JP3951903B2 - Semiconductor device and method for manufacturing semiconductor device package - Google Patents

Semiconductor device and method for manufacturing semiconductor device package Download PDF

Info

Publication number
JP3951903B2
JP3951903B2 JP2002342083A JP2002342083A JP3951903B2 JP 3951903 B2 JP3951903 B2 JP 3951903B2 JP 2002342083 A JP2002342083 A JP 2002342083A JP 2002342083 A JP2002342083 A JP 2002342083A JP 3951903 B2 JP3951903 B2 JP 3951903B2
Authority
JP
Japan
Prior art keywords
conductive resin
semiconductor device
resin
support substrate
semiconductor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002342083A
Other languages
Japanese (ja)
Other versions
JP2004179292A (en
Inventor
俊明 田中
正明 竹越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2002342083A priority Critical patent/JP3951903B2/en
Publication of JP2004179292A publication Critical patent/JP2004179292A/en
Application granted granted Critical
Publication of JP3951903B2 publication Critical patent/JP3951903B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Landscapes

  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体素子又は半導体装置と支持基板が導電性樹脂を介して電気的に接続された半導体装置、半導体装置実装体、及びこれらの製造方法に関する。
【0002】
【従来の技術】
近年、電子機器の小型化、処理速度の高速化に伴い、樹脂封止型半導体パッケージの多ピン化、狭ピッチ化、薄型化の動きが急速に進展しており、半導体素子を支持基板に直接実装したフリップ実装方式が多く採用されるようになってきた。フリップ実装方式は、パッケージを小型化、薄型化できるばかりでなく、半導体素子の電極と支持基板の電極を接続する距離を最小にできることから高周波特性に優れる特徴がある。
【0003】
図6はフリップチップ実装方式の一例を示す図である。従来技術では、バンプ材料としてSn−Pb系はんだを用いており、半導体素子1の回路面に形成されたAl電極3上には、はんだの拡散防止のためにCrやAuなどのバリアメタル層が形成されている。また、はんだバンプは、球形のはんだボールを電極3上に搭載した後、リフロー工程で溶融させることで形成されるが、このとき、はんだの濡れ性を向上するためにフラックスを用いる。さらに、支持基板への実装は、支持基板にはんだバンプ付き半導体素子を搭載し、再度リフロー工程を経ることで行われ、さらに、接続信頼性を向上させるために半導体素子1と支持基板8の間隙に補強樹脂であるアンダーフィルを注入し、これを硬化させて半導体装置を得ることができる。
【0004】
しかしながら、上記のようなはんだを用いた半導体素子または半導体装置の実装方法では、(1)バリアメタル層形成による半導体装置の製造工程およびコストの増加、(2)Pb系はんだの環境負荷及び法規制、(3)フラックスによる半導体装置の汚染、(4)アンダーフィル注入による半導体装置の製造工程及びコストの増加、などの問題があった。
【0005】
このような問題を解決するため、導電性樹脂を使用したフリップチップ技術が提案されている(例えば、特許文献1参照)。この方法によれば、フリップチップのボンドパッドにおける導電性の重合可能な前駆物質の形成により、フリップチップのボンドパッドと基板のボンドパッドとの間の電気接続が得られ、はんだのリフローよりも低温条件下でバンプを重合でき、チップや基板の熱膨張係数の大きな不一致により生じる信頼性の問題を相当に減少させることができ、低温でバンプ重合ができるので広範囲の基板を用いることが可能であり、はんだバンプ形成のための複雑かつ長時間を要する蒸着及び電気めっきが不要になり、さらにフラックスが不要になる特徴がある。
【0006】
【特許文献1】
特許第2717993号公報
【特許文献2】
特開2000−236002号公報(第1図)
【0007】
【発明が解決しようとする課題】
しかしながら、上記技術は、チップと基板の間隙を絶縁性樹脂で補強してないため、落下衝撃や高温と低温に繰り返し曝される冷熱サイクルに弱く、電気的接続信頼性が低いという問題がある。一方、チップと基板の間隙に補強樹脂を注入して周囲環境の変化による接続部位への影響を小さくする方法(例えば、特許文献2参照)が提案されているが、この方法では、チップと基板を接着する接着用封止樹脂と接続部位を保護する保護用封止樹脂の2種類の樹脂が必要であり、工程が煩雑になるという問題がある。
【0008】
上記を鑑みて、本発明は、製造工程数およびコストの低減が可能であり、かつ電気的接続信頼性に優れる半導体装置、半導体装置実装体、およびこれらの製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、半導体素子の電極パッドと支持基板の電極パッドを電気的に接続するバンプが導電性樹脂からなり、半導体素子と支持基板の間の空隙が絶縁性樹脂により支持されている半導体装置であって、絶縁性樹脂の熱膨張係数が導電性樹脂の熱膨張係数よりも大きいことを特徴とする半導体装置を提供する。
【0010】
また、本発明は、半導体装置の電極パッドと支持基板の電極パッドを電気的に接続するバンプが導電性樹脂からなり、半導体装置と支持基板の間の空隙が絶縁性樹脂により支持されている半導体装置実装体であって、絶縁性樹脂の熱膨張係数が導電性樹脂の熱膨張係数よりも大きいことを特徴とする半導体装置実装体を提供する。
【0011】
また、本発明は、半導体素子の電極パッドに導電性樹脂からなるバンプを形成する工程と、導電性樹脂を硬化させる工程と、支持基板の電極パッドに導電性樹脂からなるバンプを形成する工程と、熱膨張係数が導電性樹脂の熱膨張係数よりも大きい絶縁性樹脂を支持基板上の半導体素子実装領域に半導体素子の電極パッドに形成したバンプよりも高くなるように塗布する工程と、半導体素子と支持基板の両バンプが互いに重なるように半導体素子と支持基板を接合する工程と、導電性樹脂と絶縁性樹脂を硬化させる工程と、を含むことを特徴とする半導体装置の製造方法を提供する。
【0012】
また、本発明は、半導体素子の電極パッドに導電性樹脂からなるバンプを形成する工程と、導電性樹脂をBステージまで硬化させる工程と、熱膨張係数が導電性樹脂の熱膨張係数よりも大きい絶縁性樹脂を支持基板上の半導体素子実装領域に半導体素子の電極パッドに形成したバンプよりも高くなるように塗布する工程と、半導体素子のバンプと支持基板の電極パッドが互いに重なるように半導体素子と支持基板を接合する工程と、導電性樹脂と絶縁性樹脂を硬化させる工程と、を含むことを特徴とする半導体装置の製造方法を提供する。
【0013】
また、本発明は、半導体装置の電極パッドに導電性樹脂からなるバンプを形成する工程と、導電性樹脂を硬化させる工程と、支持基板の電極パッドに導電性樹脂からなるバンプを形成する工程と、熱膨張係数が導電性樹脂の熱膨張係数よりも大きい絶縁性樹脂を支持基板上の半導体装置実装領域に半導体装置の電極パッドに形成したバンプよりも高くなるように塗布する工程と、半導体装置と支持基板の両バンプが互いに重なるように半導体装置と支持基板を接合する工程と、導電性樹脂と絶縁性樹脂を硬化させる工程と、を含むことを特徴とする半導体装置実装体の製造方法を提供する。
【0014】
また、本発明は、半導体装置の電極パッドに導電性樹脂からなるバンプを形成する工程と、導電性樹脂をBステージまで硬化させる工程と、熱膨張係数が導電性樹脂の熱膨張係数よりも大きい絶縁性樹脂を支持基板上の半導体装置実装領域に半導体装置の電極パッドに形成したバンプよりも高くなるように塗布する工程と、半導体装置のバンプと支持基板の電極パッドが互いに重なるように半導体装置と支持基板を接合する工程と、導電性樹脂と絶縁性樹脂を硬化させる工程と、を含むことを特徴とする半導体装置実装体の製造方法を提供する。
【0015】
上記本発明によれば、絶縁性樹脂の熱膨張係数が導電性樹脂の熱膨張係数よりも大きいため、両樹脂硬化後、硬化温度以下になると、絶縁性樹脂が導電性樹脂より大きく収縮し、導電性樹脂からなるバンプに圧縮応力が作用することとなり、その結果、電極パッドとバンプの密着力が向上し、信頼性の高い電気的接続状態を得ることができる。
【0016】
また、本発明に用いる絶縁性樹脂のゲル化時間が導電性樹脂のそれよりも長いことが好ましい。これによれば、導電性樹脂が硬化してから絶縁性樹脂が硬化するため、バンプに対する導電性樹脂と絶縁性樹脂との膨張・収縮量の相違による負担が小さくなり、バンプに適切な圧縮応力が作用することとなり、電気的接続信頼性がより確実なものとなる。
【0017】
以下、本発明の実施形態について図面を参照して説明する。
【0018】
【発明の実施の形態】
本発明の特徴は、導電性樹脂からなるバンプを用いた半導体素子または半導体装置の基板への実装方法において、導電性樹脂よりも熱膨張係数が大きい絶縁性樹脂を導電性樹脂と同時に実装硬化する点にある。
【0019】
図1は本発明の半導体装置の製造過程の一例を示す断面図である。
【0020】
図1(a)は、半導体素子の一般的な構造を示す図である。本発明の半導体素子1は電子回路が形成されたものであれば、特に限定されず、どのような種類又は大きさの半導体素子でも使用可能である。例えば、メモリ回路が形成された半導体素子、ロジック回路が形成された半導体素子等が挙げられる。半導体素子1の上面には、電極3があり、アルミで構成されていても金めっきされた電極でもよく、特に限定されない。さらに、半導体素子1の上面には、半導体素子保護膜2が形成されている。本半導体素子保護膜2は、窒化膜やポリイミド膜等、従来公知のものでよく、特に限定されない。
【0021】
