WO1998028788A1 - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device Download PDF

Info

Publication number
WO1998028788A1
WO1998028788A1 PCT/JP1997/004753 JP9704753W WO9828788A1 WO 1998028788 A1 WO1998028788 A1 WO 1998028788A1 JP 9704753 W JP9704753 W JP 9704753W WO 9828788 A1 WO9828788 A1 WO 9828788A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing resin
circuit board
resin layer
semiconductor element
printed circuit
Prior art date
Application number
PCT/JP1997/004753
Other languages
English (en)
French (fr)
Inventor
Satoshi Ito
Masaki Mizutani
Hiroshi Noro
Shinichirou Sudou
Takashi Fukushima
Makoto Kuwamura
Original Assignee
Nitto Denko Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corporation filed Critical Nitto Denko Corporation
Priority to EP97949206A priority Critical patent/EP0951064A4/en
Priority to US09/297,980 priority patent/US6333206B1/en
Publication of WO1998028788A1 publication Critical patent/WO1998028788A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • H01L2224/131Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2901Shape
    • H01L2224/29011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/2902Disposition
    • H01L2224/29034Disposition the layer connector covering only portions of the surface to be connected
    • H01L2224/29036Disposition the layer connector covering only portions of the surface to be connected covering only the central area of the surface to be connected
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/731Location prior to the connecting process
    • H01L2224/73101Location prior to the connecting process on the same surface
    • H01L2224/73103Bump and layer connectors
    • H01L2224/73104Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75252Means for applying energy, e.g. heating means in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/753Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/75301Bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/8119Arrangement of the bump connectors prior to mounting
    • H01L2224/81193Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83191Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83193Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01011Sodium [Na]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01024Chromium [Cr]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01045Rhodium [Rh]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01049Indium [In]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0105Tin [Sn]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01058Cerium [Ce]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device by mounting a semiconductor element on a mother board or a daughter board in a face-down structure.
  • Recent demands for improvement in the performance of semiconductor devices include a method in which semiconductor elements are mounted on a mother board or a daughter board in which a wiring circuit is formed in a flip-chip structure (flip chip method, direct chip Attachment method) is attracting attention.
  • flip chip method direct chip Attachment method
  • This is based on the conventional method, for example, the method of mounting a contact on a lead frame from a semiconductor element with a gold wire on a lead frame and mounting it on a mother board or a daughter board, the information by wiring This is due to the problem of information transmission error due to transmission delay and crosstalk.
  • the present invention has been made in view of such circumstances, and a sealing resin layer can be easily formed in a gap between the semiconductor element and a board.
  • W0 98/28788 It is an object of the present invention to provide a method of manufacturing a semiconductor device which is easy. Disclosure of the invention
  • a method for manufacturing a semiconductor device is a method for manufacturing a semiconductor device, comprising: mounting a semiconductor element on a printed circuit board via a plurality of connection electrodes; A method for manufacturing a semiconductor device in which a gap between a device and an element is sealed by a sealing resin layer, wherein the sealing resin layer is formed between the wiring circuit board and the semiconductor element by a layered solid resin.
  • the solid resin is formed by melting the solid resin with the interposition of the solid resin.
  • the sealing resin layer is formed by interposing a layered solid resin between the printed circuit board and the semiconductor element, and melting and curing the solid resin.
  • the above-described layered solid resin is melted and preferably pressurized to complete the joining between the printed circuit board and the semiconductor element.
  • the present inventors use, as the solid resin, an epoxy resin composition containing a specific ratio of an inorganic filler having a maximum particle size of 100 m or less. As a result, it has been found that the space between the substrate and the semiconductor element can be filled favorably without generating voids or the like.
  • the sealing resin layer formed by melting the solid resin is formed, for example, by mounting a sealing resin sheet (a type of layered solid resin) on the wiring circuit board, The semiconductor element is placed on the sealing resin sheet, and then the sealing resin sheet is heated and melted to fill the gap between the printed circuit board and the semiconductor element with the molten sealing. By filling and then curing the stop resin It can be easily formed.
  • a sealing resin sheet a type of layered solid resin
  • the sealing resin layer formed by melting the solid resin is formed such that a part of the connection electrode portion provided on the wiring circuit board surface is exposed.
  • the semiconductor element is placed on the printed circuit board so that the electrode part of the semiconductor element contacts the connection electrode part, and then the sealing resin layer is heated and melted.
  • the electrode portion of the printed circuit board may further contact the connection electrode portion.
  • a sealing resin layer formed by melting the solid resin is prepared by previously providing a sealing resin layer on one surface of the semiconductor element, and a plurality of connection electrode portions are provided.
  • a semiconductor element is mounted on the printed circuit board so that the sealing resin layer is in contact with the connection electrode portion.
  • a substrate in which a sealing resin layer is provided on one side of the printed circuit board is prepared in advance, and the connection electrode section of the semiconductor element provided with a plurality of connection electrode sections is provided on the printed circuit board. The semiconductor element is placed so as to be in contact with the sealing resin layer. Then, by heating and melting the sealing resin layer,
  • the sealing resin sheet and the sealing resin layer which are sealing materials for sealing the gap between the printed circuit board and the semiconductor element with a resin, are heated for a predetermined time. Pressure is applied until the resin sheet for sealing and the resin layer for sealing have at least one of the following physical properties (a) to (no,).
  • a uniform and good sealing resin layer can be formed without involving small voids in the filled sealing resin portion.
  • the gel time is 30% or less of the initial gel time.
  • (C) Residual reaction when the initial residual reaction calorie before heating the sealing resin sheet or sealing resin layer measured by a differential scanning calorimeter (hereinafter abbreviated as "DSC") is 100%.
  • the calorific value is 70% or less of the initial residual reaction calorific value.
  • FIG. 1 is a cross-sectional view illustrating an example of a semiconductor device obtained by a method of manufacturing a semiconductor device according to the present invention.
  • FIG. 2 is an explanatory cross-sectional view illustrating a manufacturing process of the semiconductor device according to the first embodiment.
  • FIG. 3 is an explanatory cross-sectional view illustrating a manufacturing process of the semiconductor device according to the first embodiment.
  • FIG. 4 is an explanatory cross-sectional view illustrating a manufacturing process of the semiconductor device according to the first embodiment.
  • FIG. 5 is an explanatory cross-sectional view illustrating a manufacturing process of the semiconductor device according to the first embodiment.
  • FIG. 6 is an explanatory cross-sectional view showing a manufacturing step of the semiconductor device according to the second embodiment.
  • FIG. 7 is an explanatory cross-sectional view illustrating a manufacturing step of the semiconductor device according to the second embodiment.
  • FIG. 8 is an explanatory cross-sectional view showing a step of manufacturing a semiconductor element mounting substrate used in the step of manufacturing a semiconductor device according to the second embodiment.
  • FIG. 9 is an explanatory cross-sectional view illustrating a manufacturing process of the semiconductor device according to the second embodiment.
  • FIG. 10 is an explanatory cross-sectional view showing a manufacturing step of the semiconductor device according to the second embodiment.
  • FIG. 11 is an explanatory cross-sectional view illustrating a manufacturing step of the semiconductor device according to the second embodiment.
  • FIG. 12 is an explanatory cross-sectional view illustrating a manufacturing step of the semiconductor device according to the second embodiment.
  • FIG. 13 is an explanatory cross-sectional view showing a manufacturing step of a semiconductor device in still another example of the second embodiment.
  • FIG. 14 is an explanatory cross-sectional view showing a manufacturing step of a semiconductor device in still another example of the second embodiment.
  • FIG. 15 is a view illustrating a manufacturing process of a semiconductor device in still another example of the second embodiment. It is a clear sectional view.
  • FIG. 16 is an explanatory cross-sectional view illustrating a manufacturing process of the semiconductor device according to the third embodiment.
  • FIG. 17 is an explanatory cross-sectional view illustrating the manufacturing process of the semiconductor device according to the third embodiment.
  • FIG. 9 is a cross-sectional view illustrating another example of a semiconductor device obtained by the method of manufacturing a semiconductor device of the present invention.
  • FIGS. 19 (a) to (d) are schematic views showing a continuous manufacturing process of the semiconductor device according to the second invention of the present invention, wherein (a) shows a B stage process and (b) shows a (C) shows the gelling step of the sealing resin, and (d) shows one curing step.
  • FIG. 20 is a sectional view showing an example of the semiconductor device of the present invention.
  • FIG. 21 is an explanatory cross-sectional view illustrating a manufacturing process of the semiconductor device.
  • FIG. 22 is an explanatory sectional view illustrating a manufacturing process of the semiconductor device.
  • FIG. 23, FIG. 24, FIG. 25, and FIG. 26 are explanatory views for explaining a preferable use form of the sealing resin sheet used in the present invention.
  • FIG. 27 and FIG. 28 are explanatory views for explaining a preferred embodiment of the method of manufacturing the semiconductor device of the present invention.
  • a semiconductor device manufactured by the method for manufacturing a semiconductor device of the present invention has a structure in which a semiconductor element 3 is mounted on one surface of a printed circuit board 1 via a plurality of connection electrode portions 2. . Then, a sealing resin layer 4 is formed between the printed circuit board 1 and the semiconductor element 3.
  • connection electrode portion may be a well-known electrode alone, but is a concept including an electrode and a conductor provided on an electrode such as a joint ball. Therefore, in general, The connection electrode section of the linear circuit board and the connection electrode section of the semiconductor element may both be connected by electrodes alone, but usually, at least one of them is an electrode section composed of an electrode and a joint ball. The two electrode parts are communicated.
  • the plurality of connection electrodes 2 for electrically connecting the printed circuit board 1 and the semiconductor element 3 may be provided with a joint ball or the like on the printed circuit board 1 in advance.
  • a joint ball or the like may be provided on the three surfaces of the semiconductor element.
  • joint balls or the like may be provided on both the printed circuit board 1 surface and the semiconductor element 3 surface in advance, respectively, and the electrode portions of both may be electrodes only.
  • connection electrode portions (joint balls) 2 is not particularly limited, but includes, for example, gold stud bumps, low melting point and high melting point bumps by soldering, and gold plating of copper and nickel cores. Bumps and the like. Further, by using the layered solid resin according to the present invention, the layered solid resin can be used for a material such as the low melting point solder, the shape of which of the solder collapses at a certain temperature. Can also be used for controlling the height of the connection electrode part 2.o
  • the material of the printed circuit board 1 is not particularly limited, but is roughly classified into a ceramic substrate and a plastic substrate.
  • the plastic substrate include an epoxy substrate and a bismaleidin triazine substrate.
  • the layered solid resin of the present invention cannot set the bonding temperature to a high temperature in a combination of the plastic substrate and the connection electrode portion 2 with low melting point solder by setting the curing temperature low. In such a case, it is preferably used without any particular limitation.
  • a layered solid resin is used as the material for forming the sealing resin layer 4, and for example, a solid epoxy resin composition is used.
  • the epoxy resin composition can be obtained by using an epoxy resin (a component), a curing agent (b component), and an inorganic filler (c component) as essential components, and is solid at room temperature. Is shown.
  • the above-mentioned normal temperature is specifically 20 ° C.
  • the epoxy resin (component (a)) is preferably particularly limited if it is solid at room temperature.
  • Conventionally known ones, for example, biphenyl-type epoxy resin, cresol novolak-type epoxy resin, etc. are used, and it is preferable to use a low-viscosity resin having good wettability during melting.
  • Particularly preferred is an epoxy resin having a structure represented by the following general formulas (1), (2), and (3) from the viewpoint of improving wettability. These may be used alone or in combination of two or more.
  • epoxy resins having the structures represented by the above formulas (1) to (3) those having an epoxy equivalent of 150 to 230 g / eq and a melting point of 60 to 160 ° C. are preferably used.
  • a liquid epoxy resin may be partially used to improve the wettability of the resin component.
  • the curing agent is not particularly limited, and includes various commonly used curing agents, for example, a phenol resin, an acid anhydride-based curing agent such as methylhexahydrophthalic anhydride, and among others, a phenol resin is preferably used.
  • a phenol resin an acid anhydride-based curing agent such as methylhexahydrophthalic anhydride, and among others, a phenol resin is preferably used.
  • phenol resin phenol-polanol or the like is used, and it is particularly preferable to use a resin having a low viscosity. Among them, those having a hydroxyl equivalent of 80 to 12 OgZeq and a softening point of 80 ° C or lower are preferably used.
  • the hydroxyl equivalent is 100 to 110 g / eq, and the softening point is 55 to 65 ° C.
  • the mixing ratio of the epoxy resin (a component) and the curing agent (b component) is such that when a phenol resin is used as the curing agent, one equivalent of the epoxy group in the epoxy resin is equivalent to one equivalent of the hydroxyl group in the phenol resin. It is preferable to set the range of 0.7 to 1.3. More preferably, it is set in the range of 0.9 to 1.1.
  • Examples of the inorganic filler (component c) used together with the components a and b include various inorganic fillers conventionally used, for example, silica powder, calcium carbonate, titanium white, and the like. Of these, spherical silica powder and crushed silica powder are preferably used, and it is particularly preferable to use spherical silica.
  • the inorganic filler (component c) those having a maximum particle size of 100 or less are preferably used. Particularly preferably, the maximum particle size is 50 / zm or less.
  • the maximum particle size of the above-mentioned inorganic filler (c component) is determined by the distance between the printed circuit board and the semiconductor element (the gap which is resin-sealed using the sealing resin layer). It is preferably set to 1Z2 or less. It is more preferably 1/10 to 1/3. In other words, by setting the maximum particle size to 1/2 or less, the filling of the molten sealing resin layer between the printed circuit board and the semiconductor element can be favorably performed without generating a void or the like. Because.
  • the content ratio of the inorganic filler (component (c)) is usually set in a range of 90% by weight or less of the entire epoxy resin composition. More preferably 80% by weight or less And particularly preferably at most 70% by weight. In other words, if the mixing ratio exceeds the above-mentioned mixing ratio, the electrical connection between the electrode of the semiconductor element and the electrode of the printed circuit board will not be performed well, which will cause inconvenience.
  • a silicone compound such as a side chain ethylene glycol type dimethyl siloxane
  • a low stress resin such as acrylonitrile-butadiene rubber
  • Agents, flame retardants, waxes such as polyethylene and carnauba, and coupling agents such as silane coupling agents (such as y-glycidoxypropyltrimethoxysilane) may be appropriately blended.
  • the flame retardant include a brominated epoxy resin and the like, to which a flame retardant auxiliary such as nantimony trioxide is used.
  • the epoxy resin composition used in the present invention is obtained, for example, as follows. That is, the resin components a and b are preferably mixed and melted while being heated, and the melted resin component is mixed with the component c and other additives as necessary. Thereafter, a catalyst for adjusting the reactivity is added to make a homogeneous system, which is then received on a pallet, cooled, and, for example, press-rolled to form a sheet.
  • This composition is generally devised so that, for example, a thixotropy-imparting agent is mixed into the composition so as to suppress the fluidity during heating during heat curing. Examples of the thixotropy-imparting agent include acrylonitrile-butadiene copolymer.
  • the catalyst blended for the above-mentioned reactivity adjustment is not particularly limited, and may be a catalyst conventionally used as a curing accelerator.
  • a catalyst conventionally used as a curing accelerator for example, triphenylphosphine, tetraphenylphosphate, tetraphenylporate, 2-methylimidazole and the like can be mentioned.
  • the method for mixing the above components and producing the sheet is not limited to the above method.
  • a biaxial roll, a triaxial roll, or the like may be used.
  • a method of sheeting by roll rolling, or a method of applying a mixture of solvents and then volatilizing the sheet to form a sheet is also possible.
  • a tape-like form is adopted, so that a so-called reel-to-reel mass production form is adopted. W0 ⁇ 8/28788 T JP 7 can be applied.
  • the thickness of the sheet, that is, the sealing resin sheet is usually 5 to 200 m, preferably about 10 to 120 m.
  • a semiconductor element is mounted on a printed circuit board via a plurality of connection electrodes, and a gap between the printed circuit board and the semiconductor element is formed.
  • the sealing resin layer is formed by interposing a layered solid resin between the printed circuit board and the semiconductor element, and melting the solid resin. It is characterized by forming.
  • a method of manufacturing such a semiconductor device there are roughly three specific embodiments.
  • connection electrodes 2 On a printed circuit board 1 on which a plurality of spherical connection electrodes (joint balls) 2 are provided, a solid sealing resin sheet is provided via the connection electrodes 2. Place 10 on it.
  • the semiconductor element 3 is placed at a predetermined position on the encapsulating resin sheet 10 and, if necessary, temporarily attached by utilizing tackiness.
  • the sheet 10 is heated and melted to a molten state, and the pressure is applied to fill the gap between the semiconductor element 3 and the printed circuit board 1 with the resin in the molten state, and the resin is cured to fill the gap.
  • the sealing resin layer 4 is formed by resin sealing.
  • a rubber component such as an acrylonitrile-butadiene copolymer is added to the epoxy resin composition to be used.
  • the semiconductor device shown in FIG. 1 is manufactured. Then, due to the above-described pressurizing operation, the joint ball 2 receives the suppression, and in a normal case, becomes flattened (the height of the joint ball becomes low), and the bonding between the electrodes is further ensured.
  • connection electrodes in which the printed circuit board 1 provided with a plurality of spherical connection electrodes (joint balls) 2 was used.
  • the present invention is not limited to this.
  • a semiconductor element 3 in which the plurality of spherical connection electrode portions (joint balls) 2 are arranged on one surface (connection surface side) in advance may be used.
  • a solid encapsulating resin sheet 10 is placed on the surface of the wiring circuit board 1, and the connection electrodes are placed thereon so that the wiring circuit board 1 and the connection electrode portion 2 mounting surface face each other.
  • the semiconductor element 3 provided with the part 2 is placed. Further, in the case of using one provided on both the wiring circuit board 1 and the semiconductor element 3, as shown in FIG. 5, a sealing resin is provided between the two connection electrode sections 2. Sheet 10 is placed. The subsequent steps are the same as above.
  • the sealing resin sheet 10 When the sealing resin sheet 10 is temporarily bonded to the semiconductor element 3 or the printed circuit board 1 as the sealing resin sheet 10, a sheet-like epoxy having tackiness is used. It is preferable to use a resin composition.
  • the size of the encapsulating resin sheet 10 is appropriately set depending on the size (area) of the semiconductor element 3 mounted thereon, and is usually slightly smaller than the size (area) of the semiconductor element 3. It is preferable to set it so that The thickness and weight of the encapsulating resin sheet 10 are the same as those described above in terms of the size of the semiconductor element 3 to be mounted and the size of the spherical connection electrode portion 2 provided on the printed circuit board 1. That is, it is appropriately set according to the volume occupied by the sealing resin layer 4 formed by filling the gap between the semiconductor element 3 and the printed circuit board 1 and sealing the resin.
  • the heating temperature when the sealing resin sheet 10 is heated and melted to be in a molten state is determined in consideration of the deterioration of the semiconductor element 3 and the wiring circuit board 1 and the like.
  • the temperature is preferably set in the range of 70 to 300 ° C., particularly preferably 120 to 200 ° C.
  • Examples of the heating method include an infrared reflow oven, a dryer, a hot air blower, and a hot plate.
  • connection electrode portions joint balls
  • the condition is appropriately set according to the number of connection electrode portions (joint balls) 2 and the like, but is specifically set in the range of 0.02 to 0.5 k, preferably 0.04. Set in the range of ⁇ 2 kg / piece.
  • the sealing resin sheet 10 is placed on the printed circuit board 1, and the semiconductor element 3 is further placed on the sealing resin sheet 10. After that, or alternatively, a sealing resin sheet 10 is placed on the semiconductor element 3, After placing the printed circuit board 1 on the sealing resin sheet 10 and heating it for a predetermined time, the sealing resin sheet 10 has at least one of the following physical properties (A) to (C). It is particularly preferable to pressurize until a state where the sealing resin is provided, and then pass a process of filling the gap between the printed circuit board 1 and the semiconductor element 3 with a sealing resin in a molten state.
  • the sealing resin sheet 10 has the following physical properties (at the end of the pressurization) due to the above-mentioned pressurization, so that uniform voids are not entangled in the filled sealing resin layer portion.
  • a good sealing resin layer is formed. That is, the resin viscosity of the encapsulating resin sheet 10 is less than 500,000 voids, the gelation time exceeds 30% of the initial gelation time, and the residual reaction heat is 70% of the initial residual reaction heat.
  • the sealing resin filled in the voids that is, fine voids in the sealing resin layer portion. May be formed.
  • the resin viscosity is 500,000 vise or more.
  • the resin viscosity in the above characteristic (a) is preferably at least 500,000 voids, particularly preferably at least 100,000 voids.
  • the measurement was performed at 175 ° C. using a flow tester manufactured by Shimadzu Corporation.
  • those having a gelation time of not more than 30% of the initial gelation time are preferable, and particularly preferably not more than 20% of the initial gelation time.
  • the measurement is performed, for example, as follows. That is, a sample to be measured is placed on a hot plate, and from the time when the sample is melted (initial gelation time), a line is drawn on the surface of the thinly spread sample with a needle point, and the line is spread and disturbed. Measure the gel time with the end as the end point.
  • the residual heat of reaction is 70% of the initial residual heat of heat. It is preferable that the temperature reaches the following, and particularly preferable is 65% or less of the initial residual reaction heat. Then, the measurement of the residual reaction calorie was performed using DSC as described above, at a heating rate of 5 ° C / min, to a temperature of 60 to 200 ° C, and 90 to 180 ° C. Measure the heat of reaction of.
  • the sealing resin layer 13 formed on the surface of the printed circuit board 1 on which the spherical connection electrode portion 2 is provided so that the top of the connection electrode portion 2 is exposed For example, it can be manufactured as follows. That is, as shown in FIG. 2, a solid sealing resin sheet 10 is placed on the printed circuit board 1 provided with a plurality of spherical connection electrodes 2 via the connection electrodes 2. (First embodiment of the above-described semiconductor device manufacturing method). Then, the sealing resin sheet 10 is heated and melted, and as shown in FIG. 6, the connection electrode section 2 is provided on the surface of the printed circuit board 1 on which the spherical connection electrode section 2 is provided. The sealing resin layer 13 is formed such that the top is exposed.
  • the sealing resin layer 13 in addition to the above-described method of forming the sealing resin layer 13, for example, it can be manufactured as follows. That is, as shown in FIG. 8, a printed circuit board 1 provided with a connection electrode portion 2 is prepared in advance. Next, an epoxy resin composition was applied on the surface of the printed circuit board 1 on which the connection electrode portions 2 were provided by a printing coating method. Then, a sealing resin layer 13 is formed. In this manner, the sealing resin layer 13 is formed so that the top of the connection electrode portion 2 shown in FIG. 6 is exposed.
  • the present invention is not limited to this.
  • a plurality of the above-mentioned plurality of spherical connection electrode portions (joint balls) 2 may be provided in advance on one surface (connection surface side) of the semiconductor element 3.
  • the top of the spherical connection electrode portion 2 is exposed on the surface of the semiconductor element 3 on which a plurality of spherical connection electrode portions (joint balls) 2 are provided.
  • a sealing resin layer 13 is formed.
  • the wiring circuit board 1 is mounted so that the connection electrode portion 2 whose top is exposed from the sealing resin layer 13 and the electrode portion of the wiring circuit board 1 are in contact with each other.
  • connection electrode portion 2 is provided on both the printed circuit board 1 and the semiconductor element 3, the connection electrode portion 2 is provided on at least one of the connection electrode portion 2 formation surfaces.
  • the sealing resin layer 13 is formed so that the top of 2 is exposed.
  • the top of the spherical connection electrode portion 2 is exposed on the surface of the semiconductor element 3 on which a plurality of spherical connection electrode portions (joint balls) 2 are provided.
  • the sealing resin layer 13 is formed.
  • the semiconductor element 3 having the connection electrode portion 2 whose top is exposed from the sealing resin layer 13 is mounted on the printed circuit board 1 having the connection electrode portion.
  • a sealing resin layer is formed on the surface of the printed circuit board 1 on which a plurality of spherical connection electrode portions 2 are provided so that the top of the spherical connection electrode portion 2 is exposed.
  • the semiconductor element 3 having the connection electrode portion 2 is mounted on the printed circuit board 1 having the connection electrode portion 2 whose top is exposed from the sealing resin layer 13.
  • the sealing resin is exposed on the surface of the semiconductor element 3 on which the plurality of spherical connection electrodes 2 are provided so that the top of the spherical connection electrode 2 is exposed.
  • the layer 13 is formed.
  • a sealing resin layer 13 is formed on the surface of the printed circuit board 1 on which the plurality of spherical connection electrodes 2 are provided so that the tops of the spherical connection electrodes 2 are exposed.
  • the connection electrode whose top is exposed from the sealing resin layer 13 is provided on the printed circuit board 1 having the connection electrode portion 2 whose top is exposed from the sealing resin layer 13.
  • Semiconductor element having part 2 Equipped with child 3. The subsequent steps are the same as described above.
  • the sealing resin layer may be cured while flattening or flattening the joint pole under pressure.
  • the method of forming the sealing resin layer 13 on the printed circuit board 1 provided with the connection electrode section 2 is based on the method of forming the connection electrode section on the printed circuit board 1 described above. It is formed according to the same method as the forming method when 2 is provided. Further, the method of forming the sealing resin layer 13 on the semiconductor element 3 provided with the connection electrode portion 2 is the same as the above forming method, by heating and melting using the sealing resin sheet 10, or It is formed on the surface of the semiconductor element 3 on which the connection electrode portion 2 is provided, according to a method of printing and coating.
  • the sealing resin layer 13 formed above, as described above crosses over the space between the semiconductor element 3 and the printed circuit board 1 at a temperature exceeding the melting point, and It is preferable that the sealing resin layer 13 designed so as not to flow out by contrivance such as imparting thixotropy is provided.
  • the heating temperature of the encapsulating resin layer 13 is determined in consideration of the deterioration of the semiconductor element 3 and the wiring circuit board 1 as in the first embodiment. It is preferable to set the temperature in the range of 70 to 300 ° C., particularly preferably 120 to 200 ° C.
  • the heating method may be the same as described above, including an infrared reflow oven, a dryer, a hot air heater, and a hot plate.
  • the pressurizing condition is, similarly to the first embodiment described above, a force appropriately set according to the number of connection electrode portions (joint balls) 2 and the like, specifically, 0.02 to 5 k. It is set in the range of gZ, preferably in the range of 0.04 to 0.2k.
  • connection electrode portion 2 is provided on both the printed circuit board 1 and the semiconductor element 3, and at least one of the two is used.
  • Still another embodiment is provided in a case where the sealing resin layer 13 is formed on one connecting electrode portion 2 forming surface such that the top of the connecting electrode portion 2 is exposed. This is one in which a sealing resin sheet is further interposed between the printed circuit board 1 and the semiconductor element 3 in addition to the sealing resin layer 13.
  • the spherical connection is formed on the surface of the semiconductor element 3 on which a plurality of spherical connection electrode portions 2 are provided.
  • the sealing resin layer 13 is formed so that the top of the electrode section 2 is exposed.
  • the semiconductor element 3 having the connection electrode portion 2 whose top is exposed from the sealing resin layer 13 is connected to the wiring circuit board having the connection electrode portion via the sealing resin sheet 18. Mounted on 1, heat-melted and cured.
  • the spherical connection electrode is provided on the surface of the printed circuit board 1 on which the plurality of spherical connection electrodes 2 are provided.
  • the sealing resin layer 13 is formed so that the top of the part 2 is exposed.
  • a semiconductor element having a connection electrode portion 2 via a sealing resin sheet 18 on a printed circuit board 1 having a connection electrode portion 2 whose top portion is exposed from the sealing resin layer 13 is provided. 3 is mounted, and is preferably heated and melted and cured under pressure.
  • the spherical connection electrode is provided on the surface of the semiconductor element 3 on which a plurality of spherical connection electrode portions 2 are provided.
  • the sealing resin layer 13 is formed so that the top of the part 2 is exposed.
  • a sealing resin layer 13 is formed on the surface of the printed circuit board 1 on which the plurality of spherical connection electrode portions 2 are provided so that the top of the spherical connection electrode portion 2 is exposed.
  • the heating temperature of the sealing resin layer 13 and the sealing resin sheet 18 is the same as that of the semiconductor element 3 and the wiring circuit.
  • the temperature is preferably set in the range of 70 to 300 ° C., preferably 120 to 200 ° C. in consideration of the deterioration of the substrate 1 and the like.
  • the heating method may be the same as described above.
  • the pressurizing condition is, similarly to the condition described above, a force appropriately set according to the number of connection electrode portions 2 and the like, specifically, in a range of 0.02 to 0.5 kg / piece. And preferably set in the range of 0.4 to 0.2 kgZ.
  • connection electrode portion (joint) provided on the surface of the printed circuit board 1 Ball) 2 comes into contact with the connection electrode 2 of the semiconductor element 3
  • the connection electrode section 2 of the printed circuit board 1 is attached.
  • the printed circuit board 1 is mounted on the semiconductor element 3 so as to be in contact with the semiconductor element 3, the printed circuit board 1 is heated for a predetermined time, and the sealing resin layer 13 has at least one of the following physical properties (a) to (c).
  • the resin viscosity is 500,000 vise or more.
  • the gel time is 30% or less of the initial gel time.
  • a particularly preferred range of the resin viscosity in the above property (a), a particularly preferred range of the gel time in the above property (mouth), and a particularly preferred range of the residual reaction heat quantity in the above property (c) are as follows: This is the same as the particularly preferred range described in the first embodiment. Further, the methods for measuring the resin viscosity, the gel time, and the residual reaction calorie are the same as those in the first embodiment.
  • an encapsulation resin layer is applied in advance to a semiconductor element surface. That is, as shown in FIG. 16, a semiconductor element 3 in which a sealing resin layer 14 is formed on one surface in advance is prepared. Then, at a predetermined position on the printed circuit board 1 on which a plurality of spherical connection electrode portions (joint balls) 2 are provided, The semiconductor element 3 is placed such that the sealing resin layer 14 adhered to the connection electrode portion 2 comes into contact. After mounting, the sealing resin layer 14 is heated and melted to be in a molten state, and preferably, the joint ball 2 is flattened by pressurizing and the gap between the semiconductor element 3 and the wiring circuit board 1 is formed. The resin in the molten state is filled in the voids and cured, whereby the voids are resin-sealed to form a sealing resin layer. Thus, the semiconductor device shown in FIG. 1 is manufactured.
  • a sealing resin layer is previously adhered to the surface of a printed circuit board. That is, as shown in FIG. 17, a circuit circuit board in which a sealing resin layer 15 is formed on one surface of the printed circuit board 1 is prepared in advance. Next, the semiconductor element 3 provided with the plurality of spherical connection electrode portions (joint balls) 2 is connected to the wiring circuit board 1 so that the connection electrode portion 2 and the sealing resin layer 15 are in contact with each other. The surface is placed on the sealing resin layer 15.
  • the sealing resin layer 15 is heated and melted to a molten state, and preferably, is pressurized and pressurized in the gap between the semiconductor element 3 and the printed circuit board 1 in the same manner as described above.
  • the above gap is resin-sealed by filling and curing the above resin to form a sealing resin layer.
  • the semiconductor device shown in FIG. 1 is manufactured.
  • the sealing resin layers 14 and 15 may be formed by attaching a sealing resin sheet to three surfaces of the semiconductor element or one surface of the printed circuit board.
  • Examples of the method include a method of forming a resin layer forming material for stopping by print coating.
  • the size of the sealing resin layers 14 and 15 is appropriately set according to the size (area) of the semiconductor element 3, and usually the size of the semiconductor element 3 (Area) is preferably set to be slightly smaller than the (area).
  • the thickness and weight of the sealing resin layers 14 and 15 are the same as those described above in terms of the size of the semiconductor element 3 and the size of the connection electrode 2. That is, it is appropriately set according to the volume occupied by the sealing resin layer 4 formed by filling the gap between the semiconductor element 3 and the printed circuit board 1 and sealing with resin.
  • the heating temperature when the sealing resin layers 14 and 15 are melted by heating is set to the first and second aspects described above.
  • the temperature is set in the range of 200 ° C., and preferably 120 to 200 ° C.
  • Examples of the heating method include an infrared heating furnace, a dryer, a hot air blower, and a hot plate.
  • connection electrode portions (joint balls) 2 and the like are appropriately set depending on the number of connection electrode portions (joint balls) 2 and the like, but is specifically set in the range of 0.02 to 0.5 kgZ, preferably 0.02. It is set in the range of 4-0.2 kgZ.
  • the sealing resin layer 14 provided on one surface of the semiconductor element 3 and the connection electrode portion of the printed circuit board 1 are brought into contact with each other, or After the sealing resin layer 15 provided on one side is brought into contact with the connection electrode portion of the semiconductor element 3, heating is performed for a predetermined time, and the sealing resin layers 14 and 15 are respectively formed as follows. Pressure is applied until at least one of the physical properties (a) to (c) is provided. In this state, the gap between the printed circuit board 1 and the semiconductor element 3 is filled with a sealing resin in a molten state. It is particularly preferable to carry out the step of performing the above. As described above, since the sealing resin layers 14 and 15 have the following physical properties, a uniform and good sealing resin layer can be formed without involving small voids in the filled sealing resin layer portion. Is done.
  • the resin viscosity is 500,000 vise or more.
  • the gel time is 30% or less of the initial gel time.
  • a particularly preferred range of the resin viscosity in the above property (a), a particularly preferred range of the gel time in the above property (mouth), and a particularly preferred range of the residual reaction heat quantity in the above property (c) are as follows: This is the same as the particularly preferred range described in the first embodiment. Further, the methods for measuring the resin viscosity, the gel time, and the residual reaction calorie are the same as those in the first embodiment.
  • Examples of the semiconductor device manufactured according to the first to third aspects include the above-described semiconductor device.
  • the formed sealing resin layer 4 has a force, and a type formed so as not to protrude from the periphery of the mounted semiconductor element 3.
  • the formed sealing resin layer 4 ′ may be of a type formed so as to protrude from the periphery of the mounted semiconductor element 3.
  • the size of the semiconductor element 3 is usually 2 to 20 mm in width x 2 to 30 mm in length x 0.1 to 2.0 mm in thickness, Preferably, it is set to 0.2 to 1.0 mm.
  • the size of the printed circuit board 1 on which the wiring circuit on which the semiconductor element 3 is mounted is formed is usually 5 to 120 mm, preferably 10 to 70 mm x length 5 to 12 mm. 0 mm. Preferably, it is set to 10 to 70 mm ⁇ thickness of 0.05 to 3.0 mm.
  • the distance between the semiconductor element 3 and the gap between the wiring circuit board 1 is usually 5 to 200 / m, preferably 5 to 100 / zm. It is.
  • the sealing resin layer 4 formed by sealing with the sealing resin that is, the properties of the sealing resin are such that the melt viscosity at each use temperature is 1 to 100 000.
  • the cured product has a linear expansion coefficient.
  • the melt viscosity is from 1 to 500 voids
  • the gel time is from 1.0 to 15 minutes at 150 ° C
