WO2019156028A1 - 複合物、複合物の製造方法、触媒及びアンモニアの製造方法 - Google Patents

複合物、複合物の製造方法、触媒及びアンモニアの製造方法 Download PDF

Info

Publication number
WO2019156028A1
WO2019156028A1 PCT/JP2019/003883 JP2019003883W WO2019156028A1 WO 2019156028 A1 WO2019156028 A1 WO 2019156028A1 JP 2019003883 W JP2019003883 W JP 2019003883W WO 2019156028 A1 WO2019156028 A1 WO 2019156028A1
Authority
WO
WIPO (PCT)
Prior art keywords
type compound
catalyst
mayenite type
composite
ammonia
Prior art date
Application number
PCT/JP2019/003883
Other languages
English (en)
French (fr)
Inventor
細野 秀雄
政明 北野
壽治 横山
重喜 河村
和久 岸田
泰徳 井上
宗宣 伊藤
Original Assignee
国立大学法人東京工業大学
つばめBhb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, つばめBhb株式会社 filed Critical 国立大学法人東京工業大学
Priority to JP2019570736A priority Critical patent/JPWO2019156028A1/ja
Publication of WO2019156028A1 publication Critical patent/WO2019156028A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/16Preparation of alkaline-earth metal aluminates or magnesium aluminates; Aluminium oxide or hydroxide therefrom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a composite, a method for producing the composite, a catalyst containing the composite, and a method for producing ammonia using the catalyst.
  • Nitrogen fertilizers such as ammonium sulfate and urea widely used in agricultural production are manufactured using ammonia as a main raw material. For this reason, ammonia has been studied as a very important chemical raw material.
  • the most widely used ammonia production technology is the Harbor Bosch process.
  • the Harbor Bosch method is a method for producing ammonia by contacting nitrogen and hydrogen as raw materials with a catalyst mainly composed of iron under high temperature and high pressure.
  • a synthesis method other than the Harbor Bosch method a synthesis method using a supported metal catalyst in which ruthenium is supported on various supports has been studied.
  • the mayenite type compound has a representative composition of 12CaO ⁇ 7Al 2 O 3 (hereinafter sometimes abbreviated as “C12A7”), and the C12A7 crystal is one of 66 oxygen ions in a unit cell composed of two molecules. Is a unique crystal structure ([Ca 24 Al 28 O 64 ] 4+ (O 2 ⁇ ) 2 ), which is included as “free oxygen ions” in the cage space formed by the crystal skeleton. (Non-Patent Document 1).
  • free oxygen ions in mayenite type compounds can be replaced with various anions, and all free oxygen ions can be replaced with electrons by holding the mayenite type compound at high temperature in a particularly strong reducing atmosphere. Can do. And it has been reported that this mayenite type compound substituted by the electron is a conductive mayenite type compound which has a favorable electronic conductivity characteristic (nonpatent literature 2). In this way, the mayenite type compound in which free oxygen ions are substituted with electrons may be referred to as “Cl 2 A 7 electride”.
  • the catalyst using C12A7 electride can be used as a catalyst for ammonia synthesis (patent document 1).
  • the ammonia synthesis catalyst can be produced by heating a mayenite type compound in a reducing atmosphere to produce a Cl2A7 electride, and using this C12A7 electride as a carrier to carry ruthenium. .
  • This catalyst has a higher ammonia synthesis activity than the conventional ammonia synthesis catalyst and becomes a high-performance ammonia synthesis catalyst.
  • ruthenium supported on C12A7 electride suppresses hydrogen poisoning, it is necessary to further suppress hydrogen poisoning in order to increase the hydrogen pressure and further increase the efficiency of hydrogenation.
  • the present invention provides a composite that can obtain a catalyst having high catalytic activity and suppressed hydrogen poisoning, a method for producing the composite, a catalyst containing the composite, and production of ammonia using the catalyst. It aims to provide a method.
  • the present inventors have used a composite in which an active metal and an alkaline earth metal are supported on a mayenite type compound, so that the catalytic activity is high and hydrogen poisoning is performed. It has been found that a suppressed catalyst is obtained.
  • a composite comprising a mayenite type compound and an active metal and an alkaline earth metal supported on the mayenite type compound.
  • a method for producing a composite comprising a first step of preparing a mayenite type compound and a second step of supporting an active metal and an alkaline earth metal on the mayenite type compound.
  • a method for producing ammonia comprising a step of producing ammonia by bringing a gas containing nitrogen and hydrogen into contact with the catalyst according to [4].
  • the process for producing ammonia is a catalyst as described in [4] above, wherein a gas containing nitrogen and hydrogen is used under a reaction temperature of 200 to 600 ° C. and a reaction pressure of 0.01 to 20 MPa in absolute pressure.
  • the catalyst according to claim 4, wherein the step of producing ammonia includes a gas containing nitrogen and hydrogen under the conditions of a reaction temperature of 250 to 700 ° C. and a reaction pressure of 0.1 to 30 MPa in absolute pressure.
  • the step of producing ammonia is performed by bringing a gas containing nitrogen and hydrogen into contact with the catalyst under a condition that a molar ratio of hydrogen to nitrogen (H 2 / N 2 ) is 0.25 to 15.
  • the composite which can obtain the catalyst with high catalyst activity and the hydrogen poisoning suppression, the manufacturing method of the composite, the catalyst containing the composite, and manufacture of ammonia using the catalyst A method can be provided.
  • the composite of the present invention includes a mayenite type compound and an active metal and an alkaline earth metal supported on the mayenite type compound.
  • the active metal and the alkaline earth metal may be directly supported on the surface of the mayenite type compound, and the active metal is supported on the surface of the mayenite type compound.
  • An alkaline earth metal may be supported on the surface of the mayenite, an alkaline earth metal may be supported on the surface of the mayenite type compound, and an active metal may be supported on the surface of the alkaline earth metal.
  • a composite of a metal and an alkaline earth metal may be supported.
  • the mayenite type compound refers to a compound having the same type of crystal structure as mayenite.
  • the mayenite type compound is preferably calcium aluminosilicate having CaO, Al 2 O 3 and SiO 2 as constituent components, more preferably 12CaO ⁇ 7Al 2 O 3 .
  • a mayenite type compound contains calcium or aluminum from a viewpoint of making the catalyst activity of a composite higher, and it is more preferable that calcium and aluminum are included.
  • the crystal of the mayenite type compound is constituted by a cage-like structure (cage) sharing its wall surface and connecting three-dimensionally.
  • an anion such as O 2 ⁇ is contained inside the cage of the mayenite type compound, but these can be substituted with conduction electrons by reduction treatment.
  • 12CaO ⁇ 7Al 2 O 3 used as a mayenite type compound in the present invention may be simply abbreviated as “C12A7”.
  • the specific surface area of the mayenite type compound used for the composite of the present invention is preferably 5 m 2 / g or more. Sufficient catalytic activity can be obtained by setting the specific surface area of the mayenite type compound to 5 m 2 / g or more.
  • the specific surface area of the mayenite type compound is more preferably 10 m 2 / g or more, still more preferably 15 m 2 / g or more, and the upper limit is not particularly limited, but is preferably 200 m 2 / g or less, more preferably. Is 100 m 2 / g or less. Within the above range, it is advantageous in terms of handling of the composite when the composite is powder and moldability of the composite.
  • the shape of the mayenite type compound used in the composite of the present invention is not particularly limited, but usually includes fine particles, granules, bulk, molded bodies and the like.
  • the shape of the mayenite type compound is preferably a fine particle shape, a bulk shape or a molded body shape, more preferably a fine particle shape or a molded body shape, and further preferably a molded body shape.
  • the molded body may be a molded body of a mayenite type compound alone or a molded body of a mayenite type compound and a binder component other than the mayenite type compound.
  • the binder component other than the mayenite type compound is not particularly limited, and examples thereof include a silica binder, an alumina binder, a titania binder, a magnesia binder, and a zirconia binder. These binders may be used alone or in combination of two types. The above may be used, and an alumina binder is preferable.
  • the particle size is not particularly limited, but the primary particle size of the mayenite type compound is usually 5 nm or more, preferably 10 nm or more, and usually 500 nm or less, preferably 100 nm or less. .
  • the surface area per mass increases.
  • the fine pores of the mayenite-type compound fine particles are also not particularly limited, but are preferably 2 to 100 nm because the fine pores of the mayenite-type compound particles are in the mesopore region. Further, when the mayenite type compound is in a bulk form, the mayenite type compound is preferably a porous body having a pore structure. This is because a mayenite type compound having a larger specific surface area can be obtained because the mayenite type compound has a pore structure.
  • an active metal and an alkaline earth metal are supported on a mayenite type compound.
  • the catalytic activity of a composite can be made still higher and hydrogen poisoning can be suppressed further.
  • the preferred alkaline earth metal is at least one selected from the group consisting of magnesium, calcium, strontium and barium, and the more preferable alkaline earth metal is selected from the group consisting of strontium and barium. At least one, and more preferred alkaline earth metal is barium.
  • the active metal is not particularly limited, and examples thereof include ruthenium, cobalt, and iron, and ruthenium is preferable because the catalytic activity of the composite can be further enhanced.
  • the content of the active metal is not particularly limited, but is usually 0.01 parts by mass or more, preferably 0.02 parts by mass or more, more preferably 0, in terms of the active metal element with respect to 100 parts by mass of the mayenite type compound. 0.05 parts by mass or more, more preferably 0.1 parts by mass or more, particularly preferably 1 part by mass or more, and usually 30 parts by mass or less, preferably 20 parts by mass or less, more preferably 15 parts by mass or less, still more preferably. It is 10 parts by mass or less.
  • the content of the active metal is within the above range, the resulting composite can have a sufficient active site, a highly active catalyst can be obtained, and a catalyst preferable in terms of cost can be obtained.
  • the molar ratio of the alkaline earth metal to the active metal (alkaline earth metal) in the active metal and alkaline earth metal supported on the mayenite type compound Number of moles of active metal / number of moles of active metal) is preferably 0.05 or more, more preferably 0.1 or more, still more preferably 0.25 or more, preferably 10 or less, more preferably 5 or less, and still more preferably 4.
  • it is further preferably 3 or less, more preferably 2 or less.
  • the molar ratio of alkaline earth metal to active metal is preferably 0.05 to 10, more preferably 0.1 to 5, More preferably, it is 0.25 to 4, more preferably 0.25 to 3, and still more preferably 0.25 to 2.
  • the mayenite type compound may carry a metal element other than the active metal and the alkaline earth metal together with the active metal and the alkaline earth metal.
  • the supported metal other than the active metal and the alkaline earth metal is not particularly limited as long as the activity of the composite obtained in the present invention is not inhibited.
  • the supported metal other than the active metal and the alkaline earth metal at least one kind of transition metal, alkali metal and rare earth metal of Group 3, Group 8, Group 9 and Group 10 of the periodic table is usually used. It can be used as a supported metal.
  • Yttrium, iron, cobalt, etc. are mentioned.
  • alkali metal Lithium, sodium, potassium, cesium, rubidium etc.
  • rare earth metal Lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, dysprosium etc. are mentioned. Among these, only the active metal and the alkaline earth metal may be supported on the mayenite type compound.
  • the mayenite type compound supports the active metal and the alkaline earth metal, the change in the catalyst surface composition due to fluctuations in the reduction conditions and the like is suppressed as compared with the case where the mayenite type compound supports three or more metals. This is because it is easy to obtain catalytic activity.
  • the method for producing a composite according to the present invention includes a first step of preparing a mayenite type compound and a second step of supporting an active metal and an alkaline earth metal on the mayenite type compound.
  • a mayenite type compound is prepared.
  • the first step will be described by taking C12A7 as an example of the mayenite type compound.
  • the raw material for producing C12A7 is not particularly limited, and depending on the production method, a raw material containing various calcium (hereinafter referred to as a calcium source) and a raw material containing aluminum (hereinafter referred to as an aluminum source) are appropriately used. Can do.
  • the aluminum source is not particularly limited, but specifically, aluminum salts such as aluminum hydroxide, aluminum oxide, aluminum nitrate, aluminum chloride, aluminum acetate; aluminum ethoxide, aluminum propoxide, aluminum isopropoxide, aluminum Aluminum alkoxides such as butoxide and aluminum isobutoxide; aluminum acetylacetonate and the like are used.
