USRE47600E1 - Semiconductor device and method of forming electrical interconnect with stress relief void - Google Patents

Semiconductor device and method of forming electrical interconnect with stress relief void Download PDF

Info

Publication number
USRE47600E1
USRE47600E1 US14/332,155 US201414332155A USRE47600E US RE47600 E1 USRE47600 E1 US RE47600E1 US 201414332155 A US201414332155 A US 201414332155A US RE47600 E USRE47600 E US RE47600E
Authority
US
United States
Prior art keywords
semiconductor die
substrate
bump
interconnect structures
conductive traces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
US14/332,155
Inventor
Rajendra D. Pendse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stats Chippac Pte Ltd
Original Assignee
Stats Chippac Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US51886403P priority Critical
Priority to US53391803P priority
Priority to US10/985,654 priority patent/US7368817B2/en
Priority to US66520805P priority
Priority to US59764805P priority
Priority to US11/388,755 priority patent/US20060216860A1/en
Priority to US11/640,468 priority patent/US20070105277A1/en
Priority to US11/640,534 priority patent/US7659633B2/en
Priority to US12/624,482 priority patent/US8129841B2/en
Priority to US12/643,180 priority patent/US8216930B2/en
Priority to US12/963,934 priority patent/US8350384B2/en
Application filed by Stats Chippac Pte Ltd filed Critical Stats Chippac Pte Ltd
Priority to US14/332,155 priority patent/USRE47600E1/en
Application granted granted Critical
Publication of USRE47600E1 publication Critical patent/USRE47600E1/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/11Manufacturing methods
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/565Moulds
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0133Ternary Alloys

Abstract

A semiconductor device has a semiconductor die with a plurality of tapered bumps formed over a surface of the semiconductor die. The tapered bumps can have a non-collapsible portion and collapsible portion. A plurality of conductive traces is formed over a substrate with interconnect sites. A masking layer is formed over the substrate with openings over the conductive traces. The tapered bumps are bonded to the interconnect sites so that the tapered bumps contact the mask layer and conductive traces to form a void within the opening of the mask layer over the substrate. The substrate can be non-wettable to aid with forming the void in the opening of the masking layer. The void provides thermally induced stress relief. Alternatively, the masking layer is sufficiently thin to avoid the tapered interconnect structures contacting the mask layer. An encapsulant or underfill material is deposited between the semiconductor die and substrate.

Description

CLAIM TO DOMESTIC PRIORITY

The present application is a reissue of U.S. patent application Ser. No. 12/963,934, filed Dec. 9, 2010, now U.S. Pat. No. 8,350,384, which is a continuation-in-part of U.S. patent application Ser. No. 12/624,482, filed Nov. 24, 2009, and now U.S. Pat. No. 8,129,841, and reissued as U.S. Pat. No. RE44,608, which is a continuation of U.S. patent application Ser. No. 11/640,468, filed Dec. 14, 2006, now abandoned, which claims the benefit of provisional application Ser. No. 60/597,648, filed Dec. 14, 2005. U.S. patent application Ser. No. 11/640,468 is a continuation-in-part of U.S. patent application Ser. No. 11/388,755, filed Mar. 24, 2006, now abandoned, which claims the benefit of provisional application Ser. No. 60/665,208, filed Mar. 25, 2005. U.S. patent application Ser. No. 11/640,468 is further a continuation-in-part of U.S. patent application Ser. No. 10/985,654, filed Nov. 10, 2004, now U.S. Pat. No. 7,368,817, which claims the benefit of provisional application Ser. No. 60/518,864, filed Nov. 10, 2003 and provisional application Ser. No. 60/533,918, filed Dec. 31, 2003. U.S. patent application Ser. No. 12/963,934, filed Dec. 9, 2010, now U.S. Pat No. 8,350,384, is further a continuation-in-part of U.S. patent application Ser. No. 12/643,180, filed Dec. 21, 2009, and claims priority to the foregoing parent applications pursuant to 35 U.S.C. §120, now U.S. Pat. No. 8,216,930, and reissued as U.S. Pat. No. RE44,761, which is a division of U.S. patent application Ser. No. 11/640,534, filed Dec. 14, 2006, now U.S. Pat. No. 7,659,633, and reissued as U.S. Pat. No. RE44,562, which claims the benefit of provisional application Ser. No. 60/597,648, filed Dec. 14, 2005. U.S. patent application Ser. No. 11/640,534 is a further a continuation-in-part of U.S. patent application Ser. No. 11/388,755, filed Mar. 24, 2006, now abandoned, which claims the benefit of provisional application Ser. No. 60/665,208, filed Mar. 25, 2005. U.S. patent application Ser. No. 11/640,534 is a continuation-in-part of U.S. patent application Ser. No. 10/985,654, filed Nov. 10, 2004, now U.S. Pat. No. 7,368,817, which claims the benefit of provisional application Ser. No. 60/518,864, filed Nov. 10, 2003 and provisional application Ser. No. 60/533,918, filed Dec. 31, 2003.

FIELD OF THE INVENTION

The present invention relates to semiconductor devices and, particularly, to a semiconductor device and method of forming an electrical interconnect with a stress relief void.

BACKGROUND OF THE INVENTION

Semiconductor devices are commonly found in modern electronic products. Semiconductor devices vary in the number and density of electrical components. Discrete semiconductor devices generally contain one type of electrical component, e.g., light emitting diode (LED), small signal transistor, resistor, capacitor, inductor, and power metal oxide semiconductor field effect transistor (MOSFET). Integrated semiconductor devices typically contain hundreds to millions of electrical components. Examples of integrated semiconductor devices include microcontrollers, microprocessors, charged-coupled devices (CCDs), solar cells, and digital micro-mirror devices (DMDs).

Semiconductor devices perform a wide range of functions such as signal processing, high-speed calculations, transmitting and receiving electromagnetic signals, controlling electronic devices, transforming sunlight to electricity, and creating visual projections for television displays. Semiconductor devices are found in the fields of entertainment, communications, power conversion, networks, computers, and consumer products. Semiconductor devices are also found in military applications, aviation, automotive, industrial controllers, and office equipment.

Semiconductor devices exploit the electrical properties of semiconductor materials. The atomic structure of semiconductor material allows its electrical conductivity to be manipulated by the application of an electric field or base current or through the process of doping. Doping introduces impurities into the semiconductor material to manipulate and control the conductivity of the semiconductor device.

A semiconductor device contains active and passive electrical structures. Active structures, including bipolar and field effect transistors, control the flow of electrical current. By varying levels of doping and application of an electric field or base current, the transistor either promotes or restricts the flow of electrical current. Passive structures, including resistors, capacitors, and inductors, create a relationship between voltage and current necessary to perform a variety of electrical functions. The passive and active structures are electrically connected to form circuits, which enable the semiconductor device to perform high-speed calculations and other useful functions.

Semiconductor devices are generally manufactured using two complex manufacturing processes, i.e., front-end manufacturing, and back-end manufacturing, each involving potentially hundreds of steps. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die is typically identical and contains circuits formed by electrically connecting active and passive components. Back-end manufacturing involves singulating individual die from the finished wafer and packaging the die to provide structural support and environmental isolation.

One goal of semiconductor manufacturing is to produce smaller semiconductor devices. Smaller devices typically consume less power, have higher performance, and can be produced more efficiently. In addition, smaller semiconductor devices have a smaller footprint, which is desirable for smaller end products. A smaller die size can be achieved by improvements in the front-end process resulting in die with smaller, higher density active and passive components. Back-end processes may result in semiconductor device packages with a smaller footprint by improvements in electrical interconnection and packaging materials.

In a conventional flipchip type package, a semiconductor die is mounted to a package substrate with the active side of the die facing the substrate. The substrate contains a dielectric layer and metal layers, patterned to provide substrate circuitry, which includes among other features traces or leads routed to interconnect pads. The metal layer can be patterned by a mask and etch process. The interconnection of the circuitry in the semiconductor die with circuitry in the substrate is made by way of bumps which are attached to an array of interconnect pads on the die, and bonded to a corresponding complementary array of interconnect pads or capture pads on the substrate. The capture pads are typically about 2 to 4 times the nominal or design width of the leads. The interconnect area on the capture pad is approximately equal to the interconnect area on the die pad.

The areal density of electronic features on integrated circuits has increased enormously, and a semiconductor die having a greater density of circuit features also may have a greater density of sites for interconnection with the package substrate.

The package is connected to underlying circuitry, such as a printed circuit board or motherboard, by way of second level interconnects between the package and underlying circuit. The second level interconnects have a greater pitch than the flipchip interconnects so the routing on the substrate conventionally fans out. Significant technological advances have enabled construction of fine lines and spaces. In the conventional arrangement, space between adjacent pads limits the number of traces than can escape from the more inward capture pads in the array. The fan-out routing between the capture pads beneath the semiconductor die and external pins of the package is formed on multiple metal layers within the package substrate. For a complex interconnect array, substrates having multiple layers can be required to achieve routing between the die pads and second level interconnects on the package.

Multiple layer substrates are expensive and, in conventional flipchip constructs, the substrate alone typically accounts for more than half the package cost. The high cost of multilayer substrates has been a factor in limiting proliferation of flipchip technology in mainstream products. The escape routing pattern typically introduces additional electrical parasitics because the routing includes short runs of unshielded wiring and vias between wiring layers in the signal transmission path. Electrical parasitics can significantly limit package performance.

The conventional flipchip interconnection is made by using a melting process to join the bumps onto corresponding interconnect sites on the patterned metal layer at the die attach surface of the substrate. Where the site is a capture pad, the interconnect is known as a bump-on-capture pad (BOC) interconnect. In the BOC design, a comparatively large capture pad is required to mate with the bump on the semiconductor die. In some flipchip interconnections, an insulating material or solder mask is required to confine the flow of solder during the interconnection process. The solder mask opening defines the contour of the melted solder at the capture pad, i.e., solder mask defined, or the solder contour may not be defined by the mask opening, i.e., non-solder mask defined. In the latter case, the solder mask opening is significantly larger than the capture pad. Since the techniques for defining solder mask openings have wide tolerance ranges for a solder mask defined bump configuration, the capture pad must be large, typically considerably larger than the design size for the mask opening, to ensure that the mask opening will be located on the mating surface of the pad. The larger width of the capture pads results in considerable loss of routing space on the top substrate layer. In particular, the escape routing pitch is much larger than the finest trace pitch that the substrate technology can offer. A significant number of pads must be routed on lower substrate layers by means of short stubs and vias, often beneath the footprint of the die, emanating from the pads in question.

FIG. 1a shows a portion of a conventional flipchip package, in diagrammatic sectional view taken in a plane perpendicular to the package substrate surface. A die attach surface of package substrate 10 includes a patterned electrically conductive layer formed on a dielectric layer. The conductive layer is patterned to form leads and capture pads 16. An insulating layer or masking layer 11 covers the die attach surface of substrate 10. Masking layer 11 is a photo-definable material patterned with photoresist to have mask openings 12 which expose the mating surfaces of capture pads 16. Bumps 17 attached to under bump metallization (UBM) 18 on the active side of semiconductor die 14 are joined to the corresponding capture pads 16 on substrate 10 to form appropriate electrical interconnection between the circuitry on the die and leads on the substrate. The active side of semiconductor die 14 is covered, except at the contact surfaces of UBM 18, with a passivation layer 15, such as polyimide. After the reflowed solder is cooled to establish the electrical connection, an underfill material 20 is introduced into the space between semiconductor die 14 and substrate 10 to mechanically stabilize the interconnect and protect the features between the die and the substrate.

In such a conventional flipchip interconnect arrangement, signal escape traces in the upper metal layer of the substrate are routed from their respective capture pads across the die edge location, and away from the die footprint. Capture pads 16 are typically much larger than the trace width. For example, capture pads 16 are arranged in a 210 micrometer (μm) two-row area array pitch in a masking layer defined configuration with one signal trace between adjacent capture pads in the marginal row. The effective escape pitch is 105 μm. The escape pitch is adequate to route a significant proportion of integrated circuit designs that commonly employ flipchip interconnection on a single metallization layer, based on the inherent input/output (I/O) density of the IC device architectures.

FIG. 1a shows a masking layer defined solder contour. As the fusible material of the bumps on the die melts, the molten solder tends to wet the metal of the capture pads, and the solder tends to run out over any contiguous metal surfaces that are not masked. The solder tends to flow along the underlying pad and exposed contiguous lead. In a masking layer defined contour, the solder flow is limited by the masking layer, i.e., the width of mask opening 12. In a non-masking layer defined solder contour, the flow of solder along the lead is limited at least in part by a patterned deposition of non-solder-wettable material on the lead surface.

A thermal-induced movement in the x-y plane of die pads on the die attach surface of semiconductor die 14 in relation to the corresponding points on substrate 10, as indicated by arrow 13, can result in stresses to the interconnections between the die pad and interconnect site on the substrate. Various temperature-induced dimensional changes between semiconductor die 14 and substrate 10 are shown in the plan view in FIG. 1b. If there is a significant mismatch between the coefficient of thermal expansion (CTE) of semiconductor die 14 and the CTE of substrate 10, then the die is subject to movement, as shown by arrows 22, relative to the substrate in the x-y plane parallel to the plane of the substrate as the temperature changes, e.g., during thermal cycling in assembly or test or die burnout routines. For example, assume semiconductor die 14 has a footprint occupying area 24a at a low temperature. At higher temperatures, the footprint of semiconductor die 14 expands to area 24b.

In addition, movement in the x-y plane of a die pad in relation to an underlying contact pad can result in stresses to the interconnection between the pad and the contact pad. The relative movement between semiconductor die 14 and substrate 10 asserts stress on bumps 17, which can cause bump detachment and device failure, particularly at location 26 between the bump and die pad.

SUMMARY OF THE INVENTION

A need exists to minimize the contact pad size to increase trace routing density without impacting electrical functionality or manufacturing reliability. Accordingly, in one embodiment, the present invention is a method of making a semiconductor device comprising the steps of providing a semiconductor die having a plurality of tapered bumps formed over a surface of the semiconductor die, providing a substrate, forming a plurality of conductive traces over the substrate with interconnect sites, forming a masking layer over the substrate with a plurality of openings over the conductive traces, bonding the tapered bumps to the interconnect sites so that the tapered bumps contact the mask layer and conductive traces to form a void within the opening of the mask layer over the substrate, and depositing an encapsulant around the tapered bumps between the semiconductor die and substrate.

In another embodiment, the present invention is a method of making a semiconductor device comprising the steps of providing a semiconductor die, providing a substrate, forming a plurality of conductive traces over the substrate with interconnect sites, forming a masking layer over the substrate with a plurality of openings over the conductive traces, forming a plurality of tapered interconnect structures between the semiconductor die and the interconnect sites of the substrate, and depositing an encapsulant between the semiconductor die and substrate.

In another embodiment, the present invention is a method of making a semiconductor device comprising the steps of providing a semiconductor die, providing a substrate, forming a plurality of conductive traces over the substrate with interconnect sites, forming a masking layer over the substrate with a plurality of openings over the conductive traces, and forming a plurality of tapered interconnect structures between the semiconductor die and the interconnect sites of the substrate.

In another embodiment, the present invention is a semiconductor device comprising a semiconductor die and substrate having a plurality of conductive traces formed over the substrate with interconnect sites. A masking layer is formed over the substrate with a plurality of openings over the conductive traces. A plurality of tapered interconnect structures is formed between the semiconductor die and the interconnect sites of the substrate. An encapsulant is deposited between the semiconductor die and substrate.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1a-1b illustrate a conventional BOC flipchip interconnection;

FIG. 2 illustrates a PCB with different types of packages mounted to its surface;

FIGS. 3a-3c illustrate further detail of the representative semiconductor packages mounted to the PCB;

FIGS. 4a-4b illustrate a tapered interconnect structure for a flipchip semiconductor device;

FIGS. 5a-5b illustrate dimensional references for FIGS. 4a-4b;

FIG. 6 illustrates a thinner masking layer to negate void formation;

FIGS. 7a-7h illustrate various interconnect structures formed over a semiconductor die for bonding to conductive traces on a substrate;

FIGS. 8a-8g illustrate the semiconductor die and interconnect structure bonded to the conductive traces;

FIGS. 9a-9d illustrate the semiconductor die with a wedge-shaped interconnect structure bonded to the conductive traces;

FIGS. 10a-10d illustrate another embodiment of the semiconductor die and interconnect structure bonded to the conductive traces;

FIGS. 11a-11c illustrate stepped bump and stud bump interconnect structures bonded to the conductive traces;

FIGS. 12a-12b illustrate conductive traces with conductive vias;

FIGS. 13a-13c illustrate mold underfill between the semiconductor die and substrate;

FIG. 14 illustrates another mold underfill between the semiconductor die and substrate;

FIG. 15 illustrates the semiconductor die and substrate after mold underfill;

FIGS. 16a-16g illustrate various arrangements of the conductive traces with open solder registration;

FIGS. 17a-17b illustrate the open solder registration with patches between the conductive traces; and

FIG. 18 illustrates a POP with masking layer dam to restrain the encapsulant during mold underfill.

DETAILED DESCRIPTION OF THE DRAWINGS

The present invention is described in one or more embodiments in the following description with reference to the figures, in which like numerals represent the same or similar elements. While the invention is described in terms of the best mode for achieving the invention's objectives, it will be appreciated by those skilled in the art that it is intended to cover alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims and their equivalents as supported by the following disclosure and drawings.

Semiconductor devices are generally manufactured using two complex manufacturing processes: front-end manufacturing and back-end manufacturing. Front-end manufacturing involves the formation of a plurality of die on the surface of a semiconductor wafer. Each die on the wafer contains active and passive electrical components, which are electrically connected to form functional electrical circuits. Active electrical components, such as transistors and diodes, have the ability to control the flow of electrical current. Passive electrical components, such as capacitors, inductors, resistors, and transformers, create a relationship between voltage and current necessary to perform electrical circuit functions.

Passive and active components are formed over the surface of the semiconductor wafer by a series of process steps including doping, deposition, photolithography, etching, and planarization. Doping introduces impurities into the semiconductor material by techniques such as ion implantation or thermal diffusion. The doping process modifies the electrical conductivity of semiconductor material in active devices, transforming the semiconductor material into an insulator, conductor, or dynamically changing the semiconductor material conductivity in response to an electric field or base current. Transistors contain regions of varying types and degrees of doping arranged as necessary to enable the transistor to promote or restrict the flow of electrical current upon the application of the electric field or base current.

Active and passive components are formed by layers of materials with different electrical properties. The layers can be formed by a variety of deposition techniques determined in part by the type of material being deposited. For example, thin film deposition can involve chemical vapor deposition (CVD), physical vapor deposition (PVD), electrolytic plating, and electroless plating processes. Each layer is generally patterned to form portions of active components, passive components, or electrical connections between components.

The layers can be patterned using photolithography, which involves the deposition of light sensitive material, e.g., photoresist, over the layer to be patterned. A pattern is transferred from a photomask to the photoresist using light. The portion of the photoresist pattern subjected to light is removed using a solvent, exposing portions of the underlying layer to be patterned. The remainder of the photoresist is removed, leaving behind a patterned layer. Alternatively, some types of materials are patterned by directly depositing the material into the areas or voids formed by a previous deposition/etch process using techniques such as electroless and electrolytic plating.

Depositing a thin film of material over an existing pattern can exaggerate the underlying pattern and create a non-uniformly flat surface. A uniformly flat surface is required to produce smaller and more densely packed active and passive components. Planarization can be used to remove material from the surface of the wafer and produce a uniformly flat surface. Planarization involves polishing the surface of the wafer with a polishing pad. An abrasive material and corrosive chemical are added to the surface of the wafer during polishing. The combined mechanical action of the abrasive and corrosive action of the chemical removes any irregular topography, resulting in a uniformly flat surface.