図1(b)は、半導体素子の電極3上に導電性樹脂からなるバンプ4を形成した図である。バンプを形成する導電性樹脂としては、特に限定されないが、導電性微粉体と樹脂を少なくとも含んでなる樹脂であり、その熱膨張係数が35×10−6〜50×10−6/℃の範囲であるものが好ましい。熱膨張係数が35×10−6/℃未満であると導電性微粉体に対して樹脂の割合が低くなるため接着性が悪化する傾向にあり、50×10−6/℃を超えると導電性微粉体が少なくなり、導電性が悪化する傾向にある。導電性微粉体としては、導電性樹脂の硬化後に導電性を有するのもであればとくに材質は限定されず、Ag、Cu、Ni、Pd、Al、Auなどの金属微粉体や、金属微粉体の表面を異種金属でメッキした粉体や、樹脂粉体の表面をAuなどの金属で被覆した粉体や、炭素粉末、あるいは前述の導電微粉体を混合したものが挙げられる。樹脂としては、熱によって硬化するものであれば、とくに材質は限定されず、エポキシ樹脂、フェノール樹脂などの熱硬化型樹脂や、ポリアミドイミドなどの溶剤乾燥型の樹脂が挙げられる。また、バンプの形成方法は、特に限定されず、スクリーン印刷や、転写、ポッティング、フォトプロセスなど、従来公知の方法で形成することができる。
【0022】
図1(c)は、支持基板8の電極9上に導電性樹脂からなるバンプ6を形成した図である。ここでのバンプは上記同様の導電性樹脂を用い、上記と同様の形成方法により形成される。また、半導体素子1の電極3上に形成したバンプ4がBステージ状態にあり、これを支持基板8の電極9上に直接付着、硬化させる場合には、支持基板8のバンプ6は特になくてもよい。
【0023】
図1(d)は、支持基板に絶縁性樹脂5の層を形成した図である。ここで用いられる絶縁性樹脂としては、熱によって硬化し、その熱膨張係数がバンプのそれよりも大きければよいが、好ましくは熱膨張係数が40×10−6〜60×10−6/℃のものである。また、材質は限定されず、例えば、エポキシ樹脂、フェノール樹脂などの熱硬化型樹脂や、ポリアミドイミドなどの溶剤乾燥型の樹脂が挙げられる。また、バンプを形成する導電性樹脂よりも硬化速度が遅い、すなわち、ゲル化時間が長い絶縁性樹脂であることが好ましく、さらに、(絶縁性樹脂のゲル化時間/導電性樹脂ゲル化時間)の比が1.5より大きいことがより好ましく、2.0より大きいことが特に好ましい。例えば、150℃における導電性樹脂のゲル化時間は10〜60秒の範囲であることが好ましく、絶縁性樹脂のゲル化時間は60〜180秒の範囲であることが好ましい。これら両樹脂に共通して、150℃におけるゲル化時間が10秒未満となると保存安定性が低下する傾向にあり、180秒を超えると硬化時間が長くなり、生産性が低下する。これによれば、導電性樹脂が硬化してから絶縁性樹脂が硬化するため、バンプに対する導電性樹脂と絶縁性樹脂との膨張・収縮量の相違による負担が小さくなる。すなわち、導電性樹脂の硬化収縮量の方が絶縁性樹脂よりも大きい場合、導電性樹脂と絶縁性樹脂を同時に硬化させると、絶縁性樹脂によって導電性樹脂の硬化収縮が阻害されて半導体装置と支持基板に引張られた応力がバンプに生じるが、導電性樹脂が硬化してから絶縁性樹脂を硬化させることで、導電性樹脂と絶縁性樹脂の硬化収縮量の相違による影響をバンプが受けることなく、より確実に圧縮応力が作用し、優れた信頼性の電気的接続状態を得ることができる。なお、本発明においてゲル化時間とは、JIS C2105(電機絶縁用無溶剤液状レジン試験方法)に準じて測定した値である。また、絶縁性樹脂の形成方法としては、その高さが半導体素子と支持基板の間隙よりも高く、未硬化の状態であれば、特に限定するものでなく、スクリーン印刷や、転写、ポッティングなど、従来公知の方法で形成することができる。
【0024】
図1(e)は、図1(b)で作製した半導体素子1を支持基板8に実装する工程を示した図である。導電性樹脂からなるバンプ及び絶縁性樹脂の硬化は、一定温度でも、あるいは導電性樹脂のゲル化時間を経過した後に硬化温度を高めて硬化時間の短縮を図る温度プロファイルでもよい。また、硬化時間は、特に制限されないが、絶縁性樹脂のゲル化時間の10倍以上であることが好ましい。
【0025】
図1(f)及び図2は、半導体素子1を支持基板8に実装して得られた半導体装置の一例を示す図である。このとき、絶縁性樹脂5がバンプ4に接触することなく、半導体素子と支持基板の一部のみを接続した構造(図1(f))であっても、バンプ4全てを包含した構造(図2)であってもよい。図1(f)の場合には、図3に示すように、半導体素子1と支持基板8の間隙に第2の絶縁性樹脂10を充填してもよい。このとき、第2の絶縁性樹脂10の熱膨張係数は、第1の絶縁性樹脂5の熱膨張係数と等しいことが好ましい。
【0026】
図4および図5は、半導体装置を支持基板8に実装した半導体装置実装体の一例を示すの断面図である。本発明の半導体装置実装体は、上記半導体素子の実装時と同様に、半導体装置の電極と支持基板の電極を導電性樹脂からなるバンプで接合して得ることができ、半導体装置と支持基板の空隙には硬化後の熱膨張係数がバンプの硬化後の熱膨張係数よりも大きい絶縁性樹脂層が形成されている。その他の構造は特に限定されるものではなく、(1)ベアチップ(図1)、(2)BGA(Ball Grid Array)(図4)、(3)CSP(ChipSize Package)、(4)QFP(Quad Flat Package)(図5)、(5)TSOP(Thin Solid Outline Package)などに適用可能である。
【0027】
【実施例】
外形10mm×8.5mmの半導体素子の電極(直径0.40mm)にビスフェノールF型エポキシ樹脂(東都化成(株)、YDF−170)10重量部、ビスフェノールA型エポキシ樹脂(油化シェルエポキシ(株)YL−980)10重量部、硬化剤(四国化成(株)、キュアダクトP−0505)4重量部、硬化剤(四国化成(株)、キュアダクトL−01B)2重量部、導電性フィラ(徳力化学研究所(株)、TCG−1)120重量部、および希釈剤(東都化成(株)、P−101)4重量部からなる導電性樹脂(熱膨張係数40×10−6/℃、ゲル化時間50秒/150℃)をスクリーン印刷法で印刷した後、150℃で1時間硬化してバンプを形成した。次いで、大きさ30mm×30mm、厚さ1.6mmの支持基板(日立化成工業(株)製、商品名:E−67)の電極に上記と同様の導電性樹脂をスクリーン印刷法で印刷し、さらに、支持基板の中央近傍の電極に接触しない領域にビスフェノールF型エポキシ樹脂(東都化成(株)、YDF−170)79重量部、脂環式エポキシ樹脂21重量部、メチルテトラヒドロ無水フタル酸120重量部、球形溶融シリカ(平均粒径15.2μm)450重量部、角形溶融シリカ(平均粒径15.5μm)150重量部からなる第1の絶縁性樹脂(熱膨張係数50×10−6/℃、ゲル化時間150秒/150℃)をポッティングした。次いで、半導体素子の電極と支持基板の電極が互いに一致するように、半導体素子を支持基板上に搭載して、150℃で1時間硬化して半導体装置を得た。これを熱衝撃試験機(楠本化成(株)、ウインテクNT500)に投入して、−55℃15分間、125℃15分間を1サイクルとする温度サイクル試験を行った。その結果、1000サイクルまで、導電性樹脂接続部の不良、半導体装置内部のはく離及びクラックは観察されなかった。
【0028】
【発明の効果】
本発明によれば、製造工程数およびコストの低減が可能であり、かつ電気的接続信頼性に優れる半導体装置、半導体装置実装体、およびこれらの製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の半導体装置の製造過程の一実施例を示す断面図。
【図2】本発明の半導体装置の一例を示す断面図。
【図3】本発明の半導体装置の一例を示す断面図。
【図4】本発明の半導体装置実装体の一例を示す断面図。
【図5】本発明の半導体装置実装体の一例を示す断面図。
【図6】従来のフリップチップ実装方式の一例を示す断面図。
【符号の説明】
1 半導体素子
2 半導体素子保護膜
3 電極
4 導電性バンプ
5 絶縁性樹脂
6 導電性バンプ
7 配線保護膜
8 支持基板
9 電極
10 絶縁性樹脂
11 Au線
12 封止樹脂
13 半導体素子接着剤
14 第2回路基板
15 配線保護膜
16 リード
17 はんだバンプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device in which a semiconductor element or a semiconductor device and a support substrate are electrically connected via a conductive resin, a semiconductor device mounting body, and a manufacturing method thereof.
[0002]
[Prior art]
In recent years, with the miniaturization of electronic devices and the increase in processing speed, the movement of resin-encapsulated semiconductor packages with multiple pins, narrow pitches, and thinning has been rapidly progressing. The mounted flip mounting method has been widely adopted. The flip mounting method not only enables the package to be reduced in size and thickness, but also has a feature of excellent high-frequency characteristics because the distance between the electrode of the semiconductor element and the electrode of the support substrate can be minimized.
[0003]
FIG. 6 is a diagram showing an example of a flip chip mounting method. In the prior art, Sn-Pb solder is used as a bump material, and a barrier metal layer such as Cr or Au is formed on the Al electrode 3 formed on the circuit surface of the semiconductor element 1 to prevent the diffusion of solder. Is formed. The solder bump is formed by mounting a spherical solder ball on the electrode 3 and then melting it in a reflow process. At this time, a flux is used to improve solder wettability. Further, the mounting on the support substrate is performed by mounting the semiconductor element with solder bumps on the support substrate and performing the reflow process again. Further, in order to improve the connection reliability, the gap between the semiconductor element 1 and the support substrate 8 is achieved. A semiconductor device can be obtained by injecting an underfill which is a reinforcing resin into the resin and curing it.
