WO2019061342A1 - 一种合成气直接生产乙醇的方法 - Google Patents

一种合成气直接生产乙醇的方法 Download PDF

Info

Publication number
WO2019061342A1
WO2019061342A1 PCT/CN2017/104554 CN2017104554W WO2019061342A1 WO 2019061342 A1 WO2019061342 A1 WO 2019061342A1 CN 2017104554 W CN2017104554 W CN 2017104554W WO 2019061342 A1 WO2019061342 A1 WO 2019061342A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction zone
reaction
ethanol
dimethyl ether
syngas
Prior art date
Application number
PCT/CN2017/104554
Other languages
English (en)
French (fr)
Inventor
刘红超
朱文良
刘中民
刘勇
刘世平
文富利
倪友明
马现刚
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to US16/647,585 priority Critical patent/US20200231523A1/en
Priority to EP17926908.9A priority patent/EP3689845A4/en
Priority to PCT/CN2017/104554 priority patent/WO2019061342A1/zh
Priority to EA202090650A priority patent/EA202090650A1/ru
Publication of WO2019061342A1 publication Critical patent/WO2019061342A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/09Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis
    • C07C29/095Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by hydrolysis of esters of organic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/09Preparation of ethers by dehydration of compounds containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/10Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide
    • C07C51/12Preparation of carboxylic acids or their salts, halides or anhydrides by reaction with carbon monoxide on an oxygen-containing group in organic compounds, e.g. alcohols
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/36Preparation of carboxylic acid esters by reaction with carbon monoxide or formates
    • C07C67/37Preparation of carboxylic acid esters by reaction with carbon monoxide or formates by reaction of ethers with carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1812Tubular reactors
    • B01J19/1818Tubular reactors in series
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/08Ethanol
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a process for syngas conversion to produce ethanol.
  • Ethanol is recognized as an environmentally friendly clean fuel in the world. It can be directly used as a liquid fuel or mixed with gasoline to reduce the emission of carbon monoxide, hydrocarbons, particulate matter, nitrogen oxides and benzene harmful substances in automobile exhaust, and effectively improve our country. Environmental quality is of great significance for solving the problem of air pollution in China and achieving sustainable development.
  • the existing ethanol production processes mainly include a sugar or cellulose fermentation method based on a biomass route and an ethylene water law based on an oil route. In recent years, China's fuel ethanol production and sales have grown rapidly, and it has become the world's third largest producer of fuel ethanol after the United States and Brazil.
  • biomass synthetic fuel ethanol is limited by the shortage of raw materials and low energy density, and it is difficult to develop on a large scale.
  • biomass synthetic fuel ethanol is limited by the shortage of raw materials and low energy density, and it is difficult to develop on a large scale.
  • China's “poor oil, less gas, and relatively rich coal resources” energy structure and oil dependence are rising it is urgent to develop a new process for synthesizing ethanol with coal or biomass-based syngas to reduce China's dependence on oil. To promote the diversification of energy in China.
  • the product is widely distributed, not only a large amount of C2 oxygen-containing by-products such as acetaldehyde, acetic acid, but also C2-C5 alkanes and olefins, the selectivity of ethanol is not ideal, and the yield is low.
  • ruthenium-based catalysts have the performance of synthesis gas to synthesize C2 oxygenates, they have attracted extensive attention from researchers at home and abroad, and are one of the relatively important research directions of C1 chemistry in recent years.
  • the use of precious metal ruthenium has greatly increased the production cost of ethanol, and the production of strontium is limited. It has great difficulty in large-scale popularization and application, and has become a bottleneck for the industrialization of the process route.
  • Significantly reducing the use of antimony or replacing non-precious metal catalysts is an effective way to push this technology to industrialization, but progress is slow.
  • CN103012062A discloses synthesizing methanol from a synthesis gas raw material formed by mixing hydrogen gas and carbon monoxide, dehydrating methanol to prepare dimethyl ether, and then dimethyl ether is mixed with carbon monoxide and hydrogen to carry out carbonylation reaction to obtain methyl acetate, and methyl acetate is purified and then added. Hydrogen, hydrogenation product is purified to obtain an ethanol process for the indirect production of ethanol.
  • the whole process includes process units such as methanol synthesis and separation, dimethyl ether synthesis and separation, dimethyl ether carbonylation and separation, and methyl acetate methyl ester hydrogenation and separation.
  • the invention provides a method for directly producing ethanol from syngas.
  • the method comprises synthesizing gas as raw material, integrating methanol synthesis, methanol to dimethyl ether, dimethyl ether carbonylation to methyl acetate and methyl acetate to hydrogenate to ethanol.
  • the process of syngas is directly produced by syngas.
  • the invention not only reduces the methanol synthesis unit and the corresponding separation unit, but also reduces the separation unit of dimethyl ether carbonylation to methyl acetate, so that the invention has mild reaction conditions, simple process, equipment investment cost and energy consumption reduction, etc. Advantages have important application prospects.
  • the object of the present invention is to overcome some or all of the problems in the prior art, to provide a new technology for syngas conversion and a method for producing ethanol, by which the synthesis gas can be converted into ethanol.
  • the present invention provides a process for the direct production of ethanol from syngas, wherein the reaction process is carried out in three reaction zones, the process comprising:
  • step d) subjecting the methanol from step c) to the third reaction zone for dehydration reaction to obtain dimethyl ether, and allowing the obtained dimethyl ether to enter the first reaction zone to circulate the reaction;
  • volume of synthesis gas in the raw material is 10% to 100%, the volume content of dimethyl ether is 0-90%, and the volume ratio of carbon monoxide to hydrogen in the synthesis gas is 0.1 to 10;
  • the reaction temperature of the first reaction zone and the second reaction zone is 180-300 ° C, and the reaction pressure The force is 0.5-20 MPa;
  • the reaction temperature of the third reaction zone is 180-420 ° C, and the reaction pressure is 0.1-4 MPa.
  • the solid acid catalyst in the first reaction zone comprises one or more of the following molecular sieves: FER zeolite molecular sieve, MFI zeolite molecular sieve, MOR zeolite molecular sieve, ETL zeolite molecular sieve, MFS zeolite molecular sieve, MTF zeolite molecular sieve , EMT zeolite molecular sieves and their molecular sieve products modified by elements other than the framework constituent elements or pyridine.
  • molecular sieves FER zeolite molecular sieve, MFI zeolite molecular sieve, MOR zeolite molecular sieve, ETL zeolite molecular sieve, MFS zeolite molecular sieve, MTF zeolite molecular sieve , EMT zeolite molecular sieves and their molecular sieve products modified by elements other than the framework constituent elements or pyridine.
  • the solid acid catalyst is a hydrogen type product of the zeolite molecular sieve, or is composed of 10 wt% to 95 wt% of the hydrogen type product and the balance of the matrix, or the hydrogen type product is modified by pyridine.
  • the molecular sieve product, wherein the substrate is one or more selected from the group consisting of alumina, silica, kaolin, and magnesia.
