US20040027788A1 - Polymer-embedded solder bumps for reliable plastic package attachment - Google Patents

Polymer-embedded solder bumps for reliable plastic package attachment Download PDF

Info

Publication number
US20040027788A1
US20040027788A1 US10/215,115 US21511502A US2004027788A1 US 20040027788 A1 US20040027788 A1 US 20040027788A1 US 21511502 A US21511502 A US 21511502A US 2004027788 A1 US2004027788 A1 US 2004027788A1
Authority
US
United States
Prior art keywords
package
bumps
surface
polymer
bump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/215,115
Other versions
US6696644B1 (en
Inventor
Tz-Cheng Chiu
Manjula Variyam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Texas Instruments Inc
Original Assignee
Texas Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Texas Instruments Inc filed Critical Texas Instruments Inc
Priority to US10/215,115 priority Critical patent/US6696644B1/en
Assigned to TEXAS INSTRUMENTS INCORPORATED reassignment TEXAS INSTRUMENTS INCORPORATED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHIU, TZ-CHENG, VARIYAM, MANJULA N.
Publication of US20040027788A1 publication Critical patent/US20040027788A1/en
Application granted granted Critical
Publication of US6696644B1 publication Critical patent/US6696644B1/en
Application status is Active legal-status Critical
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer, carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/563Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49811Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
    • H01L23/49816Spherical bumps on the substrate for external connection, e.g. ball grid arrays [BGA]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/341Surface mounted components
    • H05K3/3431Leadless components
    • H05K3/3436Leadless components having an array of bottom contacts, e.g. pad grid array or ball grid array components
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3114Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed the device being a chip scale package, e.g. CSP
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • H01L23/3128Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation the substrate having spherical bumps for external connection
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01087Francium [Fr]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12044OLED
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10613Details of electrical connections of non-printed components, e.g. special leads
    • H05K2201/10954Other details of electrical connections
    • H05K2201/10977Encapsulated connections
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0562Details of resist
    • H05K2203/0582Coating by resist, i.e. resist used as mask for application of insulating coating or of second resist
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0779Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
    • H05K2203/0786Using an aqueous solution, e.g. for cleaning or during drilling of holes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/09Treatments involving charged particles
    • H05K2203/095Plasma, e.g. for treating a substrate to improve adhesion with a conductor or for cleaning holes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/60Greenhouse gas [GHG] capture, heat recovery or other energy efficient measures relating to production or assembly of electric or electronic components or products, e.g. motor control
    • Y02P70/613Greenhouse gas [GHG] capture, heat recovery or other energy efficient measures relating to production or assembly of electric or electronic components or products, e.g. motor control involving the assembly of several electronic elements

Abstract

A plastic package for use in semiconductor devices, which has a plurality of metallic terminals exposed on a package surface and a metallic bump attached to each of said terminals. The bumps are made of reflowable metal and have approximately uniform height. An adherent layer of polymer material covers the package surface and surrounds each of the bumps to form a solid meniscus. The layer has a thickness between a quarter and one half of the bump height. An analogous methodology applies to plastic assembly boards.

