WO2012157578A1 - アルコール化合物およびオレフィン化合物の製造用触媒、並びにアルコール化合物およびオレフィン化合物の製造方法 - Google Patents

アルコール化合物およびオレフィン化合物の製造用触媒、並びにアルコール化合物およびオレフィン化合物の製造方法 Download PDF

Info

Publication number
WO2012157578A1
WO2012157578A1 PCT/JP2012/062202 JP2012062202W WO2012157578A1 WO 2012157578 A1 WO2012157578 A1 WO 2012157578A1 JP 2012062202 W JP2012062202 W JP 2012062202W WO 2012157578 A1 WO2012157578 A1 WO 2012157578A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
group
alcohol
catalyst
formula
Prior art date
Application number
PCT/JP2012/062202
Other languages
English (en)
French (fr)
Inventor
正和 岩本
哲生 鈴木
Original Assignee
国立大学法人東京工業大学
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 住友化学株式会社 filed Critical 国立大学法人東京工業大学
Publication of WO2012157578A1 publication Critical patent/WO2012157578A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/08Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of gallium, indium or thallium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/14Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of germanium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/24Chromium, molybdenum or tungsten
    • B01J23/26Chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/20Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms
    • C07C1/207Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon starting from organic compounds containing only oxygen atoms as heteroatoms from carbonyl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/32Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring increasing the number of carbon atoms by reactions without formation of -OH groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/61Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
    • C07C45/67Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
    • C07C45/68Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2521/00Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
    • C07C2521/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2523/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
    • C07C2523/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of rare earths
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a catalyst capable of producing an alcohol compound and an olefin compound with high efficiency, and a method for producing an alcohol compound and an olefin compound using the catalyst.
  • Non-patent document 1 describes a method of synthesizing acetone from a mixture of ethanol and water using pyrochlore crystals as a catalyst.
  • Non-Patent Document 1 describes that a catalyst prepared by adding copper to pyrochlore crystals promotes acetone production and by-produces hydrocarbons such as methane, ethylene, and propylene.
  • An object of the present invention is to provide a catalyst capable of producing an alcohol compound and an olefin compound with high efficiency, and a method for producing an alcohol compound and an olefin compound using the catalyst.
  • the present invention is selected from the group consisting of an alcohol compound represented by the following formula (1), an alcohol compound having at least one carbon number greater than the carbon number of the alcohol compound of the formula (1), and an olefin compound.
  • R 1 to R 3 each independently represents a hydrogen atom, a hydrocarbyl group, a hydroxyl group or a halogen atom.
  • R 4 and R 5 each independently represents a hydrogen atom, a hydrocarbyl group, a hydroxyl group or a halogen atom. ]
  • R 6 to R 10 each independently represents a hydrogen atom, a hydrocarbyl group, a hydroxyl group or a halogen atom.
  • this invention is a group which consists of an alcohol compound and olefin compound of carbon number at least 1 larger than the carbon number of the alcohol compound of this formula (1) from the raw material containing the alcohol compound represented by said formula (1).
  • a method for producing at least one selected from the group consisting of olefin compounds, comprising a catalyst To, those relating to methods of using the catalyst described above.
  • alcohol compounds and olefin compounds can be produced with high efficiency.
  • the catalyst of the present invention comprises an alcohol compound represented by the following formula (1), an alcohol compound having at least one carbon number greater than the carbon number of the alcohol compound of the formula (1), and an olefin compound.
  • R 1 to R 3 each independently represents a hydrogen atom, a hydrocarbyl group, a hydroxyl group or a halogen atom.
  • R 4 and R 5 each independently represents a hydrogen atom, a hydrocarbyl group, a hydroxyl group or a halogen atom. ]
  • R 6 to R 10 each independently represents a hydrogen atom, a hydrocarbyl group, a hydroxyl group or a halogen atom.
  • the hydrocarbyl group as R 1 to R 3 in the above formula (1), R 4 and R 5 in the above formula (2), and R 6 to R 10 in the above formula (3) is preferably 1 to 20 carbon atoms. And more preferably an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and an aralkyl group having 7 to 20 carbon atoms.
  • alkyl group having 1 to 20 carbon atoms examples include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, sec-butyl group, tert-butyl group, n-pentyl group, neopentyl group, Isopentyl, n-hexyl, n-heptyl, n-octyl, n-decyl, n-nonyl, n-decyl, n-dodecyl, n-tridecyl, n-tetradecyl, n -Pentadecyl group, n-hexadecyl group, n-heptadecyl group, n-octadecyl group, n-nonadecyl group, n-eicosyl group.
  • Examples of the aryl group having 6 to 20 carbon atoms include phenyl group, 2-tolyl group, 3-tolyl group, 4-tolyl group, 2,3-xylyl group, 2,4-xylyl group, and 2,5-xylyl group.
  • Examples of the aralkyl group having 7 to 20 carbon atoms include benzyl group, (2-methylphenyl) methyl group, (3-methylphenyl) methyl group, (4-methylphenyl) methyl group, and (2,3-dimethyl).
  • the hydrocarbyl group may have a substituent.
  • substituent include a halogen atom and a hydroxyl group.
  • halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. .
  • Examples of the halogen atom as R 1 to R 3 in the above formula (1), R 4 and R 5 in the above formula (2), and R 6 to R 10 in the above formula (3) include, for example, a fluorine atom and a chlorine atom , Bromine atom and iodine atom.
  • Examples of the alcohol compound represented by the formula (1) include ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, isobutanol, n-pentanol, 2-pentanol, 3-pentanol, and isopropanol.
  • aldehyde compound represented by the formula (2) examples include acetaldehyde, propionaldehyde, butyraldehyde, 2-methylpropionaldehyde, 3-hydroxybutyraldehyde, n-pentylaldehyde, n-hexylaldehyde, n-heptylaldehyde, Examples include n-octylaldehyde, 3-ethylhexylaldehyde, benzylaldehyde, 3-phenylpropionaldehyde, and 3-phenylbutyraldehyde, and obtained by dehydrogenating an alcohol compound represented by formula (1).
  • the aldehyde compound represented by the formula (2) is preferably acetaldehyde, and more preferably acetaldehyde (bioacetaldehyde) derived from a biological resource (biomass).
  • Examples of the ketone compound represented by the formula (3) include acetone, 2-butanone, 2-pentanone, 3-pentanone, 2-hexanone, 3-hexanone, 2-heptanone, 3-heptanone, 4-heptanone, 3 -Ethyl-2-pentanone, 2-octanone, 3-octanone, 4-octanone, methyl isopropyl ketone, diisopropyl ketone, methyl isobutyl ketone, diisobutyl ketone and diacetone alcohol, and also represented by the formula (2)
  • a ketone compound obtained using an aldehyde compound as a precursor may be used.
  • the precursor of the aldehyde compound represented by the formula (2) may be an alcohol compound represented by the formula (1).
  • the ketone compound represented by the formula (3) is a ketone compound obtained by a reaction (hereinafter also referred to as ketination) in which the aldehyde compound represented by the formula (2) is reacted to form a ketone compound.
  • You may provide the ketonization process of ketating the aldehyde compound represented by Formula (2).
  • the ketonization step may be carried out either inside or outside the reactor used in the present invention, but is preferably carried out inside the reactor. In the ketonization step, it is preferable to use the catalyst of the present invention.
  • the ketonization step is preferably carried out using the catalyst of the present invention in the reactor used in the present invention.
  • the aldehyde compound represented by the formula (2) used in the ketonyization step may be an aldehyde compound obtained in the dehydrogenation step. That is, when the raw material containing the alcohol compound represented by formula (1) is supplied into the reactor used in the present invention, the alcohol compound represented by formula (1) is dehydrogenated and represented by formula (2). In some cases, a raw material containing the ketone compound represented by the formula (3) obtained by ketination of the aldehyde compound represented by the formula (2) may be obtained.
  • the ketone compound represented by the formula (3) is preferably acetone, more preferably acetone derived from biological resources (biomass) (bioacetone).
  • the conversion alcohol may be a primary or secondary alcohol in which hydrogen is bonded to the carbon at the 1-position bonded to the hydroxyl group.
  • the aldehyde compound is a primary alcohol or the ketone compound is a secondary alcohol. If the alcohol for conversion is primary, it is converted to an aldehyde compound, and if it is secondary, it is converted to a ketone compound.
  • the primary alcohol and secondary alcohol produced by conversion by the conversion alcohol may themselves be conversion alcohol.
  • An alcohol for conversion is an aldehyde compound and a ketone compound produced by converting an aldehyde compound into a primary alcohol or a ketone compound into a secondary alcohol, resulting from the alcohol for conversion, and having the formula (2) or formula (3) If it satisfies, it can be regarded as an aldehyde compound and a ketone compound contained in the raw material used in the present invention.
  • the alcohol for conversion is an alcohol having a function of converting a carbon-oxygen double bond of an aldehyde compound or a ketone compound into a hydroxyl group, and the hydroxyl group of itself is converted into a carbon-oxygen double bond.
  • Examples of the alcohol for conversion include methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, isobutanol, n-pentanol, 2-pentanol, 3-pentanol, isopentanol, n-hexanol, n-heptanol, 4-heptanol, 3-ethyl-2-pentanol, n-octanol, 3-ethylhexanol, ethylene glycol, propylene glycol, 1,4-butanediol, glycerin, 1-phenylethanol, 2-phenylethanol, 3-phenylpropanol, 3-phenylbutanol, and the like, preferably methanol, ethanol, n-propanol, 2-propanol, n-butanol, 2-butanol, isobutanol, n-pentanol,
  • the catalyst of the present invention is selected from the group consisting of an alcohol compound represented by the above formula (1) and an alcohol compound having at least one carbon number greater than the carbon number of the alcohol compound of the formula (1) and an olefin compound. At least one species can be provided.
  • the number of carbon atoms of the alcohol compound represented by the above formula (1) is n
  • the number of carbons at least one greater than the number of carbon atoms of the alcohol compound is n ⁇ m ⁇ 1
  • m is the reaction Represents the number of molecules involved in
  • n and m are integers of 2 or more.
  • the carbon number of the alcohol compound represented by the above formula (1) is 2
  • the number of carbons at least one larger than the carbon number of the alcohol compound is 3, 5, 7, 9,. .
  • examples of the alcohol compound represented by the above formula (1) are ethanol
  • examples of the alcohol compound having at least one carbon number greater than that of the alcohol compound include isopropanol, 2-pentanol, 4 -Heptanol, 3-ethyl-2-pentanol, etc.
  • olefin compounds having at least one carbon number greater than the carbon number of the alcohol compound include propylene, 1-pentene, trans- and cis-2-pentene, n-heptene, trans- and cis-2-heptene, trans- and cis-3-heptene, 3-ethyl-1-pentene, 3-ethyl-2-pentene and the like.
  • trans- and cis- refers to “trans-form and cis-form” of structural isomers, respectively.
  • the catalyst of the present invention is selected from the group consisting of an aldehyde compound represented by the above formula (2) and a conversion alcohol, and an alcohol compound and an olefin compound having at least one carbon number greater than that of the aldehyde compound.
  • n is the carbon number of the aldehyde compound represented by the above formula (2)
  • the number of carbons at least one greater than the carbon number of the aldehyde compound is n ⁇ m ⁇ 1.
  • n and m are integers of 2 or more.
  • the carbon number of the aldehyde compound represented by the above formula (2) is 2
  • the number of carbons at least one larger than the carbon number of the aldehyde compound is 3, 5, 7, 9,. .
  • the alcohol compound having at least one carbon number larger than the carbon number of the aldehyde compound includes isopropanol, 2-pentanol, 4 -Heptanol, 3-ethyl-2-pentanol and the like
  • olefin compounds having at least one carbon number greater than the carbon number of the aldehyde compound include propylene, 1-pentene, trans- and cis-2-pentene, n-heptene, trans- and cis-2-heptene, trans- and cis-3-heptene, 3-ethyl-1-pentene, 3-ethyl-2-pentene and the like.
  • the catalyst of the present invention is at least one selected from the group consisting of a ketone compound represented by the above formula (3) and an alcohol for conversion, an alcohol compound having the same carbon number as that of the ketone compound, and an olefin compound. Can be seeded. Specifically, when the ketone compound represented by the above formula (3) is acetone, the alcohol compound having the same carbon number as the ketone compound is isopropanol, which is the same as the carbon number of the ketone compound.
  • the olefin compound having a carbon number is propylene.
  • the catalyst of the present invention is preferably a catalyst for producing at least one selected from the group consisting of isopropanol and propylene from ethanol, at least one selected from the group consisting of isopropanol and propylene from acetaldehyde and a conversion alcohol.
  • the catalyst of the present invention comprises a component (A) that is zirconium oxide in an amount of 50% by weight to less than 100% by weight, lithium, sodium, potassium, rubidium, calcium, strontium, barium, scandium, yttrium, cerium, titanium, vanadium, chromium, Component (B) that is at least one element selected from the group consisting of copper, silver, gold, gallium, germanium, and tin (including component (A) and component (B) )) And the total weight is 100% by weight.)
  • the form of the element as the component (B) may be a single element of the element or an oxide of the element. When the element is in the form of an oxide, the weight of the component (B) is the weight of the element contained in the oxide and does not include the weight of oxygen.
  • Component (B) is preferably at least selected from the group consisting of lithium, sodium, potassium, rubidium, calcium, strontium, barium, scandium, yttrium, titanium, vanadium, chromium, copper, silver, gold, gallium, germanium and tin.
  • One element, and more preferably at least one element selected from the group consisting of lithium, sodium, calcium, strontium, barium, scandium, yttrium, vanadium, chromium, copper, silver, gold, gallium and germanium. is there.
  • the component (A) is 50% by weight to less than 100% by weight, the component (B) is more than 0% by weight, and is 50% by weight or less, Preferably, the component (A) is 90% by weight to less than 99.999% by weight, and the component (B) is more than 0.001% by weight and 10% by weight or less (provided that the component (A) and the component ( The total weight of B) is 100% by weight.)
  • the catalyst of the present invention may contain other components in addition to the component (A) and the component (B) as long as the desired effect of the present invention is achieved. It is preferable to consist of a component (A) and a component (B).