[0004]
However, in the method of mounting a semiconductor element or semiconductor device using solder as described above, (1) an increase in the manufacturing process and cost of the semiconductor device due to the formation of a barrier metal layer, and (2) environmental load and legal regulations of Pb-based solder (3) Contamination of the semiconductor device due to flux, and (4) semiconductor device manufacturing process and cost increase due to underfill injection.
[0005]
In order to solve such a problem, a flip chip technique using a conductive resin has been proposed (see, for example, Patent Document 1). According to this method, the formation of a conductive polymerizable precursor in the flip chip bond pad provides an electrical connection between the flip chip bond pad and the substrate bond pad, which is lower than solder reflow. The bumps can be polymerized under certain conditions, reliability problems caused by large mismatches in the thermal expansion coefficients of the chip and substrate can be significantly reduced, and bump polymerization can be performed at low temperatures, allowing a wide range of substrates to be used. In addition, there is a feature that the complicated and long-time vapor deposition and electroplating for forming the solder bump are unnecessary, and further, the flux is unnecessary.
[0006]
[Patent Document 1]
Japanese Patent No. 2717993 [Patent Document 2]
Japanese Patent Laid-Open No. 2000-236002 (FIG. 1)
[0007]
[Problems to be solved by the invention]
However, since the above-described technique does not reinforce the gap between the chip and the substrate with an insulating resin, there is a problem that the electrical connection reliability is low because it is vulnerable to a drop impact or a thermal cycle that is repeatedly exposed to high and low temperatures. On the other hand, there has been proposed a method (for example, see Patent Document 2) in which reinforcing resin is injected into the gap between the chip and the substrate to reduce the influence on the connection site due to changes in the surrounding environment. There are two types of resins, namely, an adhesive sealing resin for adhering and a protective sealing resin for protecting the connection site, and there is a problem that the process becomes complicated.
[0008]
In view of the above, an object of the present invention is to provide a semiconductor device, a semiconductor device mounting body, and a manufacturing method thereof that can reduce the number of manufacturing steps and cost and are excellent in electrical connection reliability. .
[0009]
[Means for Solving the Problems]
The present invention relates to a semiconductor device in which bumps that electrically connect electrode pads of a semiconductor element and electrode pads of a support substrate are made of a conductive resin, and a gap between the semiconductor element and the support substrate is supported by an insulating resin. The semiconductor device is characterized in that the thermal expansion coefficient of the insulating resin is larger than the thermal expansion coefficient of the conductive resin.
[0010]
The present invention also provides a semiconductor in which bumps that electrically connect electrode pads of a semiconductor device and electrode pads of a support substrate are made of a conductive resin, and a gap between the semiconductor device and the support substrate is supported by an insulating resin. Provided is a device mounting body, wherein a thermal expansion coefficient of an insulating resin is larger than a thermal expansion coefficient of a conductive resin.
[0011]
The present invention also includes a step of forming a bump made of a conductive resin on an electrode pad of a semiconductor element, a step of curing the conductive resin, and a step of forming a bump made of a conductive resin on an electrode pad of a support substrate. Applying an insulating resin having a thermal expansion coefficient larger than that of the conductive resin so as to be higher than the bump formed on the electrode pad of the semiconductor element in the semiconductor element mounting region on the support substrate; And a step of bonding the semiconductor element and the support substrate so that both bumps of the support substrate overlap with each other, and a step of curing the conductive resin and the insulating resin. .
[0012]
