogenation of alkylaromatic hydrocarbons
EP0403462B1 (de) 1989-05-12 1996-12-18 Fina Research S.A. Verfahren zur katalytischen Dehydrierung von Kohlenwasserstoffen
US5089455A (en) * 1989-08-11 1992-02-18 Corning Incorporated Thin flexible sintered structures
JPH0380937A (ja) * 1989-08-25 1991-04-05 Tonen Corp 炭化水素の水蒸気改質触媒及びその製造方法
GB9026952D0 (en) * 1990-12-12 1991-01-30 Tioxide Group Services Ltd Stabilised metal oxides
US5243122A (en) * 1991-12-30 1993-09-07 Phillips Petroleum Company Dehydrogenation process control
US5254787A (en) * 1992-09-08 1993-10-19 Mobil Oil Corp. Dehydrogenation and dehydrocyclization using a non-acidic NU-87 catalyst
US5447898A (en) * 1993-09-21 1995-09-05 Shell Oil Company Process for the preparation of zirconia
GB9322358D0 (en) * 1993-10-29 1993-12-15 Johnson Matthey Plc Pigmentary material
US5600046A (en) * 1993-12-16 1997-02-04 Uop Combination dehydrocyclodimerization and dehydrogenation process for producing aromatic and olefin products
US5401893A (en) * 1993-12-16 1995-03-28 Uop Combination dehydrocyclodimerization and dehydrogenation process for producing aromatic and olefin products
US5510557A (en) 1994-02-28 1996-04-23 Abb Lummus Crest Inc. Endothermic catalytic dehydrogenation process
KR970001064B1 (ko) * 1994-03-15 1997-01-25 한국과학기술연구원 고인성·내저온열화 정방정 지르코니아 복합체의 제조방법
WO1996009263A1 (en) * 1994-09-23 1996-03-28 Alsimag Technical Ceramics, Inc. Improved stabilized zirconia
US5786294A (en) * 1996-05-10 1998-07-28 Northwestern University Crystalline mesoporous zirconia catalysts having stable tetragonal pore wall structure
DE19646538A1 (de) * 1996-10-30 1998-05-07 Inst Angewandte Chemie Berlin Verfahren zur Herstellung von Alkenen, Alkadienen oder Alkenylaromaten durch Dehydrierung der entsprechenden Alkane, Alkene oder Alkylaromaten
US5977013A (en) * 1996-12-19 1999-11-02 Battelle Memorial Institute Catalyst and method for aqueous phase reactions
DE19653629A1 (de) * 1996-12-20 1998-06-25 Basf Ag Monoklines Zirconiumoxid mit hoher Oberfläche
IT1289934B1 (it) * 1997-02-20 1998-10-19 Eniricerche Spa Catalizzatore superacido per la idroisomerizzazione di n-paraffine e procedimento per la sua preparazione
US5877369A (en) * 1997-10-23 1999-03-02 Phillips Petroleum Company Hydrocarbon conversion catalyst composition and processes therefor and therewith
DE19905837A1 (de) * 1999-02-12 2000-08-17 Basf Ag Verfahren zur Racemisierung von optisch aktiven Aminen
DE19807268A1 (de) * 1998-02-20 1999-08-26 Basf Ag Verfahren zur Herstellung von Alkoholen

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE421888A (de) *
US2098959A (en) * 1934-05-02 1937-11-16 Phillips Petroleum Co Processes for converting hydrocarbons
US2375021A (en) * 1939-03-25 1945-05-01 Universal Oil Prod Co Treatment of hydrocarbons
BE809873A (en) * 1972-05-03 1974-05-16 Chromium oxide/alumina hydrocarbon conversion catalysts - contg titanium dioxide for increased selectivity and activity
WO1989004717A1 (en) * 1987-11-17 1989-06-01 Veba Oel Aktiengesellschaft Metallic oxide powders, their mixtures, systems of mixed metallic oxide powders, their mixtures and their use for catalytic dehydration of hydrocarbons
WO1990006907A1 (de) * 1988-12-12 1990-06-28 Linde Aktiengesellschaft Verfahren und katalysator zur dehydrierung oder dehydrozyklisierung von kohlenwasserstoffen
EP0441430A1 (de) * 1990-02-07 1991-08-14 SNAMPROGETTI S.p.A. Katalytische Dehydrierung von C2-C5-Paraffinen
EP0559509A1 (de) * 1992-03-02 1993-09-08 Institut Francais Du Petrole Verfahren zur Dehydrierung von aliphatischen, gesättigten Kohlenwasserstoffen zu olefinischen Kohlenwasserstoffen
EP0730906A1 (de) * 1995-03-08 1996-09-11 Mitsubishi Chemical Corporation Katalysator und Verfahren für die selektive Oxidation von Wasserstoff und für die Dehydrierung von Kohlenwasserstoffen