Back-end manufacturing refers to cutting or singulating the finished wafer into the individual die and then packaging the die for structural support and environmental isolation. To singulate the die, the wafer is scored and broken along non-functional regions of the wafer called saw streets or scribes. The wafer is singulated using a laser cutting tool or saw blade. After singulation, the individual die are mounted to a package substrate that includes pins or contact pads for interconnection with other system components. Contact pads formed over the semiconductor die are then connected to contact pads within the package. The electrical connections can be made with solder bumps, stud bumps, conductive paste, or wirebonds. An encapsulant or other molding material is deposited over the package to provide physical support and electrical isolation. The finished package is then inserted into an electrical system and the functionality of the semiconductor device is made available to the other system components.

FIG. 2 illustrates electronic device 50 having a chip carrier substrate or printed circuit board (PCB) 52 with a plurality of semiconductor packages mounted on its surface. Electronic device 50 can have one type of semiconductor package, or multiple types of semiconductor packages, depending on the application. The different types of semiconductor packages are shown in FIG. 2 for purposes of illustration.

Electronic device 50 can be a stand-alone system that uses the semiconductor packages to perform one or more electrical functions. Alternatively, electronic device 50 can be a subcomponent of a larger system. For example, electronic device 50 can be part of a cellular phone, personal digital assistant (PDA), digital video camera (DVC), or other electronic communication device. Alternatively, electronic device 50 can be a graphics card, network interface card, or other signal processing card that can be inserted into a computer. The semiconductor package can include microprocessors, memories, application specific integrated circuits (ASIC), logic circuits, analog circuits, RF circuits, discrete devices, or other semiconductor die or electrical components. The miniaturization and the weight reduction are essential for these products to be accepted by the market. The distance between semiconductor devices must be decreased to achieve higher density.

In FIG. 2, PCB 52 provides a general substrate for structural support and electrical interconnect of the semiconductor packages mounted on the PCB. Conductive signal traces 54 are formed over a surface or within layers of PCB 52 using evaporation, electrolytic plating, electroless plating, screen printing, or other suitable metal deposition process. Signal traces 54 provide for electrical communication between each of the semiconductor packages, mounted components, and other external system components. Traces 54 also provide power and ground connections to each of the semiconductor packages.

In some embodiments, a semiconductor device has two packaging levels. First level packaging is a technique for mechanically and electrically attaching the semiconductor die to an intermediate carrier. Second level packaging involves mechanically and electrically attaching the intermediate carrier to the PCB. In other embodiments, a semiconductor device may only have the first level packaging where the die is mechanically and electrically mounted directly to the PCB.

For the purpose of illustration, several types of first level packaging, including wire bond package 56 and flipchip 58, are shown on PCB 52. Additionally, several types of second level packaging, including ball grid array (BGA) 60, bump chip carrier (BCC) 62, dual in-line package (DIP) 64, land grid array (LGA) 66, multi-chip module (MCM) 68, quad flat non-leaded package (QFN) 70, and quad flat package 72, are shown mounted on PCB 52. Depending upon the system requirements, any combination of semiconductor packages, configured with any combination of first and second level packaging styles, as well as other electronic components, can be connected to PCB 52. In some embodiments, electronic device 50 includes a single attached semiconductor package, while other embodiments call for multiple interconnected packages. By combining one or more semiconductor packages over a single substrate, manufacturers can incorporate pre-made components into electronic devices and systems. Because the semiconductor packages include sophisticated functionality, electronic devices can be manufactured using cheaper components and a streamlined manufacturing process. The resulting devices are less likely to fail and less expensive to manufacture resulting in a lower cost for consumers.

FIGS. 3a-3c show exemplary semiconductor packages. FIG. 3a illustrates further detail of DIP 64 mounted on PCB 52. Semiconductor die 74 includes an active region containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and are electrically interconnected according to the electrical design of the die. For example, the circuit can include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements formed within the active region of semiconductor die 74. Contact pads 76 are one or more layers of conductive material, such as aluminum (Al), copper (Cu), tin (Sn), nickel (Ni), gold (Au), or silver (Ag), and are electrically connected to the circuit elements formed within semiconductor die 74. During assembly of DIP 64, semiconductor die 74 is mounted to an intermediate carrier 78 using a gold-silicon eutectic layer or adhesive material such as thermal epoxy or epoxy resin. The package body includes an insulative packaging material such as polymer or ceramic. Conductor leads 80 and bond wires 82 provide electrical interconnect between semiconductor die 74 and PCB 52. Encapsulant 84 is deposited over the package for environmental protection by preventing moisture and particles from entering the package and contaminating die 74 or bond wires 82.

FIG. 3b illustrates further detail of BCC 62 mounted on PCB 52. Semiconductor die 88 is mounted over carrier 90 using an underfill or epoxy-resin adhesive material 92. Bond wires 94 provide first level packaging interconnect between contact pads 96 and 98. Molding compound or encapsulant 100 is deposited over semiconductor die 88 and bond wires 94 to provide physical support and electrical isolation for the device. Contact pads 102 are formed over a surface of PCB 52 using a suitable metal deposition process such as electrolytic plating or electroless plating to prevent oxidation. Contact pads 102 are electrically connected to one or more conductive signal traces 54 in PCB 52. Bumps 104 are formed between contact pads 98 of BCC 62 and contact pads 102 of PCB 52.

In FIG. 3c, semiconductor die 58 is mounted face down to intermediate carrier 106 with a flipchip style first level packaging. Active region 108 of semiconductor die 58 contains analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed according to the electrical design of the die. For example, the circuit can include one or more transistors, diodes, inductors, capacitors, resistors, and other circuit elements within active region 108. Semiconductor die 58 is electrically and mechanically connected to carrier 106 through bumps 110.

BGA 60 is electrically and mechanically connected to PCB 52 with a BGA style second level packaging using bumps 112. Semiconductor die 58 is electrically connected to conductive signal traces 54 in PCB 52 through bumps 110, signal lines 114, and bumps 112. A molding compound or encapsulant 116 is deposited over semiconductor die 58 and carrier 106 to provide physical support and electrical isolation for the device. The flipchip semiconductor device provides a short electrical conduction path from the active devices on semiconductor die 58 to conduction tracks on PCB 52 in order to reduce signal propagation distance, lower capacitance, and improve overall circuit performance. In another embodiment, the semiconductor die 58 can be mechanically and electrically connected directly to PCB 52 using flipchip style first level packaging without intermediate carrier 106.

In a flipchip type semiconductor device, the electrical interconnect can be achieved by connecting the bump directly onto a lead, referred to as bump-on-lead (BOL) and described in U.S. patent publication 20050110164, or by connecting the bump directly onto a narrow interconnection pad, referred to as bump-on-narrow pad (BONP) and described in U.S. patent publication 20060216860, both incorporated by reference.

The BOL and BONP interconnect approaches can provide an efficient routing of traces on the substrate. Particularly, the signal routing can be formed entirely in a single metal layer of the substrate, which reduces the number of layers in the substrate. Forming the signal traces in a single layer also permits relaxation of the via, line, and space design rules for the substrate. The simplification of the substrate greatly reduces the overall cost of the flipchip package. The BOL interconnect also reduces vias and stubs from the substrate and enables a microstrip controlled impedance electrical environment for signal transmission, thereby greatly improving performance. Within selected design parameters, a BOL or BONP flipchip interconnection can be as reliable as a conventional bond on capture pad interconnect.

A BOL or BONP interconnection is shown in sectional views perpendicular to the surface of the substrate in FIGS. 4a and 4b with two electrical interconnects transverse to the lead, and one electrical interconnect parallel to the lead. In FIG. 4a, a die attach surface of package substrate 120 includes a patterned electrically conductive layer formed on a dielectric layer. Substrate 120 can be a build-up film substrate and laminate substrate. The conductive layer is patterned to form leads or traces 124 having interconnect sites 126. Although the width of the leads can vary over their length, no particular widening of the leads is formed at the interconnect sites or the leads can be widened to a limited extent at the interconnect sites.

The BOL or BONP interconnect is formed with or without a masking layer to confine the molten bump material during a re-melt stage in the process. The no masking layer option generally allows for finer interconnection geometry. When using a masking layer, openings are formed in the masking layer over the interconnect sites on the leads. FIG. 4a shows an insulating layer or masking layer 128 covering the die attach surface of substrate 120. Masking layer 128 can be a photo-definable material patterned by photoresist to have openings 130 which expose the top surface and side surfaces of interconnect sites 126. Masking layer 128 limits the flow of bump material along the length of leads 124. In other embodiments without a masking layer, substrate 120 can be treated to be non-wettable along portions of the leads adjacent the mating surfaces at interconnect sites 126 to limit flow of bump material away from the interconnect sites along the leads.

Bump 132 are attached to UBM 134 on the active side of semiconductor die 136 and joined to interconnect sites 126 on substrate 120 to form appropriate electrical interconnection between the circuitry on the die and the leads on the substrate. The active side of semiconductor die 136 is covered, except at the contact surfaces of UBM 134, with a passivation layer 138, such as polyimide. After the reflowed solder is cooled to establish the electrical connection, an underfill material 140 is deposited into the space between semiconductor die 134 and substrate 120 to mechanically stabilize the interconnects and protect the features between the die and the substrate.

The present flipchip interconnection uses a tapered bump 132 having a wedge shape, longer along a length of interconnect site 126 and narrower across the interconnect site. The view in FIG. 4a shows the shorter aspect or narrowing taper co-linear with trace 124. FIG. 4b shows the longer aspect of the wedge-shaped bump 124 taken along the line 4b-4b in FIG. 4a. The interconnect site 126 is narrower than the shorter aspect of bump 132 so the bump covers the top surface and side surface of the interconnect site. Bump 132 has a width of the connection to UBM 134 greater than, on the order of 1.5-4.0 times, a width of the connection to interconnect site 126. For example, the width of the connection at UBM 134 can be in a range about 50-150 μm and the width of the connection at interconnect site 126 is in the range 20-100 μm.

The tapered bump 132 can be more reliable than other interconnect structures formed on narrow leads. In particular, where the CTE of the semiconductor die differs significantly from the CTE of the substrate, tapering the interconnect structures can enhance reliability. For example, a significant CTE mismatch exists if the semiconductor die is silicon-based and the substrate is an organic laminate or build-up substrate. The material of the interconnect structure is selected to be close to that of the substrate. The CTE of a laminate or organic substrate is typically in a range about 16-18 ppm/degree C., the CTE of silicon is about 2-3 ppm/degree C., the CTE of glass ceramic is about 3-4 ppm/degree C., and the CTE of a co-fired ceramic is about 8-8.5 ppm/degree C. For the silicon semiconductor die and organic laminate substrate, the tapered interconnect structure is selected with a CTE in the range about 18-28 ppm/degree C.

Masking layer 128 makes contact with or is in close proximity to bump 132 at the margin of mask opening 130. During the underfill process, the contact or near proximity of masking layer 128 with bump 132 interferes with flow of underfill material 140 toward the portion of substrate 120 adjacent to the site. As a result, voids 142 containing the present atmosphere are formed between bump 132 and substrate 120 within mask opening 130 during the underfill process. The voids 142 adjacent to interconnect site 126 on substrate 120 provide stress relief from strain induced by changes in temperature.

In another embodiment, a composite bump structure electrically interconnects semiconductor die 136 and substrate 120. The composite bump structure has a non-collapsible portion and collapsible portion. The non-collapsible portion has a higher-melting temperature. The collapsible portion connects the bump to the interconnect site on the lead and has a lower-melting temperature. The collapsible portion of the composite bump can be a cap on the bump or solder paste or plated spot on the interconnect site. The non-collapsible portion is attached to the interconnect pad on the die. Typical materials for the non-collapsible portion include Cu, Au, Ni, high lead solder, or lead-tin alloy having high lead content. Typical materials for the collapsible portion of the composite bump include Cu, Ag, Sn, lead, and eutectic solders.

In another embodiment, solder paste can be applied to the interconnect sites on the traces. For example, the bumps can be formed of a high-lead solder, e.g., 97% lead and 3% tin, and the solder on the interconnect site can be a eutectic solder. The semiconductor die is oriented with its active side facing the mounting surface of the substrate and bumps aligned with the respective interconnect sites on the leads. The semiconductor die is moved toward the substrate to bring the bumps into contact with the solder on the leads. The assembly is then heated to reflow the solder at a peak temperature of 235° C. with jet flux to form the connection at the interconnect site. As the solder on the lead reflows, it wicks to the solder-wettable surface of the solder bump and to the solder-wettable mating surfaces of the lead. In FIG. 4a, the surface of substrate 120 is not solder-wettable so the solder makes little or no contact with the substrate dielectric. The tapered form of the connection structure results from the narrow dimension of the lead at the interconnect site, and the wicking of the solder during reflow.

As noted in the background, semiconductor die 136 and substrate 120 are subject to relative motion, particularly if there is a significant CTE mismatch. The registration of any point on the active surface of semiconductor die 136 with respect to a corresponding underlying point on the die attach surface of substrate 120 changes as the dimensions of the die and substrate change under the thermal stress. At some point on the active surface of semiconductor die 136, there is no net movement with relation to the corresponding point on the underlying substrate 120 as a result of expansion or contraction of the die in relation to the substrate. The point of no net movement is referred to as the thermally neutral point. In many cases, the thermally neutral point coincides with the geometric center of the die surface. The extent of movement of any point on semiconductor die 136 in an x-y plane parallel to the plane of substrate 120 in relation to the substrate as a result of thermal expansion or contraction, i.e., the thermal movement, depends at least in part upon the distance of that point from the thermally neutral point on the die. There is greater relative thermal movement at points nearer the edges of the die, and particularly near the corners of the die, than at points nearer the thermally neutral point.

The thermally-induced stress in BOL or BONP interconnections is less on leads that are oriented in a radial direction at the interconnect site toward the thermally neutral point on the semiconductor die than on leads that are oriented at the interconnect site perpendicularly to the radial direction. In FIGS. 4a-4b, the lengthwise dimension of interconnect site 126 is oriented in a direction approximately aligned toward the thermally neutral point of semiconductor die 136, or deviating less than 45 degrees from a thermally neutral alignment. In other embodiments, the deviation is less than 10 degrees from a thermally neutral alignment.

FIGS. 5a and 5b show dimensions of certain of the features of FIGS. 4a and 4b. The features are referenced as follows: H is interconnect height as measured from the die surface to the masking layer surface, D is bump diameter at half the interconnect height (H/2), UD is under bump metallization diameter, OPx is the mask opening width in the x-direction across the lead, OPy is the mask opening width in the y-direction along the lead, CW is the width of the copper lead at the interconnect site, CH is thickness or height of the lead at the interconnect site, and T is the masking layer thickness. In one embodiment, UD=90 μm, D=0.110 μm, H=75 μm, T=40 μm, CW=30 μm, and CH=20 μm.

The strain on the interconnect system is determined by the magnitude of the CTE mismatch between the semiconductor die and substrate. A high strain concentration occurs at the bump/die interface because of an abrupt difference in CTE. Accordingly, fatigue failure is driven by the concentration of plastic strain at the bump/die interface. In the BOL interconnect, because the bump is tapered, the portion of the bump near the substrate has a greater compliancy. In particular, there is a high compliancy region or stress relief structure at or near the narrow interface at the interconnect site on the trace. The relief structure has an effect of diffusing the strain away from the die pad, resulting in improved fatigue life of the system.

FIG. 6 shows an embodiment, similar to FIGS. 4a-4b, masking layer 144 having a thickness Ts less than masking layer thickness T in FIG. 5a. The thinner masking layer 144 allows underfill material 140 to pass through openings 146 between mask opening 130 and bump 132 to fill the area between the bump and substrate within the mask opening. Accordingly, there are substantially no voids between the bump and substrate within the mask opening.

FIGS. 7-10 describe other embodiments with various interconnect structures applicable to the interconnect structure, as described in FIGS. 4-6. FIG. 7a shows a semiconductor wafer 220 with a base substrate material 222, such as silicon, germanium, gallium arsenide, indium phosphide, or silicon carbide, for structural support. A plurality of semiconductor die or components 224 is formed on wafer 220 separated by saw streets 226 as described above.

FIG. 7b shows a cross-sectional view of a portion of semiconductor wafer 220. Each semiconductor die 224 has a back surface 228 and active surface 230 containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit can include one or more transistors, diodes, and other circuit elements formed within active surface 230 to implement analog circuits or digital circuits, such as digital signal processor (DSP), ASIC, memory, or other signal processing circuit. Semiconductor die 224 can also contain integrated passive devices (IPDs), such as inductors, capacitors, and resistors, for RF signal processing. In one embodiment, semiconductor die 224 is a flipchip type semiconductor die.

An electrically conductive layer 232 is formed over active surface 230 using PVD, CVD, electrolytic plating, electroless plating process, or other suitable metal deposition process. Conductive layer 232 can be one or more layers of Al, Cu, Sn, Ni, Au, Ag, or other suitable electrically conductive material. Conductive layer 232 operates as contact pads electrically connected to the circuits on active surface 230.

FIG. 7c shows a portion of semiconductor wafer 220 with an interconnect structure formed over contact pads 232. An electrically conductive bump material 234 is deposited over contact pads 232 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process. Bump material 234 can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution. For example, bump material 234 can be eutectic Sn/Pb, high-lead solder, or lead-free solder. Bump material 234 is generally compliant and undergoes plastic deformation greater than about 25 μm under a force equivalent to a vertical load of about 200 grams. Bump material 234 is bonded to contact pad 232 using a suitable attachment or bonding process. For example, bump material 234 can be compression bonded to contact pad 232. Bump material 234 can also be reflowed by heating the material above its melting point to form spherical balls or bumps 236, as shown in FIG. 7d. In some applications, bumps 236 are reflowed a second time to improve electrical connection to contact pad 232. Bumps 236 represent one type of interconnect structure that can be formed over contact pad 232. The interconnect structure can also use stud bump, micro bump, or other electrical interconnect.

FIG. 7e shows another embodiment of the interconnect structure formed over contact pads 232 as composite bumps 238 including a non-fusible or non-collapsible portion 240 and fusible or collapsible portion 242. The fusible or collapsible and non-fusible or non-collapsible attributes are defined for bumps 238 with respect to reflow conditions. The non-fusible portion 240 can be Au, Cu, Ni, high-lead solder, or lead-tin alloy. The fusible portion 242 can be Sn, lead-free alloy, Sn—Ag alloy, Sn—Ag—Cu alloy, Sn—Ag-indium (In) alloy, eutectic solder, tin alloys with Ag, Cu, or Pb, or other relatively low temperature melt solder. In one embodiment, given a contact pad 232 width or diameter of 100 μm, the non-fusible portion 240 is about 45 μm in height and fusible portion 242 is about 35 μm in height.

FIG. 7f shows another embodiment of the interconnect structure formed over contact pads 232 as bump 244 over conductive pillar 246. Bump 244 is fusible or collapsible and conductive pillar 246 is non-fusible or non-collapsible. The fusible or collapsible and non-fusible or non-collapsible attributes are defined with respect to reflow conditions. Bump 244 can be Sn, lead-free alloy, Sn—Ag alloy, Sn—Ag—Cu alloy, Sn—Ag—In alloy, eutectic solder, tin alloys with Ag, Cu, or Pb, or other relatively low temperature melt solder. Conductive pillar 246 can be Au, Cu, Ni, high-lead solder, or lead-tin alloy. In one embodiment, conductive pillar 246 is a Cu pillar and bump 244 is a solder cap. Given a contact pad 232 width or diameter of 100 μm, conductive pillar 246 is about 45 μm in height and bump 244 is about 35 μm in height.