  • aluminum salts such as aluminum hydroxide, aluminum oxide, aluminum nitrate, aluminum chloride, aluminum acetate; aluminum ethoxide, aluminum propoxide, aluminum isopropoxide, aluminum Aluminum alkoxides such as butoxide and aluminum isobutoxide; aluminum acetylacetonate and the like are used.
  • C12A7 may contain elements other than Ca, Al, and oxygen as long as the object of the present invention is not impaired.
  • the method for preparing C12A7 is not particularly limited, but usually, a hydrothermal synthesis method, a sol-gel method, a combustion synthesis method, or a coprecipitation method can be used.
  • the hydrothermal synthesis method is preferable in that C12A7 having a simple and high specific surface area can be obtained with good reproducibility.
  • the hydrothermal synthesis method involves first putting a solvent such as water or alcohol and a raw material of an inorganic oxide into a pressure vessel and heating it at a temperature above the boiling point of the solvent for several hours to several days. A precursor of the product is obtained. Subsequently, the obtained precursor is further heated to obtain an inorganic oxide.
  • a solvent such as water or alcohol
  • a raw material of an inorganic oxide into a pressure vessel and heating it at a temperature above the boiling point of the solvent for several hours to several days.
  • a precursor of the product is obtained.
  • the obtained precursor is further heated to obtain an inorganic oxide.
  • the calcium source used in the hydrothermal synthesis method is not particularly limited, but usually calcium hydroxide, calcium oxide, and calcium salt are used, and calcium hydroxide is preferably used.
  • the aluminum source is not particularly limited, but usually, aluminum hydroxide, aluminum oxide, and aluminum salt are used, and preferably aluminum hydroxide is used.
  • the mixing ratio of the calcium source and the aluminum source is not particularly limited and can be appropriately adjusted according to the desired composition, but is usually mixed with the desired stoichiometric composition of C12A7.
  • the heating temperature in the heat-resistant container in hydrothermal synthesis is not particularly limited, and the heating temperature at which a sufficient yield of Ca 3 Al 2 (OH) 12 can be obtained can be appropriately selected, but is usually 100 ° C. or higher, preferably Is 150 ° C. or higher, usually 200 ° C. or lower.
  • the heating time is not particularly limited, and the heating time for obtaining a sufficient yield of Ca 3 Al 2 (OH) 12 can be appropriately selected. Usually, it is 2 hours or longer, preferably 6 hours or longer, usually 100 Below time.
  • the target C12A7 can be obtained by heating (baking) Ca 3 Al 2 (OH) 12 which is a precursor of the obtained C12A7.
  • the conditions for heating (firing) are not particularly limited and can be appropriately selected within a range in which C12A7 having a large specific surface area can be obtained. Usually, heating is performed in the air.
  • the heating temperature is not particularly limited, but it can be heated usually at 400 ° C. or higher, preferably 450 ° C. or higher, usually 1000 ° C. or lower.
  • C12A7 can also be produced by a sol-gel method.
  • a metal organic compound or inorganic compound that is a raw material of a desired metal oxide is hydrolyzed in a solution to form a sol, and then polycondensation proceeds to convert the sol into a gel.
  • It is a method of producing a metal oxide by processing.
  • J. Phys. D Appl. Phys. , 41, 0354404 (2008) and the like. Specifically, an aluminum source as a raw material is dissolved in a solvent, and after heating and stirring, an acid is added to prepare a hydrolyzed sol.
  • the calcium source used in the sol-gel method is not particularly limited, but usually calcium hydroxide, calcium oxide, calcium salt and the like are used, and calcium salt is preferable, and calcium nitrate is preferable as the calcium salt.
  • an aluminum source Usually, aluminum hydroxide, aluminum oxide, aluminum alkoxide, etc. are used, and aluminum alkoxide is preferable.
  • a combustion synthesis method can also be used.
  • a specific manufacturing method J. Org. Am. Ceram. Soc. , 81,2853-2863 (1998).
  • an amorphous precursor of a mayenite type compound is obtained by dissolving a calcium source and an aluminum source in water and heating and burning the mixed solution. The amorphous precursor is further heated and dehydrated to obtain a mayenite type compound.
  • the calcium source and aluminum source used in the combustion synthesis method are not particularly limited, but usually calcium salts and aluminum salts are preferable, and calcium nitrate and aluminum nitrate are more preferable.
  • Ca (NO 3 ) 2 .4H 2 O and Al (NO 3 ) 3 ⁇ 9H 2 O can be used as raw materials.
  • These raw materials are not particularly limited, but are dissolved in water with a stoichiometric composition.
  • Urea is further added to the solution in which the raw materials are dissolved, and the mixed solution is heated and burned to obtain an amorphous precursor of a mayenite type compound.
  • heating temperature is not specifically limited, Usually, it is 500 degreeC or more.
  • the obtained amorphous precursor is not particularly limited, but may be usually heated at 700 to 1000 ° C. for dehydration to obtain mayenite type compound powder C12A7.
  • the coprecipitation method is a method in which a solution containing two or more types of metal ions is used to simultaneously precipitate a plurality of types of hardly soluble salts of metals, and a highly uniform powder is prepared.
  • a raw material used for a coprecipitation method Usually, calcium salt and aluminum salt are used as a calcium source and an aluminum source, Preferably it is each nitrate.
  • an alkali such as ammonia or sodium hydroxide is added to an aqueous solution containing calcium nitrate and aluminum nitrate, and a hardly soluble salt containing calcium hydroxide and aluminum hydroxide is precipitated at the same time.
  • C12A7 can be obtained by drying and baking.
  • an active metal and an alkaline earth metal are supported.
  • the order in which the active metal and the alkaline earth metal are supported on the mayenite type compound is not particularly limited.
  • the active metal and the alkaline earth metal may be simultaneously supported on the mayenite type compound.
  • the particle diameter of the active metal particles supported on the mayenite type compound can be reduced, and the active metal can be highly dispersed.
  • the alkaline earth metal can be supported by adding or mixing the alkaline earth metal to the precursor obtained by the hydrothermal synthesis method, followed by firing.
  • the average particle diameter of the active metal particles supported on the mayenite type compound is preferably 1 nm or more, more preferably 1.5 nm or more, still more preferably 2 nm or more, preferably 15 nm or less, more preferably 10 nm or less, still more preferably 5 nm or less.
  • the alkaline earth metal may be supported on the mayenite type compound.
  • an alkaline earth metal can be supported in the vicinity of the active metal, and the catalytic activity of the composite can be increased.
  • the active metal and the alkaline earth metal are in contact, the catalytic activity of the composite is more enhanced. It can be further enhanced.
  • an active metal is not specifically limited, For example, ruthenium, cobalt, iron, etc. are mentioned, It is preferable that it is ruthenium.
  • the ruthenium compound used for supporting ruthenium on the mayenite type compound is not particularly limited as long as it can be converted to metal ruthenium by reduction treatment.
  • Examples of the ruthenium compound used for supporting ruthenium on the mayenite type compound include a ruthenium salt and a ruthenium complex.
  • Ruthenium salts include ruthenium chloride (RuCl 3 ), ruthenium chloride hydrate (RuCl 3 ⁇ nH 2 O), ruthenium acetate (Ru (CH 3 CO 2 ) X ), ruthenium nitrate, ruthenium iodide hydrate (RuI).
  • ruthenium nitrosyl nitrate (Ru (NO) (NO 3 ) 3 ), nitrosyl ruthenium chloride hydrate (Ru (NO) Cl 3 ⁇ nH 2 O), ruthenium trinitrate (Ru (NO 3 )) 3 ), hexaammineruthenium chloride (Ru (NH 3 ) 6 Cl 3 ), etc.
  • ruthenium acetate is a ruthenium salt in that high catalytic activity is obtained without destroying the structure of the mayenite type compound in the second step. Ruthenium nitrate, nitrosyl ruthenium nitrate and ruthenium chloride are preferred.
  • Examples of the ruthenium complex include triruthenium dodecacarbonyl (Ru 3 (CO) 12 ), dichlorotetrakis (triphenylphosphine) ruthenium (II) (RuC 12 (PPh 3 ) 4 ), dichlorotris (triphenylphosphine) ruthenium (II) (RuC 12 (PPh 3 ) 3 ), tris (acetylacetonato) ruthenium (III) (Ru (acac) 3 ), ruthenocene (Ru (C 5 H 5 ) 2 ), dichloro (benzene) ruthenium (II) dimer ( [RuC 12 (C 5 H 5 )] 2 ), dichloro (mesitylene) ruthenium (II) dimer ([RuC 12 (mesitylene)] 2 ), dichloro (p-cymene) ruthenium (II) dimer ([RuC 12 (p -Cymene)] 2
  • ruthenium complexes triruthenium dodecacarbonyl (Ru 3 (CO) 12 ), tris (acetylacetonato) ruthenium (III) (Ru (acac) 3 ), ruthenocene (Ru (C 5 H 5) 2), etc. are preferred.
  • the ruthenium compound is selected from the group consisting of ruthenium chloride, tris (acetylacetonato) ruthenium (III) and ruthenium nitrosyl nitrate. It may be at least one ruthenium compound.
  • the method for supporting the active metal on the mayenite type compound is not particularly limited, but it may be supported by an impregnation method, a thermal decomposition method, a liquid phase method, a sputtering method, a vapor deposition method, or the like.
  • a method of forming after the active metal is supported by any of the above-described supporting methods is practically used.
  • the impregnation method or the vapor deposition method is preferable in that the active metal can be uniformly dispersed on the carrier, and it is easy to form uniform active metal particles.
  • the impregnation method is more preferable. Specifically, the impregnation method involves dispersing a mayenite type compound in a solution containing an active metal compound, and subsequently evaporating and drying the solvent of the solution containing the mayenite type compound and the active metal compound, thereby supporting the active metal. (Hereinafter, it may be referred to as an active metal-supported mayenite type compound).
  • the solvent used in the impregnation method is, for example, water, methanol, ethanol, 1-propanol, 2-propanol, butanol, dimethyl sulfoxide, N, N-dimethylformamide, acetonitrile, acetone, methyl isobutyl ketone, methyl ethyl ketone, cyclohexanone, It preferably contains at least one selected from the group consisting of cyclopentanone, tetrahydrofuran, methylene chloride, ethyl acetate, chloroform, diethyl ether, toluene and hexane, and two or more types can also be used.
  • the vapor deposition method specifically mixes the mayenite type compound with the active metal compound, heats it in a vacuum atmosphere, and deposits the active metal on the mayenite type compound as the active metal compound is thermally decomposed. An active metal-supported mayenite type compound is obtained.
  • alkaline earth metal compound used for supporting the alkaline earth metal on the mayenite type compound a compound of at least one alkaline earth metal selected from magnesium, calcium, strontium and barium is preferable, from strontium and barium. At least one selected alkaline earth metal compound is more preferable, and a barium compound is more preferable in that it is a more abundant element.
  • the alkaline earth metal compound for supporting the alkaline earth metal on the mayenite type compound is not particularly limited as long as the alkaline earth metal can be supported on the mayenite type compound.
  • Inorganic acid salts such as carbonates, oxides and nitrates; carboxylates such as acetates and formates; alkoxides such as ethoxides; organic compounds containing other alkaline earth metals; metals such as metal acetylacetonate complexes Although a complex etc. are mentioned, an alkoxide, a metal acetylacetonate complex, and carboxylate are preferable, and the alkoxide with which reaction is easy is more preferable.
  • the alkoxide used for supporting the alkaline earth metal on the mayenite type compound includes magnesium methoxide, magnesium ethoxide, magnesium phenoxide, strontium methoxide, strontium ethoxide, strontium phenoxide, barium methoxide, barium ethoxide and Examples include barium phenoxide.
  • a preferred alkoxide is barium ethoxide.
  • the method for supporting the alkaline earth metal on the mayenite type compound is the same as the method for supporting the active metal described above.
  • the form of the alkaline earth metal supported on the mayenite type compound may be a form of a simple metal, or a form of other compounds such as a salt thereof, an oxide thereof, and a hydroxide thereof. .
  • a preferred form of the alkaline earth metal supported on the mayenite type compound is an oxide.
  • the alkaline earth metal oxide, after being supported on C12A7, is usually supported as an oxide as it is even after reduction treatment, and is present on the surface of the mayenite type compound together with the reduced active metal.
  • a metal compound other than the active metal compound and the alkaline earth metal compound can be used to support a metal other than the active metal and the alkaline earth metal on the mayenite type compound.
  • the metal compound for supporting the metal other than the active metal and the alkaline earth metal on the mayenite type compound is not particularly limited as long as it does not inhibit the support of the active metal and the alkaline earth metal.
  • Group 8, group 9 and group 10 transition metal compounds, alkali metal compounds and rare earth metal compounds are preferred.
  • Examples of the transition metal compounds of Groups 3, 8, 9, and 10 of the periodic table include compounds such as yttrium, iron, and cobalt.