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1074299A2 (de) * 1999-08-06 2001-02-07 Basf Aktiengesellschaft Multikomponenten-Dehydrierungskatalysatoren
EP1074298A2 (de) * 1999-08-06 2001-02-07 Basf Aktiengesellschaft Oxidkatalysatoren enthaltend zumindest Silika und Gruppe IVB Oxid
US7438926B2 (en) 2000-09-08 2008-10-21 Alza Corporation Methods for inhibiting decrease in transdermal drug flux by inhibition of pathway closure
US7798987B2 (en) 2000-10-13 2010-09-21 Alza Corporation Apparatus and method for piercing skin with microprotrusions
US9192749B2 (en) 2000-10-13 2015-11-24 Alza Corporation Microblade array impact applicator
US6855131B2 (en) 2000-10-13 2005-02-15 Alza Corporation Microprotrusion member retainer for impact applicator
US7131960B2 (en) 2000-10-13 2006-11-07 Alza Corporation Apparatus and method for piercing skin with microprotrusions
US7419481B2 (en) 2000-10-13 2008-09-02 Alza Corporation Apparatus and method for piercing skin with microprotrusions
US8663155B2 (en) 2000-10-26 2014-03-04 Alza Corporation Transdermal drug delivery devices having coated microprotrusions
EP2085109A2 (de) 2000-10-26 2009-08-05 Alza Corporation Transdermale Arzneimittelverabreichungsvorrichtungen mit beschichteten Mikrovorsprüngen
US7537795B2 (en) 2000-10-26 2009-05-26 Alza Corporation Transdermal drug delivery devices having coated microprotrusions
US7963935B2 (en) 2001-04-20 2011-06-21 Alza Corporation Microprojection array having a beneficial agent containing coating
EP3251722A1 (de) 2001-04-20 2017-12-06 ALZA Corporation Mikroprojektionsanordnung mit einer beschichtung, der ein vorteilhaftes mittel enthält und beschichtungsverfahren dafuer
KR100974254B1 (ko) * 2001-12-04 2010-08-06 롬 앤드 하스 캄파니 알칸으로부터 올레핀, 불포화 카르복시산 및 불포화니트릴의 개선된 제조방법
EP1318127A3 (de) * 2001-12-04 2003-08-27 Rohm And Haas Company Verbessertes Verfahren zu Herstellung von Olefinen, ungesättigten Carbonsäuren und ungesättigten Nitrilen ausgehend von Alkanen
EP1318127A2 (de) * 2001-12-04 2003-06-11 Rohm And Haas Company Verbessertes Verfahren zu Herstellung von Olefinen, ungesättigten Carbonsäuren und ungesättigten Nitrilen ausgehend von Alkanen
US6911556B2 (en) 2001-12-04 2005-06-28 Rohm And Haas Company Processes for the preparation of olefins, unsaturated carboxylic acids and unsaturated nitriles from alkanes
US6700029B2 (en) 2001-12-04 2004-03-02 Rohm And Haas Company Processes for the preparation of olefins, unsaturated carboxylic acids and unsaturated nitriles from alkanes
CN1830938B (zh) * 2001-12-04 2010-05-26 罗姆和哈斯公司 由烷烃制备不饱和羧酸的方法
KR100965487B1 (ko) 2001-12-04 2010-06-24 롬 앤드 하스 캄파니 알칸으로부터 불포화 카르복시산의 개선된 제조방법
SG105565A1 (en) * 2001-12-04 2004-08-27 Rohm & Haas Improved processes for the preparation of olefins, unsaturated carboxylic acids and unsaturated nitriles from alkanes
KR100974127B1 (ko) * 2002-03-13 2010-08-04 바스프 에스이 연속적으로 불균질 촉매 처리하는 부분 탈수소화 방법
US7291761B2 (en) * 2002-03-13 2007-11-06 Basf Aktiengesellschaft Partial dehydrogenation method using continuous heterogeneous catalysis
WO2005004842A2 (en) 2003-06-30 2005-01-20 Alza Corporation Formulations for coated microprojections containing non-volatile counterions
US7579013B2 (en) 2003-06-30 2009-08-25 Alza Corporation Formulations for coated microprojections containing non-volatile counterions
WO2005042054A2 (en) 2003-10-24 2005-05-12 Alza Corporation Pretreatment method and system for enhancing transdermal drug delivery
US7455654B2 (en) 2003-10-28 2008-11-25 Alza Corporation Method and apparatus for reducing the incidence of tobacco use
US9421351B2 (en) 2003-10-31 2016-08-23 Alza Corporation Self-actuating applicator for microprojection array
WO2015017561A1 (en) 2013-07-30 2015-02-05 Zosano Pharma, Inc. Low-profile microneedle patch applicator
WO2024141479A1 (en) * 2022-12-26 2024-07-04 Basf Se A method for preparation of an olefin from an alcohol

