US20060216860A1 - Flip chip interconnection having narrow interconnection sites on the substrate - Google Patents
Flip chip interconnection having narrow interconnection sites on the substrate Download PDFInfo
- Publication number
- US20060216860A1 US20060216860A1 US11/388,755 US38875506A US2006216860A1 US 20060216860 A1 US20060216860 A1 US 20060216860A1 US 38875506 A US38875506 A US 38875506A US 2006216860 A1 US2006216860 A1 US 2006216860A1
- Authority
- US
- United States
- Prior art keywords
- pad
- width
- die
- bump
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 140
- 229910000679 solder Inorganic materials 0.000 claims abstract description 134
- 230000013011 mating Effects 0.000 claims abstract description 34
- 238000000034 method Methods 0.000 claims description 42
- 239000000853 adhesive Substances 0.000 claims description 37
- 230000001070 adhesive effect Effects 0.000 claims description 37
- 239000002184 metal Substances 0.000 claims description 20
- 229910052751 metal Inorganic materials 0.000 claims description 20
- 239000004065 semiconductor Substances 0.000 claims description 14
- 238000002844 melting Methods 0.000 claims description 9
- 230000008018 melting Effects 0.000 claims description 7
- 239000010410 layer Substances 0.000 description 29
- 239000000463 material Substances 0.000 description 28
- 239000011295 pitch Substances 0.000 description 15
- 239000002131 composite material Substances 0.000 description 8
- 239000000499 gel Substances 0.000 description 7
- 238000000059 patterning Methods 0.000 description 6
- 239000000155 melt Substances 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000005496 eutectics Effects 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 3
- 238000000418 atomic force spectrum Methods 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49838—Geometry or layout
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/563—Encapsulation of active face of flip-chip device, e.g. underfilling or underencapsulation of flip-chip, encapsulation preform on chip or mounting substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/02—Containers; Seals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
- H01L23/488—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
- H01L23/498—Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
- H01L23/49811—Additional leads joined to the metallisation on the insulating substrate, e.g. pins, bumps, wires, flat leads
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/28—Structure, shape, material or disposition of the layer connectors prior to the connecting process
- H01L24/29—Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/11—Printed elements for providing electric connections to or between printed circuits
- H05K1/111—Pads for surface mounting, e.g. lay-out
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/0557—Disposition the external layer being disposed on a via connection of the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/05571—Disposition the external layer being disposed in a recess of the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05573—Single external layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/1301—Shape
- H01L2224/13012—Shape in top view
- H01L2224/13013—Shape in top view being rectangular or square
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13101—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
- H01L2224/13111—Tin [Sn] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
- H01L2224/131—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
- H01L2224/13138—Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
- H01L2224/13144—Gold [Au] as principal constituent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/1605—Shape
- H01L2224/1607—Shape of bonding interfaces, e.g. interlocking features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16237—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area disposed in a recess of the surface of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16238—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bonding area protruding from the surface of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8112—Aligning
- H01L2224/81136—Aligning involving guiding structures, e.g. spacers or supporting members
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8119—Arrangement of the bump connectors prior to mounting
- H01L2224/81193—Arrangement of the bump connectors prior to mounting wherein the bump connectors are disposed on both the semiconductor or solid-state body and another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/812—Applying energy for connecting
- H01L2224/81201—Compression bonding
- H01L2224/81203—Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
- H01L2224/81204—Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding with a graded temperature profile
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/812—Applying energy for connecting
- H01L2224/8121—Applying energy for connecting using a reflow oven
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/812—Applying energy for connecting
- H01L2224/8121—Applying energy for connecting using a reflow oven
- H01L2224/81211—Applying energy for connecting using a reflow oven with a graded temperature profile
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/8138—Bonding interfaces outside the semiconductor or solid-state body
- H01L2224/81385—Shape, e.g. interlocking features
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/81—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
- H01L2224/818—Bonding techniques
- H01L2224/81801—Soldering or alloying
- H01L2224/81815—Reflow soldering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/831—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
- H01L2224/83102—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus using surface energy, e.g. capillary forces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/8319—Arrangement of the layer connectors prior to mounting
- H01L2224/83192—Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8385—Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
- H01L2224/83855—Hardening the adhesive by curing, i.e. thermosetting
- H01L2224/83856—Pre-cured adhesive, i.e. B-stage adhesive
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
- H01L2224/921—Connecting a surface with connectors of different types
- H01L2224/9212—Sequential connecting processes
- H01L2224/92122—Sequential connecting processes the first connecting process involving a bump connector
- H01L2224/92125—Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00013—Fully indexed content
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/00014—Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01046—Palladium [Pd]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01075—Rhenium [Re]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01082—Lead [Pb]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01322—Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/14—Integrated circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/156—Material
- H01L2924/15786—Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
- H01L2924/15787—Ceramics, e.g. crystalline carbides, nitrides or oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/30—Technical effects
- H01L2924/301—Electrical effects
- H01L2924/3011—Impedance
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/09372—Pads and lands
- H05K2201/09427—Special relation between the location or dimension of a pad or land and the location or dimension of a terminal
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/09654—Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
- H05K2201/09727—Varying width along a single conductor; Conductors or pads having different widths
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09818—Shape or layout details not covered by a single group of H05K2201/09009 - H05K2201/09809
- H05K2201/0989—Coating free areas, e.g. areas other than pads or lands free of solder resist
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10613—Details of electrical connections of non-printed components, e.g. special leads
- H05K2201/10621—Components characterised by their electrical contacts
- H05K2201/10674—Flip chip
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3452—Solder masks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- This invention relates to semiconductor packaging and, particularly, to flip chip interconnection.
- Flip chip packages include a semiconductor die mounted onto a package substrate with the active side of the die facing the substrate.
- the substrate is made up of a dielectric layer and at least one metal layer, patterned to provide substrate circuitry, which includes among other features traces (“leads”) leading to interconnect pads.
- the metal layer may be patterned by, for example, a mask-and etch process.
- interconnection of the circuitry in the die with circuitry in the substrate is made by way of bumps which are attached to an array of interconnect pads on the die, and bonded to a corresponding (complementary) array of interconnect pads (often referred to as “capture pads”) on the substrate.
- the capture pads are typically much wider than the leads, and can be as wide as, for example, about 2 to 4 times the nominal or design width of the leads.
- the areal density of electronic features on integrated circuits has increased enormously, and chips having a greater density of circuit features also may have a greater density of sites (“die pads”) for interconnection with the circuitry on a package substrate.
- the package is connected to underlying circuitry, such as a printed circuit board (e.g., a “motherboard”), in the device in which the package is employed, by way of second level interconnects (e.g., pins, secondary interconnect solder balls) between the package and the underlying circuit.
- the second level interconnects have a greater pitch than the flip chip interconnects, and so the routing on the substrate conventionally “fans out”.
- Significant technological advances in patterning the metal layer on the substrate have enabled construction of fine lines and spaces; but in the conventional arrangement space between adjacent pads limits the number of traces than can escape from the more inward capture pads in the array, and the fan out routing between the capture pads beneath the die and the external pins of the package is conventionally formed on multiple metal layers within the package substrate.
- substrates having multiple layers may be required to achieve routing between the die pads and the second level interconnects on the package.
- the escape routing pattern typically introduces additional electrical parasitics, because the routing includes short runs of unshielded wiring and vias between wiring layers in the signal transmission path. Electrical parasitics can significantly limit package performance.
- flip chip interconnect is accomplished by connecting the interconnect bump directly onto a narrow interconnection pad, or narrow pad, rather than onto a conventional capture pad.
- the width of the narrow pad according to the invention is selected according to the base diameter of the interconnect bump that is to be connected onto the narrow pad. Particularly, the width of the narrow pad is less (such as in a range about 20% to about 80%) than the base diameter of the interconnect bump.
- the invention provides more efficient routing of traces on the substrate. Particularly, the signal routing can be formed entirely in a single metal layer of the substrate. This reduces the number of layers in the substrate, and forming the signal traces in a single layer also permits relaxation of some of the via, line and space design rules that the substrate must meet.
- the bump-on-narrow-pad architecture also helps eliminate such features as vias and “stubs” from the substrate design, and enables a microstrip controlled impedance electrical environment for signal transmission, thereby greatly improving performance.
- the invention features a flip chip interconnection having solder bumps attached to interconnect pads on a die and mated onto corresponding narrow interconnection pads on a substrate.
- the invention features a flip chip package including a die having solder bumps attached to interconnect pads in an active surface, and a substrate having narrow interconnection pads in a die attach surface, in which the bumps are mated onto the narrow pads.
- the bump-on-narrow-pad interconnection is formed according to methods of the invention without use of a solder mask to confine the molten solder during a re-melt stage in the process. Avoiding the need for a solder mask allows for finer interconnection geometry.
- the substrate is further provided with a solder mask having openings over the narrow interconnection pads. In some embodiments the substrate is further provided with solder paste on the narrow interconnection pads.
- the invention features a method for forming flip chip interconnection, by providing a substrate having narrow interconnection pads formed in a die attach surface and a die having bumps attached to interconnect pads in an active surface; supporting the substrate and the die; dispensing a quantity of a curable adhesive on the substrate (covering at least the narrow interconnection pads) or on the active side of the die (covering at least the bumps); positioning the die with the active side of the die toward the die attach surface of the substrate, and aligning the die and substrate and moving one toward the other so that the bumps contact the corresponding narrow interconnection pads on the substrate; applying a force to press the bumps onto the mating narrow pads, sufficient to displace the adhesive from between the bump and the mating narrow pad; at least partially curing the adhesive; melting and then re-solidifying the solder, forming a metallurgical interconnection between the bump and the narrow pad.
- the invention features a method for forming flip chip interconnection, by providing a substrate having narrow interconnection pads formed in a die attach surface and having a solder mask having openings over the narrow pads, and a die having bumps attached to interconnect pads in an active surface; supporting the substrate and the die; positioning the die with the active side of the die toward the die attach surface of the substrate, and aligning the die and substrate and moving one toward the other so that the bumps contact the corresponding narrow pads on the substrate; melting and then re-solidifying to form the interconnection between the bump and the narrow pad.
- the solder bump includes a collapsible solder portion, and the melt and solidifying step melts the bump to form the interconnection on the narrow pad.
- the substrate is provided with a solder paste on the narrow pads, and the step of moving the die and the substrate toward one another effects a contact between the bumps and the solder on the narrow pads, and the melt and solidifying step melts the solder on the narrow pad to form the interconnection.
- the invention features a method for forming flip chip interconnection, by providing a substrate having narrow interconnection pads formed in a die attach surface and having a solder mask having openings over the narrow pads and having solder paste on the narrow pads, and a die having bumps attached to interconnect pads in an active surface; supporting the substrate and the die; positioning the die with the active side of the die toward the die attach surface of the substrate, and aligning the die and substrate and moving one toward the other so that the bumps contact the solder paste on the corresponding narrow pads on the substrate; melting and then re-solidifying the solder paste, forming a metallurgical interconnection between the bump and the narrow pad.
- FIG. 1 is a diagrammatic sketch of a portion of a conventional bump-on-capture pad flip chip interconnection, in a sectional view parallel to the plane of the package substrate surface, as indicated by the arrows 1 - 1 ′ in FIG. 2 .
- FIG. 2 is a diagrammatic sketch showing a portion of a conventional bump-on-capture pad flip chip interconnection, in a sectional view perpendicular to the plane of the package substrate surface, as indicated by the arrows 2 - 2 ′ in FIG. 1 .
- FIG. 3 is a diagrammatic sketch showing a portion of another conventional bump-on-capture pad flip chip interconnection, in a sectional view perpendicular to the plane of the package substrate surface.
- FIG. 4 is a diagrammatic sketch of a portion of an embodiment of a bump-on-narrow-pad flip chip interconnection according to an embodiment of the invention, in a sectional view parallel to the plane of the package substrate surface.
- FIG. 5 is a diagrammatic sketch showing a portion of an embodiment of a bump-on-narrow-pad flip chip interconnection according to an embodiment of the invention as in FIG. 4 , in a sectional view perpendicular to the plane of the package substrate surface, as indicated by the arrows 5 - 5 ′ in FIG. 4 .
- FIG. 6 is a diagrammatic sketch of a portion of another embodiment of a bump-on-narrow-pad flip chip interconnection according to an embodiment of the invention, in a sectional view parallel to the plane of the package substrate surface.
- FIG. 7 is a diagrammatic sketch showing a portion of an embodiment of a bump-on-narrow-pad flip chip interconnection according to an embodiment of the invention as in FIG. 6 , in a sectional view perpendicular to the plane of the package substrate surface, as indicated by the arrows 7 - 7 ′ in FIG. 6 .
- FIGS. 8 and 9 are diagrammatic sketches, each of a portion of another embodiment of a bump-on-narrow-pad flip chip interconnection according to an embodiment of the invention, in a sectional view parallel to the plane of the package substrate surface.
- FIGS. 10A-10C are diagrammatic sketches in a sectional view illustrating steps in a process for making a flip chip interconnection according to an embodiment of the invention.
- FIGS. 11A-11D are diagrammatic sketches in a sectional view illustrating steps in a process for making a flip chip interconnection according to an embodiment of the invention.
- FIG. 12 is a diagrammatic sketch showing a force and temperature schedule for a process for making a flip chip interconnection according to an embodiment of the invention.
- FIG. 13 is a diagrammatic sketch in a sectional view showing a bump-on-narrow-pad flip chip interconnection according to an embodiment of the invention.
- FIGS. 14A-14E are diagrammatic sketches in plan view illustrating various interconnect pad shapes according to embodiments of the invention.
- FIGS. 15A-15C are diagrammatic sketches in plan view illustrating various interconnect pad configurations according to embodiments of the invention.
- FIGS. 16A and 16B are diagrammatic sketches in plan view illustrating solder mask openings according to embodiments of the invention.
- FIG. 17 is a diagrammatic sketch in plan view illustrating details of various interconnect pad configurations in relation to a solder mask opening according to embodiments of the invention.
- FIG. 18 is a diagrammatic sketch in plan view illustrating details of various solder mask configurations in relation to an interconnect pad according to embodiments of the invention.
- the conventional flip chip interconnection is made by using a melting process to join the bumps (conventionally, solder bumps) onto the mating surfaces of the corresponding capture pads and, accordingly, this is known as a “bump-on-capture pad” (“BOC”) interconnect.
- BOC bump-on-capture pad
- Two features are evident in the BOC design: first, a comparatively large capture pad is required to mate with the bump on the die; second, an insulating material, typically known as a “solder mask” is required to confine the flow of solder during the interconnection process.
- the solder mask opening may define the contour of the melted solder at the capture pad (“solder mask defined”), or the solder contour may not be defined by the mask opening (“non-solder mask defined”); in the latter case—as in the example of FIG. 1 , described in more detail below—the solder mask opening may be significantly larger than the capture pad.
- the techniques for defining solder mask openings have wide tolerance ranges. Consequently, for a solder mask defined bump configuration, the capture pad must be large (typically considerably larger than the design size for the mask opening), to ensure that the mask opening will be located on the mating surface of the pad; and for a non-solder mask defined bump configuration, the solder mask opening must be larger than the capture pad.
- the width of capture pads is typically about the same as the ball (or bump) diameter, and can be as much as two to four times wider than the trace width. This results in considerable loss of routing space on the top substrate layer.
- the “escape routing pitch” is much bigger than the finest trace pitch that the substrate technology can offer. This means that a significant number of pads must be routed on lower substrate layers by means of short stubs and vias, often beneath the footprint of the die, emanating from the pads in question.
- FIGS. 1 and 2 show portions 10 , 20 of a conventional flip chip package, in diagrammatic sectional views; the partial sectional view in FIG. 1 is taken in a plane parallel to the package substrate surface, along the line 1 - 1 ′ in FIG. 2 ; and the partial sectional view in FIG. 2 is taken in a plane perpendicular to the package substrate surface, along the line 2 - 2 ′ in FIG. 1 . Certain features are shown as if transparent, but many of the features in FIG. 1 are shown at least partly obscured by overlying features.
- a die attach surface of the package substrate includes a metal layer formed on a dielectric layer 12 . The metal layer is patterned to form leads 13 and capture pads 14 .
- An insulating layer 16 covers the die attach surface of the substrate; the solder mask is usually constructed of a photodefinable material, and is patterned by conventional photoresist patterning techniques to leave the mating surfaces of the capture pads 14 exposed. Interconnect bumps 15 attached to pads on the active side of the die 18 are joined to the mating surfaces of corresponding capture pads 14 on the substrate to form appropriate electrical interconnection between the circuitry on the die and the leads on the substrate. After the reflowed solder is cooled to establish the electrical connection, an underfill material 17 is introduced into the space between the die 18 and the substrate 12 , mechanically stabilizing the interconnects and protecting the features between the die and the substrate.
- FIG. 1 shows by way of example, signal escape traces in the upper metal layer of the substrate (leads 13 ), lead from their respective capture pads 14 across the die edge location, indicated by the broken line 11 , and away from the die footprint.
- the signal traces may have an escape pitch P E about 112 um.
- a 30 um/30 um design rule is typical for the traces themselves in a configuration as shown in FIG. 1 ; that is, the traces are nominally 30 um wide, and they can be spaced as close together as 30 um.
- the capture pads are typically three times greater than the trace width and, accordingly in this example the capture pads have a width (or diameter, as they are roughly circular in this example) nominally 90 um.
- the openings in the solder mask are larger than the pads, having a nominal width (diameter) of 135 um.
- FIGS. 1 and 2 show a non-solder mask defined solder contour.
- the fusible material of the bumps on the die melt, the molten solder tends to “wet” the metal of the leads and capture pads, and the solder tends to “run out” over any contiguous metal surfaces that are not masked.
- the solder tends to flow along the contiguous lead 13 , and here the solder flow is limited by the solder mask, for example at 19 in FIG. 1 .
- a non-solder mask defined solder contour at the pad is apparent in FIG. 2 , in which the material of the bumps 15 is shown as having flowed, 29 , over the sides of the capture pads 14 and down to the surface of the dielectric layer of the substrate 12 .
- a lower limit on the density of the capture pads in a conventional arrangement, as in FIG. 1 is determined by, among other factors, limits on the capacity of the mask forming technology to make reliable narrow mask structures, and the need to provide mask structures between adjacent mask openings.
- a lower limit on the escape density is additionally determined by, among other factors, the need for escape lines from more centrally located capture pads to be routed between more peripherally located capture pads.
- FIG. 3 shows a conventional solder mask defined solder contour, in a sectional view similar to that in FIG. 2 .
- a die 38 is shown affixed by way of bumps 35 onto the mating surfaces of capture pads 34 formed along with traces (leads 33 ) by patterning a metal layer on the die attach side of a dielectric layer of the substrate 32 .
- an underfill material 37 is introduced into the space between the die 38 and the substrate 32 , mechanically stabilizing the interconnects and protecting the features between the die and the substrate.
- the capture pads 34 are wider than in the example of FIGS.
- the solder mask openings are smaller than the capture pads, so that the solder mask material covers the sides and part of the mating surface of each capture pad, as shown at 39 , as well as the leads 33 .