  • Examples of the alkali metal compound include compounds such as lithium, sodium, potassium, cesium, and rubidium.
  • Examples of the rare earth metal compound include compounds such as lanthanum, cerium, praseodymium, neodymium, samarium, gadolinium, and dysprosium.
  • the method for producing a composite of the present invention may further include a third step of reducing the mayenite type compound obtained in the second step.
  • the conditions for the reduction treatment are not particularly limited as long as they do not hinder the object of the present invention.
  • the reduction treatment is preferably performed in an atmosphere containing a reducing gas.
  • the reducing gas include hydrogen, ammonia, methanol (steam), ethanol (steam), methane, ethane, and the like.
  • components other than the reducing gas that do not inhibit the ammonia synthesis reaction may coexist in the reaction system.
  • a gas such as argon or nitrogen that does not inhibit the reaction may coexist, or nitrogen may coexist.
  • the temperature of the reduction treatment is not particularly limited, but is usually 200 ° C. or higher, preferably 300 ° C. or higher, usually 1000 ° C. or lower, preferably 600 ° C. or lower.
  • the active metal particles can be grown in the above-mentioned preferable average particle diameter range.
  • the pressure of a reduction process is not specifically limited, Usually, it is 0.1 MPa or more and 10 MPa.
  • the time for the reduction treatment is not particularly limited, but when it is carried out at normal pressure, it is usually 20 hours or longer, preferably 25 hours or longer. Moreover, when performing on the conditions with high reaction pressure, for example, 1 MPa or more, 5 hours or more are preferable.
  • the reduction treatment in the third step is preferably performed until the average particle diameter of the active metal after the reduction treatment increases by 15% or more with respect to the average particle diameter before the reduction treatment.
  • the upper limit of the average particle diameter of the active metal after the reduction treatment is not particularly limited, but is usually 200% or less.
  • the average particle diameter of the active metal after the reduction treatment is preferably 1 nm or more, more preferably 1.5 nm or more, still more preferably 2 nm or more, preferably 15 nm or less, more preferably 10 nm or less, still more preferably 5 nm or less. It is.
  • the average particle diameter of the active metal refers to an average particle diameter obtained by a direct observation method such as TEM (transmission electron microscope).
  • TEM transmission electron microscope
  • the longest diameter of each of the actually observed active metals can be measured and arithmetically averaged.
  • the number of active metal samples for observing the average particle diameter may be, for example, 300 or more and 350 or less, or 300.
  • the average particle diameter of the active metal before and after the reduction treatment is determined on the assumption that all the active metals present on the surface to be measured are metals.
  • the active metal present on the surface to be measured may contain an active metal compound which is an active metal source as long as it does not significantly affect the calculation of the average particle diameter of the active metal.
  • an active metal particle diameter is calculated
  • the reduction treatment temperature is preferably 300 ° C. or higher, more preferably 430 ° C. or higher, preferably 600 ° C. or lower, more preferably 450 ° C. or lower.
  • the catalyst of the present invention contains the composite of the present invention, and particularly consists of the composite of the present invention. Thereby, a catalyst having high catalytic activity and suppressed hydrogen poisoning can be obtained.
  • the catalyst of the present invention may contain components other than the composite of the present invention as long as the object of the present invention is not impaired.
  • the catalyst of the present invention can contain a component that becomes a binder (binder) component for facilitating the molding of the catalyst.
  • binder include metal oxides such as SiO 2 , Al 2 O 3 , ZrO 2 , TiO 2 , La 2 O 3 , CeO 2 , and Nb 2 O 5 , and carbon materials such as activated carbon, graphite, and SiC. Can be mentioned.
  • the catalyst of the present invention may be subjected to a reduction treatment before use.
  • the reduction process of the catalyst of this invention can be performed by the method similar to the reduction process of the 3rd process in the manufacturing method of the composite of this invention mentioned above.
  • the catalyst of the present invention can also be subjected to a reduction treatment under the conditions of ammonia synthesis.
  • the specific surface area of the catalyst of the present invention is not particularly limited, but is usually 5 m 2 / g or more, preferably 10 m 2 / g or more, and usually 200 m 2 / g or less in terms of the specific surface area based on the BET method. , Preferably, it is 100 m 2 / g or less.
  • the specific surface area of the mayenite type compound carrying the active metal and alkaline earth metal obtained after the reduction treatment is usually the same as that of the mayenite type compound before carrying the active metal and alkaline earth metal used in the production. It is about the same as the specific surface area.
  • the catalyst of the present invention can be appropriately used as a molded body using a normal molding technique. Specific examples include granular shapes, spherical shapes, tablet shapes, ring shapes, macaroni shapes, four-leaf shapes, dice shapes, and honeycomb shapes. It is also possible to use the catalyst after coating the support with a catalyst.
  • the molding of the catalyst may be performed during the production of the composite. In this case, it is not limited as to which stage of the manufacturing method of the composite is performed, and may be performed subsequently to any process. Specifically, a step of molding the mayenite type compound obtained in the first step may be included subsequent to the first step in the method for producing a composite. Moreover, the process of shape
  • the method including the step of forming following the first step in the method for producing a composite, or the method including the step of forming following the second step in the method for producing a composite is active on the mayenite type compound.
  • the metal is uniformly dispersed and high catalytic activity is obtained.
  • the alkaline earth metal can be supported on the mayenite type compound after the mayenite type compound supporting the active metal is molded.
  • the catalyst of the present invention can be used as a catalyst for ammonia synthesis.
  • the use of the catalyst of the present invention is not limited to ammonia synthesis.
  • the catalyst of the present invention includes hydrogenation of aliphatic carbonyl compounds, hydrogenation of aromatic rings, hydrogenation of carboxylic acids, synthesis of unsaturated alcohols by hydrogenation of unsaturated aldehydes, steam reforming of methane, alkenes, etc. It is used for hydrogenation of CO, methanation by reaction of CO or CO 2 with hydrogen, Fischer-Tropsch synthesis reaction, nuclear hydrogenation of substituted aromatics, oxidation of alcohols to carbonyl compounds, gasification of lignin, and the like.
  • the method for producing ammonia of the present invention includes a step of producing ammonia by bringing a gas containing nitrogen and hydrogen into contact with the catalyst of the present invention. Thereby, ammonia can be manufactured efficiently.
  • a gas containing nitrogen and hydrogen When contacting the catalyst of the present invention with a gas containing nitrogen and hydrogen, first, only the hydrogen is brought into contact with the catalyst of the present invention to reduce the catalyst, and then the catalyst of the present invention is contacted with a gas containing nitrogen and hydrogen. You may let them. Moreover, you may make the mixed gas containing hydrogen and nitrogen contact the catalyst of this invention from the beginning. Further, the unreacted gas recovered from the reactor at this time can be recycled to the reactor for use.
  • the method for producing ammonia of the present invention is not particularly limited, but ammonia synthesis is usually performed by heating the catalyst when a gas containing nitrogen and hydrogen is brought into contact with the catalyst.
  • ammonia can be produced under low temperature and low pressure conditions.
  • the reaction temperature is preferably 200 to 600 ° C., more preferably 250 to 500 ° C., and further preferably 300 to 450 ° C. Since ammonia synthesis is an exothermic reaction, the low temperature region is more advantageous for ammonia production in terms of chemical equilibrium, but the above temperature range is preferred in order to obtain a sufficient ammonia production rate.
  • the reaction pressure when carrying out the ammonia synthesis reaction in the method for producing ammonia of the present invention is an absolute pressure, preferably 0.01 to 20 MPa. More preferably, it is 0.5 to 10 MPa, and further preferably 1 to 7 MPa.
  • the efficiency of the ammonia synthesis reaction is hardly increased even if the reaction pressure is increased.
  • the molar ratio of hydrogen to nitrogen (H 2 / N 2 ) brought into contact with the catalyst is preferably 0.25 to 15, more preferably 0.5 to 12, and still more preferably 1.0 to 10. Since the catalyst of the present invention is less susceptible to hydrogen poisoning, the molar ratio of hydrogen to nitrogen can be made higher than the normal molar ratio of hydrogen to nitrogen when an active metal is used. This increases the efficiency of ammonia synthesis.
  • the total water content in the mixed gas of nitrogen and hydrogen is usually 100 ppm or less, preferably 50 ppm or less.
  • the form of the reaction vessel is not particularly limited, and a reaction vessel that can be usually used for ammonia synthesis reaction can be used.
  • a reaction format for example, a batch type reaction format, a closed circulation system reaction format, a circulation system reaction format, or the like can be used. Among these, from the practical point of view, the flow reaction system is preferable.
  • any one method of a reactor filled with a catalyst, a method of connecting a plurality of reactors, or a reactor having a plurality of reaction layers in the same reactor can be used.
  • a reaction apparatus usually used for removing the heat of reaction may be used industrially in order to increase the ammonia yield.
  • a method of removing a heat by connecting a plurality of reactors filled with a catalyst in series and installing an intercooler at the outlet of each reactor may be used.
  • the method for producing ammonia of the present invention is characterized in that ammonia can be produced under conditions of low temperature and low pressure.
  • the method of producing ammonia under conditions of medium temperature and medium pressure may be produced.
  • the reaction temperature is, for example, preferably 250 to 700 ° C., more preferably 300 to 600 ° C., and further preferably 350 to 550 ° C.
  • the reaction pressure is an absolute pressure, preferably 0.1 to 30 MPa, more preferably 1 to 20 MPa, and still more preferably 2 to 10 MPa.
  • Ca (OH) 2 manufactured by Kojundo Chemical Laboratory Co., Ltd., purity 99.9%, 7.18 g
  • Al (OH) 3 Kojundo Chemical Laboratory, purity 99.9% 8.82 g)
  • the obtained mixed solution was put into a pressure-resistant airtight container and heated (hydrothermal treatment) at 150 ° C. for 6 hours while stirring.
  • the precipitate obtained by the hydrothermal treatment was filtered, dried and pulverized to obtain about 16 g of mayenite type compound precursor powders: Ca 3 Al 2 (OH) 12 and AlOOH.
  • This precursor powder was dehydrated by heating in the atmosphere at 600 ° C. for 5 hours to obtain a mayenite type compound powder (hereinafter referred to as HT-C12A7 (12CaO ⁇ 7Al 2 O 3 )).
  • the specific surface area of this mayenite type compound measured by the BET method was 63.5 m 2 / g and was a mayenite type compound having a large specific surface area.
  • Ru raw material triruthenium dodecacarbonyl (Ru 3 (CO) 12 : Sigma-Aldrich, purity 99%, 0.101 g) was used, and HT-C12A7 (0. 95 g) and sealed in a Pyrex (registered trademark) glass tube and heated by the following temperature program to load 5 mass% of Ru onto HT-C12A7. (Ru / HT-C12A7) powder was obtained.
  • the metal ruthenium is supported on the mayenite type compound and the alkaline earth metal is further supported on the mayenite type compound, so that the catalytic activity can be increased and the reaction pressure can be increased to increase the catalyst. It has been found that the reaction can be further improved.
  • alumina balls having a diameter of 1 to 2 mm were packed in the upper part of the SUS reaction tube packed with the catalyst.
  • the SUS tube packed with the catalyst layer was attached to a fixed bed flow system reactor to carry out the reaction.
  • a mixed gas in which the molar ratio of H 2 to N 2 is changed is supplied to the reactor under the condition that the space velocity (WHSV) of the total gas of N 2 and H 2 is 18000 mLg ⁇ 1 h ⁇ 1, and the reaction is performed. went.
  • the gas coming out of the reactor was quantified by an on-line gas chromatograph.
  • reaction gas on the outlet side was bubbled into a 0.01 M sulfuric acid aqueous solution, the generated ammonia was dissolved in the solution, the generated ammonium ions were quantified by ion chromatography, and the ammonia in the gas discharged from the reactor was quantified. Concentration was measured. The results are shown in FIG.
  • the metal ruthenium is supported on the mayenite type compound, and the alkaline earth metal is further supported on the mayenite type compound, so that the catalytic activity can be increased and the hydrogen poisoning of the catalyst is further suppressed. I found out that I could do it.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Abstract