  • the catalyst of the present invention can be prepared by mixing the component (A) and the component (B) in a predetermined amount.
  • the “impregnation method” means that a solid catalyst or a solid catalyst precursor is brought into contact with a liquid or dispersion containing a new component or a precursor of a new component, and then a solid catalyst or a solid catalyst precursor is contacted. It is a method of adding a new component to. After the contact, optional operations such as filtration, drying, and firing may be added as necessary.
  • the “sol-gel method” means that a solid containing a catalyst raw material component is generated from a solution containing the catalyst raw material component by operations such as pH adjustment, temperature adjustment and addition of other components, and then, if necessary, filtration, drying, This is a method for obtaining a target solid by adding an arbitrary operation such as calcination.
  • the method of the present invention for producing an alcohol compound and an olefin compound comprises the step of producing an alcohol compound of the formula (1) from a raw material containing the alcohol compound represented by the formula (1).
  • a method for producing at least one selected from the group consisting of an alcohol compound having at least one carbon number greater than the number of carbon atoms and an olefin compound, a raw material comprising an aldehyde compound represented by the above formula (2) and a conversion alcohol From the method for producing at least one selected from the group consisting of an alcohol compound having at least one carbon number greater than the carbon number of the aldehyde compound and an olefin compound, or a ketone compound represented by the above formula (3) and for conversion The same carbon number as that of the ketone compound from a raw material containing alcohol
  • a raw material containing the alcohol compound represented by the above formula (1) and the catalyst described above are contacted in a reactor to produce the alcohol
  • a method for producing at least one selected from the group consisting of an alcohol compound having at least one carbon number greater than the carbon number of the compound and an olefin compound, comprising an aldehyde compound represented by the above formula (2) and a conversion alcohol A process for producing at least one selected from the group consisting of an alcohol compound and an olefin compound having at least one carbon number greater than the carbon number of the aldehyde compound by bringing the raw material and the catalyst described above into contact with each other in a reactor Or a raw material containing a ketone compound represented by the above formula (3) and a conversion alcohol, and In which the catalyst described above is brought into contact with the reactor to produce at least one selected from the group consisting of alcohol compounds and olefin compounds having the same carbon number as that of the ketone compound, more
  • the main reaction mechanism in the method for producing an alcohol compound and an olefin compound of the present invention is a combination of the following basic reactions or basic reactions.
  • Basic reaction 1 a reaction in which an alcohol compound represented by formula (1) is dehydrogenated to produce a carbonyl compound represented by formula (2) and a carbonyl compound represented by formula (3). Examples of this reaction include a reaction in which acetaldehyde is produced from ethanol and a reaction in which acetone is produced from isopropanol.
  • Basic reaction 2 The aldehyde compound represented by the formula (2) is dimerized by the aldol reaction and / or the Tishchenko reaction, and then the ⁇ -ketocarboxylic acid compound produced through several reactions is decarboxylated, and the formula (3) Reaction in which the represented ketone compound is formed.
  • An example of this reaction is a reaction in which acetone is generated from acetaldehyde.
  • Basic reaction 3 Reaction in which a ketone compound represented by the formula (3) reacts with a conversion alcohol to produce a secondary alcohol. An example of this reaction is a reaction in which isopropanol is produced from acetone.
  • Basic reaction 4 Reaction in which a ketone compound represented by formula (3) undergoes aldol condensation to produce diketone alcohol.
  • An example of this reaction is a reaction in which diacetone alcohol is produced from acetone.
  • Basic reaction 5 Reaction in which the alcohol produced in basic reaction 3 and basic reaction 4 is dehydrated to produce an olefin. Examples of this reaction include a reaction in which propylene is produced from isopropanol and a reaction in which mesityl oxide is produced from diacetone alcohol.
  • Crotonaldehyde is converted to butanol-2-ene by a converting alcohol, and further dehydrated to produce 1,3-butadiene.
  • the mesityl oxide is further converted to 4-hydroxy-2-methyl-2-pentene by the converting alcohol, and further dehydrated to produce 4-methylpentadiene.
  • the alcohol compound represented by the above formula (1) when used as a raw material, since the raw alcohol compound itself also has a function of a conversion alcohol, it is necessary to use a conversion alcohol separately. However, a conversion alcohol can be separately added to the raw material in order to improve the conversion efficiency.
  • the reactor used in the present invention only needs to be able to contact the raw material and the catalyst, and in some cases, the conversion alcohol.
  • the reactor include a fixed bed reactor, a fluidized bed reactor, and a batch reactor. From the viewpoint of heat of reaction, the reactor may be an adiabatic reactor, an isothermal reactor, or a heat exchange reactor.
  • the raw material and the catalyst may be contacted in the reactor, or the raw material and the catalyst may be contacted before being supplied to the reactor.
  • the raw material may be liquid or gas.
  • the contact method between the raw material and the catalyst there is a method in which the raw material is heated and gasified and supplied to a reactor filled with the catalyst in advance.
  • the reaction proceeds without using water as the raw material, but it is preferable to perform the reaction using water as the raw material.
  • the amount of water used in this case is represented by the alcohol compound represented by the formula (1), the aldehyde compound represented by the formula (2), and / or the formula (3) contained in the raw material.
  • the ratio (y / x) of the number of moles of water (y) to the number of moles (x) of the ketone compound is preferably 0.01 to 100, more preferably 0.05 to 10, and still more preferably. 0.1-5.
  • reaction temperature is preferably 270 ° C. to 700 ° C., more preferably 300 ° C. to 650 ° C., and still more preferably 350 ° C. to 550 ° C.
  • reaction temperature refers to a temperature at which the catalyst is brought into contact with ethanol as a raw material.
  • reaction pressure is preferably 10 kPa to 100000 kPa, and more preferably 100 kPa to 1000 kPa.
  • reaction pressure refers to the pressure in the reactor in which the catalyst is brought into contact with ethanol or the like as a raw material.
  • raw materials used in the present invention not only raw materials containing unused formulas (1), (2) and (3), but also unreacted formulas (1), (2) and (3) Or a compound obtained by recovering a compound corresponding to the formula (1), the formula (2) and the formula (3) among the generated alcohol, aldehyde and ketone from the outlet of the reactor.
  • Example 1 (Preparation of catalyst A) Zirconium oxide (manufactured by Daiichi Rare Element, RC-100) is sized to 0.3 to 0.6 mm, and after sized zirconium oxide 1.00 g, calcium acetate monohydrate 0.56 g and Millipore water 2. A pore filling body A was obtained by adding 0.23 g of a solution A consisting of 78 g in small amounts while penetrating into zirconium oxide. The pore filling body A was kept in air at 120 ° C. for 3 hours and then kept in air at 500 ° C. for 2 hours to obtain catalyst A.
  • a solution A consisting of 78 g in small amounts while penetrating into zirconium oxide.
  • the pore filling body A was kept in air at 120 ° C. for 3 hours and then kept in air at 500 ° C. for 2 hours to obtain catalyst A.
  • Catalytic reaction A reaction tube made of quartz is filled with 0.5 g of catalyst A, and an ethanol / nitrogen mixed gas having an ethanol concentration of 33 vol% is supplied to the reaction tube at a rate of 11 ml / min, and the reaction is performed at 450 ° C. under normal pressure. I did it.
  • the gas discharged from the gas outlet of the reaction tube was analyzed by gas chromatography to determine the product composition and the production rate. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • the product composition described in the table represents (number of moles of carbon in the product) / (number of moles of carbon in the raw material compound subjected to the reaction) ⁇ 100 (%), and the production rate is It represents the weight of product produced per hour per ml of catalyst.
  • “ACT” represents acetone
  • “IPA” represents isopropanol
  • “C3 ′” represents propylene
  • “PN” represents pentanone
  • C5 ′” represents pentene.
  • per 1 ml of catalyst means a value obtained by dividing the weight of the product actually produced by the volume (ml) of the catalyst used in Examples and Comparative Examples.
  • Example 2 (Catalytic reaction) The same operation as in the catalytic reaction of Example 1 was performed except that the reaction pressure was 200 kPaG. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 3 (Catalytic reaction) The same operation as in the catalytic reaction of Example 2 was performed except that the ethanol / nitrogen mixed gas supplied to the reaction tube contained 16 vol% water. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 4 (Preparation of catalyst B) Zirconium oxide (manufactured by Daiichi Rare Element Co., Ltd., RC-100) is sized to 0.3 to 0.6 mm, 5.00 g of the sized zirconium oxide, 0.0022 g of gallium nitrate and 1.2848 g of Millipore water A pore filling body B was obtained by adding 1.29 g of B while gradually penetrating into the zirconium oxide. The pore-filling body B was kept in air at 120 ° C. for 3 hours, and then kept in air at 500 ° C. for 2 hours to obtain catalyst B.
  • Catalytic reaction Catalyst B was used, an ethanol / nitrogen mixed gas was supplied to the reaction tube at a rate of 12 ml / min, and the same operation as in the catalytic reaction of Example 1 was performed except that the reaction temperature was 430 ° C. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 5 (Catalytic reaction) The same operation as in the catalytic reaction of Example 4 was performed except that the ethanol / nitrogen mixed gas contained 25 vol% ethanol and 25 vol% water. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 6 (Catalytic reaction) The same operation as in Example 5 was performed except that the reaction pressure was 100 kPaG. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 7 (Catalytic reaction) The same operation as in Example 5 was performed except that the reaction pressure was 200 kPaG. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 8 (Preparation of catalyst C) Zirconium oxide (manufactured by Daiichi Rare Element Co., Ltd., RC-100) is sized to 0.18 to 0.3 mm, and the sized zirconium oxide is 3.00 g, a solution comprising 0.067 g of lithium acetate and 0.683 g of Millipore water. 0.75 g of C was added little by little while penetrating into the zirconium oxide to obtain pore filling body C. The pore-filling body C was kept in air at 120 ° C. for 3 hours and then kept in air at 500 ° C. for 2 hours to obtain catalyst C.
  • Example 9 (Catalytic reaction) The same operation as in the catalytic reaction of Example 8 was performed except that the ethanol / nitrogen mixed gas contained 33 vol% water. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 10 (Preparation of catalyst D) Zirconium oxide (manufactured by Daiichi Rare Element, RC-100) is sized to 0.18 to 0.3 mm, and after sized zirconium oxide 2.03 g, 1N sodium hydroxide aqueous solution 0.4493 g is gradually added to zirconium oxide. It added, making it osmose
  • Example 11 (Catalytic reaction) The same operation as in the catalytic reaction of Example 10 was performed except that the reaction temperature was 450 ° C. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 12 (Catalytic reaction) The same operation as in Example 11 was performed except that the ethanol concentration of the ethanol / nitrogen mixed gas was 79 vol%. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 13 (Catalytic reaction) The same operation as in Example 12 was performed, except that the reaction temperature was 490 ° C. and the reaction pressure was 400 kPaG. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 14 (Preparation of catalyst E) Zirconium oxide (manufactured by Daiichi Rare Element Co., Ltd., RC-100) is sized to 0.3 to 0.6 mm, and after sized zirconium oxide 1.001 g, a solution comprising 0.0267 g of potassium acetate and 0.2313 g of Millipore water A pore filling body E was obtained by adding 0.258 g of E in small amounts while penetrating into zirconium oxide. The pore filling body E was kept in air at 120 ° C. for 3 hours and then kept in air at 450 ° C. for 2 hours to obtain catalyst E. (Catalytic reaction) The same operation as the catalytic reaction of Example 1 was performed except that the catalyst E was used. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 15 (Preparation of catalyst F) Zirconium oxide (manufactured by Daiichi Rare Element, RC-100) is sized to 0.3 to 0.6 mm, and 1.02 g of the sized zirconium oxide is composed of 0.0274 g of rubidium hydroxide and 0.1681 g of Millipore water. 0.195 g of the solution F was added little by little while penetrating into the zirconium oxide, and a pore filling body F was obtained. The pore-filling body F was kept in air at 120 ° C. for 3 hours and then kept in air at 450 ° C. for 2 hours to obtain Catalyst E.
  • Example 16 (Preparation of catalyst G) Zirconium oxide (manufactured by Daiichi Rare Element Co., Ltd., RC-100) is sized to 0.18 to 0.3 mm, 1.00 g of the sized zirconium oxide, 0.060 g of scandium acetate and 6.101 g of Millipore water G6.158g was added and it dried with the evaporator and the dried body G was obtained. The dried product G was kept in air at 120 ° C. for 3 hours, and then kept in air at 500 ° C. for 2 hours to obtain catalyst G.
  • Zirconium oxide manufactured by Daiichi Rare Element Co., Ltd., RC-100
  • Catalytic reaction The same operation as in the catalytic reaction of Example 2 was carried out except that the catalyst G was used and the ethanol / nitrogen mixed gas contained 50 vol% water, was supplied at a rate of 12 ml / min with an ethanol concentration of 25 vol%. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 17 (Preparation of catalyst H) Zirconium oxide (manufactured by Daiichi Rare Element, RC-100) is sized to 0.3 to 0.6 mm, and 1.50 g of the sized zirconium oxide is composed of 0.015 g of titanyl acetylacetonate and 30.006 g of ethanol. 7.816 g of the solution H was added and dried with an evaporator to obtain a dried product H. The dried product H was kept in air at 500 ° C. for 2 hours to obtain a catalyst H.
  • Zirconium oxide manufactured by Daiichi Rare Element, RC-100