- the solder mask material 39 restricts the flow of the molten solder, so that the shapes of the solder contours are defined by the shapes and dimensions of the mask openings over the capture pads 34 .
- the capture pad has a diameter about 140 um
- the solder mask opening has a diameter about 90 um
- the routing traces are about 25-30 um wide.
- the diameter of the mating surface for attachment of the bump to the die pad (not shown in FIG. 2 or 3 ), that is, the place of interface between the bump and the die pad, is defined by the solder mask opening as having a diameter about 90 um, in this example.
- FIGS. 4 and 6 each show a portion of a bump-on-narrow-pad (“BONP”) flip chip interconnection according to an embodiment of the invention, in a diagrammatic partial sectional view taken in a plane parallel to the substrate surface, along the lines 4 - 4 ′ and 6 - 6 ′ in FIGS. 5 and 7 , respectively. Certain features are shown as if transparent. According to the invention the interconnection is achieved by mating the bumps onto respective narrow interconnection pads on the substrate and, accordingly, this is referred to herein as a “bump-on-narrow-pad” (“BONP”) interconnect. Solder mask materials typically cannot be resolved at such fine geometries and, according to these embodiments of the invention, no solder mask is used.
- BONP bump-on-narrow-pad
- FIG. 5 shows a partial sectional view of a package as in FIG. 4 , taken in a plane perpendicular to the plane of the package substrate surface, along the line 5 - 5 ′ in FIG. 4 ; and
- FIG. 7 shows a partial sectional view of a package as in FIG. 6 , taken in a plane perpendicular to the plane of the package substrate surface, along the line 7 - 7 ′ in FIG. 6 .
- Escape routing patterns for bump-on-narrow-pad (“BONP”) substrates according to the invention are shown by way of example in FIGS. 4 and 6 : in FIG. 4 , arranged for a die on which the die attach pads for the interconnect balls are in a row near the die perimeter, the bumps 45 are mated onto corresponding narrow interconnection pads on the escape traces 43 in a row near the edge of the die footprint, indicated by the broken line 41 ; in FIG. 6 , arranged for a die on which the die attach pads are in an array of parallel rows near the die perimeter, the bumps 65 are mated onto corresponding narrow interconnection pads on the escape traces 63 in a complementary array near the edge of the die footprint, indicated by the broken line 61 .
- the routing density achievable using bump-on-narrow-pad interconnect according to the invention can equal the finest trace pitch offered by the substrate technology. In the specific case illustrated, this constitutes a routing density which is approximately 90% higher than is achieved in a conventional bump-on-capture pad arrangement.
- the bumps are placed at a fine pitch, which can equal the finest trace pitch of the substrate. This arrangement poses a challenge for the assembly process, because the bumping and bonding pitch must be very fine.
- the perimeter array version of BONP e.g., FIG.
- the bumps are arranged on an area array, providing greater space for a larger bumping and bonding pitch, and relieving the technological challenges for the assembly process.
- the routing traces on the substrate are at the same effective pitch as in the perimeter row arrangement, and an arrangement as in FIG. 6 relieves the burden of fine pitch bumping and bonding without sacrificing the fine escape routing pitch advantage.
- leads 43 and narrow interconnection pads 46 are formed by patterning a metal layer on a die attach surface of a substrate dielectric layer 42 .
- the narrow pads 46 are formed as a widening of the traces 43 at the interconnection sites.
- the “width” of an interconnection pad (W b in FIG. 5 ) is the nominal or design dimension across the widened part of the trace at the interconnection site.
- the width of the narrow interconnection pad on a substrate is established according to the bump base width (“base diameter”) of the bumps on the die that is to be connected to the substrate.
- the interconnection pad width W b is smaller than the bump base width W p , and the narrow interconnection pad width may be as small as 20% of the bump base width.
- the narrow pad width is in a range about 20% to about 80% of the bump base width.
- the narrow interconnection pad width is less than the bump base width and greater than about 25% of the bump base width. In some embodiments the narrow pad width is less than about 60% of the bump base width.
- electrical interconnection of the die 48 is made by joining the bumps 45 on the die onto the narrow interconnection pads 46 on the leads 43 .
- the conventional comparatively wide capture pad is unnecessary according to the invention and, in embodiments as in FIGS. 4 and 5 , no solder mask is required; the process is described in detail below.
- a narrow interconnection pad has a nominal or design width at least about 120% of the nominal or trace design rule width
- bump-on-narrow-lead interconnection according to the invention includes bumps connected to widened parts of traces that are greater than about 120% of the nominal or trace design rule width, and less than the bump base diameter.
- An interconnection site that has a width less than about 120% does not constitute a narrow interconnect pad, and interconnection made by connecting bumps onto portions of leads that are less than about 120% of the nominal or trace design rule width is referred to as a “bump-on-lead” interconnection.
- leads 63 and narrow interconnection pads 66 are formed by patterning a metal layer on a die attach surface of a substrate dielectric layer 62 .
- the signal escape traces lead across the die edge location, indicated by the broken line 61 , and away from the die footprint.
- the narrow pads 66 are formed as a widening of the traces 63 at the interconnection sites.
- the “width” of an interconnection pad (W b in FIG. 7 ) is the nominal or design dimension across the widened part of the trace at the interconnection site. In this example, as in the example shown in FIGS.
- the width of the narrow interconnection pad on a substrate is established according to the bump base width of the bumps on the die that is to be connected to the substrate.
- the “bump base width” (W p in FIG. 7 ) is the nominal or design diameter of the generally round (approximately circular) contact interface between the bump 65 and the die pad 69 .
- the interconnection pad width W b is smaller than the bump base width W p
- the narrow interconnection pad width may be as small as 20% of the bump base width.
- the narrow pad width is in a range about 20% to about 80% of the bump base width.
- the narrow interconnection pad width is less than the bump base width and greater than about 25% of the bump base width.
- the narrow pad width is less than about 60% of the bump base width.
- electrical interconnection of the die 68 is made by joining the bumps 65 on the die narrow interconnection pads 66 on the leads 63 .
- No capture pads are required according to the invention and, in embodiments as in FIGS. 6 and 7 , no solder mask is required; the process is described in detail below.
- the techniques for forming the traces improves, it is possible to reliably form traces having nominal or design rule widths less than about 25 um.
- the reduced trace widths can provide for increased routing density.
- the mechanical reliability of a “bump-on-lead” flip chip interconnect on leads less than about 25 um may be unsatisfactory, because the dimensions of the interface between the bump and the lead are small, and may not provide sufficient bonding strength to provide a good electrical interconnection.
- the invention provides for reliable mechanical connection (and good electrical interconnection) by forming a narrow interconnect pad by widening the lead to an extent dimensionally related to the bump base diameter, and limited to less than the bump base diameter.
- the narrow interconnect pad according to the invention may be shaped in any of a variety of ways. Some such shapes may be more readily manufacturable, and some may provide other process advantages.
- the narrow pad may be generally rectangular, either square or elongated, as shown for example in FIGS. 14A and 14B ; or, it may be generally round, either circular or elliptical, as shown for example in FIGS. 14C and 14D .
- Other shapes may be employed; one particularly useful shape is shown by way of example in FIG. 14E , having semicircular portions separated lengthwise the lead or trace by a square or rectangular portion.
- the narrow pad can be formed as a symmetrical or an asymmetrical widening in the lead or trace, as shown in FIGS.
- the narrow pad need not be situated at, or near, the end of the lead or trace, but may be formed at any point where interconnection is specified, as illustrated in FIG. 15C (showing a generally rectangular pad as an example).
- Forming the pad longer than wide increases the wettable mating surface of the narrow pad (planar surface plus the exposed parts of the sides), and can improve the mechanical strength of the interconnection.
- the tolerance for misalignment of solder mask openings (or bump) is increased; particularly where the pad is at the end of the trace, an elongated pad can reduce the likelihood that a solder mask opening (or bump) will be situated off the end of the pad.
- solder mask openings shown by way of example in FIGS. 4, 6 , 8 and 9 are generally round (circular or elliptical), but according to the invention the solder mask opening may be shaped in any of a variety of ways. It may be useful for example, to provide a generally rectangular solder mask opening, either square or elongated, as shown in FIGS. 16A, 16B , (showing a generally rectangular pad as an example). A square or rectangle of a given width has a greater area than a circle or ellipse having the same width (diameter, short axis).
- a square or rectangular mask opening has a capacity to hold a greater quantity of solder paste (or other fusible material), and accordingly this may provide an advantage where a fusible material such as a solder paste is to be applied to the mating surfaces on the narrow pads prior to mating with the bumps (described in more detail below). Also, it may be easier to print a fusible material into a square or rectangular mask opening than into a circular or elliptical mask opening, because there is greater tolerance for misalignment in the printing process. Also, given a width limitation for the mask opening, a square or rectangular mask opening provides a greater open area for mounting a large bump on the pad during the interconnection process.
- FIG. 17 Various narrow pad configurations according to embodiments of the invention are shown in FIG. 17 by way of example in relation to a circular mask opening 174 in a solder mask 176 .
- the mask opening in each example has a width (diameter) Wm, which may be, for example, about 90 um.
- a bump-on-lead configuration is shown at 173 .
- the lead or trace 172 has a nominal (design) width W L , which may be, for example, about 30 um.
- a narrow pad having a rectangular shape is shown at 175 .
- the lead or trace at which the narrow pad is formed has a nominal (design) width W L ′, which may be, for example, about 30 um.
- the rectangular narrow pad has a width W P ′, which may be, for example, about 45 um.
- a narrow pad having an oval shape is shown at 177 formed at a wider lead or trace, having a nominal (design) width W L ′′, which may be, for example, about 50 um.
- a narrow pad having a rectangular shape expanded with an oval shape is shown at 179 .
- the narrower lead or trace at which the narrow pad is formed has a nominal (design) width W L ′′′, which may be, for example, about 30 um.
- the rectangular portion of the narrow pad 179 has a width W P ′′, which may be, for example, about 45 um; and the oval expanded portion has a width W PE , which may be for example, about 50 um.
- solder mask opening configurations are shown in FIG. 18 by way of example in relation to a lead (or trace) or narrow pad 182 .
- the lead or narrow pad at the interconnect site has a width W L , which may be, for example, about 40 um.
- Both the rectangular opening 187 and the oval opening 189 expose a greater length (hence, area) of the lead or pad at the site 183 ′′ , 183 ′′ than does the circular solder mask opening 185 , even though the circular opening in this example has a greater diameter.
- This provides a greater area for solder reflow during the interconnect process, and can result in a more robust interconnection.
- the area exposed by the rectangular opening 187 is slightly greater than that provided by the elliptical opening 189 having the same width and length; and moreover, the area would be reduced if there were a slight misalignment of the elliptical opening, but not by a slight misalignment of the rectangular opening.
- an design rectangular opening may have more or less rounded corners because of resolution limitations in processes for patterning openings in the solder mask dielectric.
- the diameter of the bump base on the die to be mounted may be about 90 um, and the narrow interconnect pad is formed on the substrate to a width in a range about 25 um (where the trace width is less than about 25 um) to about 50 um. This provides a significant improvement in routing density, as compared with a substrate having a conventional capture pad having a much larger diameter, which may be typically two to four times as great as the trace width.
- bump-on-narrow-pad interconnect according to the invention can provide a significantly higher signal trace escape routing density. Also, as FIGS. 4 and 6 illustrate, the BONP interconnect according to this aspect of the invention does not require use of a solder mask to define the solder contour at the interconnect site.
- the BONP interconnection structure of embodiments such as are shown by way of example in FIGS. 4, 5 , 6 and 7 can be produced according to the invention by any of several methods, not requiring a solder mask.
- interconnect bumps typically solder bumps
- a die attach surface of the substrate (termed the “upper” surface) has an upper metal layer patterned to provide the traces and narrow pads at interconnect sites as appropriate for interconnection with the arrangement of bumps on the particular die.
- an encapsulating resin adhesive is employed to confine the solder flow during a melt phase of the interconnection process.
- FIGS. 8 and 9 show two examples of a portion of a bump-on-narrow-pad flip chip interconnection according to other embodiments of the invention, in a diagrammatic sectional view taken in a plane parallel to the substrate surface. Certain features are shown as if transparent.
- a solder mask is provided, which may have a nominal mask opening diameter in the range about 80 um to 90 um. Solder mask materials can be resolved at such pitches and, particularly, substrates can be made comparatively inexpensively with solder masks having 90 um openings and having alignment tolerances plus or minus 25 um.
- laminate substrates such as 4 metal layer laminates, made according to standard design rules, are used.
- the traces may be at ⁇ 90 um pitch and the narrow pads may be in a 270 um area array, providing an effective escape pitch ⁇ 90 um across the edge of the die footprint, indicated by the broken line 81 .
- a no-flow underfill is not required; a conventional capillary underfill can be employed.
- the interconnection is achieved by mating the bumps directly onto an narrow interconnect pad 84 on a narrow lead or trace 83 patterned on a dielectric layer on the die attach surface of the substrate 82 ; the solder mask 86 serves to limit flow of solder within the bounds of the mask openings 88 , preventing solder flow away from the interconnect site along the solder-wettable lead.
- the solder mask may additionally confine flow of molten solder between leads, or this may be accomplished in the course of the assembly process.
- narrow pads on traces 93 are patterned on a dielectric layer on the die attach surface of the substrate 92 .
- Solder paste is provided at the interconnect sites (narrow pads) 94 on the leads 93 , to provide a fusible medium for the interconnect.
- the openings 98 in the solder mask 96 serve to define the paste.
- the paste is dispensed, for example by a standard printing process, then is reflowed, and then may be coined if necessary to provide uniform surfaces to meet the balls.
- the solder paste can be applied in the course of assembly using a substrate as described above with reference to FIG. 8 ; or, a substrate may be provided with paste suitably patterned prior to assembly.
- solder-on-narrow-pad embodiments of the invention may be employed in the solder-on-narrow-pad embodiments of the invention, including electroless plating and electroplating techniques.
- the solder-on-narrow-pad configuration provides additional solder volume for the interconnect, and can accordingly provide higher product yield, and can also provide a higher die standoff.
- the solder-on-narrow-pad configuration according to the invention is employed for interconnection of a die having high-melting temperature solder bumps (such as a high-lead [high Pb] solder, conventionally used for interconnection with ceramic substrates) onto an organic substrate.
- the solder paste can be selected to have a melting temperature low enough that the organic substrate is not damaged during reflow.
- the high-melting interconnect bumps are contacted with the solder-on-narrow-pad sites, and the remelt fuses the solder-on-narrow-pad to the bumps.
- noncollapsible bump When a noncollapsible bump is used, together with a solder-on-narrow-pad process, no preapplied adhesive is required, as the displacement or flow of the solder is limited by the fact that only a small quantity of solder is present at each interconnect, and the noncollapsible bump prevents collapse of the assembly.
- solder-on-narrow-pad configuration according to the invention is employed for interconnection of a die having eutectic solder bumps.
- FIGS. 10A-10C One embodiment of a preferred method for making a bump-on-narrow-pad interconnection is shown diagrammatically in FIGS. 10A-10C .
- a substrate 112 having at least one dielectric layer and having a metal layer on a die attach surface 113 , the metal layer being patterned to provide circuitry, particularly narrow interconnection pads 114 on traces or leads, on the die attach surface.
- the substrate 112 is supported, for example on a carrier or stage 116 , with a substrate surface opposite the die attach surface 113 facing the support.
- a quantity of an encapsulating resin 122 is dispensed over the die attach surface 113 of the substrate, covering at least the narrow interconnection pads 114 on the leads.
- a die 102 is provided, having bumps 104 attached to die pads (not shown in the FIG.) on the active side 103 .
- the bumps include a fusible material which contacts the mating surfaces of the narrow pads.
- a pick-and-place tool 108 including a chuck 106 picks up the die by contact of the chuck 106 with the backside 101 of the die. Using the pick-and-place tool, the die is positioned facing the substrate with the active side of the die toward the die attach surface of the substrate, as shown in FIG. 10A ; and the die and substrate are aligned and moved one toward the other (arrow M) so that the bumps 104 contact the corresponding narrow interconnection pads 114 on the traces (leads) on the substrate. Then a force is applied (arrow F) to press the bumps 105 onto the mating surfaces 134 at the narrow pads 115 on the leads, as shown in FIG.
- the force must be sufficient at least to displace the adhesive 122 from between the bumps and the mating surfaces 134 at the narrow interconnection pads 115 .
- the bumps may be deformed by the force, breaking the oxide film on the contacting surface of the bumps and/or on the mating surface of narrow pads. The deformation of the bumps may result in the fusible material of the bumps being pressed onto the top and over the edges of the narrow pads.
- the adhesive is caused to cure at least partially, as shown at 132 , as for example by heating to a selected temperature. At this stage the adhesive need only be partially cured, that is, only to an extent sufficient subsequently to prevent flow of molten solder along an interface between the adhesive and the conductive traces.
- the fusible material of the bumps 105 is melted and then is re-solidified, forming a metallurgical interconnection between the bump 105 and narrow pad 115 , and the adhesive curing is completed, to complete the die mount and to secure the electrical interconnection at the mating surface (now an interconnect interface) 144 , as shown generally at 140 in FIG. 10C .
- interconnection is formed between certain of the bumps 145 and corresponding narrow interconnection pads 155 on certain of the leads, as for example in a configuration as in FIG. 6 .
- Other leads 156 are interconnected on narrow interconnection pads at other localities, which would be visible in other sectional views. A comparatively high trace density is shown.
- the curing of the adhesive may be completed prior to, or concurrently with, or following melting the solder.
- the adhesive is a thermally curable adhesive, and the extent of curing at any phase in the process is controlled by regulating the temperature.
- the components can be heated and cured by raising the temperature of the chuck on the pick and place tool, or by raising the temperature of the substrate support, for example.
- a substrate 212 is provided on a die attach surface with conductive (metal) traces, and narrow interconnection pads 214 at interconnect sites on the traces are covered with an adhesive 222 .
- the die 202 is positioned in relation to the substrate 212 such that the active side of the die faces the die attach side of the substrate, and is aligned (arrows A) such that bumps 204 on the die are aligned with corresponding mating surfaces on narrow pads 214 .
- the die and the substrate are moved toward one another so that the bumps contact the respective mating surfaces on the narrow pads. Then as shown in FIG.
- a force is applied to move the bumps 205 and narrow pads 215 against one another, displacing the adhesive as shown at 232 in FIG. 1I B, and deforming the bumps onto the mating surfaces 234 and over the edges of the narrow pads.
- Deformation of the bumps on the narrow pads breaks the oxide film on the contact surfaces of the bumps and the mating surfaces of the narrow pads, establishing a good electrical connection, and deformation of the bumps over the edges of the narrow pads helps establish a good temporary mechanical connection.
- the narrow interconnection pads of certain of the traces 216 are out of the plane of FIG. 11B . Heat is applied to partially cure the adhesive as shown at 236 in FIG. 11C .
- the adhesive can be pre-applied to the die surface, or at least to the bumps on the die surface, rather than to the substrate.