本発明の複合物はマイエナイト型化合物とマイエナイト型化合物に担持された活性金属及びアルカリ土類金属とを含む。本発明の触媒は本発明の複合物を含有する。本発明の複合物の製造方法はマイエナイト型化合物を調製する第一の工程と、マイエナイト型化合物に、活性金属及びアルカリ土類金属を担持させる第二の工程とを含む。本発明のアンモニアの製造方法は本発明の触媒に窒素と水素を含むガスを接触させてアンモニアを製造する工程を含む。本発明によれば、触媒活性が高く、水素被毒の抑制された触媒を得ることができる複合物、その複合物の製造方法、その複合物を含有する触媒及びその触媒を用いたアンモニアの製造方法を提供することができる。

Description

複合物、複合物の製造方法、触媒及びアンモニアの製造方法
 本発明は、複合物、その複合物の製造方法、その複合物を含有する触媒及びその触媒を用いたアンモニアの製造方法に関する。
 農業生産において広く用いられる硫安や尿素等の窒素肥料は、アンモニアを主原料として製造される。そのためアンモニアは非常に重要な化学原料として、その製造方法が検討されている。
 最も広く使用されているアンモニア製造技術として、ハーバー・ボッシュ法が挙げられる。ハーバー・ボッシュ法は、窒素と水素を原料として、鉄を主成分とした触媒と高温高圧下で接触させることでアンモニアを製造する方法である。
 ハーバー・ボッシュ法以外の合成方法として、種々の担体にルテニウムを担持した担持金属触媒を用いた合成方法が検討されている。
 一方、CaO、Al、SiOを構成成分とするアルミノケイ酸カルシウムの中に、鉱物名をマイエナイトと呼ぶ物質があり、その物質と同型の結晶構造を有する化合物を「マイエナイト型化合物」という。マイエナイト型化合物は、12CaO・7Al(以下、「C12A7」と略記することがある)なる代表組成を有し、C12A7結晶は、2分子からなる単位胞にある66個の酸素イオンの内の2個が、結晶骨格で形成されるケージ内の空間に「フリー酸素イオン」として包接されているという、特異な結晶構造([Ca24Al28644+(O2-)を持つことが報告されている(非特許文献1)。
 また、マイエナイト型化合物中のフリー酸素イオンを種々の陰イオンで置換することができ、特に強い還元雰囲気下、高温でマイエナイト型化合物を保持することで、すべてのフリー酸素イオンを電子で置換することができる。そして、この電子で置換されたマイエナイト型化合物が、良好な電子伝導特性を有する導電性マイエナイト型化合物であることが報告されている(非特許文献2)。このように、フリー酸素イオンを電子で置換したマイエナイト型化合物を「Cl2A7エレクトライド」と呼ぶことがある。
 そして、C12A7エレクトライドを用いた触媒が、アンモニア合成用触媒として使用できることが報告されている(特許文献1)。
 当該アンモニア合成用触媒は、具体的には、マイエナイト型化合物を還元雰囲気下、加熱することで、Cl2A7エレクトライドを作製し、このC12A7エレクトライドを担体として、ルテニウムを担持して製造することができる。この触媒は、従来のアンモニア合成用触媒に比べて、高いアンモニア合成活性を有し、高性能のアンモニア合成用触媒となる。
国際公開WO2012/077658号
H.B.Bartl,T.Scheller and N.Jarhrb,Mineral Monatch.1970,547 S.Matuishi,Y.Toda,M.Miyakawa,K.Hayashi,T.Kamiya,M.Hirano,I.Ta naka and H.Hosono,Science 301,626-629(2003)
 C12A7エレクトライドを担体として、ルテニウムを担持金属とした触媒は、高い性能を有するものの、さらに触媒活性を高くして、さらなる触媒の高性能化が望まれている。また、C12A7エレクトライドに担持されたルテニウムは水素被毒が抑制されるものの、水素圧を高くして水素化の効率をさらに高めるために、水素被毒をさらに抑制する必要がある。
 そこで、本発明は、触媒活性が高く、水素被毒の抑制された触媒を得ることができる複合物、その複合物の製造方法、その複合物を含有する触媒及びその触媒を用いたアンモニアの製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を行った結果、活性金属及びアルカリ土類金属をマイエナイト型化合物に担持させた複合物を用いることにより、触媒活性が高く、水素被毒の抑制された触媒が得られることを見出した。
[1]マイエナイト型化合物と、前記マイエナイト型化合物に担持された活性金属及びアルカリ土類金属とを含む複合物。
[2]前記マイエナイト型化合物が12CaO・7Alである、上記[1]に記載の複合物。
[3]前記アルカリ土類金属がバリウムである、上記[1]又は[2]に記載の複合物。
[4]上記[1]~[3]のいずれか1つに記載の複合物を含有する触媒。
[5]マイエナイト型化合物を調製する第一の工程と、前記マイエナイト型化合物に、活性金属及びアルカリ土類金属を担持させる第二の工程とを含む複合物の製造方法。
[6]第二の工程で得られた前記マイエナイト型化合物を還元処理する第三の工程をさらに含む、上記[5]に記載の複合物の製造方法。
[7]前記第一の工程において、前記マイエナイト型化合物の調製を水熱合成法で行なう、上記[5]又は[6]に記載の複合物の製造方法。
[8]前記第二の工程において、活性金属及びアルカリ土類金属の担持を含浸法で行なう、上記[5]~[7]のいずれか1つに記載の複合物の製造方法。
[9]前記マイエナイト型化合物が12CaO・7Alである、上記[5]~[8]のいずれか1つに記載の複合物の製造方法。
[10]前記アルカリ土類金属がバリウムである、上記[5]~[9]のいずれか1つに記載の複合物の製造方法。
[11]上記[4]に記載の触媒に窒素と水素を含むガスを接触させてアンモニアを製造する工程を含む、アンモニアの製造方法。
[12]前記アンモニアを製造する工程は、200~600℃の反応温度及び絶対圧で0.01~20MPaの反応圧力の条件下で、窒素と水素を含むガスを上記[4]に記載の触媒に接触させる、上記[11]に記載のアンモニアの製造方法。
[13]前記アンモニアを製造する工程は、250~700℃の反応温度及び絶対圧で0.1~30MPaの反応圧力の条件下で、窒素と水素を含むガスを請求項4に記載の触媒に接触させる、上記[11]に記載のアンモニアの製造方法。
[14]前記アンモニアを製造する工程は、窒素に対する水素のモル比(H/N)が0.25~15の条件下で、窒素と水素を含むガスを前記触媒に接触させる、上記[11]~[13]のいずれか1つに記載のアンモニアの製造方法。
 本発明によれば、触媒活性が高く、水素被毒の抑制された触媒を得ることができる複合物、その複合物の製造方法、その複合物を含有する触媒及びその触媒を用いたアンモニアの製造方法を提供することができる。
実施例1及び比較例1の触媒を用いた場合のアンモニア合成反応における圧力を変化させたときのアンモニアの生成量を示すグラフである。 実施例1及び比較例1の触媒を用いた場合のアンモニア合成反応における窒素に対する水素のモル比を変化させたときのアンモニアの生成量を示すグラフである。
[複合物]
 本発明の複合物は、マイエナイト型化合物と、マイエナイト型化合物に担持された活性金属及びアルカリ土類金属とを含む。なお、マイエナイト型化合物に担持されているとは、マイエナイト型化合物の表面に活性金属及びアルカリ土類金属が直接担持されていてもよく、マイエナイト型化合物の表面に活性金属が担持され活性金属の表面にアルカリ土類金属が担持されていてもよく、マイエナイト型化合物の表面にアルカリ土類金属が担持されアルカリ土類金属の表面に活性金属が担持されていてもよく、マイエナイト型化合物の表面に活性金属及びアルカリ土類金属の複合体が担持されていてもよい。
<マイエナイト型化合物>
 マイエナイト型化合物とは、マイエナイトと同型の結晶構造を有する化合物をいう。マイエナイト型化合物は、好ましくはCaO、Al、SiOを構成成分とするアルミノケイ酸カルシウムであり、より好ましくは12CaO・7Alである。また、マイエナイト型化合物は、複合物の触媒活性をより高くするという観点で、カルシウム又はアルミニウムを含むことが好ましく、カルシウム及びアルミニウムを含むことがより好ましい。
 マイエナイト型化合物の結晶は、籠状の構造(ケージ)がその壁面を共有し、三次元的に繋がることで構成される。通常、マイエナイト型化合物のケージの内部にはO2-などのアニオンが含まれているが、還元処理によってそれらを伝導電子に置換することができる。
 本発明でマイエナイト型化合物として用いられる12CaO・7Alを単に「C12A7」と略記することがある。
 本発明の複合物に用いられるマイエナイト型化合物の比表面積は、好ましくは5m/g以上である。マイエナイト型化合物の比表面積を5m/g以上とすることにより、十分な触媒活性を得ることができる。マイエナイト型化合物の比表面積は、より好ましくは10m/g以上であり、更に好ましくは15m/g以上であり、上限は特に限定はされないが、好ましくは200m/g以下であり、より好ましくは100m/g以下である。上記範囲内であれば、複合物が粉体である場合の複合物の取り扱いや複合物の成形性の面で有利である。
 本発明の複合物に用いられるマイエナイト型化合物の形状は、特に限定はされないが、通常、微粒子状、顆粒状、バルク状、成形体状等が挙げられる。マイエナイト型化合物の形状は、微粒子状、バルク状又は成形体状が好ましく、微粒子状又は成形体状がより好ましく、成形体状が更に好ましい。なお、成形体状とは、マイエナイト型化合物単独の成形体でもよく、マイエナイト型化合物とマイエナイト型化合物以外のバインダー成分との成形体でもよい。マイエナイト型化合物以外のバインダー成分としては、特に限定されないが、シリカバインダー、アルミナバインダー、チタニアバインダー、マグネシアバインダー、及び、ジルコニアバインダー等が挙げられ、これらのバインダーは単独で使用してもよく、2種以上を使用してもよく、アルミナバインダーであることが好ましい。
 マイエナイト型化合物の形状が微粒子状のとき、その粒子径は特に限定されないが、マイエナイト型化合物の一次粒子サイズは、通常5nm以上、好ましくは10nm以上であり、通常500nm以下、好ましくは100nm以下である。
 マイエナイト型化合物は、微粒子にすることにより、質量当たりの表面積が増加する。マイエナイト型化合物の微粒子の細孔も、特に限定はされないが、マイエナイト型化合物の粒子の細孔がメソ孔領域になるため、好ましくは2~100nmである。
 また、マイエナイト型化合物がバルク状である場合は、マイエナイト型化合物は細孔構造を有する多孔質体であることが好ましい。マイエナイト型化合物が細孔構造を有することでより比表面積の大きなマイエナイト型化合物が得られるためである。
<活性金属及びアルカリ土類金属>
 本発明の複合物では、活性金属及びアルカリ土類金属がマイエナイト型化合物に担持されている。これにより、活性金属のみがマイエナイト型化合物に担持されている場合に比べて、複合物の触媒活性をさらに高くし、水素被毒をさらに抑制することができる。このような観点から、好ましいアルカリ土類金属は、マグネシウム、カルシウム、ストロンチウム及びバリウムからなる群から選択される少なくとも1種であり、より好ましいアルカリ土類金属はストロンチウム及びバリウムからなる群から選択される少なくとも1種であり、更に好ましいアルカリ土類金属はバリウムである。また、活性金属は特に限定されず、例えば、ルテニウム、コバルト及び鉄等が挙げられ、複合物の触媒活性をより一層高めることができることから、ルテニウムであることが好ましい。
 活性金属の含有量は、特に限定はされないが、マイエナイト型化合物100質量部に対して、活性金属元素換算で、通常0.01質量部以上、好ましくは0.02質量部以上、より好ましくは0.05質量部以上、更に好ましくは0.1質量部以上、特に好ましくは1質量部以上であり、通常30質量部以下、好ましくは20質量部以下、より好ましくは15質量部以下、更に好ましくは10質量部以下である。活性金属の含有量が上記範囲内であることで、得られる複合物が十分な活性点を有することができ、高活性の触媒が得られ、コスト面で好ましい触媒を得ることができる。
 触媒活性を高くし、水素被毒を抑制することができるという観点から、マイエナイト型化合物に担持される活性金属及びアルカリ土類金属において、活性金属に対するアルカリ土類金属のモル比(アルカリ土類金属のモル数/活性金属のモル数)は、好ましくは0.05以上、より好ましくは0.1以上、更に好ましくは0.25以上、好ましくは10以下、より好ましくは5以下、更に好ましくは4以下、更に好ましくは3以下、更に好ましくは2以下である。例えば、活性金属に対するアルカリ土類金属のモル比(アルカリ土類金属のモル数/活性金属のモル数)は、好ましくは0.05~10であり、より好ましくは0.1~5であり、更に好ましくは0.25~4であり、更に好ましくは0.25~3であり、更に好ましくは0.25~2である。
 マイエナイト型化合物には活性金属及びアルカリ土類金属のみが担持されていてもよい。しかし、マイエナイト型化合物には活性金属及びアルカリ土類金属と共に、活性金属及びアルカリ土類金属以外の金属元素が担持されていてもよい。
 活性金属及びアルカリ土類金属以外の担持金属としては、本発明で得られる複合物の活性を阻害しない限りにおいて特に限定されない。例えば、活性金属及びアルカリ土類金属以外の担持金属として、通常、周期表第3族、第8族、第9族及び第10族の遷移金属、アルカリ金属及び希土類金属の少なくとも1種の金属を担持金属として使用することができる。
 周期表第3族、第8族、第9族及び第10族の遷移金属としては特に限定されないが、イットリウム、鉄及びコバルト等が挙げられる。
 アルカリ金属の種類としては特に限定はされないが、リチウム、ナトリウム、カリウム、セシウム、ルビジウム等が挙げられる。
 希土類金属の種類としては特に限定はされないが、ランタン、セリウム、プラセオジウム、ネオジウム、サマリウム、ガドリニウム、ジスプロシウム等が挙げられる。
 このうち、マイエナイト型化合物に活性金属及びアルカリ土類金属のみを担持させてもよい。マイエナイト型化合物に活性金属及びアルカリ土類金属を担持させる方が、マイエナイト型化合物に3種以上の金属を担持させる場合に比べ、還元条件等の変動による触媒表面組成の変化が抑制され、所望の触媒活性を得やすいからである。
[複合物の製造方法]
 本発明の複合物の製造方法は、マイエナイト型化合物を調製する第一の工程と、マイエナイト型化合物に、活性金属及びアルカリ土類金属を担持させる第二の工程とを含む。
(第一の工程)
 第一の工程ではマイエナイト型化合物を調製する。以下、マイエナイト型化合物としてC12A7を例に挙げて、第一工程を説明する。
 C12A7を製造するための原料は、特に限定はされず、製造方法に応じ、各種のカルシウムを含む原料(以下、カルシウム源という)と、アルミニウムを含む原料(以下、アルミニウム源という)を適宜用いることができる。
 カルシウム源としては、特に限定はされないが、具体的には、水酸化カルシウム、酸化カルシウム、硝酸カルシウム、塩化カルシウム、酢酸カルシウム等のカルシウム塩;カルシウムエトキシド、カルシウムプロポキシド、カルシウムイソプロポキシド、カルシウムブトキシド、カルシウムイソブトキシド等のカルシウムアルコキシド等が用いられる。
 アルミニウム源としては、特に限定はされないが、具体的には、水酸化アルミニウム、酸化アルミニウム、硝酸アルミニウム、塩化アルミニウム、酢酸アルミニウム等のアルミニウム塩;アルミニウムエトキシド、アルミニウムプロポキシド、アルミニウムイソプロポキシド、アルミニウムブトキシド、アルミニウムイソブトキシド等のアルミニウムアルコキシド;アルミニウムアセチルアセトナート等が用いられる。
 C12A7は、本発明の目的を阻害しない限りにおいて、Ca、Al、酸素以外の元素を含んでいてもよい。
 C12A7を調製する方法は、特に限定されるものではないが、通常、水熱合成法、ゾルゲル法、燃焼合成法、又は共沈法を用いることができる。このうち、簡便で、かつ比表面積が高いC12A7を再現性よく得ることができる点で水熱合成法が好ましい。
<水熱合成法>
 水熱合成法は、具体的には、まず水やアルコール等の溶媒と、無機酸化物の原料を耐圧容器に入れて、溶媒の沸点以上の温度で数時間~数日加熱することで無機酸化物の前駆体を得る。引き続き、得られた前駆体をさらに加熱し、無機酸化物を得る方法である。
 水熱合成法で用いられるカルシウム源は、特に限定はされないが、通常、水酸化カルシウム、酸化カルシウム、カルシウム塩が用いられ、好ましくは水酸化カルシウムが用いられる。
 またアルミニウム源は、特に限定はされないが、通常、水酸化アルミニウム、酸化アルミニウム、アルミニウム塩が用いられ、好ましくは水酸化アルミニウムが用いられる。
 カルシウム源及びアルミニウム源の混合比率は特に限定されず、所望の組成に合わせて適宜調製可能であるが、通常は、目的とするC12A7の化学量論組成で混合する。
 アルミニウム源及びカルシウム源を耐圧容器中に投入した後、これらを水の沸点以上の温度で加熱することで、C12A7の前駆体となる水酸化物であるCaAl(OH)12を合成することができる。
 水熱合成における耐熱容器中での加熱温度は特に限定はされず、十分な収量のCaAl(OH)12が得られる加熱温度を適宜選択することができるが、通常100℃以上、好ましくは150℃以上、通常、200℃以下である。
 加熱時間は特に限定はされず、十分な収量のCaAl(OH)12が得られる加熱時間を適宜選択することができるが、通常、2時間以上、好ましくは6時間以上、通常、100時間以下である。
 得られたC12A7の前駆体であるCaAl(OH)12を、加熱(焼成)することで目的のC12A7を得ることができる。
 加熱(焼成)の条件は特に限定はされず、比表面積が大きなC12A7が得られる範囲で適宜選択することができるが、通常は大気中で加熱する。
 加熱温度は特に限定はされないが、通常400℃以上、好ましくは450℃以上、通常1000℃以下で加熱することができる。
<ゾルゲル法>
 C12A7はゾルゲル法で製造することもできる。ゾルゲル法は、所望の金属酸化物の原料となる金属の有機化合物又は無機化合物を、溶液中で加水分解し、ゾルとした後、重縮合を進めさせゾルからゲルに変換し、このゲルを高温処理することで金属酸化物を作成する方法である。製造方法は、例えばJ.Phys.D:Appl.Phys.,41,035404(2008)等に記載の公知の方法に準拠して製造することができる。
 具体的には原料となるアルミニウム源を溶媒に溶解し、加熱、攪拌後、酸を添加して加水分解したゾルを調製する。引き続き、カルシウム源を溶媒に溶解させ、必要に応じpHを調整し、アルミニウム源を含むゾルと共に攪拌下、加熱、混合することでゲル化させ、得られたゲルをろ過後、脱水、焼成することにより、C12A7を得る。
 ゾルゲル法で用いられるカルシウム源としては、特に限定はされないが、通常、水酸化カルシウム、酸化カルシウム、カルシウム塩等が用いられ、カルシウム塩が好ましく、カルシウム塩としては硝酸カルシウムが好ましい。
 アルミニウム源としては、特に限定はされないが、通常、水酸化アルミニウム、酸化アルミニウムやアルミニウムアルコキシド等が用いられ、アルミニウムアルコキシドが好ましい。
<燃焼合成法>
 C12A7の合成方法として、燃焼合成法による製造も可能である。
 具体的な製造方法としては、J.Am.Ceram.Soc.,81,2853-2863(1998)に記載の方法に準拠して製造することができる。例えば、カルシウム源とアルミニウム源とを水に溶解し、混合溶液を加熱、燃焼させることでマイエナイト型化合物のアモルファス前駆体を得る。このアモルファス前駆体を、さらに加熱し、脱水することで、マイエナイト型化合物が得られる。
 燃焼合成法に用いるカルシウム源及びアルミニウム源としては特に限定はされないが、通常はカルシウム塩、アルミニウム塩が好ましく、硝酸カルシウム、硝酸アルミニウムがより好ましい。
 具体的には、例えば、Ca(NO・4HOとAl(NO・9HOとを原料として用いることができる。これらの原料を、特に限定はされないが、化学量論組成で水に溶解させる。上記原料を溶解させた溶液にさらに尿素を添加し、この混合溶液を加熱し、燃焼させ、マイエナイト型化合物のアモルファス前駆体を得る。
 加熱温度は特に限定されないが、通常は500℃以上である。
 そして、得られたアモルファス前駆体を、特に限定はされないが、通常700~1000℃で加熱して脱水することにより、マイエナイト型化合物粉末C12A7が得られる。
<共沈法>
 共沈法は、2種類以上の金属イオンを含む溶液を用い、複数種類の金属の難溶性塩を同時に沈殿させる方法であり、均一性の高い粉体を調製する方法である。
 共沈法に用いる原料としては特に限定されないが、カルシウム源及びアルミニウム源として、通常カルシウム塩及びアルミニウム塩を用い、好ましくはそれぞれの硝酸塩である。
 具体的には硝酸カルシウムと硝酸アルミニウムを含む水溶液に、アンモニアや水酸化ナトリウム等のアルカリを添加し、水酸化カルシウムと水酸化アルミニウムとを含む難溶性塩を同時に析出させた後、これをろ過、乾燥、焼成することで、C12A7を得ることができる。
(第二の工程)
 第二の工程では、活性金属及びアルカリ土類金属を担持させる。活性金属及びアルカリ土類金属をマイエナイト型化合物に担持させる順序は特に限定されない。例えば、活性金属及びアルカリ土類金属をマイエナイト型化合物に、同時に担持させてもよい。この場合、マイエナイト型化合物に担持される活性金属粒子の粒子径を小さくすることができると共に、活性金属を高分散化することができる。また、水熱合成法で得られた前駆体にアルカリ土類金属を添加したり、混合したりした後に、焼成することにより、アルカリ土類金属を担持させることもできる。マイエナイト型化合物に担持されている活性金属粒子の平均粒子径は、好ましくは1nm以上、より好ましくは1.5nm以上、更に好ましくは2nm以上、好ましくは15nm以下、より好ましくは10nm以下、更に好ましくは5nm以下である。また、活性金属をマイエナイト型化合物に担持させた後に、アルカリ土類金属をマイエナイト型化合物に担持させてもよい。この場合、活性金属の近傍にアルカリ土類金属を担持させることができ、複合物の触媒活性を高めることができ、活性金属とアルカリ土類金属とが接していると複合物の触媒活性をより一層高めることができる。また、上述したように、活性金属は特に限定されず、例えば、ルテニウム、コバルト及び鉄等が挙げられ、ルテニウムであることが好ましい。
 マイエナイト型化合物にルテニウムを担持させるために用いるルテニウム化合物は、還元処理によって金属ルテニウムに変換できるものであれば特に限定されない。マイエナイト型化合物にルテニウムを担持させるために用いるルテニウム化合物には、例えばルテニウム塩及びルテニウム錯体等が挙げられる。
 ルテニウム塩としては、塩化ルテニウム(RuCl)、塩化ルテニウム水和物(RuCl・nHO)、酢酸ルテニウム(Ru(CHCO)、硝酸ルテニウム、ヨウ化ルテニウム水和物(RuI・nHO)、ニトロシル硝酸ルテニウム(Ru(NO)(NO)、ニトロシル塩化ルテニウム水和物(Ru(NO)Cl・nHO)、三硝酸ルテニウム(Ru(NO)、塩化ヘキサアンミンルテニウム(Ru(NHCl)等が挙げられ、ルテニウム塩として、第二の工程でマイエナイト型化合物の構造を壊さずに高い触媒活性を得る点で、酢酸ルテニウム、硝酸ルテニウム、ニトロシル硝酸ルテニウム及び塩化ルテニウムが好ましい。