  • Catalytic reaction The same operation as in the catalytic reaction of Example 1 was performed except that catalyst H was used and an ethanol / nitrogen mixed gas was supplied at a rate of 12 ml / min. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 18 (Preparation of catalyst I) Zirconium oxide (manufactured by Daiichi Rare Element, RC-100) is sized to 0.3 to 0.6 mm. After sized zirconium oxide is 1.00 g, vanadyl acetylacetonate is 0.0029 g and ethanol is 0.2136 g. 0.2165 g of the solution I was added little by little while penetrating into the zirconium oxide to obtain a pore filling body I. The pore filling body I was kept in air at 120 ° C. for 3 hours, and then kept in air at 450 ° C. for 2 hours to obtain Catalyst I. (Catalytic reaction) The same operation as in the catalytic reaction of Example 17 was carried out except that Catalyst I was used. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 19 (Preparation of catalyst J) Zirconium oxide (manufactured by Daiichi Rare Element, RC-100) is sized to 0.3 to 0.6 mm, and after sized zirconium oxide 1.00 g, chromium nitrate nonahydrate 0.0041 g and Millipore water 0. A pore filling body J was obtained by adding 0.2528 g of a solution J consisting of 2541 g while gradually penetrating into zirconium oxide. The pore-filling body J was kept in air at 120 ° C. for 3 hours and then kept in air at 500 ° C. for 2 hours to obtain Catalyst I. (Catalytic reaction) The same operation as in the catalytic reaction of Example 17 was performed except that the catalyst J was used. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 20 (Preparation of catalyst K) Zirconium oxide (manufactured by Daiichi Rare Element Co., Ltd., RC-100) is sized to 0.3 to 0.6 mm, and after sized zirconium oxide 2.00 g, copper nitrate trihydrate 0.0053 g and Millipore water 0. A pore filling body K was obtained by adding 0.4335 g of a solution K consisting of 4282 g while gradually penetrating the zirconium oxide. The pore-filling body K was kept in air at 120 ° C. for 3 hours and then kept in air at 500 ° C. for 2 hours to obtain catalyst K. (Catalytic reaction) The same operation as in the catalytic reaction of Example 17 was carried out except that the catalyst K was used. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 21 (Preparation of catalyst L) Zirconium oxide (manufactured by Daiichi Rare Element Co., Ltd., RC-100) is sized to 0.3 to 0.6 mm. A solution L0 comprising 0.0021 g of germanium chloride and 0.2415 g of hexane is added to 1.00 g of zirconia after sized particles. 2436 g was added little by little while penetrating into the zirconium oxide to obtain a pore-filling body L. The pore-filling body L was kept in air at 120 ° C. for 3 hours, and then kept in air at 500 ° C. for 2 hours to obtain catalyst L. (Catalytic reaction) The same operation as in the catalytic reaction of Example 17 was performed except that the catalyst L was used. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 22 (Preparation of catalyst M) Zirconium oxide (manufactured by Daiichi Rare Element, RC-100) is sized to 0.3 to 0.6 mm, and after sized zirconium oxide 1.00 g, strontium acetate 0.5 hydrate 0.0219 g and Millipore water A pore filling body M was obtained by adding 0.2519 g of a solution M consisting of 0.2300 g while gradually penetrating the zirconium oxide. The pore-filling body M was kept in air at 120 ° C. for 3 hours and then kept in air at 500 ° C. for 2 hours to obtain catalyst M. (Catalytic reaction) The same operation as in the catalytic reaction of Example 17 was carried out except that the catalyst M was used. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 23 (Preparation of catalyst N) Zirconium oxide (manufactured by Daiichi Rare Element, RC-100) is sized to 0.3 to 0.6 mm, and after sized zirconium oxide 1.00 g, a solution comprising 0.0272 g of barium acetate and 0.2361 g of Millipore water. 0.2633 g of N was added little by little while penetrating into the zirconium oxide to obtain a pore filling body N. The pore-filling body N was kept in air at 120 ° C. for 3 hours, and then kept in air at 500 ° C. for 2 hours to obtain catalyst N. (Catalytic reaction) The same operation as in the catalytic reaction of Example 17 was performed except that the catalyst N was used. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 24 (Preparation of catalyst O) Zirconium oxide (manufactured by Daiichi Rare Element, RC-100) is sized to 0.18 to 0.3 mm, and after sized zirconium oxide 2.50 g, yttrium acetate tetrahydrate 0.2250 g and Millipore water 0. A solution O composed of 3750 g was added and dried with an evaporator to obtain a dried product O. The dried product O was held in air at 120 ° C. for 3 hours and then at 500 ° C. for 2 hours to obtain catalyst O. (Catalytic reaction) The same operation as in the catalytic reaction of Example 16 was performed except that the catalyst O was used. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 25 (Preparation of catalyst P) Zirconium oxide (manufactured by Daiichi Rare Element Co., Ltd., RC-100) is sized to 0.3 to 0.6 mm, and after sized zirconium oxide 1.01 g, cerium nitrate hexahydrate 0.0044 g and Millipore water 0. A pore filling body P was obtained by adding 0.2566 g of a solution P consisting of 2522 g while gradually penetrating the zirconium oxide. The pore-filling body P was kept in air at 120 ° C. for 3 hours and then kept in air at 500 ° C. for 2 hours to obtain catalyst P. (Catalytic reaction) The same operation as in the catalytic reaction of Example 17 was performed except that the catalyst P was used. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 26 (Preparation of catalyst Q) Zirconium oxide (manufactured by Daiichi Rare Element Co., Ltd., RC-100) is sized to 0.3 to 0.6 mm, and the solution Q comprising 0.0017 g of silver nitrate and 0.2565 g of Millipore water is added to 1.00 g of the sized zirconium oxide. 0.2582 g was added little by little while penetrating into the zirconium oxide, and a pore filling body Q was obtained. The pore-filling body Q was kept in air at 120 ° C. for 3 hours and then kept in air at 500 ° C. for 2 hours to obtain catalyst Q. (Catalytic reaction) The same operation as in the catalytic reaction of Example 17 was performed except that the catalyst Q was used. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 27 (Preparation of catalyst R) Zirconium oxide (manufactured by Daiichi Rare Element Co., Ltd., RC-100) is sized to 0.3 to 0.6 mm, and a solution comprising 0.001 g of gold chloride and 0.2565 g of Millipore water is added to 1.01 g of the sized zirconium oxide. A pore filling body R was obtained by adding 0.2595 g of R in small amounts while penetrating into zirconium oxide. The pore-filling body R was kept in air at 120 ° C. for 3 hours and then kept in air at 500 ° C. for 2 hours to obtain catalyst R. (Catalytic reaction) The same operation as in the catalytic reaction of Example 17 was performed except that the catalyst R was used. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 28 (Preparation of catalyst S) Zirconium oxide (manufactured by Daiichi Rare Element Co., Ltd., RC-100) is sized to 0.3 to 0.6 mm. A pore filling body S was obtained by adding 0.2129 g of a solution consisting of 2105 g while gradually penetrating into zirconium oxide. The pore-filling body S was kept in air at 120 ° C. for 3 hours, and then kept in air at 500 ° C. for 2 hours to obtain catalyst S. (Catalytic reaction) The same operation as in the catalytic reaction of Example 17 was performed except that the catalyst S was used. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 29 (Preparation of catalyst CB) Zirconium oxide (manufactured by Daiichi Rare Element, RC-100) is sized to 0.3 to 0.6 mm. After sized zirconium oxide (3.01 g), gallium nitrate hexahydrate (0.0013 g) and Millipore water (0.001 g) are added. A solution 2C consisting of 7346 g, 0.7359 g, was added little by little while penetrating into the zirconium oxide to obtain a pore filling body 2C. The pore filling body 2C was kept in air at 120 ° C. for 3 hours, and then kept in air at 500 ° C. for 2 hours to obtain a precursor 2C.
  • Example 30 (Catalytic reaction) The same operation as in Example 9 was performed except that 0.1 g of catalyst C was used. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 31 (Catalytic reaction) The same operation as in Example 9 was performed except that the reaction temperature was 410 ° C. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 32 (Catalytic reaction) The same operation as in Example 9 was performed, except that 0.02 g of catalyst C was used and the reaction temperature was 490 ° C. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 40 (Preparation of catalyst A2) Zirconium oxide (manufactured by Daiichi Rare Element Co., Ltd., RSC-HP) is sized to 0.18 to 0.3 mm, and after sized zirconium oxide 12.00 g, calcium acetate monohydrate 0.86 g and Millipore water 10. A solution A2 consisting of 25 g and 2.78 g were added little by little while penetrating into the sized zirconium oxide to obtain a pore filling body A2. The pore-filling body A2 was kept in air at 100 ° C. for 5 hours, and then kept in air at 500 ° C. for 2 hours to obtain catalyst A2. (Catalytic reaction) The same operation as in the catalytic reaction of Example 30 was performed using 0.5 g of the catalyst A2. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Example 41 (Preparation of catalyst O2) Zirconium oxide (manufactured by Daiichi Rare Element, RSC-HP) is sized to 0.18 to 0.3 mm, and 2.00 g of zirconium oxide after sized is added to yttrium acetylacetonate n hydrate (manufactured by Aldrich). A solution O2 consisting of 16 g and 10.9 g of ethanol (manufactured by Kanto Chemical Co., Ltd., purity 99.5%) was added, and ethanol was removed at 50 ° C. and 120 hPa using a rotary evaporator to obtain a dried product O2. The dried product O2 was held in air at 500 ° C.
  • Catalytic reaction The same operation as in the catalytic reaction of Example 40 was performed, except that 0.58 g of catalyst O2 was used and the reaction pressure was 500 kPaG. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Comparative Example 1 (Preparation of comparative catalyst A) Zirconium oxide (manufactured by Daiichi Rare Element, RC-100) was sized to 0.3 to 0.6 mm to obtain Comparative Catalyst A. (Catalytic reaction) The same operation as the catalytic reaction of Example 1 was performed except that the reaction temperature was 400 ° C. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Comparative Example 2 (Catalytic reaction) The same operation as the catalytic reaction of Comparative Example 1 was performed except that the reaction temperature was 450 ° C. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Comparative Example 3 Preparation of comparative catalyst B
  • Zirconium oxide manufactured by Daiichi Rare Element, RC-100
  • Comparative Catalyst B The same operation as in the catalytic reaction of Example 5 was performed except that the reaction temperature was 450 ° C. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Comparative Example 4 (Catalytic reaction) The same operation as the catalytic reaction of Comparative Example 3 was performed except that the reaction pressure was 200 kPaG. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • Comparative Example 7 (Preparation of comparative catalyst C) Zirconium oxide (manufactured by Daiichi Rare Element, RSC-HP) was sized to 0.18 to 0.3 mm to obtain Comparative Catalyst C. (Catalytic reaction) A quartz reaction tube was filled with 0.2 g of the comparison catalyst C, a 33 vol% ethanol / nitrogen mixed gas containing 33 vol% water was supplied to the reaction tube at a rate of 12 ml / min, and the reaction pressure was 200 kPaG at 430 ° C. Reaction was performed. The gas discharged from the gas outlet of the reaction tube was analyzed by gas chromatography to determine the product composition and the production rate. Reaction conditions and results are shown in Tables 1-1 and 1-2.
  • the precipitate RD was kept in the air at 80 ° C. for 12 hours and dried, and then kept in the air at 550 ° C. for 3 hours and then at 710 ° C. for 30 minutes to obtain a fired body RD.
  • the calcined product RD was sized to 0.18 to 0.3 mm to obtain a comparative catalyst D.
  • the copper content in Comparative Catalyst D was 54% by weight.
  • (Catalytic reaction) The same operation as the catalytic reaction of Comparative Example 7 was performed using 0.2 g of Comparative Catalyst D. Reaction conditions and results are shown in Tables 1-1 and 1-2. Comparative Catalyst D to which 54 wt% copper was added produced less isopropanol, propylene and pentene than Comparative Catalyst C to which copper was not added.
  • Example 33 (Production of alcohol compounds and olefin compounds with methanol) A quartz reaction tube was charged with 0.5 g of catalyst C, and a nitrogen mixed gas having an acetone concentration of 5.6 vol%, a water concentration of 32.4 vol%, and a methanol concentration of 25.4 vol% was added at 12 ml / min. The reaction tube was fed at a rate and reacted at 450 ° C. under normal pressure. The gas discharged from the gas outlet of the reaction tube was analyzed by gas chromatography, and the amount of isopropanol and propylene produced relative to the number of moles of acetone supplied was examined. The results are shown in Table 2. In the table, “ACT” represents acetone, “IPA” represents isopropanol, and “C3 ′” represents propylene.
  • Example 34 (Production of alcohol compounds and olefin compounds with ethanol) The same operation as in Example 33 was performed except that a nitrogen mixed gas having an acetone concentration of 5.1 vol%, a water concentration of 33.1 vol%, and an ethanol concentration of 26.0 vol% was used. The results are shown in Table 2.
  • Example 35 (Production of alcohol compounds and olefin compounds with 1-butanol) The same operation as in Example 33 was performed except that a nitrogen mixed gas having an acetone concentration of 5.8 vol%, a water concentration of 33.1 vol%, and a 1-butanol concentration of 23.5 vol% was used. The results are shown in Table 2.
  • Example 36 (Production of alcohol compounds and olefin compounds with 2-butanol) The same operation as in Example 33 was performed except that a nitrogen mixed gas having an acetone concentration of 5.8 vol%, a water concentration of 33.1 vol%, and a 2-butanol concentration of 23.5 vol% was used. The results are shown in Table 2.
  • Example 5 (No alcohol) The same operation as in Example 33 was performed except that a nitrogen mixed gas having an acetone concentration of 6.5 vol% and a water concentration of 33.3 vol% was used. The results are shown in Table 2.
  • Example 6 (Production of alcohol compounds and olefin compounds by hydrogen) The same operation as in Example 33 was performed except that a nitrogen mixed gas having an acetone concentration of 6.4 vol%, a water concentration of 33.2 vol%, and a hydrogen concentration of 25.4 vol% was used. The results are shown in Table 2.
  • Example 37 (Acetone recycling study) The same operation as in the catalytic reaction of Example 8 was performed except that a nitrogen mixed gas having an acetone concentration of 5.5 vol%, an ethanol concentration of 34.1 vol%, and a water concentration of 32.5 vol% was used. Reaction conditions and results are shown in Tables 3-1 and 3-2.
  • Example 38 The same operation as in the catalytic reaction of Example 8 was performed except that a nitrogen mixed gas having an acetone concentration of 2.6 vol%, an ethanol concentration of 34.3 vol%, and a water concentration of 32.9 vol% was used. Reaction conditions and results are shown in Tables 3-1 and 3-2.
  • Example 39 The same operation as in the catalytic reaction of Example 8 was performed except that a nitrogen mixed gas having an acetone concentration of 1.3 vol%, an ethanol concentration of 33.9 vol%, and a water concentration of 32.9 vol% was used. Reaction conditions and results are shown in Tables 3-1 and 3-2.
  • Example 42 (Preparation of catalyst A3) Zirconium oxide pellets (manufactured by Daiichi Rare Element Co., Ltd., RSC-HP) were crushed and sized to 0.18 to 0.3 mm. After sized zirconium oxide 12.00 g, calcium acetate monohydrate 0.64 g and Millipore A solution A3 consisting of 7.69 g of water and 2.79 g were added little by little while penetrating into the sized zirconium oxide to obtain a pore filling body A3. The pore-filled body A3 was kept in air at 100 ° C. for 5 hours, and then kept in air at 500 ° C. for 2 hours to obtain catalyst A3.
  • Example 43 (Acetone recycling study) The same operation as in the acetone recycling study of Example 42 was performed except that 0.58 g of catalyst O2 was used, the acetone concentration was 2.5 vol%, the ethanol concentration was 31.4 vol%, and the water concentration was 32.9 vol%. . Reaction conditions and results are shown in Tables 3-1 and 3-2.
  • Example 44 The same operation as in the acetone recycling study of Example 42 was performed except that 0.1 g of the catalyst A3 was used. Reaction conditions and results are shown in Tables 3-1 and 3-2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Abstract