Description

    FIELD OF THE INVENTION
  • The present invention is related in general to the field of electronic systems and semiconductor devices and more specifically to the field of plastic packages attached to boards by solder balls, wherein an auxiliary plastic layer between the solder balls enhances the temperature cycling reliability of the plastic package. [0001]
  • DESCRIPTION OF THE RELATED ART
  • The structure of contact pad metallizations and solder bumps for connecting integrated circuit (IC) chips to semiconductor packages or outside parts, as well as the thermomechanical stresses and reliability risks involved, have been described in a series of detailed publications by the International Business Machines Corporation in 1969 (IBM J. Res. Develop., Vol. 13, pp. 226-296). [0002]
  • During and after assembly of the IC chip to an outside part such as a substrate or circuit board by solder reflow, and then during device operation, significant temperature differences and temperature cycles appear between semiconductor chip and the substrate. The reliability of the solder joint is strongly influenced by the coefficients of thermal expansion of the semiconductor material and the substrate material. For example, there is more than one order of magnitude difference between the coefficients of thermal expansion of silicon and FR-4. This difference causes thermomechanical stresses, which the solder joints have to absorb. Detailed calculations, in the literature cited above and in other publications of the early 1980's, involving the optimum height and volume of the solder connection and the expected onset of fatigue and cracking proposed a number of solder design solutions. [0003]
  • The fabrication methods and reliability problems involving flip-chips re-appear in somewhat modified form for ball-grid array type packages. In their book “Chip Scale Package” (McGraw-Hill, 1999), John H. Lau and Shi-Wei Ricky Lee describe various semiconductor devices and packages of contemporary “chip-scale” families, as they are fabricated by a number of semiconductor companies worldwide. The newest designs and concepts in microelectronics assembly and packaging are aiming for a package with a planar area not substantially greater than the silicon chip itself, or at most 20% larger area. This concept, known as Chip-Scale Package (CSP), is finding particular favor with those electronics industries where the product size is continually shrinking such as cellular communications, pagers, hard disk drivers, laptop computers and medical instrumentation. Most CSP approaches are based on assembly with solder bumps or solder balls on the exterior of the package, to interface with system or wiring boards. [0004]
  • The ball grid array or CSP may be attached directly to a printed circuit board (PCB), or alternatively, coupled to a second interconnection surface such as an interposer. In the latter case, attaching the ball grid array to the next interconnect is carried out by aligning the solder bumps or balls on the package to contact pads on the second level interconnection and then performing a second solder reflow operation. During the reflow, the bumps or balls liquefy and make a bond to the next interconnect level which has pads or traces to receive the solder. Following the solder reflow step, a polymeric underfill is often used between the package and the interposer (or PCB) to alleviate mechanical stress caused by the mismatch in the coefficients of thermal expansion (CTE) between the package, the interposer, if any, and the PCB. Many reliability problems occur due to the stress placed on the solder bumps or balls when the assembly is cycled from hot to cool during operation. [0005]
  • One method of drastically reducing the thermomechanical stress on the solder bumps has been utilized in Tessera's Micro-Ball Grid Array packages. A sheet-like compliant elastomer substantially de-couples the solder bumps, affixed to the outside PCB, from the IC chip and the interposer, thus relieving the thermal mismatch. Among the drawbacks of this method are assembly hurdles and cost considerations. [0006]
  • Another method aims at absorbing part of the thermomechanical stress on the solder joints by plastic material surrounding the joints and filling the gap between chip and substrate. See for instance, U.S. Patents # 6,228,680, issued on May 8, 2001; # 6,213,347, issued on Apr. 10, 2001, and # 6,245,583, issued on Jun. 12, 2001 (Thomas et al. , Low Stress Method and Apparatus for Underfilling Flip-Chip Electronic Devices). However, the underfilling method represents an unwelcome process step after device attachment to the motherboard. [0007]
  • In a recent wafer-level process approach by Kulicke & Soffa, flux-impregnated epoxy is screened on the wafer, with openings for the chip contact pads. The solder balls are placed on the pads; during the reflow process, the epoxy softens and forms a fillet at the base of the solder ball. An epoxy “collar” extends about 50 to 100 μm up the side of the solder ball from the chip surface, where stress-induced cracks typically originate. This collar restricts the creep flow of the solder, where cracks typically form. The wafer-level process with the required high temperature of solder reflow cannot be transferred to individual plastic packages. As another drawback, the adhesion between the solder balls and the plastic fillet is weak at best and often non-existent. [0008]
  • An urgent need has arisen for a coherent, low-cost method of preventing stress-induced solder bump cracks during temperature cycling for ball-grid array packages. The method should be flexible enough to be applied for different semiconductor product families and a wide spectrum of plastic package design and process variations. Preferably, these innovations should be accomplished using the installed equipment base so that no investment in new manufacturing machines is needed. [0009]
  • SUMMARY OF THE INVENTION
  • A plastic package for use in semiconductor devices is described, which has a plurality of metallic terminals exposed on a package surface and a metallic bump attached to each of said terminals. The bumps are made of reflowable metal and have approximately uniform height. An adherent layer of polymer material covers the package surface and surrounds each of the bumps to form a solid meniscus. The layer has a thickness between a quarter and one half of the bump height. An analogous methodology applies to plastic assembly boards. [0010]
  • In the method for completing a polymer plastic package according to the invention, the solder bumps are attached and reflowed first, resulting in an approximately uniform predetermined height. Then, a water-soluble polymer is stencil-printed to coat the top surface of the bumps. In a vacuum chamber, an energy-controlled plasma roughens and cleans the polymer surface, improving the surface affinity to adhesion. An adherent polymeric precursor is distributed between and around the bumps to form a meniscus on each of the bumps and fill the space between the bumps with a layer having a thickness between a quarter and one half of the height of the bumps. Additional thermal energy cures the polymeric precursor, solidifying the layer and the meniscus. Finally, DI water removes the water-soluble polymeric bump coating. [0011]
  • Detailed model calculations as well as experimental data show that the polymer coat on plastic packages, applied by the method of the invention, reduces the plastic energy density by 50% and increases the board-level reliability in temperature cycling from −40 to +125° C. by 50% compared to standard plastic packages. [0012]
  • It is an aspect of the present invention to provide a flexible methodology of fabrication and material selection to achieve the benefit of the stress-relieving polymer coat. [0013]
  • Another aspect of the invention is to provide a methodology for a wide range of plastic ball-grid array and chip-scale packages. [0014]
  • It is a technical advantage of the present invention that a wide variety of solder alloys and reflow temperatures can be employed for the stress-reduced packages. [0015]
  • Another technical advantage is the possibility to apply the new methodology to plastic assembly boards with solder bumps for a wide variety of applications. [0016]
  • Other technical advantages of the present invention include an improved reliability of the assembled device without the need of a polymer interface layer at the contact pads, or a polymer underfill for the bump-assembled device, reducing the manufacturing cost. [0017]
  • The technical advances represented by the invention, as well as the aspects thereof, will become apparent from the following description of the preferred embodiments of the invention, when considered in conjunction with the accompanying drawings and the novel features set forth in the appended claims.[0018]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic and simplified cross section of a package assembled on an external part using reflowable metal bumps. [0019]
  • FIG. 2 is an enlargement of a portion of FIG. 1. [0020]
  • FIG. 3 is an enlargement of a portion of FIG. 1 showing the development of a crack through the reflowable metal bump. [0021]
  • FIG. 4 is a schematic cross section of a portion of a plastic package having a reflowable metal bump attached to an external part, and an adherent polymer layer surrounding the package-near portion of the solder joint. [0022]
  • FIG. 5 is a schematic cross section of a portion of a substrate having a solder interconnection to a semiconductor package, and an adherent polymer layer surrounding the substrate-near portion of the solder joint. [0023]
  • FIGS. [0024] 6 to 10 are schematic cross sections of a plastic package and a plurality of solder bumps, illustrating the process flow for completing a plastic semiconductor package with polymer-embedded solder bumps.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
  • The present invention is related to U.S. patent application # 09/952,454, filed on Sep. 14, 2001 (Owens et al., “Improved Adhesion by Plasma Conditioning of Semiconductor Chip Surfaces”), which is incorporated herewith by reference. [0025]
  • The present invention is further related to U.S. Patents # 6,213,347, issued Apr. 10, 2001, and # 6,228,680, issued May 8, 2001 (both Thomas, “Low Stress Method and Apparatus for Underfilling Flip-Chip Electronic Devices”); and # 6,245,583, issued Jun. 12, 2001 (Amador et al., “Low Stress Method and Apparatus of Underfilling Flip-Chip Electronic Devices”). [0026]
  • The present invention provides the process to minimize the thermomechanical stress in a microelectronic assembly of a plastic package and a printed circuit board as shown schematically and simplified in FIG. 1. A portion of the assembly in FIG. 1 is enlarged in FIG. 2 to show some detail of the thin layer structure. An integrated circuit package, preferably formed of plastic material such as molding compound surrounding silicon [0027] 10 on a flexible substrate 11, comprises a package surface 11 a where a plurality of terminal pads 13 are located. These terminal pads 13 are preferably made of the package metallization such as copper or gold flash over copper.
  • Package [0028] 10 and 11 is mounted to a substrate or board 14, integral with interconnections and a plurality of terminal pads 15, yet spaced apart by a gap 16. Substrate 14 preferably comprises a printed circuit board made of FR-4 or a glass-epoxy laminate; contact pads 15 are preferably composed of solder-wettable copper. Package 10 and 11 is attached by reflowable bump interconnections 17 which extend across the gap and connect the terminal pads 13 on the package to the terminal pads 15 on the substrate both electrically and mechanically. Preferably, tin or a tin alloy (such as tin/indium, tin/bismuth, tin/lead) of a desirable melting temperature is chosen for bumps 17 to accomplish the reflow at a practical temperature. Bumps 17 are often referred to as “solder” bumps. For silicon packages, the protective “soldermask” 19 in FIGS. 1 and 2 can be made of a variety of insulating materials including polymers such as polyimide.
  • In known technology, the gap [0029] 16 is often filled with a polymeric encapsulant that extends over the printed circuit board about the perimeter of the package. The main purpose of encapsulant, commonly referred to as the “underfill” material, is a reduction of mechanical stress in the assembly; another purpose is the protection of the active chip surface. The thermomechanical stress originates from the difference of the coefficient of thermal expansion between silicon and the board material in the process of board assembly (solder bump reflow) and temperature cycle testing (usually from −40 to +125° C.).
  • Silicon, the preferred semiconductor material of chip [0030] 10, has a CTE between 2 and 3 ppm/° C., typical substrates 14 however a CTE between about 15 and 22 ppm/° C.; CTEs of the metals in the assembly vary from 4.3 to 17.0. The materials are mechanically coupled intimately, even rigidly, to each other in the assembly of a ball-grid array package. For the standard assembly process flow, the temperature reaches the maximum of 220° C. because of an overshoot over the melting temperature of 183° C. of the eutectic tin-lead alloy (63 weight % tin). After the solder has molten and is beginning to cool, the stress is zero and stays zero to the eutectic temperature of 183° C. With continued cooling of the assembly, though, stress starts appearing and increases rapidly. When ambient temperature is reached, the stress levels reach levels so high that damage by nascent cracking has often been inflicted to the structurally weakest parts of the assembly, especially the solder joints, the chip multilevel dielectric films, or the protective soldermask 19 in FIGS. 1 and 2. The package 10 and 11 in FIGS. 1 and 2 is now arranged on substrate 14 such that each of the substrate terminal pads 15 registers with a package terminal pad 13, with the solder bumps therebetween. By way of example, the gap 16 between active surface 11 of the chip and the substrate is preferably between 300 and 700 μm.
  • Computer stress modeling can be applied according to Darveaux's fatigue model to solder bump interconnections as shown in FIGS. 1 and 2 (see R. Darveaux, K. Banerji, A. Mawer, and G. Dody, “Reliability of plastic ball grid array assembly”, Ball Grid Array Technology, J. Lau Editor, McGraw-Hill, Inc. New York, 1995; R. Darveaux, “Effect of simulation methodology on solder joint crack growth correlation”, Proc. IEEE, 50th Elec. Comp. Tech. Conf., pp.1048-1058, 2000). The computer results reveal that the regions of highest stress in temperature cycling is the zone designated [0031] 17 a in FIG. 2. In a typical assembly design with a solder joint width of 0.45 mm, the average plastic energy density in zone 17 a is about 115 kJ/m3, and the maximum energy density is a high as 703 kJ/m3. These high values cause the damage to initiate already at 588 cycles (between −40 and +125° C.), the rate of crack propagation per cycle to reach 0.159 μm/cycle, and thus the number of cycles to complete crack propagation to be 2836 cycles. The board level reliability is thus limited to 3424 cycles. The schematic FIG. 3 illustrates a complete crack 30 through the solder joint region of a package 31 assembled by bumps 32 to board 33.
  • The stress relief provided by the present invention focuses exactly on the region [0032] 34 of highest stress. The cross section of schematic FIG. 4 depicts an adherent layer 44 of polymer material covering the surface 41 a of the package 41 and surrounding bump 42 to form a solid meniscus 44 a. The thickness 44 a of the layer 44 is between about one quarter and one half of the height 42 b of bump 42.
  • In FIG. 4, the plastic package [0033] 41 may be made of any polymeric material used in semiconductor encapsulation, including molding compounds, thermoset or thermoplastic formulations, and plastic films. The package 41 may belong to the ball grid array or chip-scale families, or any package design using reflow interconnectors 42 for the assembly to external parts.
  • The reflowable metal of bumps [0034] 42 is selected from a group consisting of tin, indium, tin alloys including tin/indium, tin/silver, tin/bismuth, and tin/lead, conductive adhesives, and z-axis conductive materials. The bumps 42 have a diameter from about 50 to 700 μm, a center-to-center spacing between about 100 and 1300 μm, and approximately uniform height.
  • The polymer for the adherent layer [0035] 42 includes non-electrically conductive adhesives, epoxies filled or unfilled with inorganic particulate fillers including boron nitride or aluminum nitride, bisphenol A with an anhydride cross-linking agent, having a viscosity of <8000 cps and an elasticity modulus between about 1 and 5 GPa. Suitable adhesive polymer precursors are commercially available, for instance, from the company Loctite, Rocky Hill, Conn. 06067, USA, under the trade name Hysol® QMI 536HT; Hysol® FP4450HA; or Product 3563.
  • By way of example, the assembly design having a solder joint width of 0.45 mm, discussed earlier for Darveaux's fatigue model, shows significant improvements after implementing the adhesive polymer layer. For the zone [0036] 17 b of highest stress (see FIG. 4), the computer results indicate now an average plastic energy density of only about 97 kJ/m3, and a maximum plastic energy density of only about 513 kJ/m3. These lower values postpone the initiation of a nascent crack in temperature cycling (between −40 to +125° C.) to 768 cycles. The rate of crack propagation per cycle is now 0.134 μm/cycle, for 4285 cycles to complete the crack propagation (the crack length is also extended to 0.573 mm due to the wider bump diameter at the location of highest stress). The board level reliability is thus extended to 5053 cycles, an almost 50% improvement compared to the board level reliability before the application of the polymer layer.
  • As illustrated in FIG. 5, it is an important aspect of the present invention that a stress-reducing polymer layer similar to layer [0037] 44 depicted in FIG. 4 can be used for reliability improvements of bumps attached to polymeric substrates such as assembly boards. These substrates 53 have a plurality of metallic terminals 51 exposed on a substrate surface 53 a. A metallic bump 52 is then attached to each of these terminals 51, wherein these bumps are made of reflowable metal and have approximately uniform height. An adherent layer 54 of polymer material covers the substrate surface 53 a and surrounds each of the bumps 52 to form a solid meniscus 54 a. This layer has a thickness 54 b between about one quarter and one half of the bump height 52 a.
  • The substrates or assembly boards are selected from a group consisting of organic materials including FR-4, FR-5, and BT resin, with or without strengthening or thermally modulating fibers or fillers, including a grid of glass fibers. [0038]
  • The method for completing a plastic package for semiconductor devices by fabricating polymer-embedded solder bumps progresses in the steps illustrated in FIGS. [0039] 6 to 10. The process flow is as follows:
  • FIG. 6: [0040]
  • Step 1: Providing a plastic package [0041] 60 having a plurality of metallic terminals 61 exposed on the package surface 62; the terminals are spaced apart by some distance 63.
  • Step 2: Attaching a metallic bump to each of the terminals; the bumps are made of reflowable metal and have approximately uniform mass and height [0042] 65.
  • Step 3: Reflowing the bumps, while maintaining approximate uniformity of predetermined height [0043] 65.
  • FIG. 7: [0044]
  • Step 4: Applying a water-soluble polymer [0045] 71 to coat the top surface of the bumps 64.
  • Step 5: Positioning the package [0046] 60 in the vacuum chamber of a plasma apparatus so that the surface 62 faces the plasma source.
  • Step 6: initiating a plasma and controlling the ion mean free path so that the ions [0047] 72 reach the surface 62 with predetermined energy.
  • Step 7: Exposing the surface [0048] 62 to the plasma 72 for a length of time sufficient to
  • roughen the polymer surface [0049] 62;
  • clean the polymer surface [0050] 62 from organic contamination; and
  • improve the surface affinity to adhesion. [0051]
  • Step 8: Removing the package [0052] 60 from the vacuum chamber.
  • FIG. 8: and FIG. 9: [0053]
  • Step 9: Distributing an adherent polymeric precursor [0054] 81 between (91) and around the bumps 64, to form a meniscus 92 on each of the bumps 64 and to fill the space 63 between the bumps 64 by a layer 93 having a thickness 93 a between one quarter and one half of the height 65 of the bumps 64.
  • FIG. 9: [0055]
  • Step 10: Supplying additional thermal energy for curing the polymeric precursor, whereby the layer [0056] 93 and said meniscus 92 solidify.
  • Step 11: Cooling the package to ambient temperature. [0057]
  • FIG. 10: [0058]
  • Step 12: Polishing off excessive polymer on top of solder balls [0059] 64.
  • Step 13: Washing the assembled package, generally designated [0060] 100, in DI water to remove the water-soluble polymeric bump coating, completing the plastic package.
  • While this invention has been described in reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications and combinations of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to the description. It is therefore intended that the appended claims encompass any such modifications or embodiments. [0061]

Claims (11)

We claim:
1. A plastic package for use in semiconductor devices, said package having a plurality of metallic terminals exposed on a package surface, comprising:
a metallic bump attached to each of said terminals, said bumps made of reflowable metal and having approximately uniform height; and
an adherent layer of polymer material covering said package surface and surrounding each of said bumps to form a solid meniscus, said layer having a thickness between a quarter and one half of said bump height.
2. The package according to claim 1 wherein said plastic is any polymeric material used in semiconductor encapsulation, including molding compounds as well as thermoset and thermoplastic formulations.
3. The package according to claim 1 wherein said semiconductor devices include any product of the ball-grid array and chip-scale package families.
4. The package according to claim 1 wherein said reflowable metal is selected from a group consisting of tin, indium, tin alloys including tin/indium, tin/silver, tin/bismuth, and tin/lead, conductive adhesives, and z-axis conductive materials.
5. The package according to claim 1 wherein said bumps have a diameter from about 50 to 700 μm and a center-to-center spacing between about 100 and 1300 μm.
6. The package according to claim 1 wherein said polymer material for said adherent layer includes non-electrically conductive adhesives, epoxies filled or unfilled with inorganic particulate fillers including boron nitride or aluminum nitride, bisphenol A with an anhydride cross-linking agent, having a viscosity of <8000 cps and an elasticity modulus between about 1 and 5 GPa.
7. A polymeric substrate for use in electronic assembly boards, said substrate having a plurality of metallic terminals exposed on a substrate surface, comprising:
a metallic bump attached to each of said terminals, said bumps made of reflowable metal and having approximately uniform height; and
an adherent layer of polymer material covering said substrate surface and surrounding each of said bumps to form a solid meniscus, said layer having a thickness between a quarter and one half of said bump height.
8. The substrate according to claim 7 wherein said assembly board is selected from a group consisting of organic materials, including FR-4, FR-5, and BT resin, with or without strengthening or thermally modulating fibers or fillers, including a grid of glass fibers.
9. A method for completing a polymer plastic package for use in semiconductor devices, comprising the steps of:
providing a polymer package having a plurality of metallic terminals exposed on a package surface, said terminals spaced apart;
attaching a metallic bump to each of said terminals, said bumps made of reflowable metal and having approximately uniform mass and height;
reflowing said bumps, while maintaining approximate uniformity of predetermined height;
stencil-printing a water-soluble polymer to coat the top surface of said bumps;
positioning said packages in the vacuum chamber of a plasma apparatus so that said surface faces the plasma source;
initiating a plasma and controlling the ion mean free path so that said ions reach said surface with predetermined energy;
exposing said surface to said plasma for a length of time sufficient to
roughen said polymer surface;
clean said polymer surface from organic contamination; and
improve the surface affinity to adhesion;
removing said package from said vacuum chamber;
distributing an adherent polymeric precursor between and around said bumps, to form a meniscus on each of said bumps and to fill said space between said bumps by a layer having a thickness between a quarter and one half of said height of said bumps;
supplying additional thermal energy for curing said polymeric precursor, whereby said layer and said meniscus solidify;
cooling the package to ambient temperature; and washing said package in DI water to remove said water-soluble polymeric bump coating, completing said plastic package.
10. The method according to claim 9 wherein said water-soluble polymer is polyvinyl alcohol.
11. The method according to claim 9 further comprising the process step of slightly polishing said bump surfaces before said step of washing to remove excess polymer.
US10/215,115 2002-08-08 2002-08-08 Polymer-embedded solder bumps for reliable plastic package attachment Active US6696644B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/215,115 US6696644B1 (en) 2002-08-08 2002-08-08 Polymer-embedded solder bumps for reliable plastic package attachment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/215,115 US6696644B1 (en) 2002-08-08 2002-08-08 Polymer-embedded solder bumps for reliable plastic package attachment
JP2003288507A JP2004072116A (en) 2002-08-08 2003-08-07 Polymer-buried solder bump used for reliable plastic package attachment
US10/761,679 US20040149479A1 (en) 2002-08-08 2004-01-20 Polymer-embedded solder bumps for reliable plastic package attachment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/761,679 Continuation US20040149479A1 (en) 2002-08-08 2004-01-20 Polymer-embedded solder bumps for reliable plastic package attachment

Publications (2)

Publication Number Publication Date
US20040027788A1 true US20040027788A1 (en) 2004-02-12
US6696644B1 US6696644B1 (en) 2004-02-24

Family

ID=31494804

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/215,115 Active US6696644B1 (en) 2002-08-08 2002-08-08 Polymer-embedded solder bumps for reliable plastic package attachment
US10/761,679 Abandoned US20040149479A1 (en) 2002-08-08 2004-01-20 Polymer-embedded solder bumps for reliable plastic package attachment

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/761,679 Abandoned US20040149479A1 (en) 2002-08-08 2004-01-20 Polymer-embedded solder bumps for reliable plastic package attachment

Country Status (2)

Country Link
US (2) US6696644B1 (en)
JP (1) JP2004072116A (en)

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060024863A1 (en) * 2004-07-30 2006-02-02 Chih-Ming Chung Chip package structure and process for fabricating the same
US20060246703A1 (en) * 2005-04-27 2006-11-02 International Business Machines Corporation Post bump passivation for soft error protection
US20080308935A1 (en) * 2007-06-18 2008-12-18 Samsung Electronics Co., Ltd. Semiconductor chip package, semiconductor package including semiconductor chip package, and method of fabricating semiconductor package
US20090166842A1 (en) * 2001-03-27 2009-07-02 Hyung Ju Lee Leadframe for semiconductor package
US7687899B1 (en) 2007-08-07 2010-03-30 Amkor Technology, Inc. Dual laminate package structure with embedded elements
US7723852B1 (en) 2008-01-21 2010-05-25 Amkor Technology, Inc. Stacked semiconductor package and method of making same
US7732899B1 (en) 2005-12-02 2010-06-08 Amkor Technology, Inc. Etch singulated semiconductor package
US7768135B1 (en) 2008-04-17 2010-08-03 Amkor Technology, Inc. Semiconductor package with fast power-up cycle and method of making same
US7777351B1 (en) 2007-10-01 2010-08-17 Amkor Technology, Inc. Thin stacked interposer package
US7808084B1 (en) 2008-05-06 2010-10-05 Amkor Technology, Inc. Semiconductor package with half-etched locking features
US7847392B1 (en) 2008-09-30 2010-12-07 Amkor Technology, Inc. Semiconductor device including leadframe with increased I/O
US7847386B1 (en) 2007-11-05 2010-12-07 Amkor Technology, Inc. Reduced size stacked semiconductor package and method of making the same
US7875963B1 (en) 2008-11-21 2011-01-25 Amkor Technology, Inc. Semiconductor device including leadframe having power bars and increased I/O
US20110084386A1 (en) * 2003-11-10 2011-04-14 Stats Chippac, Ltd. Semiconductor Device and Method of Self-Confinement of Conductive Bump Material During Reflow Without Solder Mask
US7956453B1 (en) 2008-01-16 2011-06-07 Amkor Technology, Inc. Semiconductor package with patterning layer and method of making same
US7960818B1 (en) 2009-03-04 2011-06-14 Amkor Technology, Inc. Conformal shield on punch QFN semiconductor package
US7977774B2 (en) 2007-07-10 2011-07-12 Amkor Technology, Inc. Fusion quad flat semiconductor package
US7982298B1 (en) 2008-12-03 2011-07-19 Amkor Technology, Inc. Package in package semiconductor device
US7989933B1 (en) 2008-10-06 2011-08-02 Amkor Technology, Inc. Increased I/O leadframe and semiconductor device including same
US8008758B1 (en) 2008-10-27 2011-08-30 Amkor Technology, Inc. Semiconductor device with increased I/O leadframe
US8026589B1 (en) 2009-02-23 2011-09-27 Amkor Technology, Inc. Reduced profile stackable semiconductor package
US8058715B1 (en) 2009-01-09 2011-11-15 Amkor Technology, Inc. Package in package device for RF transceiver module
US8067821B1 (en) 2008-04-10 2011-11-29 Amkor Technology, Inc. Flat semiconductor package with half package molding
US8072050B1 (en) 2008-11-18 2011-12-06 Amkor Technology, Inc. Semiconductor device with increased I/O leadframe including passive device
US8089159B1 (en) 2007-10-03 2012-01-03 Amkor Technology, Inc. Semiconductor package with increased I/O density and method of making the same
US8089145B1 (en) 2008-11-17 2012-01-03 Amkor Technology, Inc. Semiconductor device including increased capacity leadframe
US8125064B1 (en) 2008-07-28 2012-02-28 Amkor Technology, Inc. Increased I/O semiconductor package and method of making same
US8184453B1 (en) 2008-07-31 2012-05-22 Amkor Technology, Inc. Increased capacity semiconductor package
US8318287B1 (en) 1998-06-24 2012-11-27 Amkor Technology, Inc. Integrated circuit package and method of making the same
US8441110B1 (en) 2006-06-21 2013-05-14 Amkor Technology, Inc. Side leaded, bottom exposed pad and bottom exposed lead fusion quad flat semiconductor package
US20130127045A1 (en) * 2011-11-22 2013-05-23 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming fine-pitch copper bump structures
US8487420B1 (en) 2008-12-08 2013-07-16 Amkor Technology, Inc. Package in package semiconductor device with film over wire
US8575742B1 (en) 2009-04-06 2013-11-05 Amkor Technology, Inc. Semiconductor device with increased I/O leadframe including power bars
US8648450B1 (en) 2011-01-27 2014-02-11 Amkor Technology, Inc. Semiconductor device including leadframe with a combination of leads and lands
US8674485B1 (en) 2010-12-08 2014-03-18 Amkor Technology, Inc. Semiconductor device including leadframe with downsets
US8680656B1 (en) 2009-01-05 2014-03-25 Amkor Technology, Inc. Leadframe structure for concentrated photovoltaic receiver package
US8810029B2 (en) 2003-11-10 2014-08-19 Stats Chippac, Ltd. Solder joint flip chip interconnection
US20140264859A1 (en) * 2013-03-12 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging Devices and Methods of Manufacture Thereof
US20140264846A1 (en) * 2013-03-12 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging Devices, Methods of Manufacture Thereof, and Packaging Methods
US8841779B2 (en) 2005-03-25 2014-09-23 Stats Chippac, Ltd. Semiconductor device and method of forming high routing density BOL BONL and BONP interconnect sites on substrate
US9064858B2 (en) 2003-11-10 2015-06-23 Stats Chippac, Ltd. Semiconductor device and method of forming bump-on-lead interconnection
US20150187716A1 (en) * 2013-12-26 2015-07-02 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device and manufacturing method thereof
US9082776B2 (en) 2012-08-24 2015-07-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package having protective layer with curved surface and method of manufacturing same
US9159665B2 (en) 2005-03-25 2015-10-13 Stats Chippac, Ltd. Flip chip interconnection having narrow interconnection sites on the substrate
US9184118B2 (en) 2013-05-02 2015-11-10 Amkor Technology Inc. Micro lead frame structure having reinforcing portions and method
US9184148B2 (en) 2013-10-24 2015-11-10 Amkor Technology, Inc. Semiconductor package and method therefor
US9219045B2 (en) 2003-11-10 2015-12-22 Stats Chippac, Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US20160035688A1 (en) * 2014-07-29 2016-02-04 Panasonic Corporation Semiconductor component, semiconductor-mounted product including the component, and method of producing the product
US9257333B2 (en) 2013-03-11 2016-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structures and methods of forming same
US9263839B2 (en) 2012-12-28 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for an improved fine pitch joint
US20160155667A1 (en) * 2011-12-31 2016-06-02 Intel Corporation Organic thin film passivation of metal interconnections
US9368398B2 (en) 2012-01-12 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structure and method of fabricating same
US9437564B2 (en) 2013-07-09 2016-09-06 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structure and method of fabricating same
US9589862B2 (en) 2013-03-11 2017-03-07 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structures and methods of forming same
US9607921B2 (en) 2012-01-12 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Package on package interconnect structure
US9631481B1 (en) 2011-01-27 2017-04-25 Amkor Technology, Inc. Semiconductor device including leadframe with a combination of leads and lands and method
US9673122B2 (en) 2014-05-02 2017-06-06 Amkor Technology, Inc. Micro lead frame structure having reinforcing portions and method
US9704725B1 (en) 2012-03-06 2017-07-11 Amkor Technology, Inc. Semiconductor device with leadframe configured to facilitate reduced burr formation
US9773685B2 (en) 2003-11-10 2017-09-26 STATS ChipPAC Pte. Ltd. Solder joint flip chip interconnection having relief structure
US9892962B2 (en) 2015-11-30 2018-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer level chip scale package interconnects and methods of manufacture thereof
US9922916B2 (en) 2011-12-31 2018-03-20 Intel Corporation High density package interconnects
US9922915B2 (en) * 2003-11-10 2018-03-20 STATS ChipPAC Pte. Ltd. Bump-on-lead flip chip interconnection
US10015888B2 (en) 2013-02-15 2018-07-03 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect joint protective layer apparatus and method

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004288785A (en) * 2003-03-20 2004-10-14 Sony Corp Joint structure and joining method of electric conduction projection
US20050082670A1 (en) * 2003-09-11 2005-04-21 Nordson Corporation Method for preapplying a viscous material to strengthen solder connections in microelectronic packaging and microelectronic packages formed thereby
WO2005056200A1 (en) * 2003-12-02 2005-06-23 Henkel Corporation Stencil and method for depositing a viscous product about solder balls therewith
US20050121225A1 (en) * 2003-12-03 2005-06-09 Phoenix Precision Technology Corporation Multi-layer circuit board and method for fabricating the same
DE10361075A1 (en) * 2003-12-22 2005-07-28 Pac Tech - Packaging Technologies Gmbh Method and Vorichtung for drying circuit substrates
KR100630698B1 (en) * 2004-08-17 2006-10-02 삼성전자주식회사 Semiconductor package improving a solder joint reliability and method for manufacturing the same
US7253088B2 (en) * 2004-09-29 2007-08-07 Intel Corporation Stress-relief layers and stress-compensation collars with low-temperature solders for board-level joints, and processes of making same
DE102005046280B4 (en) * 2005-09-27 2007-11-08 Infineon Technologies Ag of the same semiconductor component having a semiconductor chip as well as methods for the preparation of
KR100713928B1 (en) * 2006-02-08 2007-04-25 주식회사 하이닉스반도체 Semiconductor chip package
JP4920330B2 (en) * 2006-07-18 2012-04-18 ソニーケミカル&インフォメーションデバイス株式会社 Implementation method of mounting structure, the mounting method of the light-emitting diode display, light emitting diode backlight mounting method and mounting method of the electronic device
US7982137B2 (en) * 2007-06-27 2011-07-19 Hamilton Sundstrand Corporation Circuit board with an attached die and intermediate interposer
US20100096754A1 (en) * 2008-10-17 2010-04-22 Samsung Electronics Co., Ltd. Semiconductor package, semiconductor module, and method for fabricating the semiconductor package
US9137903B2 (en) * 2010-12-21 2015-09-15 Tessera, Inc. Semiconductor chip assembly and method for making same
US8563416B2 (en) 2011-07-29 2013-10-22 International Business Machines Corporation Coaxial solder bump support structure
US9082780B2 (en) 2012-03-23 2015-07-14 Stats Chippac, Ltd. Semiconductor device and method of forming a robust fan-out package including vertical interconnects and mechanical support layer
CN106653721A (en) * 2016-11-25 2017-05-10 华天科技(昆山)电子有限公司 Convex point structure for surrounding sealing ring and formation method for convex point structure

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US635049A (en) * 1898-06-14 1899-10-17 Luther Look Jar closer or opener.
JP3466237B2 (en) * 1993-09-09 2003-11-10 理想科学工業株式会社 Preparation of the solvent perforated stencil printing sheet
US5879792A (en) * 1994-02-28 1999-03-09 Riso Kagaku Corporation Stencil printing sheet and process for stencil making the same
US6245583B1 (en) * 1998-05-06 2001-06-12 Texas Instruments Incorporated Low stress method and apparatus of underfilling flip-chip electronic devices
KR100643105B1 (en) * 1998-05-06 2006-11-13 텍사스 인스트루먼츠 인코포레이티드 Low stress method and apparatus of underfilling flip-chip electronic devices
JPH11345837A (en) * 1998-05-06 1999-12-14 Texas Instr Inc <Ti> Method for reducing strain of flip chip electronic device with underfiling
JP2000058709A (en) * 1998-08-17 2000-02-25 Nec Corp Structure and formation of lump electrode
US6586676B2 (en) * 2000-05-15 2003-07-01 Texas Instruments Incorporated Plastic chip-scale package having integrated passive components
US7115986B2 (en) * 2001-05-02 2006-10-03 Micron Technology, Inc. Flexible ball grid array chip scale packages
EP1207555A1 (en) * 2000-11-16 2002-05-22 Texas Instruments Incorporated Flip-chip on film assembly for ball grid array packages
US6385049B1 (en) * 2001-07-05 2002-05-07 Walsin Advanced Electronics Ltd Multi-board BGA package

Cited By (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8963301B1 (en) 1998-06-24 2015-02-24 Amkor Technology, Inc. Integrated circuit package and method of making the same
US8853836B1 (en) 1998-06-24 2014-10-07 Amkor Technology, Inc. Integrated circuit package and method of making the same
US8318287B1 (en) 1998-06-24 2012-11-27 Amkor Technology, Inc. Integrated circuit package and method of making the same
US9224676B1 (en) 1998-06-24 2015-12-29 Amkor Technology, Inc. Integrated circuit package and method of making the same
US20090166842A1 (en) * 2001-03-27 2009-07-02 Hyung Ju Lee Leadframe for semiconductor package
US7928542B2 (en) 2001-03-27 2011-04-19 Amkor Technology, Inc. Lead frame for semiconductor package
US8102037B2 (en) 2001-03-27 2012-01-24 Amkor Technology, Inc. Leadframe for semiconductor package
US9219045B2 (en) 2003-11-10 2015-12-22 Stats Chippac, Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US9865556B2 (en) 2003-11-10 2018-01-09 STATS ChipPAC Pte Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US9029196B2 (en) 2003-11-10 2015-05-12 Stats Chippac, Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US9773685B2 (en) 2003-11-10 2017-09-26 STATS ChipPAC Pte. Ltd. Solder joint flip chip interconnection having relief structure
US8810029B2 (en) 2003-11-10 2014-08-19 Stats Chippac, Ltd. Solder joint flip chip interconnection
US9385101B2 (en) 2003-11-10 2016-07-05 STATS ChipPAC Pte. Ltd. Semiconductor device and method of forming bump-on-lead interconnection
US20110084386A1 (en) * 2003-11-10 2011-04-14 Stats Chippac, Ltd. Semiconductor Device and Method of Self-Confinement of Conductive Bump Material During Reflow Without Solder Mask
US9922915B2 (en) * 2003-11-10 2018-03-20 STATS ChipPAC Pte. Ltd. Bump-on-lead flip chip interconnection
US9379084B2 (en) 2003-11-10 2016-06-28 STATS ChipPAC Pte. Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US9373573B2 (en) 2003-11-10 2016-06-21 STATS ChipPAC Pte. Ltd. Solder joint flip chip interconnection
US9899286B2 (en) 2003-11-10 2018-02-20 STATS ChipPAC Pte. Ltd. Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask
US9064858B2 (en) 2003-11-10 2015-06-23 Stats Chippac, Ltd. Semiconductor device and method of forming bump-on-lead interconnection
US20060024863A1 (en) * 2004-07-30 2006-02-02 Chih-Ming Chung Chip package structure and process for fabricating the same
US7262510B2 (en) * 2004-07-30 2007-08-28 Advanced Semiconductor Engineering, Inc. Chip package structure
US7482200B2 (en) * 2004-07-30 2009-01-27 Advanced Semiconductor Engineering, Inc. Process for fabricating chip package structure
US20070259481A1 (en) * 2004-07-30 2007-11-08 Advanced Semiconductor Engineering, Inc. Process for fabricating chip package structure
US8841779B2 (en) 2005-03-25 2014-09-23 Stats Chippac, Ltd. Semiconductor device and method of forming high routing density BOL BONL and BONP interconnect sites on substrate
US9159665B2 (en) 2005-03-25 2015-10-13 Stats Chippac, Ltd. Flip chip interconnection having narrow interconnection sites on the substrate
US20060246703A1 (en) * 2005-04-27 2006-11-02 International Business Machines Corporation Post bump passivation for soft error protection
US7348210B2 (en) * 2005-04-27 2008-03-25 International Business Machines Corporation Post bump passivation for soft error protection
US7732899B1 (en) 2005-12-02 2010-06-08 Amkor Technology, Inc. Etch singulated semiconductor package
US8441110B1 (en) 2006-06-21 2013-05-14 Amkor Technology, Inc. Side leaded, bottom exposed pad and bottom exposed lead fusion quad flat semiconductor package
US20080308935A1 (en) * 2007-06-18 2008-12-18 Samsung Electronics Co., Ltd. Semiconductor chip package, semiconductor package including semiconductor chip package, and method of fabricating semiconductor package
US8304866B1 (en) 2007-07-10 2012-11-06 Amkor Technology, Inc. Fusion quad flat semiconductor package
US7977774B2 (en) 2007-07-10 2011-07-12 Amkor Technology, Inc. Fusion quad flat semiconductor package
US7687899B1 (en) 2007-08-07 2010-03-30 Amkor Technology, Inc. Dual laminate package structure with embedded elements
US7872343B1 (en) 2007-08-07 2011-01-18 Amkor Technology, Inc. Dual laminate package structure with embedded elements
US8283767B1 (en) 2007-08-07 2012-10-09 Amkor Technology, Inc. Dual laminate package structure with embedded elements
US8319338B1 (en) 2007-10-01 2012-11-27 Amkor Technology, Inc. Thin stacked interposer package
US7777351B1 (en) 2007-10-01 2010-08-17 Amkor Technology, Inc. Thin stacked interposer package
US8089159B1 (en) 2007-10-03 2012-01-03 Amkor Technology, Inc. Semiconductor package with increased I/O density and method of making the same
US7847386B1 (en) 2007-11-05 2010-12-07 Amkor Technology, Inc. Reduced size stacked semiconductor package and method of making the same
US7956453B1 (en) 2008-01-16 2011-06-07 Amkor Technology, Inc. Semiconductor package with patterning layer and method of making same
US8729710B1 (en) 2008-01-16 2014-05-20 Amkor Technology, Inc. Semiconductor package with patterning layer and method of making same
US7906855B1 (en) 2008-01-21 2011-03-15 Amkor Technology, Inc. Stacked semiconductor package and method of making same
US7723852B1 (en) 2008-01-21 2010-05-25 Amkor Technology, Inc. Stacked semiconductor package and method of making same
US8067821B1 (en) 2008-04-10 2011-11-29 Amkor Technology, Inc. Flat semiconductor package with half package molding
US7768135B1 (en) 2008-04-17 2010-08-03 Amkor Technology, Inc. Semiconductor package with fast power-up cycle and method of making same
US8084868B1 (en) 2008-04-17 2011-12-27 Amkor Technology, Inc. Semiconductor package with fast power-up cycle and method of making same
US7808084B1 (en) 2008-05-06 2010-10-05 Amkor Technology, Inc. Semiconductor package with half-etched locking features
US8125064B1 (en) 2008-07-28 2012-02-28 Amkor Technology, Inc. Increased I/O semiconductor package and method of making same
US8184453B1 (en) 2008-07-31 2012-05-22 Amkor Technology, Inc. Increased capacity semiconductor package
US7847392B1 (en) 2008-09-30 2010-12-07 Amkor Technology, Inc. Semiconductor device including leadframe with increased I/O
US8299602B1 (en) 2008-09-30 2012-10-30 Amkor Technology, Inc. Semiconductor device including leadframe with increased I/O
US8432023B1 (en) 2008-10-06 2013-04-30 Amkor Technology, Inc. Increased I/O leadframe and semiconductor device including same
US7989933B1 (en) 2008-10-06 2011-08-02 Amkor Technology, Inc. Increased I/O leadframe and semiconductor device including same
US8823152B1 (en) 2008-10-27 2014-09-02 Amkor Technology, Inc. Semiconductor device with increased I/O leadframe
US8008758B1 (en) 2008-10-27 2011-08-30 Amkor Technology, Inc. Semiconductor device with increased I/O leadframe
US8089145B1 (en) 2008-11-17 2012-01-03 Amkor Technology, Inc. Semiconductor device including increased capacity leadframe
US8072050B1 (en) 2008-11-18 2011-12-06 Amkor Technology, Inc. Semiconductor device with increased I/O leadframe including passive device
US7875963B1 (en) 2008-11-21 2011-01-25 Amkor Technology, Inc. Semiconductor device including leadframe having power bars and increased I/O
US8188579B1 (en) 2008-11-21 2012-05-29 Amkor Technology, Inc. Semiconductor device including leadframe having power bars and increased I/O
US7982298B1 (en) 2008-12-03 2011-07-19 Amkor Technology, Inc. Package in package semiconductor device
US8487420B1 (en) 2008-12-08 2013-07-16 Amkor Technology, Inc. Package in package semiconductor device with film over wire
US8680656B1 (en) 2009-01-05 2014-03-25 Amkor Technology, Inc. Leadframe structure for concentrated photovoltaic receiver package
US8558365B1 (en) 2009-01-09 2013-10-15 Amkor Technology, Inc. Package in package device for RF transceiver module
US8058715B1 (en) 2009-01-09 2011-11-15 Amkor Technology, Inc. Package in package device for RF transceiver module
US8026589B1 (en) 2009-02-23 2011-09-27 Amkor Technology, Inc. Reduced profile stackable semiconductor package
US7960818B1 (en) 2009-03-04 2011-06-14 Amkor Technology, Inc. Conformal shield on punch QFN semiconductor package
US8729682B1 (en) 2009-03-04 2014-05-20 Amkor Technology, Inc. Conformal shield on punch QFN semiconductor package
US8575742B1 (en) 2009-04-06 2013-11-05 Amkor Technology, Inc. Semiconductor device with increased I/O leadframe including power bars
US8674485B1 (en) 2010-12-08 2014-03-18 Amkor Technology, Inc. Semiconductor device including leadframe with downsets
US9508631B1 (en) 2011-01-27 2016-11-29 Amkor Technology, Inc. Semiconductor device including leadframe with a combination of leads and lands and method
US9978695B1 (en) 2011-01-27 2018-05-22 Amkor Technology, Inc. Semiconductor device including leadframe with a combination of leads and lands and method
US8648450B1 (en) 2011-01-27 2014-02-11 Amkor Technology, Inc. Semiconductor device including leadframe with a combination of leads and lands
US9275939B1 (en) 2011-01-27 2016-03-01 Amkor Technology, Inc. Semiconductor device including leadframe with a combination of leads and lands and method
US9631481B1 (en) 2011-01-27 2017-04-25 Amkor Technology, Inc. Semiconductor device including leadframe with a combination of leads and lands and method
US20130127045A1 (en) * 2011-11-22 2013-05-23 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming fine-pitch copper bump structures
US9978656B2 (en) * 2011-11-22 2018-05-22 Taiwan Semiconductor Manufacturing Company, Ltd. Mechanisms for forming fine-pitch copper bump structures
US9922916B2 (en) 2011-12-31 2018-03-20 Intel Corporation High density package interconnects
US20160155667A1 (en) * 2011-12-31 2016-06-02 Intel Corporation Organic thin film passivation of metal interconnections
US9583390B2 (en) * 2011-12-31 2017-02-28 Intel Corporation Organic thin film passivation of metal interconnections
US10204851B2 (en) 2011-12-31 2019-02-12 Intel Corporation High density package interconnects
US9824991B2 (en) 2011-12-31 2017-11-21 Intel Corporation Organic thin film passivation of metal interconnections
US9607921B2 (en) 2012-01-12 2017-03-28 Taiwan Semiconductor Manufacturing Company, Ltd. Package on package interconnect structure
US9368398B2 (en) 2012-01-12 2016-06-14 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structure and method of fabricating same
US9768136B2 (en) 2012-01-12 2017-09-19 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structure and method of fabricating same
US9704725B1 (en) 2012-03-06 2017-07-11 Amkor Technology, Inc. Semiconductor device with leadframe configured to facilitate reduced burr formation
US10090228B1 (en) 2012-03-06 2018-10-02 Amkor Technology, Inc. Semiconductor device with leadframe configured to facilitate reduced burr formation
US9698028B2 (en) 2012-08-24 2017-07-04 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package and method of manufacturing the same
US9082776B2 (en) 2012-08-24 2015-07-14 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor package having protective layer with curved surface and method of manufacturing same
US9263839B2 (en) 2012-12-28 2016-02-16 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for an improved fine pitch joint
US10062659B2 (en) 2012-12-28 2018-08-28 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for an improved fine pitch joint
US10015888B2 (en) 2013-02-15 2018-07-03 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect joint protective layer apparatus and method
US10262964B2 (en) 2013-03-11 2019-04-16 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structures and methods of forming same
US9589862B2 (en) 2013-03-11 2017-03-07 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structures and methods of forming same
US9935070B2 (en) 2013-03-11 2018-04-03 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structures and methods of forming same
US9257333B2 (en) 2013-03-11 2016-02-09 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structures and methods of forming same
US20140264859A1 (en) * 2013-03-12 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging Devices and Methods of Manufacture Thereof
US10079213B2 (en) 2013-03-12 2018-09-18 Taiwan Semiconductor Manufacturing Company Packaging devices and methods of manufacture thereof
US9673160B2 (en) 2013-03-12 2017-06-06 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging devices, methods of manufacture thereof, and packaging methods
US9401308B2 (en) * 2013-03-12 2016-07-26 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging devices, methods of manufacture thereof, and packaging methods
US20140264846A1 (en) * 2013-03-12 2014-09-18 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging Devices, Methods of Manufacture Thereof, and Packaging Methods
US9355906B2 (en) * 2013-03-12 2016-05-31 Taiwan Semiconductor Manufacturing Company, Ltd. Packaging devices and methods of manufacture thereof
US9184118B2 (en) 2013-05-02 2015-11-10 Amkor Technology Inc. Micro lead frame structure having reinforcing portions and method
US9437564B2 (en) 2013-07-09 2016-09-06 Taiwan Semiconductor Manufacturing Company, Ltd. Interconnect structure and method of fabricating same
US9184148B2 (en) 2013-10-24 2015-11-10 Amkor Technology, Inc. Semiconductor package and method therefor
US9543235B2 (en) 2013-10-24 2017-01-10 Amkor Technology, Inc. Semiconductor package and method therefor
US10020275B2 (en) * 2013-12-26 2018-07-10 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductive packaging device and manufacturing method thereof
US20150187716A1 (en) * 2013-12-26 2015-07-02 Taiwan Semiconductor Manufacturing Company Ltd. Semiconductor device and manufacturing method thereof
US9673122B2 (en) 2014-05-02 2017-06-06 Amkor Technology, Inc. Micro lead frame structure having reinforcing portions and method
US9925612B2 (en) * 2014-07-29 2018-03-27 Panasonic Intellectual Property Management Co., Ltd. Semiconductor component, semiconductor-mounted product including the component, and method of producing the product
US20160035688A1 (en) * 2014-07-29 2016-02-04 Panasonic Corporation Semiconductor component, semiconductor-mounted product including the component, and method of producing the product
US9892962B2 (en) 2015-11-30 2018-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Wafer level chip scale package interconnects and methods of manufacture thereof