 ルテニウム錯体としては、トリルテニウムドデカカルボニル(Ru(CO)12)、ジクロロテトラキス(トリフェニルホスフィン)ルテニウム(II)(RuC12(PPh)、ジクロロトリス(トリフェニルホスフィン)ルテニウム(II)(RuC12(PPh)、トリス(アセチルアセトナト)ルテニウム(III)(Ru(acac))、ルテノセン(Ru(C)、ジクロロ(ベンゼン)ルテニウム(II)ダイマー([RuC12(C)])、ジクロロ(メシチレン)ルテニウム(II)ダイマー([RuC12(mesitylene)])、ジクロロ(p-シメン)ルテニウム(II)ダイマー([RuC12(p-Cymene)])、カルボニルクロロヒドリドトリス(トリフェニルホスフィン)ルテニウム(II)([RuHCl(CO)(PPh])、トリス(ジピバロイルメタナト)ルテニウム(III)([Ru(dpm)])、等を用いることができる。
 ルテニウム錯体としては、高い触媒活性が得られる点で、トリルテニウムドデカカルボニル(Ru(CO)12)、トリス(アセチルアセトナト)ルテニウム(III)(Ru(acac))、ルテノセン(Ru(C)、等が好ましい。
 以上のルテニウム化合物のうち、複合物の製造における安全性や製造コストの点を両方考慮すると、ルテニウム化合物は、塩化ルテニウム、トリス(アセチルアセトナト)ルテニウム(III)及びニトロシル硝酸ルテニウムからなる群から選択される少なくとも1種のルテニウム化合物であってもよい。
 以上の化合物は容易に熱分解する。このため、これらの化合物をマイエナイト型化合物に担持させた後、熱処理を行い還元することにより、担体上に活性金属を金属の状態で析出させることができる。これにより、活性金属をマイエナイト型化合物に担持させることができる。また、上記ルテニウム化合物は、加熱下、水素ガスにより容易に還元されるので、この点からも、担体上にルテニウム等の活性金属を生成することができる。
 マイエナイト型化合物に活性金属を担持させる方法は、特に限定はされないが、含浸法、熱分解法、液相法、スパッタリング法、蒸着法等により担持させることができる。マイエナイト型化合物粉末に活性金属を担持させる方法では、上述のいずれかの担持方法で活性金属を担持させた後に成形を行う方法が実用的に用いられる。
 一方、成形したマイエナイト型化合物担体に活性金属を担持させる方法においては、活性金属を担体上に均一に分散させることができる点で含浸法又は蒸着法が好ましく、均一な活性金属粒子を形成しやすい点で含浸法がより好ましい。
 具体的に含浸法は、マイエナイト型化合物を、活性金属化合物を含む溶液に分散させ、引き続きマイエナイト型化合物及び活性金属化合物を含む溶液の溶媒を蒸発及び乾固させ、活性金属を担持したマイエナイト型化合物(以下、活性金属担持マイエナイト型化合物ということがある)を得る。なお、含浸法で使用する溶媒は、例えば、水、メタノール、エタノール、1-プロパノール、2-プロパノール、ブタノール、ジメチルスルホキシド、N,N-ジメチルホルムアミド、アセトニトリル、アセトン、メチルイソブチルケトン、メチルエチルケトン、シクロヘキサノン、シクロペンタノン、テトラヒドロフラン、塩化メチレン、酢酸エチル、クロロホルム、ジエチルエーテル、トルエン及びヘキサンからなる群から選択される少なくとも1種を含むことが好ましく、2種以上を使用することもできる。
 また具体的に蒸着法は、マイエナイト型化合物を、活性金属化合物と物理混合し、真空雰囲気下で加熱し、活性金属化合物の熱分解に伴い活性金属がマイエナイト型化合物上に蒸着されることで、活性金属担持マイエナイト型化合物を得る。
 マイエナイト型化合物にアルカリ土類金属を担持させるために用いるアルカリ土類金属化合物としては、マグネシウム、カルシウム、ストロンチウム及びバリウムから選択される少なくとも1種のアルカリ土類金属の化合物が好ましく、ストロンチウム及びバリウムから選択される少なくとも1種のアルカリ土類金属の化合物がより好ましく、より豊富に存在する元素である点でバリウムの化合物が更に好ましい。
 マイエナイト型化合物にアルカリ土類金属を担持させるためのアルカリ土類金属化合物は、アルカリ土類金属をマイエナイト型化合物に担持させることができれば、特に限定はされないが、通常、アルカリ土類金属の水酸化物;炭酸塩、酸化物、硝酸塩等の無機酸塩;酢酸塩、ギ酸塩等のカルボン酸塩;エトキシド等のアルコキシド;その他のアルカリ土類金属を含む有機化合物;金属アセチルアセトナート錯体等の金属錯体等が挙げられるが、アルコキシド、金属アセチルアセトナート錯体、カルボン酸塩が好ましく、反応が容易であるアルコキシドがより好ましい。
 例えば、アルカリ土類金属をマイエナイト型化合物に担持させるために用いるアルコキシドには、マグネシウムメトキシド、マグネシウムエトキシド、マグネシウムフェノキシド、ストロンチウムメトキシド、ストロンチウムエトキシド、ストロンチウムフェノキシド、バリウムメトキシド、バリウムエトキシド及びバリウムフェノキシド等が挙げられる。好ましいアルコキシドはバリウムエトキシドである。
 マイエナイト型化合物にアルカリ土類金属を担持させる方法としては、既述の活性金属を担持させる方法と同様である。
 マイエナイト型化合物に担持されているアルカリ土類金属の形態は、金属単体の形態であってもよいし、その塩、その酸化物、その水酸化物等のその他の化合物の形態であってもよい。マイエナイト型化合物に担持されているアルカリ土類金属の好ましい形態は酸化物である。なお、アルカリ土類金属の酸化物は、C12A7に担持された後は、還元処理を経ても、通常そのまま酸化物として担持され、還元された活性金属とともにマイエナイト型化合物の表面に存在する。
 第二の工程においては、活性金属化合物及びアルカリ土類金属化合物以外の金属化合物を用いて、活性金属及びアルカリ土類金属以外の金属をマイエナイト型化合物に担持させることができる。活性金属及びアルカリ土類金属以外の金属をマイエナイト型化合物に担持させるための金属化合物としては、活性金属及びアルカリ土類金属の担持を阻害しない限りにおいて特に限定されないが、通常、周期表3族、8族、9族及び10族の遷移金属の化合物、アルカリ金属の化合物及び希土類金属の化合物が好ましい。
 周期表3族、8族、9族及び10族の遷移金属の化合物には、例えばイットリウム、鉄、コバルト等の化合物が挙げられる。
 アルカリ金属の化合物には、例えばリチウム、ナトリウム、カリウム、セシウム、ルビジウム等の化合物が挙げられる。
 希土類金属の化合物には、例えばランタン、セリウム、プラセオジウム、ネオジウム、サマリウム、ガドリニウム、ジスプロシウム等の化合物が挙げられる。
(第三の工程)
 本発明の複合物の製造方法は、第二の工程で得られたマイエナイト型化合物を還元処理する第三の工程をさらに含んでもよい。
 還元処理の条件は、本発明の目的を阻害しない限りにおいて特に限定されないが、例えば、還元性ガスを含む雰囲気下で行なう方法や、活性金属源を含む溶液に、NaBH、NHNH又は、ホルマリン等の還元剤を加えてマイエナイト型化合物の表面に活性金属を析出させる方法が挙げられる。還元処理は還元性ガスを含む雰囲気下で行なうことが好ましい。還元性ガスとしては水素、アンモニア、メタノール(蒸気)、エタノール(蒸気)、メタン、エタン等が挙げられる。
 また還元処理の際に、アンモニア合成反応を阻害しない、還元性ガス以外の成分が反応系を共存していてもよい。具体的には、還元処理の際に、水素等の還元性ガスの他に反応を阻害しないアルゴンや窒素といったガスを共存させてもよく、窒素を共存させてもよい。
 還元処理の温度は、特に限定はされないが、通常200℃以上であり、好ましくは300℃以上、通常1000℃以下であり、好ましくは600℃以下で行なう。還元処理を上記温度範囲内で行なうことで、活性金属粒子を上述の好ましい平均粒子径の範囲に成長させることができる。
 還元処理の圧力は、特に限定はされないが、通常、0.1MPa以上、10MPaである。
 還元処理の時間は、特に限定されないが、常圧で実施する場合は、通常20時間以上であり、25時間以上が好ましい。
 また反応圧力の高い条件、例えば1MPa以上で行う場合は、5時間以上が好ましい。
 第三の工程における還元処理は、還元処理後の活性金属の平均粒子径が、還元処理前の平均粒子径に対して、15%以上増大するまで行なうことが好ましい。還元処理後の活性金属の平均粒子径の上限は特に限定はされないが、通常、200%以下である。還元処理を行なうことで、触媒の活性をさらに高めることができる。この場合、還元処理後の活性金属の平均粒子径は、好ましくは1nm以上、より好ましくは1.5nm以上、更に好ましくは2nm以上、好ましくは15nm以下、より好ましくは10nm以下、更に好ましくは5nm以下である。
 ここで活性金属の平均粒子径は、TEM(透過電子顕微鏡)等の直接観察法による平均粒子径をいう。直接観察法では、実際に観察された活性金属のそれぞれの最も長い径を測定し、算術平均して算出できる。平均粒子径を観察する活性金属のサンプル数は例えば300個以上350個以下であってもよく、300個であってもよい。
 還元処理前及び還元処理後の活性金属の平均粒子径は、測定する表面上に存在する活性金属が、すべて金属であるとして求めるものである。しかし、活性金属の平均粒子径の算出に大きな影響を与えない限りにおいて、測定する表面上に存在する活性金属は活性金属源である活性金属化合物を含んでもよい。
 なお、活性金属源である活性金属化合物が大半の場合は、活性金属の粒子径を測定できないため、還元処理により、活性金属粒子径を求める。なお、還元処理の温度は、好ましくは300℃以上、より好ましくは430℃以上、好ましくは600℃以下、より好ましくは450℃以下である。
[触媒]
 本発明の触媒は、本発明の複合物を含有し、とりわけ本発明の複合物からなる。これにより、触媒活性が高く、水素被毒の抑制された触媒を得ることができる。
 本発明の触媒は、本発明の目的を阻害しない限りにおいて、本発明の複合物以外の成分を含んでいてもよい。
 例えば、本発明の触媒は、触媒の成形を容易にするための結合剤(バインダー)成分となる成分を含むことができる。
 結合剤には、例えばSiO、Al、ZrO、TiO、La、CeO、Nb等の金属酸化物や、活性炭、グラファイト、SiC等の炭素材料等が挙げられる。
 本発明の触媒は、使用する前、還元処理してもよい。なお、本発明の触媒の還元処理は、上述の本発明の複合物の製造方法における第三の工程の還元処理と同様な方法で行うことができる。
 なお、アンモニア合成の条件においても、本発明の触媒を還元処理することができる。
 本発明の触媒の比表面積は、特に限定はされないが、BET法に基づく比表面積で通常5m/g以上であり、好ましくは、10m/g以上であり、通常200m/g以下であり、好ましくは、100m/g以下である。
 なお、還元処理後に得られた活性金属及びアルカリ土類金属を担持したマイエナイト型化合物の比表面積は、通常、その製造に用いた、活性金属及びアルカリ土類金属を担持する前のマイエナイト型化合物の比表面積と同程度になる。
 本発明の触媒は、通常の成形技術を用い成形体として適宜使用することができる。具体的には、粒状、球状、タブレット状、リング状、マカロニ状、四葉状、サイコロ状、ハニカム状等の形状が挙げられる。支持体に触媒をコーティングしてから使用することもできる。
 触媒の成形は、上述の複合物の製造の際に行ってもよい。この場合、複合物の製造方法のうち、どの段階で行なうかについては限定されず、いずれの工程に引き続いて行なってもよい。
 具体的には複合物の製造方法における第一の工程に引き続き、第一の工程で得られたマイエナイト型化合物を成形する工程を含んでいてもよい。
 また複合物の製造方法における第二の工程に引き続き、第二の工程で得られた活性金属及びアルカリ土類金属を担持したマイエナイト型化合物を成形する工程を含んでいてもよい。
 また複合物の製造方法における第三の工程又は触媒を還元処理した後、還元処理した触媒を成形する工程を含んでいてもよい。
 このうち、複合物の製造方法における第一の工程に引き続き、成形する工程を含む方法、又は複合物の製造方法における第二の工程に引き続き成形する工程を含む方法が、マイエナイト型化合物上に活性金属が均一に分散され、かつ高い触媒活性が得られる点で好ましい。
 また、活性金属を担持したマイエナイト型化合物を成形した後にアルカリ土類金属をマイエナイト型化合物に担持させることもできる。