 アルコール化合物から、その炭素数よりも少なくとも一つ大きいアルコール化合物およびオレフィン化合物の少なくとも1種を製造する触媒、アルデヒド化合物と変換用アルコールとからその炭素数より少なくとも一つ大きいアルコール化合物およびオレフィン化合物の少なくとも1種を製造する触媒、ケトン化合物と変換用アルコールとから、その炭素数と同じアルコール化合物およびオレフィン化合物の少なくとも1種を製造する触媒で、所定量の酸化ジルコニウムと、所定量の添加元素等とを含む触媒、該触媒を用いた上記化合物の製造方法である。

Description

アルコール化合物およびオレフィン化合物の製造用触媒、並びにアルコール化合物およびオレフィン化合物の製造方法
 本発明は、アルコール化合物およびオレフィン化合物を高い効率で製造することができる触媒、並びに該触媒を用いるアルコール化合物およびオレフィン化合物の製造方法に関するものである。
 パイロクロアの結晶を触媒としてエタノールと水の混合物からアセトンを合成する方法が非特許文献1に記載されている。また、非特許文献1では、銅をパイロクロアの結晶に添加して調製した触媒ではアセトン生成が促進され、メタン、エチレン、プロピレン等の炭化水素が副生することが記載されている。
J. Bussi et al.,「Catalytic transformation of ethanol into acetone using copper-pyrochlore catalysts」Applied Catalysis A:General 172(1998)117-129
 ところで、近年の化学品原料の製造分野では、炭酸ガス発生抑制、及び将来の石油資源の価格高騰又は枯渇に備え、化学品原料を石油系資源から非可食性バイオマス資源に転換することが求められている。その中でも、代表的なバイオマス資源であるバイオエタノールからより効率よく化学品を製造する技術が要求されている。
 本発明の課題は、アルコール化合物およびオレフィン化合物を高い効率で製造することができる触媒、並びに該触媒を用いるアルコール化合物およびオレフィン化合物の製造方法を提供することにある。
 すなわち、本発明は、下記式(1)で表されるアルコール化合物から、該式(1)のアルコール化合物の炭素数よりも少なくとも一つ大きい炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造するための、下記式(2)で表されるアルデヒド化合物と変換用アルコールとから、該式(2)のアルデヒド化合物の炭素数より少なくとも一つ大きい炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造するための、または下記式(3)で表されるケトン化合物と変換用アルコールとから、該式(3)のケトン化合物の炭素数と同じ炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造するための触媒であって、
 酸化ジルコニウムである成分(A)50重量%以上100重量%未満と、リチウム、ナトリウム、カリウム、ルビジウム、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、セリウム、チタン、バナジウム、クロム、銅、銀、金、ガリウム、ゲルマニウムおよびスズからなる群から選ばれる少なくとも1種の元素である成分(B)0重量%超50重量%以下とを含む触媒(ただし、成分(A)と成分(B)との合計の重量を100重量%とする。)に係るものである。
Figure JPOXMLDOC01-appb-C000007
[式中、R1~R3は、それぞれ独立に、水素原子、ヒドロカルビル基、水酸基またはハロゲン原子を表す。]
Figure JPOXMLDOC01-appb-C000008
[式中、R4およびR5は、それぞれ独立に、水素原子、ヒドロカルビル基、水酸基またはハロゲン原子を表す。]
Figure JPOXMLDOC01-appb-C000009
[式中、R6~R10は、それぞれ独立に、水素原子、ヒドロカルビル基、水酸基またはハロゲン原子を表す。]
 また、本発明は、上記式(1)で表されるアルコール化合物を含む原料から、該式(1)のアルコール化合物の炭素数よりも少なくとも一つ大きい炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造する方法、上記式(2)で表されるアルデヒド化合物と変換用アルコールとを含む原料から、該アルデヒド化合物の炭素数より少なくとも一つ大きい炭素数アルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造する方法、または上記式(3)で表されるケトン化合物と変換用アルコールとを含む原料から、該ケトン化合物の炭素数と同じ炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造する方法であって、触媒として、上記に記載の触媒を用いる方法に係るものである。
 本発明により、アルコール化合物およびオレフィン化合物を高い効率で製造することができる。
(1)触媒
 本発明の触媒は、下記式(1)で表されるアルコール化合物から、該式(1)のアルコール化合物の炭素数よりも少なくとも一つ大きい炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造するための、下記式(2)で表されるアルデヒド化合物と変換用アルコールとから、該アルデヒド化合物の炭素数より少なくとも一つ大きい炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造するための、または下記式(3)で表されるケトン化合物と変換用アルコールとから、該ケトン化合物の炭素数と同じ炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造するための触媒であって、
 酸化ジルコニウムである成分(A)50重量%以上100重量%未満と、リチウム、ナトリウム、カリウム、ルビジウム、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、セリウム、チタン、バナジウム、クロム、銅、銀、金、ガリウム、ゲルマニウムおよびスズからなる群から選ばれる少なくとも1種の元素である成分(B)0重量%超50重量%以下とを含む(ただし、成分(A)と成分(B)との合計の重量を100重量%とする。)。
Figure JPOXMLDOC01-appb-C000010
[式中、R1~R3は、それぞれ独立に、水素原子、ヒドロカルビル基、水酸基またはハロゲン原子を表す。]
Figure JPOXMLDOC01-appb-C000011
[式中、R4およびR5は、それぞれ独立に、水素原子、ヒドロカルビル基、水酸基またはハロゲン原子を表す。]
Figure JPOXMLDOC01-appb-C000012
[式中、R6~R10は、それぞれ独立に、水素原子、ヒドロカルビル基、水酸基またはハロゲン原子を表す。]
 上記式(1)のR1~R3、上記式(2)のR4およびR5、並びに上記式(3)のR6~R10としてのヒドロカルビル基として、好ましくは、炭素数1~20のヒドロカルビル基であり、より好ましくは、炭素数1~20のアルキル基、炭素数6~20のアリール基、および炭素数7~20のアラルキル基である。
 炭素数1~20のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、ネオペンチル基、イソペンチル基、n-ヘキシル基、n-へプチル基、n-オクチル基、n-デシル基、n-ノニル基、n-デシル基、n-ドデシル基、n-トリデシル基、n-テトラデシル基、n-ペンタデシル基、n-ヘキサデシル基、n-ヘプタデシル基、n-オクタデシル基、n-ノナデシル基、n-エイコシル基が挙げられる。
 炭素数6~20のアリール基としては、例えば、フェニル基、2-トリル基、3-トリル基、4-トリル基、2,3-キシリル基、2,4-キシリル基、2,5-キシリル基、2,6-キシリル基、3,4-キシリル基、3,5-キシリル基、2,3,4-トリメチルフェニル基、2,3,5-トリメチルフェニル基、2,3,6-トリメチルフェニル基、2,4,6-トリメチルフェニル基、3,4,5-トリメチルフェニル基、2,3,4,5-テトラメチルフェニル基、2,3,4,6-テトラメチルフェニル基、2,3,5,6-テトラメチルフェニル基、ペンタメチルフェニル基、2-エチルフェニル基、2,3-ジエチルフェニル基、2,3,4-トリエチルフェニル基、2-n-プロピルフェニル基、2-イソプロピルフェニル基、2-n-ブチルフェニル基、2-sec-ブチルフェニル基、2-tert-ブチルフェニル基、2-n-ペンチルフェニル基、2-ネオペンチルフェニル基、2-n-ヘキシルフェニル基、2-n-オクチルフェニル基、2-n-デシルフェニル基、2-n-ドデシルフェニル基、2-n-テトラデシルフェニル基、ナフチル基、アントラセニル基が挙げられる。
 炭素原子数7~20のアラルキル基としては、例えば、ベンジル基、(2-メチルフェニル)メチル基、(3-メチルフェニル)メチル基、(4-メチルフェニル)メチル基、(2,3-ジメチルフェニル)メチル基、(2,4-ジメチルフェニル)メチル基、(2,5-ジメチルフェニル)メチル基、(2,6-ジメチルフェニル)メチル基、(3,4-ジメチルフェニル)メチル基、(4,6-ジメチルフェニル)メチル基、(2,3,4-トリメチルフェニル)メチル基、(2,3,5-トリメチルフェニル)メチル基、(2,3,6-トリメチルフェニル)メチル基、(3,4,5-トリメチルフェニル)メチル基、(2,4,6-トリメチルフェニル)メチル基、(2,3,4,5-テトラメチルフェニル)メチル基、(2,3,4,6-テトラメチルフェニル)メチル基、(2,3,5,6-テトラメチルフェニル)メチル基、(ペンタメチルフェニル)メチル基、(2-エチルフェニル)メチル基、(2-n-プロピルフェニル)メチル基、(2-イソプロピルフェニル)メチル基、(2-n-ブチルフェニル)メチル基、(2-sec-ブチルフェニル)メチル基、(2-tert-ブチルフェニル)メチル基、(2-n-ペンチルフェニル)メチル基、(2-ネオペンチルフェニル)メチル基、(2-n-ヘキシルフェニル)メチル基、(2-n-オクチルフェニル)メチル基、(2-n-デシルフェニル)メチル基、(2-n-デシルフェニル)メチル基、(2-n-テトラデシルフェニル)メチル基、ナフチルメチル基、アントラセニルメチル基、2-フェニルエチル基、3-フェニルプロピル基、4-フェニルブチル基、ジフェニルメチル基、2,2-ジフェニルエチル基、3,3-ジフェニルプロピル基、4,4-ジフェニルブチル基が挙げられる。
 ヒドロカルビル基は置換基を有していてもよく、該置換基としては、例えば、ハロゲン原子、水酸基が挙げられ、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 上記式(1)のR1~R3、上記式(2)のR4およびR5、並びに上記式(3)のR6~R10としてのハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 式(1)で表されるアルコール化合物としては、例えば、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、イソブタノール、n-ペンタノール、2-ペンタノール、3-ペンタノール、イソペンタノール、n-ヘキサノール、n-ヘプタノール、4-ヘプタノール、3-エチル-2-ペンタノール、n-オクタノール、3-エチルヘキサノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、グリセリン、1-フェニルエタノール、2-フェニルエタノール、3-フェニルプロパノール、3-フェニルブタノールが挙げられる。好ましくは、エタノールであり、より好ましくは、生物資源(バイオマス)由来のエタノール(バイオエタノール)である。
 式(2)で表されるアルデヒド化合物としては、例えば、アセトアルデヒド、プロピオンアルデヒド、ブチルアルデヒド、2-メチルプロピオンアルデヒド、3-ヒドロキシブチルアルデヒド、n-ペンチルアルデヒド、n-ヘキシルアルデヒド、n-ヘプチルアルデヒド、n-オクチルアルデヒド、3-エチルへキシルアルデヒド、ベンジルアルデヒド、3-フェニルプロピオンアルデヒド、3-フェニルブチルアルデヒドが挙げられ、また、式(1)で表されるアルコール化合物を脱水素して得られたアルデヒド化合物であっても良く、式(2)で表されるアルデヒド化合物が、式(1)で表されるアルコール化合物を脱水素して得られたアルデヒド化合物である場合、式(1)で表されるアルコール化合物の脱水素工程を設けても良い。
 脱水素工程は成分(A)と成分(B)とからなる触媒またはそれ以外の触媒のどちらを使用して実施しても良いが、成分(A)と成分(B)とからなる触媒を用いて、本発明で製造するアルコール化合物またはオレフィン化合物を製造する反応器内で実施することが好ましい。
 式(2)で表されるアルデヒド化合物として、好ましくは、アセトアルデヒドであり、より好ましくは、生物資源(バイオマス)由来のアセトアルデヒド(バイオアセトアルデヒド)である。
 式(3)で表されるケトン化合物としては、例えば、アセトン、2-ブタノン、2-ペンタノン、3-ペンタノン、2-ヘキサノン、3-ヘキサノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、3-エチル-2-ペンタノン、2-オクタノン、3-オクタノン、4-オクタノン、メチルイソプロピルケトン、ジイソプロピルケトン、メチルイソブチルケトン、ジイソブチルケトンおよびジアセトンアルコールが挙げられ、また、式(2)で表されるアルデヒド化合物を前駆体として得られたケトン化合物であっても良く、この場合、式(2)で表されるアルデヒド化合物の前駆体が式(1)で表されるアルコール化合物であっても良い。
 式(3)で表されるケトン化合物が、式(2)で表されるアルデヒド化合物を反応させてケトン化合物を生成させる反応(以下、ケトン化とも言う)により得られたケトン化合物である場合、式(2)で表されるアルデヒド化合物をケトン化するケトン化工程を設けても良い。ケトン化工程は本発明で使用する反応器内および反応器外のどちらで実施しても良いが、反応器内で実施することが好ましい。ケトン化工程では本発明の触媒を使用することが好ましい。ケトン化工程は、本発明で使用する反応器内で本発明の触媒を使用して実施することが好ましい。