  • the linear expansion coefficient is from 12 to 40 ppm. That is, when the melt viscosity is set within the above range, the filling property is improved.
  • the molding workability, particularly the curing time can be reduced.
  • thermomechanical analysis TMA
  • the gap between the wiring circuit board and the semiconductor element, which is connected via the plurality of connection electrode portions, is resin-sealed by the sealing resin layer.
  • the sealing resin layer is formed by interposing a layered solid resin between the printed circuit board and the semiconductor element and melting the solid resin.
  • the molten resin is used for the wiring circuit board and the semiconductor element. Since the gap between the chip and the semiconductor chip is filled and the two parts are joined, the process of connecting the printed circuit board and the semiconductor element and the process of resin sealing are performed at one time as compared with the conventional complicated manufacturing process. This greatly simplifies the manufacturing process.
  • a liquid resin is used as the sealing resin and a solid resin excellent in storability is used, the above-described problems when injecting into the above-mentioned gap do not occur.
  • the resin is introduced into the gap between the substrate and the semiconductor element. Filling is performed satisfactorily without generating voids and the like. Then, as a sealing resin layer formed by melting the solid resin, a sealing resin sheet is mounted on the wiring circuit board, and then a semiconductor element is mounted on the sealing resin sheet. After mounting, the resin sheet for sealing is heated and melted, thereby filling the gap between the printed circuit board and the semiconductor element with the resin in the molten state and curing the resin. it can. As described above, by using the sealing resin sheet as the layered solid resin, the manufacturing efficiency of the semiconductor device is significantly improved.
  • a sealing resin layer is formed on the printed circuit board so that a part of the connection electrode portion is exposed.
  • the sealing resin layer is heated and melted.
  • the electrode portion of the printed circuit board may further contact the connection electrode portion.
  • the semiconductor element is placed on the printed circuit board, and the sealing resin layer is heated and melted. In this way, it can be formed by filling the gap between the printed circuit board and the semiconductor element with the molten sealing resin and curing the resin.
  • the sealing resin layer formed so as to expose a part of the connection electrode portion is provided on the wiring circuit board or the semiconductor element on which the connection electrode portion is provided via the connection electrode portion. After mounting the sealing resin sheet, heat and melt this sealing resin sheet. It can be easily formed by melting. Alternatively, the encapsulating resin layer can be easily formed by printing and coating the encapsulating resin layer forming material on the wiring circuit board surface or the semiconductor element surface provided with the connection electrode portion.
  • a sealing resin layer formed by melting the solid resin a sealing resin layer provided on one surface of the semiconductor element is prepared in advance, and a plurality of connection electrode portions are provided.
  • a semiconductor element is mounted on the printed circuit board so that the sealing resin layer is in contact with the connection electrode portion.
  • a substrate in which a sealing resin layer is adhered to one surface of the printed circuit board is prepared in advance, and the connection electrode of the semiconductor element having a plurality of connection electrodes provided on the printed circuit board is prepared. The semiconductor element is placed so that the portion contacts the sealing resin layer. Then, the sealing resin layer is heated and melted, so that the gap between the wiring circuit board and the semiconductor element is filled with the molten sealing resin and cured to be easily formed. be able to.
  • the sealing resin sheet and the sealing resin layer which are sealing materials for sealing the gap between the printed circuit board and the semiconductor element with a resin, are heated for a predetermined time. Pressure is applied until the sealing resin sheet and the sealing resin layer have at least one of the following physical properties (a) to (c).
  • a sealing resin in a molten state a uniform and good sealing resin layer is formed without entanglement of fine voids in the filled sealing resin portion.
  • a semiconductor device having excellent reliability (such as conduction characteristics) at the joint portion can be obtained.
  • the resin viscosity is 500,000 vise or more.
  • the gel time is 30% or less of the initial gel time.
  • the method of manufacturing a semiconductor device using the sealing resin sheet of the present invention has many advantages over the conventional method.
  • the semiconductor device may be warped due to the heat shrinkage of the semiconductor element and the board.
  • Warpage usually occurs on the semiconductor chip side as a curved outer surface, that is, as a protrusion on the chip side.
  • the second invention of the present invention has been made in view of such circumstances, and suppresses the occurrence of warpage in the entire device when forming a sealing resin layer in the gap between the semiconductor element and the board. Accordingly, it is an object of the present invention to provide a method for manufacturing a semiconductor device which can easily manufacture a semiconductor device having excellent reliability.
  • a method of manufacturing a semiconductor device is a method for manufacturing a semiconductor device, comprising: mounting a semiconductor element on a printed circuit board via a plurality of connection electrodes; A method for manufacturing a semiconductor device in which the voids are sealed by a sealing resin layer, wherein a layered solid resin is interposed between the printed circuit board and the semiconductor element, and the semiconductor device is heated for a predetermined time; When the layer reaches a predetermined temperature range, the printed circuit board and the semiconductor element are pressure-bonded while satisfying the following conditions (X) and (Y), thereby melting the solid resin and forming the sealing resin layer. It is configured to be formed.
  • the temperature of the semiconductor element is set higher than the temperature of the printed circuit board, and the temperature difference between the two is 50 ° C. or more.
  • a semiconductor device when a semiconductor device is manufactured by resin-sealing a gap between the wiring circuit board and the semiconductor element, which is connected via the plurality of connection electrode portions, with the sealing resin layer. Then, a layered solid resin is interposed between the printed circuit board and the semiconductor element and heated for a predetermined time, and the printed circuit board and the semiconductor element are pressurized while satisfying the specific conditions (X) and (Y). By joining, the solid resin is melted to form the sealing resin layer.
  • the specific conditions (X) and (Y) in the pressure bonding between the printed circuit board and the semiconductor element the difference in thermal shrinkage between the printed circuit board and the semiconductor element can be reduced. As a result, the degree of warpage of the semiconductor device is suppressed, and the stress on the semiconductor element is reduced. As a result, a highly reliable semiconductor device can be obtained.
  • the sealing resin layer formed by melting the solid resin is formed, for example, by mounting a sealing resin sheet on the wiring circuit board, and further forming a semiconductor on the sealing resin sheet.
  • the element is placed, then heated and held for a predetermined time, and pressure-bonded while satisfying the above conditions (X) and (Y), so that the above-described melting is performed in the gap between the printed circuit board and the semiconductor element. It can be easily formed by filling and curing the sealing resin in the state.
  • the sealing resin layer formed by melting the solid resin is formed after forming the sealing resin layer so that a part of the connection electrode portion provided on the wiring circuit board surface is exposed.
  • the semiconductor element is mounted on the printed circuit board so that the electrode part of the semiconductor element is in contact with the connection electrode part, and then heated and held for a predetermined time, and the conditions (X) and (Y) are satisfied. Pressure bonding is performed in a state of being filled.
  • the semiconductor element is placed on the wiring circuit board so that the electrode section of the wiring circuit board is in contact with the connection electrode section, and then heated and held for a predetermined time, and the above conditions (X) and (Y) are satisfied. Pressure bonding.
  • the gap between the printed circuit board and the semiconductor element can be easily formed by filling and curing the sealing resin in the molten state.
  • a sealing resin layer formed by melting the solid resin is prepared by previously providing a sealing resin layer on one surface of the semiconductor element, and a plurality of connection electrode portions are provided.
  • a semiconductor element is mounted on the printed circuit board so that the sealing resin layer is in contact with the connection electrode portion.
  • a substrate in which a sealing resin layer is provided on one side of the printed circuit board is prepared in advance, and the connection electrode section of the semiconductor element provided with a plurality of connection electrode sections is provided on the printed circuit board. The semiconductor element is placed so as to be in contact with the sealing resin layer.
  • the resin is heated and held for a predetermined time, and is bonded under pressure while satisfying the conditions (X) and (Y), so that the sealing resin in the molten state is filled in the gap between the printed circuit board and the semiconductor element. It can be easily formed by filling and curing.
  • FIG. 1 shows a semiconductor device manufactured by the method for manufacturing a semiconductor device of the present invention.
  • the material of the joint ball, the material of the wiring and the substrate, the type of the layered solid resin, the epoxy resin preferably used, the epoxy equivalent, the curing agent for the epoxy resin, and the mixing ratio of the epoxy resin and the curing agent The inorganic filler to be used, its maximum particle size and blending amount, the method of preparing a sealing resin sheet, the type of catalyst to be used, and the like are exactly the same as those described in the aforementioned invention.
  • a semiconductor element is mounted on a printed circuit board via a plurality of connection electrodes, and a gap between the printed circuit board and the semiconductor element is formed.
  • the sealing resin layer is heated and held for a predetermined time with a layered solid resin interposed between the printed circuit board and the semiconductor element.
  • the above-mentioned solid resin is melted and formed by pressure bonding the wiring circuit board and the semiconductor element while satisfying the conditions (X) and (Y). And features.
  • the method of manufacturing such a semiconductor device can be roughly classified into three embodiments.
  • the temperature of the semiconductor element is set higher than the temperature of the printed circuit board, and the temperature difference between the two is 50 ° C. or more.
  • a solid sealing resin sheet is provided via the connection electrodes 2.
  • the semiconductor element 3 is placed at a predetermined position on the sealing resin sheet 10 and temporarily bonded, and then heated for a predetermined time to form the sealing resin sheet 10 as described above. Pressure is applied until the condition (X) is satisfied, and under the condition that the above condition (Y) is satisfied, pressure bonding is performed and the gap between the semiconductor element 3 and the printed circuit board 1 is formed. By filling and curing the sealing resin in the molten state, the gap is resin-sealed to form a sealing resin layer 4.
  • the semiconductor device shown in FIG. 1 is manufactured.
  • the sealing resin sheet 10 When the sealing resin sheet 10 is temporarily bonded to the semiconductor element 3 or the wiring circuit board 1 as the sealing resin sheet 10, a sheet-like epoxy having tackiness is used. It is preferable to use a resin composition.
  • the size of the encapsulating resin sheet 10 is appropriately set depending on the size (area) of the semiconductor element 3 mounted thereon, and is usually slightly smaller than the size (area) of the semiconductor element 3. It is preferable to set it so that The thickness and weight of the encapsulating resin sheet 10 are the same as those described above in terms of the size of the semiconductor element 3 to be mounted and the size of the spherical connection electrode portion 2 provided on the printed circuit board 1. That is, it is appropriately set according to the volume occupied by the sealing resin layer 4 formed by filling the gap between the semiconductor element 3 and the printed circuit board 1 and sealing the resin.
  • the semiconductor element 3 is placed at a predetermined position on the encapsulating resin sheet 10, temporarily bonded, and then heated for a predetermined time.
  • the temperature is set in the range of 70 to 300 ° C. in consideration of the deterioration of the element 3 and the wiring circuit board 1 and the like, and preferably 120 to 200 ° C.
  • Examples of the heating method include an infrared reflow oven, a dryer, a hot air blower, and a hot plate.
  • the sealing resin in the molten state is filled in the gap between the semiconductor element 3 and the wiring circuit board 1 and pressure-bonded, the resin is heated for a predetermined time and the above condition (X) is satisfied.
  • the pressing conditions include the type of the sealing resin sheet, the size of the semiconductor chip, the number of bumps, the required final thickness, and the like.
  • the printed circuit board 1 and the semiconductor element 3 are pressure-bonded while satisfying X) and (Y).
  • the residual reaction heat of the sealing resin sheet 10 becomes a specific ratio due to the pressurization [condition (X)] (at the end of the pressurization).
  • the semiconductor device may be damaged due to the difference in the heat shrinkage between the printed circuit board 1 and the semiconductor element 3. May cause warpage, which may reduce the reliability of semiconductor devices.
  • the residual heat of reaction must reach 70% or less of the initial residual heat of heat, and particularly preferably 65% or less of the initial residual heat of heat. Then, measurement of the remaining reaction calorie is performed using DSC, at a heating rate of 5 ° C.Z min, the temperature is raised to 60 to 200 ° C., and the reaction calorie at 90 to 180 ° C. is measured. o
  • each temperature of the semiconductor element 3 and the wired circuit board 1 under the above condition (Y) can be measured, for example, using a thermocouple at each part.
  • FIG. 19 (a) a state in which the sealing resin sheet 10 is placed on the surface of the printed circuit board 1 on which the connection electrode portions 2 are provided is placed in a drying oven. By passing through 40, the sealing resin sheet 10 is brought into the B-stage state (semi-cured state) (B-stage process). Then, as shown in FIG. 19 (b), after the sealing resin sheet 10 is in the B-stage state, a heating and pressing tool is placed at a predetermined position on the B-stage-shaped sealing resin sheet 10.
  • the heating tool 43 was brought into contact with the semiconductor element 3 to cure the gelled sealing resin at a predetermined temperature.
  • the wiring circuit board 1 is cooled by the cooling plate 44 located below the wiring circuit board 1 (a curing step).
  • each process is divided according to its role, and these processes are connected to form a unified line.
  • the device can be sealed in a short time. Specifically, according to the semiconductor device manufacturing system composed of the above-mentioned lines, the sealing can be completed within 10 seconds per semiconductor device.
  • the sealing resin layer 13 formed so that the top of the connection electrode section 2 is exposed can be produced, for example, as follows. That is, as shown in FIG. 2, a solid sealing resin sheet 10 is placed on the printed circuit board 1 provided with a plurality of spherical connection electrodes 2 via the connection electrodes 2. (First embodiment of the above-described semiconductor device manufacturing method). Then, the sealing resin sheet 10 is heated and melted, and as shown in FIG. 6, the connection electrode section 2 is provided on the surface of the printed circuit board 1 on which the spherical connection electrode section 2 is provided. The sealing resin layer 13 is formed such that the top is exposed.
  • the sealing resin layer 13 in addition to the above-described method of forming the sealing resin layer 13, for example, it can be manufactured as follows. That is, as shown in FIG. 8, a printed circuit board 1 provided with a connection electrode portion 2 is prepared in advance. Next, an encapsulating resin layer 13 is formed on the surface of the printed circuit board 1 on which the connection electrode section 2 is provided, by a printing coating method using an epoxy resin composition. In this manner, the sealing resin layer 13 is formed so that the top of the connection electrode portion 2 shown in FIG. 6 is exposed.
  • the present invention is not limited to this.
  • a semiconductor element 3 in which the plurality of spherical connection electrode portions (joint balls) 2 are arranged on one surface (connection surface side) in advance may be used.
  • the top of the spherical connection electrode portion 2 is exposed on the surface of the semiconductor element 3 on which a plurality of spherical connection electrode portions (joint balls) 2 are provided.
  • a sealing resin layer 13 is formed.
  • the semiconductor element 3 is mounted on the printed circuit board 1 so that the connection electrode section 2 whose top is exposed from the sealing resin layer 13 and the electrode section of the printed circuit board 1 are in contact with each other. Further, in the case of using one provided on both the wiring circuit board 1 and the semiconductor element 3, at least one of the connection electrode portions 2 is formed on the surface on which the connection electrode portion 2 is formed.
  • the sealing resin layer 13 is formed such that the top of the head is exposed. For example, as shown in FIG. 10, the top of the spherical connection electrode portion 2 is exposed on the surface of the semiconductor element 3 on which a plurality of spherical connection electrode portions (joint balls) 2 are provided.
  • the sealing resin layer 13 is formed.
  • the semiconductor element 3 having the connection electrode portion 2 whose top is exposed from the sealing resin layer 13 is provided with the connection electrode portion.
  • a sealing resin layer is formed on the surface of the printed circuit board 1 on which a plurality of spherical connection electrode portions 2 are provided so that the top of the spherical connection electrode portion 2 is exposed.
  • the semiconductor element 3 having the connection electrode portion 2 is mounted on the printed circuit board 1 having the connection electrode portion 2 whose top is exposed from 13. Further, as shown in FIG. 12, the sealing resin is exposed on the surface of the semiconductor element 3 on which the plurality of spherical connection electrodes 2 are provided so that the top of the spherical connection electrode 2 is exposed. The layer 13 is formed. On the other hand, a sealing resin layer 13 is formed on the surface of the printed circuit board 1 on which the plurality of spherical connection electrodes 2 are provided so that the tops of the spherical connection electrodes 2 are exposed. Next, on the printed circuit board 1 having the connection electrode portion 2 whose top is exposed from the sealing resin layer 13, the connection electrode whose top is exposed from the sealing resin layer 13 is provided. The semiconductor element 3 having the section 2 is mounted. The subsequent steps are the same as above.
  • the method for forming the sealing resin layer 13 on the printed circuit board 1 provided with the connection electrode section 2 is based on the connection electrode section described above on the printed circuit board 1.
  • the method of forming the sealing resin layer 13 on the semiconductor element 3 provided with the connection electrode portion 2 is the same as the above forming method, by heating and melting using the sealing resin sheet 10, or It is formed on the surface of the semiconductor element 3 on which the connection electrode portion 2 is provided, according to a method of printing and coating.
  • the formed sealing resin layer 13 is designed so as not to flow out between the semiconductor element 3 and the printed circuit board 1 at a temperature exceeding the melting point.
  • the sealing resin layer 13 is preferably used.
  • the heating temperature of the encapsulating resin layer 13 is determined in consideration of the deterioration of the semiconductor element 3 and the wiring circuit board 1 as in the first embodiment.
  • the temperature is preferably set in the range of 70 to 300, particularly preferably 120 to 200 ° C.
  • the heating method includes an infrared reflow oven, a dryer, a hot air blower, a hot plate, and the like, as described above. Further, when the sealing resin in the molten state is filled in the gap between the semiconductor element 3 and the printed circuit board 1 and pressure-bonded, the resin is heated for a predetermined time and the above-mentioned condition (X ) Until the sealing resin layer W0 ⁇ 8/28788 T / JP97 / 0475
  • the pressurizing condition depends on the type of the sealing resin layer 13, the size of the semiconductor chip, the number of bumps, the required final thickness, and the like, as in the first embodiment. force to be set appropriately, specifically 1 cm 2 per 1 0 ⁇ 4 0 kg / cm 2 in order to vary by the number of bumps occupied in the semiconductor chip area, as a guide,
  • the pressure is applied at 80 g per bump, but it is set appropriately according to the required final thickness.
  • connection electrode portion 2 is provided on both the printed circuit board 1 and the semiconductor element 3, and at least one of the two is used.
  • Still another embodiment is provided in a case where the sealing resin layer 13 is formed on one connecting electrode portion 2 forming surface such that the top of the connecting electrode portion 2 is exposed. This means that, in addition to the sealing resin layer 13, a sealing resin sheet is further interposed between the printed circuit board 1 and the semiconductor element 3.
  • the spherical connection electrode portion is provided on the surface of the semiconductor element 3 on which the plurality of spherical connection electrode portions 2 are provided.
  • the sealing resin layer 13 is formed so that the top of 2 is exposed.
  • the semiconductor element 3 having the connection electrode portion 2 whose top is exposed from the sealing resin layer 13 is connected to the wiring circuit board having the connection electrode portion via the sealing resin sheet 18. Mount on 1.
  • the spherical connection electrode is provided on the surface of the printed circuit board 1 on which the plurality of spherical connection electrodes 2 are provided.
  • the sealing resin layer 13 is formed so that the top of the part 2 is exposed.
  • a semiconductor element having a connection electrode portion 2 via a sealing resin sheet 18 on a printed circuit board 1 having a connection electrode portion 2 whose top portion is exposed from the sealing resin layer 13 is provided. 3 is installed.
  • the spherical connection electrode is provided on the surface of the semiconductor element 3 on which a plurality of spherical connection electrode portions 2 are provided.
  • the sealing resin layer 13 is formed so that the top of the part 2 is exposed.
  • a sealing resin layer 13 is formed on the surface of the printed circuit board 1 on which the plurality of spherical connection electrode portions 2 are provided so that the top of the spherical connection electrode portion 2 is exposed.
  • the sealing tree The top of the resin layer 13 is exposed from the sealing resin layer 13 to the printed circuit board 1 having the connection electrode portion 2 with the top exposed from the resin layer 13 via the sealing resin sheet 18.
  • the semiconductor element 3 having the connection electrode portion 2 is mounted. The subsequent steps are the same as above.
  • the heating temperature of the sealing resin layer 13 and the sealing resin sheet 18 is set in the same temperature range as above.
  • the heating method is the same as described above.
  • the sealing resin in a molten state is filled in the gap between the semiconductor element 3 and the printed circuit board 1 and pressure-bonded, the resin is heated for a predetermined time and the above condition (X) is satisfied.
  • the sealing resin layer 13 and the sealing resin sheet 18 are pressed until the condition is satisfied, the pressing conditions are set in the same manner as described above.
  • the semiconductor element 3 is placed on the printed circuit board 1 such that the connection electrode section 2 of the semiconductor element 3 contacts the connection electrode section 2 provided on the surface of the printed circuit board 1. Or after placing the printed circuit board 1 on the semiconductor element 3 such that the connection electrode section 2 of the printed circuit board 1 comes into contact with the connection electrode section 2 provided on the surface of the semiconductor element 3
  • the printed circuit board 1 and the semiconductor element 3 are pressure-bonded while heating for a predetermined time and satisfying the above conditions (X) and (Y).
  • the residual reaction heat of the sealing resin layer 13 becomes a specific ratio by the pressurization [condition (X)] (at the end of the pressurization), and the temperature of the semiconductor element is higher than the temperature of the printed circuit board 1.
  • condition (Y) By setting the temperature of (3) high and setting the temperature difference to 50 ° C. or more (condition (Y)), the occurrence of warpage in the obtained semiconductor device is suppressed, and as a result, the stress applied to the semiconductor element 3 is reduced. A significantly reduced semiconductor device with excellent reliability can be obtained. That is, when the residual heat of heat of the sealing resin layer 13 exceeds 70% of the initial residual heat of heat, and when the temperature of the printed circuit board 1 is equal to or higher than the temperature of the semiconductor element 3, or Even if the temperature of the semiconductor element 3 is higher than the temperature of the circuit board 1 and the temperature difference is less than 50 ° C., as described in the first embodiment, the heat of the printed circuit board 1 and the semiconductor element 3 is increased.
  • the semiconductor device may be warped due to the difference in shrinkage, and as a result, the reliability of the semiconductor device may be reduced. Then, as described above, the particularly preferable range of the residual heat of reaction under the above condition (X).
  • the box is the same as the particularly preferred range described in the first embodiment, and the measuring method is also the same as in the first embodiment.
  • each temperature of the semiconductor element 3 and the wired circuit board 1 under the above condition (Y) can be performed, for example, by using a thermocouple at each part as in the first embodiment.
  • the semiconductor element attached to the tip of the thermocompression bonding tool is placed at a predetermined position on the B-stage-shaped sealing resin layer 13.
  • the printed circuit board and the semiconductor element are aligned with each other so that the semiconductor element is placed on a predetermined position of the sealing resin layer 13 of the printed circuit board and temporarily bonded (positioning and crimping step).
  • a heating tool is brought into contact with the surface of the semiconductor element temporarily bonded on the sealing resin layer 13 and heated for a predetermined time to bring the sealing resin layer 13 into a gelled state (sealing). Gelation process for resin)).
  • settings are made so as to satisfy the above conditions (X) and (Y).
  • the gap between the printed circuit board and the semiconductor element is filled with the gelling sealing resin.
  • the heating tool is brought into contact with the semiconductor element to cure the gelled sealing resin at a predetermined temperature, and then, is placed below the printed circuit board.
  • the printed circuit board 1 is cooled by the cooling plate (one cure step). In this way, by dividing each process according to the role and connecting these processes into a unified line, the semiconductor device shown in FIG. 1 can be sealed in a short time.
  • the semiconductor device manufacturing system including the above-mentioned integrated line it is possible to complete sealing within 10 seconds per semiconductor device. become able to.
  • the layered solid resin is not used alone, but a sealing resin layer is provided in advance on a semiconductor element surface or a wiring circuit board surface on which no connection electrode portion is provided. Use the one in the state.
  • an encapsulation resin layer is applied in advance to a semiconductor element surface. That is, as shown in FIG. 16, a semiconductor element 3 in which a sealing resin layer 14 is formed on one surface in advance is prepared. Then, at a predetermined position on the printed circuit board 1 on which a plurality of spherical connection electrode portions (joint balls) 2 are provided, the sealing resin layer 14 attached to the connection electrode portion 2 is in contact with the connection electrode portion 2. The semiconductor device 3 is placed so as to be in contact with the semiconductor device. Then, the whole is heated for a predetermined time to apply pressure until the sealing resin layer 14 satisfies the above condition (X), and is pressure-bonded under a condition satisfying the above condition (Y).
  • the gap between the semiconductor element 3 and the printed circuit board 1 is filled with the sealing resin layer 14 in the molten state, and the resin is cured by curing, thereby sealing the gap with the sealing resin layer. Form.
  • the semiconductor device shown in FIG. 1 is manufactured.
  • FIG. 17 a circuit circuit board in which a sealing resin layer 15 is formed on one surface of the printed circuit board 1 is prepared in advance.
  • the semiconductor element 3 provided with the plurality of spherical connection electrode portions (joint balls) 2 is connected to the wiring circuit board 1 so that the connection electrode portion 2 and the sealing resin layer 15 are in contact with each other.
  • the surface is placed on the sealing resin layer 15.
  • the whole is heated for a predetermined time to apply pressure until the above-mentioned sealing resin layer 15 satisfies the above condition (X).
  • the gap between the semiconductor element 3 and the printed circuit board 1 is filled with the molten sealing resin layer 15 in the molten state, and cured to form a sealing resin layer by resin sealing the gap.
  • the semiconductor device shown in FIG. 1 is manufactured.
  • the sealing resin layers 14 and 15 may be formed by attaching a sealing resin sheet to three surfaces of the semiconductor element or one surface of the printed circuit board. A method of printing and forming a material for forming the resin layer for stopping on the surface for forming the resin layer for sealing may be used.
  • the size of the sealing resin layers 14 and 15 is appropriately set according to the size (area) of the semiconductor element 3, and usually the size of the semiconductor element 3 (Area) is preferably set to be slightly smaller than the (area).
  • the thickness and the weight (in the case of the sealing resin sheet) of the sealing resin layers 14 and 15 are the same as those described above in terms of the size of the semiconductor element 3 and the size of the connection electrode portion 2, that is, It is appropriately set according to the volume occupied by the sealing resin layer 4 formed by filling the gap between the semiconductor element 3 and the printed circuit board 1 and sealing with resin.
  • the heating temperature of the sealing resin layers 14 and 15 may be the same as in the first and second aspects described above.
  • the temperature is preferably set in the range of 70 to 300 ° C. in consideration of the deterioration of 1 and the like, and particularly preferably 120 to 200 ° C.
  • the heating method is the same as the above, including an infrared furnace with a riff opening, a dryer, a hot air blower, and a hot plate.
  • the pressurizing conditions are the same as in the first and second embodiments. It is set appropriately depending on the type of semiconductor chip, the size of the semiconductor chip, the number of bumps, the required final thickness, etc.Specifically, it is 10 to 40 kgZcm 2 per cm 2 , occupying the semiconductor chip area Since it varies depending on the number of bumps, as a guide, pressure is applied at 80 g per bump, but it is set appropriately according to the required final thickness.
  • the wiring is heated for a predetermined period of time, and the above conditions (X) and (Y) are satisfied.
  • the circuit board 1 and the semiconductor element 3 are pressure-bonded. In this way, the residual reaction heat of the sealing resin layers 14 and 15 becomes a specific ratio due to the pressurization [condition (X)] (at the end of pressurization).
  • the occurrence of warpage in the obtained semiconductor device is suppressed, As a result, the stress applied to the semiconductor element 3 is greatly reduced, and a semiconductor device having more excellent reliability can be obtained. That is, when the residual reaction heat of the sealing resin layers 14 and 15 exceeds 70% of the initial residual reaction heat, and the temperature of the printed circuit board 1 is equal to or higher than the temperature of the semiconductor element 3 Or, even when the temperature of the semiconductor element 3 is higher than the temperature of the printed circuit board 1 and the temperature difference is less than 50 ° C., as described in the first embodiment, the printed circuit board 1 and the semiconductor element The semiconductor device may be warped due to the difference in the thermal shrinkage in the step 3, and as a result, the reliability of the semiconductor device may be reduced.
  • the particularly preferred range of the residual reaction heat under the above condition (X) is the same as the particularly preferred range described in the first and second embodiments, and the measurement method is also the same. It is the same as the first and second embodiments.
  • each temperature of the semiconductor element 3 and the wired circuit board 1 under the above condition (Y) can be performed, for example, by using a thermocouple at each part, similarly to the first and second embodiments.
  • the printed circuit board 1 and the semiconductor element are aligned so that they are mounted, and the semiconductor element is placed at a predetermined position on the encapsulating resin layer 15 of the printed circuit board and temporarily bonded (positioning and alignment). Crimping process).
  • a heating tool is brought into contact with the surface of the semiconductor element temporarily bonded on the sealing resin layer 15 to heat it for a predetermined time, thereby bringing the sealing resin layer 15 into a gelled state (for sealing). Resin gelation step).
  • the conditions (X) and (Y) are set.
  • the gap between the printed circuit board 1 and the semiconductor element is filled with the gelled sealing resin.
  • the sealing resin After filling, the heating tool is brought into contact with the semiconductor element to cure the gelled encapsulating resin at a specified temperature, followed by wiring by a cooling plate located below the printed circuit board 1. Cool the circuit board 1 (one cure step).
  • the semiconductor device shown in FIG. 1 can be sealed in a short time. Specifically, as in the first and first embodiments described above, according to the semiconductor device manufacturing system composed of the above-mentioned integrated lines, sealing is completed within 10 seconds per semiconductor device. You will be able to
  • the formed sealing resin layer 4 is formed so as not to protrude from the periphery of the mounted semiconductor element 3.
  • the formed sealing resin layer 4 ′ may protrude from the periphery of the mounted semiconductor element 3, as shown in FIG. It may be a formed type.
  • the size of the semiconductor element 3 is usually set to a width of 2 to 2 Ommx a length of 2 to 3 Ommx and a thickness of 0.1 to 2.0 mm.
  • the size of the wiring circuit board 1 on which the wiring circuit on which the semiconductor element 3 is mounted is formed is usually 5 to 120 mm in width, preferably 10 to 70 mm x length 5 to 12 Omm, preferably 1 0 to 7 Ommx Thickness Set to 0.05 to 3. Omm.
  • the distance between the semiconductor element 3 and the gap of the printed circuit board 1 in which the molten sealing resin is filled is usually 5 to 200 m, preferably 5 to 100 m.
  • the sealing resin layer 4 (or 4 ') formed by sealing using the sealing resin that is, the properties of the sealing resin include a melt viscosity at each use temperature. l ⁇ 1 000 poise, gel time is 0.5 ⁇ 30 min at 150 ° C, and the cured product has a linear expansion coefficient? Preferably, it is 5050 ppm. More preferably, the melt viscosity is 1 to 500 p0 ise, the gel time is 1.5 to 15 minutes at 150 ° C, and the linear expansion coefficient is 12 to 40 ppm. That is, by setting the melt viscosity within the above range, the filling property is improved. Also, by setting the gel time within the above range, it is possible to shorten the molding workability, particularly the curing time. You.
  • the melt viscosity was measured by a flow tester viscometer, and the gel time was measured on a hot plate.
  • thermomechanical analysis TMA
  • the method for manufacturing a semiconductor device according to the second invention of the present application is a method for manufacturing a semiconductor device, which includes a wiring circuit board connected via a plurality of connection electrodes.
  • the solid resin is interposed between the wiring circuit board and the semiconductor element and heated for a predetermined time to heat the solid resin.
  • the temperature reaches a predetermined temperature range
  • the printed circuit board and the semiconductor element are pressure-bonded while satisfying specific conditions (X) and (Y) to melt the solid resin and form the sealing resin layer. It is characterized by forming.
  • the printed circuit board and the semiconductor element are pressure-bonded while satisfying specific conditions (X) and (Y).
  • the degree of warpage of the semiconductor device due to the difference in the thermal shrinkage between the printed circuit board and the semiconductor element is suppressed, and the stress on the semiconductor element is reduced. As a result, a semiconductor device with more excellent reliability is obtained.
  • the gap between the wiring circuit board and the semiconductor element can be reduced. Filling is performed favorably without generating voids and the like.
  • a sealing resin layer formed by melting the solid resin a sealing resin sheet is mounted on the wiring circuit board, and a semiconductor element is mounted on the sealing resin sheet. After being placed, it is heated and held for a predetermined time, and is pressure-bonded in a state where the above specific conditions (X) and (Y) are satisfied.
  • the resin can be formed by filling the space between the conductor element and the resin in the molten state and curing the resin. As described above, by using the sealing resin sheet as the layered solid resin, the manufacturing efficiency of the semiconductor device is significantly improved.
  • a sealing resin layer is formed on the printed circuit board so that a part of the connection electrode portion is exposed.
  • the semiconductor element is mounted on the semiconductor element mounting substrate so that the electrode part of the semiconductor element is in contact with the connection electrode part, the semiconductor element is heated and held for a predetermined time to satisfy the specific conditions (X) and (Y). Pressure bonding in the state.
  • the semiconductor is further formed so that the electrode portion of the printed circuit board contacts the connection electrode portion.
  • the device is placed on a printed circuit board, and then heated and held for a predetermined time, and then pressure-bonded while satisfying the above specific conditions (X) and (Y). In this way, it can be formed by filling the gap between the wiring circuit board and the semiconductor element with the molten sealing resin and curing the resin. As described above, by using the sealing resin layer as the layered solid resin, the manufacturing efficiency of the semiconductor device is significantly improved.
  • the sealing resin layer formed so as to expose a part of the connection electrode portion is provided on the wiring circuit board or the semiconductor element on which the connection electrode portion is provided via the connection electrode portion.
  • the sealing resin sheet After mounting the sealing resin sheet, the sealing resin sheet can be easily formed by heating and melting.
  • the encapsulating resin layer can be easily formed by printing and coating the encapsulating resin layer forming material on the wiring circuit board surface or the semiconductor element surface provided with the connection electrode portion.
  • a sealing resin layer provided on one surface of the semiconductor element is prepared in advance, and a plurality of connection electrode portions are provided.
  • a semiconductor element is mounted on the printed circuit board so that the sealing resin layer is in contact with the connection electrode portion.
  • a substrate in which a sealing resin layer is adhered to one surface of the printed circuit board is prepared in advance, and the connection electrode of the semiconductor element having a plurality of connection electrodes provided on the printed circuit board is prepared. The semiconductor element is placed so that the portion contacts the sealing resin layer.
  • the printed circuit board is heated and held for a predetermined time, and is pressure-bonded while satisfying the above-mentioned specific conditions (X) and (Y), so that the printed circuit board and the printed circuit board are half-bonded. It can be easily formed by filling the gap between the conductor element and the sealing resin in the molten state and curing the resin.