 本発明の触媒は、アンモニア合成用触媒として用いることができる。しかし、本発明の触媒の用途は、アンモニア合成に限定されない。例えば、本発明の触媒は、脂肪族カルボニル化合物の水素化、芳香族環の水素化、カルボン酸の水素化、不飽和アルデヒドの水素化による不飽和アルコール合成、メタンの水蒸気改質、アルケン類等の水素化、COもしくはCOと水素との反応によるメタン化、フィッシャー-トロプッシュ合成反応、置換芳香族の核水素化、アルコール類のカルボニル化合物への酸化、リグニンのガス化等に使用する。
[アンモニアの製造方法]
 本発明のアンモニアを製造する方法は、本発明の触媒に窒素と水素を含むガスを接触させてアンモニアを製造する工程を含む。これにより、アンモニアを効率的に製造することができる。
 本発明の触媒に窒素と水素を含むガスを接触させる際、最初に水素のみを本発明の触媒に接触させて触媒を還元処理してから、本発明の触媒に窒素と水素を含むガスを接触させてもよい。また、当初より本発明の触媒に水素と窒素を含む混合ガスを接触させてもよい。さらにこのとき反応器から回収した未反応ガスを反応器にリサイクルして使用することもできる。
 本発明のアンモニアの製造方法は、特に限定はされないが、窒素と水素を含むガスを、上記触媒に接触させる際、通常触媒を加熱することによりアンモニア合成を行う。
 本発明のアンモニアの製造方法によれば、低温及び低圧の条件下でアンモニアを製造することができる。
 その反応温度は、好ましくは200~600℃であり、より好ましくは250~500℃であり、更に好ましくは300~450℃である。アンモニア合成は発熱反応であることから、低温領域のほうが化学平衡論的にアンモニア生成に有利であるが、十分なアンモニア生成速度を得るためには上記の温度範囲が好ましい。
 製造コストの観点から低温及び低圧の条件下でアンモニアを製造する場合、本発明のアンモニアの製造方法においてアンモニア合成反応を行う際の反応圧力は、絶対圧で、好ましくは0.01~20MPaであり、より好ましくは0.5~10MPaであり、更に好ましくは1~7MPaである。なお、活性金属はマイエナイト型化合物に担持されているがアルカリ土類金属はマイエナイト型化合物に担持されていない触媒の場合、反応圧力を高くしても、アンモニア合成反応の効率が高くなりにくい。
 この場合、触媒に接触させる窒素に対する水素のモル比(H/N)は、好ましくは0.25~15であり、より好ましくは0.5~12であり、更に好ましくは1.0~10である。本発明の触媒は、水素被毒が発生しにくいので、活性金属を用いる場合の通常の窒素に対する水素のモル比に比べて、窒素に対する水素のモル比を高くすることができる。これにより、アンモニア合成の効率が高くなる。
 より良好なアンモニア収率を得るという観点から、窒素と水素の混合ガス中の総水分含有量は、通常100ppm以下、好ましくは50ppm以下である。
 反応容器の形式は特に限定されず、アンモニア合成反応に通常用いることができる反応容器を用いることができる。具体的な反応形式としては、例えばバッチ式反応形式、閉鎖循環系反応形式、流通系反応形式等を用いることができる。このうち実用的な観点からは流通系反応形式が好ましい。また触媒を充填した一種類の反応器、又は複数の反応器を連結させる方法や、同一反応器内に複数の反応層を有する反応器の何れの方法も使用することができる。
 水素と窒素混合ガスからのアンモニア合成反応は体積収縮型の発熱反応であることから、アンモニア収率を上げるために工業的には反応熱を除去するために通常用いられる反応装置を用いてもよい。例えば具体的には触媒が充填された反応器を直列に複数個連結し、各反応器の出口にインタークーラーを設置して除熱する方法等を用いてもよい。
 また、本発明のアンモニアの製造方法は、前述の通り、低温及び低圧の条件下でアンモニアを製造できる点に特徴を有するが、反応速度をさらに向上させるために、中温及び中圧の条件下で、アンモニアを製造してもよい。
 この場合、反応温度は、例えば好ましくは250~700℃であり、より好ましくは300~600℃であり、更に好ましくは350~550℃である。
 また、この場合、反応圧力は、絶対圧で、好ましくは0.1~30MPaであり、より好ましくは1~20MPaであり、更に好ましくは2~10MPaである。
 以下に、実施例に基づいて、本発明をより詳細に説明する。
(アンモニアの生成量の分析)
 以下の実施例及び比較例のアンモニア生成量は、生成したアンモニアガスをガスクロマトグラフおよびイオンクロマトグラフ分析により、絶対検量線法を用いて求めた。分析条件は以下の通りである。
[ガスクロマトグラフ分析条件]
 装置:Agilent社製 490 Micro GC
 カラム:Agilent社製 MO5A 10m B.F.,CP-Sill 5CB 8m
 カラム温度:80℃
[イオンクロマトグラフ分析条件]
 装置:島津製作所社製 HPLC Prominence
 カラム:島津製作所社製 Shim-pack IC-C4
 長さ:150mm、 内径4.6mm
 溶離液:シュウ酸(3mM)、18-クラウン-6-エーテル(2.0mM)混合水溶液
 カラム温度:40℃
 流速:1.0mL/分
(実施例1)
<マイエナイト型化合物の合成>
 水酸化カルシウム(Ca(OH)と:高純度化学研究所社製、純度99.9%、7.18g)と水酸化アルミニウムAl(OH):高純度化学研究所、純度99.9%、8.82g)、CaとAlのモル比が、Ca:Al=12:14となるように秤量、混合し、混合粉体を得た。上記混合粉体に、上記混合粉体が10質量%となるように蒸留水を加え、合計質量160gの混合溶液とした後、この混合溶液を遊星型ボールミルにて、常温下、4時間攪拌・混合した。得られた混合溶液を耐圧密閉容器に入れ、攪拌しながら150℃にて、6時間加熱(水熱処理)した。
 上記水熱処理により得られた沈殿物を濾別し、乾燥後粉砕して、マイエナイト型化合物の前駆体粉末:CaAl(OH)12及びAlOOHを約16g得た。この前駆体粉末を大気中、600℃にて、5時間加熱脱水をし、マイエナイト型化合物の粉体(以下、HT-C12A7(12CaO・7Al)という。)を得た。このマイエナイト型化合物のBET法により測定した比表面積は63.5m/gであり、比表面積の大きいマイエナイト型化合物であった。
<マイエナイト型化合物へのルテニウム化合物及びアルカリ土類金属化合物の担持>
 ニトロシル硝酸ルテニウム(Ru(NO)(NO:AlfaAeser社製、型番:12175)0.157g及びバリウムジエトキシド(Ba(OC:和光純薬工業社製、純度99.5%)0.227gを、エタノール50mL中に溶解させ、約15分攪拌し、混合溶液とした。得られた混合溶液中に、HT-C12A7 0.814gを加え、約3分攪拌した。その後、ロータリーエバボレータを用いて上記混合溶液から溶媒を除去し、乾燥させ、さらに真空乾燥させて、ルテニウム及びバリウムを担持したHT-C12A7(以下、Ba-Ru/HT-C12A7)の粉体(Ru:Ba=1:2(モル比))を得た。なお、還元処理は、アンモニア合成反応の際、行われることになる。
(比較例1)
 Ru原料をトリルテニウムドデカカルボニル(Ru(CO)12:Sigma-Aldrich社製、純度99%、0.101g)を使用し、これと、実施例1の方法で得たHT-C12A7(0.95g)と混合させてパイレックス(登録商標)ガラス管に封じて以下の温度プログラムで加熱して5質量%のRuをHT-C12A7へと担持した。(以下、Ru/HT-C12A7)の粉体を得た。
[温度プログラム]
(1)常温から40℃まで20分で昇温後、40℃で60分間維持
(2)(1)の後、40℃から70℃まで120分間で昇温後、70℃で60分間維持
(3)(2)の後、70℃から120℃まで120分間で昇温後、120℃で60分間維持
(4)(3)の後、120℃から250℃まで150分間で昇温後,250℃で120分間維持
<アンモニア合成反応の圧力依存性>
 実施例1及び比較例1で作製した触媒を用いて、反応温度(400℃)を一定に保持した上で、反応圧力を変化させて、窒素ガス(N)と水素ガス(H)を反応させてアンモニアガス(NH)を生成する反応を行った。
 上記で得られた触媒0.3gを1.2gの石英砂で希釈しSUS反応管に詰め触媒層の上下を石英ウールで挟み込んだ。さらに触媒の詰まったSUS反応管の上部に1~2mm径のアルミナボール55gを詰めた.この触媒層の詰まったSUS管を、固定床流通系反応装置に取り付けて反応を行った。
 Nに対するHのガスのモル比(H/N)が3の混合ガスを、N及びHの合計のガスの空間速度(WHSV)が36000mLg-1-1となる条件で、反応器に供給して反応を行った。上記の反応器から出てきたガスをオンラインガスクロマトグラフによりNHの定量を行った.あわせて0.01M硫酸水溶液中に反応器から出てきたガスをバブリングさせ、生成したアンモニアを溶液中に溶解させ、生じたアンモニウムイオンをイオンクロマトグラフにより定量し、反応器から排出されるガス中のアンモニアの濃度を測定した。結果を図1に示した。
 図1が示すように、金属ルテニウム及びアルカリ土類金属がマイエナイト型化合物に担持されている実施例1の触媒を用いたときのアンモニアの生成量は、金属ルテニウムのみがマイエナイト型化合物に担持されている比較例1の触媒を用いたときに比べて大きかった。
 また、図1が示すように、金属ルテニウムのみがマイエナイト型化合物に担持されている比較例1の触媒では、反応圧力を高くしても、アンモニアの生成量を増加させることができなかった。しかしながら、金属ルテニウム及びアルカリ土類金属がマイエナイト型化合物に担持されている実施例1の触媒では、反応圧力を高くすることにより、アンモニアの生成量を増加させることができた。
 これより、金属ルテニウムがマイエナイト型化合物に担持されると共に、さらにアルカリ土類金属がマイエナイト型化合物に担持されることにより、触媒活性を高くすることができると共に、反応圧力を高くすることにより、触媒反応をさらに向上させることが可能となることがわかった。
<アンモニア合成反応の窒素に対する水素の比率依存性>
 実施例1及び比較例1で作製した触媒を用いて、反応温度(400℃)及び反応圧力(3.0MPa)を一定に保持した上で、窒素ガス(N)に対する水素ガス(H)のモル比(H/N)を変化させて、窒素ガス(N)と水素ガス(H)を反応させてアンモニアガス(NH)を生成する反応を行った。
 上記で得られた触媒0.3gを1.2gの石英砂で希釈しSUS反応管に詰め触媒層の上下を石英ウールで挟み込んだ。さらに触媒の詰まったSUS反応管の上部に1~2mm径のアルミナボール55gを詰めた.この触媒層の詰まったSUS管を、固定床流通系反応装置に取り付けて反応を行った。
 Nに対するHのモル比を変えた混合ガスを、N及びHの合計のガスの空間速度(WHSV)が18000mLg-1-1となる条件で、反応器に供給し、反応を行った。上記の反応器から出てきたガスをオンラインガスクロマトグラフにより定量した。さらに出口側の反応ガスを0.01M硫酸水溶液中にバブリングさせ、生成したアンモニアを溶液中に溶解させ、生じたアンモニウムイオンをイオンクロマトグラフにより定量し、反応器から排出されるガス中のアンモニアの濃度を測定した。結果を図2に示した。
 図2が示すように、金属ルテニウム及びアルカリ土類金属がマイエナイト型化合物に担持されている実施例1の触媒を用いたときのアンモニアの生成量は、金属ルテニウムのみがマイエナイト型化合物に担持されている比較例1の触媒を用いたときに比べて大きかった。
 また、図2が示すように、金属ルテニウムがマイエナイト型化合物に担持されると共に、さらにアルカリ土類金属がマイエナイト型化合物に持されることにより、アンモニアの製造に最適な窒素に対する水素のモル比(H/N)を高水素側にシフトさせることができる。
 これより、金属ルテニウムがマイエナイト型化合物に担持されると共に、さらにアルカリ土類金属がマイエナイト型化合物に担持されることにより、触媒活性を高くすることができると共に、さらに触媒の水素被毒を抑制することができることがわかった。