  • the metal catalyst in the second reaction zone is a copper based catalyst.
  • the first reaction zone and / or the second reaction zone are in a fixed bed reactor, preferably a fixed bed column reactor.
  • the first reaction zone and the second reaction zone are in the same fixed reactor, or the first reaction zone and the second reaction zone are respectively in different reactors connected in series.
  • the synthesis gas as the raw material is composed of 50 to 100% by volume of carbon monoxide and hydrogen and 0 to 50% by volume of one or more inert gases selected from the group consisting of nitrogen, helium, argon and carbon dioxide.
  • the catalyst in the third reaction zone is a methanol to dimethyl ether solid acid catalyst.
  • the third reaction zone is in a fixed bed reactor, especially in a fixed bed tubular reactor.
  • the reaction temperature of the first reaction zone is 190-290 ° C, the reaction pressure is 1-15 MPa; the reaction temperature of the second reaction zone is 190-290 ° C, and the reaction pressure is 1.0-15.0 MPa; The reaction temperature in the third reaction zone is 200-400 ° C, and the reaction pressure is 0.2-3 MPa.
  • the invention includes, but is not limited to, the following beneficial effects:
  • a method for directly producing ethanol by syngas which integrates methanol, methanol to dimethyl ether, dimethylation of dimethyl ether to methyl acetate, and hydrogenation of methyl acetate to ethanol to reduce methanol synthesis.
  • the separation unit of dimethyl ether carbonylation to methyl acetate reduces equipment investment cost by 5% to 10%, energy consumption by 10% to 20%, and simultaneously has a metal catalyst.
  • the method has the advantages of low equipment investment, mild reaction conditions and simple process, and has important application prospects.
  • 1 is a flow diagram of a synthesis gas to produce ethanol in accordance with one embodiment of the present invention, wherein the first reaction zone and the second reaction zone are in the same reactor.
  • FIG. 2 is a flow diagram of a synthesis gas to produce ethanol in accordance with another embodiment of the present invention, wherein the first reaction zone and the second reaction zone are in different reactors.
  • the method of the present invention comprises the following process: a dimethyl ether-containing syngas gaseous material is reacted with a solid acid catalyst in a first reaction zone to obtain an oxygenate of methyl acetate; then, a synthesis gas and a methyl acetate and a metal catalyst In the second reaction zone, the reaction occurs to form methanol and ethanol; then, ethanol is separated as a product, and methanol is dehydrated to form dimethyl ether in the third reaction zone, and the obtained dimethyl ether is recycled into the reaction system and the synthesis gas as a reaction. The raw materials are further transformed.
  • the method can realize efficient conversion of single synthesis gas to produce ethanol, has high selectivity of ethanol, reduces relevant operation units, reduces equipment investment and energy consumption, and has simple process and good application prospect.
  • the reaction process is carried out in three reaction zones, the process comprising:
  • step d) subjecting the methanol from step c) to the third reaction zone for dehydration reaction to obtain dimethyl ether, and allowing the obtained dimethyl ether to enter the first reaction zone to circulate the reaction;
  • volume of synthesis gas in the raw material is 10% to 100%, the volume content of dimethyl ether is 0-90%, and the volume ratio of carbon monoxide to hydrogen in the synthesis gas is 0.1 to 10;
  • the reaction temperature of the first reaction zone and the second reaction zone is 180-300 ° C, and the reaction pressure is 0.5-20 MPa;
  • the reaction temperature of the third reaction zone is 180-420 ° C, and the reaction pressure is 0.1-4 MPa.
  • the solid acid catalyst in the first reaction zone comprises any one or a mixture of any one of FER, MFI, MOR, ETL, MFS, MTF or EMT structure zeolite molecular sieves, or
  • a molecular sieve having the above characteristics is a mixture of elements other than the skeleton constituent elements (for example, Fe, Ga, Cu, Ag, etc.) or a product obtained by pyridine modification, or a mixture of a plurality of molecular sieves satisfying the above characteristics.
  • the solid acid catalyst is a hydrogen type product of the zeolite molecular sieve, or is composed of 10% by weight to 95% by weight of the hydrogen type product and the balance of the matrix, or a molecular sieve obtained by modifying the hydrogen type product by pyridine.
  • the substrate is a mixture of any one or any of alumina, silica, kaolin and magnesia.
  • the metal catalyst in the second reaction zone is a copper-based catalyst having methanol synthesis and hydrogenation properties.
  • both the first reaction zone and the second reaction zone reactor employ a fixed bed reactor, wherein a fixed bed tubular reactor is preferred.
  • first reaction zone and the second reaction zone may be in the same reactor, or the first reaction zone and the second reaction zone may be in separate reactors in series.
  • the synthesis gas feedstock may also contain any one or more of inert gases such as nitrogen, helium, argon and carbon dioxide.
  • inert gases such as nitrogen, helium, argon and carbon dioxide.
  • the volume content of carbon monoxide and hydrogen is 50% to 100%; the volume percentage of any one or more of nitrogen, helium, argon and carbon dioxide in the synthesis gas feedstock is 0-50%.
  • the catalyst in the third reaction zone is methanol to a dimethyl ether solid acid catalyst
  • the reactor may be a conventional fixed bed reactor or a fixed bed column reactor .
  • reaction conditions of the first reaction zone are: reaction temperature: 190-290 ° C, reaction pressure is 1.0-15.0 MPa; reaction conditions of the second reaction zone are: reaction temperature: 190- 290 ° C, reaction pressure: 1.0 ⁇ 20.0MPa; the third reaction zone The conditions are as follows: reaction temperature: 200-400 ° C, reaction pressure: 0.2 ⁇ 3 MPa.
  • Table 1 Sources of different molecular sieve raw materials and silicon to aluminum ratio
  • *Na-M-MOR indicates mordenite modified by elements other than the skeleton constituent elements prepared by in-situ synthesis, wherein M represents a modified metal atom, and Fe, Ga, Cu, Ag metals are separately prepared in the preparation process.
  • the modified molecular sieve has a modified metal content of 0.9%.
  • the preparation of the hydrogen type sample is as follows:
  • the Na type molecular sieve in Table 1 was subjected to ion exchange by NH 4 NO 3 and dried to obtain a hydrogen type molecular sieve.
  • a typical hydrogen type sample preparation process is as follows: in a hydrothermal synthesis kettle, a NaMOR molecular sieve powder is added to a pre-configured 1 mol/L NH 4 NO 3 aqueous solution at a solid-liquid mass ratio of 1:10, under stirring. The reaction was exchanged at 80 ° C for 2 h, vacuum filtered and washed with water. After continuously exchanged the reaction three times, it was dried overnight at 120 ° C, and after calcination at 550 ° C for 4 h, the desired catalyst sample HMOR was obtained.
  • the matrix-forming shaped hydrogen type sample was prepared by extrusion molding.
  • a typical molding sample preparation process is as follows: 80 g of Na-MOR and 20 g of alumina are thoroughly mixed, and 5 to 15% of nitric acid is added and kneaded, and the sample kneaded into a dough is extruded by an extruder. The extruded sample was dried at 120 ° C, and calcined at 550 ° C for 4 h, and then a shaped hydrogen type sample containing the matrix was prepared by the preparation method of the hydrogen type sample.
  • a pyridine-modified hydrogen type sample Preparation of a pyridine-modified hydrogen type sample.
  • the typical preparation process is as follows: 10 g of the hydrogen type sample is charged into the reaction tube, and gradually heated to 300-550 ° C under a nitrogen atmosphere of 100 mL/min for 2 to 6 hours, then carried with pyridine at a nitrogen gas, and treated at a temperature of 200 to 400 ° C for 2 to 8 A pyridine modified sample was prepared in hours and the sample was labeled with HM-py, where M represents the molecular sieve name.
  • the metal catalyst was a copper-based catalyst prepared as follows: 96.80 g of Cu(NO 3 ) 2 ⁇ 3H 2 O, 15.60 g of Zn(NO 3 ) 2 ⁇ 6H 2 O and 14.71 g of Al(NO 3 ) 3 in a beaker. 9H 2 O is dissolved in 2000 ml of deionized water to obtain a mixed metal nitrate aqueous solution. In another beaker, dilute 72.62 g of concentrated ammonia water (25-28%) with 1500 ml of deionized water, and vigorously stir the aqueous ammonia solution at room temperature, then slowly add the obtained mixed metal nitrate aqueous solution to the aqueous ammonia solution for the addition time.
  • D803C-III01 (commercial catalyst, DICP) was used, and the catalyst was obtained by mixing 50:50 of ZSM-5 molecular sieve and ⁇ -alumina, and it was designated as catalyst C.
  • the first reaction zone employs catalyst 11#
  • the second reaction zone employs catalyst B (copper-based catalyst)
  • the third reaction zone employs catalyst C.
  • a synthesis gas containing CO and H 2 is passed through a first reaction zone and a second reaction zone together with dimethyl ether (DME), wherein the first reaction zone and the second reaction zone are located in the same reactor, wherein Methanol formed entirely or partially from CO and H 2 in the second reaction zone is formed by dehydration of the third reaction zone.
  • DME dimethyl ether
  • an effluent of acetic acid passing the effluent from the first reaction zone into the second reaction zone II to contact and react with the metal catalyst B in the second reaction zone to obtain a solvent containing methanol and ethanol An effluent; separating the effluent from the second reaction zone to obtain product ethanol and by-product methanol; and introducing methanol from the foregoing step into the third reaction zone III to contact the catalyst C and dehydrating to obtain a dimethyl group.
  • the ether is passed and the resulting dimethyl ether is introduced into the first reaction zone to recycle.
  • the reaction conditions are as follows: Catalyst 11# and Catalyst B are charged into the first reaction zone and the second reaction zone of the reactor from top to bottom, respectively, and are filled with 3g and 7g, respectively, and the catalyst C of the third reaction zone is filled with 5g; CO, DME and The molar ratio of H 2 was 2 :1:12; the dimethyl ether feed was 3 g/h, and the reaction temperature was 190 ° C, 215 ° C, 245 ° C, 275 ° C, and the reaction pressure was 5 MPa, and the reaction results are shown in Table 3.
  • the methanol formed in the second reaction zone and the unreacted dimethyl ether are reacted as a raw material through the third reaction zone to be recycled into the first reaction zone, and the reaction temperature of the third reaction zone is 300 °C.
  • the first reaction zone uses different catalysts (1-10# and 12-16#, see Table 4), the second reaction zone uses catalyst B, and the third reaction zone uses catalyst C.
  • a synthesis gas containing CO and H 2 and dimethyl ether (DME) pass through a first reaction zone and a second reaction zone, and the first reaction zone and the second reaction zone are located in the same reactor (specific The reaction scheme is shown in Figure 1 and Example 1), in which dimethyl ether is produced by dehydration of methanol produced in the second reaction zone by CO and H 2 via a third reaction zone.
  • DME dimethyl ether
  • reaction conditions are as follows: different catalysts (1-10# and 12-16#, see Table 4) and catalyst B were charged into the first reaction zone and the second reaction zone of the reactor from top to bottom, respectively, and filled with 3 g and 7g; the molar ratio of CO, DME and H 2 is 2 :1:12; the dimethyl ether feed is 3g / h, the reaction temperature is 215 ° C, and the reaction pressure is 5 MPa, the reaction results are shown in Table 4.
  • Example 5 Similar to the procedure of Example 1, in a fixed bed reactor, the reaction temperature was 215 ° C, the reaction pressures were 1, 8 and 15 MPa, respectively, and other reaction conditions were in agreement with Example 1. The results of the reaction when the CO and H 2 mixed gas and the dimethyl ether were passed through the first reaction zone and the second reaction zone are shown in Table 5.
  • the first reaction zone and the second reaction zone were in the same reactor, the molar ratio of CO, DME and H 2 was 2 :1:12; the dimethyl ether feed was 3 g/h, the reaction The temperature and the reaction pressure were 215 ° C and 5 MPa, respectively, and the first reaction zone was charged with catalyst 11 # and the second reaction zone was charged with catalyst B.
  • the specific loading amount is shown in Table 6, and the reaction results are shown in Table 6.
  • the first reaction zone and the second reaction zone were in the same reactor, and the reaction conditions were as follows: Catalyst 11# and Catalyst B were respectively charged with 3 g and 7 g; a mixture of CO, DME and hydrogen entered the first reaction.
  • the zone wherein the molar ratios of CO, DME and H 2 were 1: 1: 12, 4: 1: 12 and 10: 1: 12, respectively, and the amount of dimethyl ether fed was 3 g/h.
  • the reaction zone temperature was maintained at 215 ° C and the reaction pressure was 5 MPa, the reaction results are shown in Table 7.
  • the CO and H 2 mixed gas and the dimethyl ether are reacted together through the first reaction zone, and the reaction effluent is added to the second reaction zone by adding hydrogen.
  • the reaction conditions are as follows: Catalyst 11# and Catalyst B are respectively charged with 3g and 7g; the molar ratio of CO, DME and H2 is 6:1:0.5, and the dimethyl ether feed is 3g/h first enters the first reaction zone, first The effluent from the reaction zone and the addition of 1.43 g/h of hydrogen enter the second reaction zone.
  • the temperature of the first reaction zone is 180 ° C, 190 ° C, 200 ° C, 225 ° C, and the temperature of the second reaction zone is maintained at 215 ° C.
  • the reaction pressure was 5 MPa, the reaction results are shown in Table 8.
  • Example 2 Similar to the procedure of Example 1, except that the first reaction zone I and the first reaction zone II are located in different fixed bed reactors, with particular reference to Figure 2, the reaction process of which is similar to that described in Example 1 with respect to Figure 1.
  • the CO and H 2 mixed gas and the dimethyl ether are reacted together through the first reaction zone, and the reaction effluent is added to the second reaction zone by adding hydrogen.
  • the reaction conditions are as follows: Catalyst 11# and Catalyst B are respectively charged with 3g and 7g; the molar ratio of CO, DME and H2 is 6:1:0.5, and the dimethyl ether feed is 3g/h first enters the first reaction zone, first The effluent in the reaction zone and the addition of 1.43 g/h of hydrogen enter the second reaction zone together, the temperature of the first reaction zone is 200 ° C, and the temperature of the second reaction zone is 200 ° C, 220 ° C, 240 ° C, 260 ° C, respectively. When the pressure is 5 MPa, the reaction results are shown in Table 9.
  • Example 2 Similar to the procedure of Example 1, except that the first reaction zone and the first reaction zone are located in different fixed bed reactors, with particular reference to Figure 2, the reaction process of which is similar to that described in Example 1 with respect to Figure 1.
  • the reaction conditions are as follows: Catalyst 11# and Catalyst B are respectively charged with 3g and 7g; a mixture of CO, DME and hydrogen enters the first reaction zone, wherein the molar ratios of CO, DME and H 2 are 1:1:1; 4:1, respectively. 1: 1; 10:1:1, the amount of dimethyl ether fed was 3 g/h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本文公开了一种合成气直接生产乙醇的方法,其中反应过程在三个反应区中完成,所述方法包括:使合成气和二甲醚进入第一反应区,以与固体酸催化剂接触反应;使来自第一反应区的流出物进入第二反应区以与金属催化剂接触反应;对来自第二反应区的流出物进行分离得到产物乙醇和副产物甲醇;使副产物甲醇进入第三反应区以进行脱水反应得到二甲醚,并使所得到的二甲醚进入所述第一反应区以循环反应。本发明提供了合成气直接转化成乙醇的新方法,依照本发明的方法,能够以合成气为原料直接生产乙醇产品。同时,本发明的方法工艺过程简单,能耗低,生产成本低,产物选择性高,具有重大的工业应用前景。

Description

一种合成气直接生产乙醇的方法 技术领域
本发明涉及一种合成气转化生产乙醇的方法。
背景技术
乙醇是世界上公认的环保清洁燃料,可直接用作液体燃料或同汽油混合使用,以降低汽车尾气中一氧化碳、碳氢化合物、颗粒物、氮氧化合物及苯系有害物的排放,有效改善我国的环境质量,对解决我国大气污染问题,实现可持续发展具有重要意义。现有的乙醇生产工艺主要有基于生物质路线的糖类或纤维素发酵法和基于石油路线的乙烯水合法。近年来,我国燃料乙醇产销量迅速增长,已经成为继美国、巴西之后的世界第三大燃料乙醇生产国。但生物质合成燃料乙醇受限于原料短缺和能量密度低的特点而难以大规模发展。基于我国“贫油、少气、煤资源相对丰富”的能源结构和石油对外依存度不断攀升的现状,亟需发展以煤或生物质基合成气合成乙醇的新工艺,降低我国对石油的依赖,促进我国能源多元化变革。
以合成气为原料生产种类繁多的大宗基本化工原料和高附加值的精细化学品一直是催化领域中研究的热门课题。合成气直接制乙醇是近些年乙醇制备的新工艺。从工艺和成本的角度来说,合成气直接制乙醇工艺流程短,操作成本较经济,投资成本较低,但从热力学、动力学角度出发,反应很难停留于目标产物乙醇上。由于合成气直接制乙醇是一个强放热反应,所以首要问题是要选取催化性能好、选择性高、耐受性能强的催化剂。从实际反应结果看,产物分布广,不仅有大量C2含氧副产物如乙醛、乙酸,而且含有C2-C5烷烃和烯烃,乙醇选择性不理想,收率低。
由于铑基催化剂具有合成气选择合成C2含氧化合物的性能,因此受到国内外研究者的广泛关注,是近年来C1化学相对重要的研究方向之一。但是,贵金属铑的使用,使得乙醇生产成本大幅提升,且铑产量有限,大规模推广应用存在很大困难,成为该工艺路线工业化的瓶颈。大幅降低铑使用量,或用非贵金属催化剂替代铑是此项技术推向工业化的有效途径,但目前进展较为缓慢。
CN103012062A公开了以氢气和一氧化碳混合形成的合成气原料合成甲醇,甲醇脱水制备出二甲醚,然后二甲醚与一氧化碳和氢气混合进行羰化反应制取乙酸甲酯,乙酸甲酯纯化后进行加氢,加氢产物纯化后得到乙醇产品的一种合成气间接生产乙醇工艺。整个工艺包含了甲醇合成与分离、二甲醚合成与分离、二甲醚羰基化与分离以及和乙酸甲酯甲酯加氢与分离等过程单元。本发明提供了一种合成气直接生产乙醇的方法,该方法以合成气为原料,整合了甲醇合成、甲醇制二甲醚、二甲醚羰基化制乙酸甲酯以及乙酸甲酯加氢制乙醇的过程,实现了合成气直接生产乙醇。本发明不仅减少了甲醇合成单元以及相应的分离单元,而且还减少了二甲醚羰基化制乙酸甲酯的分离单元,使得本发明具备反应条件温和、工艺简单、设备投资成本以及能耗降低等优点,具有重要的应用前景。
发明内容
本发明的目的是克服现有技术中的一些或全部问题,提供一种合成气转化的新技术和乙醇生产的方法,利用该方法可以实现合成气定向转化为乙醇。
为此,本发明提供了一种合成气直接生产乙醇的方法,其中反应过程在三个反应区中完成,所述方法包括:
a)使作为原料的合成气和二甲醚进入第一反应区,以与所述第一反应区中的固体酸催化剂接触并发生反应,得到含有乙酸甲酯和/或乙酸的流出物;
b)使来自所述第一反应区的流出物进入第二反应区,以与所述第二反应区中的金属催化剂接触并发生反应,得到含有甲醇和乙醇的流出物;
c)对来自所述第二反应区的流出物进行分离,得到产物乙醇和副产物甲醇;
d)使来自步骤c)的甲醇进入第三反应区以进行脱水反应,得到二甲醚,并使所得到的二甲醚进入所述第一反应区以循环反应;
其中,所述原料中合成气的体积含量为10%~100%,二甲醚的体积含量为0-90%,并且所述合成气中一氧化碳与氢气的体积比为0.1~10;
所述第一反应区和所述第二反应区的反应温度为180-300℃,反应压 力为0.5~20MPa;
所述第三反应区的反应温度为180-420℃,反应压力为0.1~4MPa。
优选地,所述第一反应区中的固体酸催化剂包含以下各项中的一种或多种分子筛:FER沸石分子筛、MFI沸石分子筛、MOR沸石分子筛、ETL沸石分子筛、MFS沸石分子筛、MTF沸石分子筛、EMT沸石分子筛以及它们经骨架组成元素以外的元素或吡啶改性得到的分子筛产物。
优选地,所述固体酸催化剂是所述沸石分子筛的氢型产物,或者由10wt%-95wt%的所述氢型产物和余量的基质构成,或者是所述氢型产物经吡啶改性得到的分子筛产物,其中所述基质为选自氧化铝、氧化硅、高岭土和氧化镁中的一种或多种。
优选地,所述第二反应区中的金属催化剂为铜基催化剂。
优选地,所述第一反应区和/或所述第二反应区在固定床反应器中,所述固定床反应器优选是固定床列管反应器。
优选地,所述第一反应区和所述第二反应区在同一个固定反应器中,或者所述第一反应区和所述第二反应区分别在串联的不同反应器中。
优选地,作为所述原料的合成气由50~100体积%的一氧化碳和氢气以及0-50体积%的选自氮气、氦气、氩气和二氧化碳中的一种或多种惰性气体组成。
优选地,所述第三反应区中的催化剂为甲醇制二甲醚固体酸催化剂。
优选地,所述第三反应区在固定床反应器中,尤其是在固定床列管式反应器中。
优选地,所述第一反应区的反应温度为190-290℃,反应压力为1~15MPa;所述第二反应区的反应温度为190-290℃,反应压力为1.0~15.0MPa;所述第三反应区的反应温度为200-400℃,反应压力为0.2~3MPa。
本发明包括但不限于以下有益效果:
1、提供一种合成气直接生产乙醇的方法,该方法整合了合成甲醇、甲醇制二甲醚、二甲醚羰基化制乙酸甲酯以及乙酸甲酯加氢制乙醇的过程,减少了甲醇合成、二甲醚羰基化制乙酸甲酯的分离单元,设备投资成本降低5%~10%、能耗降低10%~20%,同时在金属催化剂上同时具备了 乙酸甲酯加氢生产乙醇和甲醇的反应以及合成气加氢生成甲醇的过程。
2、本方法具有设备投资低,反应条件温和、工艺简单等优点,具有重要的应用前景。
附图说明
图1为根据本发明一个实施方案的合成气制乙醇的流程图,其中第一反应区和第二反应区在同一反应器内。
图2为根据本发明另一个实施方案的合成气制乙醇的流程图,其中第一反应区和第二反应区在不同反应器内。
具体实施方式
本发明的方法包括以下过程:含有二甲醚的合成气气态物料与固体酸催化剂在第一反应区接触发生反应,得到乙酸甲酯的含氧化合物;然后,合成气和乙酸甲酯与金属催化剂在第二反应区接触发生反应,生成甲醇和乙醇;随后,乙醇作为产品分离出去,在第三反应区甲醇经脱水生成二甲醚,将所得的二甲醚循环进入反应系统与合成气作为反应原料进一步转化。该方法可以实现单一合成气的高效转化生产乙醇,乙醇选择性高,减少了相关操作单元、降低了设备投资及能耗,整个工艺过程简单,应用前景好。
更具体地,在本发明的合成气直接生产乙醇的方法中,反应过程在三个反应区中完成,所述方法包括:
a)使作为原料的合成气和二甲醚进入第一反应区,以与所述第一反应区中的固体酸催化剂接触并发生反应,得到含有乙酸甲酯和/或乙酸的流出物;
b)使来自所述第一反应区的流出物进入第二反应区,以与所述第二反应区中的金属催化剂接触并发生反应,得到含有甲醇和乙醇的流出物;
c)对来自所述第二反应区的流出物进行分离,得到产物乙醇和副产物甲醇;
d)使来自步骤c)的甲醇进入第三反应区以进行脱水反应,得到二甲醚,并使所得到的二甲醚进入所述第一反应区以循环反应;
其中,所述原料中合成气的体积含量为10%~100%,二甲醚的体积含量为0-90%,并且所述合成气中一氧化碳与氢气的体积比为0.1~10;
所述第一反应区和所述第二反应区的反应温度为180-300℃,反应压力为0.5~20MPa;
所述第三反应区的反应温度为180-420℃,反应压力为0.1~4MPa。
在本发明的方法中,优选地,第一反应区中的固体酸催化剂包含FER、MFI、MOR、ETL、MFS、MTF或EMT结构的沸石分子筛中的任意一种或任意几种的混合,或符合上述特征的分子筛经骨架组成元素以外的元素(例如Fe、Ga、Cu、Ag等)或经吡啶改性得到的产物,或多种符合上述特征的分子筛的混合物。
优选地,固体酸催化剂是所述沸石分子筛的氢型产物,或由10wt%-95wt%的所述氢型产物和余量的基质构成,或者是所述氢型产物经吡啶改性得到的分子筛产物;更优选地,所述基质为氧化铝、氧化硅、高岭土和氧化镁中的任意一种或任意几种的混合。
在本发明的方法中,优选地,第二反应区中的金属催化剂为具有甲醇合成以及加氢性能的铜基催化剂。
优选地,第一反应区和第二反应区反应器均采用固定床反应器,其中优选固定床列管式反应器。
在本发明的方法中,第一反应区和第二反应区可处于同一反应器内、或第一反应区和第二反应区在串联的不同反应器中。
在本发明的方法中,除了一氧化碳和氢气之外,合成气原料也可含有氮气、氦气、氩气和二氧化碳中的任意一种或几种惰性气体。优选地,一氧化碳和氢气的体积含量为50%~100%;氮气、氦气、氩气和二氧化碳中的任意一种或几种气体在合成气原料的体积百分含量为0-50%。
在本发明的方法中,优选地,所述第三反应区中的催化剂为甲醇制二甲醚固体酸催化剂,并且优选地,反应器可为常规固定床反应器,或固定床列管反应器。
在一个进一步优选的实施方案中,所述第一反应区的反应条件为:反应温度:190-290℃,反应压力为1.0~15.0MPa;第二反应区的反应条件为:反应温度:190-290℃,反应压力:1.0~20.0MPa;第三反应区的反 应条件为:反应温度:200-400℃,反应压力:0.2~3MPa。
通过以下实施例对本发明进行具体举例说明,但本发明并不局限于这些实施例。
分子筛原料来源
在实验过程中,部分分子筛原料能够直接商购得到;部分分子筛原料可以根据现有相关文献合成得到,具体来源见表1。
表1:不同分子筛原料的来源及硅铝比
分子筛原料 获取方式 来源 Si/Al比
NaMOR(丝光沸石) 购买 南开催化剂厂 6.5
NaMOR(丝光沸石) 购买 南开催化剂厂 15
NaSM-35 购买 奥科催化剂厂 79
NaZSM-5 购买 南开催化剂厂 50
NaEMT 合成 大连化学物理研究所 4
NaEMT 合成 大连化学物理研究所 25
Na-EU-12 合成 大连化学物理研究所 10
Na-MCM-65 合成 大连化学物理研究所 50
Na-MCM-35 合成 大连化学物理研究所 100
Na-M-MOR* 合成 大连化学物理研究所 16.5
*Na-M-MOR表示利用原位合成制备的经骨架组成元素以外的元素改性的丝光沸石,其中M表示改性金属原子,在制备过程中分别制备了经Fe、Ga、Cu、Ag金属改性的分子筛,其中改性金属的含量为0.9%。
固体酸催化剂
氢型样品的制备如下:
将表1中的Na型分子筛通过NH4NO3离子交换、干燥焙烧后得到氢型分子筛。例如,典型的氢型样品制备过程如下:在水热合成釜中,将NaMOR分子筛粉末加入预先配置好的1mol/L NH4NO3水溶液中,固液质 量比为1∶10,搅拌状态下在80℃交换反应2h,真空过滤并用水洗涤。连续交换反应3次后,在120℃干燥过夜,在550℃焙烧4h后,得到所需的催化剂样品HMOR。
含基质的成型氢型样品采用挤条成型的方法制备。例如,典型性的成型样品制备过程如下:80g Na-MOR和20g氧化铝充分混合,加入5~15%硝酸混捏,混捏成团状的样品通过挤条机挤条成型。挤条样品在120℃干燥,在550℃焙烧4h后,再采用氢型样品的制备方法制备含有基质的成型氢型样品。
吡啶改性的氢型样品的制备。典型制备过程如下:10g氢型样品在装入反应管,在100mL/min氮气气氛下逐步升温至300~550℃,保持2~6h,然后用氮气携带吡啶、在200~400℃处理2~8小时,制得吡啶改性样品,样品用H-M-py标记,其中M代表分子筛名称。
根据以上方法制备的系列样品,具体见表2。
表2:制备样品序号及样品组成
Figure PCTCN2017104554-appb-000001
金属催化剂
金属催化剂为铜基催化剂,其制备如下:在烧杯中,将96.80g Cu(NO3)2·3H2O、15.60g Zn(NO3)2·6H2O和14.71g Al(NO3)3·9H2O溶于2000ml去离子水中,得到混合金属硝酸盐水溶液缓。在另一个烧杯中,用1500ml去离子水稀释72.62g浓氨水(25-28%),并在室温下剧烈搅拌氨水溶液,然后将所得的混合金属硝酸盐水溶液缓慢加入该氨水溶液中,加入时 间为60min左右。过滤,得到沉淀,并用另外的氨水溶液调节该沉淀的pH值到10.0,继续搅拌200min之后,静置老化36h。然后,将沉淀用去离子水洗涤至中性,离心分离。将所得沉淀在120℃烘箱中干燥24h,干燥后样品置于马弗炉中,以1℃/min的升温速率升温到400℃,焙烧5h,得到焙烧后的样品。再将1.41g Mn(NO3)2·4H2O和1.36g Ni(NO3)2·4H2O溶于50ml去离子水,采用浸渍法将锰和镍水溶液担载到焙烧后的样品上,在80℃蒸发掉多余的溶剂。在120℃烘箱中干燥24h,干燥后样品置于马弗炉中,以1℃/min的升温速率升温到400℃,焙烧3h,得到催化剂样品,记为催化剂B。
甲醇制二甲醚催化剂
采用D803C-III01(商品催化剂,DICP),该催化剂为ZSM-5分子筛和γ-氧化铝按50∶50混合而成,记为催化剂C。
实施例1
第一反应区采用催化剂11#,第二反应区采用催化剂B(铜基催化剂);第三反应区采用催化剂C。
在固定床反应器中,含有CO和H2的合成气与二甲醚(DME)共同经过第一反应区和第二反应区,第一反应区和第二反应区位于同一反应器内,其中二甲醚完全或部分来自CO和H2在第二反应区生成的甲醇经第三反应区脱水反应生成。具体反应流程见图1,其中使作为原料的合成气和二甲醚进入第一反应区I,以与所述第一反应区中的固体酸催化剂11#接触并发生反应,得到含有乙酸甲酯和/或乙酸的流出物;使来自所述第一反应区的流出物进入第二反应区II,以与所述第二反应区中的金属催化剂B接触并发生反应,得到含有甲醇和乙醇的流出物;对来自所述第二反应区的流出物进行分离,得到产物乙醇和副产物甲醇;使来自前述步骤的甲醇进入第三反应区III以与催化剂C接触并发生脱水反应,得到二甲醚,并使所得到的二甲醚进入所述第一反应区以循环反应。
反应条件如下:催化剂11#和催化剂B自上而下分别装入反应器的第一反应区和第二反应区,分别装填3g和7g,第三反应区的催化剂C装 填5g;CO、DME和H2的摩尔比例为2∶1∶12;二甲醚进料为3g/h,反应温度分别在190℃、215℃、245℃、275℃,反应压力为5MPa时,反应结果见表3。
表3:不同反应温度时的反应结果
Figure PCTCN2017104554-appb-000002
将第二反应区生成的甲醇和未反应的二甲醚经第三反应区反应后作为原料循环进入第一反应区,第三反应区反应温度为300℃。
实施例2
第一反应区分别采用不同的催化剂(1-10#和12-16#,见表4),第二反应区采用催化剂B,第三反应区采用催化剂C。
在固定床反应器中,含有CO和H2的合成气和二甲醚(DME)共同经过第一反应区和第二反应区,第一反应区和第二反应区位于同一反应器内(具体反应流程见图1和实施例1),其中二甲醚来自CO和H2在第二反应区生成的甲醇经第三反应区脱水反应生成。反应条件如下:将不同的催化剂(1-10#和12-16#,见表4)和催化剂B自上而下分别装入反应器的第一反应区和第二反应区,分别装填3g和7g;CO、DME和H2的摩尔比例为2∶1∶12;二甲醚进料为3g/h,反应温度215℃,反应压力为5MPa时,反应结果见表4。
表4:不同催化剂的反应结果
Figure PCTCN2017104554-appb-000003
实施例3
类似于实施例1的程序,在固定床反应器中,反应温度为215℃,反应压力分别为1、8和15MPa,其他反应条件和实施例1一致。含有CO和H2混合气和二甲醚共同经过第一反应区和第二反应区时的反应结果见表5。
表5:不同反应压力时的反应结果
Figure PCTCN2017104554-appb-000004
实施例4
类似于实施例1的程序,第一反应区和第二反应区在同一反应器内,CO、DME和H2的摩尔比例为2∶1∶12;二甲醚进料为3g/h,反应温度和 反应压力分别215℃和5MPa,第一反应区装填催化剂11#并且第二反应区装填催化剂B,具体装填量见表6,反应结果见表6。
表6:第一反应区和第二反应区分别装填不同比例催化剂时的反应结果
Figure PCTCN2017104554-appb-000005
实施例5
类似于实施例1的程序,第一反应区和第二反应区在同一反应器内,反应条件如下:催化剂11#和催化剂B分别装填3g和7g;CO、DME和氢气混合气进入第一反应区,其中CO、DME和H2的摩尔比例分别为1∶1∶12、4∶1∶12和10∶1∶12,二甲醚进料量为3g/h。反应区温度保持为215℃,反应压力为5MPa时,反应结果见表7。
表7:CO和二甲醚原料比例不同时的反应结果
Figure PCTCN2017104554-appb-000006
实施例6
类似于实施例1的程序,只是第一反应区I和第一反应区II位于不同固定床反应器内,具体参见图2,其反应过程与实施例1关于图1所述的过程类似。
含有CO和H2混合气和二甲醚共同经过第一反应区反应,反应流出 物在添加氢气共同进入第二反应区反应。反应条件如下:催化剂11#和催化剂B分别装填3g和7g;CO、DME和H2的摩尔比例为6∶1∶0.5、且二甲醚进料为3g/h首先进入第一反应区,第一反应区的流出物和添加1.43g/h的氢气后共同进入第二反应区,第一反应区的温度分别为180℃、190℃、200℃、225℃,第二反应区温度保持为215℃,反应压力为5MPa时,反应结果见表8。
表8:第一反应区反应温度不同时的反应结果
Figure PCTCN2017104554-appb-000007
实施例7
类似于实施例1的程序,只是第一反应区I和第一反应区II位于不同固定床反应器内,具体参见图2,其反应过程与实施例1关于图1所述的过程类似。含有CO和H2混合气和二甲醚共同经过第一反应区反应,反应流出物在添加氢气共同进入第二反应区反应。反应条件如下:催化剂11#和催化剂B分别装填3g和7g;CO、DME和H2的摩尔比例为6∶1∶0.5、且二甲醚进料为3g/h首先进入第一反应区,第一反应区的流出物和添加1.43g/h的氢气后共同进入第二反应区,第一反应区温度为200℃,第二反应区温度分别为200℃、220℃、240℃,260℃,反应压力为5MPa时,反应结果见表9。
表9:第二反应区反应温度不同时的反应结果
Figure PCTCN2017104554-appb-000008
实施例8
类似于实施例1的程序,只是第一反应区和第一反应区位于不同固定床反应器内,具体参见图2,其反应过程与实施例1关于图1所述的过程类似。反应条件如下:催化剂11#和催化剂B分别装填3g和7g;CO、DME和氢气混合气进入第一反应区,其中CO、DME和H2的摩尔比例分别为1∶1∶1;4∶1∶1;10∶1∶1,二甲醚进料量为3g/h。第一反应区的流出物和添加1.43g/h的氢气后共同进入第二反应区,第一反应的温度为195℃,第二反应区温度保持为215℃,反应压力为5MPa时,反应结果见表10。
表10:第一反应区CO和二甲醚原料比例不同时的反应结果
Figure PCTCN2017104554-appb-000009
以上已对本发明进行了详细描述,但本发明并不局限于本文所描述具体实施方式。本领域技术人员理解,在不背离本发明范围的情况下,可以作出其他更改和变形。本发明的范围由所附权利要求限定。

Claims (10)

  1. 一种合成气直接生产乙醇的方法,其中反应过程在三个反应区中完成,所述方法包括:
    a)使作为原料的合成气和二甲醚进入第一反应区,以与所述第一反应区中的固体酸催化剂接触并发生反应,得到含有乙酸甲酯和/或乙酸的流出物;
    b)使来自所述第一反应区的流出物进入第二反应区,以与所述第二反应区中的金属催化剂接触并发生反应,得到含有甲醇和乙醇的流出物;
    c)对来自所述第二反应区的流出物进行分离,得到产物乙醇和副产物甲醇;
    d)使来自步骤c)的甲醇进入第三反应区以进行脱水反应,得到二甲醚,并使所得到的二甲醚进入所述第一反应区以循环反应;
    其中,所述原料中合成气的体积含量为10%~100%,二甲醚的体积含量为0-90%,并且所述合成气中一氧化碳与氢气的体积比为0.1~10;
    所述第一反应区和所述第二反应区的反应温度为180-300℃,反应压力为0.5~20MPa;
    所述第三反应区的反应温度为180-420℃,反应压力为0.1~4MPa。
  2. 根据权利要求1所述的合成气直接生产乙醇的方法,其特征在于,所述第一反应区中的固体酸催化剂包含以下各项中的一种或多种分子筛:FER、MFI、MOR、ETL、MFS、MTF、EMT沸石分子筛以及它们经骨架组成元素以外的元素或吡啶改性得到的分子筛产物。
  3. 根据权利要求2所述的合成气直接生产乙醇的方法,其特征在于,所述固体酸催化剂是所述沸石分子筛的氢型产物,或者由10wt%-95wt%的所述氢型产物和余量的基质构成,或者是所述氢型产物经吡啶改性得到的分子筛产物,其中所述基质为选自氧化铝、氧化硅、高岭土和氧化镁中的一种或多种。
  4. 根据权利要求1所述的合成气直接生产乙醇的方法,其特征在于,所述第二反应区中的金属催化剂为铜基催化剂。
  5. 根据权利要求1所述的合成气直接生产乙醇的方法,其特征在于,所述第一反应区和/或所述第二反应区在固定床反应器中,所述固定床反应器优选是固定床列管反应器。
  6. 根据权利要求1或5所述的合成气直接生产乙醇的方法,其特征在于,所述第一反应区和所述第二反应区在同一个固定反应器中,或者所述第一反应区和所述第二反应区分别在串联的不同反应器中。
  7. 根据权利要求1所述的合成气直接生产乙醇的方法,其特征在于,作为所述原料的合成气由50~100体积%的一氧化碳和氢气以及0-50体积%的选自氮气、氦气、氩气和二氧化碳中的一种或多种惰性气体组成。
  8. 根据权利要求1所述的合成气直接生产乙醇的方法,其特征在于,所述第三反应区中的催化剂为甲醇制二甲醚固体酸催化剂。
  9. 根据权利要求1所述的合成气直接生产乙醇的方法,其特征在于,所述第三反应区在固定床反应器中,尤其是在固定床列管式反应器中。
  10. 根据权利要求1所述的合成气直接生产乙醇的方法,其特征在于,所述第一反应区的反应温度为190-290℃,反应压力为1~15MPa;所述第二反应区的反应温度为190-290℃,反应压力为1.0~15.0MPa;所述第三反应区的反应温度为200-400℃,反应压力为0.2~3MPa。
PCT/CN2017/104554 2017-09-29 2017-09-29 一种合成气直接生产乙醇的方法 WO2019061342A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/647,585 US20200231523A1 (en) 2017-09-29 2017-09-29 Method for directly producing ethanol from syngas
EP17926908.9A EP3689845A4 (en) 2017-09-29 2017-09-29 PROCESS FOR THE DIRECT PRODUCTION OF ETHANOL FROM SYNTHESIS GAS
PCT/CN2017/104554 WO2019061342A1 (zh) 2017-09-29 2017-09-29 一种合成气直接生产乙醇的方法
EA202090650A EA202090650A1 (ru) 2017-09-29 2017-09-29 Способ прямого получения этанола из синтез-газа

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/104554 WO2019061342A1 (zh) 2017-09-29 2017-09-29 一种合成气直接生产乙醇的方法

Publications (1)

Publication Number Publication Date
WO2019061342A1 true WO2019061342A1 (zh) 2019-04-04

Family

ID=65900393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104554 WO2019061342A1 (zh) 2017-09-29 2017-09-29 一种合成气直接生产乙醇的方法

Country Status (4)

Country Link
US (1) US20200231523A1 (zh)
EP (1) EP3689845A4 (zh)
EA (1) EA202090650A1 (zh)
WO (1) WO2019061342A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112264081B (zh) * 2020-11-23 2022-01-07 大连理工大学 一种电化学还原co2制乙醇的双金属-氮掺杂整体式炭基电催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1230458A (zh) * 1998-03-26 1999-10-06 中国科学院大连化学物理研究所 用于单独乙醛、乙酸乙酯、醋酸或其混合物的加氢制乙醇催化剂
JP2008239539A (ja) * 2007-03-27 2008-10-09 Ihi Corp エタノール合成方法及び装置
CN103012062A (zh) 2012-12-20 2013-04-03 上海戊正工程技术有限公司 一种合成气间接生产乙醇的工艺及其应用
US20130178671A1 (en) * 2011-12-20 2013-07-11 David Lynch Production of ethanol from synthesis gas

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9695097B2 (en) * 2015-07-20 2017-07-04 Exxonmobil Chemical Patents Inc. Ethanol production via dimethylether recycle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1230458A (zh) * 1998-03-26 1999-10-06 中国科学院大连化学物理研究所 用于单独乙醛、乙酸乙酯、醋酸或其混合物的加氢制乙醇催化剂
JP2008239539A (ja) * 2007-03-27 2008-10-09 Ihi Corp エタノール合成方法及び装置
US20130178671A1 (en) * 2011-12-20 2013-07-11 David Lynch Production of ethanol from synthesis gas
CN103012062A (zh) 2012-12-20 2013-04-03 上海戊正工程技术有限公司 一种合成气间接生产乙醇的工艺及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3689845A4

Also Published As

Publication number Publication date
US20200231523A1 (en) 2020-07-23
EP3689845A1 (en) 2020-08-05
EA202090650A1 (ru) 2020-06-10
EP3689845A4 (en) 2021-05-05

Similar Documents

Publication Publication Date Title
US11583839B2 (en) Catalyst for preparing hydrocarbons from carbon dioxide by one-step hydrogenation and method for preparing same
CN109574798B (zh) 一种合成气直接生产乙醇的方法
WO2017012246A1 (zh) 一种乙酸甲酯的生产方法
CN109574839B (zh) 一种合成气直接生产乙酸甲酯和/或乙酸的方法
CN106890668A (zh) 一种生产乙酸甲酯的催化剂、其制备方法及应用
CN109701629B (zh) 用于制低碳烯烃的组合催化剂及其使用方法
WO2022021506A1 (zh) 一种超薄多孔纳米氮化碳光催化剂的制备及其在光催化氧化果糖合成乳酸中的应用
CN109701626B (zh) 用于合成气一步法制低碳烯烃的催化剂、制备及其用途
CN108380216B (zh) 用于催化二氧化碳制乙醇的钴基催化剂的制备方法及应用
CN102958869B (zh) 使用含有钴和锰的催化剂从合成气制备烯烃的方法
CN112958146B (zh) 一种mfi分子筛纳米片负载的锆基催化剂及其在制备丁二烯反应中的应用
US20220144748A1 (en) Method for producing methyl acetate by means of carbonylation of dimethyl ether
CN111302885B (zh) 生物乙醇一锅法高效合成乙烯和1,3-丁二烯的方法
WO2019061358A1 (zh) 一种合成气直接生产乙酸甲酯和/或乙酸的方法
CN106890665B (zh) 一种二甲醚羰基化生产乙酸甲酯的催化剂及其应用
CN110496640B (zh) 一种对二甲苯合成用催化剂及其制备方法和应用
CN1883798A (zh) 用于合成气直接制备二甲醚的催化剂
WO2019061342A1 (zh) 一种合成气直接生产乙醇的方法
CN114210360B (zh) 一种催化剂的制备方法及在二甲醚直接合成乙醇的应用
CN112939763B (zh) 一种卤甲烷制备乙酸的方法
CN112694907B (zh) 一种甲烷制备烃类化合物的方法
CN110846096A (zh) 一种催化生物质合成气转化制备液态石油气的方法
CN115181018B (zh) 一种利用γ-戊内酯定向合成戊酸的方法
CN111517929A (zh) 生产丙酮的方法
EA040054B1 (ru) Способ прямого получения этанола из синтез-газа

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926908

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017926908

Country of ref document: EP

Effective date: 20200429