FIG. 7g shows another embodiment of the interconnect structure formed over contact pads 232 as bump material 248 with asperities 250. Bump material 248 is soft and deformable under reflow conditions with a low yield strength and high elongation to failure, similar to bump material 234. Asperities 250 are formed with a plated surface finish and are shown exaggerated in the figures for purposes of illustration. The scale of asperities 250 is generally in the order about 1-25 μm. The asperities can also be formed on bump 236, composite bump 238, and bump 244.

In FIG. 7h, semiconductor wafer 220 is singulated through saw street 226 using a saw blade or laser cutting tool 252 into individual semiconductor die 224.

FIG. 8a shows a substrate or PCB 254 with conductive trace 256. Substrate 254 can be a single-sided FR5 laminate or 2-sided BT-resin laminate. Semiconductor die 224 is positioned so that bump material 234 is aligned with an interconnect site on conductive trace 256, see FIGS. 16a-16g. Alternatively, bump material 234 can be aligned with a conductive pad or other interconnect site formed on substrate 254. Bump material 234 is wider than conductive trace 256. In one embodiment, bump material 234 has a width of less than 100 μm and conductive trace or pad 256 has a width of 35 μm for a bump pitch of 150 μm. Conductive traces 256 are applicable to the interconnect structure, as described in FIGS. 4-6.

A pressure or force F is applied to back surface 228 of semiconductor die 224 to press bump material 234 onto conductive trace 256. The force F can be applied with an elevated temperature. Due to the compliant nature of bump material 234, the bump material deforms or extrudes around the top surface and side surface of conductive trace 256, referred to as BOL. In particular, the application of pressure causes bump material 234 to undergo a plastic deformation greater than about 25 μm under force F equivalent to a vertical load of about 200 grams and cover the top surface and side surface of the conductive trace, as shown in FIG. 8b. Bump material 234 can also be metallurgically connected to conductive trace 256 by bringing the bump material in physical contact with the conductive trace and then reflowing the bump material under a reflow temperature.

By making conductive trace 256 narrower than bump material 234, the conductive trace pitch can be reduced to increase routing density and I/O count. The narrower conductive trace 256 reduces the force F needed to deform bump material 234 around the conductive trace. For example, the requisite force F may be 30-50% of the force needed to deform bump material against a conductive trace or pad that is wider than the bump material. The lower compressive force F is useful for fine pitch interconnect and small die to maintain coplanarity with a specified tolerance and achieve uniform z-direction deformation and high reliability interconnect union. In addition, deforming bump material 234 around conductive trace 256 mechanically locks the bump to the trace to prevent die shifting or die floating during reflow.

FIG. 8c shows bump 236 formed over contact pad 232 of semiconductor die 224. Semiconductor die 224 is positioned so that bump 236 is aligned with an interconnect site on conductive trace 256. Alternatively, bump 236 can be aligned with a conductive pad or other interconnect site formed on substrate 254. Bump 236 is wider than conductive trace 256. Conductive traces 256 are applicable to the interconnect structure, as described in FIGS. 4-6.

A pressure or force F is applied to back surface 228 of semiconductor die 224 to press bump 236 onto conductive trace 256. The force F can be applied with an elevated temperature. Due to the compliant nature of bump 236, the bump deforms or extrudes around the top surface and side surface of conductive trace 256. In particular, the application of pressure causes bump material 236 to undergo a plastic deformation and cover the top surface and side surface of conductive trace 256. Bump 236 can also be metallurgically connected to conductive trace 256 by bringing the bump in physical contact with the conductive trace under reflow temperature.

By making conductive trace 256 narrower than bump 236, the conductive trace pitch can be reduced to increase routing density and I/O count. The narrower conductive trace 256 reduces the force F needed to deform bump 236 around the conductive trace. For example, the requisite force F may be 30-500 of the force needed to deform a bump against a conductive trace or pad that is wider than the bump. The lower compressive force F is useful for fine pitch interconnect and small die to maintain coplanarity within a specified tolerance and achieve uniform z-direction deformation and high reliability interconnect union. In addition, deforming bump 236 around conductive trace 256 mechanically locks the bump to the trace to prevent die shifting or die floating during reflow.

FIG. 8d shows composite bump 238 formed over contact pad 232 of semiconductor die 224. Semiconductor die 224 is positioned so that composite bump 238 is aligned with an interconnect site on conductive trace 256. Alternatively, composite bump 238 can be aligned with a conductive pad or other interconnect site formed on substrate 254. Composite bump 238 is wider than conductive trace 256. Conductive traces 256 are applicable to the interconnect structure, as described in FIGS. 4-6.

A pressure or force F is applied to back surface 228 of semiconductor die 224 to press fusible portion 242 onto conductive trace 256. The force F can be applied with an elevated temperature. Due to the compliant nature of fusible portion 242, the fusible portion deforms or extrudes around the top surface and side surface of conductive trace 256. In particular, the application of pressure causes fusible portion 242 to undergo a plastic deformation and cover the top surface and side surface of conductive trace 256. Composite bump 238 can also be metallurgically connected to conductive trace 256 by bringing fusible portion 242 in physical contact with the conductive trace under reflow temperature. The non-fusible portion 240 does not melt or deform during the application of pressure or temperature and retains its height and shape as a vertical standoff between semiconductor die 224 and substrate 254. The additional displacement between semiconductor die 224 and substrate 254 provides greater coplanarity tolerance between the mating surfaces.

During a reflow process, a large number (e.g., thousands) of composite bumps 238 on semiconductor die 224 are attached to interconnect sites on conductive trace 256 of substrate 254. Some of the bumps 238 may fail to properly connect to conductive trace 256, particularly if die 224 is warped. Recall that composite bump 238 is wider than conductive trace 256. With a proper force applied, the fusible portion 242 deforms or extrudes around the top surface and side surface of conductive trace 256 and mechanically locks composite bump 238 to the conductive trace. The mechanical interlock is formed by nature of the fusible portion 242 being softer and more compliant than conductive trace 256 and therefore deforming over the top surface and around the side surface of the conductive trace for greater contact surface area. The mechanical interlock between composite bump 238 and conductive trace 256 holds the bump to the conductive trace during reflow, i.e., the bump and conductive trace do not lose contact. Accordingly, composite bump 238 mating to conductive trace 256 reduces bump interconnect failures.

FIG. 8e shows conductive pillar 246 and bump 244 formed over contact pad 232 of semiconductor die 224. Semiconductor die 224 is positioned so that bump 244 is aligned with an interconnect site on conductive trace 256. Alternatively, bump 244 can be aligned with a conductive pad or other interconnect site formed on substrate 254. Bump 244 is wider than conductive trace 256. Conductive traces 256 are applicable to the interconnect structure, as described in FIGS. 4-6.

A pressure or force F is applied to back surface 228 of semiconductor die 224 to press bump 244 onto conductive trace 256. The force F can be applied with an elevated temperature. Due to the compliant nature of bump 244, the bump deforms or extrudes around the top surface and side surface of conductive trace 256. In particular, the application of pressure causes bump 244 to undergo a plastic deformation and cover the top surface and side surface of conductive trace 256. Conductive pillar 246 and bump 244 can also be metallurgically connected to conductive trace 256 by bringing the bump in physical contact with the conductive trace under reflow temperature. Conductive pillar 246 does not melt or deform during the application of pressure or temperature and retains its height and shape as a vertical standoff between semiconductor die 224 and substrate 254. The additional displacement between semiconductor die 224 and substrate 254 provides greater coplanarity tolerance between the mating surfaces. The wider bump 244 and narrower conductive trace 256 have similar low requisite compressive force and mechanical locking features and advantages described above for bump material 234 and bump 236.

FIG. 8f shows bump material 248 with asperities 250 formed over contact pad 232 of semiconductor die 224. Semiconductor die 224 is positioned so that bump material 248 is aligned with an interconnect site on conductive trace 256. Alternatively, bump material 248 can be aligned with a conductive pad or other interconnect site formed on substrate 254. Bump material 248 is wider than conductive trace 256. A pressure or force F is applied to back surface 228 of semiconductor die 224 to press bump material 248 onto conductive trace 256. The force F can be applied with an elevated temperature. Due to the compliant nature of bump material 248, the bump deforms or extrudes around the top surface and side surface of conductive trace 256. In particular, the application of pressure causes bump material 248 to undergo a plastic deformation and cover the top surface and side surface of conductive trace 256. In addition, asperities 250 are metallurgically connected to conductive trace 256. Asperities 250 are sized on the order about 1-25 μm.

FIG. 8g shows a substrate or PCB 258 with trapezoidal conductive trace 260 having angled or sloped sides. Bump material 261 is formed over contact pad 232 of semiconductor die 224. Semiconductor die 224 is positioned so that bump material 261 is aligned with an interconnect site on conductive trace 260. Alternatively, bump material 261 can be aligned with a conductive pad or other interconnect site formed on substrate 258. Bump material 261 is wider than conductive trace 260. Conductive traces 260 are applicable to the interconnect structure, as described in FIGS. 4-6.

A pressure or force F is applied to back surface 228 of semiconductor die 224 to press bump material 261 onto conductive trace 260. The force F can be applied with an elevated temperature. Due to the compliant nature of bump material 261, the bump material deforms or extrudes around the top surface and side surface of conductive trace 260. In particular, the application of pressure causes bump material 261 to undergo a plastic deformation under force F to cover the top surface and the angled side surface of conductive trace 260. Bump material 261 can also be metallurgically connected to conductive trace 260 by bringing the bump material in physical contact with the conductive trace and then reflowing the bump material under a reflow temperature.

FIGS. 9a-9d show a BOL embodiment of semiconductor die 224 and elongated composite bump 262 having a non-fusible or non-collapsible portion 264 and fusible or collapsible portion 266. The non-fusible portion 264 can be Au, Cu, Ni, high-lead solder, or lead-tin alloy. The fusible portion 266 can be Sn, lead-free alloy, Sn—Ag alloy, Sn—Ag—Cu alloy, Sn—Ag—In alloy, eutectic solder, tin alloys with Ag, Cu, or Pb, or other relatively low temperature melt solder. The non-fusible portion 264 makes up a larger part of composite bump 262 than the fusible portion 266. The non-fusible portion 264 is fixed to contact pad 232 of semiconductor die 224.

Semiconductor die 224 is positioned so that composite bump 262 is aligned with an interconnect site on conductive trace 268 formed on substrate 270, as shown in FIG. 9a. Composite bump 262 is tapered along conductive trace 268, i.e., the composite bump has a wedge shape, longer along a length of conductive trace 268 and narrower across the conductive trace. The tapered aspect of composite bump 262 occurs along the length of conductive trace 268. The view in FIG. 9a shows the shorter aspect or narrowing taper co-linear with conductive trace 268. The view in FIG. 9b, normal to FIG. 9a, shows the longer aspect of the wedge-shaped composite bump 262. The shorter aspect of composite bump 262 is wider than conductive trace 268. The fusible portion 266 collapses around conductive trace 268 upon application of pressure and/or reflow with heat, as shown in FIGS. 9c and 9d. The non-fusible portion 264 does not melt or deform during reflow and retains its form and shape. The non-fusible portion 264 can be dimensioned to provide a standoff distance between semiconductor die 224 and substrate 270. A finish such as Cu OSP can be applied to substrate 270. Conductive traces 268 are applicable to the interconnect structure, as described in FIGS. 4-6.

During a reflow process, a large number (e.g., thousands) of composite bumps 262 on semiconductor die 224 are attached to interconnect sites on conductive trace 268 of substrate 270. Some of the bumps 262 may fail to properly connect to conductive trace 268, particularly if semiconductor die 224 is warped. Recall that composite bump 262 is wider than conductive trace 268. With a proper force applied, the fusible portion 266 deforms or extrudes around the top surface and side surface of conductive trace 268 and mechanically locks composite bump 262 to the conductive trace. The mechanical interlock is formed by nature of the fusible portion 266 being softer and more compliant than conductive trace 268 and therefore deforming around the top surface and side surface of the conductive trace for greater contact area. The wedge-shape of composite bump 262 increases contact area between the bump and conductive trace, e.g., along the longer aspect of FIGS. 9b and 9d, without sacrificing pitch along the shorter aspect of FIGS. 9a and 9c. The mechanical interlock between composite bump 262 and conductive trace 268 holds the bump to the conductive trace during reflow, i.e., the bump and conductive trace do not lose contact. Accordingly, composite bump 262 mating to conductive trace 268 reduces bump interconnect failures.

FIGS. 10a-10d show a BOL embodiment of semiconductor die 224 with bump material 274 formed over contact pads 232, similar to FIG. 7c. In FIG. 10a, bump material 274 is generally compliant and undergoes plastic deformation greater than about 25 μm under a force equivalent to a vertical load of about 200 grams. Bump material 274 is wider than conductive trace 276 on substrate 278. A plurality of asperities 280 is formed on conductive trace 276 with a height on the order about 1-25 μm.

Semiconductor die 224 is positioned so that bump material 274 is aligned with an interconnect site on conductive trace 276. Alternatively, bump material 274 can be aligned with a conductive pad or other interconnect site formed on substrate 278. A pressure or force F is applied to back surface 228 of semiconductor die 224 to press bump material 274 onto conductive trace 276 and asperities 280, as shown in FIG. 10b. The force F can be applied with an elevated temperature. Due to the compliant nature of bump material 274, the bump material deforms or extrudes around the top surface and side surface of conductive trace 276 and asperities 280. In particular, the application of pressure causes bump material 274 to undergo a plastic deformation and cover the top surface and side surface of conductive trace 276 and asperities 280. The plastic flow of bump material 274 creates macroscopic mechanical interlocking points between the bump material and the top surface and side surface of conductive trace 276 and asperities 280. The plastic flow of bump material 274 occurs around the top surface and side surface of conductive trace 276 and asperities 280, but does not extend excessively onto substrate 278, which could cause electrical shorting and other defects. The mechanical interlock between the bump material and the top surface and side surface of conductive trace 276 and asperities 280 provides a robust connection with greater contact area between the respective surfaces, without significantly increasing the bonding force. The mechanical interlock between the bump material and the top surface and side surface of conductive trace 276 and asperities 280 also reduces lateral die shifting during subsequent manufacturing processes, such as encapsulation.

FIG. 10c shows another BOL embodiment with bump material 274 narrower than conductive trace 276. A pressure or force F is applied to back surface 228 of semiconductor die 224 to press bump material 274 onto conductive trace 276 and asperities 280. The force F can be applied with an elevated temperature. Due to the compliant nature of bump material 274, the bump material deforms or extrudes over the top surface of conductive trace 276 and asperities 280. In particular, the application of pressure causes bump material 274 to undergo a plastic deformation and cover the top surface of conductive trace 276 and asperities 280. The plastic flow of bump material 274 creates macroscopic mechanical interlocking points between the bump material and the top surface of conductive trace 276 and asperities 280. The mechanical interlock between the bump material and the top surface of conductive trace 276 and asperities 280 provides a robust connection with greater contact area between the respective surfaces, without significantly increasing the bonding force. The mechanical interlock between the bump material and the top surface of conductive trace 276 and asperities 280 also reduces lateral die shifting during subsequent manufacturing processes, such as encapsulation.

FIG. 10d shows another BOL embodiment with bump material 274 formed over an edge of conductive trace 276, i.e., part of the bump material is over the conductive trace and part of the bump material is not over the conductive trace. A pressure or force F is applied to back surface 228 of semiconductor die 224 to press bump material 274 onto conductive trace 276 and asperities 280. The force F can be applied with an elevated temperature. Due to the compliant nature of bump material 274, the bump material deforms or extrudes over the top surface and side surface of conductive trace 276 and asperities 280. In particular, the application of pressure causes bump material 274 to undergo a plastic deformation and cover the top surface and side surface of conductive trace 276 and asperities 280. The plastic flow of bump material 274 creates macroscopic mechanical interlocking between the bump material and the top surface and side surface of conductive trace 276 and asperities 280. The mechanical interlock between the bump material and the top surface and side surface of conductive trace 276 and asperities 280 provides a robust connection with greater contact area between the respective surfaces, without significantly increasing the bonding force. The mechanical interlock between the bump material and the top surface and side surface of conductive trace 276 and asperities 280 also reduces lateral die shifting during subsequent manufacturing processes, such as encapsulation.

FIGS. 11a-11c show a BOL embodiment of semiconductor die 224 with bump material 284 formed over contact pads 232, similar to FIG. 7c. A tip 286 extends from the body of bump material 284 as a stepped bump with tip 286 narrower than the body of bump material 284, as shown in FIG. 11a. Semiconductor die 224 is positioned so that bump material 284 is aligned with an interconnect site on conductive trace 288 on substrate 290. More specifically, tip 286 is centered over an interconnect site on conductive trace 288. Alternatively, bump material 284 and tip 286 can be aligned with a conductive pad or other interconnect site formed on substrate 290. Bump material 284 is wider than conductive trace 288 on substrate 290.

Conductive trace 288 is generally compliant and undergoes plastic deformation greater than about 25 μm under a force equivalent to a vertical load of about 200 grams. A pressure or force F is applied to back surface 228 of semiconductor die 224 to press tip 284 onto conductive trace 288. The force F can be applied with an elevated temperature. Due to the compliant nature of conductive trace 288, the conductive trace deforms around tip 286, as shown in FIG. 11b. In particular, the application of pressure causes conductive trace 288 to undergo a plastic deformation and cover the top surface and side surface of tip 286.

FIG. 11c shows another BOL embodiment with rounded bump material 294 formed over contact pads 232. A tip 296 extends from the body of bump material 294 to form a stud bump with the tip narrower than the body of bump material 294. Semiconductor die 224 is positioned so that bump material 294 is aligned with an interconnect site on conductive trace 298 on substrate 300. More specifically, tip 296 is centered over an interconnect site on conductive trace 298. Alternatively, bump material 294 and tip 296 can be aligned with a conductive pad or other interconnect site formed on substrate 300. Bump material 294 is wider than conductive trace 298 on substrate 300.

Conductive trace 298 is generally compliant and undergoes plastic deformation greater than about 25 μm under a force equivalent to a vertical load of about 200 grams. A pressure or force F is applied to back surface 228 of semiconductor die 224 to press tip 296 onto conductive trace 298. The force F can be applied with an elevated temperature. Due to the compliant nature of conductive trace 298, the conductive trace deforms around tip 296. In particular, the application of pressure causes conductive trace 298 to undergo a plastic deformation and cover the top surface and side surface of tip 296.

The conductive traces described in FIGS. 8a-8g, 9a-9d, and 10a-10d can also be compliant material as described in FIGS. 11a-11c.

FIGS. 12a-12b show a BOL embodiment of semiconductor die 224 with bump material 304 formed over contact pads 232, similar to FIG. 7c. Bump material 304 is generally compliant and undergoes plastic deformation greater than about 25 μm under a force equivalent to a vertical load of about 200 grams. Bump material 304 is wider than conductive trace 306 on substrate 308. A conductive via 310 is formed through conductive trace 306 with an opening 312 and conductive sidewalls 314, as shown in FIG. 12a. Conductive traces 306 are applicable to the interconnect structure, as described in FIGS. 4-6.

Semiconductor die 224 is positioned so that bump material 304 is aligned with an interconnect site on conductive trace 306, see FIGS. 16a-16g. Alternatively, bump material 304 can be aligned with a conductive pad or other interconnect site formed on substrate 308. A pressure or force F is applied to back surface 228 of semiconductor die 224 to press bump material 304 onto conductive trace 306 and into opening 312 of conductive via 310. The force F can be applied with an elevated temperature. Due to the compliant nature of bump material 304, the bump material deforms or extrudes around the top surface and side surface of conductive trace 306 and into opening 312 of conductive vias 310, as shown in FIG. 12b. In particular, the application of pressure causes bump material 304 to undergo a plastic deformation and cover the top surface and side surface of conductive trace 306 and into opening 312 of conductive via 310. Bump material 304 is thus electrically connected to conductive trace 306 and conductive sidewalls 314 for z-direction vertical interconnect through substrate 308. The plastic flow of bump material 304 creates a mechanical interlock between the bump material and the top surface and side surface of conductive trace 306 and opening 312 of conductive via 310. The mechanical interlock between the bump material and the top surface and side surface of conductive trace 306 and opening 312 of conductive via 310 provides a robust connection with greater contact area between the respective surfaces, without significantly increasing the bonding force. The mechanical interlock between the bump material and the top surface and side surface of conductive trace 306 and opening 312 of conductive via 310 also reduces lateral die shifting during subsequent manufacturing processes, such as encapsulation. Since conductive via 310 is formed within the interconnect site with bump material 304, the total substrate interconnect area is reduced.