Claims (14)

  1.  マイエナイト型化合物と、
     前記マイエナイト型化合物に担持された活性金属及びアルカリ土類金属とを含む複合物。
  2.  前記マイエナイト型化合物が12CaO・7Alである、請求項1に記載の複合物。
  3.  前記アルカリ土類金属がバリウムである、請求項1又は2に記載の複合物。
  4.  請求項1~3のいずれか1項に記載の複合物を含有する触媒。
  5.  マイエナイト型化合物を調製する第一の工程と、
     前記マイエナイト型化合物に、活性金属及びアルカリ土類金属を担持させる第二の工程とを含む複合物の製造方法。
  6.  第二の工程で得られた前記マイエナイト型化合物を還元処理する第三の工程をさらに含む、請求項5に記載の複合物の製造方法。
  7.  前記第一の工程において、前記マイエナイト型化合物の調製を水熱合成法で行なう、請求項5又は6に記載の複合物の製造方法。
  8.  前記第二の工程において、活性金属及びアルカリ土類金属の担持を含浸法で行なう、請求項5~7のいずれか1項に記載の複合物の製造方法。
  9.  前記マイエナイト型化合物が12CaO・7Alである、請求項5~8のいずれか1項に記載の複合物の製造方法。
  10.  前記アルカリ土類金属がバリウムである、請求項5~9のいずれか1項に記載の複合物の製造方法。
  11.  請求項4に記載の触媒に窒素と水素を含むガスを接触させてアンモニアを製造する工程を含む、アンモニアの製造方法。
  12.  前記アンモニアを製造する工程は、200~600℃の反応温度及び絶対圧で0.01~20MPaの反応圧力の条件下で、窒素と水素を含むガスを請求項4に記載の触媒に接触させる、請求項11に記載のアンモニアの製造方法。
  13.  前記アンモニアを製造する工程は、250~700℃の反応温度及び絶対圧で0.1~30MPaの反応圧力の条件下で、窒素と水素を含むガスを請求項4に記載の触媒に接触させる、請求項11に記載のアンモニアの製造方法。
  14.  前記アンモニアを製造する工程は、窒素に対する水素のモル比(H/N)が0.25~15の条件下で、窒素と水素を含むガスを前記触媒に接触させる、請求項11~13のいずれか1項に記載のアンモニアの製造方法。
PCT/JP2019/003883 2018-02-07 2019-02-04 複合物、複合物の製造方法、触媒及びアンモニアの製造方法 WO2019156028A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019570736A JPWO2019156028A1 (ja) 2018-02-07 2019-02-04 複合物、複合物の製造方法、触媒及びアンモニアの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-020537 2018-02-07
JP2018020537 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019156028A1 true WO2019156028A1 (ja) 2019-08-15

Family

ID=67549629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003883 WO2019156028A1 (ja) 2018-02-07 2019-02-04 複合物、複合物の製造方法、触媒及びアンモニアの製造方法

Country Status (2)

Country Link
JP (1) JPWO2019156028A1 (ja)
WO (1) WO2019156028A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117799B1 (ja) * 2021-07-13 2022-08-15 株式会社フクハラ アンモニア製造装置並びに製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149780A (ja) * 1999-10-29 2001-06-05 Haldor Topsoe As アンモニア及びアンモニア合成ガスの製造方法
WO2014034473A1 (ja) * 2012-08-30 2014-03-06 国立大学法人東京工業大学 導電性マイエナイト型化合物粉末の製造方法
JP2014171916A (ja) * 2013-03-06 2014-09-22 Nippon Shokubai Co Ltd アンモニア合成用触媒
WO2018030394A1 (ja) * 2016-08-08 2018-02-15 国立大学法人東京工業大学 アンモニア合成用触媒の製造方法及びアンモニアの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9150423B2 (en) * 2010-12-07 2015-10-06 Tokyo Institute Of Technology Ammonia synthesis catalyst and ammonia synthesis method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149780A (ja) * 1999-10-29 2001-06-05 Haldor Topsoe As アンモニア及びアンモニア合成ガスの製造方法
WO2014034473A1 (ja) * 2012-08-30 2014-03-06 国立大学法人東京工業大学 導電性マイエナイト型化合物粉末の製造方法
JP2014171916A (ja) * 2013-03-06 2014-09-22 Nippon Shokubai Co Ltd アンモニア合成用触媒
WO2018030394A1 (ja) * 2016-08-08 2018-02-15 国立大学法人東京工業大学 アンモニア合成用触媒の製造方法及びアンモニアの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIE, H. ET AL.: "Study on Steam Reforming of Tar in Hot Coke Oven Gas for Hydrogen Production", ENERGY & FUELS, vol. 30, no. 3, 2016, pages 2336 - 2344, XP055629616, ISSN: 0887-0624, DOI: 10.1021/acs.energyfuels.5b02551 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7117799B1 (ja) * 2021-07-13 2022-08-15 株式会社フクハラ アンモニア製造装置並びに製造方法

Also Published As

Publication number Publication date
JPWO2019156028A1 (ja) 2021-01-28

Similar Documents

Publication Publication Date Title
US11964260B2 (en) Method for manufacturing ammonia synthesis catalyst, and method for manufacturing ammonia
JP6670754B2 (ja) 複合体、複合体の製造方法、アンモニア合成触媒及びアンモニア合成方法
Sietsma et al. The preparation of supported NiO and Co3O4 nanoparticles by the nitric oxide controlled thermal decomposition of nitrates
JP5820817B2 (ja) アンモニア合成触媒及びアンモニア合成方法
JP6152381B2 (ja) 導電性マイエナイト型化合物粉末の製造方法
JP2019076904A (ja) 担持金属触媒
Talpade et al. Selective hydrogenation of bio-based 5-hydroxymethyl furfural to 2, 5-dimethylfuran over magnetically separable Fe-Pd/C bimetallic nanocatalyst
WO2014045780A1 (ja) 水素生成触媒及び水素の製造法
Di et al. Influence of Re–M interactions in Re–M/C bimetallic catalysts prepared by a microwave-assisted thermolytic method on aqueous-phase hydrogenation of succinic acid
US20220143580A1 (en) Molded sintered body, and method for producing molded sintered body
JP5010547B2 (ja) 高活性触媒およびその製造方法
WO2019156028A1 (ja) 複合物、複合物の製造方法、触媒及びアンモニアの製造方法
JP7410507B2 (ja) 複合物、触媒及びアンモニアの製造方法
Bussi et al. The preparation and properties of Ni–La–Zr catalysts for the steam reforming of ethanol
WO2021172107A1 (ja) 典型元素酸化物を含む金属担持物、アンモニア合成用触媒、及びアンモニアの合成方法
US9598644B1 (en) Method of CO and/or CO2 hydrogenation to higher hydrocarbons using doped mixed-metal oxides
US20240226854A1 (en) Method for manufacturing ammonia synthesis catalyst, and method for manufacturing ammonia
JP6650840B2 (ja) MgO担持触媒の製造方法
KR101795477B1 (ko) 단일공정 졸-겔(Sol-gel)법으로 제조된 중형기공성 니켈-구리-알루미나-지르코니아 제로젤 촉매, 그 제조 방법 및 상기 촉매를 이용한 에탄올의 수증기 개질 반응에 의한 수소가스 제조 방법
CN117205927A (zh) 一种磁性三元金属催化剂NiZr/CoOx的制备及其在生物质衍生化合物中催化加氢的方法
JP2023088762A (ja) アンモニア合成触媒用担体の製造方法及びアンモニア合成触媒の製造方法
CN117642227A (zh) 液化石油气合成用催化剂及液化石油气的制造方法
Chen et al. Sub-Nanometric Ruthenium Clusters Prepared by Solid-State Dispersion for Catalytic Selective Aerobic Oxidation of Aromatic Alcohols

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19752022

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019570736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19752022

Country of ref document: EP

Kind code of ref document: A1