The present invention also includes a step of forming a bump made of a conductive resin on an electrode pad of a semiconductor element, a step of curing the conductive resin to the B stage, and a thermal expansion coefficient larger than the thermal expansion coefficient of the conductive resin. Applying an insulating resin to the semiconductor element mounting region on the support substrate so as to be higher than the bumps formed on the electrode pads of the semiconductor element, and the semiconductor element so that the bumps of the semiconductor element and the electrode pads of the support substrate overlap each other And a step of bonding the support substrate and a step of curing the conductive resin and the insulating resin.
[0013]
The present invention also includes a step of forming a bump made of a conductive resin on an electrode pad of a semiconductor device, a step of curing the conductive resin, and a step of forming a bump made of a conductive resin on the electrode pad of a support substrate. Applying an insulating resin having a thermal expansion coefficient larger than the thermal expansion coefficient of the conductive resin to the semiconductor device mounting region on the support substrate so as to be higher than the bumps formed on the electrode pads of the semiconductor device; And a step of bonding the semiconductor device and the support substrate so that both the bumps of the support substrate overlap each other, and a step of curing the conductive resin and the insulating resin. provide.
[0014]
The present invention also includes a step of forming a bump made of a conductive resin on an electrode pad of a semiconductor device, a step of curing the conductive resin up to the B stage, and a thermal expansion coefficient larger than that of the conductive resin. Applying insulating resin on the semiconductor device mounting region on the support substrate so as to be higher than the bumps formed on the electrode pads of the semiconductor device, and the semiconductor device so that the bumps of the semiconductor device and the electrode pads of the support substrate overlap each other And a step of bonding the support substrate, and a step of curing the conductive resin and the insulating resin.
[0015]
According to the present invention, since the thermal expansion coefficient of the insulating resin is larger than the thermal expansion coefficient of the conductive resin, after curing both resins, the insulating resin shrinks more than the conductive resin when the temperature is lower than the curing temperature, The compressive stress acts on the bump made of conductive resin. As a result, the adhesion between the electrode pad and the bump is improved, and a highly reliable electrical connection state can be obtained.
[0016]
Moreover, it is preferable that the gel time of the insulating resin used in the present invention is longer than that of the conductive resin. According to this, since the insulating resin is cured after the conductive resin is cured, the burden due to the difference in expansion / shrinkage between the conductive resin and the insulating resin with respect to the bump is reduced, and an appropriate compressive stress is applied to the bump. Acts, and the electrical connection reliability is further ensured.
[0017]
Embodiments of the present invention will be described below with reference to the drawings.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
A feature of the present invention is that in a method of mounting a semiconductor element or a semiconductor device on a substrate using bumps made of a conductive resin, an insulating resin having a thermal expansion coefficient larger than that of the conductive resin is mounted and cured simultaneously with the conductive resin. In the point.
[0019]
FIG. 1 is a sectional view showing an example of a manufacturing process of a semiconductor device of the present invention.
[0020]
FIG. 1A is a diagram showing a general structure of a semiconductor element. The semiconductor element 1 of the present invention is not particularly limited as long as an electronic circuit is formed, and any kind or size of semiconductor element can be used. For example, a semiconductor element in which a memory circuit is formed, a semiconductor element in which a logic circuit is formed, and the like can be given. There is an electrode 3 on the upper surface of the semiconductor element 1, which may be made of aluminum or an electrode plated with gold, and is not particularly limited. Further, a semiconductor element protective film 2 is formed on the upper surface of the semiconductor element 1. The semiconductor element protective film 2 may be a conventionally known film such as a nitride film or a polyimide film, and is not particularly limited.
[0021]