 ケトン化工程に供される式(2)で表されるアルデヒド化合物は、脱水素工程で得られたアルデヒド化合物であっても良い。つまり、本発明で使用する反応器内に式(1)で表されるアルコール化合物を含む原料を供給した場合、式(1)で表されるアルコール化合物が脱水素して式(2)で表されるアルデヒド化合物となり、さらに式(2)で表されるアルデヒド化合物がケトン化して得られた式(3)で表されるケトン化合物を含む原料が得られる場合がある。
 式(3)で表されるケトン化合物として、好ましくは、アセトンであり、より好ましくは、生物資源(バイオマス)由来のアセトン(バイオアセトン)である。
 変換用アルコールは、水酸基と結合している1位の炭素に水素が結合している1級または2級のアルコールであれば良く、アルデヒド化合物を1級アルコールに、またはケトン化合物を2級アルコールに変換し、変換用アルコールが1級であれば自らはアルデヒド化合物へ、2級であれば自らはケトン化合物へ変換される。変換用アルコールによって変換されて生成した1級アルコールおよび2級アルコールそれら自身が変換用アルコールであっても良い。
 変換用アルコールがアルデヒド化合物を1級アルコールに、またはケトン化合物を2級アルコールに変換し、その結果、変換用アルコールから生成したアルデヒド化合物およびケトン化合物であって、式(2)もしくは式(3)を満たすものであれば、当然ながら本発明で使用する原料に含まれるアルデヒド化合物およびケトン化合物とみなすことができる。
 ここで、変換用アルコールとは、アルデヒド化合物またはケトン化合物の炭素-酸素二重結合を水酸基に変換する機能を有し、自らの水酸基は炭素-酸素二重結合に変換されるアルコールである。
 変換用アルコールとしては、例えば、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、イソブタノール、n-ペンタノール、2-ペンタノール、3-ペンタノール、イソペンタノール、n-ヘキサノール、n-ヘプタノール、4-ヘプタノール、3-エチル-2-ペンタノール、n-オクタノール、3-エチルヘキサノール、エチレングリコール、プロピレングリコール、1,4-ブタンジオール、グリセリン、1-フェニルエタノール、2-フェニルエタノール、3-フェニルプロパノール、3-フェニルブタノールが挙げられ、好ましくは、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、イソブタノール、n-ペンタノール、2-ペンタノール、3-ペンタノール、イソペンタノール、n-ヘキサノール、n-ヘプタノール、4-ヘプタノール、3-エチル-2-ペンタノール、n-オクタノールおよび3-エチルヘキサノールであり、さらに好ましくは、メタノール、エタノール、n-プロパノール、2-プロパノール、n-ブタノール、2-ブタノール、イソブタノール、n-ペンタノール、2-ペンタノール、3-ペンタノールおよびイソペンタノールである。
 本発明の触媒は、上記式(1)で表されるアルコール化合物から、該式(1)のアルコール化合物の炭素数よりも少なくとも一つ大きい炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を与えることができる。好ましくは、上記式(1)で表されるアルコール化合物の炭素数をnとすれば、該アルコール化合物の炭素数よりも少なくとも1つ大きい炭素数は、n×m-1である(mは反応に関与する分子数を表す)。ここでnおよびmは2以上の整数である。例えば、上記式(1)で表されるアルコール化合物の炭素数が2の場合、該アルコール化合物の炭素数よりも少なくとも一つ大きい炭素数は、3、5、7、9、・・・となる。具体的には、上記式(1)で表されるアルコール化合物がエタノールである場合、該アルコール化合物の炭素数よりも少なくとも一つ大きい炭素数のアルコール化合物としては、イソプロパノール、2-ペンタノール、4-ヘプタノール、3-エチル-2-ペンタノール等であり、該アルコール化合物の炭素数よりも少なくとも一つ大きい炭素数のオレフィン化合物としては、プロピレン、1-ペンテン、trans-およびcis-2-ペンテン、n-ヘプテン、trans-およびcis-2-ヘプテン、trans-およびcis-3-ヘプテン、3-エチル-1-ペンテン、3-エチル-2-ペンテン等である。
 ここで、「trans-およびcis-」とはそれぞれ、構造異性体の「trans体およびcis体」をいう。
 また、本発明の触媒は、上記式(2)で表されるアルデヒド化合物と変換用アルコールとから、該アルデヒド化合物の炭素数より少なくとも一つ大きい炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を与えることができる。好ましくは、上記式(2)で表されるアルデヒド化合物の炭素数をnとすれば、該アルデヒド化合物の炭素数よりも少なくとも1つ大きい炭素数は、n×m-1である。ここでnおよびmは2以上の整数である。例えば、上記式(2)で表されるアルデヒド化合物の炭素数が2の場合、該アルデヒド化合物の炭素数よりも少なくとも一つ大きい炭素数は、3、5、7、9、・・・となる。具体的には、上記式(2)で表されるアルデヒド化合物がアセトアルデヒドである場合、該アルデヒド化合物の炭素数よりも少なくとも一つ大きい炭素数のアルコール化合物としては、イソプロパノール、2-ペンタノール、4-ヘプタノール、3-エチル-2-ペンタノール等であり、該アルデヒド化合物の炭素数よりも少なくとも一つ大きい炭素数のオレフィン化合物としては、プロピレン、1-ペンテン、trans-およびcis-2-ペンテン、n-ヘプテン、trans-およびcis-2-ヘプテン、trans-およびcis-3-ヘプテン、3-エチル-1-ペンテン、3-エチル-2-ペンテン等である。
 また、本発明の触媒は、上記式(3)で表されるケトン化合物と変換用アルコールとから、該ケトン化合物の炭素数と同じ炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を与えることができる。具体的には、上記式(3)で表されるケトン化合物がアセトンである場合、該ケトン化合物の炭素数と同じ炭素数のアルコール化合物としては、イソプロパノールであり、該ケトン化合物の炭素数と同じ炭素数のオレフィン化合物としては、プロピレンである。
 本発明の触媒として、好ましくは、エタノールから、イソプロパノールおよびプロピレンからなる群から選ばれる少なくとも1種を製造するための触媒、アセトアルデヒドと変換用アルコールとから、イソプロパノールおよびプロピレンからなる群から選ばれる少なくとも1種を製造するための触媒、またはアセトンと変換用アルコールとから、イソプロパノールおよびプロピレンからなる群から選ばれる少なくとも1種を製造するための触媒である。
 本発明の触媒は、酸化ジルコニウムである成分(A)50重量%以上100重量%未満と、リチウム、ナトリウム、カリウム、ルビジウム、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、セリウム、チタン、バナジウム、クロム、銅、銀、金、ガリウム、ゲルマニウムおよびスズからなる群から選ばれる少なくとも1種の元素である成分(B)0重量%超50重量%以下とを含む(ただし、成分(A)と成分(B)との合計の重量を100重量%とする。)。
 成分(B)である元素の形態は、該元素の単体であってもよく、該元素の酸化物であってもよい。該元素が酸化物の形態である場合には、成分(B)の重量は、酸化物に含まれる前記元素の重量であり、酸素の重量は含まない。
 成分(B)として好ましくは、リチウム、ナトリウム、カリウム、ルビジウム、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、チタン、バナジウム、クロム、銅、銀、金、ガリウム、ゲルマニウムおよびスズからなる群から選ばれる少なくとも1種の元素であり、さらに好ましくは、リチウム、ナトリウム、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、バナジウム、クロム、銅、銀、金、ガリウムおよびゲルマニウムからなる群から選ばれる少なくとも1種の元素である。
 成分(A)と成分(B)との含有量としては、成分(A)が50重量%から100重量%未満であり、成分(B)が0重量%を超え、50重量%以下であり、好ましくは、成分(A)が90重量%から99.999重量%未満であり、成分(B)が0.001重量%を超え、10重量%以下である(ただし、成分(A)と成分(B)との合計の重量を100重量%とする。)。
 なお、本発明の触媒は、成分(A)及び成分(B)の他に、本発明の所期の効果が奏される範囲で他の成分を含有してもよいが、本発明においては、成分(A)及び成分(B)からなることが好ましい。
 本発明の触媒は、成分(A)と成分(B)を所定量で混合して調製することができ、このような方法としては、例えば、成分(A)を含む酸化ジルコニウム源と成分(B)を含む溶液を用いた含浸法、成分(A)前駆体または成分(A)を含む溶液と成分(B)前駆体または成分(B)を含む溶液とを用いたゾルゲル法、成分(A)を含む酸化ジルコニウム源に成分(B)蒸気を接触させるCVD法、成分(A)と成分(B)の物理混合等が挙げられる。好ましくは、含浸法およびゾルゲル法である。
 ここで、「含浸法」とは、固体の触媒もしくは固体の触媒前駆体と新たな成分もしくは新たな成分の前駆体を含む液体もしくは分散液とを接触させ、固体の触媒もしくは固体の触媒前駆体に新たな成分を添加する方法である。上記接触後には必要に応じ、ろ過、乾燥、焼成等の任意の操作を追加することがある。また、「ゾルゲル法」とは、pH調整、温度調整および他成分添加等の操作によって触媒原料成分を含んだ溶液から触媒原料成分を含んだ固体を発生させ、その後必要に応じ、ろ過、乾燥、焼成等の任意の操作を追加し目的とする固体を得る方法である。
(2)アルコール化合物およびオレフィン化合物を製造する方法
 アルコール化合物およびオレフィン化合物を製造する本発明の方法は、上記式(1)で表されるアルコール化合物を含む原料から、該式(1)のアルコール化合物の炭素数よりも少なくとも一つ大きい炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造する方法、上記式(2)で表されるアルデヒド化合物と変換用アルコールとを含む原料から、該アルデヒド化合物の炭素数より少なくとも一つ大きい炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造する方法、または上記式(3)で表されるケトン化合物と変換用アルコールとを含む原料から、該ケトン化合物の炭素数と同じ炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造する方法であって、触媒として、上記に記載の触媒を用いる方法である。
 アルコール化合物およびオレフィン化合物を製造する本発明の方法として、好ましくは、上記式(1)で表されるアルコール化合物を含む原料と、上記に記載の触媒とを反応器中で接触させて、該アルコール化合物の炭素数よりも少なくとも一つ大きい炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造する方法、上記式(2)で表されるアルデヒド化合物と変換用アルコールとを含む原料と、上記に記載の触媒とを反応器中で接触させて、該アルデヒド化合物の炭素数より少なくとも一つ大きい炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造する方法、または上記式(3)で表されるケトン化合物と変換用アルコールとを含む原料と、上記に記載の触媒とを反応器中で接触させて、該ケトン化合物の炭素数と同じ炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造する方法であり、より好ましくは、エタノールを含む原料と、上記に記載の触媒とを反応器中で接触させて、イソプロパノールおよびプロピレンからなる群から選ばれる少なくとも1種を製造する方法、アセトアルデヒドと変換用アルコールとを含む原料と、上記に記載の触媒とを反応器中で接触させて、イソプロパノールおよびプロピレンからなる群から選ばれる少なくとも1種を製造する方法、またはアセトンと変換用アルコールとを含む原料と、上記に記載の触媒とを反応器中で接触させて、イソプロパノールおよびプロピレンからなる群から選ばれる少なくとも1種を製造する方法である。
 本発明のアルコール化合物およびオレフィン化合物を製造する方法における主な反応機構は、以下の基本反応または基本反応をいくつか組み合わせたものである。
 基本反応1:式(1)で表されるアルコール化合物が脱水素されて式(2)で表されるカルボニル化合物および式(3)で表されるカルボニル化合物が生成する反応。この反応の例としては、エタノールからアセトアルデヒドが生成する反応およびイソプロパノールからアセトンが生成する反応が挙げられる。
 基本反応2:式(2)で表されるアルデヒド化合物がアルドール反応および/またはティシチェンコ反応により二量化し、その後いくつかの反応を経て生成したβケトカルボン酸化合物が脱炭酸し、式(3)で表されるケトン化合物が生成する反応。この反応の例としては、アセトアルデヒドからアセトンが生成する反応が挙げられる。
 基本反応3:式(3)で表されるケトン化合物が変換用アルコールと反応し、2級アルコールが生成する反応。この反応の例としては、アセトンからイソプロパノールが生成する反応が挙げられる。
 基本反応4:式(3)で表されるケトン化合物がアルドール縮合して、ジケトンアルコールが生成する反応。この反応の例としては、アセトンからジアセトンアルコールが生成する反応が挙げられる。
 基本反応5:基本反応3および基本反応4で生成したアルコールが脱水してオレフィンが生成する反応。この反応の例としては、イソプロパノールからプロピレンが生成する反応およびジアセトンアルコールからメシチルオキサイドが生成する反応が挙げられる。
 基本反応2のアルドール反応でアセトアルデヒドから生成した3-ヒドロキシブチルアルデヒドが脱水するとクロトンアルデヒドが生成する。クロトンアルデヒドは変換用アルコールによりブタノール-2-エンに変換され、さらに脱水すると1、3-ブタジエンが生成する。
 メシチルオキサイドがさらに変換用アルコールにより4-ヒドロキシ-2-メチル-2-ペンテンに変換され、さらに脱水すると4-メチルペンタジエンが生成する。
 本発明において、原料として、上記式(1)で表されるアルコール化合物を用いる場合は、原料のアルコール化合物自身が変換用アルコールの機能も有しているので、別途、変換用アルコールを用いる必要がないが、変換効率を向上させるため、別途変換用アルコールを原料に添加することができる。