In the BOL embodiments of FIGS. 8a-8g, 9a-9d, 10a-10d, 11a-11c, and 12a-12b, by making the conductive trace narrower than the interconnect structure, the conductive trace pitch can be reduced to increase routing density and I/O count. The narrower conductive trace reduces the force F needed to deform the interconnect structure around the conductive trace. For example, the requisite force F may be 30-50% of the force needed to deform a bump against a conductive trace or pad that is wider than the bump. The lower compressive force F is useful for fine pitch interconnect and small die to maintain coplanarity within a specified tolerance and achieve uniform z-direction deformation and high reliability interconnect union. In addition, deforming the interconnect structure around the conductive trace mechanically locks the bump to the trace to prevent die shifting or die floating during reflow.

FIGS. 13a-13c show a mold underfill (MUF) process to deposit encapsulant around the bumps between the semiconductor die and substrate. FIG. 13a shows semiconductor die 224 mounted to substrate 254 using bump material 234 from FIG. 8b and placed between upper mold support 316 and lower mold support 318 of chase mold 320. The other semiconductor die and substrate combinations from FIGS. 8a-8g, 9a-9d, 10a-10d, 11a-11c, and 12a-12b can be placed between upper mold support 316 and lower mold support 318 of chase mold 320. The upper mold support 316 includes compressible releasing film 322.

In FIG. 13b, upper mold support 316 and lower mold support 318 are brought together to enclose semiconductor die 224 and substrate 254 with an open space over the substrate and between the semiconductor die and substrate. Compressible releasing film 322 conforms to back surface 228 and side surface of semiconductor die 224 to block formation of encapsulant on these surfaces. An encapsulant 324 in a liquid state is injected into one side of chase mold 320 with nozzle 326 while an optional vacuum assist 328 draws pressure from the opposite side to uniformly fill the open space over substrate 254 and the open space between semiconductor die 224 and substrate 254 with the encapsulant. Encapsulant 324 can be polymer composite material, such as epoxy resin with filler, epoxy acrylate with filler, or polymer with proper filler. Encapsulant 324 is non-conductive and environmentally protects the semiconductor device from external elements and contaminants. Compressible material 322 prevents encapsulant 324 from flowing over back surface 228 and around the side surface of semiconductor die 224. Encapsulant 324 is cured. The back surface 228 and side surface of semiconductor die 224 remain exposed from encapsulant 324.

FIG. 13c shows an embodiment of MUF and mold overfill (MOF), i.e., without compressible material 322. Semiconductor die 224 and substrate 254 are placed between upper mold support 316 and lower mold support 318 of chase mold 320. The upper mold support 316 and lower mold support 318 are brought together to enclose semiconductor die 224 and substrate 254 with an open space over the substrate, around the semiconductor die, and between the semiconductor die and substrate. Encapsulant 324 in a liquid state is injected into one side of chase mold 320 with nozzle 326 while an optional vacuum assist 328 draws pressure from the opposite side to uniformly fill the open space around semiconductor die 224 and over substrate 254 and the open space between semiconductor die 224 and substrate 254 with the encapsulant. Encapsulant 324 is cured.

FIG. 14 shows another embodiment of depositing encapsulant around semiconductor die 224 and in the gap between semiconductor die 224 and substrate 254. Semiconductor die 224 and substrate 254 are enclosed by dam 330. Encapsulant 332 is dispensed from nozzles 334 in a liquid state into dam 330 to fill the open space over substrate 254 and the open space between semiconductor die 224 and substrate 254. The volume of encapsulant 332 dispensed from nozzles 334 is controlled to fill dam 330 without covering back surface 228 or the side surface of semiconductor die 224. Encapsulant 332 is cured.

FIG. 15 shows semiconductor die 224 and substrate 254 after the MUF process from FIGS. 13a, 13c, and 14. Encapsulant 324 is uniformly distributed over substrate 254 and around bump material 234 between semiconductor die 224 and substrate 254.

FIGS. 16a-16g show top views of various conductive trace layouts on substrate or PCB 340. In FIG. 16a, conductive trace 342 is a straight conductor with integrated bump pad or interconnect site 344 formed on substrate 340. The sides of substrate bump pad 344 can be co-linear with conductive trace 342. In the prior art, a solder registration opening (SRO) is typically formed over the interconnect site to contain the bump material during reflow. The SRO increases interconnect pitch and reduces I/O count. In contrast, masking layer 346 can be formed over a portion of substrate 340; however, the masking layer is not formed around substrate bump pad 344 of conductive trace 342. That is, the portion of conductive trace 342 designed to mate with the bump material is devoid of any SRO of masking layer 346 that would have been used for bump containment during reflow.

Semiconductor die 224 is placed over substrate 340 and the bump material is aligned with substrate bump pads 344. The bump material is electrically and metallurgically connected to substrate bump pads 344 by bringing the bump material in physical contact with the bump pad and then reflowing the bump material under a reflow temperature.

In another embodiment, an electrically conductive bump material is deposited over substrate bump pad 344 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution. For example, the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder. The bump material is bonded to substrate bump pad 344 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form bump or interconnect 348, as shown in FIG. 16b. In some applications, bump 348 is reflowed a second time to improve electrical contact to substrate bump pad 344. The bump material around the narrow substrate bump pad 344 maintains die placement during reflow.

In high routing density applications, it is desirable to minimize escape pitch of conductive traces 342. The escape pitch between conductive traces 342 can be reduced by eliminating the masking layer for the purpose of reflow containment, i.e., by reflowing the bump material without a masking layer. Since no SRO is formed around die bump pad 232 or substrate bump pad 344, conductive traces 342 can be formed with a finer pitch, i.e., conductive trace 342 can be disposed closer together or to nearby structures. With no SRO around substrate bump pad 344, the pitch between conductive traces 342 is given as P=D+PLT+W/2, wherein D is the base diameter of bump 348, PLT is die placement tolerance, and W is the width of conductive trace 342. In one embodiment, given a bump base diameter of 100 μm, PLT of 10 μm, and trace line width of 30 μm, the minimum escape pitch of conductive trace 342 is 125 μm. The mask-less bump formation eliminates the need to account for the ligament spacing of masking material between adjacent openings, solder mask registration tolerance (SRT), and minimum resolvable SRO, as found in the prior art.

When the bump material is reflowed without a masking layer to metallurgically and electrically connect die bump pad 232 to substrate bump pad 344, the wetting and surface tension causes the bump material to maintain self-confinement and be retained within the space between die bump pad 232 and substrate bump pad 344 and portion of substrate 340 immediately adjacent to conductive trace 342 substantially within the footprint of the bump pads.

To achieve the desired self-confinement property, the bump material can be immersed in a flux solution prior to placement on die bump pad 232 or substrate bump pad 344 to selectively render the region contacted by the bump material more wettable than the surrounding area of conductive traces 342. The molten bump material remains confined substantially within the area defined by the bump pads due to the wettable properties of the flux solution. The bump material does not run-out to the less wettable areas. A thin oxide layer or other insulating layer can be formed over areas where bump material is not intended to make the area less wettable. Hence, masking layer 340 is not needed around die bump pad 232 or substrate bump pad 344.

FIG. 16c shows another embodiment of parallel conductive traces 352 as a straight conductor with integrated rectangular bump pad or interconnect site 354 formed on substrate 350. In this case, substrate bump pad 354 is wider than conductive trace 352, but less than the width of the mating bump. The sides of substrate bump pad 354 can be parallel to conductive trace 352. Masking layer 356 can be formed over a portion of substrate 350; however, the masking layer is not formed around substrate bump pad 354 of conductive trace 352. That is, the portion of conductive trace 352 designed to mate with the bump material is devoid of any SRO of masking layer 356 that would have been used for bump containment during reflow.

FIG. 16d shows another embodiment of conductive traces 360 and 362 arranged in an array of multiple rows with offset integrated bump pad or interconnect site 364 formed on substrate 366 for maximum interconnect escape routing density and capacity. Alternate conductive traces 360 and 362 include an elbow for routing to bump pads 364. The sides of each substrate bump pad 364 are co-linear with conductive traces 360 and 362. Masking layer 368 can be formed over a portion of substrate 366; however, masking layer 368 is not formed around substrate bump pad 364 of conductive traces 360 and 362. That is, the portion of conductive trace 360 and 362 designed to mate with the bump material is devoid of any SRO of masking layer 368 that would have been used for bump containment during reflow.

FIG. 16e shows another embodiment of conductive traces 370 and 372 arranged in an array of multiple rows with offset integrated bump pad or interconnect site 374 formed on substrate 376 for maximum interconnect escape routing density and capacity. Alternate conductive traces 370 and 372 include an elbow for routing to bump pads 374. In this case, substrate bump pad 374 is rounded and wider than conductive traces 370 and 372, but less than the width of the mating interconnect bump material. Masking layer 378 can be formed over a portion of substrate 376; however, masking layer 378 is not formed around substrate bump pad 374 of conductive traces 370 and 372. That is, the portion of conductive trace 370 and 372 designed to mate with the bump material is devoid of any SRO of masking layer 378 that would have been used for bump containment during reflow.

FIG. 16f shows another embodiment of conductive traces 380 and 382 arranged in an array of multiple rows with offset integrated bump pad or interconnect site 384 formed on substrate 386 for maximum interconnect escape routing density and capacity. Alternate conductive traces 380 and 382 include an elbow for routing to bump pads 384. In this case, substrate bump pad 384 is rectangular and wider than conductive traces 380 and 382, but less than the width of the mating interconnect bump material. Masking layer 388 can be formed over a portion of substrate 386; however, masking layer 388 is not formed around substrate bump pad 384 of conductive traces 380 and 382. That is, the portion of conductive trace 380 and 382 designed to mate with the bump material is devoid of any SRO of masking layer 388 that would have been used for bump containment during reflow.

As one example of the interconnect process, semiconductor die 224 is placed over substrate 366 and bump material 234 is aligned with substrate bump pads 364 from FIG. 16d. Bump material 234 is electrically and metallurgically connected to substrate bump pad 364 by pressing the bump material or by bringing the bump material in physical contact with the bump pad and then reflowing the bump material under a reflow temperature, as described for FIGS. 8a-8g, 9a-9d, 10a-10d, 11a-11c, and 12a-12b.

In another embodiment, an electrically conductive bump material is deposited over substrate bump pad 364 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution. For example, the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder. The bump material is bonded to substrate bump pad 364 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form bump or interconnect 390, as shown in FIG. 16g. In some applications, bump 390 is reflowed a second time to improve electrical contact to substrate bump pad 364. The bump material around the narrow substrate bump pad 364 maintains die placement during reflow. Bump material 234 or bumps 390 can also be formed on substrate bump pad configurations of FIGS. 16a-16g.

In high routing density applications, it is desirable to minimize escape pitch of conductive traces 360 and 362 or other conductive trace configurations of FIGS. 16a-16g. The escape pitch between conductive traces 360 and 362 can be reduced by eliminating the masking layer for the purpose of reflow containment, i.e., by reflowing the bump material without a masking layer. Since no SRO is formed around die bump pad 232 or substrate bump pad 364, conductive traces 360 and 362 can be formed with a finer pitch, i.e., conductive traces 360 and 362 can be disposed closer together or to nearby structures. With no SRO around substrate bump pad 364, the pitch between conductive traces 360 and 362 is given as P=D/2+PLT+W/2, wherein D is the base diameter of bump 390, PLT is die placement tolerance, and W is the width of conductive traces 360 and 362. In one embodiment, given a bump base diameter of 100 μm, PLT of 10 μm, and trace line width of 30 μm, the minimum escape pitch of conductive traces 360 and 362 is 125 μm. The mask-less bump formation eliminates the need to account for the ligament spacing of masking material between adjacent openings, SRT, and minimum resolvable SRO, as found in the prior art.

When the bump material is reflowed without a masking layer to metallurgically and electrically connect die bump pad 232 to substrate bump pad 364, the wetting and surface tension causes the bump material to maintain self-confinement and be retained within the space between die bump pad 232 and substrate bump pad 364 and portion of substrate 366 immediately adjacent to conductive traces 360 and 362 substantially within the footprint of the bump pads.

To achieve the desired self-confinement property, the bump material can be immersed in a flux solution prior to placement on die bump pad 232 or substrate bump pad 364 to selectively render the region contacted by the bump material more wettable than the surrounding area of conductive traces 360 and 362. The molten bump material remains confined substantially within the area defined by the bump pads due to the wettable properties of the flux solution. The bump material does not run-out to the less wettable areas. A thin oxide layer or other insulating layer can be formed over areas where bump material is not intended to make the area less wettable. Hence, masking layer 368 is not needed around die bump pad 232 or substrate bump pad 364.

In FIG. 17a, masking layer 392 is deposited over a portion of conductive traces 394 and 396. However, masking layer 392 is not formed over integrated bump pads 398. Consequently, there is no SRO for each bump pad 398 on substrate 400. A non-wettable masking patch 402 is formed on substrate 400 interstitially within the array of integrated bump pads 398, i.e., between adjacent bump pads. The masking patch 402 can also be formed on semiconductor die 224 interstitially within the array of die bump pads 398. More generally, the masking patch is formed in close proximity to the integrated bump pads in any arrangement to prevent runout to less wettable areas.

Semiconductor die 224 is placed over substrate 400 and the bump material is aligned with substrate bump pads 398. The bump material is electrically and metallurgically connected to substrate bump pad 398 by pressing the bump material or by bringing the bump material in physical contact with the bump pad and then reflowing the bump material under a reflow temperature, as described for FIGS. 8a-8g, 9a-9d, 10a-10d, 11a-11c, and 12a-12b.

In another embodiment, an electrically conductive bump material is deposited over die integrated bump pads 398 using an evaporation, electrolytic plating, electroless plating, ball drop, or screen printing process. The bump material can be Al, Sn, Ni, Au, Ag, Pb, Bi, Cu, solder, and combinations thereof, with an optional flux solution. For example, the bump material can be eutectic Sn/Pb, high-lead solder, or lead-free solder. The bump material is bonded to integrated bump pads 398 using a suitable attachment or bonding process. In one embodiment, the bump material is reflowed by heating the material above its melting point to form spherical balls or bumps 404, as shown in FIG. 17b. In some applications, bumps 404 are reflowed a second time to improve electrical contact to integrated bump pads 398. The bumps can also be compression bonded to integrated bump pads 398. Bumps 404 represent one type of interconnect structure that can be formed over integrated bump pads 398. The interconnect structure can also use stud bump, micro bump, or other electrical interconnect.

In high routing density applications, it is desirable to minimize escape pitch. In order to reduce the pitch between conductive traces 394 and 396, the bump material is reflowed without a masking layer around integrated bump pads 398. The escape pitch between conductive traces 394 and 396 can be reduced by eliminating the masking layer and associated SROs around the integrated bump pads for the purpose of reflow containment, i.e., by reflowing the bump material without a masking layer. Masking layer 392 can be formed over a portion of conductive traces 394 and 396 and substrate 400 away from integrated bump pads 398; however, masking layer 392 is not formed around integrated bump pads 398. That is, the portion of conductive trace 394 and 396 designed to mate with the bump material is devoid of any SRO of masking layer 392 that would have been used for bump containment during reflow.

In addition, masking patch 402 is formed on substrate 400 interstitially within the array of integrated bump pads 398. Masking patch 402 is non-wettable material. Masking patch 402 can be the same material as masking layer 392 and applied during the same processing step, or a different material during a different processing step. Masking patch 402 can be formed by selective oxidation, plating, or other treatment of the portion of the trace or pad within the array of integrated bump pads 398. Masking patch 402 confines bump material flow to integrated bump pads 398 and prevents leaching of conductive bump material to adjacent structures.

When the bump material is reflowed with masking patch 402 interstitially disposed within the array of integrated bump pads 398, the wetting and surface tension causes the bump material to be confined and retained within the space between die bump pads 232 and integrated bump pads 398 and portion of substrate 400 immediately adjacent to conductive traces 394 and 396 and substantially within the footprint of the integrated bump pads 398.

To achieve the desired confinement property, the bump material can be immersed in a flux solution prior to placement on die bump pads 232 or integrated bump pads 398 to selectively render the region contacted by the bump material more wettable than the surrounding area of conductive traces 394 and 396. The molten bump material remains confined substantially within the area defined by the bump pads due to the wettable properties of the flux solution. The bump material does not run-out to the less wettable areas. A thin oxide layer or other insulating layer can be formed over areas where bump material is not intended to make the area less wettable. Hence, masking layer 392 is not needed around die bump pads 232 or integrated bump pads 398.

Since no SRO is formed around die bump pads 232 or integrated bump pads 398, conductive traces 394 and 396 can be formed with a finer pitch, i.e., the conductive traces can be disposed closer to adjacent structures without making contact and forming electrical shorts. Assuming the same solder registration design rule, the pitch between conductive traces 394 and 396 is given as P=(1.1 D+W)/2, where D is the base diameter of bump 404 and W is the width of conductive traces 394 and 396. In one embodiment, given a bump diameter of 100 μm and trace line width of 20 μm, the minimum escape pitch of conductive traces 394 and 396 is 65 μm. The bump formation eliminates the need to account for the ligament spacing of masking material between adjacent openings and minimum resolvable SRO, as found in the prior art.

FIG. 18 shows package-on-package (PoP) 405 with semiconductor die 406 stacked over semiconductor die 408 using die attach adhesive 410. Semiconductor die 406 and 408 each have an active surface containing analog or digital circuits implemented as active devices, passive devices, conductive layers, and dielectric layers formed within the die and electrically interconnected according to the electrical design and function of the die. For example, the circuit can include one or more transistors, diodes, and other circuit elements formed within the active surface to implement analog circuits or digital circuits, such as DSP, ASIC, memory, or other signal processing circuit. Semiconductor die 406 and 408 can also contain IPDs, such as inductors, capacitors, and resistors, for RF signal processing.

Semiconductor die 408 is mounted to conductive traces 412 formed on substrate 414 using bump material 416 formed on contact pads 418, using any of the embodiments from FIGS. 8a-8g, 9a-9d, 10a-10d, 11a-11c, and 12a-12b. Conductive traces 412 are applicable to the interconnect structure, as described in FIGS. 4-6. Semiconductor die 406 is electrically connected to contact pads 420 formed on substrate 414 using bond wires 422. The opposite end of bond wire 422 is bonded to contact pads 424 on semiconductor die 406.

Masking layer 426 is formed over substrate 414 and opened beyond the footprint of semiconductor die 406. While masking layer 426 does not confine bump material 416 to conductive traces 412 during reflow, the open mask can operate as a dam to prevent encapsulant 428 from migrating to contact pads 420 or bond wires 422 during MUF. Encapsulant 428 is deposited between semiconductor die 408 and substrate 414, similar to FIGS. 13a-13c. Masking layer 426 blocks MUF encapsulant 428 from reaching contact pads 420 and bond wires 422, which could cause a defect. Masking layer 426 allows a larger semiconductor die to be placed on a given substrate without risk of encapsulant 428 bleeding onto contact pads 420.

While one or more embodiments of the present invention have been illustrated in detail, the skilled artisan will appreciate that modifications and adaptations to those embodiments may be made without departing from the scope of the present invention as set forth in the following claims.