Also Published As

Publication number Publication date
DE19654391A1 (de) 1998-07-02
US6989346B2 (en) 2006-01-24
US20030163012A1 (en) 2003-08-28
JP4287909B2 (ja) 2009-07-01
KR20000062355A (ko) 2000-10-25
KR100522986B1 (ko) 2005-10-21
US6576804B1 (en) 2003-06-10
EP0948475A1 (de) 1999-10-13
EP0948475B1 (de) 2003-03-26
DE59709647D1 (de) 2003-04-30
JP2001519771A (ja) 2001-10-23
MY118017A (en) 2004-08-30
ATE235446T1 (de) 2003-04-15
ES2196390T3 (es) 2003-12-16

Similar Documents

Publication Publication Date Title
EP0948475B1 (de) Verfahren zur herstellung von olefinen, insbesondere von propylen, durch dehydrierung
EP1074301B1 (de) Katalysator mit bimodaler Porenradienverteilung
EP0714872B1 (de) Katalysator für die Dehydrierung von C6-bis C15-Paraffinen
DE10060099A1 (de) Regenerierung eines Dehydrierkatalysators
WO1990006907A1 (de) Verfahren und katalysator zur dehydrierung oder dehydrozyklisierung von kohlenwasserstoffen
DE19937106A1 (de) Multikomponenten-Katalysatoren
DE2745456B2 (de) Verfahren zur Hydroentalkylierung von aromatischen Alkylkohlenwasserstoffen in Gegenwart eines Trägerkatalysators
EP1042066B1 (de) Verfahren zur herstellung oxidischer katalysatoren, die kupfer in einer oxidationsstufe grösser als 0 enthalten
DE69801798T2 (de) Verfahren zur Dehydrierung von gesättigten aliphatischen Kohlenwasserstoffen in olefinischen Kohlenwasserstoffen
EP1074298A2 (de) Oxidkatalysatoren enthaltend zumindest Silika und Gruppe IVB Oxid
WO2008135581A1 (de) Iridium-katalysatoren für umsetzung von kohlenwasserstoffen in gegenwart von wasserdampf und insbesondere für die dampfdealkylierung von alkyl-substituierten aromatischen kohlenwasserstoffen
WO2006094746A1 (de) Katalysator zur acetoxylierung von c2-c9-kohlenwasserstoffen
WO2008135582A1 (de) Iridium-palladium-katalysatoren für umsetzung von kohlenwasserstoffen in gegenwart von wasserdampf und insbesondere für die dampfdealkylierung von alkyl-substituierten aromatischen kohlenwasserstoffen
DE19600741A1 (de) Katalysator und dessen Verwendung bei der heterogenkatalytischen instationären oxidativen Dehydrierung von Alkylaromaten und Paraffinen
EP1351765B1 (de) Katalysator mit bimodaler porenradienverteilung
WO2007051852A2 (de) Verfahren zur dealklierung von alkyl-substituierten aromatischen kohlenwasserstoffen mit wasserdampf
EP0900127A1 (de) Katalysator zur selektiven aromatisierung
WO2007051855A2 (de) Verfahren zur herstellung von benzol und alkylaromaten durch autotherme steam-dealkylierung
WO2007051856A1 (de) Verfahren zur aromatisierung von nichtaromaten und anschliessende dealkylierung von alkyl-substituierten aromatischen kohlenwasserstoffen mit wasserdampf
EP0953558A1 (de) Verfahren zur Darstellung von Hydroxylgruppen enthaltenden aromatischen Verbindungen
DE19727021A1 (de) Verfahren zur Herstellung von C8-Aromaten aus Butenen
WO2002051543A1 (de) Multikomponenten-katalysatoren
DE10013934A1 (de) Poröse dotierte Titanoxide als selektive Oxiations- und Dehydrierkatalysatoren
WO2007051854A2 (de) Verfahren zur aromatisierung von nichtaromatischen kohlenwasserstoffen mit wasserdampf
WO1997041192A1 (de) Katalysator und seine verwendung zur dehydrierung von paraffinischen/naphthenischen kohlenwasserstoffen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997953761

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09331052

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 529572

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019997005839

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1997953761

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997005839

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997953761

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997005839

Country of ref document: KR