FIG. 1B is a diagram in which bumps 4 made of conductive resin are formed on the electrodes 3 of the semiconductor element. The conductive resin for forming the bump is not particularly limited, but is a resin comprising at least conductive fine powder and a resin, and has a thermal expansion coefficient of 35 × 10 −6 to 50 × 10 −6 / ° C. Are preferred. When the thermal expansion coefficient is less than 35 × 10 −6 / ° C., the adhesive ratio tends to deteriorate because the ratio of the resin to the conductive fine powder becomes low, and when it exceeds 50 × 10 −6 / ° C. There is a tendency for the amount of fine powder to decrease and the conductivity to deteriorate. The conductive fine powder is not particularly limited as long as it has conductivity after curing of the conductive resin. Metal fine powder such as Ag, Cu, Ni, Pd, Al, Au, etc., or metal fine powder And powders obtained by plating the surface of the resin with a metal such as Au, powders obtained by coating the surface of the resin powder with a metal such as Au, carbon powder, or a mixture of the above-mentioned conductive fine powders. The resin is not particularly limited as long as it is cured by heat, and examples thereof include thermosetting resins such as epoxy resins and phenol resins, and solvent-drying resins such as polyamideimide. The bump formation method is not particularly limited, and can be formed by a conventionally known method such as screen printing, transfer, potting, or photo process.
[0022]
FIG. 1C is a diagram in which bumps 6 made of conductive resin are formed on the electrodes 9 of the support substrate 8. The bumps here are formed using the same conductive resin as described above and by the same formation method as described above. In addition, when the bump 4 formed on the electrode 3 of the semiconductor element 1 is in a B stage state and directly adhered and cured on the electrode 9 of the support substrate 8, the bump 6 of the support substrate 8 is not particularly required. Also good.
[0023]
FIG. 1D is a diagram in which a layer of insulating resin 5 is formed on the support substrate. The insulating resin used here may be cured by heat and have a thermal expansion coefficient larger than that of the bump, but preferably has a thermal expansion coefficient of 40 × 10 −6 to 60 × 10 −6 / ° C. Is. The material is not limited, and examples thereof include thermosetting resins such as epoxy resins and phenol resins, and solvent-drying resins such as polyamideimide. Further, it is preferably an insulating resin having a slower curing speed than the conductive resin forming the bumps, that is, a long gelation time. Further, (gelation time of insulating resin / conductive resin gelation time) Is more preferably greater than 1.5, and particularly preferably greater than 2.0. For example, the gel time of the conductive resin at 150 ° C. is preferably in the range of 10 to 60 seconds, and the gel time of the insulating resin is preferably in the range of 60 to 180 seconds. In common with these two resins, when the gelation time at 150 ° C. is less than 10 seconds, the storage stability tends to be lowered, and when it exceeds 180 seconds, the curing time becomes longer and the productivity is lowered. According to this, since the insulating resin is cured after the conductive resin is cured, the burden due to the difference in expansion / contraction amount between the conductive resin and the insulating resin with respect to the bump is reduced. That is, when the amount of cure shrinkage of the conductive resin is larger than that of the insulating resin, if the conductive resin and the insulating resin are cured at the same time, the curing shrinkage of the conductive resin is inhibited by the insulating resin. The tensile stress on the support substrate is generated on the bump, but the bump is affected by the difference in curing shrinkage between the conductive resin and the insulating resin by curing the insulating resin after the conductive resin is cured. Therefore, the compressive stress acts more reliably, and an excellent and reliable electrical connection state can be obtained. In the present invention, the gelation time is a value measured according to JIS C2105 (Test method for solvent-free liquid resin for electrical insulation). In addition, the method of forming the insulating resin is not particularly limited as long as the height is higher than the gap between the semiconductor element and the support substrate and is in an uncured state, such as screen printing, transfer, potting, etc. It can be formed by a conventionally known method.
[0024]
FIG. 1E is a diagram illustrating a process of mounting the semiconductor element 1 manufactured in FIG. 1B on the support substrate 8. The curing of the bumps made of the conductive resin and the insulating resin may be performed at a constant temperature or a temperature profile in which the curing temperature is increased after the gelation time of the conductive resin has elapsed to shorten the curing time. Moreover, although hardening time in particular is not restrict | limited, It is preferable that it is 10 times or more of the gelatinization time of insulating resin.
[0025]