 本発明に用いる反応器は、原料と触媒、場合によっては変換用アルコールとを接触させることができれば良い。反応器の例としては、固定床反応器、流動床反応器、バッチ式反応器が挙げられる。また、反応熱の観点からは反応器は断熱反応器であっても等温反応器であって熱交換反応器であっても良い。
 原料と触媒とは反応器中で接触させても、原料と触媒とを接触させてから反応器に供給しても良い。原料は液体であっても気体であっても良い。原料と触媒との接触方法の例としては、原料を加熱してガス化し、触媒があらかじめ充填されている反応器に供給する方法が挙げられる。
 本発明においては、反応過程で水が生成するため、原料に水を用いなくても、反応が進行するが、原料に水を用いて反応を行うことが好ましい。この際の水の使用量としては、原料に含まれる前記式(1)で表されるアルコール化合物、前記式(2)で表されるアルデヒド化合物、および/または前記式(3)で表されるケトン化合物のモル数(x)に対する、水のモル数(y)の比(y/x)として、好ましくは0.01~100であり、より好ましくは0.05~10であり、更に好ましくは0.1~5である。
 反応温度として、好ましくは、270℃~700℃であり、より好ましくは、300℃~650℃、更に好ましくは、350℃~550℃である。
 ここで「反応温度」とは触媒と原料であるエタノール等とを接触させる温度をいう。
 反応圧力として、好ましくは、10kPa~100000kPaであり、より好ましくは、100kPa~1000kPaである。
 ここで「反応圧力」とは触媒と原料であるエタノール等とを接触させるリアクター内の圧力をいう。
 本発明で用いられる原料としては、未使用の式(1)、式(2)および式(3)を含む原料だけでなく、未反応の式(1)、式(2)および式(3)の化合物、もしくは生成したアルコール、アルデヒドおよびケトンの内の式(1)、式(2)および式(3)に該当する化合物を反応器出口から回収したものを使用することができる。
 以下、実施例および比較例により本発明を更に詳しく説明する。
[実施例1]
(触媒Aの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、整粒後の酸化ジルコニウム1.00gに、酢酸カルシウム一水和物0.56gおよびミリポア水2.78gからなる溶液A0.23gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体Aを得た。ポアフィリング体Aを120℃で3時間空気中保持し、次いで500℃で2時間空気中保持し触媒Aを得た。
(触媒反応)
 0.5gの触媒Aを石英製の反応管に充填し、エタノール濃度が33vol%であるエタノール/窒素混合ガスを、11ml/分の速度で反応管へ供給し、常圧下、450℃で反応を行なった。反応管のガス排出口から排出されたガスをガスクロマトグラフィーで分析し、生成物組成および生成速度を求めた。反応条件及び結果を表1-1及び1-2に示す。なお、表中に記載の生成物組成とは、(生成物中の炭素モル数)/(反応に供した原料化合物中の炭素モル数)×100(%)を表し、また、生成速度は、触媒1ml当たり1時間に生成する生成物の重量を表す。また、表中「ACT」はアセトン、「IPA」はイソプロパノール、「C3’」はプロピレン、「PN」はペンタノン、「C5’」はペンテンを表す。
 ここで「触媒1ml当たり」とは、実施例・比較例において、実際に生成した生成物の重量を使用した触媒の体積(ml)で割った値をいう。
[実施例2]
(触媒反応)
 反応圧力が200kPaGであること以外は実施例1の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例3]
(触媒反応)
 反応管へ供給したエタノール/窒素混合ガスが16vol%の水を含むこと以外は実施例2の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例4]
(触媒Bの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、整粒後の酸化ジルコニウム5.00gに、硝酸ガリウム0.0022gおよびミリポア水1.2848gからなる溶液B1.29gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体Bを得た。ポアフィリング体Bを120℃で3時間空気中保持し、次いで500℃で2時間空気中保持し触媒Bを得た。
(触媒反応)
 触媒Bを使用し、エタノール/窒素混合ガスを12ml/分の速度で反応管へ供給し、反応温度が430℃であること以外は実施例1の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例5]
(触媒反応)
 エタノール/窒素混合ガスが25vol%のエタノールおよび25vol%の水を含むこと以外は実施例4の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例6]
(触媒反応)
 反応圧力が100kPaGであること以外は実施例5と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例7]
(触媒反応)
 反応圧力が200kPaGであること以外は実施例5と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例8]
(触媒Cの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.18~0.3mmに整粒し、整粒後の酸化ジルコニウム3.00gに、酢酸リチウム0.067gおよびミリポア水0.683gからなる溶液C0.75gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体Cを得た。ポアフィリング体Cを120℃で3時間空気中保持し、次いで500℃で2時間空気中保持し触媒Cを得た。
(触媒反応)
 触媒Cを用い、エタノール/窒素混合ガスを12ml/分の速度で反応管へ供給したこと以外は実施例2の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例9]
(触媒反応)
 エタノール/窒素混合ガスが33vol%の水を含むこと以外は実施例8の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例10]
(触媒Dの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.18~0.3mmに整粒し、整粒後の酸化ジルコニウム2.03gに、1N水酸化ナトリウム水溶液0.4493gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体Dを得た。ポアフィリング体Dを120℃で3時間空気中保持し、次いで450℃で2時間空気中保持し触媒Dを得た。
(触媒反応)
 触媒Dを1g用い、エタノール/窒素混合ガスのエタノール濃度が36vol%であり、反応温度が400℃であること以外は実施例4の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例11]
(触媒反応)
 反応温度が450℃であること以外は実施例10の触媒反応と同様の操作を行なった。
反応条件及び結果を表1-1及び1-2に示す。
[実施例12]
(触媒反応)
 エタノール/窒素混合ガスのエタノール濃度が79vol%であること以外は実施例11と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例13]
(触媒反応)
 反応温度が490℃であり、反応圧力が400kPaGであること以外は実施例12と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例14]
(触媒Eの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、整粒後の酸化ジルコニウム1.001gに、酢酸カリウム0.0267gおよびミリポア水0.2313gからなる溶液E0.258gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体Eを得た。ポアフィリング体Eを120℃で3時間空気中保持し、次いで450℃で2時間空気中保持し触媒Eを得た。
(触媒反応)
 触媒Eを用いたこと以外は実施例1の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例15]
(触媒Fの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、整粒後の酸化ジルコニウム1.02gに、水酸化ルビジウム0.0274gおよびミリポア水0.1681gからなる溶液F0.1955gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体Fを得た。ポアフィリング体Fを120℃で3時間空気中保持し、次いで450℃で2時間空気中保持し触媒Eを得た。
(触媒反応)
 触媒Fを用いたこと以外は実施例1の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例16]
(触媒Gの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.18~0.3mmに整粒し、整粒後の酸化ジルコニウム1.00gに、酢酸スカンジウム0.060gおよびミリポア水6.101gからなる溶液G6.158gを添加し、エバポレーターで乾燥させ乾燥体Gを得た。乾燥体Gを120℃で3時間空気中保持し、次いで500℃で2時間空気中保持し触媒Gを得た。
(触媒反応)
 触媒Gを用い、エタノール/窒素混合ガスが50vol%の水を含み、エタノール濃度25vol%であり12ml/分の速度で供給されたこと以外は実施例2の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例17]
(触媒Hの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、整粒後の酸化ジルコニウム1.50gに、チタニルアセチルアセトナート0.015gおよびエタノール30.006gからなる溶液H7.816gを添加し、エバポレーターで乾燥させ乾燥体Hを得た。乾燥体Hを500℃で2時間空気中保持し触媒Hを得た。
(触媒反応)
 触媒Hを用い、エタノール/窒素混合ガスを12ml/分の速度で供給したこと以外は実施例1の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例18]
(触媒Iの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、整粒後の酸化ジルコニウム1.00gに、バナジルアセチルアセトナート0.0029gおよびエタノール0.2136gからなる溶液I0.2165gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体Iを得た。ポアフィリング体Iを120℃で3時間空気中保持し、次いで450℃で2時間空気中保持し触媒Iを得た。
(触媒反応)
 触媒Iを用いたこと以外は実施例17の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例19]
(触媒Jの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、整粒後の酸化ジルコニウム1.00gに、硝酸クロム9水和物0.0041gおよびミリポア水0.2541gからなる溶液J0.2528gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体Jを得た。ポアフィリング体Jを120℃で3時間空気中保持し、次いで500℃で2時間空気中保持し触媒Iを得た。
(触媒反応)
 触媒Jを用いたこと以外は実施例17の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例20]
(触媒Kの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、整粒後の酸化ジルコニウム2.00gに、硝酸銅3水和物0.0053gおよびミリポア水0.4282gからなる溶液K0.4335gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体Kを得た。ポアフィリング体Kを120℃で3時間空気中保持し、次いで500℃で2時間空気中保持し触媒Kを得た。
(触媒反応)
 触媒Kを用いたこと以外は実施例17の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例21]
(触媒Lの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、整粒後の酸化ジルコニウム1.00gに、塩化ゲルマニウム0.0021gおよびヘキサン0.2415gからなる溶液L0.2436gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体Lを得た。ポアフィリング体Lを120℃で3時間空気中保持し、次いで500℃で2時間空気中保持し触媒Lを得た。
(触媒反応)
 触媒Lを用いたこと以外は実施例17の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例22]
(触媒Mの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、整粒後の酸化ジルコニウム1.00gに、酢酸ストロンチウム0.5水和物0.0219gおよびミリポア水0.2300gからなる溶液M 0.2519gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体Mを得た。ポアフィリング体Mを120℃で3時間空気中保持し、次いで500℃で2時間空気中保持し触媒Mを得た。
(触媒反応)
 触媒Mを用いたこと以外は実施例17の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例23]