Also Published As

Publication number Publication date
JP2004072116A (en) 2004-03-04
US6696644B1 (en) 2004-02-24
US20040149479A1 (en) 2004-08-05

Similar Documents

Publication Publication Date Title
US6064114A (en) Semiconductor device having a sub-chip-scale package structure and method for forming same
US6138348A (en) Method of forming electrically conductive polymer interconnects on electrical substrates
US7898083B2 (en) Method for low stress flip-chip assembly of fine-pitch semiconductor devices
US6753616B2 (en) Flip chip semiconductor device in a molded chip scale package
US5847929A (en) Attaching heat sinks directly to flip chips and ceramic chip carriers
US6509639B1 (en) Three-dimensional stacked semiconductor package
US6765287B1 (en) Three-dimensional stacked semiconductor package
US5729896A (en) Method for attaching a flip chip on flexible circuit carrier using chip with metallic cap on solder
US6610591B1 (en) Methods of ball grid array
US7253078B1 (en) Method and apparatus for forming an underfill adhesive layer
US6214642B1 (en) Area array stud bump flip chip device and assembly process
US7187078B2 (en) Bump structure
US7091063B2 (en) Electronic assembly comprising solderable thermal interface and methods of manufacture
US7067911B1 (en) Three-dimensional stacked semiconductor package with metal pillar in encapsulant aperture
US7078822B2 (en) Microelectronic device interconnects
US6388340B2 (en) Compliant semiconductor chip package with fan-out leads and method of making same
US7329598B2 (en) Method of manufacturing a semiconductor device
US7112467B2 (en) Structure and method for temporarily holding integrated circuit chips in accurate alignment
US6696757B2 (en) Contact structure for reliable metallic interconnection
JP3262497B2 (en) Chip mounting circuit card structure
US20090258459A1 (en) Packaged System of Semiconductor Chips Having a Semiconductor Interposer
CN1307713C (en) Electronic assembly with filled no-flow underfill and methods of manufacture
KR101010159B1 (en) Flip-chip assembly with thin underfill and thick solder mask
US6586843B2 (en) Integrated circuit device with covalently bonded connection structure
US6479903B2 (en) Flip chip thermally enhanced ball grid array

Legal Events

Date Code Title Description
AS Assignment

Owner name: TEXAS INSTRUMENTS INCORPORATED, TEXAS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHIU, TZ-CHENG;VARIYAM, MANJULA N.;REEL/FRAME:013338/0312

Effective date: 20020826

FPAY Fee payment

Year of fee payment: 4

FPAY Fee payment

Year of fee payment: 8

FPAY Fee payment

Year of fee payment: 12