- the adhesive can, for example, be pooled in a reservoir, and the active side of the die can be dipped in the pool and removed, so that a quantity of the adhesive is carried on the bumps; then, using a pick-and-place tool, the die is positioned facing a supported substrate with the active side of the die toward the die attach surface of the substrate, and the die and substrate are aligned and moved one toward the other so that the bumps contact the corresponding traces (leads) on the substrate.
- a pick-and-place tool Such a method is described in U.S. Pat. No. 6,780,682, Aug. 24, 2004, which is hereby incorporated by reference. Then forcing, curing, and melting are carried out as described above.
- a force and temperature schedule for a process according to the invention is shown diagrammatically by way of example in FIG. 12 .
- time runs from left to right on the horizontal axis; a force profile 310 is shown as a thick solid line, and a temperature profile 320 is shown as a dotted line.
- the temperature profile begins at a temperature in the range about 80° C.-about 90° C.
- the force profile begins at essentially zero force. Beginning at an initial time t i the force is rapidly (nearly instantaneously) raised 312 from F i to a displacement/deformation force F d and held 314 at that force for a time, as discussed below.
- F d is a force sufficiently great to displace the adhesive away from between the bumps and the mating surfaces of the narrow interconnection pads; and, preferably, sufficient to deform the fusible (narrow pad-contacting) portion of the bumps onto the mating surface, breaking the oxide films and forming a good metal-to-metal (metallurgical) contact, and, in some embodiments, over the edges of the narrow pads to establish a mechanical interlock of the bumps and the narrow pads (“creep” deformation).
- the total amount of force required will depend upon the bump material and dimensions and upon the number of bumps, and can be determined without undue experimentation. As the force is raised, the temperature is also rapidly raised 322 from an initial temperature T i to a gel temperature Tg.
- the gel temperature Tg is a temperature sufficient to partially cure the adhesive (to a “gel”).
- the force and temperature ramps are set so that there is a short lag time t def , following the moment when F d is reached and before T g is reached, at least long enough to permit the elevated force to displace the adhesive and to deform the bumps before the partial cure of the adhesive commences.
- the assembly is held 314 , 324 at the displacement/deformation pressure F d and at the gel temperature T g for a time t gel sufficient to effect the partial cure of the adhesive.
- the adhesive should become sufficiently firm that it can subsequently maintain a good bump profile during the solder remelt phase—that is, sufficiently firm to prevent undesirable displacement of the molten fusible material of the bump, or flow of the molten fusible material along the narrow pads and leads.
- the pressure may be ramped down rapidly 318 to substantially no force (weight of the components).
- the temperature is then rapidly raised further 323 to a temperature T m sufficient to remelt the fusible portions (solder) of the bumps, and the assembly is held 325 at the remelt temperature T m for a time t melt/cure at least sufficient to fully form the solder remelt on the narrow pads, and preferably sufficient to substantially (though not necessarily fully) cure the adhesive.
- the temperature is ramped down 328 to the initial temperature T i , and eventually to ambient.
- the process outlined in FIG. 12 can run its course over a time period of 5-10 seconds.
- the adhesive in embodiments as in FIG. 12 may be referred to as a “no-flow underfill”.
- the metallurgical interconnection is formed first, and then an underfill material is flowed into the space between the die and the substrate.
- the “no-flow underfill” according to the invention is applied before the die and the substrate are brought together, and the no-flow underfill is displaced by the approach of the bumps onto the narrow pads, and by the opposed surfaces of the die and the substrate.
- the adhesive for the no-flow underfill adhesive according to the invention is preferably a fast-gelling adhesive—that is, a material that gels sufficiently at the gel temperature in a time period in the order of 1-2 seconds.
- Preferred materials for the no-flow underfill adhesive include, for example, so-called non-conductive pastes, such as those marketed by Toshiba Chemicals and by Loktite-Henkel, for example.
- Alternative bump structures may be employed in the bump-on-narrow-pad interconnects according to the invention.
- so-called composite solder bumps may be used.
- Composite solder bumps have at least two bump portions, made of different bump materials, including one which is collapsible under reflow conditions, and one which is substantially non-collapsible under reflow conditions.
- the non-collapsible portion is attached to the interconnect site on the die; typical conventional materials for the non-collapsible portion include various solders having a high lead (Pd) content, for example; and gold (Au), for example.
- the collapsible portion is joined to the non-collapsible portion, and it is the collapsible portion that makes the connection with the narrow interconnect pad according to the invention.
- Typical conventional materials for the collapsible portion of the composite bump include eutectic solders, for example.
- FIG. 13 An example of a bump-on-narrow-pad interconnect employing a composite bump is shown in a diagrammatic sectional view in FIG. 13 .
- die 302 is provided on die pads in the active side of the die with composite bumps that include a noncollapsible portion 345 and a collapsible portion 347 .
- the collapsible portion may be, for example, a eutectic solder or a relatively low temperature melt solder).
- the collapsible portion contacts the mating surface of the narrow pad and, where deformation of the fusible portion of the bump over the narrow pad is desired, the collapsible portion of the bump is deformable under the conditions of force employed.
- the noncollapsible portion may be, for example, a solder having a high lead (Pb) content.
- the noncollapsible portion does not deform when the die is moved under pressure against the substrate during processing, and does not melt during the reflow phase of the process. Accordingly the noncollapsible portion can be dimensioned to provide a standoff distance between the active surface of the die and the die attach surface of the substrate.
- the bumps in embodiments as shown in, for example, FIGS. 4, 5 , 6 and 7 need not necessarily be fully collapsible bumps.
- the structures shown in those FIGs. may alternatively be made using composite bumps, or using non-collapsible bumps (high-Pb, or Au) in a solder-on-narrow-pad method, as described above.
- an interconnect as appears for example in FIG. 13 can be formed by bringing a non-composite non-collapsible bump (high-Pb, Au) into contact with a narrow interconnect pad provided on the mating surface with a fusible material (such as, for example, a eutectic solder or a relatively low temperature melt solder, which may be provided as a solder paste).
- a fusible material such as, for example, a eutectic solder or a relatively low temperature melt solder, which may be provided as a solder paste.
- the narrow interconnect pad may be provided on the mating surface with a fusible material and the bumps may be composite bumps, also provided with a collapsible (fusible) portion.
- the narrow interconnect pads are provided on the mating surface with a fusible material, it may be preferred to employ a solder mask, followed by a capillary underfill, in the process.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Geometry (AREA)
- Wire Bonding (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
- This application claims priority from U.S. Provisional Application No. 60/665,208, filed Mar. 25, 2005, titled “Flip chip interconnection having narrow interconnection sites on the substrate”, which is hereby incorporated herein by reference.
- This application is related to U.S. application Ser. No. 10/985,654, filed Nov. 10, 2004, titled “Bump-on-lead flip chip interconnection”.
- This invention relates to semiconductor packaging and, particularly, to flip chip interconnection.
- Flip chip packages include a semiconductor die mounted onto a package substrate with the active side of the die facing the substrate. The substrate is made up of a dielectric layer and at least one metal layer, patterned to provide substrate circuitry, which includes among other features traces (“leads”) leading to interconnect pads. The metal layer may be patterned by, for example, a mask-and etch process. Conventionally, interconnection of the circuitry in the die with circuitry in the substrate is made by way of bumps which are attached to an array of interconnect pads on the die, and bonded to a corresponding (complementary) array of interconnect pads (often referred to as “capture pads”) on the substrate. The capture pads are typically much wider than the leads, and can be as wide as, for example, about 2 to 4 times the nominal or design width of the leads.
- The areal density of electronic features on integrated circuits has increased enormously, and chips having a greater density of circuit features also may have a greater density of sites (“die pads”) for interconnection with the circuitry on a package substrate.
- The package is connected to underlying circuitry, such as a printed circuit board (e.g., a “motherboard”), in the device in which the package is employed, by way of second level interconnects (e.g., pins, secondary interconnect solder balls) between the package and the underlying circuit. The second level interconnects have a greater pitch than the flip chip interconnects, and so the routing on the substrate conventionally “fans out”. Significant technological advances in patterning the metal layer on the substrate have enabled construction of fine lines and spaces; but in the conventional arrangement space between adjacent pads limits the number of traces than can escape from the more inward capture pads in the array, and the fan out routing between the capture pads beneath the die and the external pins of the package is conventionally formed on multiple metal layers within the package substrate. For a complex interconnect array, substrates having multiple layers may be required to achieve routing between the die pads and the second level interconnects on the package.
- Multiple layer substrates are expensive, and in conventional flip chip constructs the substrate alone typically accounts for more than half the package cost (about 60% in some typical instances). The high cost of multilayer substrates has been a factor in limiting proliferation of flip chip technology in mainstream products.
- In conventional flip chip constructs the escape routing pattern typically introduces additional electrical parasitics, because the routing includes short runs of unshielded wiring and vias between wiring layers in the signal transmission path. Electrical parasitics can significantly limit package performance.
- According to the invention flip chip interconnect is accomplished by connecting the interconnect bump directly onto a narrow interconnection pad, or narrow pad, rather than onto a conventional capture pad. The width of the narrow pad according to the invention is selected according to the base diameter of the interconnect bump that is to be connected onto the narrow pad. Particularly, the width of the narrow pad is less (such as in a range about 20% to about 80%) than the base diameter of the interconnect bump. The invention provides more efficient routing of traces on the substrate. Particularly, the signal routing can be formed entirely in a single metal layer of the substrate. This reduces the number of layers in the substrate, and forming the signal traces in a single layer also permits relaxation of some of the via, line and space design rules that the substrate must meet. This simplification of the substrate greatly reduces the overall cost of the flip chip package. The bump-on-narrow-pad architecture also helps eliminate such features as vias and “stubs” from the substrate design, and enables a microstrip controlled impedance electrical environment for signal transmission, thereby greatly improving performance.
- In one general aspect the invention features a flip chip interconnection having solder bumps attached to interconnect pads on a die and mated onto corresponding narrow interconnection pads on a substrate.
- In another general aspect the invention features a flip chip package including a die having solder bumps attached to interconnect pads in an active surface, and a substrate having narrow interconnection pads in a die attach surface, in which the bumps are mated onto the narrow pads.
- In some embodiments the bump-on-narrow-pad interconnection is formed according to methods of the invention without use of a solder mask to confine the molten solder during a re-melt stage in the process. Avoiding the need for a solder mask allows for finer interconnection geometry.
- In some embodiments the substrate is further provided with a solder mask having openings over the narrow interconnection pads. In some embodiments the substrate is further provided with solder paste on the narrow interconnection pads.
- In another general aspect the invention features a method for forming flip chip interconnection, by providing a substrate having narrow interconnection pads formed in a die attach surface and a die having bumps attached to interconnect pads in an active surface; supporting the substrate and the die; dispensing a quantity of a curable adhesive on the substrate (covering at least the narrow interconnection pads) or on the active side of the die (covering at least the bumps); positioning the die with the active side of the die toward the die attach surface of the substrate, and aligning the die and substrate and moving one toward the other so that the bumps contact the corresponding narrow interconnection pads on the substrate; applying a force to press the bumps onto the mating narrow pads, sufficient to displace the adhesive from between the bump and the mating narrow pad; at least partially curing the adhesive; melting and then re-solidifying the solder, forming a metallurgical interconnection between the bump and the narrow pad.
- In another general aspect the invention features a method for forming flip chip interconnection, by providing a substrate having narrow interconnection pads formed in a die attach surface and having a solder mask having openings over the narrow pads, and a die having bumps attached to interconnect pads in an active surface; supporting the substrate and the die; positioning the die with the active side of the die toward the die attach surface of the substrate, and aligning the die and substrate and moving one toward the other so that the bumps contact the corresponding narrow pads on the substrate; melting and then re-solidifying to form the interconnection between the bump and the narrow pad.
- In some embodiments the solder bump includes a collapsible solder portion, and the melt and solidifying step melts the bump to form the interconnection on the narrow pad. In some embodiments the substrate is provided with a solder paste on the narrow pads, and the step of moving the die and the substrate toward one another effects a contact between the bumps and the solder on the narrow pads, and the melt and solidifying step melts the solder on the narrow pad to form the interconnection.
- In another general aspect the invention features a method for forming flip chip interconnection, by providing a substrate having narrow interconnection pads formed in a die attach surface and having a solder mask having openings over the narrow pads and having solder paste on the narrow pads, and a die having bumps attached to interconnect pads in an active surface; supporting the substrate and the die; positioning the die with the active side of the die toward the die attach surface of the substrate, and aligning the die and substrate and moving one toward the other so that the bumps contact the solder paste on the corresponding narrow pads on the substrate; melting and then re-solidifying the solder paste, forming a metallurgical interconnection between the bump and the narrow pad.
-
FIG. 1 is a diagrammatic sketch of a portion of a conventional bump-on-capture pad flip chip interconnection, in a sectional view parallel to the plane of the package substrate surface, as indicated by the arrows 1-1′ inFIG. 2 . -
FIG. 2 is a diagrammatic sketch showing a portion of a conventional bump-on-capture pad flip chip interconnection, in a sectional view perpendicular to the plane of the package substrate surface, as indicated by the arrows 2-2′ inFIG. 1 . -
FIG. 3 is a diagrammatic sketch showing a portion of another conventional bump-on-capture pad flip chip interconnection, in a sectional view perpendicular to the plane of the package substrate surface. -
FIG. 4 is a diagrammatic sketch of a portion of an embodiment of a bump-on-narrow-pad flip chip interconnection according to an embodiment of the invention, in a sectional view parallel to the plane of the package substrate surface. -
FIG. 5 is a diagrammatic sketch showing a portion of an embodiment of a bump-on-narrow-pad flip chip interconnection according to an embodiment of the invention as inFIG. 4 , in a sectional view perpendicular to the plane of the package substrate surface, as indicated by the arrows 5-5′ inFIG. 4 . -
FIG. 6 is a diagrammatic sketch of a portion of another embodiment of a bump-on-narrow-pad flip chip interconnection according to an embodiment of the invention, in a sectional view parallel to the plane of the package substrate surface. -
FIG. 7 is a diagrammatic sketch showing a portion of an embodiment of a bump-on-narrow-pad flip chip interconnection according to an embodiment of the invention as inFIG. 6 , in a sectional view perpendicular to the plane of the package substrate surface, as indicated by the arrows 7-7′ inFIG. 6 . -
FIGS. 8 and 9 are diagrammatic sketches, each of a portion of another embodiment of a bump-on-narrow-pad flip chip interconnection according to an embodiment of the invention, in a sectional view parallel to the plane of the package substrate surface. -
FIGS. 10A-10C are diagrammatic sketches in a sectional view illustrating steps in a process for making a flip chip interconnection according to an embodiment of the invention. -
FIGS. 11A-11D are diagrammatic sketches in a sectional view illustrating steps in a process for making a flip chip interconnection according to an embodiment of the invention. -
FIG. 12 is a diagrammatic sketch showing a force and temperature schedule for a process for making a flip chip interconnection according to an embodiment of the invention. -
FIG. 13 is a diagrammatic sketch in a sectional view showing a bump-on-narrow-pad flip chip interconnection according to an embodiment of the invention. -
FIGS. 14A-14E are diagrammatic sketches in plan view illustrating various interconnect pad shapes according to embodiments of the invention. -
FIGS. 15A-15C are diagrammatic sketches in plan view illustrating various interconnect pad configurations according to embodiments of the invention. -
FIGS. 16A and 16B are diagrammatic sketches in plan view illustrating solder mask openings according to embodiments of the invention. -
FIG. 17 is a diagrammatic sketch in plan view illustrating details of various interconnect pad configurations in relation to a solder mask opening according to embodiments of the invention. -
FIG. 18 is a diagrammatic sketch in plan view illustrating details of various solder mask configurations in relation to an interconnect pad according to embodiments of the invention. - The invention will now be described in further detail by reference to the drawings, which illustrate alternative embodiments of the invention. The drawings are diagrammatic, showing features of the invention and their relation to other features and structures, and are not made to scale. For improved clarity of presentation, in the FIGs. illustrating embodiments of the invention, elements corresponding to elements shown in other drawings are not all particularly renumbered, although they are all readily identifiable in all the FIGs.