(触媒Nの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、整粒後の酸化ジルコニウム1.00gに、酢酸バリウム0.0272gおよびミリポア水0.2361gからなる溶液N 0.2633gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体Nを得た。ポアフィリング体Nを120℃で3時間空気中保持し、次いで500℃で2時間空気中保持し触媒Nを得た。
(触媒反応)
 触媒Nを用いたこと以外は実施例17の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例24]
(触媒Oの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.18~0.3mmに整粒し、整粒後の酸化ジルコニウム2.50gに、酢酸イットリウム4水和物0.2250gおよびミリポア水0.3750gからなる溶液O0.6000gを添加し、エバポレーターで乾燥させ乾燥体Oを得た。乾燥体Oを120度で3時間、次いで500度で2時間空気中保持し触媒Oを得た。
(触媒反応)
 触媒Oを用いたこと以外は実施例16の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例25]
(触媒Pの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、整粒後の酸化ジルコニウム1.01gに、硝酸セリウム6水和物0.0044gおよびミリポア水0.2522gからなる溶液P 0.2566gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体Pを得た。ポアフィリング体Pを120℃で3時間空気中保持し、次いで500℃で2時間空気中保持し触媒Pを得た。
(触媒反応)
 触媒Pを用いたこと以外は実施例17の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例26]
(触媒Qの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、整粒後の酸化ジルコニウム1.00gに、硝酸銀0.0017gおよびミリポア水0.2565gからなる溶液Q 0.2582gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体Qを得た。ポアフィリング体Qを120℃で3時間空気中保持し、次いで500℃で2時間空気中保持し触媒Qを得た。
(触媒反応)
 触媒Qを用いたこと以外は実施例17の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例27]
(触媒Rの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、整粒後の酸化ジルコニウム1.01gに、塩化金0.0030gおよびミリポア水0.2565gからなる溶液R 0.2595gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体Rを得た。ポアフィリング体Rを120℃で3時間空気中保持し、次いで500℃で2時間空気中保持し触媒Rを得た。
(触媒反応)
 触媒Rを用いたこと以外は実施例17の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例28]
(触媒Sの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、整粒後の酸化ジルコニウム1.01gに、塩化スズ2水和物0.0024gおよびミリポア水0.2105gからなる溶液 0.2129gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体Sを得た。ポアフィリング体Sを120℃で3時間空気中保持し、次いで500℃で2時間空気中保持し触媒Sを得た。
(触媒反応)
 触媒Sを用いたこと以外は実施例17の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例29]
(触媒CBの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、整粒後の酸化ジルコニウム3.01gに、硝酸ガリウム6水和物0.0013gおよびミリポア水0.7346gからなる溶液2C 0.7359gを少量ずつ酸化ジルコニウムに浸透させながら添加し、ポアフィリング体2Cを得た。ポアフィリング体2Cを120℃で3時間空気中保持し、次いで500℃で2時間空気中保持し前駆体2Cを得た。
 前駆体2C1gに、酢酸リチウム2水和物0.0217gおよびミリポア水0.1959gからなる溶液CB 0.2177gを少量ずつ前駆体2Cに浸透させながら添加し、ポアフィリング体CBを得た。ポアフィリングCBを120℃で3時間空気中保持し、次いで500℃で2時間空気中保持し触媒CBを得た。
(触媒反応)
 触媒CBを用い、反応温度が430℃であること以外は実施例1の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例30]
(触媒反応)
 触媒Cを0.1g用いたこと以外は実施例9と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例31]
(触媒反応)
 反応温度が410℃であること以外は実施例9と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例32]
(触媒反応)
 触媒Cを0.02g用い、反応温度が490℃であること以外は実施例9と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例40]
(触媒A2の調製)
 酸化ジルコニウム(第一希元素製、RSC-HP)を0.18~0.3mmに整粒し、整粒後の酸化ジルコニウム12.00gに、酢酸カルシウム一水和物0.86gおよびミリポア水10.25gからなる溶液A2、2.78gを少量ずつ整粒後の酸化ジルコニウムに浸透させながら添加し、ポアフィリング体A2を得た。ポアフィリング体A2を100℃で5時間空気中保持し、次いで500℃で2時間空気中保持し触媒A2を得た。
(触媒反応)
 触媒A2を0.5g用い実施例30の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[実施例41]
(触媒O2の調製)
 酸化ジルコニウム(第一希元素製、RSC-HP)を0.18~0.3mmに整粒し、整粒後の酸化ジルコニウム2.00gに、イットリウムアセチルアセトナートn水和物(アルドリッチ製)0.16gおよびエタノール(関東化学製、純度99.5%)10.9gからなる溶液O2を加え、ロータリーエバポレーターにて50℃、120hPaでエタノールを除去し、乾燥体O2を得た。乾燥体O2を500℃で2時間空気中保持し触媒O2を得た。
(触媒反応)
 触媒O2を0.58g用い、反応圧力が500kPaGであること以外は実施例40の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[比較例1]
(比較触媒Aの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.3~0.6mmに整粒し、比較触媒Aを得た。
(触媒反応)
 反応温度が400℃であること以外は実施例1の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[比較例2]
(触媒反応)
 反応温度が450℃であること以外は比較例1の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[比較例3]
(比較触媒Bの調製)
 酸化ジルコニウム(第一希元素製、RC-100)を0.18~0.3mmに整粒し、比較触媒Bを得た。
(触媒反応)
 反応温度が450℃であること以外は実施例5の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[比較例4]
(触媒反応)
 反応圧力が200kPaGであること以外は比較例3の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。
[比較例7]
(比較触媒Cの調製)
 酸化ジルコニウム(第一希元素製、RSC-HP)を0.18~0.3mmに整粒し、比較触媒Cを得た。
(触媒反応)
 0.2gの比較触媒Cを石英製の反応管に充填し、33vol%の水を含む33vol%エタノール/窒素混合ガスを12ml/分の速度で反応管へ供給し、反応圧力200kPaG、430℃で反応を行なった。反応管のガス排出口から排出されたガスをガスクロマトグラフィーで分析し、生成物組成および生成速度を求めた。反応条件及び結果を表1-1及び1-2に示す。
[比較例8]
(比較触媒Dの調製)
 無水シュウ酸(関東化学)を100mlのエタノール(関東化学製、純度99.5%)に溶解させて得たシュウ酸溶液を攪拌しながら、別の100mlのエタノール(関東化学製、純度99.5%)に硝酸銅三水和物(和光純薬製、純度99.9%)を9.7g溶解させた銅溶液を全量およびジルコニウムプロポキシド70%1-プロパノール溶液(東京化成製)、7.3gを同時に滴下した。1時間攪拌を継続した後に、生成した沈殿物RDをろ過により回収した。沈殿物RDを80℃で12時間空気中保持し乾燥させた後、550℃で3時間次いで710℃で30分空気中保持し焼成体RDを得た。焼成体RDを0.18~0.3mmに整粒し比較触媒Dを得た。比較触媒D中の銅含有量は54重量%であった。
(触媒反応)
比較触媒Dを0.2g用い比較例7の触媒反応と同様の操作を行なった。反応条件及び結果を表1-1及び1-2に示す。銅を54重量%添加した比較触媒Dは銅を添加していない比較触媒Cよりイソプロパノール、プロピレン、ペンテンの生成が少なかった。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
[実施例33]
(メタノールによるアルコール化合物及びオレフィン化合物の製造)
 0.5gの触媒Cを石英製の反応管に充填し、アセトン濃度が5.6vol%、水濃度が32.4vol%、メタノール濃度が25.4vol%である窒素混合ガスを、12ml/分の速度で反応管へ供給し、常圧下、450℃で反応を行なった。反応管のガス排出口から排出されたガスをガスクロマトグラフィーで分析し、供給したアセトンモル数に対するイソプロパノールおよびプロピレンの生成量を調べた。結果を表2に示す。なお、表中「ACT」はアセトン、「IPA」はイソプロパノール、「C3’」はプロピレンを表す。
[実施例34]
(エタノールによるアルコール化合物及びオレフィン化合物の製造)
 アセトン濃度が5.1vol%、水濃度が33.1vol%、エタノール濃度が26.0vol%である窒素混合ガスを用いたこと以外は実施例33と同様の操作を行なった。結果を表2に示す。
[実施例35]
(1-ブタノールによるアルコール化合物及びオレフィン化合物の製造)
 アセトン濃度が5.8vol%、水濃度が33.1vol%、1-ブタノール濃度が23.5vol%である窒素混合ガスを用いたこと以外は実施例33と同様の操作を行なった。結果を表2に示す。
[実施例36]
(2-ブタノールによるアルコール化合物及びオレフィン化合物の製造)
 アセトン濃度が5.8vol%、水濃度が33.1vol%、2-ブタノール濃度が23.5vol%である窒素混合ガスを用いたこと以外は実施例33と同様の操作を行なった。結果を表2に示す。
[比較例5]
(アルコールなし)
 アセトン濃度が6.5vol%、水濃度が33.3vol%である窒素混合ガスを用いたこと以外は実施例33と同様の操作を行なった。結果を表2に示す。
[比較例6]
(水素によるアルコール化合物及びオレフィン化合物の製造)
 アセトン濃度が6.4vol%、水濃度が33.2vol%、水素濃度が25.4vol%である窒素混合ガスを用いたこと以外は実施例33と同様の操作を行なった。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000015
[実施例37]
(アセトンリサイクル検討)
 アセトン濃度が5.5vol%、エタノール濃度が34.1vol%、水濃度が32.5vol%、である窒素混合ガスを用いたこと以外は実施例8の触媒反応と同様の操作を行なった。反応条件及び結果を表3-1及び3-2に示す。
[実施例38]
 アセトン濃度が2.6vol%、エタノール濃度が34.3vol%、水濃度が32.9vol%、である窒素混合ガスを用いたこと以外は実施例8の触媒反応と同様の操作を行なった。反応条件及び結果を表3-1及び3-2に示す。
[実施例39]
 アセトン濃度が1.3vol%、エタノール濃度が33.9vol%、水濃度が32.9vol%、である窒素混合ガスを用いたこと以外は実施例8の触媒反応と同様の操作を行なった。反応条件及び結果を表3-1及び3-2に示す。
[実施例42]
(触媒A3の調製)
 酸化ジルコニウムペレット(第一希元素製、RSC-HP)を破砕し0.18~0.3mmに整粒し、整粒後の酸化ジルコニウム12.00gに、酢酸カルシウム一水和物0.64gおよびミリポア水7.69gからなる溶液A3、2.79gを少量ずつ整粒後の酸化ジルコニウムに浸透させながら添加し、ポアフィリング体A3を得た。ポアフィリング体A3を100℃で5時間空気中保持し、次いで500℃で2時間空気中保持し触媒A3を得た。
(アセトンリサイクル検討)
 触媒A3を0.5g用い、アセトン濃度が3.5vol%、エタノール濃度が29.4vol%、水濃度が33.4vol%、である窒素混合ガスを用い、反応圧力が500kPaGであること以外は実施例39と同様の操作を行なった。反応条件及び結果を表3-1及び3-2に示す。
[実施例43]
(アセトンリサイクル検討)
 触媒O2を0.58g用い、アセトン濃度が2.5vol%、エタノール濃度が31.4vol%、水濃度が32.9vol%であること以外は実施例42のアセトンリサイクル検討と同様の操作を行なった。反応条件及び結果を表3-1及び3-2に示す。
[実施例44]
触媒A3を0.1g使用したこと以外は、実施例42のアセトンリサイクル検討と同様の操作を行なった。反応条件及び結果を表3-1及び3-2に示す。
Figure JPOXMLDOC01-appb-T000016
 表3-1及び3-2より、未使用もしくは反応器出口から回収した未反応のエタノールと、反応器出口から回収した生成したアセトンを含む原料を使用した場合、反応器出口のプロピレン濃度を高くできることがわかる。