FIG. 1F and FIG. 2 are diagrams illustrating an example of a semiconductor device obtained by mounting the semiconductor element 1 on the support substrate 8. At this time, even if the insulating resin 5 does not contact the bump 4 and only a part of the semiconductor element and the support substrate are connected (FIG. 1 (f)), the structure including all the bumps 4 (FIG. 1). 2). In the case of FIG. 1 (f), the second insulating resin 10 may be filled in the gap between the semiconductor element 1 and the support substrate 8 as shown in FIG. At this time, the thermal expansion coefficient of the second insulating resin 10 is preferably equal to the thermal expansion coefficient of the first insulating resin 5.
[0026]
4 and 5 are cross-sectional views showing an example of a semiconductor device mounting body in which the semiconductor device is mounted on the support substrate 8. The semiconductor device package of the present invention can be obtained by bonding the electrodes of the semiconductor device and the electrodes of the support substrate with bumps made of a conductive resin in the same manner as when mounting the semiconductor element. An insulating resin layer having a thermal expansion coefficient after curing larger than that after curing of the bump is formed in the gap. Other structures are not particularly limited. (1) Bare chip (FIG. 1), (2) BGA (Ball Grid Array) (FIG. 4), (3) CSP (Chip Size Package), (4) QFP (Quad) (Flat Package) (FIG. 5), (5) TSOP (Thin Solid Outline Package), and the like.
[0027]
【Example】
10 parts by weight of a bisphenol F type epoxy resin (Toto Kasei Co., Ltd., YDF-170) and a bisphenol A type epoxy resin (Oilized shell epoxy) ) YL-980) 10 parts by weight, curing agent (Shikoku Kasei Co., Ltd., Cureduct P-0505) 4 parts by weight, curing agent (Shikoku Kasei Co., Ltd., Cureduct L-01B), 2 parts by weight, conductive filler Conductive resin (thermal expansion coefficient 40 × 10 −6 / ° C.) consisting of 120 parts by weight (Tokuri Chemical Laboratory Co., Ltd., TCG-1) and 4 parts by weight of diluent (Toto Kasei Co., Ltd., P-101) , Gelation time 50 seconds / 150 ° C.) was printed by screen printing, and then cured at 150 ° C. for 1 hour to form bumps. Next, a conductive resin similar to the above is printed on the electrode of a support substrate (manufactured by Hitachi Chemical Co., Ltd., trade name: E-67) having a size of 30 mm × 30 mm and a thickness of 1.6 mm by a screen printing method. Furthermore, 79 parts by weight of a bisphenol F type epoxy resin (Toto Kasei Co., Ltd., YDF-170), 21 parts by weight of an alicyclic epoxy resin, and 120 parts by weight of methyltetrahydrophthalic anhydride are provided in a region that does not contact the electrode near the center of the support substrate. Part, a first insulating resin (thermal expansion coefficient 50 × 10 −6 / ° C.) comprising 450 parts by weight of spherical fused silica (average particle size 15.2 μm) and 150 parts by weight of square fused silica (average particle size 15.5 μm). The gelation time was 150 seconds / 150 ° C.). Next, the semiconductor element was mounted on the support substrate so that the electrode of the semiconductor element and the electrode of the support substrate coincided with each other, and cured at 150 ° C. for 1 hour to obtain a semiconductor device. This was put into a thermal shock tester (Enomoto Kasei Co., Ltd., Wintech NT500), and a temperature cycle test was performed with -55 ° C for 15 minutes and 125 ° C for 15 minutes as one cycle. As a result, up to 1000 cycles, no defect in the conductive resin connecting portion, no peeling inside the semiconductor device, and no cracks were observed.
[0028]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the number of manufacturing processes and cost can be reduced, and the semiconductor device excellent in electrical connection reliability, a semiconductor device mounting body, and these manufacturing methods can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one embodiment of a manufacturing process of a semiconductor device of the present invention.
FIG. 2 is a cross-sectional view illustrating an example of a semiconductor device of the present invention.
FIG. 3 is a cross-sectional view illustrating an example of a semiconductor device of the present invention.
FIG. 4 is a cross-sectional view showing an example of a semiconductor device mounting body according to the present invention.
FIG. 5 is a cross-sectional view showing an example of a semiconductor device mounting body according to the present invention.
FIG. 6 is a cross-sectional view showing an example of a conventional flip chip mounting method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Semiconductor element 2 Semiconductor element protective film 3 Electrode 4 Conductive bump 5 Insulating resin 6 Conductive bump 7 Wiring protective film 8 Support substrate 9 Electrode 10 Insulating resin 11 Au wire 12 Sealing resin 13 Semiconductor element adhesive 14 2nd Circuit board 15 Wiring protective film 16 Lead 17 Solder bump