  • a third invention of the present application is to provide a semiconductor device having an excellent effect of alleviating stress generated in a semiconductor element, a wiring circuit board, and a connection electrode and having high reliability. It is an object of the present invention to provide a sheet-like sealing material that can easily form a sealing resin layer in a void.
  • a third invention of the present application is directed to a semiconductor device mounted on a printed circuit board via a plurality of connection electrodes, and a gap between the printed circuit board and the semiconductor element is formed.
  • a first subject matter is a semiconductor device sealed by a sealing resin layer, wherein the sealing resin layer has the following cured product characteristics (Z).
  • the tensile modulus at 25 ° C. is from 300 to 1500 MPa.
  • a sheet-like sealing material used for forming a sealing resin layer of the semiconductor device, wherein a cured product of the sheet-like sealing material has the following property (Z). This is the gist of 2.
  • the tensile modulus at 25 ° C. is from 300 to 150 M Pa.
  • the sealing resin layer is formed in a gap between the wiring circuit board and the semiconductor element, the semiconductor device being connected via a plurality of connection electrode portions, If the cured product characteristic (Z) of the resin layer itself has a tensile elasticity in the above specified range, the reliability is improved, and particularly, the electrical connection between the semiconductor element and the printed circuit board is stabilized under a cooling / heating cycle. It becomes a semiconductor device.
  • a biphenyl-type epoxy resin and an acrylonitrile-butadiene-based resin are used as a material for forming the sealing resin layer having the specific cured product characteristic (X).
  • X specific cured product characteristic
  • a sealing material in particular, a sheet-like sealing material comprising the above epoxy resin composition is suitably used.
  • the semiconductor device according to the third aspect of the present invention is a twisted-down circuit in which a semiconductor element 3 is mounted on one surface of a printed circuit board 1 via a plurality of connection electrode portions 2 and connection electrode portions 2 ′. Take the structure. Then, a sealing resin layer 4 is formed between the printed circuit board 1 and the semiconductor element 3.
  • connection electrode portions 2 and 2 ′ The material of the plurality of connection electrode portions 2 and 2 ′ is not particularly limited, but includes, for example, gold, silver, copper, aluminum, nickel, chromium, tin, lead, indium, solder, and alloys thereof. Can be used. Further, the shape of the connection electrode portion is not particularly limited, but a shape having a high effect of extruding the sealing resin between the electrode portions 2 and 2 ′ of both the printed circuit board 1 and the semiconductor element 3. It is preferable that the surface of the electrode has few concave portions.
  • the material of the printed circuit board 1 is not particularly limited, but is roughly classified into a ceramic substrate and a plastic substrate.
  • the plastic substrate include an epoxy glass substrate, a bismaleimide triazine substrate, and a polyphenylene ether. Substrates and the like can be mentioned.
  • the material for forming the sealing resin layer 4 a sheet-shaped sealing material having specific physical properties is used.
  • an epoxy resin composition is used as the molding material.
  • the epoxy resin composition can be obtained using a specific epoxy resin (component A) and an acrylonitrile-butadiene copolymer (component B).
  • the specific epoxy resin (component A) is a biphenyl-type epoxy resin represented by the following general formula (1).
  • the biphenyl-type epoxy resin has a glycidyl group-containing phenyl ring having the following structure. alkyl group having 1 to 4 carbon atoms represented by to R 4 in which is added. Therefore, the sheet-like sealing material obtained from the epoxy resin composition containing the biphenyl-type epoxy resin is used for sealing semiconductor elements. In the process, water repellency and low hygroscopicity can be exhibited.
  • R 4 is an alkyl group having 1 to 4 carbon atoms, which may be the same or different.
  • the alkyl group having 1 to 4 carbon atoms represented by R 4 in the general formula (1) includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a sec-butyl group, Examples thereof include a linear or branched lower alkyl group such as a tert-butyl group.
  • a methyl group is particularly preferable, and the above-mentioned R 4 may be the same or different.
  • the R it is Ru particularly preferred der using biphenyl type epoxy resin represented by the following Symbol formula to R 4 are all methyl groups (3).
  • biphenyl type epoxy resin represented by the general formula (1) one having an epoxy equivalent of 177 to 240 g / eq and a softening point of 80 to 130 ° C is used. It is particularly preferable to use one having an epoxy equivalent of 177 to 220 gZeq and a softening point of 80 to 120 ° C.
  • the blending ratio of the biphenyl type epoxy resin (component A) in all the organic components of the epoxy resin composition which is the material for forming the sheet-shaped sealing material of the present invention is preferably in the range of 10 to 96% by weight, Especially, the range of 20 to 94% is preferable. That is, if the blending ratio of the biphenyl epoxy resin (component A) is less than 10%, water repellency and low hygroscopicity are hardly exhibited in the encapsulation of a semiconductor element. If it exceeds 6%, the obtained sheet-like sealing material itself tends to become brittle, This may not be easy.
  • the biphenyl-type epoxy resin (component A) may be replaced with another epoxy resin such as a cresol novolak-type epoxy resin, Epoxy resins such as novolak type epoxy resin and bisphenol A type epoxy resin can be used alone or in combination of two or more.
  • another epoxy resin it is preferable to set the amount of the biphenyl-type epoxy resin (component A) to be 20% or more of the entire epoxy resin component. Above all, it is more preferable to set it to be 50% or more.
  • a curing agent for an epoxy resin can be added to the epoxy resin composition, if necessary.
  • a curing agent include, but are not particularly limited to, various commonly used curing agents, for example, phenol resin, acid anhydrides such as methylhexahydrophthalic anhydride, and amine compounds.
  • phenol resin is particularly preferably used.
  • a phenol resin represented by the following general formula (2) From the viewpoints of better adhesive strength, hygroscopicity and the like, it is particularly preferable to use a phenol resin represented by the following general formula (2).
  • m is 0 or a positive integer.
  • the number of repetitions m in the above general formula (2) is 0 or a positive integer.
  • m is preferably an integer of 0 to 10, and especially m is an integer of 0 to 8. Is more preferred.
  • the phenol resin represented by the general formula (2) can be obtained, for example, by reacting aralkyl ether and phenol with a Friedel-Crafts catalyst.
  • aralkyl ether and phenol with a Friedel-Crafts catalyst.
  • those having a hydroxyl equivalent of 147 to 250 g / eQ and a softening point of 60 to 120 ° C are particularly preferable, and among them, a hydroxyl equivalent of 147 to 2 20 g / eq.
  • Those having a softening point of 60 to 110 ° C are preferred.
  • the mixing ratio of the phenol resin (component C) to the biphenyl type epoxy resin (component A) was 1 equivalent of the epoxy group in the biphenyl type epoxy resin (component A), It is preferable to mix the compound so that the number of hydroxyl groups is 0.7 to 3 equivalents, and it is more preferable to mix the compound so that the hydroxyl group is 0.9 to 1.1 equivalents.
  • the epoxy resin composition which is the material for forming the sheet-shaped sealing material of the third invention, may further contain a curing accelerator in addition to the epoxy resin curing agent.
  • a curing accelerator various curing accelerators conventionally known as curing accelerators for epoxy resins can be used, and examples thereof include amine-based, phosphorus-based, boron-based, and phosphorus-boron-based. Curing accelerators. Of these, trifenylphosphine, diazabicycloundecene and the like are preferred. These may be used alone or in combination of two or more.
  • the acrylonitrile-butadiene copolymer (component B) used together with the biphenyl-type epoxy resin (component A) if the acrylonitrile-butadiene copolymer (NBR) content is only 100%, In other words, it refers to a copolymer in a broad sense including the case where this NBR contains other copolymer components.
  • Other copolymerization components include, for example, hydrogenated acrylonitrile-butadiene rubber, atarilic acid, acrylic acid ester, styrene, methacrylic acid, etc. Among them, they have excellent adhesion to metals and plastics. Acrylic acid and methacrylic acid are preferred.
  • an acrylonitrile-butadiene-methacrylic acid copolymer and an acrylonitrile-butadiene-acrylic acid copolymer are preferably used.
  • the content of acrylonitrile in the above NBR is preferably from 10 to 50% by weight, and particularly preferably from 15 to 40% by weight.
  • the mixing ratio of the acrylonitrile-butadiene copolymer (component B) in all the organic components of the epoxy resin composition which is the material for forming the sheet-shaped sealing material of the third invention is particularly preferably 2 to 60% by weight. It is preferably in the range, and particularly preferably in the range of 3 to 50% by weight. In other words, if the blending ratio of the acrylonitrile-butadiene copolymer (B component) is less than 2% by weight, cooling and heating in the encapsulation of semiconductor elements In various stress tests under high temperature and high humidity under cycling, it is difficult to exhibit excellent durability. Conversely, if it exceeds 60% by weight, the adhesion at high temperatures tends to decrease. is there.
  • the epoxy resin composition which is a material for forming the sheet-shaped sealing material of the present invention, may contain, if necessary, other materials (organic materials and inorganic materials) in addition to the above-mentioned component A, curing agent and component B. It can also be blended.
  • organic material include a silane coupling agent, a titanium coupling agent, a surface conditioner, and an antioxidant.
  • the inorganic material include various inorganic fillers such as alumina, silica, and silicon nitride; copper; Metal particles such as silver, aluminum, nickel, and solder, as well as pigments and dyes.
  • the mixing ratio of the above-mentioned inorganic material is not particularly limited, but is preferably set to 90% by weight or less, more preferably 80% by weight or less, of the total composition (the entire epoxy resin composition). It is. That is, if the amount is larger than the above-mentioned compounding ratio, the electrical connection between the electrode of the semiconductor element and the electrode of the printed circuit board is not performed well, and a problem is likely to occur.
  • the sheet-shaped sealing material of the present invention can be manufactured, for example, as follows. First, a predetermined amount of each of the above-mentioned biphenyl type epoxy resin (component A) and acrylonitrile-butadiene copolymer (component B) is blended, and if necessary, various components such as a curing agent and a curing accelerator An epoxy resin composition is prepared by mixing a predetermined amount of an agent and various fillers. Then, the epoxy resin composition is mixed and dissolved in a solvent such as toluene, methyl ethyl ketone, and ethyl acetate, and the mixed solution is applied onto a base film such as a polyester film subjected to a release treatment.
  • a solvent such as toluene, methyl ethyl ketone, and ethyl acetate
  • the coated base film is dried at 50 to 160 ° C. to remove a solvent such as toluene, thereby producing a target sheet-shaped sealing material on the base film. can do .
  • the target sheet-like sealing material can be produced by hot-melt extrusion without using a solvent such as toluene.
  • the sheet-like sealing material thus obtained preferably has the following properties, that is, a property that the gel time is 10 to 120 seconds at 175 ° C. No. The above gel time is a value measured on a hot plate at 175 ° C.
  • a cured product obtained by curing the sheet-like sealing material of the third invention thus obtained can be manufactured, for example, as follows. That is, the sheet-like sealing material obtained by the above method is heated at 70 to 300 ° C., preferably 120 to 200 ° C., for 3 to 300 minutes, preferably 5 to 1 minute. By heating and curing for 80 minutes, the desired cured product can be produced. Note that the above curing conditions are the same as the heat curing conditions when forming the sealing resin layer in the method of manufacturing a semiconductor device described below.
  • the obtained cured product must have the following cured product properties (Z).
  • the tensile modulus at 25 ° C. is from 300 to 150 MPa.
  • the tensile modulus at 25 ° C. is from 500 to 1200 MPa, and particularly preferably from 100 to 100 MPa.
  • the stress applied to the semiconductor element, the wiring circuit board, and the connection electrode portion can be alleviated in a well-balanced manner under the thermal cycle. That is, if the tensile modulus at 25 ° C is less than 300 MPa, cracks are likely to occur in the connection electrode portion, and if the tensile modulus at 25 ° C exceeds 150 MPa, This is because a crack is easily generated in the semiconductor element.
  • the tensile modulus at 25 ° C is a value measured according to JISK690, and is specifically measured by a universal tensile tester (Autograph, manufactured by Shimadzu Corporation). You.
  • the semiconductor element is mounted on the printed circuit board via the plurality of connection electrodes, and the gap between the printed circuit board and the semiconductor element is provided.
  • a solid sheet-like sealing material 1 is placed on a wiring circuit board 1 provided with a plurality of spherical connection electrodes 2 via the connection electrodes 2. Place 0.
  • the semiconductor element 3 provided with the connection electrode portion 2 ′ is arranged at a predetermined position on the sheet-shaped sealing material 10, and is heated and pressurized.
  • the electrical connection between the connecting electrode portions 2 and 2 ′ and the curing of the sheet-like sealing material 10 are performed to complete the electrical connection and fixation between the printed circuit board 1 and the semiconductor element 3.
  • the size of the sheet-shaped sealing material 10 is appropriately set according to the size (area) of the semiconductor element 3 mounted thereon, and is generally set to be substantially the same as the size (area) of the semiconductor element 3. Is preferred.
  • the thickness of the sheet-shaped sealing material 10 is not particularly limited, but fills the gap between the semiconductor element 3 and the printed circuit board 1 and sets the gap between the connection electrode portions 2 and 2 ′. It can be set appropriately so as not to hinder the electrical connection, and is usually set to 10 to 200 zm.
  • the heating temperature at which the sheet-shaped sealing material 10 is heated and melted to be in a molten state includes heat resistance of the semiconductor element 3 and the wiring circuit board 1 and connection electrodes.
  • the temperature is appropriately set in consideration of the melting points of the parts 2 and 2 ′, the softening point of the sheet-shaped sealing material 10, heat resistance, and the like.
  • Examples of the heating method include an infrared heating furnace, a dryer, a hot air blower, and a hot plate.
  • connection electrode portions 2 and 2 ′ when filling the gap between the semiconductor element 3 and the printed circuit board 1 with the sealing material in the molten state, it is preferable to pressurize as described above, Is appropriately set according to the material and number of the connection electrode portions 2 and 2 ′, etc., and the temperature. More specifically, it is set in the range of 0.02 to 0.5 kgf Z, preferably 0.04 to 0.2 kgf Set in the range of Z pieces. It is preferable to flatten the connection electrode portions 2 and Z or 2 ′ by applying pressure.
  • the size of the semiconductor element 3 is usually set to a width of 2 to 2 Ommx a length of 2 to 3 Ommx and a thickness of 0.1 to 2.0 mm.
  • the size of the printed circuit board 1 on which the printed circuit on which the semiconductor element 3 is mounted is formed is generally 5 to 12 Omm in width, preferably 10 to 7 Ommx, and 5 to 12 Omm in length, preferably 1 to 10 Omm. 0 to 7 Ommx Thickness Set to 0.05 to 3. Omm.
  • the distance between the semiconductor element 3 and the gap between the printed circuit board 1 and the gap filled with the molten sealing resin is usually 5 to 200 ⁇ m.
  • the sealing resin layer 5 formed by sealing using the sheet-like sealing material must have the following cured product characteristics (Z). More preferably, the tensile modulus at 25 ° C. is from 500 to 1200 MPa, particularly preferably from 100 to 100 MPa. (Z) The tensile modulus at 25 ° C. is from 300 to 150 MPa.
  • the sealing resin layer 4 preferably has a water absorption of 1.5% or less. More preferably, the water absorption is 1.2% or less.
  • the ionic impurities contained in the sealing resin layer 5 e.g., N a +, K +, NH 3 +, C l _, S 0 4 2 _
  • the water absorption is measured by leaving the cured product at 85 ° C x 85% RH for 16 hours and then using a trace moisture meter (Hiranuma Moisture Analyzer AQ-5, manufactured by Hiranuma Sangyo Co., Ltd.). Was.
  • the above-mentioned ionic impurities were measured by crushing the cured product, extracting the cured product with pure water at 121 ° C for 24 hours, and measuring the content by ion chromatography.
  • the third invention of the present application relates to a printed circuit board and a semiconductor element connected via a plurality of connection electrode portions.
  • a sealing resin layer having a cured product characteristic (Z) having a tensile elastic modulus in the specific range is formed.
  • Z cured product characteristic
  • a biphenyl type epoxy resin and an atarilonitrile-butadiene copolymer are contained, and a specific phenol resin may be further added.
  • an epoxy resin composition made of a resin a more excellent sealing resin layer with low moisture absorption and high adhesiveness is formed, and as a result, it can be used for stress tests such as vapor-perforated soldering (VPS) after moisture absorption. Further, a stable electric connection is provided.
  • VPS vapor-perforated soldering
  • a sheet-shaped sealing material having the above-mentioned cured product properties (Z), particularly a sheet-shaped sealing material made of the epoxy resin composition is used. It is preferably used because it facilitates stopping and significantly improves the manufacturing efficiency of the semiconductor device.
  • the size of the layered solid resin (sealing resin sheet) to be used is changed as shown in FIGS.
  • Wiring circuit board A space portion surrounded by the outermost periphery of the plurality of connection electrode portions 2 formed on It is more preferable to cut and use a shape and a size that can be accommodated in K.
  • reference numeral 10 denotes a sealing resin sheet.
  • connection electrode portion 2 that is, the joint ball is shown only on the outermost periphery.
  • the resin (resin composition) constituting the sealing resin sheet is not interposed on the joint pole surface when the semiconductor element and the printed circuit board are crimped. Entanglement voids are less likely to be generated during crimping, and resin (in some cases, a filler) can be prevented from intervening in the electrode joint, so that the stabilization of current flow in the joint can be more reliably ensured.
  • FIGS. 25 and 26 show an embodiment of a method of manufacturing a semiconductor device when a plurality of connection electrode portions are provided in the space surrounded by the outermost periphery.
  • FIG. 25 shows a case where the semiconductor device is manufactured in the same manner as described in FIGS. 23 and 24, while FIG. 26 shows a preferred embodiment in such a case.
  • the sealing resin sheet penetrates through the portion of the sealing resin sheet corresponding to the connection electrode portion 2 ′ provided in the intermediate portion surrounded by the outermost periphery of the plurality of connection electrode portions 2.
  • a hole ⁇ is provided.
  • This preferred embodiment is particularly suitable when a semiconductor device is manufactured using a printed circuit board in which warpage is observed.
  • the connecting electrode portion 2 formed on the printed circuit board 1 and the connecting electrode portion 2 formed on the semiconductor element 3 are adjusted so that the two electrode portions contact each other. (See Fig. 27.) Then, gradually lower the distance between the upper and lower plates ⁇ and ⁇ 'of the hot-press, and as shown in Fig. 28, the point where both electrode parts 2 and 2 just touched (at this point).
  • the distance of the gap between the semiconductor element 3 and the printed circuit board is defined as “total junction height ⁇ ” in the present invention.
  • the thickness of the sealing resin sheet 10 used in the method of manufacturing a semiconductor device is 50 to 95% of the “total joint height”.
  • the wiring substrate having a warp is eliminated by the contact and pressurization of the two electrodes, and as a result, a void H having a substantially uniform thickness is formed. This is because the gap H serves as an air vent passage.
  • the pressure of the hot press is further applied to flatten the electrode section 22 (usually, the height of the electrode before pressurization is 6995% of the height before pressing).
  • the semiconductor element and the printed circuit board are bonded to each other via the electrode portions 22 which are flattened by the melt-hardening (for example, 180 ° C.) of the sealing resin sheet.
  • the material constituting the electrode section 22 is formed of a material which can flow when heated, for example, solder.
  • the above-mentioned bonded body is generally heated to about 215 ° C., and is generally used as a semiconductor device of the present invention.
  • the step of melting the material such as the hang that constitutes the electrode portion after curing the sealing resin sheet has not been described so far, but is usually performed in the first to third inventions of the present application. .
  • both the chip electrode portion and the substrate electrode portion (land portion) can be suitably melted and bonded even without flux. Is the target.
  • the reason for this is not clear, at the stage when the joined body is obtained, the area around the solder as a connection electrode is usually covered with a hardened resin and cut off from oxygen. It is considered that the reason is that cracks are generated on the hang surface during the flattening due to the pressure of the electrode, and the hung surface (non-oxidized surface) is exposed. Further, when a sealing resin sheet containing a trace amount of a chlorine component and / or an organic acid component, for example, a sheet made of an epoxy resin composition is used, the chlorine component and / or the organic acid component may contain It is considered to be effective in removing oxide films formed on the surface. Next, by heating to about 215 ° C. in such an environment, the above-mentioned two electrode portions are melted.
  • Trifenyl phosphine Trifenyl phosphine
  • each component was mixed at a ratio shown in Tables 2 and 3 below. This was received on a pallet, cooled, and press-rolled to form a sheet, thereby producing a desired sheet-like epoxy resin composition.
  • the sheet-like epoxy resin composition of each example obtained as in The semiconductor device was manufactured in accordance with the first embodiment of the above-described method for manufacturing a semiconductor device. That is, as shown in FIG. 2, after each of the sealing resin sheets 10 is placed on the board 1 through the spherical joint pole 2 provided on the board 1, as shown in FIG. Then, the semiconductor chip 3 was placed on the sealing resin sheet 10. Thereafter, the sealing resin sheet 10 is heated and melted under the condition of a heating temperature of 180 and a load of 0.06 kgZ to fill the gap between the board 1 and the semiconductor chip 3 with the molten resin. Then, the semiconductor device was heat-cured (condition: cured at 200 ° C.
  • the obtained semiconductor device is subjected to an initial energization check, and further, using the semiconductor device, is subjected to a pressure cooker test [PCT test (Condition: 212 ° C X 2 atmx 100% RH at 100% RH). ), And then a current pick-up was performed. Then, the rate of occurrence of defects (defect occurrence rate) was calculated. Along with the defect occurrence rate, X indicates that a defect occurred, and ⁇ indicates that no defect occurred. The results are shown in Tables 4 to 5 below.
  • the chip used in the above example had a thickness of 0.6 mm and a size of 13.5 mm square.
  • the hang of the connection electrode portion formed on the chip was 90 ⁇ m high, It was a hemisphere having a diameter of 150 m.
  • the printed circuit board has a thickness of 0 mm and a size of 21 mm square, and the solder of the connection electrode portion formed on the printed circuit board has a height of 30 m and a diameter of 120 m. Of hemisphere.
  • each sealing resin sheet 10 was placed on the board 1 provided with the joint ball 2 via the joint ball.
  • the sealing resin sheet 10 is heated and melted at 180 ° C. to seal the board 1 so that the top of the joint ball 2 is exposed as shown in FIG. A stopping resin layer 13 was formed.
  • the semiconductor chip 3 is mounted on the board 1 so that the joint ball 2 whose top is exposed from the sealing resin layer 13 and the electrode portion of the semiconductor chip 3 are in contact with each other. equipped.
  • the sealing resin layer 4 is formed in the gap between the board 1 and the semiconductor chip 3, and it is clear that the sealing resin in the gap is filled well.
  • a semiconductor device was manufactured according to the above-described third embodiment of the method of manufacturing a semiconductor device. That is, as shown in FIG. 16, a semiconductor chip 3 having a sealing resin sheet 14 adhered to one surface thereof was prepared. Next, the semiconductor chip 3 was placed on the board 1 on which the plurality of joint balls 2 were provided so that the sealing resin sheet 14 attached to the joint ball 2 was in contact with the joint pole 2.
  • the whole is heated (180 ° C.) to melt the encapsulating resin sheet 14 to a molten state, and the semiconductor chip 3 and the board 1 are joined by pressing (condition: 20 ° C.).
  • a semiconductor device in which the gap between the semiconductor chip 3 and the board 1 was resin-sealed with the sealing resin layer 4 was produced.
  • the obtained semiconductor device was subjected to an initial energization check and an energization check after leaving the PCT test for 200 hours in the same manner as described above.
  • each component shown in Table 6 below was used, and each component was mixed at a ratio shown in the same table. This was received on a pallet, cooled, and then press-rolled to form a sheet, thereby producing the desired sheet-like epoxy resin composition (resin sheet for sealing).
  • each of the encapsulating resin sheets 10 is placed on the board 1 via a spherical joint ball 2 provided on the board 1, and as shown in FIG. Then, the semiconductor chip 3 on the sealing resin sheet 10 was placed.
  • each sealing resin sheet 10 was placed on the board 1 provided with the joint ball 2 via the joint ball 2. Then, the sealing resin sheet 10 is heated and melted at 180 ° C., so that the top of the joint ball 2 is exposed as shown in FIG. Layer 13 was formed. Next, as shown in FIG. 7, the semiconductor chip 3 was mounted on the board 1 so that the joint ball 2 whose top was exposed from the sealing resin layer 13 and the electrode portion of the semiconductor chip 3 were in contact with each other. .
  • the whole is heated (at 180 ° C X load of 0.08 kgf / piece) and held for a predetermined time (Table 6 above shows the holding time after temperature rise) and pressurized (viscosity during melting, The pressure time, the viscosity at the end of pressurization, the gel time, the gel time retention, and the DSC residual reaction heat are shown in Table 6 above.
  • the semiconductor chip 3 and the board 1 are joined (condition: 200 ° C
  • a semiconductor device in which the gap between the semiconductor chip 3 and the board 1 was resin-sealed with the sealing resin layer 4 was produced.
  • a semiconductor device was manufactured in accordance with the above-described third embodiment of the semiconductor device manufacturing method. That is, as shown in FIG. 16, a semiconductor chip 3 was prepared in which each sealing resin sheet 14 was previously adhered to one surface of the semiconductor chip 3. Next, on the board 1 on which a plurality of joint balls 2 are provided, the sealing resin sheet 14 attached to the joint ball 2 is placed on the joint board. The semiconductor chip 3 was placed in contact with the W098 / 287882.
  • the viscosity was read from the viscosity curve of the flow tester.
  • a resin sheet was placed on a hot plate, sampled every time, and the amount of residual reaction heat was measured by DSC.
  • an initial energizing check and an energizing check after leaving the PCT test for 200 hours were performed in the same manner as described above.
  • the sealing resin layer 4 is formed in the gap between the board 1 and the semiconductor chip 3, and it is clear that the sealing resin in the gap is filled well.
  • Moisture absorption VPS condition 30 ° CZ 60 RH% X 16 8 hours + 2 15 ° C X 90 seconds
  • the initial value (resistance value) before moisture absorption VPS in the above energization test is assumed to be 100
  • the resistance value after moisture absorption VPS was shown as a relative value.
  • the adhesion was evaluated by an ultrasonic flaw detection method, and evaluated mainly based on the presence or absence of a void in the sealing resin layer portion and the presence or absence of a separation state around the joint ball.
  • the resin resin for sealing was designed to have a melt viscosity of 50,000 or more, a gel time retention of 30% or less, or a residual heat of reaction of 70% or less of the initial value.
  • the example product in which the sealing resin layer was formed by filling and filling the void by heating and pressurizing the heat for a certain period of time also proved to be highly reliable from the results of the current test before and after the moisture absorption VPS.
  • no peeling was observed in any case, no fine voids were formed in the sealing resin layer portion, and a good sealing resin layer was formed. From these facts, it can be seen that a semiconductor device having excellent reliability with no problem in conduction characteristics has been obtained.
  • Cresol nopolak epoxy resin (Epoxy equivalent: 195 g / eq, melting point
  • each of the sheet-like epoxy resin compositions thus obtained (resin sealing resin sheet) G), a semiconductor device was manufactured according to the first embodiment of the above-described semiconductor device manufacturing method. That is, as shown in FIG. 2, after placing each of the encapsulating resin sheets 10 on the board 1 via a spherical joint pole 2 provided on the board 1, as shown in FIG. The semiconductor chip 3 was placed on the sealing resin sheet 10. At this time, the sealing resin sheet 10 was previously subjected to a heat treatment (processing conditions: 1
  • each sealing resin sheet 10 was placed on the board 1 provided with the joint ball 2 via the joint pole 2.
  • the sealing resin sheet 10 is heated and melted at 180 ° C., so that the top of the joint pole 2 is exposed on the board 1 so that the top of the joint pole 2 is exposed as shown in FIG.
  • the resin layer 13 was formed.
  • the semiconductor chip 3 is attached to the board 1 so that the joint ball 2 whose top is exposed from the sealing resin layer 13 and the electrode portion of the semiconductor chip 3 are in contact with each other. equipped.
  • the sealing resin layer 13 was previously subjected to a heat treatment (treatment condition: 130 ° C. X 150 seconds or 110 ° C. X 60 seconds). Then, the whole was heated (180, load: 0.08 kgf / piece) and pressurized (Pressure pressure, pressurization time, and residual reaction heat after DSC pressing are shown in Table 13 below)
  • the temperature of the semiconductor chip 3 and the temperature of the board (substrate) 1 are set to the temperatures shown in Table 13 below, and the semiconductor chip 3 and the board 1 are bonded in that state (condition: 200 ° CX 20 min.
  • a semiconductor device in which the gap between the semiconductor chip 3 and the board 1 was resin-sealed with the sealing resin layer 4 was produced.
  • a semiconductor device was manufactured using each of the sheet-like epoxy resin compositions (sealing resin sheet) in accordance with the above-described third embodiment of the semiconductor device manufacturing method. That is, as shown in FIG. 16, a semiconductor chip 3 was prepared in which each sealing resin sheet 14 was previously adhered to one surface of the semiconductor chip 3. Next, the semiconductor chip 3 was placed on the board 1 on which the plurality of joint balls 2 were provided so that the sealing resin sheet 14 attached to the joint balls 2 was in contact with the joint balls 2. At this time, the sealing resin sheet 1
  • Heat treatment (processing condition: 130 ° C. ⁇ 150 seconds or 110 ° C. ⁇ 60 seconds) was previously performed on 0. Then, the whole was heated (180 ° ⁇ load: 0.08 kgf Z pieces) and pressurized (pressing pressure, pressurizing time, residual reaction calorie after DSC pressing are shown in Table 14 below).
  • Table 14 shows the temperature of semiconductor chip 3 and board (substrate) 1 temperature.
  • a resin sheet was placed on a hot plate, sampled every time, and the amount of residual reaction heat was measured by DSC.
  • the obtained semiconductor device was subjected to after-cure at 150 ° C. for 30 minutes.
  • the degree of warpage of the semiconductor device after curing was measured by measuring the diagonal warpage of the semiconductor chip surface with a surface roughness meter, and the maximum value was evaluated as the warpage value. The results are shown in Tables 15 to 17 below.
  • Moisture absorption VPS condition 30 ° C / 60 RH% X 16 8 hours + 2 15 ° C X 90 seconds Note that the initial value (resistance value) before moisture absorption VPS in the above-mentioned energization test is 10
  • the resistance value after moisture absorption V P S was set to 0, and the relative value was shown as a relative value.
  • the above-mentioned adhesion evaluation was performed by ultrasonic flaw detection, and was evaluated mainly on the presence or absence of voids in the sealing resin layer portion and the presence or absence of separation around the joint balls.
  • the initial resistance in the energization test was set to 100, and the resistance after moisture absorption VPS was measured and compared with the initial resistance.
  • the initial resistance value in the current test was set to 100, and the resistance value after moisture absorption VPS was measured and compared with the initial resistance value.
  • Example products in which the sealing resin sheet and the sealing resin layer are melted by satisfying X) and (Y) and pressure-bonded, thereby forming the sealing resin layer are also referred to as the first to third embodiments.
  • the step of forming the sealing resin into a B-stage shape the step of aligning and crimping the semiconductor element and the wiring circuit board, the step of bringing the sealing resin into a gel state, and the step of curing the resin as described above. Examples and comparative examples will be described in which each of the above-described steps is divided and the semiconductor device is manufactured as a part of the manufacturing process.
  • each step in the first embodiment of the above-described semiconductor device manufacturing method was divided and made into a line.
  • the semiconductor device was manufactured according to the semiconductor device manufacturing process. That is, a sealing resin sheet 10 is placed on the board 1 on which the joint ball 2 is provided, and a sealing resin sheet 10 is placed on the board 1, as shown in FIG. 19 (a). To make the sealing resin sheet 10 into the B-stage state (semi-cured state) (B-stage process). Then, the sealing resin sheet W Hi 98/28788 PT JP
  • the 10 After the 10 is in the B-stage state, as shown in Fig. 19 (b), it is placed at a predetermined position on the B-stage-shaped sealing resin sheet 10 at the tip of the heating and pressing tool 41.
  • the board 1 and the semiconductor chip 3 are aligned so that the attached semiconductor chip 3 is placed, and the semiconductor chip 3 is placed at a predetermined position of the sealing resin sheet 10 on the board 1. Placed and temporarily bonded (positioning and crimping process).
  • the heating tool 42 is brought into contact with the surface of the semiconductor chip 3 temporarily bonded on the sealing resin sheet 10 and heated for a predetermined time, so that the sealing is performed.
  • the resin sheet 10 for sealing was made into a gelled state (gelling step of the sealing resin).
  • the gelled sealing resin was filled in the gap between the board 1 and the semiconductor chip 3. Then, after filling the gelled sealing resin, as shown in FIG. 19 (d), the heating tool 43 is brought into contact with the semiconductor chip 3 to bring the gelled sealing resin to a predetermined temperature. Then, the board 1 is cooled by a cooling plate 44 located below the board 1 (a curing step), so that the semiconductor chip 3 and the board 1 are connected as shown in FIG. A semiconductor device in which the void was resin-sealed with the sealing resin layer 4 was manufactured.
  • the presence / absence of voids, the amount of warpage after crimping, and the amount of warpage of the semiconductor device after performing after-curing at 150 ° C for 30 minutes were measured by the same measurement methods as described above. ⁇ evaluated.
  • each semiconductor device was subjected to a predetermined number of cycles (100 cycles, 500 cycles) in a thermal shock test (TST: 5 minutes under conditions of 140, 5 minutes at 125 ° C ⁇ 5 minutes), and then the semiconductor chip was visually evaluated to determine whether or not cracks occurred.
  • TST thermal shock test
  • a semiconductor device was manufactured according to the continuous manufacturing process according to the second embodiment and the continuous manufacturing process according to the third embodiment in the method for manufacturing a semiconductor device described above.
  • the same measurement and evaluation as described above were performed on the obtained semiconductor device.
  • almost the same good results as those of the semiconductor device obtained by the continuous manufacturing process in the first embodiment were obtained. That is, in the obtained semiconductor device, no void was formed in the sealing resin layer portion, and a good sealing resin layer was formed.
  • the amount of warpage after compression and at 150 ° C. for 30 minutes was small.
  • all the semiconductor devices on which a good sealing resin layer was formed were efficiently manufactured within a total sealing time of 10 seconds or less.
  • Cresol nopolak type epoxy resin (Epoxy equivalent: 195 g / eq, Melting point: 80 ° C)
  • Phenol resin represented by the following structural formula (hydroxyl equivalent: 175 g / eq, softening point 75 ° C)
  • epoxy resin compositions The components shown in Tables 20 and 21 below were blended in the proportions shown in the table to prepare epoxy resin compositions.
  • the epoxy resin composition was mixed and dissolved in toluene, and the mixed solution was applied on a polyester film subjected to a release treatment. Next, the polyester film coated with the mixed solution was dried at 120 ° C., and toluene was removed to produce a sheet-shaped sealing material having a desired thickness of 100 zm on the polyester film. did.
  • a semiconductor device was manufactured according to the above-described method of manufacturing a semiconductor device. That is, as shown in FIG. 21, the wiring provided with the connecting electrode portion 2 (material: solder, melting point: 183 ° C., shape: cylindrical shape 150 mm in diameter and 30 m in height) After placing the sheet-like sealing material 10 on the circuit board 1 (glass epoxy board having a thickness of 1 mm), as shown in FIG. A semiconductor element 3 (thickness: 35) in which a connection electrode part 2 ′ (material: solder, melting point: 299 ° C., shape: diameter 120; sphere having a height of mx 90) is provided at a position 0 ⁇ m, size: 13mmX9mm).
  • a connection electrode part 2 ′ material: solder, melting point: 299 ° C., shape: diameter 120; sphere having a height of mx 90
  • the sheet-like sealing material is heated and melted under the conditions of a heating temperature of 150 ° C, a load of 0.1 kgf, the number of electrodes, and the number of electrodes, and the molten state in the gap between the printed circuit board and the semiconductor element.
  • the resin was filled and temporarily fixed, and both connection electrodes 2, 2 'were electrically connected. After that, the above resin is cured by heat (condition: 150 ° C ⁇ 60 minutes) and the connection electrode part 2 is melted.
  • each of the four samples not subjected to the TST test was subjected to moisture absorption for 16 hours in an environment of 30 ° C. and 60% RH, and then subjected to VP S (vapor phase soldering). soldering)) (2 15 ° C x 90 seconds), and then an electricity test.
  • VP S vapor phase soldering
  • soldering soldering
  • the present invention can provide a method of manufacturing a semiconductor device in which a sealing resin layer can be easily formed in a gap between a semiconductor element and a board, and the resin sealing operation can be easily performed. Further, according to the present invention, when a sealing resin layer is formed in a gap between a semiconductor element and a board, the occurrence of warpage can be suppressed in the entire device, and as a result, a semiconductor device having excellent reliability can be easily provided. It is possible to provide a method of manufacturing a semiconductor device which can be manufactured at a high speed. Further, the present invention can provide a semiconductor device having an excellent effect of alleviating a stress generated in a semiconductor element, a printed circuit board, and a connection electrode and having high reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Wire Bonding (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