Claims (8)

  1.  下記式(1)で表されるアルコール化合物から、該式(1)のアルコール化合物の炭素数よりも少なくとも一つ大きい炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造するための、下記式(2)で表されるアルデヒド化合物と変換用アルコールとから、該式(2)のアルデヒド化合物の炭素数より少なくとも一つ大きい炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造するための、または下記式(3)で表されるケトン化合物と変換用アルコールとから、該式(3)のケトン化合物の炭素数と同じ炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造するための触媒であって、
     酸化ジルコニウムである成分(A)50重量%以上100重量%未満と、リチウム、ナトリウム、カリウム、ルビジウム、カルシウム、ストロンチウム、バリウム、スカンジウム、イットリウム、セリウム、チタン、バナジウム、クロム、銅、銀、金、ガリウム、ゲルマニウムおよびスズからなる群から選ばれる少なくとも1種の元素である成分(B)0重量%超50重量%以下とを含む触媒(ただし、成分(A)と成分(B)との合計の重量を100重量%とする。)。
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1~R3は、それぞれ独立に、水素原子、ヒドロカルビル基、水酸基またはハロゲン原子を表す。]
    Figure JPOXMLDOC01-appb-C000002
    [式中、R4およびR5は、それぞれ独立に、水素原子、ヒドロカルビル基、水酸基またはハロゲン原子を表す。]
    Figure JPOXMLDOC01-appb-C000003
    [式中、R6~R10は、それぞれ独立に、水素原子、ヒドロカルビル基、水酸基またはハロゲン原子を表す。]
  2.  含浸法またはゾルゲル法によって、成分(B)を成分(A)に添加することによって得られる請求項1に記載の触媒。
  3.  下記式(1)で表されるアルコール化合物を含む原料から、該式(1)のアルコール化合物の炭素数よりも少なくとも一つ大きい炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造する方法であって、前記原料を請求項1または2に記載の触媒と反応器中で接触させることを含む方法。
    Figure JPOXMLDOC01-appb-C000004
    [式中、R1~R3は、それぞれ独立に、水素原子、ヒドロカルビル基、水酸基またはハロゲン原子を表す。]
  4.  下記式(2)で表されるアルデヒド化合物と変換用アルコールとを含む原料から、該式(2)のアルデヒド化合物の炭素数より少なくとも一つ大きい炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造する方法であって、前記原料を請求項1または2に記載の触媒と反応器中で接触させることを含む方法。
    Figure JPOXMLDOC01-appb-C000005
    [式中、R4およびR5は、それぞれ独立に、水素原子、ヒドロカルビル基、水酸基またはハロゲン原子を表す。]
  5.  下記式(3)で表されるケトン化合物と変換用アルコールとを含む原料から、該式(3)のケトン化合物の炭素数と同じ炭素数のアルコール化合物およびオレフィン化合物からなる群から選ばれる少なくとも1種を製造する方法であって、前記原料を請求項1または2に記載の触媒と反応器中で接触させることを含む方法。
    Figure JPOXMLDOC01-appb-C000006
    [式中、R6~R10は、それぞれ独立に、水素原子、ヒドロカルビル基、水酸基またはハロゲン原子を表す。]
  6.  前記原料がさらに水を含み、前記原料に含まれる前記式(1)で表されるアルコール化合物、前記式(2)で表されるアルデヒド化合物、および/または前記式(3)で表されるケトン化合物のモル数(x)に対する、水のモル数(y)の比(y/x)が、0.01~100である請求項3~5いずれかに記載の方法。
  7.  反応温度が270℃~700℃である請求項3~6いずれかに記載の方法。
  8.  反応圧力が10kPa~100000kPaである請求項3~7いずれかに記載の方法。
PCT/JP2012/062202 2011-05-13 2012-05-11 アルコール化合物およびオレフィン化合物の製造用触媒、並びにアルコール化合物およびオレフィン化合物の製造方法 WO2012157578A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-108826 2011-05-13
JP2011108826 2011-05-13

Publications (1)

Publication Number Publication Date
WO2012157578A1 true WO2012157578A1 (ja) 2012-11-22

Family

ID=47176896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/062202 WO2012157578A1 (ja) 2011-05-13 2012-05-11 アルコール化合物およびオレフィン化合物の製造用触媒、並びにアルコール化合物およびオレフィン化合物の製造方法

Country Status (2)

Country Link
JP (1) JP2012254447A (ja)
WO (1) WO2012157578A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016150932A (ja) * 2015-02-19 2016-08-22 出光興産株式会社 軽質オレフィンの製造方法
EP4289806A4 (en) * 2021-02-04 2024-08-14 Sumitomo Chemical Co PROPYLENE PRODUCTION PROCESS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016150931A (ja) * 2015-02-19 2016-08-22 出光興産株式会社 軽質オレフィンの製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151327A (ja) * 1982-02-25 1983-09-08 New Japan Chem Co Ltd 固体酸組成物の製造法
JPS60132650A (ja) * 1983-12-19 1985-07-15 Agency Of Ind Science & Technol 低級オレフインならびに分枝炭化水素合成用触媒
JP2001519771A (ja) * 1996-12-27 2001-10-23 ビーエーエスエフ アクチェンゲゼルシャフト 脱水素によるオレフィン、特にプロピレンの製造方法
JP2008289991A (ja) * 2007-05-24 2008-12-04 National Institute Of Advanced Industrial & Technology プロピレン合成用触媒
JP2010064996A (ja) * 2008-09-12 2010-03-25 National Institute Of Advanced Industrial Science & Technology エタノールからの炭素数3以上のオレフィン類の製造方法
JP2010202612A (ja) * 2009-03-05 2010-09-16 National Institute Of Advanced Industrial Science & Technology ジルコニウム担持ゼオライト触媒を用いたエタノールからの炭素数3以上のオレフィン類の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151327A (ja) * 1982-02-25 1983-09-08 New Japan Chem Co Ltd 固体酸組成物の製造法
JPS60132650A (ja) * 1983-12-19 1985-07-15 Agency Of Ind Science & Technol 低級オレフインならびに分枝炭化水素合成用触媒
JP2001519771A (ja) * 1996-12-27 2001-10-23 ビーエーエスエフ アクチェンゲゼルシャフト 脱水素によるオレフィン、特にプロピレンの製造方法
JP2008289991A (ja) * 2007-05-24 2008-12-04 National Institute Of Advanced Industrial & Technology プロピレン合成用触媒
JP2010064996A (ja) * 2008-09-12 2010-03-25 National Institute Of Advanced Industrial Science & Technology エタノールからの炭素数3以上のオレフィン類の製造方法
JP2010202612A (ja) * 2009-03-05 2010-09-16 National Institute Of Advanced Industrial Science & Technology ジルコニウム担持ゼオライト触媒を用いたエタノールからの炭素数3以上のオレフィン類の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016150932A (ja) * 2015-02-19 2016-08-22 出光興産株式会社 軽質オレフィンの製造方法
EP4289806A4 (en) * 2021-02-04 2024-08-14 Sumitomo Chemical Co PROPYLENE PRODUCTION PROCESS

Also Published As

Publication number Publication date
JP2012254447A (ja) 2012-12-27

Similar Documents

Publication Publication Date Title
Lippi et al. Highly active catalyst for CO 2 methanation derived from a metal organic framework template
JP6417009B2 (ja) グリセリン脱水反応用触媒、その製造方法およびアクロレインの製造方法
CN107303512B (zh) 一种双功能催化剂及其在苯加氢烷基化反应中的应用
CN111330586A (zh) 新型乙炔化催化剂以及其制造方法
WO2013125389A1 (ja) 1,3-ブタジエンの製造方法
KR101855876B1 (ko) 에탄올을 생산하고 메탄올을 공동생산하는 방법
JP5820818B2 (ja) オレフィン製造用触媒及びオレフィンの製造方法
JP2017520511A (ja) アルケノールの製造方法および1,3−ブタジエンの製造のためのその使用
JP6017386B2 (ja) 水熱合成法により調製した金属添加SiO2−MgO触媒によるエタノールからのブタジエン合成法
CN110433802B (zh) 一种加氢催化剂及其制备方法和该催化剂用于α,β-不饱和醛加氢制备饱和醛的方法
JP2015168644A (ja) エタノールからのブタジエン合成に有効な金属添加MgO−SiO2触媒の調製条件の改良
WO2012157578A1 (ja) アルコール化合物およびオレフィン化合物の製造用触媒、並びにアルコール化合物およびオレフィン化合物の製造方法
EP3004072B1 (en) Methods for producing fuels, gasoline additives, and lubricants
CN108002994B (zh) 一种制备高碳酮的方法
WO2011112503A1 (en) Catalyst composition for direct conversion of ethanol to propylene
JP2013252495A (ja) アルコール化合物およびオレフィン化合物の製造用触媒、並びにアルコール化合物およびオレフィン化合物の製造方法
US9259718B1 (en) Method for preparing catalyst for glycerin dehydration, and method for preparing acrolein
KR101805086B1 (ko) 글리세린 탈수 반응용 촉매의 제조 방법, 이를 이용하여 제조된 글리세린 탈수 반응용 촉매 및 아크롤레인의 제조 방법
JP6652364B2 (ja) 1,3−ブタジエンの製造方法
WO2019156028A1 (ja) 複合物、複合物の製造方法、触媒及びアンモニアの製造方法
CN108906116B (zh) 一种用于合成2-甲基三乙烯二胺的催化剂和制备方法及应用
JP3784878B2 (ja) ビニルエーテルの製造法
WO2019156029A1 (ja) 複合物、触媒及びアンモニアの製造方法
KR101431328B1 (ko) 페리어라이트 촉매를 사용하는 합성가스로부터 에탄올의 제조방법
WO2019061342A1 (zh) 一种合成气直接生产乙醇的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12785070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12785070

Country of ref document: EP

Kind code of ref document: A1