Claims (34)

What is claimed:
1. A method of making a semiconductor device, comprising:
providing a semiconductor die including a plurality of elongated bumps formed over a metallization on a surface of the semiconductor die, wherein a length of the elongated bumps parallel to the surface of the semiconductor die is greater than a width of the elongated bumps parallel to the surface of the semiconductor die;
providing a substrate;
forming a plurality of conductive traces over the substrate and radially oriented toward a geometric center of the semiconductor die;
bonding the elongated bumps to the interconnect site of the conductive traces so that with the length of the elongated bumps include a width across taken in a direction along the conductive traces less than a length along greater than the width of the elongated bumps taken in a direction across the conductive traces; and
depositing an encapsulant around the elongated bumps between the semiconductor die and substrate.
2. The method of claim 1, wherein a width of the bump elongated bumps across a surface of the metallization on the semiconductor die is 1.5 to 4.0 times the width of the bump elongated bumps across the conductive traces.
3. The method of claim 1, wherein the elongated bumps include a non-collapsible portion and collapsible portion.
4. The method of claim 3, wherein the non-collapsible portion of the elongated bumps includes gold, copper, nickel, lead solder, or lead-tin alloy and the collapsible portion of the elongated bumps includes tin, lead-free alloy, tin-silver alloy, tin-silver-copper alloy, tin-silver-indium alloy, eutectic solder, or tin alloys including silver, copper, or lead.
5. The method of claim 1, wherein the substrate is non-wettable along portions of the traces to limit flow of the elongated bumps.
6. A method of making a semiconductor device, comprising:
providing a semiconductor die including a plurality of elongated interconnect structures on a surface of the semiconductor die, wherein a length of the elongated interconnect structures parallel to the surface of the semiconductor die is greater than a width of the elongated interconnect structures parallel to the surface of the semiconductor die;
providing a substrate;
forming a plurality of conductive traces over the substrate and radially oriented toward a geometric center of the semiconductor die;
forming a plurality ofbonding the semiconductor die to the substrate with the elongated interconnect structures between the semiconductor die andcontacting the conductive traces so that the interconnect structures include a length along the conductive tracesand the length of the elongated interconnect structures taken in a direction along the conductive traces greater than the width of the elongated interconnect structures taken in a direction across the conductive traces; and
depositing an encapsulant between the semiconductor die and substrate.
7. The method of claim 6, wherein a width of the elongated interconnect structures across a surface of the semiconductor die is 1.5 to 4.0 times a width of the elongated interconnect structures across the conductive traces.
8. The method of claim 6, wherein the elongated interconnect structures include a non-collapsible portion and collapsible portion.
9. The method of claim 8, wherein the non-collapsible portion of the elongated interconnect structures includes gold, copper, nickel, lead solder, or lead-tin alloy and the collapsible portion of the elongated interconnect structures includes tin, lead-free alloy, tin-silver alloy, tin-silver-copper alloy, tin-silver-indium alloy, eutectic solder, or tin alloys comprising copper or lead.
10. The method of claim 6, wherein the elongated interconnect structures cover a top surface and side surface of the conductive traces.
11. The method of claim 6, wherein the elongated interconnect structures diffuse strain away from the semiconductor die.
12. The method of claim 6, wherein the interconnect structures include a width across the conductive traces less than the length along the conductive traces.
13. A method of making a semiconductor device, comprising:
providing a semiconductor die including a plurality of interconnect structures on a surface of the semiconductor die, wherein a length of the interconnect structures parallel to the surface of the semiconductor die is greater than a width of the interconnect structures parallel to the surface of the semiconductor die;
providing a substrate;
forming a plurality of conductive traces over the substrate and oriented toward a geometric center of the semiconductor die; and
forming adisposing the plurality of interconnect structures between the semiconductor die and the conductive traces and in contact with the conductive traces, wherein the length of the interconnect structures taken in a direction along the conductive traces is greater than the width of the interconnect structures taken in a direction across the conductive traces.
14. The method of claim 13, further including depositing an encapsulant or underfill material between the semiconductor die and substrate using a mold underfill (MUF) process.
15. The method of claim 13, wherein the interconnect structures include a width across the conductive traces less than a length along the conductive traces.
16. The method of claim 13, wherein the interconnect structures include a non-collapsible portion and collapsible portion.
17. The method of claim 13, wherein the interconnect structures include a conductive pillar and bump formed over the conductive pillar.
18. The method of claim 13, wherein a width of the interconnect structures across a surface of the semiconductor die is 1.5 to 4.0 times a the width of the interconnect structures across the conductive traces.
19. A semiconductor device, comprising:
a semiconductor die including a plurality of interconnect structures formed on a surface of the semiconductor die, wherein a length of the interconnect structures parallel to the surface of the semiconductor die is greater than a width of the interconnect structures parallel to the surface of the semiconductor die;
a substrate including a plurality of conductive traces formed over the substrate;
a, wherein the plurality of interconnect structures is formed between the semiconductor die and the conductive traces and including a length along the conductive traces oriented toward a geometric center of the semiconductor die, and the length of the interconnect structures taken in a direction along the conductive traces is greater than the width of the interconnect structures taken in a direction across the conductive traces; and
an encapsulant deposited between the semiconductor die and substrate.
20. The semiconductor device of claim 19, wherein the interconnect structures include a width across the conductive traces less than a length along the conductive traces.
21. The semiconductor device of claim 19, wherein the interconnect structures include a non-collapsible portion and collapsible portion.
22. The semiconductor device of claim 21, wherein the non-collapsible portion of the interconnect structures includes gold, copper, nickel, lead solder, or lead-tin alloy and the collapsible portion of the interconnect structures includes tin, lead-free alloy, tin-silver alloy, tin-silver-copper alloy, tin-silver-indium alloy, eutectic solder, or tin alloys comprising copper or lead.
23. The semiconductor device of claim 19, wherein the interconnect structures include a conductive pillar and bump disposed over the conductive pillar.
24. The semiconductor device of claim 19, wherein a width of the interconnect structures across a surface of the semiconductor die is 1.5 to 4.0 times a the width of the interconnect structures across the conductive traces.
25. A semiconductor device, comprising:
a substrate;
a semiconductor component disposed over the substrate; and
a conductive trace formed over the substrate and including an orientation towards a thermally neutral point of the semiconductor component; and
an elongated interconnect structure formed between the semiconductor component and an interconnect site of the conductive trace, wherein a length of the elongated interconnect structure taken in a direction along the interconnect site is greater than a width of the elongated interconnect structure taken in a direction across the interconnect site, and the width of the elongated interconnect structure is tapered along the length of the elongated interconnect structure to be wider proximate to the semiconductor component and narrower proximate to the interconnect site.
26. The semiconductor device of claim 25, wherein the orientation of the conductive trace deviates less than forty five degrees from being directly aligned towards the thermally neutral point of the semiconductor component.
27. The semiconductor device of claim 25, further including an interconnect structure connected between the conductive trace and the semiconductor component.
28. The semiconductor device of claim 27 25, further including a portion of the elongated interconnect structure collapsed around covers a top surface and side surface of the conductive trace.
29. The semiconductor device of claim 27, wherein the interconnect structure further includes a length along the conductive trace and a width across the conductive trace less than the length along the conductive trace.
30. The semiconductor device of claim 27 25, wherein a width of the elongated interconnect structure across a surface of the semiconductor component is 1.5 to 4.0 times a the width of the elongated interconnect structure across the conductive trace.
31. The semiconductor device of claim 1, wherein the width of the elongated bumps is tapered along the length of the elongated bumps to be wider proximate to the semiconductor die and narrower proximate to the conductive traces.
32. The semiconductor device of claim 6, wherein the width of the elongated interconnect structures is tapered along the length of the elongated interconnect structures to be wider proximate to the semiconductor die and narrower proximate to the conductive traces.
33. The semiconductor device of claim 13, wherein the width of the interconnect structures is tapered along the length of the interconnect structures to be wider proximate to the semiconductor die and narrower proximate to the conductive traces.
34. The semiconductor device of claim 19, wherein the width of the interconnect structures is tapered along the length of the interconnect structures to be wider proximate to the semiconductor die and narrower proximate to the conductive traces.
US14/332,155 2003-11-10 2014-07-15 Semiconductor device and method of forming electrical interconnect with stress relief void Active USRE47600E1 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US51886403P true 2003-11-10 2003-11-10
US53391803P true 2003-12-31 2003-12-31
US10/985,654 US7368817B2 (en) 2003-11-10 2004-11-10 Bump-on-lead flip chip interconnection
US66520805P true 2005-03-25 2005-03-25
US59764805P true 2005-12-14 2005-12-14
US11/388,755 US20060216860A1 (en) 2005-03-25 2006-03-24 Flip chip interconnection having narrow interconnection sites on the substrate
US11/640,468 US20070105277A1 (en) 2004-11-10 2006-12-14 Solder joint flip chip interconnection
US11/640,534 US7659633B2 (en) 2004-11-10 2006-12-14 Solder joint flip chip interconnection having relief structure
US12/624,482 US8129841B2 (en) 2006-12-14 2009-11-24 Solder joint flip chip interconnection
US12/643,180 US8216930B2 (en) 2006-12-14 2009-12-21 Solder joint flip chip interconnection having relief structure
US12/963,934 US8350384B2 (en) 2009-11-24 2010-12-09 Semiconductor device and method of forming electrical interconnect with stress relief void
US14/332,155 USRE47600E1 (en) 2003-11-10 2014-07-15 Semiconductor device and method of forming electrical interconnect with stress relief void

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14/332,155 USRE47600E1 (en) 2003-11-10 2014-07-15 Semiconductor device and method of forming electrical interconnect with stress relief void

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/963,934 Reissue US8350384B2 (en) 2006-12-14 2010-12-09 Semiconductor device and method of forming electrical interconnect with stress relief void

Publications (1)

Publication Number Publication Date
USRE47600E1 true USRE47600E1 (en) 2019-09-10

Family

ID=67809776

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/332,155 Active USRE47600E1 (en) 2003-11-10 2014-07-15 Semiconductor device and method of forming electrical interconnect with stress relief void

Country Status (1)

Country Link
US (1) USRE47600E1 (en)

Citations (217)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023687A (en) 1988-06-22 1990-01-09 Sankyo Co Ltd 1-methylcarbapenem derivative
JPH04355933A (en) 1991-02-07 1992-12-09 Nitto Denko Corp Packaging structure of flip chip
US5186383A (en) * 1991-10-02 1993-02-16 Motorola, Inc. Method for forming solder bump interconnections to a solder-plated circuit trace
US5340435A (en) 1990-02-28 1994-08-23 Yatsuo Ito Bonded wafer and method of manufacturing it
US5378859A (en) 1992-03-02 1995-01-03 Casio Computer Co., Ltd. Film wiring board
US5383916A (en) 1991-11-12 1995-01-24 Puretan International, Inc. Support member for a tanning bed or comparable device
US5386624A (en) 1993-07-06 1995-02-07 Motorola, Inc. Method for underencapsulating components on circuit supporting substrates
US5434410A (en) 1992-05-29 1995-07-18 Texas Instruments Incorporated Fine-grain pyroelectric detector material and method
US5473197A (en) * 1993-05-28 1995-12-05 Kabushiki Kaisha Toshiba Semiconductor device having bump electrodes with a trapezoidal cross-section along one axis
US5508561A (en) 1993-11-15 1996-04-16 Nec Corporation Apparatus for forming a double-bump structure used for flip-chip mounting
US5519580A (en) 1994-09-09 1996-05-21 Intel Corporation Method of controlling solder ball size of BGA IC components
JPH0997791A (en) 1995-09-27 1997-04-08 Internatl Business Mach Corp <Ibm> Bump structure, formation of bump, and mounting connector
US5650595A (en) 1995-05-25 1997-07-22 International Business Machines Corporation Electronic module with multiple solder dams in soldermask window
US5710071A (en) 1995-12-04 1998-01-20 Motorola, Inc. Process for underfilling a flip-chip semiconductor device
US5795818A (en) 1996-12-06 1998-08-18 Amkor Technology, Inc. Integrated circuit chip to substrate interconnection and method
JPH10256315A (en) 1997-03-12 1998-09-25 Internatl Business Mach Corp <Ibm> Semiconductor chip bonding pad and its formation
JPH10256307A (en) 1997-03-13 1998-09-25 Ngk Spark Plug Co Ltd Wiring board with semiconductor device, wiring board and manufacture thereof
US5844782A (en) 1994-12-20 1998-12-01 Sony Corporation Printed wiring board and electronic device using same
US5854514A (en) 1996-08-05 1998-12-29 International Buisness Machines Corporation Lead-free interconnection for electronic devices
US5869886A (en) 1996-03-22 1999-02-09 Nec Corporation Flip chip semiconductor mounting structure with electrically conductive resin
US5872399A (en) 1996-04-01 1999-02-16 Anam Semiconductor, Inc. Solder ball land metal structure of ball grid semiconductor package
US5889326A (en) 1996-02-27 1999-03-30 Nec Corporation Structure for bonding semiconductor device to substrate
JPH11145176A (en) 1997-11-11 1999-05-28 Fujitsu Ltd Method for forming solder bump and method for forming preliminary solder
US5915169A (en) 1995-12-22 1999-06-22 Anam Industrial Co., Ltd. Semiconductor chip scale package and method of producing such
JPH11233571A (en) 1998-02-12 1999-08-27 Hitachi Ltd Semiconductor device, underfill material, and thermosetting film material
US5985456A (en) 1997-07-21 1999-11-16 Miguel Albert Capote Carboxyl-containing polyunsaturated fluxing adhesive for attaching integrated circuits
JPH11330162A (en) 1998-05-19 1999-11-30 Sony Corp Mounting of semiconductor chip
JP2000031204A (en) 1998-07-07 2000-01-28 Ricoh Co Ltd Manufacture of semiconductor package
WO2000013228A1 (en) 1998-09-01 2000-03-09 Robert Bosch Gmbh Method for connecting electronic components to a substrate, and a method for checking such a connection
US6049122A (en) 1997-10-16 2000-04-11 Fujitsu Limited Flip chip mounting substrate with resin filled between substrate and semiconductor chip
JP2000133667A (en) 1998-10-22 2000-05-12 Citizen Watch Co Ltd Formation of bump electrode
KR20000062333A (en) 1996-12-24 2000-10-25 가마이 고로 Manufacture of semiconductor device
US6149122A (en) 1996-10-31 2000-11-21 International Business Machines Corporation Method for building interconnect structures by injection molded solder and structures built
JP2000349194A (en) 1999-06-08 2000-12-15 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture
US6201305B1 (en) 2000-06-09 2001-03-13 Amkor Technology, Inc. Making solder ball mounting pads on substrates
US6218630B1 (en) 1997-06-30 2001-04-17 Fuji Photo Film Co., Ltd. Printed circuit board having arrays of lands arranged inside and outside of each other having a reduced terminal-pitch
US6229711B1 (en) 1998-08-31 2001-05-08 Shinko Electric Industries Co., Ltd. Flip-chip mount board and flip-chip mount structure with improved mounting reliability
US6229209B1 (en) 1995-02-23 2001-05-08 Matsushita Electric Industrial Co., Ltd. Chip carrier
US6228466B1 (en) 1997-04-11 2001-05-08 Ibiden Co. Ltd. Printed wiring board and method for manufacturing the same
JP2001156203A (en) 1999-11-24 2001-06-08 Matsushita Electric Works Ltd Printed wiring board for mounting semiconductor chip
US6251704B1 (en) 1997-12-25 2001-06-26 Oki Electric Industry Co., Ltd. Method of manufacturing semiconductor devices having solder bumps with reduced cracks
US6259159B1 (en) 1995-06-07 2001-07-10 International Business Machines Corporation Reflowed solder ball with low melting point metal cap
US20010008309A1 (en) 2000-01-13 2001-07-19 Takahiro Iijima Interconnection substrate having metal columns covered by a resin film, and manufacturing method thereof
US6268568B1 (en) * 1999-05-04 2001-07-31 Anam Semiconductor, Inc. Printed circuit board with oval solder ball lands for BGA semiconductor packages
US20010013423A1 (en) 1996-10-31 2001-08-16 Hormazdyar M. Dalal Flip chip attach on flexible circuit carrier using chip with metallic cap on solder
US6278184B1 (en) 1997-07-09 2001-08-21 International Business Machines Corporation Solder disc connection
US6281450B1 (en) 1997-06-26 2001-08-28 Hitachi Chemical Company, Ltd. Substrate for mounting semiconductor chips
US6281107B1 (en) 1996-03-28 2001-08-28 Nec Corporation Semiconductor device and method for manufacturing the same
US20010018230A1 (en) 1999-05-10 2001-08-30 International Business Machines Corporation Flip chip C4 extension structure and process
US6297560B1 (en) 1996-10-31 2001-10-02 Miguel Albert Capote Semiconductor flip-chip assembly with pre-applied encapsulating layers
US6297564B1 (en) 1998-04-24 2001-10-02 Amerasia International Technology, Inc. Electronic devices employing adhesive interconnections including plated particles
JP2001332583A (en) 2000-05-22 2001-11-30 Fujitsu Ltd Method of mounting semiconductor chip
US6324754B1 (en) 1998-03-25 2001-12-04 Tessera, Inc. Method for fabricating microelectronic assemblies
US6329605B1 (en) 1998-03-26 2001-12-11 Tessera, Inc. Components with conductive solder mask layers
JP2001351945A (en) 2000-06-05 2001-12-21 Matsushita Electric Ind Co Ltd Method of manufacturing semiconductor device
US6335568B1 (en) 1998-10-28 2002-01-01 Seiko Epson Corporation Semiconductor device and method of fabrication thereof, circuit board, and electronic equipment
US6335222B1 (en) 1997-09-18 2002-01-01 Tessera, Inc. Microelectronic packages with solder interconnections
US6335571B1 (en) 1997-07-21 2002-01-01 Miguel Albert Capote Semiconductor flip-chip package and method for the fabrication thereof
US20020033412A1 (en) 2000-04-27 2002-03-21 Francisca Tung Pillar connections for semiconductor chips and method of manufacture
US20020041036A1 (en) 1998-02-03 2002-04-11 Smith John W. Microelectronic assemblies with composite conductive elements
US6383916B1 (en) 1998-12-21 2002-05-07 M. S. Lin Top layers of metal for high performance IC's
US6396707B1 (en) 1999-10-21 2002-05-28 Siliconware Precision Industries Co., Ltd. Ball grid array package
US20020070451A1 (en) 2000-12-08 2002-06-13 Burnette Terry E. Semiconductor device having a ball grid array and method therefor
US6409073B1 (en) 1998-07-15 2002-06-25 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for transfering solder to a device and/or testing the device
US20020100610A1 (en) 2000-11-08 2002-08-01 Masao Yasuda Electronic component and method and structure for mounting semiconductor device
US6441316B1 (en) 1999-08-27 2002-08-27 Mitsubishi Denki Kabushiki Kaisha Printed-circuit board and a semiconductor module, and a manufacturing process of the semiconductor module
US20020121706A1 (en) 2000-12-28 2002-09-05 Matsushita Electic Works, Ltd. Semiconductor-chip mounting substrate and method of manufacturing the same
US6448665B1 (en) 1997-10-15 2002-09-10 Kabushiki Kaisha Toshiba Semiconductor package and manufacturing method thereof
JP2002270732A (en) 2001-03-13 2002-09-20 Sharp Corp Electronic component with underfill material
US6458622B1 (en) 1999-07-06 2002-10-01 Motorola, Inc. Stress compensation composition and semiconductor component formed using the stress compensation composition
US6459622B1 (en) 2001-03-15 2002-10-01 Halo Lsi, Inc. Twin MONOS memory cell usage for wide program
US6462425B1 (en) 1999-04-19 2002-10-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US20020155637A1 (en) 2001-04-20 2002-10-24 Shih-Chang Lee Flip chip interconnected structure and a fabrication method thereof
US6472608B2 (en) 2000-02-18 2002-10-29 Nec Corporation Semiconductor device
US20020179689A1 (en) 2000-04-27 2002-12-05 Advanpack Solutions Pte. Ltd. Pillar connections for semiconductor chips and method of manufacture
US6495397B2 (en) 2001-03-28 2002-12-17 Intel Corporation Fluxless flip chip interconnection
US20020192865A1 (en) 1997-03-27 2002-12-19 Hitachi, Ltd. And Hitachi Hokkai Semiconductor, Ltd. Process for mounting electronic device and semiconductor device
US6510976B2 (en) 2001-05-18 2003-01-28 Advanpack Solutions Pte. Ltd. Method for forming a flip chip semiconductor package
US6518674B2 (en) 1999-09-23 2003-02-11 International Business Machines Corporation Temporary attach article and method for temporary attach of devices to a substrate
US6518678B2 (en) 2000-12-29 2003-02-11 Micron Technology, Inc. Apparatus and method for reducing interposer compression during molding process
US20030049411A1 (en) 2001-09-10 2003-03-13 Delphi Technologies,Inc No-flow underfill material and underfill method for flip chip devices
US20030057551A1 (en) 2001-09-21 2003-03-27 Intel Corporation Copper-containing C4 ball-limiting metallurgy stack for enhanced reliability of packaged structures and method of making same
US20030067084A1 (en) 2000-06-28 2003-04-10 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US6550666B2 (en) 2001-08-21 2003-04-22 Advanpack Solutions Pte Ltd Method for forming a flip chip on leadframe semiconductor package
US6556268B1 (en) 1999-03-31 2003-04-29 Industrial Technology Research Institute Method for forming compact LCD packages and devices formed in which first bonding PCB to LCD panel and second bonding driver chip to PCB
TW530398B (en) 2002-03-19 2003-05-01 Chipmos Technologies Inc Method for manufacturing bumps of chip scale package (CSP)
US6563712B2 (en) * 1999-07-30 2003-05-13 Micron Technology, Inc. Heak sink chip package
US6573610B1 (en) 2000-06-02 2003-06-03 Siliconware Precision Industries Co., Ltd. Substrate of semiconductor package for flip chip package
US20030116866A1 (en) 2001-12-20 2003-06-26 Cher 'khng Victor Tan Semiconductor package having substrate with multi-layer metal bumps
US20030127734A1 (en) 2002-01-07 2003-07-10 Jin-Yuan Lee Cylindrical bonding structure and method of manufacture
US20030127747A1 (en) 2001-12-26 2003-07-10 Ryoichi Kajiwara Semiconductor device and manufacturing method thereof
US6600234B2 (en) 1999-02-03 2003-07-29 Casio Computer Co., Ltd. Mounting structure having columnar electrodes and a sealing film
US6608388B2 (en) 2001-11-01 2003-08-19 Siliconware Precision Industries Co., Ltd. Delamination-preventing substrate and semiconductor package with the same
US20030157792A1 (en) 2002-02-21 2003-08-21 Ho-Ming Tong Bump manufacturing method
WO2003071842A1 (en) 2001-12-26 2003-08-28 Motorola, Inc. Method of mounting a semiconductor die on a substrate without using a solder mask
US6612024B1 (en) * 1999-05-13 2003-09-02 Sony Corporation Method of mounting a device to a mounting substrate
US20030168748A1 (en) 2002-03-08 2003-09-11 Mitsuaki Katagiri Semiconductor device
US20030175146A1 (en) 2002-03-15 2003-09-18 Shing Yeh Lead-free solder alloy and solder reflow process
US20030218249A1 (en) 2002-05-27 2003-11-27 Kwun-Yao Ho High-density integrated circuit package and method for the same
US6661084B1 (en) 2000-05-16 2003-12-09 Sandia Corporation Single level microelectronic device package with an integral window
US6664483B2 (en) 2001-05-15 2003-12-16 Intel Corporation Electronic package with high density interconnect and associated methods
US20040027788A1 (en) 2002-08-08 2004-02-12 Tz-Cheng Chiu Polymer-embedded solder bumps for reliable plastic package attachment
US20040026107A1 (en) 2002-08-08 2004-02-12 Caldwell John L. Electronic devices incorporating electrical interconnections with improved reliability and methods of fabricating same
US20040035909A1 (en) 2002-08-22 2004-02-26 Shing Yeh Lead-based solder alloys containing copper
US20040046264A1 (en) 2002-09-09 2004-03-11 Ho Kwun Yao High density integrated circuit packages and method for the same
US20040046263A1 (en) 2002-07-18 2004-03-11 Harper Timothy V. Integrated circuit package employing flip-chip technology and method of assembly
US6710458B2 (en) 2000-10-13 2004-03-23 Sharp Kabushiki Kaisha Tape for chip on film and semiconductor therewith
US20040056341A1 (en) 2002-09-19 2004-03-25 Kabushiki Kaisha Toshiba Semiconductor device, semiconductor package member, and semiconductor device manufacturing method
US6734557B2 (en) 2002-03-12 2004-05-11 Sharp Kabushiki Kaisha Semiconductor device
US20040105223A1 (en) 2001-03-19 2004-06-03 Ryoichi Okada Method of manufacturing electronic part and electronic part obtained by the method
US20040108135A1 (en) 2002-10-11 2004-06-10 Takeshi Ashida Circuit board, mounting structure of ball grid array, electro-optic device and electronic device
JP2004165283A (en) 2002-11-11 2004-06-10 Fujitsu Ltd Semiconductor device
US20040126927A1 (en) 2001-03-05 2004-07-01 Shih-Hsiung Lin Method of assembling chips
US6768190B2 (en) 2002-01-25 2004-07-27 Advanced Semiconductor Engineering, Inc. Stack type flip-chip package
JP2004221205A (en) 2003-01-10 2004-08-05 Seiko Epson Corp Method for mounting semiconductor chip, semiconductor mounting substrate, electronic device and electronic equipment
US6774497B1 (en) 2003-03-28 2004-08-10 Freescale Semiconductor, Inc. Flip-chip assembly with thin underfill and thick solder mask
US6774474B1 (en) 1999-11-10 2004-08-10 International Business Machines Corporation Partially captured oriented interconnections for BGA packages and a method of forming the interconnections
US6780682B2 (en) 2001-02-27 2004-08-24 Chippac, Inc. Process for precise encapsulation of flip chip interconnects
US6780673B2 (en) 2002-06-12 2004-08-24 Texas Instruments Incorporated Method of forming a semiconductor device package using a plate layer surrounding contact pads
US6787918B1 (en) 2000-06-02 2004-09-07 Siliconware Precision Industries Co., Ltd. Substrate structure of flip chip package
US6798072B2 (en) 2000-11-10 2004-09-28 Hitachi, Ltd. Flip chip assembly structure for semiconductor device and method of assembling therefor
US20040210122A1 (en) 2000-11-01 2004-10-21 Willi Sieburg Electrical sensing and/or signal application device
US6809262B1 (en) 2003-06-03 2004-10-26 Via Technologies, Inc. Flip chip package carrier
US6818545B2 (en) 2001-03-05 2004-11-16 Megic Corporation Low fabrication cost, fine pitch and high reliability solder bump
US6821878B2 (en) 2003-02-27 2004-11-23 Freescale Semiconductor, Inc. Area-array device assembly with pre-applied underfill layers on printed wiring board
US20040232562A1 (en) 2003-05-23 2004-11-25 Texas Instruments Incorporated System and method for increasing bump pad height
US20040232560A1 (en) 2003-05-22 2004-11-25 Chao-Yuan Su Flip chip assembly process and substrate used therewith
US6849944B2 (en) 2003-05-30 2005-02-01 Texas Instruments Incorporated Using a supporting structure to control collapse of a die towards a die pad during a reflow process for coupling the die to the die pad
JP2005028037A (en) 2003-07-11 2005-02-03 Fuji Photo Film Co Ltd Medical image processing device and medical image processing method
US20050046041A1 (en) 2003-08-29 2005-03-03 Advanced Semiconductor Engineering, Inc. Integrated circuit device with embedded passive component by flip-chip connection and method for manufacturing the same
US6870276B1 (en) 2001-12-26 2005-03-22 Micron Technology, Inc. Apparatus for supporting microelectronic substrates
JP2005109187A (en) 2003-09-30 2005-04-21 Tdk Corp Flip chip packaging circuit board and its manufacturing method, and integrated circuit device
US20050082654A1 (en) 2003-09-26 2005-04-21 Tessera, Inc. Structure and self-locating method of making capped chips
US6888255B2 (en) 2003-05-30 2005-05-03 Texas Instruments Incorporated Built-up bump pad structure and method for same
US6927489B1 (en) 1999-03-15 2005-08-09 Renesas Technology Corp. Semiconductor device provided with rewiring layer
US6943058B2 (en) 2003-03-18 2005-09-13 Delphi Technologies, Inc. No-flow underfill process and material therefor
US20050224991A1 (en) 2004-04-08 2005-10-13 Yong-Woon Yeo Bump for semiconductor package, semiconductor package applying the bump, and method for fabricating the semiconductor package
US20050248037A1 (en) 2004-05-06 2005-11-10 Advanced Semiconductor Engineering, Inc. Flip-chip package substrate with a high-density layout
JP2005333166A (en) 2005-08-22 2005-12-02 Fujitsu Ltd Manufacturing method of semiconductor device
US7005743B2 (en) 2000-04-28 2006-02-28 Sony Corporation Semiconductor device using bumps, method for fabricating same, and method for forming bumps
US7005585B2 (en) 2002-09-02 2006-02-28 Murata Manufacturing Co., Ltd. Mounting board and electronic device using same
US7005750B2 (en) 2003-08-01 2006-02-28 Advanced Semiconductor Engineering, Inc. Substrate with reinforced contact pad structure
US7019407B2 (en) * 2002-12-30 2006-03-28 Advanced Semiconductor Engineering, Inc. Flip chip package structure
US7049705B2 (en) 2003-07-15 2006-05-23 Advanced Semiconductor Engineering, Inc. Chip structure
US7057284B2 (en) 2004-08-12 2006-06-06 Texas Instruments Incorporated Fine pitch low-cost flip chip substrate
US7064435B2 (en) 2003-07-29 2006-06-20 Samsung Electronics Co., Ltd. Semiconductor package with improved ball land structure
US20060131758A1 (en) 2004-12-22 2006-06-22 Stmicroelectronics, Inc. Anchored non-solder mask defined ball pad
US7084511B2 (en) * 2001-03-27 2006-08-01 Nec Electronics Corporation Semiconductor device having resin-sealed area on circuit board thereof
US7098407B2 (en) 2003-08-23 2006-08-29 Samsung Electronics Co., Ltd. Non-solder mask defined (NSMD) type wiring substrate for ball grid array (BGA) package and method for manufacturing such a wiring substrate
US20060192294A1 (en) 2004-11-15 2006-08-31 Chippac, Inc Chip scale package having flip chip interconnect on die paddle
US7101781B2 (en) 2002-05-27 2006-09-05 Via Technologies, Inc. Integrated circuit packages without solder mask and method for the same
US7102239B2 (en) 2003-08-18 2006-09-05 Siliconware Precision Industries Co., Ltd. Chip carrier for semiconductor chip
US7102222B2 (en) 2003-10-02 2006-09-05 Siliconware Precision Industries Co., Ltd. Conductive trace structure and semiconductor package having the conductive trace structure
US20060202331A1 (en) 2005-03-09 2006-09-14 Wen-Hung Hu Conductive bump structure of circuit board and method for fabricating the same
US7112524B2 (en) 2003-09-29 2006-09-26 Phoenix Precision Technology Corporation Substrate for pre-soldering material and fabrication method thereof
US20060216860A1 (en) 2005-03-25 2006-09-28 Stats Chippac, Ltd. Flip chip interconnection having narrow interconnection sites on the substrate
US20060255473A1 (en) 2005-05-16 2006-11-16 Stats Chippac Ltd. Flip chip interconnect solder mask
US7164208B2 (en) 2004-01-20 2007-01-16 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for manufacturing the same
US7173828B2 (en) 2003-07-28 2007-02-06 Siliconware Precision Industries Co., Ltd. Ground pad structure for preventing solder extrusion and semiconductor package having the ground pad structure
US7180005B2 (en) * 2002-05-17 2007-02-20 Nec Corporation Printed wiring board
US7183493B2 (en) * 2004-06-30 2007-02-27 Intel Corporation Electronic assembly having multi-material interconnects
US7224073B2 (en) 2004-05-18 2007-05-29 Ultratera Corporation Substrate for solder joint
US20070200234A1 (en) 2006-02-28 2007-08-30 Texas Instruments Incorporated Flip-Chip Device Having Underfill in Controlled Gap
US7271484B2 (en) 2003-09-25 2007-09-18 Infineon Technologies Ag Substrate for producing a soldering connection
US20070259514A1 (en) 2006-05-04 2007-11-08 Ralf Otremba Interconnection Structure, Electronic Component and Method of Manufacturing the Same
US7294457B2 (en) 2001-08-07 2007-11-13 Boehringer Ingelheim (Canada) Ltd. Direct binding assay for identifying inhibitors of HCV polymerase
US7294929B2 (en) 2003-12-30 2007-11-13 Texas Instruments Incorporated Solder ball pad structure
US7294451B2 (en) 2003-11-18 2007-11-13 Texas Instruments Incorporated Raised solder-mask-defined (SMD) solder ball pads for a laminate electronic circuit board
US7317245B1 (en) 2006-04-07 2008-01-08 Amkor Technology, Inc. Method for manufacturing a semiconductor device substrate
US20080088013A1 (en) 2006-10-14 2008-04-17 Advanpack Solutons Pte Ltd. Chip and manufacturing method thereof
US7361990B2 (en) 2005-03-17 2008-04-22 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing cracking of high-lead or lead-free bumps by matching sizes of contact pads and bump pads
US20080093749A1 (en) 2006-10-20 2008-04-24 Texas Instruments Incorporated Partial Solder Mask Defined Pad Design
US7405484B2 (en) 2003-09-30 2008-07-29 Sanyo Electric Co., Ltd. Semiconductor device containing stacked semiconductor chips and manufacturing method thereof
US20080179740A1 (en) 2007-01-25 2008-07-31 Advanced Semiconductor Engineering, Inc. Package substrate, method of fabricating the same and chip package
US20080213941A1 (en) 2003-11-10 2008-09-04 Pendse Rajendra D Bump-on-Lead Flip Chip Interconnection
US7436063B2 (en) 2004-10-04 2008-10-14 Rohm Co., Ltd. Packaging substrate and semiconductor device
US20080277802A1 (en) 2007-05-10 2008-11-13 Siliconware Precision Industries Co., Ltd. Flip-chip semiconductor package and package substrate applicable thereto
US7462942B2 (en) 2003-10-09 2008-12-09 Advanpack Solutions Pte Ltd Die pillar structures and a method of their formation
US7488896B2 (en) 2004-11-04 2009-02-10 Ngk Spark Plug Co., Ltd. Wiring board with semiconductor component
US20090045507A1 (en) 2003-11-10 2009-02-19 Stats Chippac Ltd. Flip chip interconnection
US20090057378A1 (en) 2007-08-27 2009-03-05 Chi-Won Hwang In-situ chip attachment using self-organizing solder
US7521284B2 (en) 2007-03-05 2009-04-21 Texas Instruments Incorporated System and method for increased stand-off height in stud bumping process
US20090108445A1 (en) 2007-10-31 2009-04-30 Advanced Semiconductor Engineering, Inc. Substrate structure and semiconductor package using the same
US20090114436A1 (en) 2007-11-07 2009-05-07 Advanced Semiconductor Engineering, Inc. Substrate structure
US20090146303A1 (en) 2007-09-28 2009-06-11 Tessera, Inc. Flip Chip Interconnection with double post
US20090152716A1 (en) 2007-12-12 2009-06-18 Shinko Electric Industries Co., Ltd. Wiring substrate and electronic component mounting structure
US20090191329A1 (en) 2008-01-30 2009-07-30 Advanced Semiconductor Engineering, Inc. Surface treatment process for circuit board
US20090288866A1 (en) 2006-01-16 2009-11-26 Siliconware Precision Industries Co., Ltd. Electronic carrier board
US20090308647A1 (en) 2008-06-11 2009-12-17 Advanced Semiconductor Engineering, Inc. Circuit board with buried conductive trace formed thereon and method for manufacturing the same
US7642660B2 (en) 2002-12-17 2010-01-05 Cheng Siew Tay Method and apparatus for reducing electrical interconnection fatigue
US7663248B2 (en) * 2004-10-14 2010-02-16 Infineon Technologies Ag Flip-chip component
US7663250B2 (en) 2008-06-17 2010-02-16 Samsung Electro-Mechanics Co., Ltd. Wafer level package and manufacturing method thereof
US7671454B2 (en) 2006-05-12 2010-03-02 Sharp Kabushiki Kaisha Tape carrier, semiconductor apparatus, and semiconductor module apparatus
US7670939B2 (en) 2008-05-12 2010-03-02 Ati Technologies Ulc Semiconductor chip bump connection apparatus and method
US7692314B2 (en) 2006-09-07 2010-04-06 Samsung Electronics Co., Ltd. Wafer level chip scale package and method for manufacturing the same
US7732913B2 (en) 2006-02-03 2010-06-08 Siliconware Precision Industries Co., Ltd. Semiconductor package substrate
US20100139965A1 (en) 2008-12-09 2010-06-10 Advanced Semiconductor Engineering, Inc. Embedded circuit substrate and manufacturing method thereof
US7750457B2 (en) 2004-03-30 2010-07-06 Sharp Kabushiki Kaisha Semiconductor apparatus, manufacturing method thereof, semiconductor module apparatus using semiconductor apparatus, and wire substrate for semiconductor apparatus
US7791211B2 (en) 2007-10-19 2010-09-07 Advanced Semiconductor Engineering, Inc. Flip chip package structure and carrier thereof
US7790509B2 (en) 2008-06-27 2010-09-07 Texas Instruments Incorporated Method for fine-pitch, low stress flip-chip interconnect
US7847417B2 (en) 2005-12-22 2010-12-07 Shinko Electric Industries Co., Ltd. Flip-chip mounting substrate and flip-chip mounting method
US7847399B2 (en) 2007-12-07 2010-12-07 Texas Instruments Incorporated Semiconductor device having solder-free gold bump contacts for stability in repeated temperature cycles
US7851928B2 (en) 2008-06-10 2010-12-14 Texas Instruments Incorporated Semiconductor device having substrate with differentially plated copper and selective solder
US7898083B2 (en) 2008-12-17 2011-03-01 Texas Instruments Incorporated Method for low stress flip-chip assembly of fine-pitch semiconductor devices
US20110049703A1 (en) 2009-08-25 2011-03-03 Jun-Chung Hsu Flip-Chip Package Structure
US7902678B2 (en) 2004-03-29 2011-03-08 Nec Corporation Semiconductor device and manufacturing method thereof
US7902660B1 (en) 2006-05-24 2011-03-08 Amkor Technology, Inc. Substrate for semiconductor device and manufacturing method thereof
US7902679B2 (en) 2001-03-05 2011-03-08 Megica Corporation Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump
US7932170B1 (en) 2008-06-23 2011-04-26 Amkor Technology, Inc. Flip chip bump structure and fabrication method
US7947602B2 (en) 2007-02-21 2011-05-24 Texas Instruments Incorporated Conductive pattern formation method
US8026128B2 (en) 2004-11-10 2011-09-27 Stats Chippac, Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US8129841B2 (en) 2006-12-14 2012-03-06 Stats Chippac, Ltd. Solder joint flip chip interconnection
US8178392B2 (en) 2007-05-18 2012-05-15 Stats Chippac Ltd. Electronic system with expansion feature
US20130214409A1 (en) 2010-09-13 2013-08-22 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Bond-on-Lead Interconnection for Mounting Semiconductor Die in FO-WLCSP
US20130277830A1 (en) 2012-04-18 2013-10-24 Taiwan Semiconductor Manufacturing Company, Ltd. Bump-on-Trace Interconnect
US8574959B2 (en) * 2003-11-10 2013-11-05 Stats Chippac, Ltd. Semiconductor device and method of forming bump-on-lead interconnection
JP6503687B2 (en) 2014-10-23 2019-04-24 イビデン株式会社 Printed wiring board

Patent Citations (240)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH023687A (en) 1988-06-22 1990-01-09 Sankyo Co Ltd 1-methylcarbapenem derivative
US5340435A (en) 1990-02-28 1994-08-23 Yatsuo Ito Bonded wafer and method of manufacturing it
JPH04355933A (en) 1991-02-07 1992-12-09 Nitto Denko Corp Packaging structure of flip chip
US5186383A (en) * 1991-10-02 1993-02-16 Motorola, Inc. Method for forming solder bump interconnections to a solder-plated circuit trace
WO1993006964A1 (en) 1991-10-02 1993-04-15 Motorola, Inc. Method for forming solder bump interconnections to a solder-plated circuit trace
US5383916A (en) 1991-11-12 1995-01-24 Puretan International, Inc. Support member for a tanning bed or comparable device
US5378859A (en) 1992-03-02 1995-01-03 Casio Computer Co., Ltd. Film wiring board
US5434410A (en) 1992-05-29 1995-07-18 Texas Instruments Incorporated Fine-grain pyroelectric detector material and method
US5587337A (en) 1993-05-28 1996-12-24 Kabushiki Kaisha Toshiba Semiconductor process for forming bump electrodes with tapered sidewalls
US5473197A (en) * 1993-05-28 1995-12-05 Kabushiki Kaisha Toshiba Semiconductor device having bump electrodes with a trapezoidal cross-section along one axis
US5386624A (en) 1993-07-06 1995-02-07 Motorola, Inc. Method for underencapsulating components on circuit supporting substrates
US5508561A (en) 1993-11-15 1996-04-16 Nec Corporation Apparatus for forming a double-bump structure used for flip-chip mounting
US5519580A (en) 1994-09-09 1996-05-21 Intel Corporation Method of controlling solder ball size of BGA IC components
US5844782A (en) 1994-12-20 1998-12-01 Sony Corporation Printed wiring board and electronic device using same
US6229209B1 (en) 1995-02-23 2001-05-08 Matsushita Electric Industrial Co., Ltd. Chip carrier
US5650595A (en) 1995-05-25 1997-07-22 International Business Machines Corporation Electronic module with multiple solder dams in soldermask window
US5798285A (en) 1995-05-25 1998-08-25 International Business Machines Corpoation Method of making electronic module with multiple solder dams in soldermask window
US6259159B1 (en) 1995-06-07 2001-07-10 International Business Machines Corporation Reflowed solder ball with low melting point metal cap
US6229220B1 (en) 1995-06-27 2001-05-08 International Business Machines Corporation Bump structure, bump forming method and package connecting body
JPH0997791A (en) 1995-09-27 1997-04-08 Internatl Business Mach Corp <Ibm> Bump structure, formation of bump, and mounting connector
US5710071A (en) 1995-12-04 1998-01-20 Motorola, Inc. Process for underfilling a flip-chip semiconductor device
US5915169A (en) 1995-12-22 1999-06-22 Anam Industrial Co., Ltd. Semiconductor chip scale package and method of producing such
US5889326A (en) 1996-02-27 1999-03-30 Nec Corporation Structure for bonding semiconductor device to substrate
US5869886A (en) 1996-03-22 1999-02-09 Nec Corporation Flip chip semiconductor mounting structure with electrically conductive resin
US6281107B1 (en) 1996-03-28 2001-08-28 Nec Corporation Semiconductor device and method for manufacturing the same
US5872399A (en) 1996-04-01 1999-02-16 Anam Semiconductor, Inc. Solder ball land metal structure of ball grid semiconductor package
US5854514A (en) 1996-08-05 1998-12-29 International Buisness Machines Corporation Lead-free interconnection for electronic devices
US20010013423A1 (en) 1996-10-31 2001-08-16 Hormazdyar M. Dalal Flip chip attach on flexible circuit carrier using chip with metallic cap on solder
US6297560B1 (en) 1996-10-31 2001-10-02 Miguel Albert Capote Semiconductor flip-chip assembly with pre-applied encapsulating layers
US6149122A (en) 1996-10-31 2000-11-21 International Business Machines Corporation Method for building interconnect structures by injection molded solder and structures built
US5795818A (en) 1996-12-06 1998-08-18 Amkor Technology, Inc. Integrated circuit chip to substrate interconnection and method
KR20000062333A (en) 1996-12-24 2000-10-25 가마이 고로 Manufacture of semiconductor device
US6333206B1 (en) 1996-12-24 2001-12-25 Nitto Denko Corporation Process for the production of semiconductor device
JPH10256315A (en) 1997-03-12 1998-09-25 Internatl Business Mach Corp <Ibm> Semiconductor chip bonding pad and its formation
US6002172A (en) 1997-03-12 1999-12-14 International Business Machines Corporation Substrate structure and method for improving attachment reliability of semiconductor chips and modules
US6281581B1 (en) 1997-03-12 2001-08-28 International Business Machines Corporation Substrate structure for improving attachment reliability of semiconductor chips and modules
KR19980079438A (en) 1997-03-12 1998-11-25 포맨 제프리 엘 The method of forming the mounting pad and the solder interconnections for the substrate
JPH10256307A (en) 1997-03-13 1998-09-25 Ngk Spark Plug Co Ltd Wiring board with semiconductor device, wiring board and manufacture thereof
US20020192865A1 (en) 1997-03-27 2002-12-19 Hitachi, Ltd. And Hitachi Hokkai Semiconductor, Ltd. Process for mounting electronic device and semiconductor device
US6228466B1 (en) 1997-04-11 2001-05-08 Ibiden Co. Ltd. Printed wiring board and method for manufacturing the same
US6281450B1 (en) 1997-06-26 2001-08-28 Hitachi Chemical Company, Ltd. Substrate for mounting semiconductor chips
US6218630B1 (en) 1997-06-30 2001-04-17 Fuji Photo Film Co., Ltd. Printed circuit board having arrays of lands arranged inside and outside of each other having a reduced terminal-pitch
US6278184B1 (en) 1997-07-09 2001-08-21 International Business Machines Corporation Solder disc connection
US6335571B1 (en) 1997-07-21 2002-01-01 Miguel Albert Capote Semiconductor flip-chip package and method for the fabrication thereof
US5985456A (en) 1997-07-21 1999-11-16 Miguel Albert Capote Carboxyl-containing polyunsaturated fluxing adhesive for attaching integrated circuits
US7078819B2 (en) 1997-09-18 2006-07-18 Tessera, Inc. Microelectronic packages with elongated solder interconnections
US6335222B1 (en) 1997-09-18 2002-01-01 Tessera, Inc. Microelectronic packages with solder interconnections
US6448665B1 (en) 1997-10-15 2002-09-10 Kabushiki Kaisha Toshiba Semiconductor package and manufacturing method thereof
US6049122A (en) 1997-10-16 2000-04-11 Fujitsu Limited Flip chip mounting substrate with resin filled between substrate and semiconductor chip
US6109507A (en) 1997-11-11 2000-08-29 Fujitsu Limited Method of forming solder bumps and method of forming preformed solder bumps
JPH11145176A (en) 1997-11-11 1999-05-28 Fujitsu Ltd Method for forming solder bump and method for forming preliminary solder
US6259163B1 (en) 1997-12-25 2001-07-10 Oki Electric Industry Co., Ltd. Bond pad for stress releif between a substrate and an external substrate
US6251704B1 (en) 1997-12-25 2001-06-26 Oki Electric Industry Co., Ltd. Method of manufacturing semiconductor devices having solder bumps with reduced cracks
US20020041036A1 (en) 1998-02-03 2002-04-11 Smith John W. Microelectronic assemblies with composite conductive elements
JPH11233571A (en) 1998-02-12 1999-08-27 Hitachi Ltd Semiconductor device, underfill material, and thermosetting film material
US6324754B1 (en) 1998-03-25 2001-12-04 Tessera, Inc. Method for fabricating microelectronic assemblies
US6329605B1 (en) 1998-03-26 2001-12-11 Tessera, Inc. Components with conductive solder mask layers
US6297564B1 (en) 1998-04-24 2001-10-02 Amerasia International Technology, Inc. Electronic devices employing adhesive interconnections including plated particles
JPH11330162A (en) 1998-05-19 1999-11-30 Sony Corp Mounting of semiconductor chip
JP2000031204A (en) 1998-07-07 2000-01-28 Ricoh Co Ltd Manufacture of semiconductor package
US6409073B1 (en) 1998-07-15 2002-06-25 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Method for transfering solder to a device and/or testing the device
US6229711B1 (en) 1998-08-31 2001-05-08 Shinko Electric Industries Co., Ltd. Flip-chip mount board and flip-chip mount structure with improved mounting reliability
US6678948B1 (en) 1998-09-01 2004-01-20 Robert Bosch Gmbh Method for connecting electronic components to a substrate, and a method for checking such a connection
WO2000013228A1 (en) 1998-09-01 2000-03-09 Robert Bosch Gmbh Method for connecting electronic components to a substrate, and a method for checking such a connection
JP2000133667A (en) 1998-10-22 2000-05-12 Citizen Watch Co Ltd Formation of bump electrode
US6335568B1 (en) 1998-10-28 2002-01-01 Seiko Epson Corporation Semiconductor device and method of fabrication thereof, circuit board, and electronic equipment
US6383916B1 (en) 1998-12-21 2002-05-07 M. S. Lin Top layers of metal for high performance IC's
US6600234B2 (en) 1999-02-03 2003-07-29 Casio Computer Co., Ltd. Mounting structure having columnar electrodes and a sealing film
US6927489B1 (en) 1999-03-15 2005-08-09 Renesas Technology Corp. Semiconductor device provided with rewiring layer
US6556268B1 (en) 1999-03-31 2003-04-29 Industrial Technology Research Institute Method for forming compact LCD packages and devices formed in which first bonding PCB to LCD panel and second bonding driver chip to PCB
US6462425B1 (en) 1999-04-19 2002-10-08 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US6268568B1 (en) * 1999-05-04 2001-07-31 Anam Semiconductor, Inc. Printed circuit board with oval solder ball lands for BGA semiconductor packages
US20010018230A1 (en) 1999-05-10 2001-08-30 International Business Machines Corporation Flip chip C4 extension structure and process
US6612024B1 (en) * 1999-05-13 2003-09-02 Sony Corporation Method of mounting a device to a mounting substrate
JP2000349194A (en) 1999-06-08 2000-12-15 Matsushita Electric Ind Co Ltd Semiconductor device and its manufacture
US6458622B1 (en) 1999-07-06 2002-10-01 Motorola, Inc. Stress compensation composition and semiconductor component formed using the stress compensation composition
US6563712B2 (en) * 1999-07-30 2003-05-13 Micron Technology, Inc. Heak sink chip package
US6441316B1 (en) 1999-08-27 2002-08-27 Mitsubishi Denki Kabushiki Kaisha Printed-circuit board and a semiconductor module, and a manufacturing process of the semiconductor module
US6518674B2 (en) 1999-09-23 2003-02-11 International Business Machines Corporation Temporary attach article and method for temporary attach of devices to a substrate
US6396707B1 (en) 1999-10-21 2002-05-28 Siliconware Precision Industries Co., Ltd. Ball grid array package
US6774474B1 (en) 1999-11-10 2004-08-10 International Business Machines Corporation Partially captured oriented interconnections for BGA packages and a method of forming the interconnections
US6913948B2 (en) 1999-11-10 2005-07-05 International Business Machines Corporation Partially captured oriented interconnections for BGA packages and a method of forming the interconnections
JP2001156203A (en) 1999-11-24 2001-06-08 Matsushita Electric Works Ltd Printed wiring board for mounting semiconductor chip
US20010008309A1 (en) 2000-01-13 2001-07-19 Takahiro Iijima Interconnection substrate having metal columns covered by a resin film, and manufacturing method thereof
US6472608B2 (en) 2000-02-18 2002-10-29 Nec Corporation Semiconductor device
US6592019B2 (en) 2000-04-27 2003-07-15 Advanpack Solutions Pte. Ltd Pillar connections for semiconductor chips and method of manufacture
US20020179689A1 (en) 2000-04-27 2002-12-05 Advanpack Solutions Pte. Ltd. Pillar connections for semiconductor chips and method of manufacture
US6578754B1 (en) 2000-04-27 2003-06-17 Advanpack Solutions Pte. Ltd. Pillar connections for semiconductor chips and method of manufacture
US6681982B2 (en) 2000-04-27 2004-01-27 Advanpak Solutions Pte. Ltd. Pillar connections for semiconductor chips and method of manufacture
US20020033412A1 (en) 2000-04-27 2002-03-21 Francisca Tung Pillar connections for semiconductor chips and method of manufacture
US7005743B2 (en) 2000-04-28 2006-02-28 Sony Corporation Semiconductor device using bumps, method for fabricating same, and method for forming bumps
US6661084B1 (en) 2000-05-16 2003-12-09 Sandia Corporation Single level microelectronic device package with an integral window
JP2001332583A (en) 2000-05-22 2001-11-30 Fujitsu Ltd Method of mounting semiconductor chip
US6573610B1 (en) 2000-06-02 2003-06-03 Siliconware Precision Industries Co., Ltd. Substrate of semiconductor package for flip chip package
US6787918B1 (en) 2000-06-02 2004-09-07 Siliconware Precision Industries Co., Ltd. Substrate structure of flip chip package
JP2001351945A (en) 2000-06-05 2001-12-21 Matsushita Electric Ind Co Ltd Method of manufacturing semiconductor device
US6201305B1 (en) 2000-06-09 2001-03-13 Amkor Technology, Inc. Making solder ball mounting pads on substrates
US20030067084A1 (en) 2000-06-28 2003-04-10 Sharp Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US6710458B2 (en) 2000-10-13 2004-03-23 Sharp Kabushiki Kaisha Tape for chip on film and semiconductor therewith
US20040210122A1 (en) 2000-11-01 2004-10-21 Willi Sieburg Electrical sensing and/or signal application device
US20020100610A1 (en) 2000-11-08 2002-08-01 Masao Yasuda Electronic component and method and structure for mounting semiconductor device
US6798072B2 (en) 2000-11-10 2004-09-28 Hitachi, Ltd. Flip chip assembly structure for semiconductor device and method of assembling therefor
US20020070451A1 (en) 2000-12-08 2002-06-13 Burnette Terry E. Semiconductor device having a ball grid array and method therefor
US20020121706A1 (en) 2000-12-28 2002-09-05 Matsushita Electic Works, Ltd. Semiconductor-chip mounting substrate and method of manufacturing the same
US6518678B2 (en) 2000-12-29 2003-02-11 Micron Technology, Inc. Apparatus and method for reducing interposer compression during molding process
US6780682B2 (en) 2001-02-27 2004-08-24 Chippac, Inc. Process for precise encapsulation of flip chip interconnects
US6818545B2 (en) 2001-03-05 2004-11-16 Megic Corporation Low fabrication cost, fine pitch and high reliability solder bump
US7902679B2 (en) 2001-03-05 2011-03-08 Megica Corporation Structure and manufacturing method of a chip scale package with low fabrication cost, fine pitch and high reliability solder bump
US20040126927A1 (en) 2001-03-05 2004-07-01 Shih-Hsiung Lin Method of assembling chips
US7242099B2 (en) 2001-03-05 2007-07-10 Megica Corporation Chip package with multiple chips connected by bumps
JP2002270732A (en) 2001-03-13 2002-09-20 Sharp Corp Electronic component with underfill material
US6459622B1 (en) 2001-03-15 2002-10-01 Halo Lsi, Inc. Twin MONOS memory cell usage for wide program
US20040105223A1 (en) 2001-03-19 2004-06-03 Ryoichi Okada Method of manufacturing electronic part and electronic part obtained by the method
US7084511B2 (en) * 2001-03-27 2006-08-01 Nec Electronics Corporation Semiconductor device having resin-sealed area on circuit board thereof
US6495397B2 (en) 2001-03-28 2002-12-17 Intel Corporation Fluxless flip chip interconnection
US20020155637A1 (en) 2001-04-20 2002-10-24 Shih-Chang Lee Flip chip interconnected structure and a fabrication method thereof
US6664483B2 (en) 2001-05-15 2003-12-16 Intel Corporation Electronic package with high density interconnect and associated methods
US6510976B2 (en) 2001-05-18 2003-01-28 Advanpack Solutions Pte. Ltd. Method for forming a flip chip semiconductor package
US7294457B2 (en) 2001-08-07 2007-11-13 Boehringer Ingelheim (Canada) Ltd. Direct binding assay for identifying inhibitors of HCV polymerase
US6550666B2 (en) 2001-08-21 2003-04-22 Advanpack Solutions Pte Ltd Method for forming a flip chip on leadframe semiconductor package
US20030049411A1 (en) 2001-09-10 2003-03-13 Delphi Technologies,Inc No-flow underfill material and underfill method for flip chip devices
US6660560B2 (en) 2001-09-10 2003-12-09 Delphi Technologies, Inc. No-flow underfill material and underfill method for flip chip devices
US20030057551A1 (en) 2001-09-21 2003-03-27 Intel Corporation Copper-containing C4 ball-limiting metallurgy stack for enhanced reliability of packaged structures and method of making same
US6608388B2 (en) 2001-11-01 2003-08-19 Siliconware Precision Industries Co., Ltd. Delamination-preventing substrate and semiconductor package with the same
US20030116866A1 (en) 2001-12-20 2003-06-26 Cher 'khng Victor Tan Semiconductor package having substrate with multi-layer metal bumps
US6870276B1 (en) 2001-12-26 2005-03-22 Micron Technology, Inc. Apparatus for supporting microelectronic substrates
WO2003071842A1 (en) 2001-12-26 2003-08-28 Motorola, Inc. Method of mounting a semiconductor die on a substrate without using a solder mask
US20030127747A1 (en) 2001-12-26 2003-07-10 Ryoichi Kajiwara Semiconductor device and manufacturing method thereof
US20030127734A1 (en) 2002-01-07 2003-07-10 Jin-Yuan Lee Cylindrical bonding structure and method of manufacture
US6768190B2 (en) 2002-01-25 2004-07-27 Advanced Semiconductor Engineering, Inc. Stack type flip-chip package
US20030157792A1 (en) 2002-02-21 2003-08-21 Ho-Ming Tong Bump manufacturing method
US20030168748A1 (en) 2002-03-08 2003-09-11 Mitsuaki Katagiri Semiconductor device
US6734557B2 (en) 2002-03-12 2004-05-11 Sharp Kabushiki Kaisha Semiconductor device
US20030175146A1 (en) 2002-03-15 2003-09-18 Shing Yeh Lead-free solder alloy and solder reflow process
TW530398B (en) 2002-03-19 2003-05-01 Chipmos Technologies Inc Method for manufacturing bumps of chip scale package (CSP)
US7180005B2 (en) * 2002-05-17 2007-02-20 Nec Corporation Printed wiring board
US20030218249A1 (en) 2002-05-27 2003-11-27 Kwun-Yao Ho High-density integrated circuit package and method for the same
US7101781B2 (en) 2002-05-27 2006-09-05 Via Technologies, Inc. Integrated circuit packages without solder mask and method for the same
US6780673B2 (en) 2002-06-12 2004-08-24 Texas Instruments Incorporated Method of forming a semiconductor device package using a plate layer surrounding contact pads
US20040046263A1 (en) 2002-07-18 2004-03-11 Harper Timothy V. Integrated circuit package employing flip-chip technology and method of assembly
US20040026107A1 (en) 2002-08-08 2004-02-12 Caldwell John L. Electronic devices incorporating electrical interconnections with improved reliability and methods of fabricating same
US6696644B1 (en) * 2002-08-08 2004-02-24 Texas Instruments Incorporated Polymer-embedded solder bumps for reliable plastic package attachment
US20040027788A1 (en) 2002-08-08 2004-02-12 Tz-Cheng Chiu Polymer-embedded solder bumps for reliable plastic package attachment
US20040035909A1 (en) 2002-08-22 2004-02-26 Shing Yeh Lead-based solder alloys containing copper
US7005585B2 (en) 2002-09-02 2006-02-28 Murata Manufacturing Co., Ltd. Mounting board and electronic device using same
US20040046264A1 (en) 2002-09-09 2004-03-11 Ho Kwun Yao High density integrated circuit packages and method for the same
US20040056341A1 (en) 2002-09-19 2004-03-25 Kabushiki Kaisha Toshiba Semiconductor device, semiconductor package member, and semiconductor device manufacturing method
US20040108135A1 (en) 2002-10-11 2004-06-10 Takeshi Ashida Circuit board, mounting structure of ball grid array, electro-optic device and electronic device
JP2004165283A (en) 2002-11-11 2004-06-10 Fujitsu Ltd Semiconductor device
US7642660B2 (en) 2002-12-17 2010-01-05 Cheng Siew Tay Method and apparatus for reducing electrical interconnection fatigue
US7019407B2 (en) * 2002-12-30 2006-03-28 Advanced Semiconductor Engineering, Inc. Flip chip package structure
JP2004221205A (en) 2003-01-10 2004-08-05 Seiko Epson Corp Method for mounting semiconductor chip, semiconductor mounting substrate, electronic device and electronic equipment
US6821878B2 (en) 2003-02-27 2004-11-23 Freescale Semiconductor, Inc. Area-array device assembly with pre-applied underfill layers on printed wiring board
US6943058B2 (en) 2003-03-18 2005-09-13 Delphi Technologies, Inc. No-flow underfill process and material therefor
US6774497B1 (en) 2003-03-28 2004-08-10 Freescale Semiconductor, Inc. Flip-chip assembly with thin underfill and thick solder mask
US20040232560A1 (en) 2003-05-22 2004-11-25 Chao-Yuan Su Flip chip assembly process and substrate used therewith
US20040232562A1 (en) 2003-05-23 2004-11-25 Texas Instruments Incorporated System and method for increasing bump pad height
US6849944B2 (en) 2003-05-30 2005-02-01 Texas Instruments Incorporated Using a supporting structure to control collapse of a die towards a die pad during a reflow process for coupling the die to the die pad
US6888255B2 (en) 2003-05-30 2005-05-03 Texas Instruments Incorporated Built-up bump pad structure and method for same
US6809262B1 (en) 2003-06-03 2004-10-26 Via Technologies, Inc. Flip chip package carrier
JP2005028037A (en) 2003-07-11 2005-02-03 Fuji Photo Film Co Ltd Medical image processing device and medical image processing method
US7049705B2 (en) 2003-07-15 2006-05-23 Advanced Semiconductor Engineering, Inc. Chip structure
US7173828B2 (en) 2003-07-28 2007-02-06 Siliconware Precision Industries Co., Ltd. Ground pad structure for preventing solder extrusion and semiconductor package having the ground pad structure
US7064435B2 (en) 2003-07-29 2006-06-20 Samsung Electronics Co., Ltd. Semiconductor package with improved ball land structure
US7005750B2 (en) 2003-08-01 2006-02-28 Advanced Semiconductor Engineering, Inc. Substrate with reinforced contact pad structure
US7102239B2 (en) 2003-08-18 2006-09-05 Siliconware Precision Industries Co., Ltd. Chip carrier for semiconductor chip
US7098407B2 (en) 2003-08-23 2006-08-29 Samsung Electronics Co., Ltd. Non-solder mask defined (NSMD) type wiring substrate for ball grid array (BGA) package and method for manufacturing such a wiring substrate
US20050046041A1 (en) 2003-08-29 2005-03-03 Advanced Semiconductor Engineering, Inc. Integrated circuit device with embedded passive component by flip-chip connection and method for manufacturing the same
US7271484B2 (en) 2003-09-25 2007-09-18 Infineon Technologies Ag Substrate for producing a soldering connection
US20050082654A1 (en) 2003-09-26 2005-04-21 Tessera, Inc. Structure and self-locating method of making capped chips
US7112524B2 (en) 2003-09-29 2006-09-26 Phoenix Precision Technology Corporation Substrate for pre-soldering material and fabrication method thereof
JP2005109187A (en) 2003-09-30 2005-04-21 Tdk Corp Flip chip packaging circuit board and its manufacturing method, and integrated circuit device
US20050103516A1 (en) 2003-09-30 2005-05-19 Tdk Corporation Flip-chip mounting circuit board, manufacturing method thereof and integrated circuit device
US7405484B2 (en) 2003-09-30 2008-07-29 Sanyo Electric Co., Ltd. Semiconductor device containing stacked semiconductor chips and manufacturing method thereof
US7102222B2 (en) 2003-10-02 2006-09-05 Siliconware Precision Industries Co., Ltd. Conductive trace structure and semiconductor package having the conductive trace structure
US7462942B2 (en) 2003-10-09 2008-12-09 Advanpack Solutions Pte Ltd Die pillar structures and a method of their formation
US20090045507A1 (en) 2003-11-10 2009-02-19 Stats Chippac Ltd. Flip chip interconnection
US20080213941A1 (en) 2003-11-10 2008-09-04 Pendse Rajendra D Bump-on-Lead Flip Chip Interconnection
US8574959B2 (en) * 2003-11-10 2013-11-05 Stats Chippac, Ltd. Semiconductor device and method of forming bump-on-lead interconnection
US7700407B2 (en) 2003-11-10 2010-04-20 Stats Chippac, Ltd. Method of forming a bump-on-lead flip chip interconnection having higher escape routing density
US7973406B2 (en) 2003-11-10 2011-07-05 Stats Chippac, Ltd. Bump-on-lead flip chip interconnection
US7294451B2 (en) 2003-11-18 2007-11-13 Texas Instruments Incorporated Raised solder-mask-defined (SMD) solder ball pads for a laminate electronic circuit board
US7294929B2 (en) 2003-12-30 2007-11-13 Texas Instruments Incorporated Solder ball pad structure
US7164208B2 (en) 2004-01-20 2007-01-16 Matsushita Electric Industrial Co., Ltd. Semiconductor device and method for manufacturing the same
US7902678B2 (en) 2004-03-29 2011-03-08 Nec Corporation Semiconductor device and manufacturing method thereof
US7750457B2 (en) 2004-03-30 2010-07-06 Sharp Kabushiki Kaisha Semiconductor apparatus, manufacturing method thereof, semiconductor module apparatus using semiconductor apparatus, and wire substrate for semiconductor apparatus
US20050224991A1 (en) 2004-04-08 2005-10-13 Yong-Woon Yeo Bump for semiconductor package, semiconductor package applying the bump, and method for fabricating the semiconductor package
US20050248037A1 (en) 2004-05-06 2005-11-10 Advanced Semiconductor Engineering, Inc. Flip-chip package substrate with a high-density layout
US7224073B2 (en) 2004-05-18 2007-05-29 Ultratera Corporation Substrate for solder joint
US7183493B2 (en) * 2004-06-30 2007-02-27 Intel Corporation Electronic assembly having multi-material interconnects
US7057284B2 (en) 2004-08-12 2006-06-06 Texas Instruments Incorporated Fine pitch low-cost flip chip substrate
US7436063B2 (en) 2004-10-04 2008-10-14 Rohm Co., Ltd. Packaging substrate and semiconductor device
US7663248B2 (en) * 2004-10-14 2010-02-16 Infineon Technologies Ag Flip-chip component
US7488896B2 (en) 2004-11-04 2009-02-10 Ngk Spark Plug Co., Ltd. Wiring board with semiconductor component
US8026128B2 (en) 2004-11-10 2011-09-27 Stats Chippac, Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US20060192294A1 (en) 2004-11-15 2006-08-31 Chippac, Inc Chip scale package having flip chip interconnect on die paddle
US20060131758A1 (en) 2004-12-22 2006-06-22 Stmicroelectronics, Inc. Anchored non-solder mask defined ball pad
US20060202331A1 (en) 2005-03-09 2006-09-14 Wen-Hung Hu Conductive bump structure of circuit board and method for fabricating the same
US7361990B2 (en) 2005-03-17 2008-04-22 Taiwan Semiconductor Manufacturing Company, Ltd. Reducing cracking of high-lead or lead-free bumps by matching sizes of contact pads and bump pads
US20060216860A1 (en) 2005-03-25 2006-09-28 Stats Chippac, Ltd. Flip chip interconnection having narrow interconnection sites on the substrate
US8318537B2 (en) 2005-03-25 2012-11-27 Stats Chippac, Ltd. Flip chip interconnection having narrow interconnection sites on the substrate
US20060255473A1 (en) 2005-05-16 2006-11-16 Stats Chippac Ltd. Flip chip interconnect solder mask
JP2005333166A (en) 2005-08-22 2005-12-02 Fujitsu Ltd Manufacturing method of semiconductor device
US7847417B2 (en) 2005-12-22 2010-12-07 Shinko Electric Industries Co., Ltd. Flip-chip mounting substrate and flip-chip mounting method
US20090288866A1 (en) 2006-01-16 2009-11-26 Siliconware Precision Industries Co., Ltd. Electronic carrier board
US7732913B2 (en) 2006-02-03 2010-06-08 Siliconware Precision Industries Co., Ltd. Semiconductor package substrate
US20070200234A1 (en) 2006-02-28 2007-08-30 Texas Instruments Incorporated Flip-Chip Device Having Underfill in Controlled Gap
US7317245B1 (en) 2006-04-07 2008-01-08 Amkor Technology, Inc. Method for manufacturing a semiconductor device substrate
US20070259514A1 (en) 2006-05-04 2007-11-08 Ralf Otremba Interconnection Structure, Electronic Component and Method of Manufacturing the Same
US7671454B2 (en) 2006-05-12 2010-03-02 Sharp Kabushiki Kaisha Tape carrier, semiconductor apparatus, and semiconductor module apparatus
US7902660B1 (en) 2006-05-24 2011-03-08 Amkor Technology, Inc. Substrate for semiconductor device and manufacturing method thereof
US7692314B2 (en) 2006-09-07 2010-04-06 Samsung Electronics Co., Ltd. Wafer level chip scale package and method for manufacturing the same
US20080088013A1 (en) 2006-10-14 2008-04-17 Advanpack Solutons Pte Ltd. Chip and manufacturing method thereof
US20080093749A1 (en) 2006-10-20 2008-04-24 Texas Instruments Incorporated Partial Solder Mask Defined Pad Design
US8129841B2 (en) 2006-12-14 2012-03-06 Stats Chippac, Ltd. Solder joint flip chip interconnection
US20080179740A1 (en) 2007-01-25 2008-07-31 Advanced Semiconductor Engineering, Inc. Package substrate, method of fabricating the same and chip package
US7947602B2 (en) 2007-02-21 2011-05-24 Texas Instruments Incorporated Conductive pattern formation method
US7521284B2 (en) 2007-03-05 2009-04-21 Texas Instruments Incorporated System and method for increased stand-off height in stud bumping process
US20080277802A1 (en) 2007-05-10 2008-11-13 Siliconware Precision Industries Co., Ltd. Flip-chip semiconductor package and package substrate applicable thereto
US8178392B2 (en) 2007-05-18 2012-05-15 Stats Chippac Ltd. Electronic system with expansion feature
US20090057378A1 (en) 2007-08-27 2009-03-05 Chi-Won Hwang In-situ chip attachment using self-organizing solder
US20090146303A1 (en) 2007-09-28 2009-06-11 Tessera, Inc. Flip Chip Interconnection with double post
US7791211B2 (en) 2007-10-19 2010-09-07 Advanced Semiconductor Engineering, Inc. Flip chip package structure and carrier thereof
US20090108445A1 (en) 2007-10-31 2009-04-30 Advanced Semiconductor Engineering, Inc. Substrate structure and semiconductor package using the same
US20090114436A1 (en) 2007-11-07 2009-05-07 Advanced Semiconductor Engineering, Inc. Substrate structure
US7847399B2 (en) 2007-12-07 2010-12-07 Texas Instruments Incorporated Semiconductor device having solder-free gold bump contacts for stability in repeated temperature cycles
US20090152716A1 (en) 2007-12-12 2009-06-18 Shinko Electric Industries Co., Ltd. Wiring substrate and electronic component mounting structure
US20090191329A1 (en) 2008-01-30 2009-07-30 Advanced Semiconductor Engineering, Inc. Surface treatment process for circuit board
US7670939B2 (en) 2008-05-12 2010-03-02 Ati Technologies Ulc Semiconductor chip bump connection apparatus and method
US7851928B2 (en) 2008-06-10 2010-12-14 Texas Instruments Incorporated Semiconductor device having substrate with differentially plated copper and selective solder
US20090308647A1 (en) 2008-06-11 2009-12-17 Advanced Semiconductor Engineering, Inc. Circuit board with buried conductive trace formed thereon and method for manufacturing the same
US7663250B2 (en) 2008-06-17 2010-02-16 Samsung Electro-Mechanics Co., Ltd. Wafer level package and manufacturing method thereof
US7932170B1 (en) 2008-06-23 2011-04-26 Amkor Technology, Inc. Flip chip bump structure and fabrication method
US7790509B2 (en) 2008-06-27 2010-09-07 Texas Instruments Incorporated Method for fine-pitch, low stress flip-chip interconnect
US20100139965A1 (en) 2008-12-09 2010-06-10 Advanced Semiconductor Engineering, Inc. Embedded circuit substrate and manufacturing method thereof
US7898083B2 (en) 2008-12-17 2011-03-01 Texas Instruments Incorporated Method for low stress flip-chip assembly of fine-pitch semiconductor devices
US20110049703A1 (en) 2009-08-25 2011-03-03 Jun-Chung Hsu Flip-Chip Package Structure
US20130214409A1 (en) 2010-09-13 2013-08-22 Stats Chippac, Ltd. Semiconductor Device and Method of Forming Bond-on-Lead Interconnection for Mounting Semiconductor Die in FO-WLCSP
US20130277830A1 (en) 2012-04-18 2013-10-24 Taiwan Semiconductor Manufacturing Company, Ltd. Bump-on-Trace Interconnect
JP6503687B2 (en) 2014-10-23 2019-04-24 イビデン株式会社 Printed wiring board

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
Chen et al., "Advanced Flip-Chip Package Production Solution for 40nm/28nm Technology Nodes", International Electron Devices Meeting, pp. 768-771, IEEE 2010.
Gerber et al., "Next Generation Fine Pitch Cu Pillar Technology-Enabling Next Generation Silicon Nodes", Electronic Components and Technology Conference, pp. 612-618, 2011.
Gerber et al., "Next Generation Fine Pitch Cu Pillar Technology—Enabling Next Generation Silicon Nodes", Electronic Components and Technology Conference, pp. 612-618, 2011.
He et al., "All-Copper Chip-to-Substrate Interconnects Part II. Modeling and Design", Journal of the Electrochemical Society, 155(4):D314-D322, 2008.
Heinen, K. Gail et al., "Multichip Assembly with Flipped Integrated Circuits", IEEE Transactions on Components, Hybrids, and Manufactureing Technology, vol. 12 No. 4, 1989, pp. 650-657.
Kawahara, Toshimi, "SuperCSP", IEEE Transactions on Advanced Packaging, May 2000, pp. 215-219, vol. 23, No. 2.
Lau, John H. et al., "A New Thermal-Fatigue Life Prediction Model For Wafer Level Chip Scale Package (WLCSP) Solder Joints", Journal of Electronic Packaging, vol. 124, 2002, pp. 212-220.
Love, David et al., "Wire Interconnect Technology, A New High-Reliability Tight-Pitch Interconnect Technology", Karl Suss, 1999.
Lu, H. et al., "Predicting Optimal Process Conditions for Flip-Chip Assembly Using Copper Column Bumped Dies", Electronics Packaging Technology Conference, 2002, pp. 338-343.
Pendse et al., "Bon-on-Lead: A Novel Flip Chip Interconnection Technology for Fine Effective Pitch and High I/O Density", Electronic Components and Technology Conference, pp. 16-23, 2006.
Powell, D. O. et al., "Flip-Chip on FR-4 Integrated Circuit Packaging", HBN Technology Products, 1993, pp. 182-186.
Schubert, A. et al.. "Numerical and Experimental Investigations of Large IC Flip Chip Attach", Electronic Components and Technology Conference, 2000, pp. 1338-1346.
Son, Ho Young et al., "Studies on the Thermal Cycling Reliability of Fine Pitch Cu/SnAg Double-Bump Flip Chip Assemblies on Organic Substrates: Experimental Results and Numerical Analysis", Electronic Components and Technology Conference, 2008, pp. 2035-2043.
Yamada, Hiroshi et al., "A fine pitch and high aspect ratio bump array for flip-chip interconnection", Int'l Electronics Manufacturing Technology Symposium, 1992, pp. 288-292, IEEE/CHMT.
Yamada, Hiroshi et al., "Advanced copper column based solder bump for flip-chip interconnection", International Symposium on Microelectronics, 1997, pp. 417-422, The British Library-"The world's knowledge".
Yamada, Hiroshi et al., "Advanced copper column based solder bump for flip-chip interconnection", International Symposium on Microelectronics, 1997, pp. 417-422, The British Library—"The world's knowledge".

Similar Documents

Publication Publication Date Title
US9099455B2 (en) Semiconductor device and method of forming conductive posts embedded in photosensitive encapsulant
US7382049B2 (en) Chip package and bump connecting structure thereof
TWI508199B (en) Semiconductor device and method of providing z-interconnect conductive pillars with inner polymer core
US8338945B2 (en) Molded chip interposer structure and methods
US7888181B2 (en) Method of forming a wafer level package with RDL interconnection over encapsulant between bump and semiconductor die
US7838975B2 (en) Flip-chip package with fan-out WLCSP
US9559029B2 (en) Semiconductor device and method of forming interconnect structure for encapsulated die having pre-applied protective layer
TWI545722B (en) Connecting a chip module having a die stack face much lower
US6639324B1 (en) Flip chip package module and method of forming the same
KR101582355B1 (en) A semiconductor device and a method of making a semiconductor device
JP4660643B2 (en) Semiconductor package substrate for forming pre-solder structure, semiconductor package substrate on which pre-solder structure is formed, and manufacturing method thereof
KR101533459B1 (en) Semiconductor Device and Method of Forming the Device Using Sacrificial Carrier
US8017515B2 (en) Semiconductor device and method of forming compliant polymer layer between UBM and conformal dielectric layer/RDL for stress relief
US6864586B2 (en) Padless high density circuit board
KR100868419B1 (en) Semiconductor device and manufacturing method thereof
US5886409A (en) Electrode structure of wiring substrate of semiconductor device having expanded pitch
US20030234277A1 (en) Microelectronic device interconnects
EP1306900A2 (en) Chip-scale packages stacked on folded interconnector for vertical assembly on substrates
JP4790157B2 (en) Semiconductor device
US6552436B2 (en) Semiconductor device having a ball grid array and method therefor
US8021907B2 (en) Method and apparatus for thermally enhanced semiconductor package
DE102011001405A1 (en) Semiconductor packaging and stacks of semiconductor pa