Claims (6)

半導体素子の電極パッドに導電性樹脂からなるバンプを形成する工程と、前記導電性樹脂を硬化させる工程と、支持基板の電極パッドに導電性樹脂からなるバンプを形成する工程と、熱膨張係数が前記導電性樹脂の熱膨張係数よりも大きい絶縁性樹脂を前記支持基板上の半導体素子実装領域に、前記半導体素子の電極パッドに形成したバンプよりも高くなるように、塗布する工程と、前記半導体素子と前記支持基板の両バンプが互いに重なるように前記半導体素子と前記支持基板を接合する工程と、前記導電性樹脂と前記絶縁性樹脂を硬化させる工程と、を含むことを特徴とする半導体装置の製造方法。  A step of forming a bump made of a conductive resin on an electrode pad of a semiconductor element; a step of curing the conductive resin; a step of forming a bump made of a conductive resin on an electrode pad of a support substrate; and a coefficient of thermal expansion. Applying an insulating resin larger than the thermal expansion coefficient of the conductive resin to a semiconductor element mounting region on the support substrate so as to be higher than bumps formed on electrode pads of the semiconductor element; A semiconductor device comprising: a step of bonding the semiconductor element and the support substrate such that both bumps of the element and the support substrate overlap each other; and a step of curing the conductive resin and the insulating resin. Manufacturing method. 前記絶縁性樹脂のゲル化時間が、前記導電性樹脂よりも長いことを特徴とする請求項記載の半導体装置の製造方法。The gel time of the insulating resin, a method of manufacturing a semiconductor device according to claim 1, wherein a longer than the conductive resin. 半導体素子の電極パッドに導電性樹脂からなるバンプを形成する工程と、前記導電性樹脂をBステージまで硬化させる工程と、熱膨張係数が前記導電性樹脂の熱膨張係数よりも大きく、ゲル化時間が前記導電性樹脂よりも長い絶縁性樹脂を支持基板上の半導体素子実装領域に、前記半導体素子の電極パッドに形成したバンプよりも高くなるように、塗布する工程と、前記半導体素子のバンプと前記支持基板の電極パッドが互いに重なるように前記半導体素子と前記支持基板を接合する工程と、前記導電性樹脂と前記絶縁性樹脂を硬化させる工程と、を含むことを特徴とする半導体装置の製造方法。Forming a bump made of a conductive resin to the electrode pads of the semiconductor element, and curing the conductive resin to the B stage, the thermal expansion coefficient is much larger than the thermal expansion coefficient of the conductive resin, gelling the time is long insulating resin than the conductive resin to the semiconductor element mounting region supporting region on the substrate, said to be higher than the bump formed on the electrode pads of the semiconductor element, a step of applying, of the semiconductor element A semiconductor device comprising: a step of bonding the semiconductor element and the support substrate such that a bump and an electrode pad of the support substrate overlap each other; and a step of curing the conductive resin and the insulating resin. Manufacturing method. 半導体装置の電極パッドに導電性樹脂からなるバンプを形成する工程と、前記導電性樹脂を硬化させる工程と、支持基板の電極パッドに導電性樹脂からなるバンプを形成する工程と、熱膨張係数が前記導電性樹脂の熱膨張係数よりも大きい絶縁性樹脂を前記支持基板上の半導体装置実装領域に、前記半導体装置の電極パッドに形成したバンプよりも高くなるように、塗布する工程と、前記半導体装置と前記支持基板の両バンプが互いに重なるように前記半導体装置と前記支持基板を接合する工程と、前記導電性樹脂と前記絶縁性樹脂を硬化させる工程と、を含むことを特徴とする半導体装置実装体の製造方法。  A step of forming a bump made of a conductive resin on an electrode pad of a semiconductor device, a step of curing the conductive resin, a step of forming a bump made of a conductive resin on an electrode pad of a support substrate, and a coefficient of thermal expansion. Applying an insulating resin larger than the thermal expansion coefficient of the conductive resin to a semiconductor device mounting region on the support substrate so as to be higher than bumps formed on electrode pads of the semiconductor device; and the semiconductor A semiconductor device comprising: a step of bonding the semiconductor device and the support substrate such that both bumps of the device and the support substrate overlap each other; and a step of curing the conductive resin and the insulating resin. Manufacturing method of mounting body. 前記絶縁性樹脂のゲル化時間が、前記導電性樹脂よりも長いことを特徴とする請求項記載の半導体装置実装体の製造方法。The method for manufacturing a semiconductor device package according to claim 4 , wherein the gel time of the insulating resin is longer than that of the conductive resin. 半導体装置の電極パッドに導電性樹脂からなるバンプを形成する工程と、前記導電性樹脂をBステージまで硬化させる工程と、熱膨張係数が前記導電性樹脂の熱膨張係数よりも大きく、ゲル化時間が前記導電性樹脂よりも長い絶縁性樹脂を支持基板上の半導体装置実装領域に、前記半導体装置の電極パッドに形成したバンプよりも高くなるように、塗布する工程と、前記半導体装置のバンプと前記支持基板の電極パッドが互いに重なるように前記半導体装置と前記支持基板を接合する工程と、前記導電性樹脂と前記絶縁性樹脂を硬化させる工程と、を含むことを特徴とする半導体装置実装体の製造方法。Forming a bump made of a conductive resin to the electrode pad of the semiconductor device, and curing the conductive resin to the B stage, the thermal expansion coefficient is much larger than the thermal expansion coefficient of the conductive resin, gelling the time is long insulating resin than the conductive resin to the semiconductor device mounting region supporting region on the substrate, said to be higher than the bump formed on the electrode pads of the semiconductor device, the steps of applying, in the semiconductor device A semiconductor device comprising: a step of bonding the semiconductor device and the support substrate such that a bump and an electrode pad of the support substrate overlap each other; and a step of curing the conductive resin and the insulating resin. Manufacturing method of mounting body.
JP2002342083A 2002-11-26 2002-11-26 Semiconductor device and method for manufacturing semiconductor device package Expired - Fee Related JP3951903B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002342083A JP3951903B2 (en) 2002-11-26 2002-11-26 Semiconductor device and method for manufacturing semiconductor device package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002342083A JP3951903B2 (en) 2002-11-26 2002-11-26 Semiconductor device and method for manufacturing semiconductor device package