- The conventional flip chip interconnection is made by using a melting process to join the bumps (conventionally, solder bumps) onto the mating surfaces of the corresponding capture pads and, accordingly, this is known as a “bump-on-capture pad” (“BOC”) interconnect. Two features are evident in the BOC design: first, a comparatively large capture pad is required to mate with the bump on the die; second, an insulating material, typically known as a “solder mask” is required to confine the flow of solder during the interconnection process. The solder mask opening may define the contour of the melted solder at the capture pad (“solder mask defined”), or the solder contour may not be defined by the mask opening (“non-solder mask defined”); in the latter case—as in the example of
FIG. 1 , described in more detail below—the solder mask opening may be significantly larger than the capture pad. The techniques for defining solder mask openings have wide tolerance ranges. Consequently, for a solder mask defined bump configuration, the capture pad must be large (typically considerably larger than the design size for the mask opening), to ensure that the mask opening will be located on the mating surface of the pad; and for a non-solder mask defined bump configuration, the solder mask opening must be larger than the capture pad. The width of capture pads (or diameter, for circular pads) is typically about the same as the ball (or bump) diameter, and can be as much as two to four times wider than the trace width. This results in considerable loss of routing space on the top substrate layer. In particular, for example, the “escape routing pitch” is much bigger than the finest trace pitch that the substrate technology can offer. This means that a significant number of pads must be routed on lower substrate layers by means of short stubs and vias, often beneath the footprint of the die, emanating from the pads in question. -
FIGS. 1 and 2 show portions FIG. 1 is taken in a plane parallel to the package substrate surface, along the line 1-1′ inFIG. 2 ; and the partial sectional view inFIG. 2 is taken in a plane perpendicular to the package substrate surface, along the line 2-2′ inFIG. 1 . Certain features are shown as if transparent, but many of the features inFIG. 1 are shown at least partly obscured by overlying features. Referring now to bothFIG. 1 andFIG. 2 , a die attach surface of the package substrate includes a metal layer formed on adielectric layer 12. The metal layer is patterned to form leads 13 andcapture pads 14. An insulatinglayer 16 , typically termed a “solder mask”, covers the die attach surface of the substrate; the solder mask is usually constructed of a photodefinable material, and is patterned by conventional photoresist patterning techniques to leave the mating surfaces of thecapture pads 14 exposed. Interconnect bumps 15 attached to pads on the active side of the die 18 are joined to the mating surfaces ofcorresponding capture pads 14 on the substrate to form appropriate electrical interconnection between the circuitry on the die and the leads on the substrate. After the reflowed solder is cooled to establish the electrical connection, anunderfill material 17 is introduced into the space between the die 18 and thesubstrate 12 , mechanically stabilizing the interconnects and protecting the features between the die and the substrate. - As
FIG. 1 shows by way of example, signal escape traces in the upper metal layer of the substrate (leads 13), lead from theirrespective capture pads 14 across the die edge location, indicated by thebroken line 11, and away from the die footprint. In a typical example the signal traces may have an escape pitch PE about 112 um. A 30 um/30 um design rule is typical for the traces themselves in a configuration as shown inFIG. 1 ; that is, the traces are nominally 30 um wide, and they can be spaced as close together as 30 um. The capture pads are typically three times greater than the trace width and, accordingly in this example the capture pads have a width (or diameter, as they are roughly circular in this example) nominally 90 um. And, in this example, the openings in the solder mask are larger than the pads, having a nominal width (diameter) of 135 um. -
FIGS. 1 and 2 show a non-solder mask defined solder contour. As the fusible material of the bumps on the die melt, the molten solder tends to “wet” the metal of the leads and capture pads, and the solder tends to “run out” over any contiguous metal surfaces that are not masked. The solder tends to flow along thecontiguous lead 13, and here the solder flow is limited by the solder mask, for example at 19 inFIG. 1 . A non-solder mask defined solder contour at the pad is apparent inFIG. 2 , in which the material of thebumps 15 is shown as having flowed, 29, over the sides of thecapture pads 14 and down to the surface of the dielectric layer of thesubstrate 12. This is referred to as a non-solder mask defined contour because the solder mask does not limit the flow of solder over the surface and down over the sides of the capture pads, and—unless there is a substantial excess of solder at the pad—the flow of solder is limited by the fact that the dielectric surface of the substrate is typically not wettable by the molten solder. A lower limit on the density of the capture pads in a conventional arrangement, as inFIG. 1 , is determined by, among other factors, limits on the capacity of the mask forming technology to make reliable narrow mask structures, and the need to provide mask structures between adjacent mask openings. A lower limit on the escape density is additionally determined by, among other factors, the need for escape lines from more centrally located capture pads to be routed between more peripherally located capture pads. -
FIG. 3 shows a conventional solder mask defined solder contour, in a sectional view similar to that inFIG. 2 . A die 38 is shown affixed by way ofbumps 35 onto the mating surfaces ofcapture pads 34 formed along with traces (leads 33) by patterning a metal layer on the die attach side of a dielectric layer of thesubstrate 32 . After the reflowed solder is cooled to establish the electrical connection, anunderfill material 37 is introduced into the space between the die 38 and thesubstrate 32 , mechanically stabilizing the interconnects and protecting the features between the die and the substrate. Here thecapture pads 34 are wider than in the example ofFIGS. 1 and 2 , and the solder mask openings are smaller than the capture pads, so that the solder mask material covers the sides and part of the mating surface of each capture pad, as shown at 39, as well as the leads 33. When thebumps 35 are brought into contact with the mating surfaces of therespective capture pads 34, and then melted, thesolder mask material 39 restricts the flow of the molten solder, so that the shapes of the solder contours are defined by the shapes and dimensions of the mask openings over thecapture pads 34. In a typical example of a conventional solder mask defined bump-on-capture pad interconnection, the capture pad has a diameter about 140 um, and the solder mask opening has a diameter about 90 um, and the routing traces are about 25-30 um wide. The diameter of the mating surface for attachment of the bump to the die pad (not shown inFIG. 2 or 3), that is, the place of interface between the bump and the die pad, is defined by the solder mask opening as having a diameter about 90 um, in this example. -
FIGS. 4 and 6 each show a portion of a bump-on-narrow-pad (“BONP”) flip chip interconnection according to an embodiment of the invention, in a diagrammatic partial sectional view taken in a plane parallel to the substrate surface, along the lines 4-4′ and 6-6′ inFIGS. 5 and 7 , respectively. Certain features are shown as if transparent. According to the invention the interconnection is achieved by mating the bumps onto respective narrow interconnection pads on the substrate and, accordingly, this is referred to herein as a “bump-on-narrow-pad” (“BONP”) interconnect. Solder mask materials typically cannot be resolved at such fine geometries and, according to these embodiments of the invention, no solder mask is used. Instead the function of confining molten solder flow is accomplished without a solder mask in the course of the assembly process (as described below).FIG. 5 shows a partial sectional view of a package as inFIG. 4 , taken in a plane perpendicular to the plane of the package substrate surface, along the line 5-5′ inFIG. 4 ; andFIG. 7 shows a partial sectional view of a package as inFIG. 6 , taken in a plane perpendicular to the plane of the package substrate surface, along the line 7-7′ inFIG. 6 . - Escape routing patterns for bump-on-narrow-pad (“BONP”) substrates according to the invention are shown by way of example in
FIGS. 4 and 6 : inFIG. 4 , arranged for a die on which the die attach pads for the interconnect balls are in a row near the die perimeter, thebumps 45 are mated onto corresponding narrow interconnection pads on the escape traces 43 in a row near the edge of the die footprint, indicated by thebroken line 41; inFIG. 6 , arranged for a die on which the die attach pads are in an array of parallel rows near the die perimeter, thebumps 65 are mated onto corresponding narrow interconnection pads on the escape traces 63 in a complementary array near the edge of the die footprint, indicated by thebroken line 61. - As
FIGS. 4 and 6 illustrate, the routing density achievable using bump-on-narrow-pad interconnect according to the invention can equal the finest trace pitch offered by the substrate technology. In the specific case illustrated, this constitutes a routing density which is approximately 90% higher than is achieved in a conventional bump-on-capture pad arrangement. In the perimeter row embodiments of BONP (e.g.,FIG. 4 ), the bumps are placed at a fine pitch, which can equal the finest trace pitch of the substrate. This arrangement poses a challenge for the assembly process, because the bumping and bonding pitch must be very fine. In the perimeter array version of BONP (e.g.,FIG. 6 ), the bumps are arranged on an area array, providing greater space for a larger bumping and bonding pitch, and relieving the technological challenges for the assembly process. Even in the array embodiments, the routing traces on the substrate are at the same effective pitch as in the perimeter row arrangement, and an arrangement as inFIG. 6 relieves the burden of fine pitch bumping and bonding without sacrificing the fine escape routing pitch advantage. - Referring particularly now to
FIGS. 4 and 5 , leads 43 andnarrow interconnection pads 46 are formed by patterning a metal layer on a die attach surface of asubstrate dielectric layer 42 . Thenarrow pads 46 are formed as a widening of thetraces 43 at the interconnection sites. The “width” of an interconnection pad (Wb inFIG. 5 ) is the nominal or design dimension across the widened part of the trace at the interconnection site. According to the invention, the width of the narrow interconnection pad on a substrate is established according to the bump base width (“base diameter”) of the bumps on the die that is to be connected to the substrate. The “bump base width” (Wp inFIG. 5 ) is the nominal or design diameter of the generally round (approximately circular) contact interface between thebump 45 and thedie pad 49. (As may be appreciated, the diameter of the bump, taken in a plane parallel to the bump-pad interface, may be greater than the bump base width, as illustrated diagrammatically inFIGS. 2, 3 , 5 and 7, for example.) Particularly according to the invention, the interconnection pad width Wb is smaller than the bump base width Wp, and the narrow interconnection pad width may be as small as 20% of the bump base width. In many embodiments the narrow pad width is in a range about 20% to about 80% of the bump base width. In some embodiments the narrow interconnection pad width is less than the bump base width and greater than about 25% of the bump base width. In some embodiments the narrow pad width is less than about 60% of the bump base width. - According to the invention, electrical interconnection of the die 48 is made by joining the
bumps 45 on the die onto thenarrow interconnection pads 46 on theleads 43. The conventional comparatively wide capture pad is unnecessary according to the invention and, in embodiments as inFIGS. 4 and 5 , no solder mask is required; the process is described in detail below. - Conventional capture pads typically are about the same width (diameter) as the bumps, and are typically two to four times as wide as the trace or lead width. As will be appreciated, some variation in the width of leads is expected. As used herein, a narrow interconnection pad has a nominal or design width at least about 120% of the nominal or trace design rule width, and bump-on-narrow-lead interconnection according to the invention includes bumps connected to widened parts of traces that are greater than about 120% of the nominal or trace design rule width, and less than the bump base diameter. An interconnection site that has a width less than about 120% does not constitute a narrow interconnect pad, and interconnection made by connecting bumps onto portions of leads that are less than about 120% of the nominal or trace design rule width is referred to as a “bump-on-lead” interconnection.
- Similarly, referring to
FIGS. 6 and 7 , leads 63 andnarrow interconnection pads 66 are formed by patterning a metal layer on a die attach surface of asubstrate dielectric layer 62 . The signal escape traces lead across the die edge location, indicated by thebroken line 61, and away from the die footprint. Thenarrow pads 66 are formed as a widening of thetraces 63 at the interconnection sites. The “width” of an interconnection pad (Wb inFIG. 7 ) is the nominal or design dimension across the widened part of the trace at the interconnection site. In this example, as in the example shown inFIGS. 4 and 5 , according to the invention, the width of the narrow interconnection pad on a substrate is established according to the bump base width of the bumps on the die that is to be connected to the substrate. The “bump base width” (Wp inFIG. 7 ) is the nominal or design diameter of the generally round (approximately circular) contact interface between thebump 65 and thedie pad 69. Particularly according to the invention, the interconnection pad width Wb is smaller than the bump base width Wp, and the narrow interconnection pad width may be as small as 20% of the bump base width. In many embodiments the narrow pad width is in a range about 20% to about 80% of the bump base width. In some embodiments the narrow interconnection pad width is less than the bump base width and greater than about 25% of the bump base width. In some embodiments the narrow pad width is less than about 60% of the bump base width. - According to the invention, electrical interconnection of the die 68 is made by joining the
bumps 65 on the dienarrow interconnection pads 66 on theleads 63. Certain of the escape traces, e.g. 66, leading across the die edge location from interconnect sites in rows toward the interior of the die footprint, pass between thebumps 65 on more peripheral rows of interconnect sites. No capture pads are required according to the invention and, in embodiments as inFIGS. 6 and 7 , no solder mask is required; the process is described in detail below. - According to the invention, as the techniques for forming the traces improves, it is possible to reliably form traces having nominal or design rule widths less than about 25 um. The reduced trace widths can provide for increased routing density. However, the mechanical reliability of a “bump-on-lead” flip chip interconnect on leads less than about 25 um may be unsatisfactory, because the dimensions of the interface between the bump and the lead are small, and may not provide sufficient bonding strength to provide a good electrical interconnection. The invention provides for reliable mechanical connection (and good electrical interconnection) by forming a narrow interconnect pad by widening the lead to an extent dimensionally related to the bump base diameter, and limited to less than the bump base diameter.
- The narrow interconnect pad according to the invention may be shaped in any of a variety of ways. Some such shapes may be more readily manufacturable, and some may provide other process advantages. For example, the narrow pad may be generally rectangular, either square or elongated, as shown for example in
FIGS. 14A and 14B ; or, it may be generally round, either circular or elliptical, as shown for example inFIGS. 14C and 14D . Other shapes may be employed; one particularly useful shape is shown by way of example inFIG. 14E , having semicircular portions separated lengthwise the lead or trace by a square or rectangular portion. Also, the narrow pad can be formed as a symmetrical or an asymmetrical widening in the lead or trace, as shown inFIGS. 15A and 15B (showing a generally rectangular pad as an example). Also, the narrow pad need not be situated at, or near, the end of the lead or trace, but may be formed at any point where interconnection is specified, as illustrated inFIG. 15C (showing a generally rectangular pad as an example). Forming the pad longer than wide increases the wettable mating surface of the narrow pad (planar surface plus the exposed parts of the sides), and can improve the mechanical strength of the interconnection. Also, where the pad is longer than wide, the tolerance for misalignment of solder mask openings (or bump) is increased; particularly where the pad is at the end of the trace, an elongated pad can reduce the likelihood that a solder mask opening (or bump) will be situated off the end of the pad. - The solder mask openings shown by way of example in
FIGS. 4, 6 , 8 and 9 are generally round (circular or elliptical), but according to the invention the solder mask opening may be shaped in any of a variety of ways. It may be useful for example, to provide a generally rectangular solder mask opening, either square or elongated, as shown inFIGS. 16A, 16B , (showing a generally rectangular pad as an example). A square or rectangle of a given width has a greater area than a circle or ellipse having the same width (diameter, short axis). For this reason a square or rectangular mask opening has a capacity to hold a greater quantity of solder paste (or other fusible material), and accordingly this may provide an advantage where a fusible material such as a solder paste is to be applied to the mating surfaces on the narrow pads prior to mating with the bumps (described in more detail below). Also, it may be easier to print a fusible material into a square or rectangular mask opening than into a circular or elliptical mask opening, because there is greater tolerance for misalignment in the printing process. Also, given a width limitation for the mask opening, a square or rectangular mask opening provides a greater open area for mounting a large bump on the pad during the interconnection process. - Various narrow pad configurations according to embodiments of the invention are shown in
FIG. 17 by way of example in relation to acircular mask opening 174 in a solder mask 176 . The mask opening in each example has a width (diameter) Wm, which may be, for example, about 90 um. A bump-on-lead configuration is shown at 173 . The lead ortrace 172 has a nominal (design) width WL , which may be, for example, about 30 um. A narrow pad having a rectangular shape is shown at 175 . In this example the lead or trace at which the narrow pad is formed has a nominal (design) width WL ′, which may be, for example, about 30 um. The rectangular narrow pad has a width WP ′, which may be, for example, about 45 um. A narrow pad having an oval shape is shown at 177 formed at a wider lead or trace, having a nominal (design) width WL ″, which may be, for example, about 50 um. A narrow pad having a rectangular shape expanded with an oval shape is shown at 179 . In this example the narrower lead or trace at which the narrow pad is formed has a nominal (design) width WL ′″, which may be, for example, about 30 um. The rectangular portion of thenarrow pad 179 has a width WP ″, which may be, for example, about 45 um; and the oval expanded portion has a width WPE , which may be for example, about 50 um. - Various solder mask opening configurations according to embodiments of the invention are shown in
FIG. 18 by way of example in relation to a lead (or trace) ornarrow pad 182. In these examples the lead or narrow pad at the interconnect site has a width WL , which may be, for example, about 40 um. In a first example, a circularsolder mask opening 185 having a width (diameter) Wm, which may be, for example, about 90 um, exposes aninterconnect site portion 183 . In a second example a rectangularsolder mask opening 187 having a width (across the lead or narrow pad) Wm′, which may be, for example, about 80 um, and a length Lm′, which may be, for example, about 120 um., exposes aninterconnect site portion 183′. In a third example an ellipticalsolder mask opening 189 having a width (across the lead or narrow pad) Wm″, which may be, for example, about 80 um, and a length Lm″, which may be, for example, about 120 um., exposes aninterconnect site portion 183″. Both therectangular opening 187 and theoval opening 189 expose a greater length (hence, area) of the lead or pad at thesite 183″, 183″ than does the circularsolder mask opening 185, even though the circular opening in this example has a greater diameter. This provides a greater area for solder reflow during the interconnect process, and can result in a more robust interconnection. The area exposed by therectangular opening 187 is slightly greater than that provided by theelliptical opening 189 having the same width and length; and moreover, the area would be reduced if there were a slight misalignment of the elliptical opening, but not by a slight misalignment of the rectangular opening. As a practical matter, however, an design rectangular opening may have more or less rounded corners because of resolution limitations in processes for patterning openings in the solder mask dielectric. - In some illustrative examples according to the invention, the diameter of the bump base on the die to be mounted may be about 90 um, and the narrow interconnect pad is formed on the substrate to a width in a range about 25 um (where the trace width is less than about 25 um) to about 50 um. This provides a significant improvement in routing density, as compared with a substrate having a conventional capture pad having a much larger diameter, which may be typically two to four times as great as the trace width.
- As
FIGS. 4 and 6 illustrate, bump-on-narrow-pad interconnect according to the invention can provide a significantly higher signal trace escape routing density. Also, asFIGS. 4 and 6 illustrate, the BONP interconnect according to this aspect of the invention does not require use of a solder mask to define the solder contour at the interconnect site. - The BONP interconnection structure of embodiments such as are shown by way of example in
FIGS. 4, 5 , 6 and 7 can be produced according to the invention by any of several methods, not requiring a solder mask. In general, interconnect bumps (typically solder bumps) are affixed onto interconnect pads on the active side of the die. A die attach surface of the substrate (termed the “upper” surface) has an upper metal layer patterned to provide the traces and narrow pads at interconnect sites as appropriate for interconnection with the arrangement of bumps on the particular die. In a preferred method of the invention, an encapsulating resin adhesive is employed to confine the solder flow during a melt phase of the interconnection process. -
FIGS. 8 and 9 show two examples of a portion of a bump-on-narrow-pad flip chip interconnection according to other embodiments of the invention, in a diagrammatic sectional view taken in a plane parallel to the substrate surface. Certain features are shown as if transparent. According to this aspect of the invention a solder mask is provided, which may have a nominal mask opening diameter in the range about 80 um to 90 um. Solder mask materials can be resolved at such pitches and, particularly, substrates can be made comparatively inexpensively with solder masks having 90 um openings and having alignment tolerances plus or minus 25 um. In some embodiments laminate substrates (such as 4 metal layer laminates), made according to standard design rules, are used. In the embodiments ofFIGS. 8 and 9 , for example, the traces may be at ˜90 um pitch and the narrow pads may be in a 270 um area array, providing an effective escape pitch ˜90 um across the edge of the die footprint, indicated by thebroken line 81. - In embodiments as in
FIGS. 8 and 9 a no-flow underfill is not required; a conventional capillary underfill can be employed. - In embodiments as in
FIG. 8 the interconnection is achieved by mating the bumps directly onto annarrow interconnect pad 84 on a narrow lead or trace 83 patterned on a dielectric layer on the die attach surface of thesubstrate 82; thesolder mask 86 serves to limit flow of solder within the bounds of themask openings 88, preventing solder flow away from the interconnect site along the solder-wettable lead. The solder mask may additionally confine flow of molten solder between leads, or this may be accomplished in the course of the assembly process. - In embodiments as in
FIG. 9 , as inFIG. 8 , narrow pads ontraces 93 are patterned on a dielectric layer on the die attach surface of thesubstrate 92. Solder paste is provided at the interconnect sites (narrow pads) 94 on theleads 93, to provide a fusible medium for the interconnect. Theopenings 98 in thesolder mask 96 serve to define the paste. The paste is dispensed, for example by a standard printing process, then is reflowed, and then may be coined if necessary to provide uniform surfaces to meet the balls. The solder paste can be applied in the course of assembly using a substrate as described above with reference toFIG. 8 ; or, a substrate may be provided with paste suitably patterned prior to assembly. Other approaches to applying solder selectively to the interconnect sites may be employed in the solder-on-narrow-pad embodiments of the invention, including electroless plating and electroplating techniques. The solder-on-narrow-pad configuration provides additional solder volume for the interconnect, and can accordingly provide higher product yield, and can also provide a higher die standoff. - Accordingly, in some embodiments the solder-on-narrow-pad configuration according to the invention is employed for interconnection of a die having high-melting temperature solder bumps (such as a high-lead [high Pb] solder, conventionally used for interconnection with ceramic substrates) onto an organic substrate. The solder paste can be selected to have a melting temperature low enough that the organic substrate is not damaged during reflow. To form the interconnect in such embodiments the high-melting interconnect bumps are contacted with the solder-on-narrow-pad sites, and the remelt fuses the solder-on-narrow-pad to the bumps. Where a noncollapsible bump is used, together with a solder-on-narrow-pad process, no preapplied adhesive is required, as the displacement or flow of the solder is limited by the fact that only a small quantity of solder is present at each interconnect, and the noncollapsible bump prevents collapse of the assembly.
- In other embodiments the solder-on-narrow-pad configuration according to the invention is employed for interconnection of a die having eutectic solder bumps.
- One embodiment of a preferred method for making a bump-on-narrow-pad interconnection is shown diagrammatically in
FIGS. 10A-10C . - Referring to the FIGs., a
substrate 112 is provided, having at least one dielectric layer and having a metal layer on a die attachsurface 113, the metal layer being patterned to provide circuitry, particularly narrow interconnection pads 114 on traces or leads, on the die attach surface. Thesubstrate 112 is supported, for example on a carrier orstage 116, with a substrate surface opposite the die attachsurface 113 facing the support. A quantity of an encapsulatingresin 122 is dispensed over the die attachsurface 113 of the substrate, covering at least the narrow interconnection pads 114 on the leads. Adie 102 is provided, havingbumps 104 attached to die pads (not shown in the FIG.) on theactive side 103. The bumps include a fusible material which contacts the mating surfaces of the narrow pads. A pick-and-place tool 108 including achuck 106 picks up the die by contact of thechuck 106 with thebackside 101 of the die. Using the pick-and-place tool, the die is positioned facing the substrate with the active side of the die toward the die attach surface of the substrate, as shown inFIG. 10A ; and the die and substrate are aligned and moved one toward the other (arrow M) so that thebumps 104 contact the corresponding narrow interconnection pads 114 on the traces (leads) on the substrate. Then a force is applied (arrow F) to press thebumps 105 onto the mating surfaces 134 at thenarrow pads 115 on the leads, as shown inFIG. 10B . The force must be sufficient at least to displace the adhesive 122 from between the bumps and the mating surfaces 134 at thenarrow interconnection pads 115. The bumps may be deformed by the force, breaking the oxide film on the contacting surface of the bumps and/or on the mating surface of narrow pads. The deformation of the bumps may result in the fusible material of the bumps being pressed onto the top and over the edges of the narrow pads. The adhesive is caused to cure at least partially, as shown at 132, as for example by heating to a selected temperature. At this stage the adhesive need only be partially cured, that is, only to an extent sufficient subsequently to prevent flow of molten solder along an interface between the adhesive and the conductive traces. Then the fusible material of thebumps 105 is melted and then is re-solidified, forming a metallurgical interconnection between thebump 105 andnarrow pad 115, and the adhesive curing is completed, to complete the die mount and to secure the electrical interconnection at the mating surface (now an interconnect interface) 144, as shown generally at 140 inFIG. 10C . In the plane of the sectional view shown inFIG. 1C , interconnection is formed between certain of thebumps 145 and correspondingnarrow interconnection pads 155 on certain of the leads, as for example in a configuration as inFIG. 6 . Other leads 156 are interconnected on narrow interconnection pads at other localities, which would be visible in other sectional views. A comparatively high trace density is shown. The curing of the adhesive may be completed prior to, or concurrently with, or following melting the solder. Typically, the adhesive is a thermally curable adhesive, and the extent of curing at any phase in the process is controlled by regulating the temperature. The components can be heated and cured by raising the temperature of the chuck on the pick and place tool, or by raising the temperature of the substrate support, for example. - The process is shown in further detail in
FIGS. 11A-11D . InFIG. 1A , asubstrate 212 is provided on a die attach surface with conductive (metal) traces, andnarrow interconnection pads 214 at interconnect sites on the traces are covered with an adhesive 222. Thedie 202 is positioned in relation to thesubstrate 212 such that the active side of the die faces the die attach side of the substrate, and is aligned (arrows A) such thatbumps 204 on the die are aligned with corresponding mating surfaces onnarrow pads 214. The die and the substrate are moved toward one another so that the bumps contact the respective mating surfaces on the narrow pads. Then as shown inFIG. 11B a force is applied to move thebumps 205 andnarrow pads 215 against one another, displacing the adhesive as shown at 232 inFIG. 1I B, and deforming the bumps onto the mating surfaces 234 and over the edges of the narrow pads. Deformation of the bumps on the narrow pads breaks the oxide film on the contact surfaces of the bumps and the mating surfaces of the narrow pads, establishing a good electrical connection, and deformation of the bumps over the edges of the narrow pads helps establish a good temporary mechanical connection. As in the example ofFIG. 10A-10C , the narrow interconnection pads of certain of thetraces 216 are out of the plane ofFIG. 11B . Heat is applied to partially cure the adhesive as shown at 236 inFIG. 11C . Then heat is applied to raise the temperature of the bumps sufficiently to cause the fusible material of the bumps to melt, as shown inFIG. 11D . This substantially (though not necessarily fully) completes the cure of the adhesive 246 and completes the metallurgical interconnection of thebumps 245 onto the mating surfaces 244 at thenarrow interconnection pads 215. The cured adhesive stabilizes the die mount. - In an alternative embodiment of a preferred method, the adhesive can be pre-applied to the die surface, or at least to the bumps on the die surface, rather than to the substrate. The adhesive can, for example, be pooled in a reservoir, and the active side of the die can be dipped in the pool and removed, so that a quantity of the adhesive is carried on the bumps; then, using a pick-and-place tool, the die is positioned facing a supported substrate with the active side of the die toward the die attach surface of the substrate, and the die and substrate are aligned and moved one toward the other so that the bumps contact the corresponding traces (leads) on the substrate. Such a method is described in U.S. Pat. No. 6,780,682, Aug. 24, 2004, which is hereby incorporated by reference. Then forcing, curing, and melting are carried out as described above.
- A force and temperature schedule for a process according to the invention is shown diagrammatically by way of example in
FIG. 12 . In this chart, time runs from left to right on the horizontal axis; aforce profile 310 is shown as a thick solid line, and atemperature profile 320 is shown as a dotted line. The temperature profile begins at a temperature in the range about 80° C.-about 90° C. The force profile begins at essentially zero force. Beginning at an initial time ti the force is rapidly (nearly instantaneously) raised 312 from Fi to a displacement/deformation force Fd and held 314 at that force for a time, as discussed below. Fd is a force sufficiently great to displace the adhesive away from between the bumps and the mating surfaces of the narrow interconnection pads; and, preferably, sufficient to deform the fusible (narrow pad-contacting) portion of the bumps onto the mating surface, breaking the oxide films and forming a good metal-to-metal (metallurgical) contact, and, in some embodiments, over the edges of the narrow pads to establish a mechanical interlock of the bumps and the narrow pads (“creep” deformation). The total amount of force required will depend upon the bump material and dimensions and upon the number of bumps, and can be determined without undue experimentation. As the force is raised, the temperature is also rapidly raised 322 from an initial temperature Ti to a gel temperature Tg. The gel temperature Tg is a temperature sufficient to partially cure the adhesive (to a “gel”). Preferably, the force and temperature ramps are set so that there is a short lag time tdef, following the moment when Fd is reached and before Tg is reached, at least long enough to permit the elevated force to displace the adhesive and to deform the bumps before the partial cure of the adhesive commences. The assembly is held 314, 324 at the displacement/deformation pressure Fd and at the gel temperature Tg for a time tgel sufficient to effect the partial cure of the adhesive. The adhesive should become sufficiently firm that it can subsequently maintain a good bump profile during the solder remelt phase—that is, sufficiently firm to prevent undesirable displacement of the molten fusible material of the bump, or flow of the molten fusible material along the narrow pads and leads. Once the adhesive has partially cured to a sufficient extent, the pressure may be ramped down rapidly 318 to substantially no force (weight of the components). The temperature is then rapidly raised further 323 to a temperature Tm sufficient to remelt the fusible portions (solder) of the bumps, and the assembly is held 325 at the remelt temperature Tm for a time tmelt/cure at least sufficient to fully form the solder remelt on the narrow pads, and preferably sufficient to substantially (though not necessarily fully) cure the adhesive. Then the temperature is ramped down 328 to the initial temperature Ti, and eventually to ambient. The process outlined inFIG. 12 can run its course over a time period of 5-10 seconds. - The adhesive in embodiments as in
FIG. 12 may be referred to as a “no-flow underfill”. In some approaches to flip chip interconnection, the metallurgical interconnection is formed first, and then an underfill material is flowed into the space between the die and the substrate. The “no-flow underfill” according to the invention is applied before the die and the substrate are brought together, and the no-flow underfill is displaced by the approach of the bumps onto the narrow pads, and by the opposed surfaces of the die and the substrate. The adhesive for the no-flow underfill adhesive according to the invention is preferably a fast-gelling adhesive—that is, a material that gels sufficiently at the gel temperature in a time period in the order of 1-2 seconds. Preferred materials for the no-flow underfill adhesive include, for example, so-called non-conductive pastes, such as those marketed by Toshiba Chemicals and by Loktite-Henkel, for example. - Alternative bump structures may be employed in the bump-on-narrow-pad interconnects according to the invention. Particularly, for example, so-called composite solder bumps may be used. Composite solder bumps have at least two bump portions, made of different bump materials, including one which is collapsible under reflow conditions, and one which is substantially non-collapsible under reflow conditions. The non-collapsible portion is attached to the interconnect site on the die; typical conventional materials for the non-collapsible portion include various solders having a high lead (Pd) content, for example; and gold (Au), for example. The collapsible portion is joined to the non-collapsible portion, and it is the collapsible portion that makes the connection with the narrow interconnect pad according to the invention. Typical conventional materials for the collapsible portion of the composite bump include eutectic solders, for example.
- An example of a bump-on-narrow-pad interconnect employing a composite bump is shown in a diagrammatic sectional view in
FIG. 13 . Referring now toFIG. 13 , die 302 is provided on die pads in the active side of the die with composite bumps that include anoncollapsible portion 345 and acollapsible portion 347. The collapsible portion may be, for example, a eutectic solder or a relatively low temperature melt solder). The collapsible portion contacts the mating surface of the narrow pad and, where deformation of the fusible portion of the bump over the narrow pad is desired, the collapsible portion of the bump is deformable under the conditions of force employed. The noncollapsible portion may be, for example, a solder having a high lead (Pb) content. The noncollapsible portion does not deform when the die is moved under pressure against the substrate during processing, and does not melt during the reflow phase of the process. Accordingly the noncollapsible portion can be dimensioned to provide a standoff distance between the active surface of the die and the die attach surface of the substrate. - As may be appreciated, the bumps in embodiments as shown in, for example,
FIGS. 4, 5 , 6 and 7 need not necessarily be fully collapsible bumps. The structures shown in those FIGs. may alternatively be made using composite bumps, or using non-collapsible bumps (high-Pb, or Au) in a solder-on-narrow-pad method, as described above. - And, as may be appreciated in view of the foregoing, an interconnect as appears for example in
FIG. 13 can be formed by bringing a non-composite non-collapsible bump (high-Pb, Au) into contact with a narrow interconnect pad provided on the mating surface with a fusible material (such as, for example, a eutectic solder or a relatively low temperature melt solder, which may be provided as a solder paste). Or, the narrow interconnect pad may be provided on the mating surface with a fusible material and the bumps may be composite bumps, also provided with a collapsible (fusible) portion. Where the narrow interconnect pads are provided on the mating surface with a fusible material, it may be preferred to employ a solder mask, followed by a capillary underfill, in the process. - Other embodiments are within the following claims.
Claims (34)
Priority Applications (18)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/388,755 US20060216860A1 (en) | 2005-03-25 | 2006-03-24 | Flip chip interconnection having narrow interconnection sites on the substrate |
TW095110605A TWI404114B (en) | 2005-03-25 | 2006-03-27 | Flip chip interconnection having narrow interconnection sites on the substrate |
US11/640,468 US20070105277A1 (en) | 2004-11-10 | 2006-12-14 | Solder joint flip chip interconnection |
US11/640,534 US7659633B2 (en) | 2004-11-10 | 2006-12-14 | Solder joint flip chip interconnection having relief structure |
US12/757,889 US8318537B2 (en) | 2005-03-25 | 2010-04-09 | Flip chip interconnection having narrow interconnection sites on the substrate |
US12/961,027 US8841779B2 (en) | 2005-03-25 | 2010-12-06 | Semiconductor device and method of forming high routing density BOL BONL and BONP interconnect sites on substrate |
US12/969,467 US9029196B2 (en) | 2003-11-10 | 2010-12-15 | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
US13/367,214 US8810029B2 (en) | 2003-11-10 | 2012-02-06 | Solder joint flip chip interconnection |
US13/529,794 US9773685B2 (en) | 2003-11-10 | 2012-06-21 | Solder joint flip chip interconnection having relief structure |
US13/558,953 USRE44562E1 (en) | 2003-11-10 | 2012-07-26 | Solder joint flip chip interconnection having relief structure |
US13/645,397 US9159665B2 (en) | 2005-03-25 | 2012-10-04 | Flip chip interconnection having narrow interconnection sites on the substrate |
US13/756,905 USRE44608E1 (en) | 2003-11-10 | 2013-02-01 | Solder joint flip chip interconnection |
US13/756,817 USRE44761E1 (en) | 2003-11-10 | 2013-02-01 | Solder joint flip chip interconnection having relief structure |
US14/305,185 US9373573B2 (en) | 2003-11-10 | 2014-06-16 | Solder joint flip chip interconnection |
US14/329,162 US10580749B2 (en) | 2005-03-25 | 2014-07-11 | Semiconductor device and method of forming high routing density interconnect sites on substrate |
US14/332,155 USRE47600E1 (en) | 2003-11-10 | 2014-07-15 | Semiconductor device and method of forming electrical interconnect with stress relief void |
US14/682,914 US9379084B2 (en) | 2003-11-10 | 2015-04-09 | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
US15/153,433 US9899286B2 (en) | 2003-11-10 | 2016-05-12 | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US66520805P | 2005-03-25 | 2005-03-25 | |
US11/388,755 US20060216860A1 (en) | 2005-03-25 | 2006-03-24 | Flip chip interconnection having narrow interconnection sites on the substrate |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/985,654 Continuation-In-Part US7368817B2 (en) | 2003-11-10 | 2004-11-10 | Bump-on-lead flip chip interconnection |
Related Child Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/985,654 Continuation-In-Part US7368817B2 (en) | 2003-11-10 | 2004-11-10 | Bump-on-lead flip chip interconnection |
US11/640,534 Continuation-In-Part US7659633B2 (en) | 2003-11-10 | 2006-12-14 | Solder joint flip chip interconnection having relief structure |
US11/640,468 Continuation-In-Part US20070105277A1 (en) | 2003-11-10 | 2006-12-14 | Solder joint flip chip interconnection |
US12/757,889 Continuation US8318537B2 (en) | 2003-11-10 | 2010-04-09 | Flip chip interconnection having narrow interconnection sites on the substrate |
US12/969,467 Continuation US9029196B2 (en) | 2003-11-10 | 2010-12-15 | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060216860A1 true US20060216860A1 (en) | 2006-09-28 |
Family
ID=37053986
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/388,755 Abandoned US20060216860A1 (en) | 2003-11-10 | 2006-03-24 | Flip chip interconnection having narrow interconnection sites on the substrate |
US12/757,889 Active 2026-10-19 US8318537B2 (en) | 2003-11-10 | 2010-04-09 | Flip chip interconnection having narrow interconnection sites on the substrate |
US13/645,397 Active US9159665B2 (en) | 2005-03-25 | 2012-10-04 | Flip chip interconnection having narrow interconnection sites on the substrate |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/757,889 Active 2026-10-19 US8318537B2 (en) | 2003-11-10 | 2010-04-09 | Flip chip interconnection having narrow interconnection sites on the substrate |
US13/645,397 Active US9159665B2 (en) | 2005-03-25 | 2012-10-04 | Flip chip interconnection having narrow interconnection sites on the substrate |
Country Status (5)
Country | Link |
---|---|
US (3) | US20060216860A1 (en) |
JP (2) | JP2008535225A (en) |
KR (1) | KR20070107154A (en) |
TW (1) | TWI404114B (en) |
WO (1) | WO2006105015A2 (en) |
Cited By (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080042278A1 (en) * | 2006-08-15 | 2008-02-21 | Pai-Chou Liu | Substrate structure having N-SMD ball pads |
US20080123335A1 (en) * | 2006-11-08 | 2008-05-29 | Jong Kun Yoo | Printed circuit board assembly and display having the same |
US20080191345A1 (en) * | 2007-02-09 | 2008-08-14 | Guichea Na | Integrated circuit package system with bump over via |
US20080245554A1 (en) * | 2004-04-05 | 2008-10-09 | Wistron Corp. | Fabrication method and structure of pcb assembly, and tool for assembly thereof |
US20080246147A1 (en) * | 2007-04-09 | 2008-10-09 | Chao-Yuan Su | Novel substrate design for semiconductor device |
US20090250814A1 (en) * | 2008-04-03 | 2009-10-08 | Stats Chippac, Ltd. | Flip Chip Interconnection Structure Having Void-Free Fine Pitch and Method Thereof |
EP2120262A1 (en) * | 2008-05-16 | 2009-11-18 | Phoenix Precision Technology Corporation | Structure of packaging substrate and method for making the same |
US20100207266A1 (en) * | 2009-02-16 | 2010-08-19 | Industrial Technology Research Institute | Chip package structure |
US20110084386A1 (en) * | 2003-11-10 | 2011-04-14 | Stats Chippac, Ltd. | Semiconductor Device and Method of Self-Confinement of Conductive Bump Material During Reflow Without Solder Mask |
US20110162578A1 (en) * | 2005-03-15 | 2011-07-07 | Panasonic Corporation | Flip-chip mounting method and bump formation method |
US20110309500A1 (en) * | 2003-12-31 | 2011-12-22 | Stats Chippac, Ltd. | Semiconductor Device and Method of Self-Confinement of Conductive Bump Material During Reflow Without Solder Mask |
CN102456664A (en) * | 2010-10-21 | 2012-05-16 | 台湾积体电路制造股份有限公司 | Centripetal layout for low stress chip package |
CN102458046A (en) * | 2011-09-28 | 2012-05-16 | 柏承科技(昆山)股份有限公司 | Structure and method for improving shape of bonding pad and limiting diffusion of solder paste |
US8323771B1 (en) * | 2007-08-15 | 2012-12-04 | Amkor Technology, Inc. | Straight conductor blind via capture pad structure and fabrication method |
US20130037945A1 (en) * | 2011-08-08 | 2013-02-14 | Min Jae Lee | Semiconductor device |
CN102956609A (en) * | 2011-07-27 | 2013-03-06 | 台湾积体电路制造股份有限公司 | Structure and method for bump to landing trace ratio |
CN103151324A (en) * | 2011-12-07 | 2013-06-12 | 台湾积体电路制造股份有限公司 | Landing areas of bonding structures |
US8492197B2 (en) | 2010-08-17 | 2013-07-23 | Stats Chippac, Ltd. | Semiconductor device and method of forming vertically offset conductive pillars over first substrate aligned to vertically offset BOT interconnect sites formed over second substrate |
US20130214409A1 (en) * | 2010-09-13 | 2013-08-22 | Stats Chippac, Ltd. | Semiconductor Device and Method of Forming Bond-on-Lead Interconnection for Mounting Semiconductor Die in FO-WLCSP |
USRE44579E1 (en) | 2003-11-10 | 2013-11-05 | Stats Chippac, Ltd. | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
US8671565B1 (en) | 2006-12-22 | 2014-03-18 | Amkor Technology, Inc. | Blind via capture pad structure fabrication method |
US8810029B2 (en) | 2003-11-10 | 2014-08-19 | Stats Chippac, Ltd. | Solder joint flip chip interconnection |
US8841779B2 (en) | 2005-03-25 | 2014-09-23 | Stats Chippac, Ltd. | Semiconductor device and method of forming high routing density BOL BONL and BONP interconnect sites on substrate |
CN104221480A (en) * | 2012-04-19 | 2014-12-17 | 松下知识产权经营株式会社 | Electronic component mounting method and electronic component mounting line |
US9064858B2 (en) | 2003-11-10 | 2015-06-23 | Stats Chippac, Ltd. | Semiconductor device and method of forming bump-on-lead interconnection |
US9159665B2 (en) | 2005-03-25 | 2015-10-13 | Stats Chippac, Ltd. | Flip chip interconnection having narrow interconnection sites on the substrate |
US9313585B2 (en) | 2008-12-22 | 2016-04-12 | Oticon A/S | Method of operating a hearing instrument based on an estimation of present cognitive load of a user and a hearing aid system |
CN105570736A (en) * | 2015-12-11 | 2016-05-11 | 苏州达方电子有限公司 | Light source device |
CN106777718A (en) * | 2016-12-23 | 2017-05-31 | 上海斐讯数据通信技术有限公司 | A kind of PCB gerber files processing method and processing system |
US9679811B2 (en) | 2008-12-31 | 2017-06-13 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of confining conductive bump material with solder mask patch |
US9773685B2 (en) | 2003-11-10 | 2017-09-26 | STATS ChipPAC Pte. Ltd. | Solder joint flip chip interconnection having relief structure |
US9786622B2 (en) * | 2011-10-20 | 2017-10-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor package |
US9922915B2 (en) | 2003-11-10 | 2018-03-20 | STATS ChipPAC Pte. Ltd. | Bump-on-lead flip chip interconnection |
US20190131264A1 (en) * | 2014-03-13 | 2019-05-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor Device Structure and Manufacturing Method |
US10388626B2 (en) | 2000-03-10 | 2019-08-20 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming flipchip interconnect structure |
USRE47600E1 (en) | 2003-11-10 | 2019-09-10 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming electrical interconnect with stress relief void |
US10573615B2 (en) | 2012-07-31 | 2020-02-25 | Mediatek Inc. | Semiconductor package and method for fabricating base for semiconductor package |
US10991669B2 (en) | 2012-07-31 | 2021-04-27 | Mediatek Inc. | Semiconductor package using flip-chip technology |
US20220189866A1 (en) * | 2009-03-30 | 2022-06-16 | Amkor Technology Singapore Holding Pte. Ltd. | Fine pitch copper pillar package and method |
US11393771B2 (en) * | 2018-09-27 | 2022-07-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bonding structures in semiconductor packaged device and method of forming same |
US20220352094A1 (en) * | 2018-09-27 | 2022-11-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Bonding structures in semiconductor packaged device and method of forming same |
Families Citing this family (39)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4618260B2 (en) * | 2007-02-21 | 2011-01-26 | 日本テキサス・インスツルメンツ株式会社 | Conductor pattern forming method, semiconductor device manufacturing method, and semiconductor device |
US7749887B2 (en) * | 2007-12-18 | 2010-07-06 | Micron Technology, Inc. | Methods of fluxless micro-piercing of solder balls, and resulting devices |
US9345148B2 (en) | 2008-03-25 | 2016-05-17 | Stats Chippac, Ltd. | Semiconductor device and method of forming flipchip interconnection structure with bump on partial pad |
US7759137B2 (en) | 2008-03-25 | 2010-07-20 | Stats Chippac, Ltd. | Flip chip interconnection structure with bump on partial pad and method thereof |
US8294276B1 (en) * | 2010-05-27 | 2012-10-23 | Amkor Technology, Inc. | Semiconductor device and fabricating method thereof |
US8970033B2 (en) * | 2011-02-25 | 2015-03-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Extending metal traces in bump-on-trace structures |
US20120267779A1 (en) * | 2011-04-25 | 2012-10-25 | Mediatek Inc. | Semiconductor package |
US8441127B2 (en) * | 2011-06-29 | 2013-05-14 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bump-on-trace structures with wide and narrow portions |
US20130099371A1 (en) * | 2011-10-21 | 2013-04-25 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor package having solder jointed region with controlled ag content |
US8952529B2 (en) * | 2011-11-22 | 2015-02-10 | Stats Chippac, Ltd. | Semiconductor device with conductive layer over substrate with vents to channel bump material and reduce interconnect voids |
US8633588B2 (en) | 2011-12-21 | 2014-01-21 | Mediatek Inc. | Semiconductor package |
US9659893B2 (en) | 2011-12-21 | 2017-05-23 | Mediatek Inc. | Semiconductor package |
US8497579B1 (en) * | 2012-02-16 | 2013-07-30 | Chipbond Technology Corporation | Semiconductor packaging method and structure thereof |
US9064757B2 (en) * | 2012-02-29 | 2015-06-23 | Mediatek Inc. | Enhanced flip chip structure using copper column interconnect |
US9437534B2 (en) * | 2012-02-29 | 2016-09-06 | Mediatek Inc. | Enhanced flip chip structure using copper column interconnect |
US9935038B2 (en) * | 2012-04-11 | 2018-04-03 | Taiwan Semiconductor Manufacturing Company | Semiconductor device packages and methods |
JP2014072371A (en) * | 2012-09-28 | 2014-04-21 | Ibiden Co Ltd | Printed wiring board and printed wiring board manufacturing method |
JP2014072370A (en) * | 2012-09-28 | 2014-04-21 | Ibiden Co Ltd | Printed wiring board and printed wiring board manufacturing method |
TWI491347B (en) * | 2012-10-24 | 2015-07-01 | Hon Hai Prec Ind Co Ltd | Cooling plate and enclosing casing |
JP5913063B2 (en) * | 2012-11-27 | 2016-04-27 | 日本特殊陶業株式会社 | Wiring board |
US8877558B2 (en) * | 2013-02-07 | 2014-11-04 | Harris Corporation | Method for making electronic device with liquid crystal polymer and related devices |
TW201436665A (en) * | 2013-03-07 | 2014-09-16 | Delta Electronics Inc | Automatic processes and structures for disposing cushions of circuit board |
US9536850B2 (en) * | 2013-03-08 | 2017-01-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package having substrate with embedded metal trace overlapped by landing pad |
US9418928B2 (en) | 2014-01-06 | 2016-08-16 | Taiwan Semiconductor Manufacturing Company, Ltd. | Protrusion bump pads for bond-on-trace processing |
US9508637B2 (en) | 2014-01-06 | 2016-11-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Protrusion bump pads for bond-on-trace processing |
US9275967B2 (en) | 2014-01-06 | 2016-03-01 | Taiwan Semiconductor Manufacturing Company, Ltd. | Protrusion bump pads for bond-on-trace processing |
US9305890B2 (en) | 2014-01-15 | 2016-04-05 | Taiwan Semiconductor Manufacturing Company, Ltd. | Package having substrate with embedded metal trace overlapped by landing pad |
WO2015198837A1 (en) * | 2014-06-27 | 2015-12-30 | ソニー株式会社 | Semiconductor device and manufacturing method therefor |
US9589924B2 (en) * | 2014-08-28 | 2017-03-07 | Taiwan Semiconductor Manufacturing Company Ltd. | Semiconductor structure and method of manufacturing the same |
TWI562255B (en) * | 2015-05-04 | 2016-12-11 | Chipmos Technologies Inc | Chip package structure and manufacturing method thereof |
FR3041625B1 (en) * | 2015-09-29 | 2021-07-30 | Tronics Microsystems | DEVICE FOR FIXING TWO ELEMENTS SUCH AS A CHIP, AN INTERPOSER AND A BRACKET |
CN107591385A (en) * | 2016-07-08 | 2018-01-16 | 欣兴电子股份有限公司 | Package substrate and its manufacture method |
US10109570B2 (en) | 2016-09-21 | 2018-10-23 | Intel Corporation | Radial solder ball pattern for attaching semiconductor and micromechanical chips |
KR20210138223A (en) | 2020-05-12 | 2021-11-19 | 삼성전자주식회사 | Semiconductor package |
US11404390B2 (en) * | 2020-06-30 | 2022-08-02 | Micron Technology, Inc. | Semiconductor device assembly with sacrificial pillars and methods of manufacturing sacrificial pillars |
KR20220055112A (en) | 2020-10-26 | 2022-05-03 | 삼성전자주식회사 | Semiconductor package including semiconductor chips |
KR20220089365A (en) * | 2020-12-21 | 2022-06-28 | 삼성전자주식회사 | Package substrate and semiconductor package comprising the same |
KR20220155741A (en) | 2021-05-17 | 2022-11-24 | 삼성전자주식회사 | Semiconductor package |
KR20230111542A (en) * | 2022-01-18 | 2023-07-25 | 엘지이노텍 주식회사 | Semiconductor package comprising the same |
Citations (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6002172A (en) * | 1997-03-12 | 1999-12-14 | International Business Machines Corporation | Substrate structure and method for improving attachment reliability of semiconductor chips and modules |
US6229209B1 (en) * | 1995-02-23 | 2001-05-08 | Matsushita Electric Industrial Co., Ltd. | Chip carrier |
US6333206B1 (en) * | 1996-12-24 | 2001-12-25 | Nitto Denko Corporation | Process for the production of semiconductor device |
US20020121706A1 (en) * | 2000-12-28 | 2002-09-05 | Matsushita Electic Works, Ltd. | Semiconductor-chip mounting substrate and method of manufacturing the same |
US6462425B1 (en) * | 1999-04-19 | 2002-10-08 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device and manufacturing method thereof |
US6472608B2 (en) * | 2000-02-18 | 2002-10-29 | Nec Corporation | Semiconductor device |
US20020192865A1 (en) * | 1997-03-27 | 2002-12-19 | Hitachi, Ltd. And Hitachi Hokkai Semiconductor, Ltd. | Process for mounting electronic device and semiconductor device |
US20030067084A1 (en) * | 2000-06-28 | 2003-04-10 | Sharp Kabushiki Kaisha | Semiconductor device and manufacturing method thereof |
US20030127734A1 (en) * | 2002-01-07 | 2003-07-10 | Jin-Yuan Lee | Cylindrical bonding structure and method of manufacture |
US6664483B2 (en) * | 2001-05-15 | 2003-12-16 | Intel Corporation | Electronic package with high density interconnect and associated methods |
US20040108135A1 (en) * | 2002-10-11 | 2004-06-10 | Takeshi Ashida | Circuit board, mounting structure of ball grid array, electro-optic device and electronic device |
US6809262B1 (en) * | 2003-06-03 | 2004-10-26 | Via Technologies, Inc. | Flip chip package carrier |
US7005743B2 (en) * | 2000-04-28 | 2006-02-28 | Sony Corporation | Semiconductor device using bumps, method for fabricating same, and method for forming bumps |
US7102239B2 (en) * | 2003-08-18 | 2006-09-05 | Siliconware Precision Industries Co., Ltd. | Chip carrier for semiconductor chip |
US7102222B2 (en) * | 2003-10-02 | 2006-09-05 | Siliconware Precision Industries Co., Ltd. | Conductive trace structure and semiconductor package having the conductive trace structure |
Family Cites Families (194)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0719737B2 (en) | 1990-02-28 | 1995-03-06 | 信越半導体株式会社 | Manufacturing method of S01 substrate |
JPH04355933A (en) * | 1991-02-07 | 1992-12-09 | Nitto Denko Corp | Packaging structure of flip chip |
JPH0528037A (en) | 1991-07-23 | 1993-02-05 | Nec Corp | Buffer control system |
US5186383A (en) | 1991-10-02 | 1993-02-16 | Motorola, Inc. | Method for forming solder bump interconnections to a solder-plated circuit trace |
US5383916A (en) | 1991-11-12 | 1995-01-24 | Puretan International, Inc. | Support member for a tanning bed or comparable device |
JP2678958B2 (en) | 1992-03-02 | 1997-11-19 | カシオ計算機株式会社 | Film wiring board and manufacturing method thereof |
US5314651A (en) | 1992-05-29 | 1994-05-24 | Texas Instruments Incorporated | Fine-grain pyroelectric detector material and method |
JP3152796B2 (en) | 1993-05-28 | 2001-04-03 | 株式会社東芝 | Semiconductor device and method of manufacturing the same |
US5386624A (en) | 1993-07-06 | 1995-02-07 | Motorola, Inc. | Method for underencapsulating components on circuit supporting substrates |
US5508561A (en) | 1993-11-15 | 1996-04-16 | Nec Corporation | Apparatus for forming a double-bump structure used for flip-chip mounting |
US5519580A (en) | 1994-09-09 | 1996-05-21 | Intel Corporation | Method of controlling solder ball size of BGA IC components |
JP3353508B2 (en) | 1994-12-20 | 2002-12-03 | ソニー株式会社 | Printed wiring board and electronic device using the same |
US5650595A (en) | 1995-05-25 | 1997-07-22 | International Business Machines Corporation | Electronic module with multiple solder dams in soldermask window |
EP0747954A3 (en) * | 1995-06-07 | 1997-05-07 | Ibm | Reflowed solder ball with low melting point metal cap |
JPH0997791A (en) | 1995-09-27 | 1997-04-08 | Internatl Business Mach Corp <Ibm> | Bump structure, formation of bump and installation connection body |
US5710071A (en) | 1995-12-04 | 1998-01-20 | Motorola, Inc. | Process for underfilling a flip-chip semiconductor device |
KR0182073B1 (en) | 1995-12-22 | 1999-03-20 | 황인길 | Method of manufacturing semiconductor chip scale semiconductor package |
US5889326A (en) | 1996-02-27 | 1999-03-30 | Nec Corporation | Structure for bonding semiconductor device to substrate |
JPH09260552A (en) | 1996-03-22 | 1997-10-03 | Nec Corp | Mounting structure of semiconductor chip |
JP2751912B2 (en) | 1996-03-28 | 1998-05-18 | 日本電気株式会社 | Semiconductor device and manufacturing method thereof |
KR100216839B1 (en) | 1996-04-01 | 1999-09-01 | 김규현 | Solder ball land structure of bga semiconductor package |
US5854514A (en) | 1996-08-05 | 1998-12-29 | International Buisness Machines Corporation | Lead-free interconnection for electronic devices |
US5729896A (en) | 1996-10-31 | 1998-03-24 | International Business Machines Corporation | Method for attaching a flip chip on flexible circuit carrier using chip with metallic cap on solder |
US5775569A (en) | 1996-10-31 | 1998-07-07 | Ibm Corporation | Method for building interconnect structures by injection molded solder and structures built |
US6121689A (en) | 1997-07-21 | 2000-09-19 | Miguel Albert Capote | Semiconductor flip-chip package and method for the fabrication thereof |
US5795818A (en) * | 1996-12-06 | 1998-08-18 | Amkor Technology, Inc. | Integrated circuit chip to substrate interconnection and method |
JP3500032B2 (en) * | 1997-03-13 | 2004-02-23 | 日本特殊陶業株式会社 | Wiring board and method of manufacturing the same |
JP3346263B2 (en) | 1997-04-11 | 2002-11-18 | イビデン株式会社 | Printed wiring board and manufacturing method thereof |
WO1999000842A1 (en) | 1997-06-26 | 1999-01-07 | Hitachi Chemical Company, Ltd. | Substrate for mounting semiconductor chips |
JPH1126919A (en) | 1997-06-30 | 1999-01-29 | Fuji Photo Film Co Ltd | Printed wiring board |
US5985456A (en) | 1997-07-21 | 1999-11-16 | Miguel Albert Capote | Carboxyl-containing polyunsaturated fluxing adhesive for attaching integrated circuits |
US6335571B1 (en) | 1997-07-21 | 2002-01-01 | Miguel Albert Capote | Semiconductor flip-chip package and method for the fabrication thereof |
US6335222B1 (en) | 1997-09-18 | 2002-01-01 | Tessera, Inc. | Microelectronic packages with solder interconnections |
US6448665B1 (en) | 1997-10-15 | 2002-09-10 | Kabushiki Kaisha Toshiba | Semiconductor package and manufacturing method thereof |
US6049122A (en) | 1997-10-16 | 2000-04-11 | Fujitsu Limited | Flip chip mounting substrate with resin filled between substrate and semiconductor chip |
JPH11145176A (en) | 1997-11-11 | 1999-05-28 | Fujitsu Ltd | Method for forming solder bump and method for forming preliminary solder |
JP3819576B2 (en) * | 1997-12-25 | 2006-09-13 | 沖電気工業株式会社 | Semiconductor device and manufacturing method thereof |
US6303408B1 (en) | 1998-02-03 | 2001-10-16 | Tessera, Inc. | Microelectronic assemblies with composite conductive elements |
JPH11233571A (en) | 1998-02-12 | 1999-08-27 | Hitachi Ltd | Semiconductor device, underfill material, and thermosetting film material |
US6324754B1 (en) | 1998-03-25 | 2001-12-04 | Tessera, Inc. | Method for fabricating microelectronic assemblies |
US6329605B1 (en) | 1998-03-26 | 2001-12-11 | Tessera, Inc. | Components with conductive solder mask layers |
JPH11330162A (en) * | 1998-05-19 | 1999-11-30 | Sony Corp | Mounting of semiconductor chip |
JP2000031204A (en) * | 1998-07-07 | 2000-01-28 | Ricoh Co Ltd | Manufacture of semiconductor package |
EP1099247B1 (en) | 1998-07-15 | 2004-03-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for transferring solder to a device and/or testing the device |
JP3420076B2 (en) * | 1998-08-31 | 2003-06-23 | 新光電気工業株式会社 | Method for manufacturing flip-chip mounting board, flip-chip mounting board, and flip-chip mounting structure |
DE19839760A1 (en) | 1998-09-01 | 2000-03-02 | Bosch Gmbh Robert | Method for connecting electronic components to a carrier substrate and method for checking such a connection |
WO2000019517A1 (en) * | 1998-09-30 | 2000-04-06 | Ibiden Co., Ltd. | Semiconductor chip and manufacture method thereof |
JP2000133667A (en) * | 1998-10-22 | 2000-05-12 | Citizen Watch Co Ltd | Formation of bump electrode |
JP2000133672A (en) | 1998-10-28 | 2000-05-12 | Seiko Epson Corp | Semiconductor device, its manufacture, circuit board, and electronic apparatus |
US6383916B1 (en) | 1998-12-21 | 2002-05-07 | M. S. Lin | Top layers of metal for high performance IC's |
JP3346320B2 (en) | 1999-02-03 | 2002-11-18 | カシオ計算機株式会社 | Semiconductor device and manufacturing method thereof |
JP4024958B2 (en) | 1999-03-15 | 2007-12-19 | 株式会社ルネサステクノロジ | Semiconductor device and semiconductor mounting structure |
US6556268B1 (en) | 1999-03-31 | 2003-04-29 | Industrial Technology Research Institute | Method for forming compact LCD packages and devices formed in which first bonding PCB to LCD panel and second bonding driver chip to PCB |
US6225206B1 (en) | 1999-05-10 | 2001-05-01 | International Business Machines Corporation | Flip chip C4 extension structure and process |
JP2000349194A (en) | 1999-06-08 | 2000-12-15 | Matsushita Electric Ind Co Ltd | Semiconductor device and its manufacture |
US6458622B1 (en) | 1999-07-06 | 2002-10-01 | Motorola, Inc. | Stress compensation composition and semiconductor component formed using the stress compensation composition |
US6122171A (en) | 1999-07-30 | 2000-09-19 | Micron Technology, Inc. | Heat sink chip package and method of making |
JP2001068836A (en) | 1999-08-27 | 2001-03-16 | Mitsubishi Electric Corp | Printed wiring board and semicondcutor module, and manufacture thereof |
US6303400B1 (en) * | 1999-09-23 | 2001-10-16 | International Business Machines Corporation | Temporary attach article and method for temporary attach of devices to a substrate |
TW429492B (en) | 1999-10-21 | 2001-04-11 | Siliconware Precision Industries Co Ltd | Ball grid array package and its fabricating method |
US6774474B1 (en) | 1999-11-10 | 2004-08-10 | International Business Machines Corporation | Partially captured oriented interconnections for BGA packages and a method of forming the interconnections |
JP2001156203A (en) | 1999-11-24 | 2001-06-08 | Matsushita Electric Works Ltd | Printed wiring board for mounting semiconductor chip |
JP3865989B2 (en) | 2000-01-13 | 2007-01-10 | 新光電気工業株式会社 | Multilayer wiring board, wiring board, multilayer wiring board manufacturing method, wiring board manufacturing method, and semiconductor device |
US6592019B2 (en) | 2000-04-27 | 2003-07-15 | Advanpack Solutions Pte. Ltd | Pillar connections for semiconductor chips and method of manufacture |
US6578754B1 (en) | 2000-04-27 | 2003-06-17 | Advanpack Solutions Pte. Ltd. | Pillar connections for semiconductor chips and method of manufacture |
US6661084B1 (en) | 2000-05-16 | 2003-12-09 | Sandia Corporation | Single level microelectronic device package with an integral window |
JP2001332583A (en) * | 2000-05-22 | 2001-11-30 | Fujitsu Ltd | Method of mounting semiconductor chip |
US6787918B1 (en) | 2000-06-02 | 2004-09-07 | Siliconware Precision Industries Co., Ltd. | Substrate structure of flip chip package |
US6573610B1 (en) | 2000-06-02 | 2003-06-03 | Siliconware Precision Industries Co., Ltd. | Substrate of semiconductor package for flip chip package |
JP2001351945A (en) * | 2000-06-05 | 2001-12-21 | Matsushita Electric Ind Co Ltd | Method of manufacturing semiconductor device |
US6201305B1 (en) | 2000-06-09 | 2001-03-13 | Amkor Technology, Inc. | Making solder ball mounting pads on substrates |
JP3554533B2 (en) | 2000-10-13 | 2004-08-18 | シャープ株式会社 | Chip-on-film tape and semiconductor device |
JP2004512127A (en) | 2000-11-01 | 2004-04-22 | スリーエム イノベイティブ プロパティズ カンパニー | Electrical detection and / or signal application device |
JP2002151532A (en) | 2000-11-08 | 2002-05-24 | Sharp Corp | Electronic component, method and structure for mounting semiconductor device |
JP2002151551A (en) | 2000-11-10 | 2002-05-24 | Hitachi Ltd | Flip-chip mounting structure, semiconductor device therewith and mounting method |
US6552436B2 (en) | 2000-12-08 | 2003-04-22 | Motorola, Inc. | Semiconductor device having a ball grid array and method therefor |
US6518678B2 (en) | 2000-12-29 | 2003-02-11 | Micron Technology, Inc. | Apparatus and method for reducing interposer compression during molding process |
US6780682B2 (en) | 2001-02-27 | 2004-08-24 | Chippac, Inc. | Process for precise encapsulation of flip chip interconnects |
US8158508B2 (en) | 2001-03-05 | 2012-04-17 | Megica Corporation | Structure and manufacturing method of a chip scale package |
US6818545B2 (en) | 2001-03-05 | 2004-11-16 | Megic Corporation | Low fabrication cost, fine pitch and high reliability solder bump |
US7242099B2 (en) | 2001-03-05 | 2007-07-10 | Megica Corporation | Chip package with multiple chips connected by bumps |
JP2002270732A (en) | 2001-03-13 | 2002-09-20 | Sharp Corp | Electronic component with underfill material |
DE60235335D1 (en) | 2001-03-15 | 2010-04-01 | Halo Inc | Dual bit MONOS memory cell use for wide program bandwidth |
US7331502B2 (en) | 2001-03-19 | 2008-02-19 | Sumitomo Bakelite Company, Ltd. | Method of manufacturing electronic part and electronic part obtained by the method |
US6495397B2 (en) | 2001-03-28 | 2002-12-17 | Intel Corporation | Fluxless flip chip interconnection |
TW498506B (en) | 2001-04-20 | 2002-08-11 | Advanced Semiconductor Eng | Flip-chip joint structure and the processing thereof |
US6510976B2 (en) | 2001-05-18 | 2003-01-28 | Advanpack Solutions Pte. Ltd. | Method for forming a flip chip semiconductor package |
US7294457B2 (en) | 2001-08-07 | 2007-11-13 | Boehringer Ingelheim (Canada) Ltd. | Direct binding assay for identifying inhibitors of HCV polymerase |
US6550666B2 (en) | 2001-08-21 | 2003-04-22 | Advanpack Solutions Pte Ltd | Method for forming a flip chip on leadframe semiconductor package |
US6660560B2 (en) | 2001-09-10 | 2003-12-09 | Delphi Technologies, Inc. | No-flow underfill material and underfill method for flip chip devices |
US6853076B2 (en) * | 2001-09-21 | 2005-02-08 | Intel Corporation | Copper-containing C4 ball-limiting metallurgy stack for enhanced reliability of packaged structures and method of making same |
TW507341B (en) | 2001-11-01 | 2002-10-21 | Siliconware Precision Industries Co Ltd | Substrate capable of preventing delamination of chip and semiconductor encapsulation having such a substrate |
US7202556B2 (en) | 2001-12-20 | 2007-04-10 | Micron Technology, Inc. | Semiconductor package having substrate with multi-layer metal bumps |
US6870276B1 (en) | 2001-12-26 | 2005-03-22 | Micron Technology, Inc. | Apparatus for supporting microelectronic substrates |
JP3891838B2 (en) | 2001-12-26 | 2007-03-14 | 株式会社ルネサステクノロジ | Semiconductor device and manufacturing method thereof |
AU2002234063A1 (en) | 2001-12-26 | 2003-09-09 | Motorola, Inc. | Method of mounting a semiconductor die on a substrate without using a solder mask |
TWI268581B (en) * | 2002-01-25 | 2006-12-11 | Advanced Semiconductor Eng | Stack type flip-chip package including a substrate board, a first chip, a second chip, multiple conductive wire, an underfill, and a packaging material |
TWI239578B (en) * | 2002-02-21 | 2005-09-11 | Advanced Semiconductor Eng | Manufacturing process of bump |
JP2003264256A (en) * | 2002-03-08 | 2003-09-19 | Hitachi Ltd | Semiconductor device |
JP2003273145A (en) | 2002-03-12 | 2003-09-26 | Sharp Corp | Semiconductor device |
US6767411B2 (en) | 2002-03-15 | 2004-07-27 | Delphi Technologies, Inc. | Lead-free solder alloy and solder reflow process |
TW550800B (en) | 2002-05-27 | 2003-09-01 | Via Tech Inc | Integrated circuit package without solder mask and method for the same |
US6780673B2 (en) | 2002-06-12 | 2004-08-24 | Texas Instruments Incorporated | Method of forming a semiconductor device package using a plate layer surrounding contact pads |
TW558809B (en) * | 2002-06-19 | 2003-10-21 | Univ Nat Central | Flip chip package and process of making the same |
US6659512B1 (en) | 2002-07-18 | 2003-12-09 | Hewlett-Packard Development Company, L.P. | Integrated circuit package employing flip-chip technology and method of assembly |
US6974330B2 (en) | 2002-08-08 | 2005-12-13 | Micron Technology, Inc. | Electronic devices incorporating electrical interconnections with improved reliability and methods of fabricating same |
US6696644B1 (en) | 2002-08-08 | 2004-02-24 | Texas Instruments Incorporated | Polymer-embedded solder bumps for reliable plastic package attachment |
US6811892B2 (en) | 2002-08-22 | 2004-11-02 | Delphi Technologies, Inc. | Lead-based solder alloys containing copper |
JP2004095923A (en) | 2002-09-02 | 2004-03-25 | Murata Mfg Co Ltd | Mounting board and electronic device using the same |
US7294928B2 (en) * | 2002-09-06 | 2007-11-13 | Tessera, Inc. | Components, methods and assemblies for stacked packages |
TW561602B (en) | 2002-09-09 | 2003-11-11 | Via Tech Inc | High density integrated circuit packages and method for the same |
JP2004111676A (en) | 2002-09-19 | 2004-04-08 | Toshiba Corp | Semiconductor device, manufacturing method thereof, and member for semiconductor package |
JP2004165283A (en) | 2002-11-11 | 2004-06-10 | Fujitsu Ltd | Semiconductor device |
US7173342B2 (en) | 2002-12-17 | 2007-02-06 | Intel Corporation | Method and apparatus for reducing electrical interconnection fatigue |
JP4114483B2 (en) * | 2003-01-10 | 2008-07-09 | セイコーエプソン株式会社 | Semiconductor chip mounting method, semiconductor mounting substrate, electronic device and electronic equipment |
US6821878B2 (en) | 2003-02-27 | 2004-11-23 | Freescale Semiconductor, Inc. | Area-array device assembly with pre-applied underfill layers on printed wiring board |
US6943058B2 (en) | 2003-03-18 | 2005-09-13 | Delphi Technologies, Inc. | No-flow underfill process and material therefor |
US6774497B1 (en) | 2003-03-28 | 2004-08-10 | Freescale Semiconductor, Inc. | Flip-chip assembly with thin underfill and thick solder mask |
US20040232560A1 (en) | 2003-05-22 | 2004-11-25 | Chao-Yuan Su | Flip chip assembly process and substrate used therewith |
US20040232562A1 (en) | 2003-05-23 | 2004-11-25 | Texas Instruments Incorporated | System and method for increasing bump pad height |
US6888255B2 (en) | 2003-05-30 | 2005-05-03 | Texas Instruments Incorporated | Built-up bump pad structure and method for same |
US6849944B2 (en) | 2003-05-30 | 2005-02-01 | Texas Instruments Incorporated | Using a supporting structure to control collapse of a die towards a die pad during a reflow process for coupling the die to the die pad |
TWI227556B (en) | 2003-07-15 | 2005-02-01 | Advanced Semiconductor Eng | Chip structure |
TWI241702B (en) | 2003-07-28 | 2005-10-11 | Siliconware Precision Industries Co Ltd | Ground pad structure for preventing solder extrusion and semiconductor package having the ground pad structure |
KR100523330B1 (en) | 2003-07-29 | 2005-10-24 | 삼성전자주식회사 | BGA semiconductor package with solder ball land structure mixed SMD and NSMD types |
TWI234258B (en) | 2003-08-01 | 2005-06-11 | Advanced Semiconductor Eng | Substrate with reinforced structure of contact pad |
KR100541394B1 (en) | 2003-08-23 | 2006-01-10 | 삼성전자주식회사 | NSMD type substrate for ball grid array package and manufacturing method thereof |
TWI221336B (en) * | 2003-08-29 | 2004-09-21 | Advanced Semiconductor Eng | Integrated circuit with embedded passive component in flip-chip connection and method for manufacturing the same |
US7271484B2 (en) | 2003-09-25 | 2007-09-18 | Infineon Technologies Ag | Substrate for producing a soldering connection |
WO2005031863A1 (en) | 2003-09-26 | 2005-04-07 | Tessera, Inc. | Structure and method of making capped chips having vertical interconnects |
US7112524B2 (en) * | 2003-09-29 | 2006-09-26 | Phoenix Precision Technology Corporation | Substrate for pre-soldering material and fabrication method thereof |
JP3877717B2 (en) | 2003-09-30 | 2007-02-07 | 三洋電機株式会社 | Semiconductor device and manufacturing method thereof |
JP2005109187A (en) | 2003-09-30 | 2005-04-21 | Tdk Corp | Flip chip packaging circuit board and its manufacturing method, and integrated circuit device |
US7462942B2 (en) | 2003-10-09 | 2008-12-09 | Advanpack Solutions Pte Ltd | Die pillar structures and a method of their formation |
US8076232B2 (en) * | 2008-04-03 | 2011-12-13 | Stats Chippac, Ltd. | Semiconductor device and method of forming composite bump-on-lead interconnection |
US8026128B2 (en) | 2004-11-10 | 2011-09-27 | Stats Chippac, Ltd. | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
WO2005048311A2 (en) | 2003-11-10 | 2005-05-26 | Chippac, Inc. | Bump-on-lead flip chip interconnection |
US8129841B2 (en) | 2006-12-14 | 2012-03-06 | Stats Chippac, Ltd. | Solder joint flip chip interconnection |
US20060216860A1 (en) | 2005-03-25 | 2006-09-28 | Stats Chippac, Ltd. | Flip chip interconnection having narrow interconnection sites on the substrate |
US7736950B2 (en) | 2003-11-10 | 2010-06-15 | Stats Chippac, Ltd. | Flip chip interconnection |
US7294451B2 (en) | 2003-11-18 | 2007-11-13 | Texas Instruments Incorporated | Raised solder-mask-defined (SMD) solder ball pads for a laminate electronic circuit board |
US7294929B2 (en) | 2003-12-30 | 2007-11-13 | Texas Instruments Incorporated | Solder ball pad structure |
JP3863161B2 (en) | 2004-01-20 | 2006-12-27 | 松下電器産業株式会社 | Semiconductor device |
CN100446205C (en) | 2004-03-29 | 2008-12-24 | 日本电气株式会社 | Semiconductor device and process for manufacturing the same |
JP4024773B2 (en) | 2004-03-30 | 2007-12-19 | シャープ株式会社 | WIRING BOARD, SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND SEMICONDUCTOR MODULE DEVICE |
KR100597993B1 (en) * | 2004-04-08 | 2006-07-10 | 주식회사 네패스 | Bump for semiconductor package, semiconductor package applying the bump and method for fabricating the semiconductor package |
TWI240389B (en) | 2004-05-06 | 2005-09-21 | Advanced Semiconductor Eng | High-density layout substrate for flip-chip package |
US7224073B2 (en) | 2004-05-18 | 2007-05-29 | Ultratera Corporation | Substrate for solder joint |
US7183493B2 (en) | 2004-06-30 | 2007-02-27 | Intel Corporation | Electronic assembly having multi-material interconnects |
US7057284B2 (en) | 2004-08-12 | 2006-06-06 | Texas Instruments Incorporated | Fine pitch low-cost flip chip substrate |
JP2006108313A (en) | 2004-10-04 | 2006-04-20 | Rohm Co Ltd | Packaging board and semiconductor device |
DE102004050178B3 (en) | 2004-10-14 | 2006-05-04 | Infineon Technologies Ag | Flip-chip device |
US7488896B2 (en) | 2004-11-04 | 2009-02-10 | Ngk Spark Plug Co., Ltd. | Wiring board with semiconductor component |
US8067823B2 (en) | 2004-11-15 | 2011-11-29 | Stats Chippac, Ltd. | Chip scale package having flip chip interconnect on die paddle |
US20060131758A1 (en) | 2004-12-22 | 2006-06-22 | Stmicroelectronics, Inc. | Anchored non-solder mask defined ball pad |
TWI261329B (en) * | 2005-03-09 | 2006-09-01 | Phoenix Prec Technology Corp | Conductive bump structure of circuit board and method for fabricating the same |
US7361990B2 (en) | 2005-03-17 | 2008-04-22 | Taiwan Semiconductor Manufacturing Company, Ltd. | Reducing cracking of high-lead or lead-free bumps by matching sizes of contact pads and bump pads |
US20060255473A1 (en) | 2005-05-16 | 2006-11-16 | Stats Chippac Ltd. | Flip chip interconnect solder mask |
JP4190525B2 (en) | 2005-08-22 | 2008-12-03 | 富士通マイクロエレクトロニクス株式会社 | Manufacturing method of semiconductor device |
JP4971769B2 (en) | 2005-12-22 | 2012-07-11 | 新光電気工業株式会社 | Flip chip mounting structure and manufacturing method of flip chip mounting structure |
TWI286830B (en) | 2006-01-16 | 2007-09-11 | Siliconware Precision Industries Co Ltd | Electronic carrier board |
TWI294682B (en) | 2006-02-03 | 2008-03-11 | Siliconware Precision Industries Co Ltd | Semiconductor package substrate |
US20070200234A1 (en) | 2006-02-28 | 2007-08-30 | Texas Instruments Incorporated | Flip-Chip Device Having Underfill in Controlled Gap |
US7317245B1 (en) | 2006-04-07 | 2008-01-08 | Amkor Technology, Inc. | Method for manufacturing a semiconductor device substrate |
US7541681B2 (en) | 2006-05-04 | 2009-06-02 | Infineon Technologies Ag | Interconnection structure, electronic component and method of manufacturing the same |
JP2007305881A (en) | 2006-05-12 | 2007-11-22 | Sharp Corp | Tape carrier, semiconductor device, and semiconductor module device |
US7902660B1 (en) | 2006-05-24 | 2011-03-08 | Amkor Technology, Inc. | Substrate for semiconductor device and manufacturing method thereof |
KR100764055B1 (en) | 2006-09-07 | 2007-10-08 | 삼성전자주식회사 | Wafer level chip scale package and method for manufacturing a chip scale package |
TWI378540B (en) | 2006-10-14 | 2012-12-01 | Advanpack Solutions Pte Ltd | Chip and manufacturing method thereof |
US20080093749A1 (en) | 2006-10-20 | 2008-04-24 | Texas Instruments Incorporated | Partial Solder Mask Defined Pad Design |
TWI331388B (en) | 2007-01-25 | 2010-10-01 | Advanced Semiconductor Eng | Package substrate, method of fabricating the same and chip package |
JP4618260B2 (en) | 2007-02-21 | 2011-01-26 | 日本テキサス・インスツルメンツ株式会社 | Conductor pattern forming method, semiconductor device manufacturing method, and semiconductor device |
US7521284B2 (en) | 2007-03-05 | 2009-04-21 | Texas Instruments Incorporated | System and method for increased stand-off height in stud bumping process |
TWI361482B (en) | 2007-05-10 | 2012-04-01 | Siliconware Precision Industries Co Ltd | Flip-chip semiconductor package structure and package substrate applicable thereto |
US8178392B2 (en) | 2007-05-18 | 2012-05-15 | Stats Chippac Ltd. | Electronic system with expansion feature |
US20090057378A1 (en) | 2007-08-27 | 2009-03-05 | Chi-Won Hwang | In-situ chip attachment using self-organizing solder |
CN101874296B (en) | 2007-09-28 | 2015-08-26 | 泰塞拉公司 | Paired projection is utilized to carry out flip chip interconnects |
TWI357137B (en) | 2007-10-19 | 2012-01-21 | Advanced Semiconductor Eng | Flip chip package structure and carrier thereof |
TWI358113B (en) | 2007-10-31 | 2012-02-11 | Advanced Semiconductor Eng | Substrate structure and semiconductor package usin |
TW200921868A (en) | 2007-11-07 | 2009-05-16 | Advanced Semiconductor Eng | Substrate structure |
US7847399B2 (en) | 2007-12-07 | 2010-12-07 | Texas Instruments Incorporated | Semiconductor device having solder-free gold bump contacts for stability in repeated temperature cycles |
JP5107012B2 (en) | 2007-12-12 | 2012-12-26 | 新光電気工業株式会社 | Wiring board and method for manufacturing electronic component mounting structure |
TWI340615B (en) | 2008-01-30 | 2011-04-11 | Advanced Semiconductor Eng | Surface treatment process for circuit board |
US7670939B2 (en) | 2008-05-12 | 2010-03-02 | Ati Technologies Ulc | Semiconductor chip bump connection apparatus and method |
US7851928B2 (en) | 2008-06-10 | 2010-12-14 | Texas Instruments Incorporated | Semiconductor device having substrate with differentially plated copper and selective solder |
TWI425896B (en) | 2008-06-11 | 2014-02-01 | Advanced Semiconductor Eng | Circuit board with buried conductive trace formed thereon and method for manufacturing the same |
KR100979497B1 (en) | 2008-06-17 | 2010-09-01 | 삼성전기주식회사 | Wafer level package and manufacturing method thereof |
US7932170B1 (en) | 2008-06-23 | 2011-04-26 | Amkor Technology, Inc. | Flip chip bump structure and fabrication method |
US7790509B2 (en) | 2008-06-27 | 2010-09-07 | Texas Instruments Incorporated | Method for fine-pitch, low stress flip-chip interconnect |
TWI384600B (en) | 2008-12-09 | 2013-02-01 | Advanced Semiconductor Eng | Embedded circuit substrate and manufacturing method thereof |
US7898083B2 (en) | 2008-12-17 | 2011-03-01 | Texas Instruments Incorporated | Method for low stress flip-chip assembly of fine-pitch semiconductor devices |
US20110049703A1 (en) | 2009-08-25 | 2011-03-03 | Jun-Chung Hsu | Flip-Chip Package Structure |
US8435834B2 (en) | 2010-09-13 | 2013-05-07 | Stats Chippac, Ltd. | Semiconductor device and method of forming bond-on-lead interconnection for mounting semiconductor die in FO-WLCSP |
US9299674B2 (en) | 2012-04-18 | 2016-03-29 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bump-on-trace interconnect |
-
2006
- 2006-03-24 US US11/388,755 patent/US20060216860A1/en not_active Abandoned
- 2006-03-24 WO PCT/US2006/011094 patent/WO2006105015A2/en active Application Filing
- 2006-03-24 JP JP2008503281A patent/JP2008535225A/en not_active Withdrawn
- 2006-03-24 KR KR1020077021883A patent/KR20070107154A/en not_active Application Discontinuation
- 2006-03-27 TW TW095110605A patent/TWI404114B/en active
-
2010
- 2010-04-09 US US12/757,889 patent/US8318537B2/en active Active
-
2011
- 2011-12-22 JP JP2011282221A patent/JP5565875B2/en active Active
-
2012
- 2012-10-04 US US13/645,397 patent/US9159665B2/en active Active
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6229209B1 (en) * | 1995-02-23 | 2001-05-08 | Matsushita Electric Industrial Co., Ltd. | Chip carrier |
US6333206B1 (en) * | 1996-12-24 | 2001-12-25 | Nitto Denko Corporation | Process for the production of semiconductor device |
US6281581B1 (en) * | 1997-03-12 | 2001-08-28 | International Business Machines Corporation | Substrate structure for improving attachment reliability of semiconductor chips and modules |
US6002172A (en) * | 1997-03-12 | 1999-12-14 | International Business Machines Corporation | Substrate structure and method for improving attachment reliability of semiconductor chips and modules |
US20020192865A1 (en) * | 1997-03-27 | 2002-12-19 | Hitachi, Ltd. And Hitachi Hokkai Semiconductor, Ltd. | Process for mounting electronic device and semiconductor device |
US6462425B1 (en) * | 1999-04-19 | 2002-10-08 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device and manufacturing method thereof |
US6472608B2 (en) * | 2000-02-18 | 2002-10-29 | Nec Corporation | Semiconductor device |
US7005743B2 (en) * | 2000-04-28 | 2006-02-28 | Sony Corporation | Semiconductor device using bumps, method for fabricating same, and method for forming bumps |
US20030067084A1 (en) * | 2000-06-28 | 2003-04-10 | Sharp Kabushiki Kaisha | Semiconductor device and manufacturing method thereof |
US20020121706A1 (en) * | 2000-12-28 | 2002-09-05 | Matsushita Electic Works, Ltd. | Semiconductor-chip mounting substrate and method of manufacturing the same |
US6664483B2 (en) * | 2001-05-15 | 2003-12-16 | Intel Corporation | Electronic package with high density interconnect and associated methods |
US20030127734A1 (en) * | 2002-01-07 | 2003-07-10 | Jin-Yuan Lee | Cylindrical bonding structure and method of manufacture |
US20040108135A1 (en) * | 2002-10-11 | 2004-06-10 | Takeshi Ashida | Circuit board, mounting structure of ball grid array, electro-optic device and electronic device |
US6809262B1 (en) * | 2003-06-03 | 2004-10-26 | Via Technologies, Inc. | Flip chip package carrier |
US7102239B2 (en) * | 2003-08-18 | 2006-09-05 | Siliconware Precision Industries Co., Ltd. | Chip carrier for semiconductor chip |
US7102222B2 (en) * | 2003-10-02 | 2006-09-05 | Siliconware Precision Industries Co., Ltd. | Conductive trace structure and semiconductor package having the conductive trace structure |
Cited By (64)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10388626B2 (en) | 2000-03-10 | 2019-08-20 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming flipchip interconnect structure |
US9922915B2 (en) | 2003-11-10 | 2018-03-20 | STATS ChipPAC Pte. Ltd. | Bump-on-lead flip chip interconnection |
US20110084386A1 (en) * | 2003-11-10 | 2011-04-14 | Stats Chippac, Ltd. | Semiconductor Device and Method of Self-Confinement of Conductive Bump Material During Reflow Without Solder Mask |
US9064858B2 (en) | 2003-11-10 | 2015-06-23 | Stats Chippac, Ltd. | Semiconductor device and method of forming bump-on-lead interconnection |
US9773685B2 (en) | 2003-11-10 | 2017-09-26 | STATS ChipPAC Pte. Ltd. | Solder joint flip chip interconnection having relief structure |
US9899286B2 (en) | 2003-11-10 | 2018-02-20 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
US9385101B2 (en) | 2003-11-10 | 2016-07-05 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming bump-on-lead interconnection |
US9379084B2 (en) | 2003-11-10 | 2016-06-28 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
US9373573B2 (en) | 2003-11-10 | 2016-06-21 | STATS ChipPAC Pte. Ltd. | Solder joint flip chip interconnection |
US9219045B2 (en) * | 2003-11-10 | 2015-12-22 | Stats Chippac, Ltd. | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
USRE44579E1 (en) | 2003-11-10 | 2013-11-05 | Stats Chippac, Ltd. | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
US20140131869A1 (en) * | 2003-11-10 | 2014-05-15 | Stats Chippac, Ltd. | Semiconductor Device and Method of Self-Confinement of Conductive Bump Material During Reflow Without Solder Mask |
US8810029B2 (en) | 2003-11-10 | 2014-08-19 | Stats Chippac, Ltd. | Solder joint flip chip interconnection |
USRE47600E1 (en) | 2003-11-10 | 2019-09-10 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming electrical interconnect with stress relief void |
US9865556B2 (en) | 2003-11-10 | 2018-01-09 | STATS ChipPAC Pte Ltd. | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
US9029196B2 (en) * | 2003-11-10 | 2015-05-12 | Stats Chippac, Ltd. | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
US20110309500A1 (en) * | 2003-12-31 | 2011-12-22 | Stats Chippac, Ltd. | Semiconductor Device and Method of Self-Confinement of Conductive Bump Material During Reflow Without Solder Mask |
US8674500B2 (en) * | 2003-12-31 | 2014-03-18 | Stats Chippac, Ltd. | Semiconductor device and method of self-confinement of conductive bump material during reflow without solder mask |
US20080245554A1 (en) * | 2004-04-05 | 2008-10-09 | Wistron Corp. | Fabrication method and structure of pcb assembly, and tool for assembly thereof |
US20110162578A1 (en) * | 2005-03-15 | 2011-07-07 | Panasonic Corporation | Flip-chip mounting method and bump formation method |
US8691683B2 (en) * | 2005-03-15 | 2014-04-08 | Panasonic Corporation | Flip-chip mounting method and bump formation method |
US10580749B2 (en) | 2005-03-25 | 2020-03-03 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming high routing density interconnect sites on substrate |
US8841779B2 (en) | 2005-03-25 | 2014-09-23 | Stats Chippac, Ltd. | Semiconductor device and method of forming high routing density BOL BONL and BONP interconnect sites on substrate |
US9159665B2 (en) | 2005-03-25 | 2015-10-13 | Stats Chippac, Ltd. | Flip chip interconnection having narrow interconnection sites on the substrate |
US20080042278A1 (en) * | 2006-08-15 | 2008-02-21 | Pai-Chou Liu | Substrate structure having N-SMD ball pads |
US7911056B2 (en) * | 2006-08-15 | 2011-03-22 | Advanced Semiconductor Engineering, Inc. | Substrate structure having N-SMD ball pads |
US20080123335A1 (en) * | 2006-11-08 | 2008-05-29 | Jong Kun Yoo | Printed circuit board assembly and display having the same |
US8671565B1 (en) | 2006-12-22 | 2014-03-18 | Amkor Technology, Inc. | Blind via capture pad structure fabrication method |
US20080191345A1 (en) * | 2007-02-09 | 2008-08-14 | Guichea Na | Integrated circuit package system with bump over via |
US8592989B2 (en) * | 2007-02-09 | 2013-11-26 | Stats Chippac Ltd. | Integrated circuit package system with bump over via |
US20080246147A1 (en) * | 2007-04-09 | 2008-10-09 | Chao-Yuan Su | Novel substrate design for semiconductor device |
US8323771B1 (en) * | 2007-08-15 | 2012-12-04 | Amkor Technology, Inc. | Straight conductor blind via capture pad structure and fabrication method |
US20090250814A1 (en) * | 2008-04-03 | 2009-10-08 | Stats Chippac, Ltd. | Flip Chip Interconnection Structure Having Void-Free Fine Pitch and Method Thereof |
US20100117230A1 (en) * | 2008-04-03 | 2010-05-13 | Stats Chippac, Ltd. | Flip Chip Interconnection Structure Having Void-Free Fine Pitch and Method Thereof |
EP2120262A1 (en) * | 2008-05-16 | 2009-11-18 | Phoenix Precision Technology Corporation | Structure of packaging substrate and method for making the same |
US9313585B2 (en) | 2008-12-22 | 2016-04-12 | Oticon A/S | Method of operating a hearing instrument based on an estimation of present cognitive load of a user and a hearing aid system |
US9679811B2 (en) | 2008-12-31 | 2017-06-13 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of confining conductive bump material with solder mask patch |
US20100207266A1 (en) * | 2009-02-16 | 2010-08-19 | Industrial Technology Research Institute | Chip package structure |
US20220189866A1 (en) * | 2009-03-30 | 2022-06-16 | Amkor Technology Singapore Holding Pte. Ltd. | Fine pitch copper pillar package and method |
US8492197B2 (en) | 2010-08-17 | 2013-07-23 | Stats Chippac, Ltd. | Semiconductor device and method of forming vertically offset conductive pillars over first substrate aligned to vertically offset BOT interconnect sites formed over second substrate |
US8896133B2 (en) | 2010-08-17 | 2014-11-25 | Stats Chippac, Ltd. | Semiconductor device and method of forming vertically offset conductive pillars over first substrate aligned to vertically offset BOT interconnect sites formed over second substrate |
US20130214409A1 (en) * | 2010-09-13 | 2013-08-22 | Stats Chippac, Ltd. | Semiconductor Device and Method of Forming Bond-on-Lead Interconnection for Mounting Semiconductor Die in FO-WLCSP |
US9679824B2 (en) * | 2010-09-13 | 2017-06-13 | STATS ChipPAC Pte. Ltd. | Semiconductor device and method of forming bond-on-lead interconnection for mounting semiconductor die in Fo-WLCSP |
CN102456664A (en) * | 2010-10-21 | 2012-05-16 | 台湾积体电路制造股份有限公司 | Centripetal layout for low stress chip package |
CN102956609A (en) * | 2011-07-27 | 2013-03-06 | 台湾积体电路制造股份有限公司 | Structure and method for bump to landing trace ratio |
US20130037945A1 (en) * | 2011-08-08 | 2013-02-14 | Min Jae Lee | Semiconductor device |
US9355981B2 (en) * | 2011-08-08 | 2016-05-31 | Amkor Technology, Inc. | Semiconductor device |
CN102458046A (en) * | 2011-09-28 | 2012-05-16 | 柏承科技(昆山)股份有限公司 | Structure and method for improving shape of bonding pad and limiting diffusion of solder paste |
US9786622B2 (en) * | 2011-10-20 | 2017-10-10 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor package |
CN103151324A (en) * | 2011-12-07 | 2013-06-12 | 台湾积体电路制造股份有限公司 | Landing areas of bonding structures |
US10034389B2 (en) | 2012-04-19 | 2018-07-24 | Panasonic Intellectual Property Management Co., Ltd. | Electric component mounting method |
CN104221480A (en) * | 2012-04-19 | 2014-12-17 | 松下知识产权经营株式会社 | Electronic component mounting method and electronic component mounting line |
US10991669B2 (en) | 2012-07-31 | 2021-04-27 | Mediatek Inc. | Semiconductor package using flip-chip technology |
US10573615B2 (en) | 2012-07-31 | 2020-02-25 | Mediatek Inc. | Semiconductor package and method for fabricating base for semiconductor package |
US10573616B2 (en) | 2012-07-31 | 2020-02-25 | Mediatek Inc. | Semiconductor package and method for fabricating base for semiconductor package |
US10580747B2 (en) | 2012-07-31 | 2020-03-03 | Mediatek Inc. | Semiconductor package and method for fabricating base for semiconductor package |
US11469201B2 (en) | 2012-07-31 | 2022-10-11 | Mediatek Inc. | Semiconductor package and method for fabricating base for semiconductor package |
US20190131264A1 (en) * | 2014-03-13 | 2019-05-02 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor Device Structure and Manufacturing Method |
US11217548B2 (en) * | 2014-03-13 | 2022-01-04 | Taiwan Semiconductor Manufacturing Co., Ltd. | Semiconductor device structure and manufacturing method |
CN105570736A (en) * | 2015-12-11 | 2016-05-11 | 苏州达方电子有限公司 | Light source device |
CN106777718A (en) * | 2016-12-23 | 2017-05-31 | 上海斐讯数据通信技术有限公司 | A kind of PCB gerber files processing method and processing system |
US11393771B2 (en) * | 2018-09-27 | 2022-07-19 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bonding structures in semiconductor packaged device and method of forming same |
US20220352094A1 (en) * | 2018-09-27 | 2022-11-03 | Taiwan Semiconductor Manufacturing Co., Ltd. | Bonding structures in semiconductor packaged device and method of forming same |
US11990428B2 (en) * | 2018-09-27 | 2024-05-21 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bonding structures in semiconductor packaged device and method of forming same |
Also Published As
Publication number | Publication date |
---|---|
TW200723355A (en) | 2007-06-16 |
JP2012064980A (en) | 2012-03-29 |
US20130026628A1 (en) | 2013-01-31 |
US20100193947A1 (en) | 2010-08-05 |
JP5565875B2 (en) | 2014-08-06 |
TWI404114B (en) | 2013-08-01 |
KR20070107154A (en) | 2007-11-06 |
WO2006105015A2 (en) | 2006-10-05 |
US9159665B2 (en) | 2015-10-13 |
WO2006105015A3 (en) | 2007-11-22 |
US20120211880A9 (en) | 2012-08-23 |
JP2008535225A (en) | 2008-08-28 |
US8318537B2 (en) | 2012-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9159665B2 (en) | Flip chip interconnection having narrow interconnection sites on the substrate | |
US8558378B2 (en) | Bump-on-lead flip chip interconnection | |
US9545013B2 (en) | Flip chip interconnect solder mask | |
US7901983B2 (en) | Bump-on-lead flip chip interconnection | |
US9773685B2 (en) | Solder joint flip chip interconnection having relief structure | |
US7659633B2 (en) | Solder joint flip chip interconnection having relief structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: STATS CHIPPAC LTD., SINGAPORE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:PENDSE, RAJENDRA D.;REEL/FRAME:017587/0556 Effective date: 20060504 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT, HONG KONG Free format text: SECURITY INTEREST;ASSIGNORS:STATS CHIPPAC, INC.;STATS CHIPPAC LTD.;REEL/FRAME:036288/0748 Effective date: 20150806 Owner name: CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY Free format text: SECURITY INTEREST;ASSIGNORS:STATS CHIPPAC, INC.;STATS CHIPPAC LTD.;REEL/FRAME:036288/0748 Effective date: 20150806 |
|
AS | Assignment |
Owner name: STATS CHIPPAC PTE. LTE., SINGAPORE Free format text: CHANGE OF NAME;ASSIGNOR:STATS CHIPPAC LD.;REEL/FRAME:038378/0442 Effective date: 20160329 |
|
AS | Assignment |
Owner name: STATS CHIPPAC PTE. LTD., SINGAPORE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNOR NAME PREVIOUSLY RECORDED AT REEL: 039514 FRAME: 0451. ASSIGNOR(S) HEREBY CONFIRMS THE CHANGE OF NAME;ASSIGNOR:STATS CHIPPAC LTD.;REEL/FRAME:039980/0838 Effective date: 20160329 |
|
AS | Assignment |
Owner name: STATS CHIPPAC PTE. LTD. FORMERLY KNOWN AS STATS CHIPPAC LTD., SINGAPORE Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT;REEL/FRAME:053476/0094 Effective date: 20190503 Owner name: STATS CHIPPAC, INC., CALIFORNIA Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:CITICORP INTERNATIONAL LIMITED, AS COMMON SECURITY AGENT;REEL/FRAME:053476/0094 Effective date: 20190503 |