明細書
半導体装置の製法 技術分野
本発明は、 半導体素子をフェースダウン構造でマザ一ボード、 あるいはドータ ーボ一ドに実装する方式による半導体装置の製法に関するものである。 背景技術
最近の半導体デバイスの性能向上に伴う要求として、 半導体素子をフ 一スダ ゥン構造で、 配線回路が形成されたマザ一ボード、 あるいはドータ一ボードに実 装される方法 (フリップチップ方式、 ダイレクトチップアタッチ方式等) が注目 されている。 これは、 従来から用いられている方式、 例えば、 半導体素子から金 ワイヤ一でリードフレーム上にコンタクトをとりパッケージングされた形態でマ ザ一ボード、 あるいはドーターボードに実装する方法では、 配線による情報伝達 の遅れ、 クロストークによる情報伝達ェラ一等が生ずるという問題が発生してい ることに起因する。
一方、 上記フリップチップ方式、 ダイレクトチップアタッチ方式においては、 互いの線膨脹係数が異なる半導体素子と上記ボ一ドをダイレク卜に電気接続を行 うことから、 接続部分の信頼性が問題となっている。 この対策としては、 半導体 素子と上記ボードとの空隙に液状樹脂材料を注入し硬化させて樹脂硬化体を形成 し、 電気接続部に集中する応力を上記樹脂硬化体にも分散させることにより接続 信頼性を向上させる方法が採られている。 しかしながら、 上記液状樹脂材料は、 超低温 (一 4 0 °C) での保管が必要であることに加えて、 上記半導体素子とボー ドとの空隙への注入においては注射器で行う必要があり、 注入ポジション、 注入 量コントロールが困難である等の問題を抱えている。 また、 常温で液状であるこ とが制約条件となるため、 信頼性の高いフ ノール樹脂等の固形材料の使用が困 難な状況であった。
本発明は、 このような事情に鑑みなされたもので、 上記半導体素子とボードと の空隙に容易に封止樹脂層を形成することができ、 しかもその樹脂封止作業が容 W0 98/28788 易となる半導体装置の製法の提供をその目的とする。 発明の開示
上記の目的を達成するため、 本出願の第 1の発明の半導体装置の製法は、 配線 回路基板上に、 複数の接続用電極部を介して半導体素子が搭載され、 上記配線回 路基板と半導体素子との間の空隙が封止樹脂層によつて封止されてなる半導体装 置の製法であって、 上記封止樹脂層を、 上記配線回路基板と半導体素子との間に 層状の固形樹脂を介在させてこの固形樹脂を溶融させることにより形成するとい う構成をとる。
すなわち、 本発明では、 複数の接続用電極部を介在して接続された、 配線回路 基板と半導体素子との間の空隙を封止樹脂層によつて樹脂封止して半導体装置を 製造するに際して、 上記封止樹脂層を、 上記配線回路基板と半導体素子との間に 層状の固形樹脂を介在させこの固形樹脂を溶融し硬化させることにより形成する 。 このように、 上記層状の固形樹脂を溶融させるとともに、 好適には加圧するこ とにより、 上記配線回路基板と半導体素子との接合を完了させるため、 従来、 配 線回路基板と半導体素子とを接続した後に、 上記空隙に封止用樹脂を注入すると レ、う煩雑な工程と比べて、 上記配線回路基板と半導体素子との接続および樹脂封 止の工程が一度になされ、 製造工程の大幅な簡略化が図れる。 また、 封止用樹脂 として液状樹脂を用いず保存性に優れた固形樹脂を用いるため、 上記空隙内に注 入する際の上記種々の問題が生じることもない。
さらに、 本発明者らは、 本発明を見出す過程において、 上記固形樹脂として、 最大粒径が 1 0 0 m以下に設定された無機質充填剤を、 特定割合含有するェポ キシ樹脂組成物を用いることにより、 上記基板と半導体素子の空隙内への充填が ボイド等が生じることなく良好に行われることを突き止めた。
そして、 上記固形樹脂を溶融させることにより形成される封止樹脂層は、 例え ば、 上記配線回路基板上に、 封止用樹脂シート (層状の固形樹脂の一種) を搭載 した後、 さらに、 上記封止用樹脂シート上に半導体素子を載置し、 ついで、 上記 封止用樹脂シ一トを加熱溶融することにより、 上記配線回路基板と半導体素子と の間の空隙に、 上記溶融状態の封止用樹脂を充塡し次いで硬化させることにより 容易に形成することができる。
さらに、 上記固形樹脂を溶融させることにより形成された封止樹脂層は、 上記 配線回路基板面に設けられた接続用電極部の一部が露出するよう封止用樹脂層を 形成した後、 さらに、 上記接続用電極部に半導体素子の電極部が当接するよう半 導体素子を上記配線回路基板に載置し、 ついで、 上記封止用樹脂層を加熱溶融す る。 あるいは、 上記半導体素子面に設けられた接続用電極部の一部が露出するよ う封止用樹脂層を形成した後、 さらに、 上記接続用電極部に配線回路基板の電極 部が当接するよう半導体素子を配線回路基板に載置し、 ついで、 好ましくは上記 接続用電極部を加圧して該電極部を構成するジョイントボールを偏平化させつつ 、 又は偏平化させた後、 上記封止用樹脂層を加熱溶融する。 このようにして、 上 記配線回路基板と半導体素子との間の空隙に、 上記溶融状態の封止用樹脂を充塡 し硬化させることにより容易に形成することができる。
加えて、 上記固形樹脂を溶融させることにより形成された封止樹脂層は、 予め 、 上記半導体素子の片面に封止用樹脂層を設けたものを準備し、 複数の接続用電 極部が設けられた配線回路基板上に、 上記封止用樹脂層が上記接続用電極部と当 接するよう半導体素子を載置する。 あるいは、 予め、 上記配線回路基板の片面に 封止用樹脂層を設けたものを準備し、 上記配線回路基板上に、 複数の接続用電極 部が設けられた半導体素子の上記接続用電極部が上記封止用樹脂層と当接するよ う半導体素子を載置する。 ついで、 上記封止用樹脂層を加熱溶融することにより
、 上記配線回路基板と半導体素子との間の空隙に、 上記溶融状態の封止用樹脂を 充填し硬化させることにより容易に形成することができる。
特に、 上記各製法において、 配線回路基板と半導体素子との間の空隙を樹脂封 止するための封止材料である、 封止用樹脂シート, 封止用樹脂層を所定時間加熱 するとともに、 上記封止用樹脂シート, 封止用樹脂層が下記の物性 (ィ) 〜 (ノ、 ) の少なくとも一つを備えた状態になるまで加圧し、 その状態で上記配線回路基 板と半導体素子との間の空隙に溶融状態の封止用樹脂を充塡すると、 充塡した封 止用樹脂部分に細かなボイドを巻き込むことなく、 均質で良好な封止樹脂層を形 成することができる。
(ィ) 樹脂粘度が 5 0 0 0ボイズ以上。 W0^8/28788
(口) 封止用樹脂シートまたは封止用樹脂層の加熱前の初期ゲル化時間を 1 0 0 %とした場合、 ゲル化時間が初期ゲル化時間の 3 0 %以下である。
(ハ) 示差走査熱量計 (以下 「D S C」 と略す) により測定される、 封止用樹脂 シートまたは封止樹脂層の加熱前の初期残存反応熱量を 1 0 0 %とした場合、 残 存反応熱量が初期残存反応熱量の 7 0 %以下である。 図面の簡単な説明
図 1は、 本発明の半導体装置の製法により得られた半導体装置の一例を示す断 面図である。
図 2は、 第 1の態様における半導体装置の製造工程を示す説明断面図である。 図 3は、 第 1の態様における半導体装置の製造工程を示す説明断面図である。 図 4は、 第 1の態様における半導体装置の製造工程を示す説明断面図である。 図 5は、 第 1の態様における半導体装置の製造工程を示す説明断面図である。 図 6は、 第 2の態様における半導体装置の製造工程を示す説明断面図である。 図 7は、 第 2の態様における半導体装置の製造工程を示す説明断面図である。 図 8は、 第 2の態様における半導体装置の製造工程に用いる半導体素子搭載用 基板の製造工程を示す説明断面図である。
図 9は、 第 2の態様における半導体装置の製造工程を示す説明断面図である。 図 1 0は、 第 2の態様における半導体装置の製造工程を示す説明断面図である o
図 1 1は、 第 2の態様における半導体装置の製造工程を示す説明断面図である
0
図 1 2は、 第 2の態様における半導体装置の製造工程を示す説明断面図である
O
図 1 3は、 第 2の態様のさらに他の例における半導体装置の製造工程を示す説 明断面図である。
図 1 4は、 第 2の態様のさらに他の例における半導体装置の製造工程を示す説 明断面図である。
図 1 5は、 第 2の態様のさらに他の例における半導体装置の製造工程を示す説 明断面図である。
図 1 6は、 第 3の態様における半導体装置の製造工程を示す説明断面図である 図 1 7は、 第 3の態様における半導体装置の製造工程を示す説明断面図である 図 1 8は、 本発明の半導体装置の製法により得られた半導体装置の他の例を示 す断面図である。
図 1 9は、 (a )〜(d ) は本発明の第 2の発明の半導体装置の連続的な製造 工程を示す模式図であって、 (a ) は Bステージ工程を、 (b ) は位置合わせお よび圧着工程を、 (c ) は封止用樹脂のゲル化工程を、 (d ) はキュア一工程を それぞれ示す。
図 2 0は、 本発明の半導体装置の一例を示す断面図である。
図 2 1は、 半導体装置の製造工程を示す説明断面図である。
図 2 2は、 半導体装置の製造工程を示す説明断面図である。
図 2 3、 図 2 4、 図 2 5、 図 2 6は、 本発明で用いる封止用樹脂シー卜の好ま しい使用形態を説明するための説明図である。
図 2 7及び図 2 8は、 本発明の半導体装置の好ましい製法の態様を説明するた めの説明図である。
符号の説明
1 配線回路基板、 2 接続用電極部、 3 半導体素子、 4 封止樹脂層、 1 0 封止用樹脂シート、 1 3 封止用樹脂層、 1 4, 1 5 封止用樹脂層、 1 8 封止用樹脂シート
つぎに、 本発明の実施の形態を詳しく説明する。
本発明の半導体装置の製法により製造される半導体装置は、 図 1に示すように 、 配線回路基板 1の片面に、 複数の接続用電極部 2を介して半導体素子 3が搭載 された構造をとる。 そして、 上記配線回路基板 1と半導体素子 3との間に封止樹 脂層 4が形成されている。
本発明において接続用電極部とは、 周知の電極のみでもよいが、 電極とジョイ ントボール等の電極に配備される導電体を含む概念である。 従って、 一般的に配 線回路基板の接続用電極部と半導体素子の接続用電極部とは、 両者とも電極のみ で連絡されていてもよいが、 通常、 少なくとも一方が電極とジョイントボールか らなる電極部であるようにして両者の電極部が連絡される。
従って、 通常の形態では上記配線回路基板 1と半導体素子 3とを電気的に接続 する上記複数の接続用電極部 2は、 予め配線回路基板 1面にジョイントボール等 が配設されていてもよいし、 半導体素子 3面にジョイントボール等が配設されて いてもよい。 さらには、 予め配線回路基板 1面および半導体素子 3面の双方にそ れぞれにジョイントボール等が配設されていてもよく、 また、 両者の電極部は電 極のみであってもよい。
上記複数の接続用電極部 (ジョイントボール) 2の材質としては、 特に限定す るものではないが、 例えば、 金のスタツドバンプ、 半田による低融点および高融 点バンプ、 銅.ニッケルコアの金めつきバンプ等があげられる。 さらに、 本発明 での層状の固形樹脂を使用することにより、 上記低融点半田のような、 ある一定 の温度で半田の形状が崩れてしまうような材質のものに対して、 上記層状の固形 樹脂は、 接続用電極部 2の高さを制御するための目的としても使用が可能である o
また、 上記配線回路基板 1の材質としては、 特に限定するものではないが、 大 別してセラミック基板、 プラスチック基板があり、 上記プラスチック基板として は、 例えば、 エポキシ基板、 ビスマレイミ ドトリアジン基板等があげられる。 そ して、 本発明の層状の固形樹脂は、 その硬化温度を低く設定することによりブラ スチック基板と、 低融点半田による接続用電極部 2との組み合わせにおいて接合 温度を高温に設定することができないような場合においても特に限定されること なく好適に用いられる。
本発明において、 上記封止樹脂層 4形成材料としては、 層状の固形樹脂が用い られ、 例えば、 固体のエポキシ樹脂組成物が用いられる。
上記エポキシ樹脂組成物は、 必須成分としてエポキシ樹脂 (a成分) と、 硬化 剤 (b成分) と、 無機質充塡剤 (c成分) とを用いて得ることができるものであ り、 常温で固体を示す。 なお、 上記常温とは、 具体的に、 2 0 °Cである。
上記エポキシ樹脂 (a成分) としては、 好ましくは常温で固体であれば特に限 定するものではなく従来公知のもの、 例えば、 ビフヱニル型エポキシ樹脂、 クレ ゾ一ルノボラック型エポキシ樹脂等が用いられ、 さらには溶融時に濡れ性が良好 な低粘度のものを用いることが好ましい。 特に好ましくは、 濡れ性が良くなると いう観点から、 具体的に、 下記の一般式 (1) , 式 (2) , 式 (3) で表される 構造のエポキシ樹脂があげられる。 これらは単独でもしくは 2種以上併せて用 、 られる。
Figure imgf000009_0001
(2)
Figure imgf000009_0002
Figure imgf000009_0003
上記式 (1) 〜 (3) で表される構造のエポキシ樹脂において、 特にエポキシ 当量 1 50〜230 g/e qで、 融点 60〜 1 60 °Cのものを用いることが好ま しい。 また、 樹脂成分の濡れ性向上のために一部液状エポキシ樹脂を用いること もできる。
上記エポキシ樹脂 (a成分) とともに用いられる硬化剤 (b成分) としては、 特に限定するものではなく通常用いられている各種硬化剤、 例えば、 フエノール 樹脂、 メチルへキサヒドロ無水フタル酸等の酸無水物系硬化剤があげられ、 なか でもフヱノ一ノレ樹脂が好適に用いられる。 上記フヱノール樹脂としては、 フヱノ —ルノポラック等が用いられ、 特に低粘度のものを用いることが好ましい。 なか でも、 水酸基当量が 8 0〜1 2 O gZe qで、 軟化点が 8 0°C以下のものを用い ることが好ましい。 より好ましくは、 水酸基当量 9 0〜1 1 0 gZe qで、 軟化 点 5 0〜7 0°Cである。 特に好ましくは水酸基当量 1 0 0〜 1 1 0 g/e qで、 軟化点 5 5〜6 5°Cである。
上記エポキシ樹脂 (a成分) と硬化剤 (b成分) の配合割合は、 硬化剤として フエノ一ル樹脂を用いた場合、 エポキシ樹脂中のエポキシ基 1当量に対してフェ ノール樹脂中の水酸基当量を 0. 7〜1. 3の範囲に設定することが好ましい。 より好ましくは 0. 9〜1. 1の範囲に設定することである。
上記 a成分および b成分とともに用いられる無機質充塡剤 (c成分) としては 、 従来から用いられている各種無機質充塡剤、 例えば、 シリカ粉末、 炭酸カルシ ゥム、 チタン白等があげられる。 なかでも、 球状シリカ粉末、 破砕状シリカ粉末 が好ましく用いられ、 特に球状シリカを用いることが好ましい。 そして、 上記無 機質充塡剤 (c成分) としては、 最大粒径が 1 0 0 以下のものを用いること が好ましい。 特に好ましくは最大粒径が 5 0 /zm以下である。 すなわち、 最大粒 径が 1 0 0 /zmを超えると、 配線回路基板と半導体素子間 (封止用樹脂層を用い て樹脂封止される空隙) の充填が不可能になる場合があるからである。 また、 上 記最大粒径とともに、 平均粒径が 1〜 2 0 mのものを用いることが好ましく、 特に好ましくは 2〜1 0〃mである。 したがって、 このような観点から、 上記無 機質充塡剤 (c成分) の最大粒径は、 配線回路基板と半導体素子間 (封止用樹脂 層を用いて樹脂封止される空隙) の距離の 1Z2以下に設定することが好ましい 。 より好ましくは 1/1 0〜 1/3である。 すなわち、 最大粒径を 1/2以下に 設定することにより、 上記配線回路基板と半導体素子間への溶融した封止用樹脂 層の充填が、 ボイ ド等が生じず良好になされるようになるからである。
上記無機質充填剤 (c成分) の含有割合は、 エポキシ樹脂組成物全体の通常、 9 0重量%以下の範囲に設定することが好ましい。 より好ましくは 8 0重量%以 下であり、 特に好ましくは 7 0重量%以下である。 すなわち、 上記配合割合を超 えて多量に配合すると、 半導体素子の電極と配線回路基板の電極との電気的接合 が良好に行われなくなり不都合が生じ易くなるからである。
本発明に用いられるエポキシ樹脂組成物には、 上記 a〜c成分以外に、 必要に 応じて、 シリコーン化合物 (側鎖エチレングライコールタイプジメチルシロキサ ン等) , アクリロニトリル一ブタジエンゴム等の低応力化剤、 難燃剤、 ポリェチ レン、 カルナバ等のワックス、 シランカップリング剤 (y—グリシドキシプロピ ルトリメ トキシシラン等) 等のカップリング剤等を適宜に配合してもよい。 上記難燃剤としては、 ブロム化エポキシ樹脂等があげられ、 これに三酸化ニァ ンチモン等の難燃助剤等が用いられる。
本発明に用いられる上記エポキシ樹脂組成物は、 例えばつぎのようにして得ら れる。 すなわち、 上記樹脂成分である a成分および b成分を好ましくは加温下に て混合溶融し、 この溶融状態の樹脂成分中に上記 c成分および必要に応じて他の 添加剤を配合し混合する。 この後、 反応性調整のための触媒を加えて均一系とし た後、 パレツト上に受入れし、 これを冷却後、 例えば、 プレス圧延してシート状 化することにより得られる。 この組成物は通常は、 例えば、 チクソトロピー付与 剤を組成物中に混合しておき加熱硬化時の熱時流動性を抑制しておくよう工夫さ れるのが一般的である。 チクソトロピー付与剤としては、 アクリロニトリルブタ ジェン共重合体等を挙げることができる。
上記反応性調整のために配合される触媒としては、 特に限定するものではなく 従来から硬化促進剤として用いられるものがあげられる。 例えば、 トリフエニル ホスフィン、 テトラフェニルホスフェート、 テトラフヱ二ルポレート、 2—メチ ルイミダゾール等があげられる。
上記各成分の混合およびシ一卜の作製方法については上記方法に限定するもの ではなく、 例えば、 上記混合においては、 2軸ロール、 3軸ロール等を用いるこ とも可能である。 また、 上記シートの作製方法についても、 ロール圧延によるシ ート化、 あるいは溶媒を混合したものを塗工して後、 揮散させシート化する方法 も可能である。 また、 上記エポキシ樹脂組成物の供給形態において、 テープ状の 形態をとることにより、 いわゆる、 リール · トウ · リールによる大量生産形式の W0^8/28788 T JP 7 適用が可能となる。
本発明に於いて、 シート、 即ち封止用樹脂シー卜の厚みは通常、 5〜2 0 0 m、 好ましくは 1 0〜1 2 0〃m程度である。
本発明の半導体装置の製法は、 先に述べたように、 配線回路基板上に、 複数の 接続用電極部を介して半導体素子が搭載され、 上記配線回路基板と半導体素子と の間の空隙が封止樹脂層によって封止された半導体装置を製造する際、 上記封止 樹脂層を、 上記配線回路基板と半導体素子との間に層状の固形樹脂を介在させ、 この固形樹脂を溶融させることにより形成することを特徴とする。 このような半 導体装置の製法としては、 具体的には大別して 3つの態様があげられる。
( 1 ) まず、 本発明の半導体装置の製法の第 1の態様を図面に基づき順を追つ て説明する。 この製法 (第 1の態様) では、 上記層状の固形樹脂として、 シート 状のもの、 すなわち、 封止用樹脂シートが用いられる。
まず、 図 2に示すように、 複数の球状の接続用電極部 (ジョイントボール) 2 が設けられた配線回路基板 1上に、 上記接続用電極部 2を介して固形の封止用樹 脂シート 1 0を載置する。 ついで、 図 3に示すように、 上記封止用樹脂シート 1 0上の所定位置に、 半導体素子 3を載置し、 場合によりタック性を利用して仮接 着した後、 上記封止用樹脂シート 1 0を加熱溶融して溶融状態とし、 加圧して上 記半導体素子 3と上記配線回路基板 1との間の空隙内に上記溶融状態の樹脂を充 塡し、 硬化させることにより上記空隙を樹脂封止して封止樹脂層 4を形成する。 なお、 封止用樹脂シートにタック性を付与するには、 例えば、 使用するエポキシ 樹脂組成物中にァクリロニトリルブタジエン系共重合体等のゴム成分を添加して おく。 このようにして、 図 1に示す半導体装置を製造する。 そして、 上記加圧操 作により、 ジョイントボール 2は抑圧力を受けて、 通常の場合は偏平化し (ジョ イントボールの高さが低くなる) 、 電極間接合をより確実化ならしめる。
なお、 上記半導体装置の製法では、 複数の球状の接続用電極部 (ジョイントボ —ル) 2が設けられた配線回路基板 1を用いた場合について述べたが、 これに限 定するものではなく、 予め半導体素子 3の片面 (接続面側) に上記複数の球状の 接続用電極部 (ジョイントボール) 2が配設されたものを用いてもよい。 この場 合 (予め半導体素子 3面に接続用電極部 2が配設されたものを使用) は、 図 4に 示すように、 配線回路基板 1面に固形の封止用樹脂シート 1 0を載置して、 その 上に、 配線回路基板 1と接続用電極部 2配設面とが対峙するよう接続用電極部 2 が設けられた半導体素子 3を載置する。 さらに、 接続用電極部 2力 配線回路基 板 1および半導体素子 3の双方に設けられたものを用いる場合は、 図 5に示すよ うに、 両者の接続用電極部 2の間に封止用樹脂シート 1 0を配置する。 後の工程 は、 上記と同様である。
上記封止用樹脂シ一ト 1 0としては、 半導体素子 3もしくは配線回路基板 1に 封止用樹脂シート 1 0を仮接着する場合には、 タック性を備えたシ一ト状のェポ キシ樹脂組成物とすることが好ましい。 そして、 上記封止用樹脂シート 1 0の大 きさとしては、 上記搭載される半導体素子 3の大きさ (面積) により適宜に設定 され、 通常、 半導体素子 3の大きさ (面積) より少し小さくなるように設定する ことが好ましい。 また、 上記封止用樹脂シート 1 0の厚みおよび重量は、 上記と 同様、 搭載される半導体素子 3の大きさおよび上記配線回路基板 1に設けられた 球状の接続用電極部 2の大きさ、 すなわち、 半導体素子 3と配線回路基板 1との 空隙を充塡し樹脂封止することにより形成される封止樹脂層 4の占める容積によ り適宜に設定される。
また、 上記半導体装置の製造方法において、 上記封止用樹脂シート 1 0を加熱 溶融して溶融状態とする際の加熱温度としては、 半導体素子 3および配線回路基 板 1の劣化等を考慮して 7 0〜 3 0 0 °Cの範囲に設定することが好ましく、 特に 好ましくは 1 2 0〜2 0 0 °Cである。 そして、 加熱方法としては、 赤外線リフロ ー炉、 乾燥機、 温風機、 熱板等があげられる。
さらに、 上記溶融状態とした封止用樹脂を上記半導体素子 3と上記配線回路基 板 1との間の空隙内に充塡する際には、 上記のように加圧することが好ましく、 その加圧条件としては、 接続用電極部 (ジョイントボール) 2の個数等によって 適宜に設定されるが、 具体的には 0 . 0 2〜0 . 5 k 個の範囲に設定され、 好ましくは 0 . 0 4〜 2 k g /個の範囲に設定される。
また、 上記第 1の態様の製法において、 上記配線回路基板 1上に封止用樹脂シ —卜 1 0を載置し、 さらにこの封止用樹脂シート 1 0上に半導体素子 3を載置し た後、 あるいは、 上記半導体素子 3上に封止用樹脂シート 1 0を載置し、 さらに この封止用樹脂シート 1 0上に配線回路基板 1を載置した後、 所定時間加熱する とともに、 上記封止用樹脂シート 1 0が下記の物性 (ィ) 〜 (ハ) の少なくとも 一つを備えた状態になるまで加圧し、 その状態で上記配線回路基板 1と半導体素 子 3との間の空隙に、 溶融状態の封止用樹脂を充塡するという工程を経由させる ことが特に好ましい。 このように、 上記加圧によって封止用樹脂シート 1 0が下 記の物性を有する (加圧終了時点) ことにより、 充塡された封止樹脂層部分に細 かなボイドを巻き込むことなく、 均質で良好な封止樹脂層が形成される。 すなわ ち、 封止用樹脂シート 1 0の樹脂粘度が 5 0 0 0ボイズ未満、 ゲル化時間が初期 ゲル化時間の 3 0 %を超える、 残存反応熱量が初期残存反応熱量の 7 0 %を超え る場合のように、 単に配線回路基板 1と半導体素子 3を加圧して圧着させた際に は、 空隙部分に充塡された封止用樹脂、 つまり封止樹脂層部分に細かなボイドが 形成される恐れがある。
(ィ) 樹脂粘度が 5 0 0 0ボイズ以上。
(口) 封止用樹脂シートの加熱前の初期ゲル化時間を 1 0 0 %とした場合、 ゲル 化時間が初期ゲル化時間の 3 0 %以下である。
(ハ) 示差走査熱量計 (D S C ) により測定される封止用樹脂シートの加熱前の 初期残存反応熱量を 1 0 0 %とした場合、 残存反応熱量が初期残存反応熱量の 7 0 %以下である。
上記特性 (ィ) における樹脂粘度は、 上記のように、 5 0 0 0ボイズ以上であ ることが好ましく、 特に好ましくは 1 0 0 0 0ボイズ以上の範囲であり、 その樹 脂粘度の測定は、 島津製作所社製のフローテスターを用いて 1 7 5 °Cにて測定し た。
また、 上記特性 (口) において、 ゲル化時間が初期ゲル化時間の 3 0 %以下に 達したものが好ましく、 特に好ましくは初期ゲル化時間の 2 0 %以下であり、 そ のゲル化時間の測定は、 例えば、 つぎのようにして行われる。 すなわち、 熱板上 に測定対象となる試料を載せ、 この試料が溶融した時点 (初期ゲル化時間) から 、 薄く広がった試料の表面上を針先で線をいれ、 その線が広がり乱れた時点を終 点としてゲル化時間を測定する。
そして、 上記特性 (ハ) において、 残存反応熱量が初期残存反応熱量の 7 0 % 以下に達したものが好ましく、 特に好ましくは初期残存反応熱量の 6 5 %以下で ある。 そして、 その残存反応熱量の測定は、 上記のように、 D S Cを用い、 昇温 速度 5 °C/m i nで、 6 0〜 2 0 0 °Cまで昇温させ、 9 0〜 1 8 0 °Cの反応熱量 を測定する。
( 2 ) つぎに、 本発明の半導体装置の製法の第 2の態様を図面に基づき順を追 つて説明する。 この製法 (第 2の態様) では、 上記層状の固形樹脂として、 接続 用電極部が設けられた、 配線回路基板面および半導体素子面の少なくとも一方に 直接形成された封止用樹脂層が用いられる。
まず、 図 6に示すように、 複数の球状の接続用電極部 (ジョイントボール) 2 が設けられた配線回路基板 1面上に、 上記球状の接続用電極部 2の頭頂部が露出 するよう封止用樹脂層 1 3を形成する。 つぎに、 図 7に示すように、 上記封止用 樹脂層 1 3からその頭頂部が露出した接続用電極部 2と、 半導体素子 3の電極部 が当接するよう上記配線回路基板 1に半導体素子 3を搭載する。 ついで、 全体を 加熱して上記封止用樹脂層 1 3を溶融して溶融状態とし、 加圧して半導体素子 3 と上記配線回路基板 1との間の空隙内に上記溶融状態の封止用樹脂層 1 3を充塡 し、 硬化させることにより上記空隙を樹脂封止して封止樹脂層 4を形成する。 こ のようにして、 図 1に示す半導体装置を製造する。
上記図 6に示す、 球状の接続用電極部 2が設けられた配線回路基板 1面に、 上 記接続用電極部 2の頭頂部が露出するよう形成される封止用樹脂層 1 3は、 例え ば、 つぎのようにして作製することができる。 すなわち、 図 2に示すように、 複 数の球状の接続用電極部 2が設けられた配線回路基板 1上に、 上記接続用電極部 2を介して固形の封止用樹脂シート 1 0を載置する (前述の半導体装置の製法の 第 1の態様) 。 ついで、 上記封止用樹脂シート 1 0を加熱溶融することにより、 図 6に示すように、 球状の接続用電極部 2が設けられた配線回路基板 1面に、 上 記接続用電極部 2の頭頂部が露出するよう封止用樹脂層 1 3が形成される。 さらに、 上記のような封止用樹脂層 1 3の形成方法以外に、 例えば、 つぎのよ うにして作製することができる。 すなわち、 図 8に示すように、 予め、 接続用電 極部 2が設けられた配線回路基板 1を準備する。 つぎに、 上記接続用電極部 2が 設けられた配線回路基板 1面上に、 エポキシ樹脂組成物を用い、 印刷塗工法によ り、 封止用樹脂層 1 3を形成する。 このようにして、 上記図 6に示す、 接続用電 極部 2の頭頂部が露出するよう封止用樹脂層 1 3が形成される。
なお、 上記半導体装置の製法では、 複数の球状の接続用電極部 (ジョイントボ ール) 2が設けられた配線回路基板 1を用いた場合について述べたが、 これに限 定するものではなく、 先に述べた第 1の態様と同様、 予め半導体素子 3の片面 ( 接続面側) に上記複数の球状の接続用電極部 (ジョイントボール) 2力《配設され たものを用いてもよい。 この場合は、 図 9に示すように、 複数の球状の接続用電 極部 (ジョイントボール) 2が設けられた半導体素子 3面上に、 上記球状の接続 用電極部 2の頭頂部が露出するよう封止用樹脂層 1 3を形成する。 ついで、 上記 封止用樹脂層 1 3からその頭頂部が露出した接続用電極部 2と、 配線回路基板 1 の電極部が当接するよう上記配線回路基板 1を搭載する。
さらに、 接続用電極部 2が、 配線回路基板 1および半導体素子 3の双方に設け られたものを用いる場合は、 両者のうちの少なくとも一方の接続用電極部 2形成 面に、 上記接続用電極部 2の頭頂部が露出するよう封止用樹脂層 1 3を形成する 。 例えば、 図 1 0に示すように、 複数の球状の接続用電極部 (ジョイントボール ) 2が設けられた半導体素子 3面上に、 上記球状の接続用電極部 2の頭頂部が露 出するよう封止用樹脂層 1 3を形成する。 ついで、 上記封止用樹脂層 1 3からそ の頭頂部が露出した接続用電極部 2を有する半導体素子 3を、 接続用電極部を有 する配線回路基板 1に搭載する。 あるいは、 図 1 1に示すように、 複数の球状の 接続用電極部 2が設けられた配線回路基板 1面に、 上記球状の接続用電極部 2の 頭頂部が露出するよう封止用樹脂層 1 3を形成する。 つぎに、 上記封止用樹脂層 1 3からその頭頂部が露出した接続用電極部 2を有する配線回路基板 1に、 接続 用電極部 2を有する半導体素子 3を搭載する。 また、 図 1 2に示すように、 複数 の球状の接続用電極部 2が設けられた半導体素子 3面上に、 上記球状の接続用電 極部 2の頭頂部が露出するよう封止用樹脂層 1 3を形成する。 一方、 複数の球状 の接続用電極部 2が設けられた配線回路基板 1面に、 上記球状の接続用電極部 2 の頭頂部が露出するよう封止用樹脂層 1 3を形成する。 つぎに、 上記封止用樹脂 層 1 3からその頭頂部が露出した接続用電極部 2を有する配線回路基板 1に、 上 記封止用樹脂層 1 3からその頭頂部が露出した接続用電極部 2を有する半導体素 子 3を搭載する。 後の工程は、 上記と同様であり、 好ましくは加圧下でジョイン トポールを偏平化しつつまたは偏平化した後、 封止用樹脂層を硬化すればよい。 上記図 1 0〜図 1 2において、 接続用電極部 2が設けられた配線回路基板 1に 封止用樹脂層 1 3を形成する方法は、 先に述べた配線回路基板 1に接続用電極部 2が設けられた場合の形成方法と同様の方法に従って形成される。 また、 接続用 電極部 2が設けられた半導体素子 3に封止用樹脂層 1 3を形成する方法は、 上記 形成方法と同様、 封止用樹脂シート 1 0を用いて加熱溶融する、 あるいは、 接続 用電極部 2が設けられた半導体素子 3面に、 印刷塗工する方法に従って形成され 。
そして、 上記第 2の態様において、 上記形成された封止用樹脂層 1 3は、 融点 を超える温度において、 半導体素子 3と配線回路基板 1との間を越えて、 前記の 如く、 樹脂層にチクソト口ピー性を付与するなどの工夫をすることにより流出し ないよう設計された封止用樹脂層 1 3とすることが好ましい。
また、 上記第 2の態様の製法において、 封止用樹脂層 1 3の加熱温度としては 、 先に述べた第 1の態様と同様、 半導体素子 3および配線回路基板 1の劣化等を 考慮して 7 0〜 3 0 0 °C、 特に好ましくは 1 2 0〜 2 0 0 °Cの範囲に設定するこ とが好ましい。 そして、 加熱方法も上記と同様、 赤外線リフロー炉、 乾燥機、 温 風機、 熱板等があげられる。 さらに、 上記加圧条件も、 先に述べた第 1の態様と 同様、 接続用電極部 (ジョイントボール) 2の個数等によって適宜に設定される 力、 具体的には 0 . 0 2〜 5 k gZ個の範囲に設定され、 好ましくは 0 . 0 4〜0 . 2 k 個の範囲に設定される。
なお、 上記第 2の態様において、 図 1 0〜図 1 2に示すように、 接続用電極部 2が配線回路基板 1および半導体素子 3の双方に設けられたものを用い、 両者の うちの少なくとも一方の接続用電極部 2形成面に、 上記接続用電極部 2の頭頂部 が露出するよう封止用樹脂層 1 3が形成された場合において、 さらに他の態様が あげられる。 これは、 上記封止用樹脂層 1 3に加えて、 配線回路基板 1と半導体 素子 3との間に、 さらに封止用樹脂シー卜を介在させるものである。
すなわち、 図 1 0に示すタイプのさらに他の態様では、 図 1 3に示すように、 複数の球状の接続用電極部 2が設けられた半導体素子 3面上に、 上記球状の接続 用電極部 2の頭頂部が露出するよう封止用樹脂層 1 3を形成する。 ついで、 上記 封止用樹脂層 1 3からその頭頂部が露出した接続用電極部 2を有する半導体素子 3を、 封止用樹脂シ一ト 1 8を介して接続用電極部を有する配線回路基板 1に搭 載し、 加熱溶融、 硬化する。
また、 図 1 1に示すタイプのさらに他の態様では、 図 1 4に示すように、 複数 の球状の接続用電極部 2が設けられた配線回路基板 1面に、 上記球状の接続用電 極部 2の頭頂部が露出するよう封止用樹脂層 1 3を形成する。 つぎに、 上記封止 用樹脂層 1 3からその頭頂部が露出した接続用電極部 2を有する配線回路基板 1 に、 封止用樹脂シート 1 8を介して接続用電極部 2を有する半導体素子 3を搭載 し、 好ましくは加圧下で加熱溶融、 硬化させる。
そして、 図 1 2に示すタイプのさらに他の態様では、 図 1 5に示すように、 複 数の球状の接続用電極部 2が設けられた半導体素子 3面上に、 上記球状の接続用 電極部 2の頭頂部が露出するよう封止用樹脂層 1 3を形成する。 一方、 複数の球 状の接続用電極部 2が設けられた配線回路基板 1面に、 上記球状の接続用電極部 2の頭頂部が露出するよう封止用樹脂層 1 3を形成する。 つぎに、 上記封止用樹 脂層 1 3からその頭頂部が露出した接続用電極部 2を有する配線回路基板 1に、 封止用樹脂シート 1 8を介して、 上記封止用樹脂層 1 3からその頭頂部が露出し た接続用電極部 2を有する半導体素子 3を搭載する。 後の工程は、 上記と同様で ある。
上記図 1 3〜図 1 5に示すさらに他の態様における製法においても、 封止用樹 脂層 1 3および封止用樹脂シート 1 8の加熱温度は、 上記と同様、 半導体素子 3 および配線回路基板 1の劣化等を考慮して 7 0〜 3 0 0 °C、 好ましくは 1 2 0〜 2 0 0 °Cの範囲に設定することが好ましい。 そして、 加熱方法も上記と同様の方 法があげられる。 さらに、 上記加圧条件も、 先に述べた条件と同様、 接続用電極 部 2の個数等によって適宜に設定される力、 具体的には 0 . 0 2〜0 . 5 k g / 個の範囲に設定され、 好ましくは 0 . 0 4〜0 . 2 k gZ個の範囲に設定される また、 上記第 2の態様の製法において、 上記配線回路基板 1面に設けられた接 続用電極部 (ジョイントボール) 2に半導体素子 3の接続用電極部 2が当接する よう半導体素子 3を上記配線回路基板 1に載置した後、 あるいは、 上記半導体素 子 3面に設けられた接続用電極部 (ジョイントボール) 2に配線回路基板 1の接 続用電極部 2が当接するよう配線回路基板 1を上記半導体素子 3に載置した後、 所定時間加熱するとともに、 上記封止用樹脂層 1 3が下記の物性 (ィ) 〜 (ハ) の少なくとも一つを備えた状態になるまで加圧し、 その状態で上記配線回路基板 1と半導体素子 3との間の空隙に、 溶融状態の封止用樹脂を充塡するという工程 を経由させることが特に好ましい。 このように、 先の第 1の態様で述べた理由と 同様、 封止用樹脂層 1 3が下記の物性を有することにより、 充塡された封止樹脂 層部分に細かなボイドを巻き込むことなく、 均質で良好な封止樹脂層が形成され
(ィ) 樹脂粘度が 5 0 0 0ボイズ以上。
(口) 封止用樹脂層の加熱前の初期ゲル化時間を 1 0 0 %とした場合、 ゲル化時 間が初期ゲル化時間の 3 0 %以下である。
(ハ) 示差走査熱量計 (D S C ) により測定される封止用樹脂層の加熱前の初期 残存反応熱量を 1 0 0 %とした場合、 残存反応熱量が初期残存反応熱量の 7 0 % 以下である。
また、 上記特性 (ィ) における樹脂粘度の特に好適な範囲、 上記特性 (口) に おけるゲル化時間の特に好適な範囲、 および、 上記特性 (ハ) における残存反応 熱量の特に好適な範囲は、 前記の第 1の態様で述べた特に好ましい範囲と同じで ある。 さらに、 上記樹脂粘度、 ゲル化時間および残存反応熱量の各測定方法も前 記第 1の態様と同じである。
( 3 ) つぎに、 本発明の半導体装置の製法の第 3の態様を図面に基づき説明す る。 この製法 (第 3の態様) では、 上記層状の固形樹脂がそれ単独ではなく、 予 め、 接続用電極部にジョイントボールの設けられていない半導体素子面あるいは 配線回路基板面に封止用樹脂層を設けた状態のものを使用する。
まず、 予め、 封止用樹脂層を半導体素子面に貼着した状態のものを使用した例 について述べる。 すなわち、 図 1 6に示すように、 予め、 半導体素子 3の片面に 封止用樹脂層 1 4を形成した状態のものを準備する。 ついで、 複数の球状の接続 用電極部 (ジョイントボール) 2が設けられた配線回路基板 1上の所定位置に、 上記貼着された封止用樹脂層 1 4が上記接続用電極部 2と当接するよう半導体素 子 3を載置する。 載置した後、 上記封止用樹脂層 1 4を加熱溶融して溶融状態と し、 好ましくは加圧してジョイントボール 2を偏平化させると共に上記半導体素 子 3と上記配線回路基板 1との間の空隙内に上記溶融状態の樹脂を充填し、 硬化 させることにより上記空隙を樹脂封止して封止樹脂層を形成する。 このようにし て、 図 1に示す半導体装置を製造する。
一方、 上記第 3の態様の他の例として、 予め、 封止用樹脂層を配線回路基板面 に貼着した状態のものを使用した例について述べる。 すなわち、 図 1 7に示すよ うに、 予め、 配線回路基板 1の片面に封止用樹脂層 1 5を形成した状態のものを 準備する。 ついで、 複数の球状の接続用電極部 (ジョイントボール) 2が設けら れた半導体素子 3を、 上記接続用電極部 2と封止用樹脂層 1 5とが当接するよう 、 上記配線回路基板 1面の封止用樹脂層 1 5上に載置する。 載置した後、 上記封 止用樹脂層 1 5を加熱溶融して溶融状態とし、 好ましくは加圧して上記と同様半 導体素子 3と上記配線回路基板 1との間の空隙内に上記溶融状態の樹脂を充塡し 、 硬化させることにより上記空隙を樹脂封止して封止樹脂層を形成する。 このよ うにして、 図 1に示す半導体装置を製造する。
上記図 1 6および図 1 7における、 封止用樹脂層 1 4, 1 5の形成方法として は、 半導体素子 3面あるいは配線回路基板 1面に封止用樹脂シ一トを貼着する、 封止用樹脂層形成材料を印刷塗工により形成する方法等があげられる。
上記封止用樹脂層 1 4, 1 5としては、 前記第 1の態様と同様、 その大きさは 半導体素子 3の大きさ (面積) により適宜に設定され、 通常、 半導体素子 3の大 きさ (面積) より少し小さくなるように設定することが好ましい。 また、 上記封 止用樹脂層 1 4, 1 5の厚みおよび重量 (封止用樹脂シ一卜の場合) は、 上記と 同様、 半導体素子 3の大きさおよび上記接続用電極部 2の大きさ、 すなわち、 半 導体素子 3と配線回路基板 1との空隙を充塡し樹脂封止することより形成される 封止樹脂層 4の占める容積により適宜に設定される。
また、 上記第 3の態様の製法において、 上記封止用樹脂層 1 4, 1 5を加熱溶 融して溶融状態とする際の加熱温度としては、 先に述べた第 1および第 2の態様 と同様、 半導体素子 3および配線回路基板 1の劣化等を考慮して通常、 7 0〜3 0 0 °Cの範囲に設定され、 好ましくは 1 2 0〜2 0 0 °Cである。 そして、 加熱方 法としては、 赤外線リフ口一炉、 乾燥機、 温風機、 熱板等があげられる。 さらに 、 上記溶融状態とした封止用樹脂を上記半導体素子 3と上記配線回路基板 1との 間の空隙内に充塡する際には、 上記のように加圧することが好ましく、 その加圧 条件としては、 接続用電極部 (ジョイントボール) 2の個数等によって適宜に設 定されるが、 具体的には 0 . 0 2〜0 . 5 k gZ個の範囲に設定され、 好ましく は 0 . 0 4〜0 . 2 k gZ個の範囲に設定される。
さらに、 上記第 3の態様の製法において、 半導体素子 3の片面に設けられた封 止用樹脂層 1 4と配線回路基板 1の接続用電極部とを当接した後、 あるいは配線 回路基板 1の片面に設けられた封止用樹脂層 1 5と半導体素子 3の接続用電極部 とを当接した後、 所定時間加熱するとともに、 上記各封止用樹脂層 1 4, 1 5が それぞれ下記の物性 (ィ) 〜 (ハ) の少なくとも一つを備えた状態になるまで加 圧し、 その状態で上記配線回路基板 1と半導体素子 3との間の空隙に、 溶融状態 の封止用樹脂を充塡するという工程を経由させることが特に好ましい。 このよう に、 封止用樹脂層 1 4, 1 5が下記の物性を有することにより、 充填された封止 樹脂層部分に細かなボイドを巻き込むことなく、 均質で良好な封止樹脂層が形成 される。
(ィ) 樹脂粘度が 5 0 0 0ボイズ以上。
(口) 封止用樹脂層の加熱前の初期ゲル化時間を 1 0 0 %とした場合、 ゲル化時 間が初期ゲル化時間の 3 0 %以下である。
(ハ) 示差走査熱量計 (D S C ) により測定される封止用樹脂層の加熱前の初期 残存反応熱量を 1 0 0 %とした場合、 残存反応熱量が初期残存反応熱量の 7 0 % 以下である。
また、 上記特性 (ィ) における樹脂粘度の特に好適な範囲、 上記特性 (口) に おけるゲル化時間の特に好適な範囲、 および、 上記特性 (ハ) における残存反応 熱量の特に好適な範囲は、 前記の第 1の態様で述べた特に好ましい範囲と同じで ある。 さらに、 上記樹脂粘度、 ゲル化時間および残存反応熱量の各測定方法も前 記第 1の態様と同じである。
上記第 1〜第 3の態様に従って製造される半導体装置の一例としては、 前述の 図 1に示すように、 形成された封止樹脂層 4力、 搭載された半導体素子 3の周囲 からはみ出さないよう形成されたタイプがあげられる力 半導体装置の用途等に よっては、 図 1 8に示すように、 形成された封止樹脂層 4 ' が、 搭載された半導 体素子 3の周囲からはみ出すよう形成されたタイプであってもよい。
そして、 上記のようにして製造された半導体装置において、 半導体素子 3の大 きさは、 通常、 幅 2〜2 0 mm x長さ 2〜3 0 mm x厚み 0 . 1〜2 . 0 mm、 好ましくは 0 . 2〜1 . 0 mmに設定される。 また、 半導体素子 3を搭載する配 線回路が形成された配線回路基板 1の大きさは、 通常、 幅 5〜1 2 0 mm, 好ま しくは 1 0〜7 0 mm x長さ 5〜1 2 0 mm. 好ましくは 1 0〜7 O mm X厚み 0 . 0 5〜3 . 0 mmに設定される。 そして、 溶融した封止用樹脂が充塡される 、 半導体素子 3と配線回路基板 1の空隙の両者間の距離は、 通常、 5〜2 0 0 / m、 好ましくは 5〜 1 0 0 /z mである。
上記封止用樹脂を用いて封止することにより形成された封止樹脂層 4、 すなわ ち、 上記封止用樹脂の特性としては、 各使用温度での溶融粘度が 1 ~ 1 0 0 0ポ ィズ、 ゲルタイムが 1 5 0 °Cにおいて 0 . 5〜3 0分、 その硬化物としては、 線 膨脹係数が?〜 5 0 p p mであることが好ましい。 より好ましくは溶融粘度が 1 〜 5 0 0ボイズ、 ゲルタイムが 1 5 0 °Cにおいて 1 . 0〜 1 5分間、 線膨脹係数 が 1 2〜4 0 p p mである。 すなわち、 溶融粘度が上記範囲内に設定されること により、 充塡性が良好となる。 また、 ゲルタイムが上記範囲内に設定されること により、 成形作業性、 特に硬化時間の短縮が可能となる。 さらに、 線膨脹係数が 上記範囲内に設定されることにより、 樹脂硬化体や半導体素子にクラック等の応 力による欠陥防止が可能となる。 なお、 上記溶融粘度は、 フローテスタ一粘度計 により測定し、 上記ゲルタイムは熱板上にて測定した。 また、 線膨脹係数は、 熱 機械分析 (TMA) により測定した。
以上の説明ように、 本発明の半導体装置の製法は、 複数の接続用電極部を介在 して接続された、 配線回路基板と半導体素子との間の空隙を封止樹脂層によって 樹脂封止する際に、 上記封止樹脂層を、 上記配線回路基板と半導体素子との間に 層状の固形樹脂を介在させ、 この固形樹脂を溶融させることにより形成すること を特徴とする。 このように、 上記溶融した樹脂が、 上記配線回路基板と半導体素 子との間の空隙に充填されて両者が接合されるため、 従来の煩雑な製造工程と比 ベて、 上記配線回路基板と半導体素子との接続および樹脂封止の工程を一度で行 うことができ、 製造工程の大幅な簡略化が実現する。 また、 封止用樹脂として液 状樹脂を用 、ず保存性に優れた固形樹脂を用いるため、 上記空隙内に注入する際 の上述のような諸問題が生じることもない。
さらに、 上記固形樹脂として、 最大粒径が 1 0 0 z/ m以下に設定された無機質 充塡剤を、 特定割合含有するエポキシ樹脂組成物を用いることにより、 上記基板 と半導体素子の空隙内への充填がボイド等が生じることなく良好に行われる。 そして、 上記固形樹脂を溶融させることにより形成された封止樹脂層としては 、 上記配線回路基板上に、 封止用樹脂シートを搭載し、 ついで、 上記封止用樹脂 シ一ト上に半導体素子を載置した後、 上記封止用樹脂シートを加熱溶融すること により、 上記配線回路基板と半導体素子との間の空隙に、 上記溶融状態の樹脂を 充塡し硬化させることにより形成することができる。 このように、 上記層状の固 形樹脂として封止用樹脂シートを用いることにより、 半導体装置の製造効率が著 しく向上する。
また、 上記固形樹脂を溶融させることにより形成された封止樹脂層としては、 上記配線回路基板上に、 上記接続用電極部の一部が露出するよう封止用樹脂層を 形成し、 ついで、 上記接続用電極部に半導体素子の電極部が当接するよう上記半 導体素子搭載用基板に半導体素子を載置した後、 上記封止用樹脂層を加熱溶融す る。 あるいは、 上記半導体素子面に設けられた接続用電極部の一部が露出するよ う封止用樹脂層を形成した後、 さらに、 上記接続用電極部に配線回路基板の電極 部が当接するよう半導体素子を配線回路基板に載置し、 ついで、 上記封止用樹脂 層を加熱溶融する。 このようにして、 上記配線回路基板と半導体素子との間の空 隙に、 上記溶融状態の封止用樹脂を充填し硬化させることにより形成することが できる。 このように、 上記層状の固形樹脂として封止用樹脂層を用いることによ り、 半導体装置の製造効率が著しく向上する。
そして、 上記接続用電極部の一部が露出するよう形成された封止用樹脂層は、 接続用電極部が設けられた配線回路基板上あるいは半導体素子上に、 上記接続用 電極部を介して封止用樹脂シ一トを搭載した後、 この封止用樹脂シ一トを加熱溶 融して容易に形成することができる。 または、 接続用電極部が設けられた配線回 路基板面あるいは半導体素子面に、 封止用樹脂層形成材料を印刷塗工して容易に 封止用樹脂層を形成することができる。
さらに、 上記固形樹脂を溶融させることにより形成された封止樹脂層は、 予め 、 上記半導体素子の片面に封止用樹脂層を設けたものを準備し、 複数の接続用電 極部が設けられた配線回路基板上に、 上記封止用樹脂層が上記接続用電極部と当 接するよう半導体素子を載置する。 あるいは、 予め、 上記配線回路基板の片面に 封止用樹脂層を貼着したものを準備し、 上記配線回路基板上に、 複数の接続用電 極部が設けられた半導体素子の上記接続用電極部が上記封止用樹脂層と当接する よう半導体素子を載置する。 ついで、 上記封止用樹脂層を加熱溶融することによ り、 上記配線回路基板と半導体素子との間の空隙に、 上記溶融状態の封止用樹脂 を充填し硬化させることにより容易に形成することができる。
特に、 上記各製法において、 配線回路基板と半導体素子との間の空隙を樹脂封 止するための封止材料である、 封止用樹脂シート, 封止用樹脂層を所定時間加熱 するとともに、 上記封止用樹脂シート, 封止用樹脂層が下記の物性 (ィ) 〜 (ハ ) の少なくとも一つを備えた状態になるまで加圧し、 その状態で上記配線回路基 板と半導体素子との間の空隙に溶融状態の封止用樹脂を充塡した場合、 充塡した 封止用樹脂部分に細かなボイドを巻き込むことなく、 均質で良好な封止樹脂層が 形成されるため、 素子と基板のジョイント部分の信頼性 (導通特性等) に優れた 半導体装置が得られる。
(ィ) 樹脂粘度が 5 0 0 0ボイズ以上。
(口) 封止用樹脂シートまたは封止樹脂層の加熱前の初期ゲル化時間を 1 0 0 % とした場合、 ゲル化時間が初期ゲル化時間の 3 0 %以下である。
(ハ) 示差走査熱量計 (D S C ) により測定される、 封止用樹脂シートまたは封 止樹脂層の加熱前の初期残存反応熱量を 1 0 0 %とした場合、 残存反応熱量が初 期残存反応熱量の 7 0 %以下である。
なお、 従来技術の液状樹脂による封止方式の場合では、 半導体素子の電極と配 線回路基板の電極(たいていはハンダ電極) を当接させた後、 加熱炉でハンダを 溶融させ、 しかる後、 常温まで冷却して液状樹脂を注入する。 このとき、 配線回 路基板にフイルムのようなフレキシブル基板を用いた場合、 加熱炉から取り出し た後、 常温に戻るまでの過程での熱収縮により該基板の中央部に存在する隙間 ( 該基板と半導体素子の隙間) 力 周辺の隙間より狭くなるため、 液状樹脂の注入 作業時に未充填となる場合がある。 そのため配線回路基板としてフレキシブル基 板を用いる場合は、 該基板に金属板等のステフアナ一を添着するのが、 一般的で めった。
し力、しな力くら、 本発明に於いては、 かかるステフアナ一を特に添着しなくとも 一定の封止樹脂層厚みを確保した封止が可能となつた。
以上説明した通り、 本発明の封止用樹脂シ一トを用いた半導体装置の製法は、 従来製法に比して数多くの利点を有している。
しかしながら、 半導体装置の製造方法の条件によっては、 半導体素子とボード の熱収縮率に起因して半導体装置に反りが発生する場合がある。
反りは通常の場合は、 半導体チップ側を湾曲外面、 即ちチップ側に凸として発 生する。
このような反りの問題を解決すべく、 本発明者達はさらに研究を進め、 課題解 決に到達したので、 以下第 2の発明として説明する。
本願発明に於ける第 2の発明は、 このような事情に鑑みなされたもので、 上記 半導体素子とボードとの空隙に封止樹脂層を形成する際に、 装置全体に反りの発 生を抑制することができ、 結果、 信頼性に優れた半導体装置を容易に製造するこ とのできる半導体装置の製法の提供をその目的とする。
上記の目的を達成するため、 本発明の半導体装置の製法は、 配線回路基板上に 、 複数の接続用電極部を介して半導体素子が搭載され、 上記配線回路基板と半導 体素子との間の空隙が封止樹脂層によつて封止されてなる半導体装置の製法であ つて、 上記配線回路基板と半導体素子との間に層状の固形樹脂を介在させて所定 時間加熱し、 上記固形樹脂層が所定の温度領域になった段階で、 配線回路基板と 半導体素子を下記の条件 (X) および (Y) を満たして加圧接合することにより 上記固形樹脂を溶融させ上記封止樹脂層を形成するという構成をとる。
(X) 示差走査熱量計 (D S C ) により測定される固形樹脂の加熱前の初期残存 反応熱量を 1 0 0 %とした場合、 残存反応熱量が初期残存反応熱量の 7 0 %以下 である。
(Y) 配線回路基板の温度よりも半導体素子の温度を高く設定し、 かつ両者の温 度差が 5 0 °C以上である。
すなわち、 本発明では、 複数の接続用電極部を介在して接続された、 配線回路 基板と半導体素子との間の空隙を封止樹脂層によつて樹脂封止して半導体装置を 製造するに際して、 上記配線回路基板と半導体素子との間に層状の固形樹脂を介 在させて所定時間加熱し、 配線回路基板と半導体素子を前記特定の条件 (X) お よび (Y) を満たして加圧接合することにより上記固形樹脂を溶融させ上記封止 樹脂層を形成する。 このように、 上記配線回路基板と半導体素子との加圧接合に おいて、 上記特定の条件 (X) および (Y) を満たすことによって、 配線回路基 板と半導体素子の熱収縮率の差に起因した半導体装置の反りの度合レ、が抑制され 、 半導体素子に係る応力が低減される結果、 信頼性に優れた半導体装置が得られ 。
さらに、 本発明において、 上記固形樹脂として、 最大粒径が 1 0 O ^ m以下に 設定された無機質充填剤を、 特定割合含有するェポキシ樹脂組成物を用いる場合 、 上記配線回路基板と半導体素子の空隙内への充塡がボイド等が生じることなく 良好に行われることを突き止めた。
そして、 上記固形樹脂を溶融させることにより形成される封止樹脂層は、 例え ば、 上記配線回路基板上に、 封止用樹脂シートを搭載した後、 さらに、 上記封止 用樹脂シート上に半導体素子を載置し、 ついで、 所定時間加熱保持し、 上記条件 (X) および (Y) を満たす状態で加圧接合することにより、 上記配線回路基板 と半導体素子との間の空隙に、 上記溶融状態の封止用樹脂を充填し硬化させるこ とにより容易に形成することができる。
また、 上記固形樹脂を溶融させることにより形成された封止樹脂層は、 上記配 線回路基板面に設けられた接続用電極部の一部が露出するよう封止用樹脂層を形 成した後、 さらに、 上記接続用電極部に半導体素子の電極部が当接するよう半導 体素子を上記配線回路基板に載置し、 ついで、 所定時間加熱保持し、 上記条件 ( X) および (Y) を満たす状態で加圧接合する。 あるいは、 上記半導体素子面に 設けられた接続用電極部の一部が露出するよう封止用樹脂層を形成した後、 さら に、 上記接続用電極部に配線回路基板の電極部が当接するよう半導体素子を配線 回路基板に載置し、 ついで、 所定時間加熱保持し、 上記条件 (X) および (Y) を満たす状態で加圧接合する。 このようにして、 上記配線回路基板と半導体素子 との間の空隙に、 上記溶融状態の封止用樹脂を充填し硬化させることにより容易 に形成することができる。
加えて、 上記固形樹脂を溶融させることにより形成された封止樹脂層は、 予め 、 上記半導体素子の片面に封止用樹脂層を設けたものを準備し、 複数の接続用電 極部が設けられた配線回路基板上に、 上記封止用樹脂層が上記接続用電極部と当 接するよう半導体素子を載置する。 あるいは、 予め、 上記配線回路基板の片面に 封止用樹脂層を設けたものを準備し、 上記配線回路基板上に、 複数の接続用電極 部が設けられた半導体素子の上記接続用電極部が上記封止用樹脂層と当接するよ う半導体素子を載置する。 ついで、 所定時間加熱保持し、 上記条件 (X) および (Y) を満たす状態で加圧接合することにより、 上記配線回路基板と半導体素子 との間の空隙に、 上記溶融状態の封止用樹脂を充填し硬化させることにより容易 に形成することができる。 つぎに、 本願の第 2の発明の実施の形態を詳しく説明する。
本発明の半導体装置の製法により製造される半導体装置は、 図 1に示される。 本発明に於いて、 ジョイントボールの材質、 配線、 基板の材質、 層状の固形樹 脂の種類、 好ましく使用されるエポキシ樹脂、 エポキシ当量、 エポキシ樹脂用硬 化剤、 エポキシ樹脂と硬化剤の配合比、 用いる無機質充塡剤とその最大粒子径及 び配合量、 封止用樹脂シートの作り方、 用いる触媒の種類等は前述の発明に於い て、 説明したのと全く同様である。
本発明の半導体装置の製法は、 先に述べたように、 配線回路基板上に、 複数の 接続用電極部を介して半導体素子が搭載され、 上記配線回路基板と半導体素子と の間の空隙が封止樹脂層によって封止された半導体装置を製造する際、 上記封止 樹脂層を、 上記配線回路基板と半導体素子との間に層状の固形樹脂を介在させて 所定時間加熱保持し、 下記の条件 (X) および (Y) を満たす状態で配線回路基 板と半導体素子を加圧接合することにより、 上記固形樹脂を溶融させ形成するこ とを特徴とする。 このような半導体装置の製法としては、 具体的には大別して 3 つの態様があげられる。 なお、 前記の加圧に際しては上記第 1の発明と同様ジョ ィントボールを偏平化させる程度に加圧するのが好ましい。
(X) 示差走査熱量計 (以下 「D S C」 という) により測定される固形樹脂の加 熱前の初期残存反応熱量を 1 0 0 %とした場合、 残存反応熱量が初期残存反応熱 量の 7 0 %以下である。
(Y) 配線回路基板の温度よりも半導体素子の温度を高く設定し、 かつ両者の温 度差が 5 0 °C以上である。
( 1 ) まず、 本発明の半導体装置の製法の第 1の態様を図面に基づき順を追つ て説明する。 この製法 (第 1の態様) では、 上記層状の固形樹脂として、 シート 状のもの、 すなわち、 封止用樹脂シートが用いられる。
まず、 図 2に示すように、 複数の球状の接続用電極部 (ジョイントボール) 2 が設けられた配線回路基板 1上に、 上記接続用電極部 2を介して固形の封止用樹 脂シート 1 0を載置する。 ついで、 図 3に示すように、 上記封止用樹脂シート 1 0上の所定位置に、 半導体素子 3を載置し仮接着した後、 所定時間加熱して上記 封止用樹脂シート 1 0が上記条件 (X) を満たす状態になるまで加圧するととも に、 上記条件 (Y) を満足する状態の下、 加圧接合して上記半導体素子 3と上記 配線回路基板 1との間の空隙内に上記溶融状態の封止用樹脂を充塡し、 硬化させ ることにより上記空隙を樹脂封止して封止樹脂層 4を形成する。 このようにして 、 図 1に示す半導体装置を製造する。
なお、 上記半導体装置の製法では、 複数の球状の接続用電極部 (ジョイントボ —ル) 2が設けられた配線回路基板 1を用いた場合について述べたが、 これに限 定するものではなく、 予め半導体素子 3の片面 (接続面側) に上記複数の球状の 接続用電極部 (ジョイントボール) 2が配設されたものを用いてもよい。 この場 合 (予め半導体素子 3面に接続用電極部 2が配設されたものを使用) は、 図 4に 示すように、 配線回路基板 1面に固形の封止用樹脂シート 1 0を載置して、 その 上に、 配線回路基板 1と接続用電極部 2配設面とが対峙するよう接続用電極部 2 が設けられた半導体素子 3を載置する。 さらに、 接続用電極部 2力 配線回路基 板 1および半導体素子 3の双方に設けられたものを用いる場合は、 図 5に示すよ うに、 両者の接続用電極部 2の間に封止用樹脂シート 1 0を配置する。 後の工程 は、 上記と同様である。
上記封止用樹脂シート 1 0としては、 半導体素子 3もしくは配線回路基板 1に 封止用樹脂シ一ト 1 0を仮接着する場合には、 タック性を備えたシ一ト状のェポ キシ樹脂組成物とすることが好ましい。 そして、 上記封止用樹脂シート 1 0の大 きさとしては、 上記搭載される半導体素子 3の大きさ (面積) により適宜に設定 され、 通常、 半導体素子 3の大きさ (面積) より少し小さくなるように設定する ことが好ましい。 また、 上記封止用樹脂シート 1 0の厚みおよび重量は、 上記と 同様、 搭載される半導体素子 3の大きさおよび上記配線回路基板 1に設けられた 球状の接続用電極部 2の大きさ、 すなわち、 半導体素子 3と配線回路基板 1との 空隙を充塡し樹脂封止することにより形成される封止樹脂層 4の占める容積によ り適宜に設定される。
また、 上記半導体装置の製造方法において、 上記封止用樹脂シート 1 0上の所 定位置に半導体素子 3を載置し仮接着した後、 所定時間加熱する際の加熱温度と しては、 半導体素子 3および配線回路基板 1の劣化等を考慮して 7 0〜3 0 0 °C の範囲に設定され、 好ましくは 1 2 0〜2 0 0 °Cである。 そして、 加熱方法とし ては、 赤外線リフロー炉、 乾燥機、 温風機、 熱板等があげられる。
さらに、 上記溶融状態とした封止用樹脂を上記半導体素子 3と上記配線回路基 板 1との間の空隙内に充填して加圧接合する際の、 所定時間加熱して上記条件 ( X) を満たす状態になるまで上記封止用樹脂シート 1 0を加圧する場合、 その加 圧条件としては、 封止用樹脂シートの種類、 半導体チップの大きさ、 バンプの数 、 求められる最終の厚み等によって適宜に設定されるが、 具体的には 1 c m 2 当 り 1 0〜4 0 k g / c m2 、 半導体チップ面積に占めるバンプの数によっても変 動するため、 目安として、 1バンプ当り 8 O gで加圧される力^ 求められる最終 厚みによって適宜に設定される。
上記第 1の態様の製法では、 上記配線回路基板 1上に封止用樹脂シート 1 0を 載置し、 さらにこの封止用樹脂シート 1 0上に半導体素子 3を載置した後、 ある いは、 上記半導体素子 3上に封止用樹脂シート 1 0を載置し、 さらにこの封止用 樹脂シート 1 0上に配線回路基板 1を載置した後、 所定時間加熱し、 上記条件 ( 8788
X) および (Y) を満たす状態で配線回路基板 1と半導体素子 3を加圧接合する ことを特徴とするものである。 このように、 加圧によって封止用樹脂シート 1 0 の残存反応熱量が特定の割合となる 〔条件 (X) 〕 こと (加圧終了時点) 、 およ び、 配線回路基板 1の温度よりも半導体素子 3の温度を高く設定し、 かつその温 度差を 5 0 °C以上とする 〔条件 (Y) 〕 ことにより、 得られる半導体装置におい て反りの発生が抑制され、 結果、 半導体素子 3にかかる応力が大幅に低減されて 信頼性に優れた半導体装置が得られるようになる。 すなわち、 封止用樹脂シート 1 0の残存反応熱量が初期残存反応熱量の 7 0 %を超える場合、 そして、 配線回 路基板 1の温度が半導体素子 3の温度と同じかもしくは高い、 もしくは、 配線回 路基板 1の温度よりも半導体素子 3の温度が高くてもその温度差が 5 0 °C未満の 場合では、 配線回路基板 1と半導体素子 3の熱収縮率の差に起因して半導体装置 に反りが発生することがあり、 結果、 半導体装置の信頼性が低下する場合がある o
そして、 前述のように、 上記条件 (X) では残存反応熱量が初期残存反応熱量 の 7 0 %以下に達する必要があり、 特に好ましくは初期残存反応熱量の 6 5 %以 下である。 そして、 その残存反応熱量の測定は、 D S Cを用い、 昇温速度 5 °CZ m i nで、 6 0〜2 0 0 °Cまで昇温させ、 9 0〜1 8 0 °Cの反応熱量を測定する o
また、 前述のように、 上記条件 (Y) の半導体素子 3および配線回路基板 1の 各温度は、 例えば、 各部分を熱電対を用いて測定することができる。
この第 1の態様における、 生産効率の良い半導体装置の連続的な製造工程の一 例を説明する。 すなわち、 まず、 図 1 9 ( a ) に示すように、 接続用電極部 2が 設けられた配線回路基板 1面上に封止用樹脂シート 1 0が載置された状態のもの を、 乾燥炉 4 0内を通過させることにより、 上記封止用樹脂シート 1 0を Bステ —ジ状態 (半硬化状態) とする (Bステージ工程) 。 ついで、 図 1 9 ( b ) に示 すように、 封止用樹脂シート 1 0を Bステージ状態とした後、 この Bステージ状 の封止用樹脂シート 1 0上の所定位置に、 加熱圧着ツール 4 1の先端部に取り付 けられた半導体素子 3が載置されるよう、 配線回路基板 1と半導体素子 3とを位 置合わせするとともに、 配線回路基板 1上の封止用樹脂シ一ト 1 0の所定位置に 半導体素子 3を載置し仮接着する (位置合わせおよび圧着工程) 。 つぎに、 図 1 9 ( c ) に示すように、 封止用樹脂シート 1 0上に仮接着された半導体素子 3面 に加熱ツール 4 2を接触させて所定時間加熱することにより、 封止用樹脂シート 1 0をゲル化状態とする (封止用樹脂のゲル化工程) 。 このとき、 上記条件 (X ) および (Y) となるよう設定する。 これにより、 配線回路基板と半導体素子と の間の空隙に封止用樹脂が充塡されゲルィヒする。 ついで、 封止用樹脂を充塡した 後、 図 1 9 ( d ) に示すように、 半導体素子 3上に加熱ツール 4 3を接触させて ゲル化した封止用樹脂を所定温度でキュア一した後、 続いて、 配線回路基板 1の 下方に位置する冷却板 4 4により配線回路基板 1を冷却する (キュア一工程) 。 このように、 上記図 1 9 ( a )〜(d ) に示すように、 役割別に各工程を分割す るとともに、 これら各工程を連結して一環したラインとすることにより、 図 1に 示す半導体装置の封止が短時間で行えるようになる。 具体的には、 上記一環した ラインからなる半導体装置の製造システムによれば、 半導体装置 1個あたり 1 0 秒以内で封止を完了することができるようになる。
( 2 ) つぎに、 本発明の半導体装置の製法の第 2の態様を図面に基づき順を追 つて説明する。 この製法 (第 2の態様) では、 上記層状の固形樹脂として、 接続 用電極部が設けられた、 配線回路基板面および半導体素子面の少なくとも一方に 直接形成された封止用樹脂層が用いられる。
まず、 図 6に示すように、 複数の球状の接続用電極部 (ジョイントボール) 2 が設けられた配線回路基板 1面上に、 上記球状の接続用電極部 2の頭頂部が露出 するよう封止用樹脂層 1 3を形成する。 つぎに、 図 7に示すように、 上記封止用 樹脂層 1 3からその頭頂部が露出した接続用電極部 2と、 半導体素子 3の電極部 が当接するよう上記配線回路基板 1に半導体素子 3を搭載する。 ついで、 全体を 所定時間加熱して上記封止用樹脂層 1 3が上記条件 (X) を満たす状態になるま で加圧するとともに、 上記条件 (Y) を満足する状態の下、 加圧接合して上記半 導体素子 3と上記配線回路基板 1との間の空隙内に上記溶融状態の封止用樹脂層 1 3を充塡し、 硬化させることにより上記空隙を樹脂封止して封止樹脂層 4を形 成する。 このようにして、 図 1に示す半導体装置を製造する。
上記図 6に示す、 球状の接続用電極部 2が設けられた配線回路基板 1面に、 上 記接続用電極部 2の頭頂部が露出するよう形成される封止用樹脂層 1 3は、 例え ば、 つぎのようにして作製することができる。 すなわち、 図 2に示すように、 複 数の球状の接続用電極部 2が設けられた配線回路基板 1上に、 上記接続用電極部 2を介して固形の封止用樹脂シート 1 0を載置する (前述の半導体装置の製法の 第 1の態様) 。 ついで、 上記封止用樹脂シート 1 0を加熱溶融することにより、 図 6に示すように、 球状の接続用電極部 2が設けられた配線回路基板 1面に、 上 記接続用電極部 2の頭頂部が露出するよう封止用樹脂層 1 3が形成される。
さらに、 上記のような封止用樹脂層 1 3の形成方法以外に、 例えば、 つぎのよ うにして作製することができる。 すなわち、 図 8に示すように、 予め、 接続用電 極部 2が設けられた配線回路基板 1を準備する。 つぎに、 上記接続用電極部 2が 設けられた配線回路基板 1面上に、 エポキシ樹脂組成物を用い、 印刷塗工法によ り、 封止用樹脂層 1 3を形成する。 このようにして、 上記図 6に示す、 接続用電 極部 2の頭頂部が露出するよう封止用樹脂層 1 3が形成される。
なお、 上記半導体装置の製法では、 複数の球状の接続用電極部 (ジョイントボ ール) 2が設けられた配線回路基板 1を用いた場合について述べたが、 これに限 定するものではなく、 先に述べた第 1の態様と同様、 予め半導体素子 3の片面 ( 接続面側) に上記複数の球状の接続用電極部 (ジョイントボール) 2が配設され たものを用いてもよい。 この場合は、 図 9に示すように、 複数の球状の接続用電 極部 (ジョイントボール) 2が設けられた半導体素子 3面上に、 上記球状の接続 用電極部 2の頭頂部が露出するよう封止用樹脂層 1 3を形成する。 ついで、 上記 封止用樹脂層 1 3からその頭頂部が露出した接続用電極部 2と、 配線回路基板 1 の電極部が当接するよう上記半導体素子 3を上記配線回路基板 1に搭載する。 さらに、 接続用電極部 2力 配線回路基板 1および半導体素子 3の双方に設け られたものを用いる場合は、 両者のうちの少なくとも一方の接続用電極部 2形成 面に、 上記接続用電極部 2の頭頂部が露出するよう封止用樹脂層 1 3を形成する 。 例えば、 図 1 0に示すように、 複数の球状の接続用電極部 (ジョイントボール ) 2が設けられた半導体素子 3面上に、 上記球状の接続用電極部 2の頭頂部が露 出するよう封止用樹脂層 1 3を形成する。 ついで、 上記封止用樹脂層 1 3からそ の頭頂部が露出した接続用電極部 2を有する半導体素子 3を、 接続用電極部を有 する配線回路基板 1に搭載する。 あるいは、 図 1 1に示すように、 複数の球状の 接続用電極部 2が設けられた配線回路基板 1面に、 上記球状の接続用電極部 2の 頭頂部が露出するよう封止用樹脂層 1 3を形成する。 つぎに、 上記封止用樹脂層
1 3からその頭頂部が露出した接続用電極部 2を有する配線回路基板 1に、 接続 用電極部 2を有する半導体素子 3を搭載する。 また、 図 1 2に示すように、 複数 の球状の接続用電極部 2が設けられた半導体素子 3面上に、 上記球状の接続用電 極部 2の頭頂部が露出するよう封止用樹脂層 1 3を形成する。 一方、 複数の球状 の接続用電極部 2が設けられた配線回路基板 1面に、 上記球状の接続用電極部 2 の頭頂部が露出するよう封止用樹脂層 1 3を形成する。 つぎに、 上記封止用樹脂 層 1 3からその頭頂部が露出した接続用電極部 2を有する配線回路基板 1に、 上 記封止用樹脂層 1 3からその頭頂部が露出した接続用電極部 2を有する半導体素 子 3を搭載する。 後の工程は、 上記と同様である。
上記図 1 0〜図 1 2において、 接続用電極部 2が設けられた配線回路基板 1に 封止用樹脂層 1 3を形成する方法は、 先に述べた配線回路基板 1に接続用電極部
2が設けられた場合の形成方法と同様の方法に従って形成される。 また、 接続用 電極部 2が設けられた半導体素子 3に封止用樹脂層 1 3を形成する方法は、 上記 形成方法と同様、 封止用樹脂シート 1 0を用いて加熱溶融する、 あるいは、 接続 用電極部 2が設けられた半導体素子 3面に、 印刷塗工する方法に従って形成され 。
そして、 上記第 2の態様において、 上記形成された封止用樹脂層 1 3は、 融点 を超える温度において、 半導体素子 3と配線回路基板 1との間を越えて、 流出し ないよう設計された封止用樹脂層 1 3とすることが好ましい。
また、 上記第 2の態様の製法において、 封止用樹脂層 1 3の加熱温度としては 、 先に述べた第 1の態様と同様、 半導体素子 3および配線回路基板 1の劣化等を 考慮して 7 0〜 3 0 0での範囲に設定することが好ましく、 特に好ましくは 1 2 0〜2 0 0 °Cである。 そして、 加熱方法も上記と同様、 赤外線リフロー炉、 乾燥 機、 温風機、 熱板等があげられる。 さらに、 上記溶融状態とした封止用樹脂を上 記半導体素子 3と上記配線回路基板 1との間の空隙内に充塡して加圧接合する際 の、 所定時間加熱して上記条件 (X) を満たす状態になるまで上記封止用樹脂層 W0^8/28788 T/JP97/0475
1 3を加圧する場合、 その加圧条件としては、 上記第 1の態様と同様、 封止用樹 脂層 1 3の種類、 半導体チップの大きさ、 バンプの数、 求められる最終の厚み等 によって適宜に設定される力、 具体的には 1 c m 2 当り 1 0〜4 0 k g / c m 2 、 半導体チップ面積に占めるバンプの数によっても変動するため、 目安として、
1バンプ当り 8 0 gで加圧されるが、 求められる最終厚みによって適宜に設定さ れる。
なお、 上記第 2の態様において、 図 1 0〜図 1 2に示すように、 接続用電極部 2が配線回路基板 1および半導体素子 3の双方に設けられたものを用い、 両者の うちの少なくとも一方の接続用電極部 2形成面に、 上記接続用電極部 2の頭頂部 が露出するよう封止用樹脂層 1 3が形成された場合において、 さらに他の態様が あげられる。 これは、 上記封止用樹脂層 1 3に加えて、 配線回路基板 1と半導体 素子 3との間に、 さらに封止用樹脂シ一トを介在させるものである。
すなわち、 図 1 0に示すタイプのさらに他の態様では、 図 1 3に示すように、 複数の球状の接続用電極部 2が設けられた半導体素子 3面上に、 上記球状の接続 用電極部 2の頭頂部が露出するよう封止用樹脂層 1 3を形成する。 ついで、 上記 封止用樹脂層 1 3からその頭頂部が露出した接続用電極部 2を有する半導体素子 3を、 封止用樹脂シ一ト 1 8を介して接続用電極部を有する配線回路基板 1に搭 載する。
また、 図 1 1に示すタイプのさらに他の態様では、 図 1 4に示すように、 複数 の球状の接続用電極部 2が設けられた配線回路基板 1面に、 上記球状の接続用電 極部 2の頭頂部が露出するよう封止用樹脂層 1 3を形成する。 つぎに、 上記封止 用樹脂層 1 3からその頭頂部が露出した接続用電極部 2を有する配線回路基板 1 に、 封止用樹脂シート 1 8を介して接続用電極部 2を有する半導体素子 3を搭載 する。
そして、 図 1 2に示すタイプのさらに他の態様では、 図 1 5に示すように、 複 数の球状の接続用電極部 2が設けられた半導体素子 3面上に、 上記球状の接続用 電極部 2の頭頂部が露出するよう封止用樹脂層 1 3を形成する。 一方、 複数の球 状の接続用電極部 2が設けられた配線回路基板 1面に、 上記球状の接続用電極部 2の頭頂部が露出するよう封止用樹脂層 1 3を形成する。 つぎに、 上記封止用樹 脂層 1 3からその頭頂部が露出した接続用電極部 2を有する配線回路基板 1に、 封止用樹脂シート 1 8を介して、 上記封止用樹脂層 1 3からその頭頂部が露出し た接続用電極部 2を有する半導体素子 3を搭載する。 後の工程は、 上記と同様で ある。
上記図 1 3〜図 1 5に示すさらに他の態様における製法においても、 封止用樹 脂層 1 3および封止用樹脂シート 1 8の加熱温度は、 上記と同様の温度範囲に設 定することが好ましく、 加熱方法も上記と同様の方法があげられる。 さらに、 溶 融状態とした封止用樹脂を上記半導体素子 3と上記配線回路基板 1との間の空隙 内に充塡して加圧接合する際の、 所定時間加熱して上記条件 (X) を満たす状態 になるまで上記封止用樹脂層 1 3および封止用樹脂シート 1 8を加圧する場合、 その加圧条件としては、 上記と同様に設定される。
上記第 2の態様の製法では、 上記配線回路基板 1面に設けられた接続用電極部 2に半導体素子 3の接続用電極部 2が当接するよう半導体素子 3を上記配線回路 基板 1に載置した後、 あるいは、 上記半導体素子 3面に設けられた接続用電極部 2に配線回路基板 1の接続用電極部 2が当接するよう配線回路基板 1を上記半導 体素子 3に載置した後、 所定時間加熱し、 上記条件 (X) および (Y) を満たす 状態で配線回路基板 1と半導体素子 3を加圧接合することを特徴とするものであ る。 このように、 加圧によって封止用樹脂層 1 3の残存反応熱量が特定の割合と なる 〔条件 (X) 〕 こと (加圧終了時点) 、 および、 配線回路基板 1の温度より も半導体素子 3の温度を高く設定し、 かつその温度差を 5 0 °C以上とする 〔条件 (Y) 〕 ことにより、 得られる半導体装置において反りの発生が抑制され、 結果 、 半導体素子 3にかかる応力が大幅に低減されて信頼性に優れた半導体装置が得 られるようになる。 すなわち、 封止用樹脂層 1 3の残存反応熱量が初期残存反応 熱量の 7 0 %を超える場合、 そして、 配線回路基板 1の温度が半導体素子 3の温 度と同じかもしくは高い、 もしくは、 配線回路基板 1の温度よりも半導体素子 3 の温度が高くてもその温度差が 5 0 °C未満の場合では、 前記第 1の態様で述べた と同様、 配線回路基板 1と半導体素子 3の熱収縮率の差に起因して半導体装置に 反りが発生することがあり、 結果、 半導体装置の信頼性が低下する場合がある。 そして、 前述のように、 上記条件 (X) における残存反応熱量の特に好適な範 囲は、 前記の第 1の態様で述べた特に好ましい範囲と同じであり、 その測定方法 も前記第 1の態様と同じである。
また、 上記条件 (Y) の半導体素子 3および配線回路基板 1の各温度の測定も 、 前記第 1の態様と同様、 例えば、 各部分を熱電対を用いて測定することができ る。
この第 2の態様における、 生産効率の良い半導体装置の連続的な製造工程の一 例を説明する。 基本的には、 先の第 1の態様で述べた製造工程と同様の製造ライ ンを経由する。 すなわち、 まず、 配線回路基板 1面上に接続用電極部 2の頭頂部 が露出するよう封止用樹脂層 1 3を形成した状態のものを準備する (図 6参照) 。 ついで、 上記封止用樹脂層 1 3が形成された配線回路基板 1を、 乾燥炉内を通 過させることにより、 上記封止用樹脂層 1 3を Bステージ状態 (半硬化状態) と する (Bステージ工程) 。 ついで、 封止用樹脂層 1 3を Bステージ状態とした後 、 この Bステージ状の封止用樹脂層 1 3上の所定位置に、 加熱圧着ツールの先端 部に取り付けられた半導体素子が載置されるよう、 配線回路基板と半導体素子と を位置合わせするとともに、 配線回路基板の封止用樹脂層 1 3の所定位置に半導 体素子を載置し仮接着する (位置合わせおよび圧着工程) 。 つぎに、 封止用樹脂 層 1 3上に仮接着された半導体素子面に加熱ツールを接触させて所定時間加熱す ることにより、 封止用樹脂層 1 3をゲル化状態とする (封止用樹脂のゲル化工程 ) 。 このとき、 上記条件 (X) および (Y) となるよう設定する。 これにより、 配線回路基板と半導体素子との間の空隙にゲル化した封止用樹脂を充塡する。 つ いで、 封止用樹脂を充填した後、 半導体素子上に加熱ツールを接触させてゲル化 した封止用樹脂を所定温度でキュア一した後、 続いて、 配線回路基板の下方に位 置する冷却板により配線回路基板 1を冷却する (キュア一工程) 。 このように、 役割別に各工程を分割するとともに、 これら各工程を連結して一環したラインと することにより、 図 1に示す半導体装置の封止が短時間で行えるようになる。 具 体的には、 先に述べた第 1の態様と同様、 上記一環したラインからなる半導体装 置の製造システムによれば、 半導体装置 1個あたり 1 0秒以内で封止を完了する ことができるようになる。
( 3 ) つぎに、 本発明の半導体装置の製法の第 3の態様を図面に基づき説明す る。 この製法 (第 3の態様) では、 上記層状の固形樹脂がそれ単独ではなく、 予 め、 接続用電極部の設けられていない半導体素子面あるいは配線回路基板面に封 止用樹脂層を設けた状態のものを使用する。
まず、 予め、 封止用樹脂層を半導体素子面に貼着した状態のものを使用した例 について述べる。 すなわち、 図 1 6に示すように、 予め、 半導体素子 3の片面に 封止用樹脂層 1 4を形成した状態のものを準備する。 ついで、 複数の球状の接続 用電極部 (ジョイントボール) 2が設けられた配線回路基板 1上の所定位置に、 上記貼着された封止用樹脂層 1 4が上記接続用電極部 2と当接するよう半導体素 子 3を載置する。 ついで、 全体を所定時間加熱して上記封止用樹脂層 1 4が上記 条件 (X) を満たす状態になるまで加圧するとともに、 上記条件 (Y) を満足す る状態の下、 加圧接合して上記半導体素子 3と上記配線回路基板 1との間の空隙 内に上記溶融状態の封止用樹脂層 1 4を充填し、 硬化させることにより上記空隙 を樹脂封止して封止樹脂層を形成する。 このようにして、 図 1に示す半導体装置 を製造する。
一方、 上記第 3の態様の他の例として、 予め、 封止用樹脂層を配線回路基板面 に貼着した状態のものを使用した例について述べる。 すなわち、 図 1 7に示すよ うに、 予め、 配線回路基板 1の片面に封止用樹脂層 1 5を形成した状態のものを 準備する。 ついで、 複数の球状の接続用電極部 (ジョイントボール) 2が設けら れた半導体素子 3を、 上記接続用電極部 2と封止用樹脂層 1 5とが当接するよう 、 上記配線回路基板 1面の封止用樹脂層 1 5上に載置する。 ついで、 全体を所定 時間加熱して上記封止用樹脂層 1 5が上記条件 (X) を満たす状態になるまで加 圧するとともに、 上記条件 (Y) を満足する状態の下、 加圧接合して上記半導体 素子 3と上記配線回路基板 1との間の空隙内に上記溶融状態の封止用樹脂層 1 5 を充填し、 硬化させることにより上記空隙を樹脂封止して封止樹脂層を形成する 。 このようにして、 図 1に示す半導体装置を製造する。
上記図 1 6および図 1 7における、 封止用樹脂層 1 4, 1 5の形成方法として は、 半導体素子 3面あるいは配線回路基板 1面に封止用樹脂シ一トを貼着する、 封止用樹脂層形成材料を封止用樹脂層形成面に印刷塗工して形成する方法等があ げられる。 上記封止用樹脂層 1 4, 1 5としては、 前記第 1の態様と同様、 その大きさは 半導体素子 3の大きさ (面積) により適宜に設定され、 通常、 半導体素子 3の大 きさ (面積) より少し小さくなるように設定することが好ましい。 また、 上記封 止用樹脂層 1 4 , 1 5の厚みおよび重量 (封止用樹脂シートの場合) は、 上記と 同様、 半導体素子 3の大きさおよび上記接続用電極部 2の大きさ、 すなわち、 半 導体素子 3と配線回路基板 1との空隙を充塡し樹脂封止することより形成される 封止樹脂層 4の占める容積により適宜に設定される。
また、 上記第 3の態様の製法において、 封止用樹脂層 1 4, 1 5の加熱温度と しては、 先に述べた第 1および第 2の態様と同様、 半導体素子 3および配線回路 基板 1の劣化等を考慮して 7 0〜 3 0 0 °Cの範囲に設定することが好ましく、 特 に好ましくは 1 2 0〜2 0 0 °Cである。 そして、 加熱方法も上記と同様、 赤外線 リフ口一炉、 乾燥機、 温風機、 熱板等があげられる。 さらに、 上記溶融状態とし た封止用樹脂を上記半導体素子 3と上記配線回路基板 1との間の空隙内に充塡し て加圧接合する際の、 所定時間加熱して上記条件 (X) を満たす状態になるまで 上記封止用樹脂層 1 4, 1 5を加圧する場合、 その加圧条件としては、 上記第 1 および第 2の態様と同様、 封止用樹脂層 1 4, 1 5の種類、 半導体チップの大き さ、 バンプの数、 求められる最終の厚み等によって適宜に設定されるが、 具体的 には 1 c m2 当り 1 0〜4 0 k gZ c m2 、 半導体チップ面積に占めるバンプの 数によっても変動するため、 目安として、 1バンプ当り 8 0 gで加圧されるが、 求められる最終厚みによって適宜に設定される。
上記第 3の態様の製法では、 上記半導体素子 3の片面に設けられた封止用樹脂 層 1 4と配線回路基板 1の接続用電極部 2とを当接した後、 あるいは、 上記配線 回路基板 1の片面に設けられた封止用樹脂層 1 5と半導体素子 3の接続用電極部 2とを当接した後、 所定時間加熱し、 上記条件 (X) および (Y) を満たす状態 で配線回路基板 1と半導体素子 3を加圧接合することを特徴とするものである。 このように、 加圧によって封止用樹脂層 1 4, 1 5の残存反応熱量が特定の割合 となる 〔条件 (X) 〕 こと (加圧終了時点) 、 および、 配線回路基板 1の温度よ りも半導体素子 3の温度を高く設定し、 かつその温度差を 5 0 °C以上とする 〔条 件 (Y) 〕 ことにより、 得られる半導体装置において反りの発生が抑制され、 結 果、 半導体素子 3にかかる応力が大幅に低減されて信頼性により優れた半導体装 置が得られるようになる。 すなわち、 封止用樹脂層 1 4, 1 5の残存反応熱量が 初期残存反応熱量の 7 0 %を超える場合、 そして、 配線回路基板 1の温度が半導 体素子 3の温度と同じかもしくは高い、 もしくは、 配線回路基板 1の温度よりも 半導体素子 3の温度が高くてもその温度差が 5 0 °C未満の場合では、 前記第 1の 態様で述べたと同様、 配線回路基板 1と半導体素子 3の熱収縮率の差に起因して 半導体装置に反りが発生することがあり、 結果、 半導体装置の信頼性が低下する 場合がある。
そして、 前述のように、 上記条件 (X) における残存反応熱量の特に好適な範 囲は、 前記の第 1および第 2の態様で述べた特に好ましい範囲と同じであり、 そ の測定方法も前記第 1および第 2の態様と同じである。
また、 上記条件 (Y) の半導体素子 3および配線回路基板 1の各温度の測定も 、 前記第 1および第 2の態様と同様、 例えば、 各部分を熱電対を用いて測定する ことができる。
この第 3の態様における、 生産効率の良い半導体装置の連続的な製造工程の一 例を説明する。 基本的には、 先の第 1および第 2の各態様で述べた製造工程と同 様の製造ラインを経由する。 すなわち、 まず、 配線回路基板 1面上に封止用樹脂 層 1 5を形成した状態のものを準備する (図 1 7参照) 。 ついで、 上記封止用樹 脂層 1 5が形成された配線回路基板 1を、 乾燥炉内を通過させることにより、 上 記封止用樹脂層 1 5を Bステージ状態 (半硬化状態) とする (Bステージ工程) 。 ついで、 封止用樹脂層 1 5を Bステージ状態とした後、 この Bステージ状の封 止用樹脂層 1 5上の所定位置に、 加熱圧着ツールの先端部に取り付けられた半導 体素子が載置されるよう、 配線回路基板 1と半導体素子とを位置合わせするとと もに、 配線回路基板の封止用樹脂層 1 5の所定位置に半導体素子を載置し仮接着 する (位置合わせおよび圧着工程) 。 つぎに、 封止用樹脂層 1 5上に仮接着され た半導体素子面に加熱ツールを接触させて所定時間加熱することにより、 封止用 樹脂層 1 5をゲル化状態とする (封止用樹脂のゲル化工程) 。 このとき、 上記条 件 (X) および (Y) となるよう設定する。 これにより、 配線回路基板 1と半導 体素子との間の空隙にゲル化した封止用樹脂を充塡する。 ついで、 封止用樹脂を 充塡した後、 半導体素子上に加熱ツールを接触させてゲル化した封止用樹脂を所 定温度でキュア一した後、 続いて、 配線回路基板 1の下方に位置する冷却板によ り配線回路基板 1を冷却する (キュア一工程)。 このように、 役割別に各工程を 分割するとともに、 これら各工程を連結して一環したラインとすることにより、 図 1に示す半導体装置の封止が短時間で行えるようになる。 具体的には、 先に述 ベた第 1および第 1の各態様と同様、 上記一環したラインからなる半導体装置の 製造システムによれば、 半導体装置 1個あたり 1 0秒以内で封止を完了すること ができるようになる。
上記第 1〜第 3の態様に従って製造される半導体装置の一例としては、 前述の 図 1に示すように、 形成された封止樹脂層 4力 搭載された半導体素子 3の周囲 からはみ出さないよう形成されたタイプがあげられるが、 半導体装置の用途等に よっては、 図 1 8に示すように、 形成された封止樹脂層 4 ' が、 搭載された半導 体素子 3の周囲からはみ出すよう形成されたタイプであってもよい。
そして、 上記のようにして製造された半導体装置において、 半導体素子 3の大 きさは、 通常、 幅 2〜2 Ommx長さ 2〜3 Ommx厚み 0. 1〜2. 0 mmに 設定される。 また、 半導体素子 3を搭載する配線回路が形成された配線回路基板 1の大きさは、 通常、 幅 5〜 1 20 mm、 好ましくは 1 0〜7 0 mmx長さ 5〜 1 2 Omm、 好ましくは 1 0〜7 Ommx厚み 0. 05〜3. Ommに設定され る。 そして、 溶融した封止用樹脂が充填される、 半導体素子 3と配線回路基板 1 の空隙の両者間の距離は、 通常、 5〜 20 0〃m、 好ましくは 5〜 1 00〃 で あ
上記封止用樹脂を用 、て封止することにより形成された封止樹脂層 4 (あるい は 4' ) 、 すなわち、 上記封止用樹脂の特性としては、 各使用温度での溶融粘度 力 l〜1 000 p o i s e、 ゲルタイムが 1 50°Cにおいて 0. 5〜 30分、 そ の硬化物としては、 線膨脹係数が?〜 50 p pmであることが好ましい。 より好 ましくは溶融粘度が 1〜 500 p 0 i s e、 ゲルタイムが 1 5 0 °Cにおいて 1. 0〜1 5分間、 線膨脹係数が 1 2〜40 p pmである。 すなわち、 溶融粘度が上 記範囲内に設定されることにより、 充塡性が良好となる。 また、 ゲルタイムが上 記範囲内に設定されることにより、 成形作業性、 特に硬化時間の短縮が可能とな る。 さらに、 線膨脹係数が上記範囲内に設定されることにより、 樹脂硬化体や半 導体素子にクラック等の応力による欠陥防止が可能となる。 なお、 上記溶融粘度 は、 フローテスター粘度計により測定し、 上記ゲルタイムは熱板上にて測定した
。 また、 線膨脹係数は、 熱機械分析 (TMA) により測定した。
以上の説明及び後記実施例 3 5〜 5 7から明らかなように本出願の第 2の発明 の半導体装置の製法は、 複数の接続用電極部を介在して接続された、 配線回路基 板と半導体素子との間の空隙を封止樹脂層によつて樹脂封止する際に、 上記配線 回路基板と半導体素子との間に層状の固形樹脂を介在させて所定時間加熱し、 固 形樹脂が所定の温度領域になつた段階で、 配線回路基板と半導体素子を特定の条 件 (X) および (Y) を満たして加圧接合することにより上記固形樹脂を溶融さ せ上記封止樹脂層を形成することを特徴とする。 このように、 配線回路基板と半 導体素子との間の空隙を樹脂封止する際、 配線回路基板と半導体素子を特定の条 件 (X) および (Y) を満たして加圧接合するため、 配線回路基板と半導体素子 の熱収縮率の差に起因した半導体装置の反りの度合いが抑制され、 半導体素子に 係る応力が低減される結果、 信頼性により優れた半導体装置が得られる。
これに反して従来技術の如く液状樹脂による封止では、 半導体素子と配線回路 基板を同時に乾燥炉中に入れ、 その後、 液状樹脂による注入封止をするのが、一 般的であるため、 本出願の第 2の発明の上記 (Y) の条件設定をすることができ ない。
従って、 配線回路基板と半導体素子の熱収縮率の差に起因する半導体装置の反 りの度合いが抑制され難い。
さらに、 上記固形樹脂として、 最大粒径が 1 0 0 zz m以下に設定された無機質 充填剤を、 特定割合含有するエポキシ樹脂組成物を用いることにより、 上記配線 回路基板と半導体素子の空隙内への充填がボイド等が生じることなく良好に行わ れる。
そして、 上記固形樹脂を溶融させることにより形成された封止樹脂層としては 、 上記配線回路基板上に、 封止用樹脂シートを搭載し、 ついで、 上記封止用樹脂 シート上に半導体素子を載置した後、 所定時間加熱保持し、 上記特定の条件 (X ) および (Y) を満たす状態で加圧接合することにより、 上記配線回路基板と半 導体素子との間の空隙に、 上記溶融状態の樹脂を充塡し硬化させることにより形 成することができる。 このように、 上記層状の固形樹脂として封止用樹脂シート を用いることにより、 半導体装置の製造効率が著しく向上する。
また、 上記固形樹脂を溶融させることにより形成された封止樹脂層としては、 上記配線回路基板上に、 上記接続用電極部の一部が露出するよう封止用樹脂層を 形成し、 ついで、 上記接続用電極部に半導体素子の電極部が当接するよう上記半 導体素子搭載用基板に半導体素子を載置した後、 所定時間加熱保持し、 上記特定 の条件 (X) および (Y) を満たす状態で加圧接合する。 あるいは、 上記半導体 素子面に設けられた接続用電極部の一部が露出するよう封止用樹脂層を形成した 後、 さらに、 上記接続用電極部に配線回路基板の電極部が当接するよう半導体素 子を配線回路基板に載置し、 ついで、 所定時間加熱保持し、 上記特定の条件 (X ) および (Y) を満たす状態で加圧接合する。 このようにして、 上記配線回路基 板と半導体素子との間の空隙に、 上記溶融状態の封止用樹脂を充填し硬化させる ことにより形成することができる。 このように、 上記層状の固形樹脂として封止 用樹脂層を用いることにより、 半導体装置の製造効率が著しく向上する。
そして、 上記接続用電極部の一部が露出するよう形成された封止用樹脂層は、 接続用電極部が設けられた配線回路基板上あるいは半導体素子上に、 上記接続用 電極部を介して封止用樹脂シ一トを搭載した後、 この封止用樹脂シ一トを加熱溶 融して容易に形成することができる。 または、 接続用電極部が設けられた配線回 路基板面あるいは半導体素子面に、 封止用樹脂層形成材料を印刷塗工して容易に 封止用樹脂層を形成することができる。
さらに、 上記固形樹脂を溶融させることにより形成された封止樹脂層は、 予め 、 上記半導体素子の片面に封止用樹脂層を設けたものを準備し、 複数の接続用電 極部が設けられた配線回路基板上に、 上記封止用樹脂層が上記接続用電極部と当 接するよう半導体素子を載置する。 あるいは、 予め、 上記配線回路基板の片面に 封止用樹脂層を貼着したものを準備し、 上記配線回路基板上に、 複数の接続用電 極部が設けられた半導体素子の上記接続用電極部が上記封止用樹脂層と当接する よう半導体素子を載置する。 ついで、 所定時間加熱保持し、 上記特定の条件 (X ) および (Y) を満たす状態で加圧接合することにより、 上記配線回路基板と半 導体素子との間の空隙に、 上記溶融状態の封止用樹脂を充塡し硬化させることに より容易に形成することができる。
次に本出願の第 3の発明は、 半導体素子と配線回路基板および接続用電極に生 ずる応力の緩和効果に優れ高信頼性を有する半導体装置の提供と、 上記半導体素 子と配線回路基板との空隙に容易に封止樹脂層を形成することができるシート状 封止材料を提供することにある。
この目的を達成するため、 本出願の第 3の発明は、 配線回路基板上に、 複数の 接続用電極部を介して半導体素子が搭載され、 上記配線回路基板と半導体素子と の間の空隙が封止樹脂層によつて封止されてなる半導体装置であつて、 上記封止 樹脂層が、 下記の硬化物特性 (Z ) を備えている半導体装置を第 1の要旨とする
( Z ) 2 5 °Cにおける引張弾性率が 3 0 0〜 1 5 0 0 0 M P aである。
また、 上記半導体装置の封止樹脂層を形成するために用いられるシート状封止 材料であって、 このシート状封止材料の硬化物は、 下記 (Z ) の特性を備えてい ることを第 2の要旨とする。
( Z ) 2 5 °Cにおける引張弾性率が 3 0 0〜1 5 0 0 0 M P aである。
すなわち、 第 3の発明では、 複数の接続用電極部を介在して接続された、 配線 回路基板と半導体素子との間の空隙に封止樹脂層が形成された半導体装置におい て、 上記封止樹脂層自身の有する硬化物特性 (Z ) として上記特定範囲の引張弾 性率を備えるようにすると、 信頼性が高まり、 特に半導体素子と配線回路基板と の電気的接続が冷熱サイクル下において安定した半導体装置となる。
さらに、 本発明者らは、 第 3の発明の見出す過程において、 上記特定の硬化物 特性 (X) を有する封止樹脂層を形成する材料として、 ビフ ニル型エポキシ樹 脂とァクリロニトリル—ブタジエン系共重合体とを含有し、 場合によりさらに特 定のフ ノ一ル樹脂を用いたエポキシ樹脂組成物を用いると、 低吸湿性や高接着 性においてより優れた封止樹脂層が形成され、 結果、 吸湿後のベ一パ一フェーズ ソルダリング (V P S ) 等のストレス試験に対してさらに安定した電気的接続の 付与がなされることを突き止めた。
そして、 上記封止樹脂層の形成材料として、 上記硬化物特性 (X) を有するシ Wひ 98/28788
—ト状封止材料、 特に、 上記エポキシ樹脂組成物からなるシート状封止材料が好 適に用いられる。
つぎに、 第 3の発明の実施の形態を詳しく説明する。
第 3の発明の半導体装置は、 図 2 0に示すように、 配線回路基板 1の片面に、 複数の接続用電極部 2および接続用電極部 2 ' を介して半導体素子 3が搭載され たフヱイスダウン構造をとる。 そして、 上記配線回路基板 1と半導体素子 3との 間に封止樹脂層 4が形成されている。
上記複数の接続用電極部 2, 2 ' の材質としては、 特に限定するものではない が、 例えば、 金、 銀、 銅、 アルミニウム、 ニッケル、 クロム、 錫、 鉛、 インジゥ ム、 半田およびこれらの合金が使用できる。 また、 上記接続用電極部の形状とし ては特に限定されるものではないが、 配線回路基板 1、 半導体素子 3の双方の電 極部 2, 2 ' 間の封止樹脂を押し出す効果の高いものが望ましく、 電極部表面に 凹部の少ないものが好ましい。
また、 上記配線回路基板 1の材質としては、 特に限定するものではないが、 大 別してセラミック基板、 プラスチック基板があり、 上記プラスチック基板として は、 例えば、 エポキシガラス基板、 ビスマレイミ ドトリアジン基板、 ポリフヱニ レンエーテル基板等があげられる。
つぎに、 この発明の半導体装置の配線回路基板 1と半導体素子 3との空隙に形 成される上記封止樹脂層 4について説明する。
この発明において、 上記封止樹脂層 4形成材料としては、 特定の物性を有する シート状封止材料が用いられ、 例えば、 その成形材料にはエポキシ樹脂組成物が 用いられる。
上記エポキシ樹脂組成物は、 特定のエポキシ樹脂 (A成分) と、 ァクリロニト リル一ブタジエン系共重合体 (B成分) を用いて得ることができる。
上記特定のエポキシ樹脂 (A成分) は、 下記の一般式 (1 ) で表されるビフヱ ニル型エポキシ樹脂であって、 このビフエ二ル型エポキシ樹脂は、 グリシジル基 を有するフヱニル環に、 下記の 〜R 4 で表される炭素数 1〜4のアルキル基 が付加されたものである。 そのため、 このビフヱニル型エポキシ樹脂を含有する エポキシ樹脂組成物によって得られるシ一ト状封止材料は、 半導体素子の封止用 途において、 撥水性および低吸湿性を発揮することができる。
… (1)
Figure imgf000045_0001
〔上記式 (1) において、 〜R4 は炭素数 1〜4のアルキル基であ つて、 互いに同じであっても異なっていてもよい。 〕 上記一般式 (1) 中の 〜R4 で表される炭素数 1〜4のアルキル基として は、 メチル基、 ェチル基、 プロピル基、 イソプロピル基、 ブチル基、 イソブチル 基、 s e c—プチル基、 t e r t—プチル基等の直鎖状または分岐状の低級アル キル基があげられ、 特にメチル基が好ましく、 上記 〜R4 は互いに同一であ つても異なっていてもよい。 なかでも、 上記 R, 〜R4 が全てメチル基である下 記の式 (3) で表されるビフエニル型エポキシ樹脂を用いることが特に好適であ る。
Figure imgf000045_0002
上記一般式 (1) で表されるビフユ二ル型エポキシ樹脂としては、 エポキシ当 量が 1 7 7〜2 4 0 g/e qで、 軟化点が 8 0〜 1 3 0 °Cのものを用いることが 好ましく、 なかでも、 エポキシ当量が 1 7 7〜2 2 0 gZe qで、 軟化点が 8 0 〜1 2 0°Cのものを用いること特に好ましい。
本発明のシート状封止材料の形成材料であるエポキシ樹脂組成物の全有機成分 中における上記ビフエニル型エポキシ樹脂 (A成分) の配合割合は、 特に 1 0〜 9 6重量%の範囲が好ましく、 なかでも 2 0〜9 4%の範囲が好適である。 すな わち、 上記ビフ ニル型エポキシ樹脂 (A成分) の配合割合が 1 0%未満であれ ば、 半導体素子の封止用途において、 撥水性および低吸湿性が発揮され難く、 逆 に、 9 6 %を超えると得られるシート状封止材料自身が脆くなり易く、 取り扱い が容易でなくなる恐れがあるからである。
第 3の発明のシート状封止材料の形成材料においては、 上記ビフヱニル型ェポ キシ樹脂 (A成分) に、 これ以外の他のエポキシ樹脂、 例えば、 クレゾ一ルノボ ラック型エポキシ樹脂、 フヱノールノボラック型エポキシ樹脂、 ビスフヱノール A型エポキシ樹脂等のエポキシ樹脂を、 単独でもしくは 2種以上併せて用いるこ ともできる。 なお、 このように他のエポキシ樹脂を併用する場合には、 上記ビフ ェニル型エポキシ樹脂 (A成分) の配合量を、 エポキシ樹脂成分全体の 2 0 %以 上となるように設定することが好ましく、 なかでも、 5 0 %以上となるように設 定することがより好ましい。
また、 上記エポキシ樹脂組成物には、 必要によりエポキシ樹脂の硬化剤を配合 することができる。 このような硬化剤としては、 特に限定するものではなく通常 用いられている各種硬化剤、 例えば、 フヱノール樹脂、 メチルへキサヒドロ無水 フタル酸等の酸無水物、 ァミン化合物等があげられ、 信頼性の点から、 特にフエ ノール樹脂が好適に用いられる。 なかでも、 接着性等の点から、 ノボラック型フ エノ一ル樹脂を用いることがより好ましい。 そして、 より一層良好な接着力、 吸 湿性等の点から、 特に下記の一般式 (2 ) で表されるフエノール樹脂を用いるこ とが好適である。
… (2 )
Figure imgf000046_0001
〔上記式 (2 ) において、 mは 0または正の整数である。 〕 上記一般式 (2 ) 中の繰り返し数 mは、 0または正の整数を示すが、 特に mは 0〜1 0の整数であることが好ましく、 なかでも mは 0〜8の整数であることが より好適である。
上記一般式 (2 ) で表されるフヱノール樹脂は、 例えば、 ァラルキルエーテル とフヱノールとを、 フリ一デルクラフッ触媒で反応させることにより得られる。 上記フヱノール樹脂としては、 特に、 水酸基当量が 1 4 7〜2 5 0 g / e Q、 軟化点が 6 0〜 1 2 0 °Cのものが好ましく、 なかでも、 水酸基当量が 1 4 7〜 2 2 0 g / e q . 軟化点が 6 0〜1 1 0 °Cのものが好適である。
上記フエノール樹脂 (C成分) のビフエニル型エポキシ樹脂 (A成分) に対す る配合割合は、 ビフヱニル型エポキシ樹脂 (A成分) 中のエポキシ基 1当量当た り、 上記フヱノール樹脂 (C成分) 中の水酸基が 0 . 7〜し 3当量となるよう に配合することが好適であり、 なかでも 0 . 9〜1 . 1当量となるように配合す ることがより好適である。
第 3の発明のシ一ト状封止材料の形成材料であるエポキシ樹脂組成物には、 上 記エポキシ樹脂の硬化剤の他に、 さらに硬化促進剤を配合することもできる。 こ のような硬化促進剤としては、 従来からェポキシ樹脂の硬化促進剤として知られ ている種々の硬化促進剤が使用可能であり、 例えば、 アミン系、 リン系、 ホウ素 系、 リン一ホウ素系等の硬化促進剤があげられる。 なかでも、 トリフヱニルホス フィ ン、 ジァザビシクロウンデセン等が好適である。 これらは単独でもしくは 2 種以上併せて用いられる。
上記ビフエニル型エポキシ樹脂 (A成分) とともに用いられるァクリロ二トリ ル一ブタジエン系共重合体 (B成分) としては、 アクリロニトリルブタジエン共 重合体 (N B R) の含有量が 1 0 0 %である場合のみならず、 この N B Rに他の 共重合成分が含まれている場合をも含む広 、意味での共重合体をいう。 他の共重 合成分としては、 例えば、 水添ァクリロ二トリル—ブタジェンゴム、 アタリル酸 、 アクリル酸エステル、 スチレン、 メタクリル酸等があげられ、 なかでも、 金属 、 プラスチックとの接着力に優れる等の点で、 アクリル酸、 メタクリル酸が好適 である。 すなわち、 アクリロニトリル一ブタジエン一メタクリル酸共重合体、 ァ クリロニトリル—ブタジエン—ァクリル酸共重合体が好適に用いられる。 また、 上記 N B Rにおけるアクリロニトリルの含有量は、 特に、 1 0〜5 0重量%が好 ましく、 なかでも、 1 5〜4 0重量%のものが特に好適である。
第 3の発明のシート状封止材料の形成材料であるエポキシ樹脂組成物の全有機 成分中における上記アクリロニトリル一ブタジエン系共重合体 (B成分) の配合 割合は、 特に 2〜 6 0重量%の範囲が好ましく、 なかでも 3〜 5 0重量%の範囲 が好適である。 すなわち、 上記アクリロニトリル—ブタジエン系共重合体 (B成 分) の配合割合が 2重量%未満であれば、 半導体素子の封止用途において、 冷熱 サイクル下、 高温高湿下の各ストレス試験において、 優れた耐久性を発揮し難く なり易く、 逆に、 6 0重量%を超えると高温下での固着力が低下する傾向がみら れるからである。
この発明のシート状封止材料の形成材料であるエポキシ樹脂組成物には、 上記 A成分、 硬化剤、 B成分ととにも、 必要に応じて他の材料 (有機材料、 無機材料 ) を適宜配合することもできる。 上記有機材料としては、 シランカップリング剤 、 チタンカップリング剤、 表面調整剤、 酸化防止剤等があげられ、 無機材料とし ては、 アルミナ、 シリカ、 窒化珪素等の各種無機質充塡剤、 銅、 銀、 アルミニゥ ム、 ニッケル、 半田等の金属粒子、 その他、 顔料、 染料等があげられる。 上記無 機材料の配合割合は、 特に限定されるものではないが、 全配合物 (エポキシ樹脂 組成物全体) 中の 9 0重量%以下に設定することが好ましく、 より好ましくは 8 0重量%以下である。 すなわち、 上記配合割合を超えて多量に配合すると、 半導 体素子の電極と配線回路基板の電極との電気的接合が良好に行われなくなり不都 合が生じ易くなるからである。
この発明のシート状封止材料は、 例えば、 つぎのようにして製造することがで きる。 まず、 上記ビフヱニル型エポキシ樹脂 (A成分) 、 アクリロニトリル—ブ タジェン系共重合体 (B成分) の各成分を所定量配合し、 これに必要に応じて各 種成分、 例えば、 硬化剤、 硬化促進剤、 各種充塡剤等を所定量配合したエポキシ 樹脂組成物を調製する。 そして、 このエポキシ樹脂組成物を、 トルエン、 メチル ェチルケトン、 酢酸ェチル等の溶剤に混合溶解し、 この混合溶液を離型処理した ポリエステルフィルム等の基材フィルム上に塗布する。 つぎに、 この塗布した基 材フィルムを 5 0〜1 6 0 °Cで乾燥させ、 トルエン等の溶剤を除去することによ り、 上記基材フィルム上に目的とするシート状封止材料を製造することができる 。 また、 他の方法として、 トルエン等の溶剤を用いることなく加熱溶融押し出し することによつても、 目的とするシ一ト状封止材料を製造することができる。 このようにして得られたシート状封止材料としては、 つぎのような特性、 すな わち、 ゲルタイムが 1 7 5 °Cで 1 0〜1 2 0秒である特性を有することが好まし い。 なお、 上記ゲルタイムは 1 7 5 °Cの熱扳上にて測定した値である。
このようにして得られる第 3の発明のシート状封止材料を硬化してなる硬化物 は、 例えば、 つぎのようにして製造することができる。 すなわち、 上記方法によ り得られたシート状封止材料を 7 0〜3 0 0 °C、 好ましくは 1 2 0〜2 0 0 °Cで 、 3〜3 0 0分間、 好ましくは 5〜1 8 0分間加熱硬化することにより、 目的と する硬化物を製造することができる。 なお、 上記硬化条件は、 後述の半導体装置 の製法における封止樹脂層の形成時の加熱硬化条件と同様である。
そして、 得られた硬化物は、 つぎのような硬化物特性 (Z) を備えていなけれ ばならない。
(Z) 2 5 °Cにおける引張弾性率が 3 0 0〜1 5 0 0 0 MP aである。
より好ましくは 2 5 °Cにおける引張弾性率が 5 0 0〜1 2 0 0 0MP a、 特に 好ましくは 1 0 0 0〜 1 0 0 0 0 MP aである。 このような範囲に設定すること により、 冷熱サイクル下において、 半導体素子、 配線回路基板、 接続用電極部に かかる応力をバランスよく緩和することができる。 すなわち、 2 5 °Cにおける引 張弾性率が 3 0 0 M P a未満では、 接続用電極部にクラックが発生し易くなり、 2 5 °Cにおける引張弾性率が 1 5 0 0 OMP aを超えると、 半導体素子にクラッ クが発生し易くなるからである。
なお、 上記 2 5 °Cにおける引張弾性率は、 J I S K 6 9 0 0に準じて測定 される値であって、 具体的には、 万能引張試験機 (オートグラフ、 島津製作所社 製) によって測定される。
第 3の発明の半導体装置は、 先に述べたように、 配線回路基板上に、 複数の接 続用電極部を介して半導体素子が搭載され、 上記配線回路基板と半導体素子との 間の空隙が封止樹脂層によつて封止されたフニイスダウン構造を有するものであ つて、 このような半導体装置の製法の一例を以下に説明するが、 これに限定する ものではない。
まず、 図 2 1に示すように、 複数の球状の接続用電極部 2が設けられた配線回 路基板 1上に、 上記接続用電極部 2を介して固形のシ一ト状封止材料 1 0を載置 する。 ついで、 図 2 2に示すように、 上記シート状封止材料 1 0上の所定位置に 、 接続用電極部 2 ' が設けられた半導体素子 3を配置し、 加熱および加圧するこ とによって、 上記両接続用電極部 2, 2 ' 間の電気接続およびシート状封止材料 1 0の硬化を行い、 配線回路基板 1と半導体素子 3の電気的接続および固着を完 了する。 上記シート状封止材料 1 0の大きさとしては、 上記搭載される半導体 素子 3の大きさ (面積) により適宜に設定され、 通常、 半導体素子 3の大きさ ( 面積) とほぼ同じに設定することが好ましい。
また、 上記シート状封止材料 1 0の厚みは、 特に限定されるものではないが、 半導体素子 3と配線回路基板 1との空隙を充填し、 かつ、 接続用電極部 2, 2 ' 間の電気的接続を妨げないように適宜に設定することができ、 通常、 1 0〜2 0 0 zmに設定される。
また、 上記半導体装置の製造方法において、 上記シート状封止材料 1 0を加熱 溶融して溶融状態とする際の加熱温度としては、 半導体素子 3および配線回路基 板 1の耐熱性および接続用電極部 2, 2 ' の融点、 さらに、 シート状封止材料 1 0の軟化点、 耐熱性等を考慮して適宜に設定されるものである。 そして、 加熱方 法としては、 赤外線リフ口一炉、 乾燥機、 温風機、 熱板等があげられる。
さらに、 上記溶融状態とした封止材料を上記半導体素子 3と上記配線回路基板 1との間の空隙内に充塡する際には、 上記のように加圧することが好ましく、 そ の加圧条件としては、 接続用電極部 2, 2 ' の材質および個数等や、 温度によつ て適宜に設定されるが、 具体的には 0.02〜0.5 k g f Z個の範囲に設定され、 好 ましくは 0.04〜0.2 k g f Z個の範囲に設定される。 そして、 加圧することによ り、 接続用電極部 2及び Zまたは 2 ' を偏平化することが好ましい。
そして、 上記のようにして製造された半導体装置において、 半導体素子 3の大 きさは、 通常、 幅 2〜2 Ommx長さ 2〜3 Ommx厚み 0. 1〜2. 0 mmに 設定される。 また、 半導体素子 3を搭載する配線回路が形成された配線回路基板 1の大きさは、 通常、 幅 5〜1 2 Omm、 好ましくは 1 0〜7 Ommx長さ 5〜 1 2 Omm、 好ましくは 1 0〜7 Ommx厚み 0. 0 5〜3. Ommに設定され る。 そして、 溶融した封止用樹脂が充塡される、 半導体素子 3と配線回路基板 1 の空隙の両者間の距離は、 通常、 5〜2 0 0〃mである。
上記シ一ト状封止材料を用いて封止することにより形成された封止樹脂層 5は 、 先に述べたように、 下記の硬化物特性 (Z) を備えていなければならない。 よ り好ましくは 2 5°Cにおける引張弾性率が 5 0 0〜1 2 0 0 OMP a、 特に好ま しくは 1 0 0 0〜1 0 0 0 0MP aである。 ( Z ) 2 5 °Cにおける引張弾性率が 3 0 0〜1 5 0 0 0 M P aである。
さらに、 上記硬化物特性に加えて、 上記封止樹脂層 4としては、 吸水率が 1 . 5 %以下であることが好ましい。 より好ましくは吸水率が 1 . 2 %以下である。 また、 上記封止樹脂層 5に含まれるイオン性不純分 (例えば、 N a +, K+, N H 3 +, C l _, S 04 2_) が各 5 0 p p m以下であることが好ましい。 上記吸 水率の測定は、 その硬化物を 8 5 °C X 8 5 %RHで 1 6 8時間放置した後、 微量 水分測定器 (平沼水分測定装置 A Q— 5、 平沼産業社製) にて行った。 また、 上 記イオン性不純分の測定は、 硬化物を粉砕し、 1 2 1 °Cの純水にて 2 4時間抽出 し、 イオンクロマトグラフィーによって測定した。
以上の説明および後記の実施例 5 8〜6 7より明らかなように、 本出願の第 3 の発明は、 複数の接続用電極部を介在して接続された、 配線回路基板と半導体素 子との間の空隙に封止樹脂層が形成された半導体装置において、 前記特定範囲の 引張弾性率を有する硬化物特性 (Z ) を備えた封止樹脂層が形成されている。 こ のため、 上記配線回路基板と半導体素子および上記接続用電極部に生じる応力が 緩和され接続信頼性の高いものが得られ、 特に半導体素子と配線回路基板との電 気的接続が冷熱サイクル下において安定化する。
そして、 上記特定の硬化物特性 (Z ) を有する封止樹脂層を形成する材料とし て、 ビフヱニル型エポキシ樹脂とアタリロニトリル一ブタジエン系共重合体とを 含有し、 場合によりさらに特定のフエノール樹脂を用いたエポキシ樹脂組成物を 用いると、 低吸湿性や高接着性においてより優れた封止樹脂層が形成され、 結果 、 吸湿後のベ一パーフヱ一ズソルダリング (V P S ) 等のストレス試験に対して さらに安定した電気的接続の付与がなされる。
上記封止樹脂層の形成材料として、 上記硬化物特性 ( Z ) を有するシート状封 止材料、 特に、 上記エポキシ樹脂組成物からなるシート状封止材料を用いること が、 上記空隙部分の樹脂封止を容易にして、 半導体装置の製造効率が著しく向上 するため、 好適に用いられる。
そして、 本出願の第 1〜第 3の発明に於いては、 用いる層状の固形樹脂 (封止 用樹脂シート) の大きさを図 2 3、 図 2 4の如く、 半導体素子 3の面 〔又は配線 回路基板〕 に形成されている複数の接続用電極部 2の最外周に囲われた空間部分 Kに収容可能な形状寸法に裁断して使用するのがより好ましい。
図中 1 0は、 封止用樹脂シ一トである。
なお、 図 2 3、 図 2 4に於いては接続用電極部 2、 即ちジョイントボールは、 最外周のみにあるものを示している。
このように構成し、 本発明の半導体装置を製造することにより、 半導体素子と 配線回路基板の圧着時にジョイントポール面に封止用樹脂シ一トを構成する樹脂 (樹脂組成物) を介さないため圧着時に巻き込みボイドを発生し難く、 また樹脂 (場合によりフイラ一) 等が電極接合部に介在するのを避けることができ、 該接 合部の通電安定化をより確実に保障できる。
複数の接続用電極部が上記の最外周に囲われた空間部分内に設けられていると きの半導体装置の製法の態様を示したのが、 図 2 5及び図 2 6である。
図 2 5は上記図 2 3、 図 2 4で説明したのと同様の要領により、 半導体装置を 製造する場合を示しているが、 図 2 6はかかる場合に於ける好態様を示している ο
即ち、 図 2 6のものでは、 複数の接続用電極部 2の最外周に囲われた中間部分 内に設けられた接続用電極部 2 ' に対応する封止用樹脂シ一卜の部分に貫通孔 Τ が設けられている。
さらに、 本出願の第 1〜第 3の発明の好態様について説明する。
この好態様は、 反りの発生の見られる配線回路基板を用いて半導体装置を製造 する場合に特に好適である。
即ち本発明に基づいて半導体装置を製造する場合、 配線回路基板 1上に形成し た接続用電極部 2と半導体素子 3上に形成した接続用電極部 2を両電極部が当接 するようアジャストし (図 2 7参照) 、 熱圧プレスの上下両板 Ρ、 Ρ ' の距離を 徐々に接近させてゆき図 2 8に示す如く両電極部 2、 2が丁度接触した点 (この 点での半導体素子 3と配線回路基板の隙間の距離を本願発明に於いて 「全接合高 さ Ν」 と定義する) がある。
本発明に於いては、 半導体装置の製法に用いる封止用樹脂シート 1 0の厚みを この 「全接合高さ Ν」 の 5 0〜9 5 %とすることが好適である。
この理由は前記の如く 5 0〜9 5 %高さの封止用樹脂シートを用いることによ り、 反りを有する配線用基板が、 一般的には、 図 2 8に示されるように両電極の 当接と加圧により反りが解消されて、 その結果ほぼ均一厚みの空隙 Hが形成され 、 この空隙 Hがエア一抜き通路の役目を果たすからである。
なお、 図 2 8状態を経由した後は、 さらに熱圧プレスの圧力が加わって電極部 2 2は、 偏平化されて (通常は加圧前の電極の高さの 6 0 9 5 %の高さとな る) 、 封止用樹脂シートの溶融硬化 (例えば、 1 8 0 °C) により、 半導体素子と 配線回路基板は、 互いに偏平化された電極部 2 2を介して接着される。 (接着 体の製造)
このとき一般的には電極部 2 2を構成する材料としては、 熱時流動可能な材 料、 例えば、 ハンダにより形成されている。
次いで電極部を構成するハンダを溶融させるために、 上記接着体は 2 1 5 °C程 度に加温され、 本発明の半導体装置とするのが一般的である。 封止用樹脂シート 硬化後に電極部を構成するハング等の材料を、 このように溶融させる工程は、 今 迄説明していないが、 本出願の第 1〜第 3の発明に於いて通常行われる。
本発明による封止用樹脂シートによる封止では、 たいていの場合、 次のことが s - , o
即ち接続用電極部としてハングを用いた場合には、 フラックスがなくても、 前 記のチップ電極部と基板電極部 (ランド部) の両者の溶融,結合が好適に行われ るのが、 一般的である。
この理由は明らかではないが、 前記接合体が得られた段階では、 接続用電極と してハンダの回りは、 たいていの場合、 硬化樹脂で覆われて酸素と遮断された状 態となつていること、 及び電極の圧力による前記の偏平化時にハング表面にクラ ックが生じてハング地肌表面 (酸化されていない面) が露出しているためではな いかと考えられる。 また、 極微量の塩素成分及び 又は有機酸成分を含有する封 止用樹脂シート、 例えば、 エポキシ樹脂組成物よりなるシートを用いた場合には 、 これら塩素成分及び/又は有機酸成分がハンダ電極部表面に形成する酸化膜除 去に効果のあるものと考えられる。 次いで、 このような環境下で 2 1 5 °C程度に 加温することにより、 上述の両電極部が溶融する。
つぎに、 本発明の第 1の発明の実施例について説明する。 まず、 実施例に先立って、 下記に示す各成分を準備した。
〔エポキシ樹脂 a 1〕
下記の式 (4) で表される構造のビフヱニル型エポキシ樹脂である。
Figure imgf000054_0001
〔エポキシ樹脂 a 2〕
クレゾ一ルノポラック型エポキシ樹脂 (エポキシ当量: 1 9 5 g/e q, 融点 : 6 0〜9 0°C) である。
〔硬化剤 b〕
フエノールノボラック樹脂 (水酸基当量: 1 0 5 g/e Q、 軟化点 6 0°C) で める。
〔無機質充塡剤 c l〜c 5〕
下記の表 1に示す球状シリ力粉末である。
表 1
Figure imgf000054_0002
〔触媒 d l〕
トリフヱニルホスフィンである。
〔触媒 d 2〕
テトラフエニルホスフヱ一トおよびテトラフ 二ルボレートの混合物 (モル混 合比 1Z1) である。
〔低応力化剤〕
ァクリロニトリル ブタジエンゴムである。 W0^8/28788
〔難燃剤〕
ブロム化エポキシフエノールノボラックである。
〔難燃助剤〕
三酸化二アンチモンである。
〔ヮックス〕
ポリエチレン系ヮックスである。
〔カツプリング剤〕
ァーグリシドキシプロピルトリメ トキシシランである。
実施例 1〜 1 3
上記各成分を用い、 下記の表 2〜表 3に示す割合で各成分を混合した。 これを パレツ ト上に受入れし、 これを冷却後プレス圧延してシート状化することにより 目的のシート状エポキシ樹脂組成物を作製した。
表 2 施 例
1 2 3 4 5 6 7 ェシ a 1 19 19 19 19 19 19 ポ樹
キ脂 a 2 ― 一 19 一 ― 硬化剤 b 11 11 11 11 11 11 11 シ c 1 89 ― —— 89 —— 480 一 力 c 2 一 89
末 c 3 一 一 89 ― 一 ― 一 c 4 一 一 —— —— 89 ― 一 c 5 89 触 d 1 1 1 1 1 1 1 1 媒
d 2 低応力化剤 20 20 20 20 20 20 20 難燃剤 2.5 2.5 2.5 2.5 2.5 2.5 2.5 難燃助剤 5.0 5.0 5.0 5.0 5.0 5.0 5.0 ワ ックス 0.5 0.5 0.5 0.5 0.5 0.5 0.5 力?プリング剤 0.3 0.3 0.3 0.3 0.3 0.3 0.3 表 3
Figure imgf000057_0001
.のようにして得られた各実施例のシート状エポキシ樹脂組成物 (封止用樹脂 シート) を用い、 前述の半導体装置の製法における第 1の態様に従って半導体装 置を製造した。 すなわち、 図 2に示すように、 ボード 1に設けられた球状のジョ イントポール 2を介して、 上記ボード 1上に上記各封止用樹脂シート 1 0を載置 した後、 図 3に示すように、 上記封止用樹脂シート 1 0上に半導体チップ 3を載 置した。 その後、 加熱温度 1 8 0で 荷重0 . 0 6 k gZ個の条件で封止用樹脂 シート 1 0を加熱溶融して、 ボード 1と半導体チップ 3との空隙内に溶融状態の 樹脂を充塡し、 熱硬化 (条件: 2 0 0 °C X 2 0分硬化) させることにより、 図 1 に示すように、 上記空隙が封止樹脂層 4で樹脂封止された半導体装置を作製した 。 得られた半導体装置について、 初期の通電チヱックを行い、 さらに、 その半導 体装置を用いて、 プレッシャークッ力一テスト 〔P C Tテスト (条件: 1 2 1 °C X 2 a t m x 1 0 0 % R Hで 2 0 0時間放置) 〕 を行った後に通電チヱックを行 つた。 そして、 不良が発生した割合 (不良発生率) を算出した。 この不良発生率 とともに、 不良が発生したものを X、 全く不良が発生しなかったものを〇として 表示した。 その結果を下記の表 4〜表 5に示す。
なお、 上記例において用いたチップは、 厚み 0 . 6 mm、 大きさ 1 3 . 5 mm 角のものを用い、 チップ上に形成された接続用電極部のハングは、 高さ 9 0〃m 、 直径 1 5 0〃mの半球状のものとした。 配線回路基板は、 厚みし 0 mm、 大 きさ 2 1 mm角のもので、 配線回路基板上に形成された接続用電極部のハンダは 、 高さ 3 0〃m、 直径 1 2 0〃mの半球状のものとした。
表 4
Figure imgf000058_0001
* : ( ) 内は不良発生率 (%) を示す。 表 5
Figure imgf000059_0001
* : ( ) 内は不良発生率 (%) を示す。
上記表 4〜表 5の結果、 初期の通電チヱックおよび P C Tテスト 2 0 0時間後 の通電チェックにおいて不良が全く発生しなかった。 このことから、 全ての実施 例では、 ボードと半導体チップとの空隙に封止樹脂層が形成されており、 上記空 隙内の封止用樹脂の充塡が良好に行われていることが明らかである。
また、 上記各実施例 1〜1 3のエポキシ樹脂組成物を用い、 前述の半導体装置 の製法の第 2の態様に従って半導体装置を製造した。 すなわち、 図 2に示すよう に、 ジョイントボール 2が設けられたボード 1上に、 上記ジョイントボール を 介して各封止用樹脂シ一ト 1 0を載置した。 ついで、 この封止用樹脂シ一ト 1 0 を 1 8 0 °Cで加熱溶融することにより、 図 6に示すように、 上記ジョイントボー ル 2の頭頂部が露出するよう、 ボード 1面に封止用樹脂層 1 3を形成した。 つぎ に、 図 7に示すように、 上記封止用樹脂層 1 3からその頭頂部が露出したジョイ ントボール 2と、 半導体チップ 3の電極部が当接するよう上記ボ一ド 1に半導体 チップ 3を搭載した。 ついで、 全体を加熱 (1 8 0 °C) して上記ボード 1面に設 けられた封止用樹脂層 1 3を溶融して溶融状態とし、 加圧により半導体チップ 3 と上記ボード 1とを接合 (条件: 2 0 0 °C X 2 0分で熱硬化) させることにより 、 図 1に示すように、 上記空隙が封止樹脂層 4で樹脂封止された半導体装置を作 製した。 得られた半導体装置について、 上記と同様、 初期の通電チェックおよび P C Tテスト 2 0 0時間放置後の通電チェックを行った。 その結果、 先の評価結 果と同様、 初期の通電チヱックおよび P C Tテスト 2 0 0時間後の通電チェック において不良が全く発生しなかった。 したがって、 ボード 1と半導体チップ 3と の空隙に封止樹脂層 4が形成されており、 上記空隙内の封止用樹脂の充塡が良好 に行われていることが明らかである。 さらに、 上記各実施例 1〜1 3のエポキシ樹脂組成物を用い、 前述の半導体装 置の製法の第 3の態様に従って半導体装置を製造した。 すなわち、 図 1 6に示す ように、 予め、 半導体チップ 3の片面に各封止用樹脂シート 1 4を貼着したもの を準備した。 ついで、 複数のジョイントボール 2が設けられたボード 1上に、 上 記貼着された封止用樹脂シ一ト 1 4が上記ジョイントポール 2と当接するよう半 導体チップ 3を載置した。 ついで、 全体を加熱 (1 8 0 °C) することにより上記 封止用樹脂シート 1 4を溶融して溶融状態とし、 加圧により半導体チップ 3と上 記ボード 1とを接合 (条件: 2 0 0 °C X 2 0分で熱硬化) させて、 図 1に示すよ うに、 半導体チップ 3とボード 1との空隙が封止樹脂層 4で樹脂封止された半導 体装置を作製した。 得られた半導体装置について、 上記と同様、 初期の通電チェ ックおよび P C Tテスト 2 0 0時間放置後の通電チヱックを行った。 その結果、 先の評価結果と同様、 初期の通電チェックおよび P C Tテスト 2 0 0時間後の通 電チ ックにおいて不良が全く発生しなかった。 したがって、 ボード 1と半導体 チップ 3との空隙に封止樹脂層 4が形成されており、 上記空隙内の封止用樹脂の 充塡が良好に行われていることが明らかである。
〔封止用樹脂シー卜の作製〕
つぎに、 下記の表 6に示す各成分を用い、 同表に示す割合で各成分を混合した 。 これをパレット上に受入れし、 これを冷却後プレス圧延してシート状化するこ とにより目的のシート状エポキシ樹脂組成物 (封止用樹脂シート) を作製した。
PC
表 6
Figure imgf000061_0001
実施例 1 4 2 0
このようにして得られた上記各実施例のシート状エポキシ樹脂組成物 (封止用 樹脂シー ト) を用い、 前述の半導体装置の製法における第 1の態様に従って半導 体装置を製造した。 すなわち、 図 2に示すように、 ボード 1に設けられた球状の ジョイ ン トボール 2を介して、 上記ボード 1上に上記各封止用樹脂シート 1 0を 載置した後、 図 3に示すように、 上記封止用樹脂シート 1 0上に半導体チップ 3 を載置した。 ついで、 全体を加熱 (1 8 0で 荷重0 . 0 8 k g f Z個) して所 定時間保持する (上記表 6に昇温後の保持時間を示す) とともに加圧し (溶融時 粘度、 加圧時間、 加圧終了時の粘度、 ゲルタイム、 ゲルタイム保持率および D S C残存反応熱量を上記表 6に示す) 、 その状態で半導体チップ 3と上記ボード 1 とを接合 (条件: 2 0 0 °C X 2 0分で熱硬化) させて、 図 1に示すように、 半導 体チップ 3とボ一ド 1との空隙が封止樹脂層 4で樹脂封止された半導体装置を作 製した。
実施例 2 1〜 2 7
また、 上記各実施例のシート状エポキシ樹脂組成物 (封止用樹脂シート) を用 い、 前述の半導体装置の製法の第 2の態様に従って半導体装置を製造した。 すな わち、 図 2に示すように、 ジョイントボール 2が設けられたボ一ド 1上に、 上記 ジョイントボール 2を介して各封止用樹脂シート 1 0を載置した。 ついで、 この 封止用樹脂シート 1 0を 1 8 0 °Cで加熱溶融することにより、 図 6に示すように 、 上記ジョイントボール 2の頭頂部が露出するよう、 ボード 1面に封止用樹脂層 1 3を形成した。 つぎに、 図 7に示すように、 上記封止用樹脂層 1 3からその頭 頂部が露出したジョイントボール 2と、 半導体チップ 3の電極部が当接するよう 上記ボード 1に半導体チップ 3を搭載した。 ついで、 全体を加熱 (1 8 0 °C X荷 重 0 . 0 8 k g f /個) して所定時間保持する (上記表 6に昇温後の保持時間を 示す) とともに加圧し (溶融時粘度、 加圧時間、 加圧終了時の粘度、 ゲルタイム 、 ゲルタイム保持率および D S C残存反応熱量を上記表 6に示す) 、 その状態で 半導体チップ 3と上記ボード 1とを接合 (条件: 2 0 0 °C X 2 0分で熱硬化) さ せて、 図 1に示すように、 半導体チップ 3とボ一ド 1との空隙が封止樹脂層 4で 樹脂封止された半導体装置を作製した。
実施例 2 8〜 3 4
ついで、 上記各実施例のシート状エポキシ樹脂組成物 (封止用樹脂シート) を 用い、 前述の半導体装置の製法の第 3の態様に従って半導体装置を製造した。 す なわち、 図 1 6に示すように、 予め、 半導体チップ 3の片面に各封止用樹脂シー ト 1 4を貼着したものを準備した。 ついで、 複数のジョイントボール 2が設けら れたボ一ド 1上に、 上記貼着された封止用樹脂シート 1 4が上記ジョイントボー W098/28788 ル 2と当接するよう半導体チップ 3を載置した。 ついで、 全体を加熱 (1 8 0°C X荷重 0. 0 8 k g f Z個) して所定時間保持する (上記表 6に昇温後の保持時 間を示す) とともに加圧し (溶融時粘度、 加圧時間、 加圧終了時の粘度、 ゲル夕 ィム、 ゲルタイム保持率および DS C残存反応熱量を上記表 6に示す) 、 その状 態で半導体チップ 3と上記ボード 1とを接合 (条件: 2 0 0 °CX 2 0分で熱硬ィ匕 ) させて、 図 1に示すように、 半導体チップ 3とボード 1との空隙が封止樹脂層 4で樹脂封止された半導体装置を作製した。
〔粘度〕
フローテスタ一の粘度曲線から粘度を読み取つた。
〔ゲルタイム保持率〕
下記の式 (1) により算出した。
(ゲルタイム一昇温時保持時間 +加熱時間) Zゲルタイム … (1) 〔残存反応熱量〕
熱板上に樹脂シートを載せ、 経時毎にサンプリングし、 DSCにより残存反応 熱量を測定した。
上記各態様によって得られた半導体装置について、 上記と同様、 初期の通電チ ヱックおよび P CTテスト 2 0 0時間放置後の通電チヱックを行った。 その結果 、 先の評価結果と同様、 初期の通電チェックおよび PC Tテスト 2 0 0時間後の 通電チェックにおいて不良が全く発生しなかった。 したがって、 ボード 1と半導 体チップ 3との空隙に封止樹脂層 4が形成されており、 上記空隙内の封止用樹脂 の充塡が良好に行われていることが明らかである。
さらに、 上記得られた各半導体装置について、 下記の条件における通電テスト
〔吸湿べ一パーフヱイズソルダリング (VPS) 前後〕 を行った。 さらに、 下記 の条件における半導体素子と配線回路基板の密着性評価 (吸湿 VP S前後) を行 つた。 その結果を後記の表 7〜表 9に併せて示す。
〔通電テスト条件 ·密着性評価条件〕
吸湿 V P S条件: 3 0 °CZ 6 0 R H% X 1 6 8時間 + 2 1 5 °C X 9 0秒間 なお、 上記通電テストにおける吸湿 VPS前の初期値 (抵抗値) を基準の 1 0 0とし、 それに対する吸湿 VPS後の抵抗値を相対値として示した。 また、 上記 密着性評価は、 超音波探傷法により測定して、 封止樹脂層部分のボイドの有無お よびジョイントボール周辺の剝離状態の有無を中心に評価した。
表 7
〔第 1の態様〕
Figure imgf000064_0001
* 1 :通電テストにおける初期の抵抗値を 1 0 0とし、 吸湿 V P S後
の抵抗値を測定し、 初期抵抗値と比較した。
* 2 :超音波探傷法により、 半導体チップとボードとの界面に剝離が
発生したか否かを評価した。
表 8
〔第 2の態様〕
Figure imgf000064_0002
* 1 :通電テストにおける初期の抵抗値を 1 0 0とし、 吸湿 V P S後
の抵抗値を測定し、 初期抵抗値と比較した。
* 2 :超音波探傷法により、 半導体チップとボードとの界面に剝離が
発生したか否力、を評価した。
6 2 訂正された用紙 (規則 91) .表 9
〔第 3の態様〕
Figure imgf000065_0002
* 1 :通電テストにおける初期の抵抗値を 1 0 0とし、 吸湿 V P S後
の抵抗値を測定し、 初期抵抗値と比較した。
* 2 :超音波探傷法により、 半導体チップとボードとの界面に剥離が
発生したか否かを評価した。
上記表 7〜表 9において、 溶融粘度が 5 0 0 0ボイズ以上、 ゲルタイム保持率 が 3 0 %以下、 あるいは反応残存熱量が初期値に対して 7 0 %以下となるよう封 止用樹脂シ一トを一定時間加熱するとともに加圧することにより空隙に充填され 封止樹脂層が形成された実施例品は、 吸湿 V P S前後の通電テスト結果からも信 頼性の高いものであることがわかる。 また、 吸湿 V P S前後の密着性評価の結果 において、 いずれも剥離が確認されず、 封止樹脂層部分に細かなボイド等も形成 されず、 良好な封止樹脂層が形成されていた。 これらのことから、 導通特性に関 して問題のない信頼性に優れた半導体装置が得られていることがわかる。
つぎに、 本願の第 2の発明の実施例について説明する。
まず、 実施例に先立って、 下記に示す各成分を準備した。
〔エポキシ樹脂 a 1〕
下記の式 (4 ) で表される構造のビフヱニル型エポキシ榭脂である。
Figure imgf000065_0001
〔エポキシ樹脂 a 2〕
クレゾ一ルノポラック型エポキシ樹脂 (エポキシ当量: 1 9 5 g/ e q , 融点
6 3 丁正された用紙 (規則 91) : 6 0〜9 0°C) である。
〔硬化剤 b〕
フエノールノボラック樹脂 (水酸基当量: 1 05 gZe q、 軟化点 6 0°C) で ある。
〔無機質充塡剤 c〕
球状シリカ粉末 (平均粒径 3〃m、 最大粒径 1 8 fim) である。
〔触媒 d〕
テトラフヱニルホスフヱ一トおよびテトラフヱニルボレー卜の混合物 (モル混 合比 1Z1) である。
〔低応力化剤〕
ァクリロニトリル一ブタジエンゴムである。
〔難燃剤〕
ブロム化エポキシフエノールノボラックである。
〔難燃助剤〕
三酸化二アンチモンである。
〔ヮックス〕
ポリエチレンである。
〔カツプリング剤〕
7一グリシドキシプロピルトリメ トキシシランである。
〔封止用樹脂シート a〜 f の作製〕
上記各成分を用い、 下記の表 1 0〜表 1 1に示す割合で各成分を混合した。 こ れをパレツ ト上に受入れし、 これを冷却後プレス圧延してシート状化することに より目的のシート状エポキシ樹脂組成物 (封止用樹脂シート) を作製した。
表 1 o
Figure imgf000067_0001
表 1 1
Figure imgf000067_0002
実施例 3 5〜 4 0
このようにして得られた上記各シ一ト状エポキシ樹脂組成物 (封止用樹脂シー ト) を用い、 前述の半導体装置の製法における第 1の態様に従って半導体装置を 製造した。 すなわち、 図 2に示すように、 ボード 1に設けられた球状のジョイン トポール 2を介して、 上記ボード 1上に上記各封止用樹脂シート 1 0を載置した 後、 図 3に示すように、 上記封止用樹脂シート 1 0上に半導体チップ 3を載置し た。 なお、 このとき上記封止用樹脂シート 1 0は事前に加熱処理 (処理条件: 1
3 0 °C x 1 5 0秒もしくは 1 1 0 °C X 6 0秒) を施しておいた。 ついで、 全体を 加熱 (1 8 0 °C x荷重 0 . 0 8 k g f 個) するとともに加圧し (加圧圧力、 加 圧時間、 D S C圧着後の残存反応熱量を下記の表 1 2に示す) 、 半導体チップ 3 温度およびボード (基板) 1温度を下記の表 1 2に示す温度に設定し、 その状態 で半導体チップ 3と上記ボード 1とを接合 (条件: 2 0 0 °C X 2 0分で熱硬化) させて、 図 1に示すように、 半導体チップ 3とボード 1との空隙が封止樹脂層 4 で樹脂封止された半導体装置を作製した。
表 1 2
〔第 1の態様〕
Figure imgf000068_0001
実施例 4 1〜 4 6、
また、 上記各シート状エポキシ樹脂組成物 (封止用樹脂シート) を用い、 前述 の半導体装置の製法の第 2の態様に従って半導体装置を製造した。 すなわち、 図 2に示すように、 ジョイントボール 2が設けられたボード 1上に、 上記ジョイン トポール 2を介して各封止用樹脂シート 1 0を載置した。 ついで、 この封止用樹 脂シート 1 0を 1 8 0 °Cで加熱溶融することにより、 図 6に示すように、 上記ジ ョイントポール 2の頭頂部が露出するよう、 ボード 1面に封止用樹脂層 1 3を形 成した。 つぎに、 図 7に示すように、 上記封止用樹脂層 1 3からその頭頂部が露 出したジョイントボール 2と、 半導体チップ 3の電極部が当接するよう上記ボー ド 1に半導体チップ 3を搭載した。 なお、 このとき上記封止用樹脂層 1 3は事前 に加熱処理 (処理条件: 1 3 0 °C X 1 5 0秒もしくは 1 1 0 °C X 6 0秒) を施し ておいた。 ついで、 全体を加熱 (1 8 0で 荷重0 . 0 8 k g f /個) するとと もに加圧し (加圧圧力、 加圧時間、 D S C圧着後の残存反応熱量を下記の表 1 3 に示す) 、 半導体チップ 3温度およびボード (基板) 1温度を下記の表 1 3に示 す温度に設定し、 その状態で半導体チップ 3と上記ボード 1とを接合 (条件: 2 0 0 °C X 2 0分で熱硬化) させて、 図 1に示すように、 半導体チップ 3とボード 1との空隙が封止樹脂層 4で樹脂封止された半導体装置を作製した。
表 1 3
〔第 2の態様〕
Figure imgf000070_0001
実施例 4 7〜 5 2
ついで、 上記各シート状エポキシ樹脂組成物 (封止用樹脂シート) を用い、 前 述の半導体装置の製法の第 3の態様に従って半導体装置を製造した。 すなわち、 図 1 6に示すように、 予め、 半導体チップ 3の片面に各封止用樹脂シート 1 4を 貼着したものを準備した。 ついで、 複数のジョイントボール 2が設けられたボ一 ド 1上に、 上記貼着された封止用樹脂シ一ト 1 4が上記ジョイントボール 2と当 接するよう半導体チップ 3を載置した。 なお、 このとき上記封止用樹脂シート 1
0は事前に加熱処理 (処理条件: 1 3 0 °C X 1 5 0秒もしくは 1 1 0 °C X 6 0秒 ) を施しておいた。 ついで、 全体を加熱 (1 8 0 °〇 荷重0 . 0 8 k g f Z個) するとともに加圧し (加圧圧力、 加圧時間、 D S C圧着後の残存反応熱量を下記 の表 1 4に示す) 、 半導体チップ 3温度およびボード (基板) 1温度を下記の表
1 4に示す温度に設定し、 その状態で半導体チップ 3と上記ボード 1とを接合 ( 条件: 2 0 0 °C X 2 0分で熱硬化) させて、 図 1に示すように、 半導体チップ 3 とボード 1との空隙が封止樹脂層 4で樹脂封止された半導体装置を作製した。 表 1 4
〔第 3の態様〕
Figure imgf000071_0001
〔残存反応熱量〕
熱板上に樹脂シートを載せ、 経時毎にサンプリングし、 DSCにより残存反応 熱量を測定した。
得られた半導体装置を 1 5 0°CX 3 0分の条件でアフターキュアを行った。 そ して、 キュア後の半導体装置の反りの度合いを、 表面粗さ計にて半導体チップ表 面の対角線上の反りを測定し、 その最大値を反り値として評価した。 この結果を 後記の表 1 5〜表 1 7に示す。
さらに、 上記得られた各半導体装置について、 下記の条件における通電テスト
〔吸湿べ一パ一フヱイズソルダリング (VPS) 前後〕 を行った。 また、 下記の 条件における半導体素子と配線回路基板の密着性評価 (吸湿 VPS前後) を行つ た。 そして、 得られた各半導体装置を、 熱衝撃テスト (TST:条件— 4 0°CX 5分 1 2 5 °C X 5分) に所定サイクル数 ( 1 0 0サイクル, 5 0 0サイクル) 供した後、 半導体チップにクラックの発生したか否かを目視により評価した。 こ れらの結果を後記の表 1 5〜表 1 7に併せて示す。 • 〔通電テスト条件 ·密着性評価条件〕
吸湿 V P S条件: 3 0 °C/ 6 0 R H % X 1 6 8時間 + 2 1 5 °C X 9 0秒間 なお、 上記通電テストにおける吸湿 V P S前の初期値 (抵抗値) を基準の 1 0
0とし、 それに対する吸湿 V P S後の抵抗値を相対値として示した。 また、 上記 密着性評価は、 超音波探傷法により測定して、 封止樹脂層部分のボイ ドの有無お よびジョイントボール周辺の剝離状態の有無を中心に評価した。
表 1 5
〔第 1の態様〕
Figure imgf000072_0001
* 1 通電テストにおける初期の抵抗値を 1 0 0とし、 吸湿 V P S後
の抵抗値を測定し、 初期抵抗値と比較した。
* 2 超音波探傷法により、 半導体チップとボ一ドとの界面に剝離が
発生したか否かを評価した。
* 3 — 4 0 °C X 5分 1 2 5 °C X 5分の条件で所定サイクル数経過
した後のチップにクラックが発生したか否かを評価した。
表 1 6
〔第 2の態様〕
Figure imgf000073_0001
* 1 :通電テストにおける初期の抵抗値を 1 0 0とし、 吸湿 VPS後 の抵抗値を測定し、 初期抵抗値と比較した。
* 2 :超音波探傷法により、 半導体チップとボードとの界面に剥離が 発生したか否かを評価した。
* 3 : — 4 0°CX 5分 1 2 5°CX 5分の条件で所定サイクル数経過 した後のチップにクラックが発生したか否かを評価した。 表 1 7
〔第 3の態様〕
Figure imgf000073_0002
* 1 :通電テストにおける初期の抵抗値を 1 0 0とし、 吸湿 VPS後 の抵抗値を測定し、 初期抵抗値と比較した
* 2 :超音波探傷法により、 半導体チップとボー 3ドとの界面に剥離が W 7 発生した力ヽ否カ、を評価し
* 3 : — 4 0 °C X 5分 1 2 5 °C X 5分の条件で所定サイクル数経過
した後のチップにクラックが発生したか否かを評価した。
上記表 1 5〜表 1 7において、 配線回路基板と半導体素子を前記特定の条件 (
X) および (Y) を満たして加圧接合することにより上記封止用樹脂シート, 封 止用樹脂層を溶融させ封止樹脂層が形成された実施例品 (第 1〜第 3の態様とも
) は、 吸湿 V P S前後の通電テスト結果からも信頼性の高いものであることがわ かる。 また、 吸湿 V P S前後の密着性評価の結果において、 いずれも剥離が確認 されず、 封止樹脂層部分に細かなボイド等も形成されず、 良好な封止樹脂層が形 成されていた。 さらに、 T S T後のチップクラック評価においても、 半導体チッ プにクラックが生じなかった。 し力、も、 アフターキュア一後の反りの度合いも比 較例品と比べて小さく、 反りの発生が効果的に抑制されていることがわかる。 こ れらのことから、 導通特性等に関して問題のない耐熱衝撃性等の信頼性に優れた 半導体装置が得られていることがわかる。
つぎに、 先に述べた、 封止用樹脂を Bステージ状にする工程、 半導体素子と配 線回路基板の位置合わせおよび圧着工程、 封止用樹脂をゲル化状態とする工程、 樹脂のキュア一工程の上記各工程を分割するとともに一環ラインとした半導体装 置の製造工程を経由した実施例および比較例について述べる。
まず、 実施例に先立って、 前記と同様の各成分を準備するとともに、 上記各成 分を用い、 前記表 1 0〜表 1 1に示す割合で各成分を混合した。 ついで、 これを パレツト上に受入れし、 これを冷却後プレス圧延してシート状化することにより 前記と同じシート状エポキシ樹脂組成物 (封止用樹脂シート) を作製した。
実施例 5 3〜 5 7
このようにして得られた上記各シート状エポキシ樹脂組成物 (封止用樹脂シー ト) を用い、 前述の半導体装置の製法における第 1の態様における、 各工程を分 割するとともに一環ラインとした半導体装置の製造工程に従って半導体装置を製 造した。 すなわち、 ジョイントボール 2が設けられたボード 1面上に封止用樹脂 シート 1 0を載置した状態のものを準備し、 図 1 9 ( a ) に示すように、 これを 乾燥炉 4 0内を通過させることにより、 上記封止用樹脂シート 1 0を Bステージ 状態 (半硬化状態) とした (Bステージ工程) 。 ついで、 上記封止用樹脂シート Wひ 98/28788 P T JP
1 0を Bステージ状態とした後、 図 1 9 ( b ) に示すように、 この Bステージ状 の封止用樹脂シー卜 1 0上の所定位置に、 加熱圧着ツール 4 1の先端部に取り付 けられた半導体チップ 3が載置されるよう、 ボード 1と半導体チップ 3とを位置 合わせするとともに、 ボード 1上の封止用樹脂シ一ト 1 0の所定位置に半導体チ ップ 3を載置し仮接着した (位置合わせおよび圧着工程) 。 つぎに、 図 1 9 ( c ) に示すように、 封止用樹脂シート 1 0上に仮接着された半導体チップ 3面に加 熱ツール 4 2を接触させて所定時間加熱することにより、 封止用樹脂シート 1 0 をゲル化状態とした (封止用樹脂のゲル化工程) 。 これにより、 ゲル化した封止 用樹脂をボード 1と半導体チップ 3の間の空隙内に充塡した。 ついで、 ゲル化し た封止用樹脂を充塡した後、 図 1 9 ( d ) に示すように、 半導体チップ 3上に加 熱ツール 4 3を接触させてゲル化した封止用樹脂を所定温度でキュア一した後、 続いて、 ボード 1の下方に位置する冷却板 4 4によりボード 1を冷却する (キュ ァ一工程) ことにより、 図 1に示すように、 半導体チップ 3とボード 1との空隙 が封止樹脂層 4で樹脂封止された半導体装置を作製した。
なお、 上記各工程での、 樹脂を Bステージ状態とする上記 Bステージ工程、 位 置合わせおよび圧着工程、 封止用樹脂のゲル化工程およびキュア一工程の、 各ェ 程における温度, 時間等の各条件を下記の表 1 8に示す。
表 1 8
Figure imgf000076_0001
得られた各半導体装置において、 ボイドの有無、 圧着後の反り量、 1 5 0°CX 3 0分の条件でアフターキュアを行つた後の半導体装置の反り量を上記と同様の 測定方法により測定 ·評価した。
また、 各半導体装置を用い、 熱衝撃テスト (TST:条件一 4 0で 5分 1 2 5°CX 5分) に所定サイクル数 (1 0 0サイクル, 5 0 0サイクル) 供した後 、 半導体チップにクラックの発生したか否かを目視により評価した。
さらに、 初期の導通不良の有無を測定し評価した。
これらの結果を下記の表 1 9に併せて示す。 表 1 9
Figure imgf000077_0001
上記表 1 6において、 ボードと半導体チップを前記特定の条件 (X) および ( Y) を満たして連続的に製造された実施例品は、 封止樹脂層部分にボイドも形成 されず、 良好な封止樹脂層が形成された。 また、 圧着後および 1 5 0 °C X 3 0分 後の反り量も小さかった。 さらに、 導通不良も無く、 T S T後のチップクラック 評価においても、 半導体チップにクラックは全く発生しなかった。 そして、 これ ら良好な封止樹脂層が形成された半導体装置が全て総封止時間 1 0秒以内で効率 良く製造された。
つぎに、 上記封止用樹脂シートを用い、 前述の半導体装置の製法における第 2 の態様の連続的な製造工程、 および、 第 3の態様の連続的な製造工程に従って半 導体装置を製造した。 得られた半導体装置について、 上記と同様の測定評価を行 つた結果、 上記第 1の態様における連続的な製造工程で得られた半導体装置と略 同様の良好な結果が得られた。 すなわち、 得られた半導体装置は、 封止樹脂層部 分にボイドも形成されず、 良好な封止樹脂層が形成された。 また、 圧着後および 1 5 0 °C X 3 0分後の反り量も小さかった。 さらに、 導通不良も無く、 T S T後 のチップクラック評価においても、 半導体チップにクラックは全く発生しなかつ た。 しかも、 良好な封止樹脂層が形成された半導体装置が全て総封止時間 1 0秒 以内で効率良く製造された。
つぎに、 第 3の発明の実施例について説明する。
まず、 実施例に先立って、 下記に示す各成分を準備した。 〔エポキシ樹脂 a 1〕
下記の構造式で表されるビフ ニル型エポキシ樹脂 H2
Figure imgf000078_0001
エポキシ当量: 1 9 5 g/e q、 融点: 1 0 7 °C
〔エポキシ樹脂 a 2)
クレゾ一ルノポラック型エポキシ樹脂 (エポキシ当量: 1 9 5 g/e q、 融点 : 8 0°C)
〔アクリロニトリル—ブタジエン系共重合体 b 1〕
アクリロニトリル一ブタジエンーメタクリル酸共重合体 〔ム一二一粘度: 5 0 、 結合ァクリロニトリル含量: 3 0重量%、 結合カルボキシル基量: 0. 0 5 e p h r (ゴム 1 0 0 g当たりのモル数) 〕
〔ァクリロニトリル一ブタジエン系共重合体 b 2]
アクリロニトリル—ブタジエン—アクリル酸共重合体 (ム一二一粘度: 8 0、 結合ァクリロ二トリル含量: 2 0重量%、 結合カルボキシル基量: 0. 0 2 e p h r)
〔硬化剤 c 1〕
下記の構造式で表されるフエノール樹脂 (水酸基当量: 1 7 5 g/e q, 軟化 点 7 5 °C)
Figure imgf000078_0002
m= 0〜3 0
〔硬化剤 c 2〕
フヱノ一ルノボラック樹脂 (水酸基当量: 1 0 5 gZ e q、 軟化点 6 0 °C) 〔硬化促進剤〕 トリフエニルホスフィ ン
〔無機質充塡剤〕
球状シリ力 (平均粒径: 3 zm、 最大粒径: 3 0 / m)
実施例 5 8〜 6 7
下記の表 2 0及び 2 1に示す各成分を、 同表に示す割合で配合しエポキシ樹脂 組成物を調製した。 このエポキシ樹脂組成物をトルエンに混合溶解し、 この混合 溶液を離型処理したポリエステルフィルム上に塗布した。 つぎに、 上記混合溶液 を塗布したポリエステルフィルムを 1 2 0°Cで乾燥させ、 トルエンを除去するこ とにより、 上記ポリエステルフィルム上に目的とする厚み 1 0 0 zmのシート状 封止材料を作製した。
表 2 0 施 例
5 8 5 9 6 0 6 1 6 2 6 3 6 4
エポキシ樹 a 1 47.4 36.9 47.4 58.5 31.6 47.4
a 2 47.4
c 1 42.6 33.1 42.6 42.6 28.4 42.6
硬化剤
c 2 31.5
アクリロニトリル - b 1 10 30 10 10 10 40 10
ブタジエン系共
重合体 b 2
硬化促進剤 1.0 1.0 1.0 1.0 1.0 1.0 1.0
無機質充塡剤 101 303 101 101 404
表 2 1
Figure imgf000080_0001
このようにして得られた各実施例のシ一ト状封止材料を用い、 前述の半導体装 置の製法に従って半導体装置を製造した。 すなわち、 図 2 1に示すように、 接続 用電極部 2 (材質:半田、 融点: 1 8 3 °C、 形状:直径 1 5 0〃mx高さ 3 0 mの円柱形) が設けられた配線回路基板 1 (厚み 1 mmのガラスエポキシ基板) 上に、 上記シート状封止材料 1 0を載置した後、 図 2 2に示すように、 上記シー ト状封止材料 1 0上の所定の位置に、 接続用電極部 2 ' (材質:半田、 融点: 2 9 9°C、 形状:直径 1 2 0 ;«mx高さ 9 0 の球形) が設けられた半導体素子 3 (厚み: 3 5 0〃m、 大きさ : 1 3mmX 9mm) を載置した。 その後、 加熱 温度 1 5 0°CX荷重 0. 1 k g f X電極個数 X 1分の条件でシート状封止材料を 加熱溶融して、 配線回路基板 1と半導体素子 3との空隙内に溶融状態の樹脂を充 填して仮固着するとともに、 双方の接続用電極部 2, 2 ' を電気接続した。 その 後、 上記樹脂を熱硬化 (条件: 1 5 0°CX 6 0分) および接続用電極部 2を溶融
(条件: 2 5 0 °CX 3 0秒) させることにより、 図 2 0に示すように、 上記空隙 が封止樹脂層 4で樹脂封止された半導体装置を各例 8個ずつ作製した。
得られた半導体装置について、 初期の通電試験を行い、 さらに、 その半導体装 置を各例 4個ずつ用いて、 サーマルショックテスト 〔TST試験 (条件:一 5 5 °CX 5分 1 2 5°CX 5分) 5 0 0サイクルを行った (各例 4個ずつ) 後に、 通 電試験および半導体素子のクラックの有無検査を行い、 その結果を下記の表 2 2 及び 2 3に示した。
また、 上記 TST試験を行わなかった各例 4個のサンプルについて、 3 0°CX 6 0 %RHの環境下で 1 6 8時間吸湿させた後、 VP S (ヴヱイパー ·フヱイズ • ソルダリング (vapor phase soldering)) (2 1 5°Cx 9 0秒) を行った後、 通電試験を行った。 その結果を下記の表 2 2及び 2 3に併せて示した。
一方、 上記各実施例および比較例で得られたシート状封止材料のみを 1 5 0°C X 6 0分の条件で加熱し、 シート状硬化物を得た。 この各シート状硬化物の 2 5 °Cにおける引張弾性率を、 万能引張試験機 (オートグラフ、 島津製作所社製) を 用いて測定した。 これらの結果を下記の表 2 2及び 2 3に併せて示した。
表 2 2 施 例
5 8 5 9 6 0 6 1 6 2 6 3 6 4 引張弾性率 (MPa) 5000 500 11000 5500 6500 300 15000 初期通電試験 0/8 0/8 0/8 0/8 0/8 0/8 0/8
(不良数 Z 8個)
TST後の通電試験 0/4 0/4 0/4 0/4 0/4 0/4 0/4
(不良数 Z 4個)
TST後チプク ク 発生 0/4 0/4 0/4 0/4 0/4 0/4 0/4
(不良数 Z 4個)
吸湿 VPS後通電試験 0/4 0/4 0/4 0/4 0/4 0/4 0/4
(不良数 / 4個)
表 2 3
Figure imgf000082_0001
上記表 2 2及び 2 3の結果、 実施例品に関しては、 初期の通電チェックおよび 、 T S T試験後の通電試験、 T S T試験後の半導体チップクラック状態、 吸湿 V P S後の通電試験の各試験の全てにおいて不良が全く発生しなかったことが確認 された。 即ち、 実施例品は、 初期通電や、 T S T試験および吸湿 V P S等のスト レス試験に対して安定した通電を確保していることが明らかである。 産業上の利用可能性
本発明は、 半導体素子とボ一ドとの空隙に容易に封止樹脂層を形成することが でき、 しかもその樹脂封止作業が容易となりる半導体装置の製法を提供すること ができる。 また、 本発明は、 半導体素子とボードとの空隙に封止樹脂層を形成す る際に、 装置全体に反りの発生を抑制することができ、 結果、 信頼性に優れた半 導体装置を容易に製造することのできる半導体装置の製法を提供することができ る。 更に、 本発明は、 半導体素子と配線回路基板および接続用電極に生ずる応力 の緩和効果に優れ高信頼性を有する半導体装置を提供することができる。

Claims

請求の範囲
1 . 配線回路基板上に、 複数の接続用電極部を介して半導体素子が搭載され、 上記配線回路基板と半導体素子との間の空隙が封止樹脂層によつて封止されてな る半導体装置の製法であって、 上記封止樹脂層を、 上記配線回路基板と半導体素 子との間に層状の固形樹脂を介在させてこの固形樹脂を溶融させることにより形 成することを特徴とする半導体装置の製法。
2 . 上記固形樹脂が、 下記のエポキシ樹脂組成物 (A) からなるものである請 求項 1記載の半導体装置の製法。
(A) 下記の (a ) 〜 (c ) 成分を含有し、 上記 (c ) 成分の含有割合がェポキ シ樹脂組成物 (A) 全体の 9 0重量%以下に設定されたエポキシ樹脂組成物。
( a ) エポキシ樹脂。
( b ) フユノール樹脂。
( c ) 最大粒径が 1 0 0 / m以下に設定された無機質充塡剤。
3 . 上記配線回路基板上に封止用樹脂シートを載置した後、 さらに、 上記封止 用樹脂シート上に半導体素子を載置し、 ついで、 上記封止用樹脂シートを加熱溶 融することにより、 上記配線回路基板と半導体素子との間の空隙に、 上記溶融状 態の封止用樹脂を充塡し硬化させることにより上記封止樹脂層を形成したもので ある請求項 1または 2記載の半導体装置の製法。
4 . 請求項 3記載の半導体装置の製法において、 上記配線回路基板上に封止用 樹脂シートを載置し、 さらに、 上記封止用樹脂シート上に半導体素子を載置した 後、 所定時間加熱するとともに、 上記封止用樹脂シートが下記の物性 (ィ) 〜 ( ハ) の少なくとも一つを備えた状態になるまで加圧し、 その状態で上記配線回路 基板と半導体素子との間の空隙に、 溶融状態の封止用樹脂を充塡する請求項 3記 載の半導体装置の製法。
(ィ) 樹脂粘度が 5 0 0 0ボイズ以上。
(口) 封止用樹脂シートの加熱前の初期ゲル化時間を 1 0 0 %とした場合、 ゲル 化時間が初期ゲル化時間の 3 0 %以下である。
(ハ) 示差走査熱量計 (D S C ) により測定される封止用樹脂シートの加熱前の 初期残存反応熱量を 1 0 0 %とした場合、 残存反応熱量が初期残存反応熱量の 7 0 %以下である。
5 . 上記配線回路基板面に設けられた接続用電極部の一部が露出するよう封止 用樹脂層を形成した後、 上記接続用電極部に半導体素子の電極部が当接するよう 半導体素子を上記配線回路基板に載置し、 ついで、 上記封止用樹脂層を加熱溶融 することにより、 上記配線回路基板と半導体素子との間の空隙に、 上記溶融状態 の封止用樹脂を充塡し硬化させることにより上記封止樹脂層を形成したものであ る請求項 1または 2記載の半導体装置の製法。
6 . 請求項 5記載の半導体装置の製法において、 上記配線回路基板面に設けら れた接続用電極部に半導体素子の電極部が当接するよう半導体素子を上記配線回 路基板に載置した後、 所定時間加熱するとともに、 上記封止用樹脂層が下記の物 性 (ィ) 〜 (ハ) の少なくとも一つを備えた状態になるまで加圧し、 その状態で 上記配線回路基板と半導体素子との間の空隙に、 溶融状態の封止用樹脂を充填す る請求項 5記載の半導体装置の製法。
(ィ) 樹脂粘度が 5 0 0 0ボイズ以上。
(口) 封止用樹脂層の加熱前の初期ゲル化時間を 1 0 0 %とした場合、 ゲル化時 間が初期ゲル化時間の 3 0 %以下である。
(ハ) 示差走査熱量計 (D S C) により測定される封止用樹脂層の加熱前の初期 残存反応熱量を 1 0 0 %とした場合、 残存反応熱量が初期残存反応熱量の 7 0 % 以下である。
7 . 請求項 5または 6記載の封止樹脂層は、 接続用電極部が設けられた配線回 路基板上に、 上記接続用電極部を介して封止用樹脂シートを搭載した後、 この封 止用樹脂シートを加熱溶融して形成されたものである請求項 5または 6記載の半 導体装置の製法。
8 . 請求項 5または 6記載の封止用樹脂層は、 接続用電極部が設けられた配線 回路基板面に、 封止用樹脂層形成材料を印刷塗工して形成されたものである請求 項 5または 6記載の半導体装置の製法。
9 . 上記半導体素子面に設けられた接続用電極部の一部が露出するよう封止用 樹脂層を形成した後、 上記接続用電極部に配線回路基板の電極部が当接するよう 半導体素子を配線回路基板に載置し、 ついで、 上記封止用樹脂層を加熱溶融する ことにより、 上記配線回路基板と半導体素子との間の空隙に、 上記溶融状態の封 止用樹脂を充填し硬化させることにより上記封止樹脂層を形成したものである請 求項 1または 2記載の半導体装置の製法。
1 0 . 請求項 9記載の半導体装置の製法において、 上記半導体素子面に設けら れた接続用電極部に配線回路基板の電極部が当接するよう配線回路基板を上記半 導体素子に載置した後、 所定時間加熱するとともに、 上記封止用樹脂層が下記の 物性 (ィ) 〜 (ハ) の少なくとも一つを備えた状態になるまで加圧し、 その状態 で上記配線回路基板と半導体素子との間の空隙に、 溶融状態の封止用樹脂を充填 する請求項 9記載の半導体装置の製法。
(ィ) 樹脂粘度が 5 0 0 0ボイズ以上。
(口) 封止用樹脂層の加熱前の初期ゲル化時間を 1 0 0 %とした場合、 ゲル化時 間が初期ゲル化時間の 3 0 %以下である。
(ハ) 示差走査熱量計 (D S C ) により測定される封止用樹脂層の加熱前の初期 残存反応熱量を 1 0 0 %とした場合、 残存反応熱量が初期残存反応熱量の 7 0 % 以下である。
1 1 . 請求項 9または 1 0記載の封止樹脂層は、 接続用電極部が設けられた半 導体素子面に、 上記接続用電極部を介して封止用樹脂シートを搭載した後、 この 封止用樹脂シートを加熱溶融して形成されたものである請求項 9または 1 0記載 の半導体装置の製法。
1 2 . 請求項 9または 1 0記載の封止用樹脂層は、 接続用電極部が設けられた 半導体素子面に、 封止用樹脂層形成材料を印刷塗工して形成されたものである請 求項 9または 1 0記載の半導体装置の製法。
1 3 . 上記半導体素子の片面に封止用樹脂層を形成した後、 複数の接続用電極 部が設けられた配線回路基板上に、 上記封止用樹脂層が上記接続用電極部と当接 するよう半導体素子を載置し、 ついで、 上記封止用樹脂層を加熱溶融することに より、 上記配線回路基板と半導体素子との間の空隙に、 上記溶融状態の封止用樹 脂を充填し硬化させることにより上記封止樹脂層を形成したものである請求項 1 または 2記載の半導体装置の製法。
1 4 . 請求項 1 3記載の半導体装置の製法において、 半導体素子の片面に形成 された封止用樹脂層と配線回路基板の接続用電極部とが当接するよう半導体素子 を載置した後、 所定時間加熱するとともに、 上記封止用樹脂層が下記の物性 (ィ ) 〜 (ハ) の少なくとも一つを備えた状態になるまで加圧し、 その状態で上記配 線回路基板と半導体素子との間の空隙に、 溶融状態の封止用樹脂を充塡する請求 項 1 3記載の半導体装置の製法。
(ィ) 樹脂粘度が 5 0 0 0ボイズ以上。
(口) 封止用樹脂層の加熱前の初期ゲル化時間を 1 0 0 %とした場合、 ゲル化時 間が初期ゲル化時間の 3 0 %以下である。
(ハ) 示差走査熱量計 (D S C ) により測定される封止用樹脂層の加熱前の初期 残存反応熱量を 1 0 0 %とした場合、 残存反応熱量が初期残存反応熱量の 7 0 % 以下である。
1 5 . 上記配線回路基板の片面に封止用樹脂層を形成した後、 上記配線回路基 板上に、 複数の接続用電極部が設けられた半導体素子の上記接続用電極部が上記 封止用樹脂層と当接するよう半導体素子を載置し、 ついで、 上記封止用樹脂層を 加熱溶融することにより、 上記配線回路基板と半導体素子との間の空隙に、 上記 溶融状態の封止用樹脂を充填し硬化させることにより上記封止樹脂層を形成した ものである請求項 1または 2記載の半導体装置の製法。
1 6 . 請求項 1 5記載の半導体装置の製法において、 配線回路基板の片面に形 成された封止用樹脂層と半導体素子の接続用電極部とが当接するよう半導体素子 を載置した後、 所定時間加熱するとともに、 上記封止用樹脂層が下記の物性 (ィ ) 〜 (ハ) の少なくとも一つを備えた状態になるまで加圧し、 その状態で上記配 線回路基板と半導体素子との間の空隙に、 溶融状態の封止用樹脂を充塡する請求 項 1 5記載の半導体装置の製法。
(ィ) 樹脂粘度が 5 0 0 0ボイズ以上。
(口) 封止用樹脂層の加熱前の初期ゲル化時間を 1 0 0 %とした場合、 ゲル化時 間が初期ゲル化時間の 3 0 %以下である。
(ハ) 示差走査熱量計 (D S C ) により測定される封止用樹脂層の加熱前の初期 残存反応熱量を 1 0 0 %とした場合、 残存反応熱量が初期残存反応熱量の 7 0 % 以下である。
1 7 . 配線回路基板上に、 複数の接続用電極部を介して半導体素子が搭載され 、 上記配線回路基板と半導体素子との間の空隙が封止樹脂層によって封止されて なる半導体装置の製法であって、 上記配線回路基板と半導体素子との間に層状の 固形樹脂を介在させて所定時間加熱し、 上記固形樹脂層が所定の温度領域になつ た段階で、 配線回路基板と半導体素子を下記の条件 (X) および (Y) を満たし て加圧接合することにより上記固形樹脂を溶融させ上記封止樹脂層を形成するこ とを特徴とする半導体装置の製法。
(X) 示差走査熱量計 (D S C) により測定される固形樹脂の加熱前の初期残存 反応熱量を 1 0 0 %とした場合、 残存反応熱量が初期残存反応熱量の 7 0 %以下 である。
(Y) 配線回路基板の温度よりも半導体素子の温度を高く設定し、 かつ両者の温 度差が 5 0 °C以上である。
1 8 . 上記固形樹脂が、 下記のエポキシ樹脂組成物 (A) からなるものである 請求項 1 7記載の半導体装置の製法。
(A) 下記の (a ) 〜 (c ) 成分を含有し、 上記 (c ) 成分の含有割合がェポキ シ樹脂組成物 (A) 全体の 9 0重量%以下に設定されたエポキシ樹脂組成物。
( a ) エポキシ樹脂。
( b ) フエノール樹脂。
( c ) 最大粒径が 1 0 0 m以下に設定された無機質充塡剤。
1 9 . 上記配線回路基板上に固形樹脂として封止用樹脂シートを載置し、 さら に上記封止用樹脂シート上に半導体素子を載置した後、 所定時間加熱保持し、 上 記条件 (X) および (Y) を満たす状態で加圧接合することにより、 上記配線回 路基板と半導体素子との間の空隙に、 溶融状態の封止用樹脂を充填し硬化させる ことにより上記封止樹脂層を形成したものである請求項 1 7または 1 8記載の半 導体装置の製法。
2 0. 上記配線回路基板面に設けられた接続用電極部の一部が露出するよう封 止用樹脂層を形成した後、 上記接続用電極部に半導体素子の電極部が当接するよ う半導体素子を上記配線回路基板に載置した後、 所定時間加熱保持し、 上記条件 (X) および (Y) を満たす状態で加圧接合することにより、 上記配線回路基板 と半導体素子との間の空隙に、 溶融状態の封止用樹脂を充塡し硬化させることに より上記封止樹脂層を形成したものである請求項 1 7または 1 8記載の半導体装 置の製法。
2 1 . 請求項 2 0記載の封止樹脂層が、 接続用電極部が設けられた配線回路基 板上に、 上記接続用電極部を介して封止用樹脂シートを搭載した後、 この封止用 樹脂シ一トを加熱溶融して形成されたものである請求項 2 0記載の半導体装置の 製法。
2 2 . 請求項 2 0記載の封止用樹脂層は、 接続用電極部が設けられた配線回路 基板面に、 封止用樹脂層形成材料を印刷塗工して形成されたものである請求項 2 0記載の半導体装置の製法。
2 3 . 上記半導体素子面に設けられた接続用電極部の一部が露出するよう封止 用樹脂層を形成した後、 上記接続用電極部に配線回路基板の電極部が当接するよ う半導体素子を配線回路基板に載置した後、 所定時間加熱保持し、 上記条件 (X
) および (Υ) を満たす状態で加圧接合することにより、 上記配線回路基板と半 導体素子との間の空隙に、 溶融状態の封止用樹脂を充塡し硬化させることにより 上記封止樹脂層を形成したものである請求項 1 7または 1 8記載の半導体装置の 製法。
2 4 . 請求項 2 3記載の封止樹脂層は、 接続用電極部が設けられた半導体素子 面に、 上記接続用電極部を介して封止用樹脂シートを搭載した後、 この封止用樹 脂シートを加熱溶融して形成されたものである請求項 2 3記載の半導体装置の製
2 5 . 請求項 2 3記載の封止用樹脂層は、 接続用電極部が設けられた半導体素 子面に、 封止用樹脂層形成材料を印刷塗工して形成されたものである請求項 2 3 記載の半導体装置の製法。
2 6 . 上記半導体素子の片面に封止用樹脂層を形成した後、 複数の接続用電極 部が設けられた配線回路基板上に、 上記封止用樹脂層が上記接続用電極部と当接 するよう半導体素子を載置した後、 所定時間加熱保持し、 上記条件 (X) および (Υ) を満たす状態で加圧接合することにより、 上記配線回路基板と半導体素子 との間の空隙に、 溶融状態の封止用樹脂を充塡し硬化させることにより上記封止 樹脂層を形成したものである請求項 1 7または 1 8記載の半導体装置の製法。
2 7 . 上記配線回路基板の片面に封止用樹脂層を形成した後、 上記配線回路基 板上に、 複数の接続用電極部が設けられた半導体素子の上記接続用電極部が上記 封止用樹脂層と当接するよう半導体素子を載置した後、 所定時間加熱保持し、 上 記条件 (X) および (Y) を満たす状態で加圧接合することにより、 上記配線回 路基板と半導体素子との間の空隙に、 溶融状態の封止用樹脂を充塡し硬化させる ことにより上記封止樹脂層を形成したものである請求項 1 7または 1 8記載の半 導体装置の製法。
2 8 . 配線回路基板上に、 複数の接続用電極部を介して半導体素子が搭載され 、 上記配線回路基板と半導体素子との間の空隙が封止樹脂層によつて封止されて なる半導体装置であって、 上記封止樹脂層が、 下記の硬化物特性 (Z ) を備えて いることを特徴とする半導体装置。
( Z ) 2 5 °Cにおける引張弾性率が 3 0 0〜1 5 0 0 0 M P aである。
2 9 . 上記封止樹脂層が、 下記の (A) および (B ) 成分を含有するエポキシ 樹脂組成物によって形成されたものである請求項 2 8記載の半導体装置。
(A) 下記の一般式 (1 ) で表されるビフユ二ル型エポキシ樹脂。
Figure imgf000089_0001
〔上記式 (1 ) において、 R , 〜R 4 は炭素数 1〜4のアルキル基であ つて、 互いに同じであっても異なっていてもよい。 〕
(B ) アクリロニトリル—ブタジエン系共重合体。
3 0 . 上記 (B ) 成分であるアクリロニトリル—ブタジエン系共重合体が、 ァ クリロニトリル—ブタジエンーメタクリル酸共重合体である請求項 2 9記載の半
3 1 . 上記 (B ) 成分であるアクリロニトリル—ブタジエン系共重合体が、 ァ クリロニトリル一ブタジエン—アクリル酸共重合体である請求項 2 9記載の半導 体装置。
32. 上記エポキシ樹脂組成物が (A) 成分および (B) 成分とともに、 下記 の (C) 成分を含有するエポキシ樹脂組成物である請求項 29〜3 1のいずれか 一項に記載の半導体装置。
(C) 下記の一般式 (2) で表されるフ ノール樹脂。
(2)
Figure imgf000090_0001
〔上記式 (2) において、 mは 0または正の整数である。 〕
33. 請求項 28〜32のいずれか一項に記載の半導体装置の封止樹脂層を形 成するために用いられるシ一ト状封止材料であって、 上記シ一ト状封止材料の硬 化物は、 下記 (Z) の特性を備えていることを特徴とするシート状封止材料。
(Z) 2 5 °Cにおける引張弾性率が 3 00〜1 5 0 0 0 MP aである。
34. 上記シート状封止材料が、 下記の (A) および (B) 成分を含有するェ ポキシ樹脂組成物を用いてシ一ト状に形成されたものである請求項 3 3記載のシ 一ト状封止材料。
(A) 下記の一般式 (1) で表されるビフエニル型エポキシ樹脂。
(1)
Figure imgf000090_0002
〔上記式 (1) において、 〜R4 は炭素数 1〜4のアルキル基であ つて、 互いに同じであっても異なっていてもよい。 〕
(B) アクリロニトリル—ブタジエン系共重合体。
35. 上記 (B) 成分であるアクリロニトリル一ブタジエン系共重合体力、 ァ クリロニ卜リル—ブタジエンーメタクリル酸共重合体である請求項 34記載のシ 一ト状封止材料。
36. 上記 (B) 成分であるアクリロニトリル—ブタジエン系共重合体力く、 ァ クリロニトリル—ブタジエン—ァクリル酸共重合体である請求項 34記載のシー ト状封止材料。
37. 上記エポキシ樹脂組成物が (A) 成分および (B) 成分とともに、 下記 の (C) 成分を含有するエポキシ樹脂組成物である請求項 34〜3 6のいずれか 一項に記載のシート状封止材料。
(C) 下記の一般式 (2) で表されるフエノール樹脂。
Figure imgf000091_0001
〔上記式 (2) において、 mは 0または正の整数である。 〕
38. 層状の固形樹脂が下記 (S) である請求項 1又は 1 7記載の半導体装置 の製法。
(S) 各請求項に於いて、 複数の接続用電極部のうち最外周に位置する複数の 接続用電極部に囲われた空間部分に収容可能な形状寸法を有する固形樹脂。
39. 請求項 3 8に於いて、 上記最外周に位置する複数の接続用電極部に囲わ れた部分に他の接続用電極部が設けられ、 上記固形樹脂 (S) の上記他の接続用 電極部に対応する部分に貫通孔が設けられている請求項 38記載の半導体装置の 製法。
40. 本出願に於いて定義する 「全接合高さ」 の 50〜95%の厚みを有する 封止用樹脂シ一トを用いることを特徴とする請求項 1又は 1 7記載の半導体装置 の製法。
PCT/JP1997/004753 1996-12-24 1997-12-22 Manufacture of semiconductor device WO1998028788A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP97949206A EP0951064A4 (en) 1996-12-24 1997-12-22 PREPARATION OF A SEMICONDUCTOR DEVICE
US09/297,980 US6333206B1 (en) 1996-12-24 1997-12-22 Process for the production of semiconductor device

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP8/343398 1996-12-24
JP34339896 1996-12-24
JP8349697 1997-04-02
JP9/83496 1997-04-02
JP9/200435 1997-07-25
JP20043597 1997-07-25
JP30896997 1997-11-11
JP9/308969 1997-11-11

Publications (1)

Publication Number Publication Date
WO1998028788A1 true WO1998028788A1 (en) 1998-07-02

Family

ID=27466837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004753 WO1998028788A1 (en) 1996-12-24 1997-12-22 Manufacture of semiconductor device

Country Status (5)

Country Link
US (1) US6333206B1 (ja)
EP (1) EP0951064A4 (ja)
KR (1) KR100467897B1 (ja)
TW (1) TW414936B (ja)
WO (1) WO1998028788A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620862B2 (en) 2000-05-23 2003-09-16 Amkor Technology, Inc. Sheet resin composition and process for manufacturing semiconductor device therewith
JP2012064883A (ja) * 2010-09-17 2012-03-29 Olympus Corp 撮像装置および撮像装置の製造方法
CN103165474A (zh) * 2011-12-16 2013-06-19 日东电工株式会社 半导体装置的制造方法

Families Citing this family (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324069B1 (en) * 1997-10-29 2001-11-27 Hestia Technologies, Inc. Chip package with molded underfill
JP4239310B2 (ja) * 1998-09-01 2009-03-18 ソニー株式会社 半導体装置の製造方法
US8664030B2 (en) 1999-03-30 2014-03-04 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US7507903B2 (en) 1999-03-30 2009-03-24 Daniel Luch Substrate and collector grid structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
US8138413B2 (en) 2006-04-13 2012-03-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8222513B2 (en) 2006-04-13 2012-07-17 Daniel Luch Collector grid, electrode structures and interconnect structures for photovoltaic arrays and methods of manufacture
US20090111206A1 (en) 1999-03-30 2009-04-30 Daniel Luch Collector grid, electrode structures and interrconnect structures for photovoltaic arrays and methods of manufacture
JP4121665B2 (ja) * 1999-04-19 2008-07-23 株式会社ルネサステクノロジ 半導体基板の接合方法
US8198696B2 (en) 2000-02-04 2012-06-12 Daniel Luch Substrate structures for integrated series connected photovoltaic arrays and process of manufacture of such arrays
JP2001230341A (ja) * 2000-02-18 2001-08-24 Hitachi Ltd 半導体装置
US7547579B1 (en) * 2000-04-06 2009-06-16 Micron Technology, Inc. Underfill process
TW574739B (en) 2001-02-14 2004-02-01 Nitto Denko Corp Thermosetting resin composition and semiconductor device using the same
JP3711873B2 (ja) 2001-02-19 2005-11-02 ソニーケミカル株式会社 バンプレスicチップの製造方法
US6573122B2 (en) * 2001-03-28 2003-06-03 International Rectifier Corporation Wafer level insulation underfill for die attach
TW502422B (en) * 2001-06-07 2002-09-11 Ultra Tera Corp Method for encapsulating thin flip-chip-type semiconductor device
JP3940574B2 (ja) * 2001-09-26 2007-07-04 ミナミ株式会社 フィルム状印刷体の一貫印刷実装装置におけるリフロー装置
US6833629B2 (en) * 2001-12-14 2004-12-21 National Starch And Chemical Investment Holding Corporation Dual cure B-stageable underfill for wafer level
US20030219211A1 (en) * 2002-05-22 2003-11-27 Yu-Sik Kim Method for aligning optical axis of an optical module
US7265994B2 (en) * 2003-01-31 2007-09-04 Freescale Semiconductor, Inc. Underfill film for printed wiring assemblies
US6962835B2 (en) * 2003-02-07 2005-11-08 Ziptronix, Inc. Method for room temperature metal direct bonding
US20050003652A1 (en) * 2003-07-02 2005-01-06 Shriram Ramanathan Method and apparatus for low temperature copper to copper bonding
US20050003650A1 (en) 2003-07-02 2005-01-06 Shriram Ramanathan Three-dimensional stacked substrate arrangements
US20050196907A1 (en) * 2003-09-19 2005-09-08 Glenn Ratificar Underfill system for die-over-die arrangements
US9029196B2 (en) * 2003-11-10 2015-05-12 Stats Chippac, Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US8574959B2 (en) 2003-11-10 2013-11-05 Stats Chippac, Ltd. Semiconductor device and method of forming bump-on-lead interconnection
US8026128B2 (en) 2004-11-10 2011-09-27 Stats Chippac, Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
USRE47600E1 (en) 2003-11-10 2019-09-10 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming electrical interconnect with stress relief void
US7659633B2 (en) 2004-11-10 2010-02-09 Stats Chippac, Ltd. Solder joint flip chip interconnection having relief structure
US8216930B2 (en) 2006-12-14 2012-07-10 Stats Chippac, Ltd. Solder joint flip chip interconnection having relief structure
US8129841B2 (en) 2006-12-14 2012-03-06 Stats Chippac, Ltd. Solder joint flip chip interconnection
US20070105277A1 (en) 2004-11-10 2007-05-10 Stats Chippac Ltd. Solder joint flip chip interconnection
WO2005048311A2 (en) 2003-11-10 2005-05-26 Chippac, Inc. Bump-on-lead flip chip interconnection
US8350384B2 (en) * 2009-11-24 2013-01-08 Stats Chippac, Ltd. Semiconductor device and method of forming electrical interconnect with stress relief void
TWI236110B (en) * 2004-06-25 2005-07-11 Advanced Semiconductor Eng Flip chip on leadframe package and method for manufacturing the same
JP4546796B2 (ja) * 2004-09-16 2010-09-15 パナソニック株式会社 半導体装置
US7732229B2 (en) 2004-09-18 2010-06-08 Nanosolar, Inc. Formation of solar cells with conductive barrier layers and foil substrates
US7838868B2 (en) 2005-01-20 2010-11-23 Nanosolar, Inc. Optoelectronic architecture having compound conducting substrate
US8927315B1 (en) 2005-01-20 2015-01-06 Aeris Capital Sustainable Ip Ltd. High-throughput assembly of series interconnected solar cells
JP2008535225A (ja) 2005-03-25 2008-08-28 スタッツ チップパック リミテッド 基板上に狭い配線部分を有するフリップチップ配線
US8841779B2 (en) 2005-03-25 2014-09-23 Stats Chippac, Ltd. Semiconductor device and method of forming high routing density BOL BONL and BONP interconnect sites on substrate
US7338842B2 (en) * 2005-07-22 2008-03-04 National Starch And Chemical Investment Holding Corporation Process for exposing solder bumps on an underfill coated semiconductor
US7485968B2 (en) 2005-08-11 2009-02-03 Ziptronix, Inc. 3D IC method and device
US9865758B2 (en) 2006-04-13 2018-01-09 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8884155B2 (en) 2006-04-13 2014-11-11 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9236512B2 (en) 2006-04-13 2016-01-12 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8822810B2 (en) 2006-04-13 2014-09-02 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US8729385B2 (en) 2006-04-13 2014-05-20 Daniel Luch Collector grid and interconnect structures for photovoltaic arrays and modules
US9006563B2 (en) 2006-04-13 2015-04-14 Solannex, Inc. Collector grid and interconnect structures for photovoltaic arrays and modules
EP2009684A1 (en) * 2006-04-20 2008-12-31 Sumitomo Bakelite Company, Ltd. Semiconductor device
US9111950B2 (en) 2006-09-28 2015-08-18 Philips Lumileds Lighting Company, Llc Process for preparing a semiconductor structure for mounting
US20080157300A1 (en) * 2006-12-27 2008-07-03 Shih-Fang Chuang Thermally Enhanced IC Package and Method
JP2008209961A (ja) * 2007-02-23 2008-09-11 Fujitsu Ltd 電子装置の製造方法、電子装置が実装された電子機器の製造方法、および、電子装置が装着された物品の製造方法
US8009442B2 (en) * 2007-12-28 2011-08-30 Intel Corporation Directing the flow of underfill materials using magnetic particles
WO2010047006A1 (ja) * 2008-10-23 2010-04-29 パナソニック株式会社 半導体装置およびその製造方法
US9117828B2 (en) * 2009-03-27 2015-08-25 Taiwan Semiconductor Manufacturing Company, Ltd. Method of handling a thin wafer
US8247243B2 (en) 2009-05-22 2012-08-21 Nanosolar, Inc. Solar cell interconnection
JP5802400B2 (ja) * 2011-02-14 2015-10-28 日東電工株式会社 封止用樹脂シートおよびそれを用いた半導体装置、並びにその半導体装置の製法
JP2012256737A (ja) * 2011-06-09 2012-12-27 Sony Corp 半導体装置及び半導体装置の製造方法
US8963340B2 (en) * 2011-09-13 2015-02-24 International Business Machines Corporation No flow underfill or wafer level underfill and solder columns
US9504168B2 (en) * 2011-09-30 2016-11-22 Intel Corporation Fluxing-encapsulant material for microelectronic packages assembled via thermal compression bonding process
US9978656B2 (en) * 2011-11-22 2018-05-22 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming fine-pitch copper bump structures
US9627229B2 (en) * 2013-06-27 2017-04-18 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming trench and disposing semiconductor die over substrate to control outward flow of underfill material
US20150129660A1 (en) * 2013-11-11 2015-05-14 National Oilwell Varco, L.P. Method and apparatus for retaining an electronic tag on a downhole tool
US10886250B2 (en) 2015-07-10 2021-01-05 Invensas Corporation Structures and methods for low temperature bonding using nanoparticles
US9601451B2 (en) 2015-08-11 2017-03-21 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Apparatus and methods for creating environmentally protective coating for integrated circuit assemblies
US9953941B2 (en) 2015-08-25 2018-04-24 Invensas Bonding Technologies, Inc. Conductive barrier direct hybrid bonding
JP2017113077A (ja) * 2015-12-21 2017-06-29 ソニー・オリンパスメディカルソリューションズ株式会社 内視鏡装置
TWI822659B (zh) 2016-10-27 2023-11-21 美商艾德亞半導體科技有限責任公司 用於低溫接合的結構和方法
US10515913B2 (en) 2017-03-17 2019-12-24 Invensas Bonding Technologies, Inc. Multi-metal contact structure
CN110651359A (zh) * 2017-05-25 2020-01-03 株式会社新川 结构体的制造方法及结构体
US10446441B2 (en) 2017-06-05 2019-10-15 Invensas Corporation Flat metal features for microelectronics applications
US10840205B2 (en) 2017-09-24 2020-11-17 Invensas Bonding Technologies, Inc. Chemical mechanical polishing for hybrid bonding
US11056348B2 (en) 2018-04-05 2021-07-06 Invensas Bonding Technologies, Inc. Bonding surfaces for microelectronics
US10790262B2 (en) 2018-04-11 2020-09-29 Invensas Bonding Technologies, Inc. Low temperature bonded structures
EP3807927A4 (en) 2018-06-13 2022-02-23 Invensas Bonding Technologies, Inc. TSV AS A HIDEPAD
US11393779B2 (en) 2018-06-13 2022-07-19 Invensas Bonding Technologies, Inc. Large metal pads over TSV
US11011494B2 (en) 2018-08-31 2021-05-18 Invensas Bonding Technologies, Inc. Layer structures for making direct metal-to-metal bonds at low temperatures in microelectronics
US11158573B2 (en) 2018-10-22 2021-10-26 Invensas Bonding Technologies, Inc. Interconnect structures
US11244920B2 (en) 2018-12-18 2022-02-08 Invensas Bonding Technologies, Inc. Method and structures for low temperature device bonding
JP6986539B2 (ja) * 2019-11-25 2021-12-22 Towa株式会社 樹脂成形済リードフレームの製造方法、樹脂成形品の製造方法、及びリードフレーム
US11735523B2 (en) 2020-05-19 2023-08-22 Adeia Semiconductor Bonding Technologies Inc. Laterally unconfined structure
US11264357B1 (en) 2020-10-20 2022-03-01 Invensas Corporation Mixed exposure for large die

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513119A (ja) * 1991-07-04 1993-01-22 Sharp Corp 電子部品接続用テープコネクタ
JPH0563031A (ja) * 1992-02-06 1993-03-12 Casio Comput Co Ltd 半導体装置と基板の接合方法
JPH08134330A (ja) * 1994-11-11 1996-05-28 Shin Etsu Chem Co Ltd Tab封止用エポキシ樹脂組成物及びtab装置
JPH09162235A (ja) * 1995-12-05 1997-06-20 Hitachi Chem Co Ltd Icチップの実装方法及び接続部材

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01108940U (ja) * 1988-01-13 1989-07-24
US5068712A (en) * 1988-09-20 1991-11-26 Hitachi, Ltd. Semiconductor device
KR930009213B1 (ko) * 1988-09-29 1993-09-24 이노우에 다카오 접착 테이프
JP2833111B2 (ja) * 1989-03-09 1998-12-09 日立化成工業株式会社 回路の接続方法及びそれに用いる接着剤フィルム
KR960000980B1 (ko) * 1990-03-27 1996-01-15 가부시기가이샤 히다찌 세이사꾸쇼 무전해도금용 기재 접착제, 이 접착제를 사용한 프린트 회로판 및 이의 용도
JPH05175280A (ja) * 1991-12-20 1993-07-13 Rohm Co Ltd 半導体装置の実装構造および実装方法
JP3464826B2 (ja) * 1994-07-21 2003-11-10 株式会社東芝 半導体装置
JP2647047B2 (ja) * 1995-03-01 1997-08-27 日本電気株式会社 半導体素子のフリップチップ実装方法およびこの実装方法に用いられる接着剤
US5659203A (en) * 1995-06-07 1997-08-19 International Business Machines Corporation Reworkable polymer chip encapsulant
JPH088301A (ja) * 1995-06-12 1996-01-12 Hitachi Ltd 表示素子のlsi実装用樹脂及び該樹脂を用いた表示素子のlsi実装構造体
TW398163B (en) * 1996-10-09 2000-07-11 Matsushita Electric Ind Co Ltd The plate for heat transfer substrate and manufacturing method thereof, the heat-transfer substrate using such plate and manufacturing method thereof
US6127460A (en) * 1997-12-02 2000-10-03 Sumitomo Bakelite Co., Ltd. Liquid epoxy resin potting material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513119A (ja) * 1991-07-04 1993-01-22 Sharp Corp 電子部品接続用テープコネクタ
JPH0563031A (ja) * 1992-02-06 1993-03-12 Casio Comput Co Ltd 半導体装置と基板の接合方法
JPH08134330A (ja) * 1994-11-11 1996-05-28 Shin Etsu Chem Co Ltd Tab封止用エポキシ樹脂組成物及びtab装置
JPH09162235A (ja) * 1995-12-05 1997-06-20 Hitachi Chem Co Ltd Icチップの実装方法及び接続部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0951064A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6620862B2 (en) 2000-05-23 2003-09-16 Amkor Technology, Inc. Sheet resin composition and process for manufacturing semiconductor device therewith
US6884695B2 (en) 2000-05-23 2005-04-26 Amkor Technology, Inc. Sheet resin composition and process for manufacturing semiconductor device therewith
JP2012064883A (ja) * 2010-09-17 2012-03-29 Olympus Corp 撮像装置および撮像装置の製造方法
CN103165474A (zh) * 2011-12-16 2013-06-19 日东电工株式会社 半导体装置的制造方法

Also Published As

Publication number Publication date
TW414936B (en) 2000-12-11
EP0951064A4 (en) 2005-02-23
EP0951064A1 (en) 1999-10-20
KR20000062333A (ko) 2000-10-25
US6333206B1 (en) 2001-12-25
KR100467897B1 (ko) 2005-01-24

Similar Documents

Publication Publication Date Title
WO1998028788A1 (en) Manufacture of semiconductor device
JP3853979B2 (ja) 半導体装置の製法
JP4537555B2 (ja) 半導体パッケージの製造方法及び半導体パッケージ
WO2006059542A1 (ja) エポキシ樹脂組成物及び半導体装置
JP4994743B2 (ja) フィルム状接着剤及びそれを使用する半導体パッケージの製造方法
JP3971995B2 (ja) 電子部品装置
JP4449325B2 (ja) 半導体用接着フィルム、半導体装置、及び半導体装置の製造方法。
JP3947296B2 (ja) シート状封止材料およびそれを用いた半導体装置の製法
JP4206631B2 (ja) 熱硬化性液状封止樹脂組成物、半導体素子の組立方法及び半導体装置
JP3999840B2 (ja) 封止用樹脂シート
JP3868179B2 (ja) 液状封止樹脂組成物、半導体装置の製造方法及び半導体装置
JPH0873621A (ja) 樹脂シート
JP2002241617A (ja) 熱硬化性樹脂組成物および半導体装置
JP3911088B2 (ja) 半導体装置
JP3779091B2 (ja) 封止用樹脂組成物
JP3957244B2 (ja) 半導体装置の製法
KR101035873B1 (ko) 고온 속경화형 접착필름 조성물 및 이를 이용한 접착필름
JPH11297904A (ja) 半導体装置
JP2001207031A (ja) 半導体封止用樹脂組成物及び半導体装置
JPH10242211A (ja) 半導体装置の製法
JP2009013308A (ja) シート状エポキシ樹脂組成物およびそれを用いた半導体装置
JPH11204556A (ja) 半導体装置の製法
JP3939849B2 (ja) 半導体装置の製法
JP2000174044A (ja) 半導体素子の組立方法
JP2002121356A (ja) エポキシ樹脂組成物及び半導体装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR PL SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB IT NL

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09297980

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997949206

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019997005788

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1997949206

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997005788

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019997005788

Country of ref document: KR