Publications (2)

Publication Number Publication Date
JP2004179292A JP2004179292A (en) 2004-06-24
JP3951903B2 true JP3951903B2 (en) 2007-08-01

Family

ID=32704236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342083A Expired - Fee Related JP3951903B2 (en) 2002-11-26 2002-11-26 Semiconductor device and method for manufacturing semiconductor device package

Country Status (1)

Country Link
JP (1) JP3951903B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4396746B2 (en) 2007-08-13 2010-01-13 セイコーエプソン株式会社 Electronic devices

Also Published As

Publication number Publication date
JP2004179292A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
US6696644B1 (en) Polymer-embedded solder bumps for reliable plastic package attachment
US7000821B2 (en) Method and apparatus for improving an integrated circuit device
US6413862B1 (en) Use of palladium in IC manufacturing
JP3648277B2 (en) Semiconductor device
US7214561B2 (en) Packaging assembly and method of assembling the same
US7141878B2 (en) Semiconductor device and manufacturing method thereof
US7759240B2 (en) Use of palladium in IC manufacturing with conductive polymer bump
US20020030261A1 (en) Multi-flip-chip semiconductor assembly
JP3450236B2 (en) Semiconductor device and manufacturing method thereof
US6933221B1 (en) Method for underfilling semiconductor components using no flow underfill
WO1999036957A1 (en) Semiconductor package
US20040222522A1 (en) Semiconductor device and manufacturing method of the same
JP3116926B2 (en) Package structure and semiconductor device, package manufacturing method, and semiconductor device manufacturing method
JP2003086626A (en) Electronic component and manufacturing method thereof, and packaged body and packaging method for electronic component
JP3951903B2 (en) Semiconductor device and method for manufacturing semiconductor device package
JPH10321750A (en) Semiconductor device and manufacture of wiring board having semiconductor chip mounted thereon
JP3422243B2 (en) Resin film
JP2914569B1 (en) Semiconductor device mounting method and its mounting body
JP3333355B2 (en) Semiconductor device
JP2001185642A (en) Package substrate for mounting semiconductor
JP2003133656A (en) Mounting structure of semiconductor element
JPH0680701B2 (en) Chip carrier with pin
KR0127034B1 (en) Semiconductor package and the manufacture method
JP2966354B2 (en) Semiconductor device mounting method
JP2000315704A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050909

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20061222

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Effective date: 20070416

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100511

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20110511

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees