WO1998019966A1 - VERFAHREN ZUR ABTRENNUNG VON NaCl AUS EINER LiCl-LÖSUNG - Google Patents

VERFAHREN ZUR ABTRENNUNG VON NaCl AUS EINER LiCl-LÖSUNG Download PDF

Info

Publication number
WO1998019966A1
WO1998019966A1 PCT/EP1997/005994 EP9705994W WO9819966A1 WO 1998019966 A1 WO1998019966 A1 WO 1998019966A1 EP 9705994 W EP9705994 W EP 9705994W WO 9819966 A1 WO9819966 A1 WO 9819966A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
nacl
licl
weight
lithium
Prior art date
Application number
PCT/EP1997/005994
Other languages
English (en)
French (fr)
Inventor
Jürgen DEBERITZ
Klaus Köbele
Klaus Schade
Original Assignee
Metallgesellschaft Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft Aktiengesellschaft filed Critical Metallgesellschaft Aktiengesellschaft
Priority to JP52102398A priority Critical patent/JP4111404B2/ja
Priority to GB9910270A priority patent/GB2335187B/en
Priority to US09/284,669 priority patent/US6063345A/en
Publication of WO1998019966A1 publication Critical patent/WO1998019966A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01DCOMPOUNDS OF ALKALI METALS, i.e. LITHIUM, SODIUM, POTASSIUM, RUBIDIUM, CAESIUM, OR FRANCIUM
    • C01D15/00Lithium compounds
    • C01D15/04Halides

Definitions

  • the invention relates to a method for separating NaCl from an aqueous NaCl solution contaminated with NaCl by concentrating the solution up to a LiCl content> 25% by weight, cooling the concentrated solution and separating the crystallized NaCl.
  • Lithium chloride is an industrial raw material from which lithium compounds and in particular metallic lithium are produced. It is necessary that the raw material lithium chloride be made available in as pure a form as possible, since only in this way is an economical and technically efficient further processing of the lithium chloride possible. For example, the lithium chloride from which metallic lithium is obtained must have the lowest possible sodium content, because the sodium content of metallic lithium must be below 1%.
  • Aqueous solutions containing lithium chloride are obtained either as an industrial raw material or in the processing of lithium-containing brine. In addition to lithium chloride, these solutions contain various impurities, the separation of which is carried out industrially by using known different processes. The impurities include, in particular, sodium chloride, the separation of which requires considerable economic effort.
  • DE-AS 1 228 594 describes a process for separating lithium from naturally occurring salt brines which contain lithium and alkaline earths by precipitation of a lithium aluminum complex in which the brine is mixed with an aluminum compound and the precipitation of the lithium aluminum complex at a pH of 6.0 to 8.1 and at a temperature of 20 to 100 ° C. The final extraction of the lithium from the
  • Lithium aluminum complex can then be carried out by various known methods, for example by hydrothermal decomposition of the lithium aluminum complex and concentration of the diluted solutions using ion exchange resins or by direct treatment with ion exchange resins.
  • DE-AS 1 093 783 describes a process for working up lithium ores by roasting in order to obtain lithium salts and other alkali salts with high purity.
  • roasting which takes place in the presence of calcium carbonate, sand and calcium chloride at about 1100 to 1200 ° C, the chlorides of lithium, sodium and potassium are evaporated and in Adsorbs water.
  • the alkali chloride solution is worked up in such a way that the chloride solution is mixed with the mixture of sodium chloride and lithium carbonate deposited in a subsequent process step, so that solid sodium chloride is separated from this slurry at a temperature of about 25 to 30 ° C.
  • US Pat. No. 4,271,131 discloses a process for producing high-purity lithium chloride from a brine which, in addition to a small amount of lithium, also contains sodium, potassium, magnesium, sulfate and borate.
  • the brine is evaporated by solar energy in a first pond system, whereby a concentrated brine with a lithium chloride content of 3% is obtained and the chlorides of sodium and potassium partially precipitate.
  • calcium oxide and calcium chloride are added to the brine in order to at least partially precipitate magnesium hydroxide, calcium sulfate and calcium carbonate.
  • the solids are separated off in a second process step by evaporation using solar energy in a pond system
  • water is evaporated from the highly concentrated brine, resulting in a contaminated solution with a lithium chloride content of approx. 40%.
  • Anhydrous, contaminated lithium chloride is obtained from this concentrate by evaporation of water and is extracted in a fourth process step with isopropanol. After the isopropanol has been separated off, high-purity, solid lithium chloride is isolated as the end product.
  • solutions containing lithium chloride which are contaminated with sodium chloride can be purified by evaporating the solution, cooling the evaporated solution and separating off the crystallized sodium chloride.
  • This process is made possible by the fact that NaCl has a lower water solubility than LiCl.
  • NaCl has a solubility of 35.6% by weight in water at 0 ° C and a solubility of 39.1% by weight at 100 ° C.
  • LiCl has a solubility of 40.9% by weight in water at 0 ° C and a solubility of 55% by weight at 100 ° C.
  • the invention has for its object to provide a method of the type mentioned by which the solubility of the lithium chloride in water or an oversaturation of the solution with lithium chloride can be achieved, in particular in the temperature range below 0 ° C.
  • the method according to the invention is therefore intended to reduce the solubility of NaCl in solutions containing LiCl, in particular at low temperatures.
  • the object on which the invention is based is achieved by a method of the type mentioned at the outset, in which the aqueous solution contaminated with NaCl, before concentration or during concentration or before cooling, has at least one water-soluble alkali metal or alkaline earth metal hydroxide or at least one readily water-soluble and poorly volatile Amine is added in an amount of 0.3 to 5 wt .-% (based on LiCl) and at which the concentrated solution is cooled to a temperature which is between 0 and -15 ° C.
  • the alkali metal hydroxides also include NH 4 OH.
  • the hydroxides and amines used form OH ions in the solution, which in turn increase the solubility of the LiCl and reduce the solubility of the NaCl.
  • the inventive method works in such a way that either the concentration and the cooling or only the cooling of the solution in the presence of 0.3 to 5 wt .-% (based on LiCl) of at least one alkali or alkaline earth metal hydroxide or at least one readily water-soluble and difficultly volatile amine is carried out.
  • the crystallization point of the lithium chloride can be significantly reduced by 0.3 to 5 wt .-% of at least one alkali or alkaline earth metal hydroxide or at least one readily water-soluble and difficultly volatile amine.
  • the reduction in the crystallization point does not occur for sodium chloride, so that a substantial increase in the depletion rate is ultimately achieved with the process according to the invention.
  • the amine must be readily water-soluble so that sufficient OH ions are formed, and it should also be low volatility so that as little amine as possible evaporates; the amine should therefore preferably have a bp> 100 ° C.
  • the inventive method is also carried out in such a way that the concentrated solution is cooled to a temperature which is between 0 and -15 ° C.
  • the cooling according to the invention can be achieved with a comparatively simple and known cooling technique, so that the economic outlay for cooling the solution as a whole is justifiable.
  • the NaCl solutions contaminated with NaCl also contain other impurities in small amounts, e.g. B. organic substances or heavy metal ions or mineral acids, which should be at least partially separated before carrying out the process according to the invention.
  • B. organic substances or heavy metal ions or mineral acids which should be at least partially separated before carrying out the process according to the invention. This is done in a known manner by pre-cleaning the solution before concentration by oxidation and / or by treatment with adsorbents and / or by neutralization and / or by filtration.
  • organic substances are separated; neutralization precipitates heavy metal ions and binds acids; by oxidation z. B. destroyed organic substances; by filtration the solids are separated from the solution before it is fed to the process according to the invention.
  • the alkali and alkaline earth metal hydroxides and the amines into the solution before, during or after the concentration, it being particularly advantageous if the solution is mixed with the hydroxide or the amine before the concentration.
  • the hydroxide is formed in situ by adding an appropriate amount of an alkali or alkaline earth oxide to the solution.
  • an alkali or alkaline earth oxide for example, CaO can be added to the solution, because this oxide, which is readily available, quickly forms Ca (OH) 2 in the aqueous solution.
  • the process according to the invention can be carried out particularly advantageously if LiOH, NaOH, Ca (OH) 2 or Ba (OH) 2 is used as the hydroxide and tetraethylene pentamine is used as the amine.
  • LiOH is particularly preferred because it can be easily converted with HCl to LiCl.
  • NaOH is particularly preferred since it reacts with LiCl by salting over to form NaCl, which then precipitates out on cooling.
  • the process according to the invention is advantageously carried out in such a way that the solution is concentrated up to a LiCl content of> 25% by weight, the concentration up to a LiCl content of 35 to 45% by weight being preferred.
  • the concentration is carried out in a known manner by evaporation of the LiCl solution contaminated with NaCl or by Dissolving solid LiCl in the LiCl solution, which has an increased NaCl content. Evaporation is preferably carried out under reduced pressure.
  • the NaCl crystallized out during the cooling of the solution is separated off by filtration or centrifugation at the temperature to which the solution was cooled.
  • the solution is finally neutralized.
  • the concentrated LiCl solution which only contains very small amounts of NaCl, can be further processed in a known manner. Either it is as such, e.g. B. used in air conditioning, or from the concentrated solution by further evaporation LiCl crystallized.
  • the concentrated LiCl solutions obtained by the process according to the invention only have a NaCl content of max. 0.3% by weight, based on LiCl, which corresponds to a Na content of 0.12% by weight, based on LiCl.
  • the alkaline earth metals can readily be precipitated as oxalate or sulfate in a known manner.
  • Examples 1 to 4 show that the hydroxides or amine used have the same advantageous effect. Obviously, the OH ions are responsible for this effect. Examples 1 to 4 further show that a significant depletion of the NaCl can be achieved by cooling to 0 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Es wird ein Verfahren zur Abtrennung von NaCl aus einer mit NaCl verunreinigten wässrigen LiCl-Lösung durch Aufkonzentrierung der Lösung, Abkühlung der aufkonzentrierten Lösung und Abtrennung des auskristallisierten NaCl beschrieben. Das Verfahren ist dadurch gekennzeichnet, daß die Aufkonzentrierung und die Abkühlung oder die Abkühlung der Lösung in Anwesenheit einer Base, vorzugsweise in Anwesenheit von 0,3 bis 5 Gew.-% (bezogen auf LiCl) mindestens eines Alkali- oder Erdalkalihydroxids oder mindestens eines gut wasserlöslichen und schwerflüchtigen Amins durchgeführt wird.

Description

Verfahren zur Abtrennung von NaCl aus einer LiCl -Lösung
Beschreibung
Die Erfindung bezieht sich auf ein Verfahren zur Abtrennung von NaCl aus einer mit NaCl verunreinigten wäßrigen LiCl-Lösung durch Auf onzentrierung der Lösung bis zu einem LiCl-Gehalt > 25 Gew.-%, Abkühlung der aufkonzentrierten Lösung und Abtrennung des auskristallisierten NaCl.
Lithiumchlorid ist ein industrieller Rohstoff, aus dem Lithiumverbindungen und insbesondere metallisches Lithium hergestellt werden. Es ist notwendig, daß der Rohstoff Lithiumchlorid in möglichst reiner Form zur Verfügung gestellt wird, da nur so eine wirtschaftliche und technisch effiziente Weiterverarbeitung des Lithiumchlorids möglich ist. Beispielsweise muß das Lithiumchlorid, aus dem metallisches Lithium gewonnen wird, einen möglichst niedrigen Natriumgehalt aufweisen, denn der Natriumgehalt des metallischen Lithiums muß unter 1 % liegen. Lithiumchlorid enthaltende wäßrige Lösungen fallen entweder als industrieller Rohstoff oder bei der Aufarbeitung lithiumhaltiger Salzlaugen an. Diese Lösungen enthalten neben Lithiumchlorid verschiedene Verunreinigungen, deren Abtrennung durch Anwendung bekannter unterschiedlicher Verfahren industriell durchgeführt wird. Zu den Verunreinigungen gehört insbesondere das Natriumchlorid, dessen Abtrennung einen erheblichen wirtschaftlichen Aufwand erfordert.
Zum bekannten Stand der Technik gehören mehrere Verfahren zur Gewinnung von Lithiumverbindungen und reinem Lithiumchlorid. So beschreibt die DE-AS 1 228 594 ein Verfahren zur Abtrennung von Lithium aus natürlich vorkommenden Salzsolen, die Lithium und Erdalkalien enthalten, durch Ausfällung eines Lithiumaluminiumkomplexes, in dem die Sole mit einer Aluminiumverbindung vermischt und die Fällung des Lithiumaluminiumkomplexes bei einem pH-Wert von 6,0 bis 8,1 und bei einer Temperatur von 20 bis 100°C durchgeführt wird. Die endgültige Gewinnung des Lithiums aus dem
Lithiumaluminiumkomplex kann dann nach verschiedenen bekannten Verfahren erfolgen, zum Beispiel durch hydrothermale Zersetzung des Lithiumaluminiumkomplexes und Konzentrieren der verdünnten Lösungen mittels Ionenaustauscherharzen oder durch direkte Behandlung mit Ionenaustauscherharzen.
Die DE-AS 1 093 783 beschreibt ein Verfahren zur Aufarbeitung von Lithiumerzen durch Rösten, um daraus Lithiumsalze und andere Alkalisalze mit hoher Reinheit zu gewinnen. Beim Rösten, das in Gegenwart von Calciumcarbonat , Sand und Calciumchlorid bei etwa 1100 bis 1200°C erfolgt, werden die Chloride des Lithiums, Natriums und Kaliums verdampft und in Wasser adsorbiert. Die Aufarbeitung der Alkalichlorid-Lösung erfolgt in der Weise, daß die Chloridlösung mit dem in einer nachfolgenden Verfahrensstufe abgeschiedenen Gemisch aus Natriumchlorid und Lithiumcarbonat versetzt wird, daß aus dieser Aufschlämmung festes Natriumchlorid bei einer Temperatur von ca. 25 bis 30°C abgetrennt wird, daß aus der Mutterlauge durch Zusatz von Natriumcarbonat und Erhitzen auf 60 bis 100°C Lithiumcarbonat ausgefällt wird, daß die verbleibende Restlösung auf 40 bis 65 % Feststoff eingedampft wird, wobei sich bei 90 bis 100 °C das Gemisch aus Natriumchlorid und Lithiumcarbonat abscheidet, mit dem die beim Rösten anfallende Alkalichlorid-Lösung versetzt wird, und daß aus der Restlösung durch Abkühlung auf ca. 0 bis 5°C Kaliumchlorid abgeschieden wird. Nach diesem Verfahren wird also aus der mit Natriumchlorid verunreinigten Lithiumchlorid-Lösung das Lithium mit Natriumcarbonat als Lithiumcarbonat ausgefällt und als Endprodukt mit hoher Reinheit aus dem Verfahren ausgeschleust.
Die US-PS 4 271 131 offenbart ein Verfahren zur Herstellung von hochreinem Lithiumchlorid aus einer Sole, die neben einer geringen Menge an Lithium außerdem Natrium, Kalium, Magnesium, Sulfat und Borat enthält. Bei diesem Verfahren wird die Sole in einem ersten Teichsystem durch Sonnenenergie eingedampft, wobei eine konzentrierte Sole mit einem Lithiumchlorid-Gehalt von 3 % anfällt und wobei die Chloride des Natriums und Kaliums teilweise ausfallen. Während der ersten Verfahrensstufe werden der Sole Calciumoxid und Calciumchlorid zugegeben, um Magnesiumhydroxid, Calciumsulfat und Calciumcarbonat zumindest teilweise auszufällen. Nach Abtrennung der Feststoffe wird die konzentrierte Sole in einer zweiten Verfahrensstufe durch Eindampfung mittels Sonnenenergie in einem Teichsystem auf einen
Lithiumchlorid-Gehalt von ca. 25 % aufkonzentriert , wobei ein weiterer Teil des Magnesiu hydroxids, des Calciumsulfats und des Calciu borats ausfällt. In einer dritten Verfahrensstufe wird aus der hochkonzentrierten Sole Wasser verdampft, wobei eine verunreinigte Lösung mit einem Lithiumchlorid-Gehalt von ca. 40 % anfällt. Aus diesem Konzentrat wird durch Verdampfung von Wasser wasserfreies, verunreinigtes Lithiumchlorid gewonnen, das in einer vierten Verfahrensstufe mit Isopropanol extrahiert wird. Nach der Abtrennung des Isopropanols wird als Endprodukt hochreines, festes Lithiumchlorid isoliert.
Schließlich ist bekannt, daß Lithiumchlorid enthaltende Lösungen, die mit Natriumchlorid verunreinigt sind, durch Eindampfung der Lösung, Abkühlung der eingedampften Lösung und Abtrennung des auskristallisierten Natriumchlorids gereinigt werden können. Dieses Verfahren wird dadurch ermöglicht, daß NaCl eine geringere Wasserlöslichkeit besitzt als LiCl. NaCl hat in Wasser bei 0°C eine Löslichkeit von 35,6 Gew.-% und bei 100°C eine Löslichkeit von 39,1 Gew.-%. LiCl hat hingegen in Wasser bei 0°C eine Löslichkeit von 40,9 Gew.-% und bei 100°C eine Löslichkeit von 55 Gew.-%. Wenn die vorgenannten Alkali-Chloride gemeinsam in einer wäßrigen Lösung vorliegen, vermindert sich die Löslichkeit des Natriumchlorids durch die Anwesenheit des Lithiumchlorids,- Natriumchlorid wird durch das Lithiumchlorid gleichsam aus der Lösung gedrängt und kristallisiert aus, wobei dieser Effekt insbesondere dann wirksam wird, wenn die verunreinigte Lösung auf Temperaturen < 0°C abgekühlt wird. Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu schaffen, durch das die Löslichkeit des Lithiumchlorids in Wasser gesteigert beziehungsweise eine Übersättigung der Lösung mit Lithiumchlorid erreicht werden kann und zwar insbesondere im Temperaturbereich unter 0°C. Das erfindungsgemäße Verfahren soll also die Löslichkeit von NaCl in LiCl-haltigen Lösungen, insbesondere bei tiefen Temperaturen, herabsetzen.
Die der Erfindung zugrunde liegende Aufgabe wird durch ein Verfahren der eingangs genannten Art gelöst, bei dem der mit NaCl verunreinigten wäßrigen Lösung vor der Aufkonzentrierung oder während der Aufkonzentrierung oder vor der Abkühlung mindestens ein wasserlösliches Alkali- oder Erdalkalihydroxid oder mindestens ein gut wasserlösliches und schwer flüchtiges Amin in einer Menge von 0,3 bis 5 Gew.-% (bezogen auf LiCl) zugesetzt wird und bei dem die aufkonzentrierte Lösung auf eine Temperatur abgekühlt wird, die zwischen 0 und -15°C liegt.
Zu den Alkalihydroxiden gehört im Sinne der Erfindung auch das NH4OH. Die verwendeten Hydroxide und Amine bilden in der Lösung OH-Ionen, welche ihrerseits die Löslichkeit des LiCl erhöhen und die Löslichkeit des NaCl vermindern. Das erfindungsgemäße Verfahren arbeitet in der Weise, daß entweder die Aufkonzentrierung und die Abkühlung oder nur die Abkühlung der Lösung in Anwesenheit von 0,3 bis 5 Gew.-% (bezogen auf LiCl) mindestens eines Alkali- oder Erdalkalihydroxids oder mindestens eines gut wasserlöslichen und schwer flüchtigen Amins durchgeführt wird. In überraschender Weise wurde gefunden, daß der Kristallisationspunkt des Lithiumchlorids durch 0,3 bis 5 Gew.-% mindestens eines Alkali- oder Erdalkalihydroxids oder mindestens eines gut wasserlöslichen und schwer flüchtigen Amins signifikant erniedrigt werden kann. Für Natriumchlorid tritt die Erniedrigung des Kristallisationspunktes nicht ein, so daß letztlich mit dem erfindungsgemäßen Verfahren eine wesentliche Steigerung der Abreicherungsleistung erreicht wird. Das Amin muß gut wasserlöslich sein, damit OH-Ionen in ausreichender Menge gebildet werden, und es sollte außerdem schwer flüchtig sein, damit möglichst wenig Amin verdampft; das Amin sollte also vorzugsweise einen Kp > 100°C haben. Das erfindungsgemäße Verfahren wird ferner in der Weise durchgeführt, daß die aufkonzentrierte Lösung auf eine Temperatur abgekühlt wird, die zwischen 0 und -15°C liegt. Die erfindungsgemäße Abkühlung kann mit einer vergleichsweise einfachen und bekannten Kühltechnik erreicht werden, so daß der wirtschaftliche Aufwand für die Abkühlung der Lösung insgesamt vertretbar ist.
In vielen Fällen enthalten die mit NaCl verunreinigten Lösungen des LiCl auch andere Verunreinigungen in geringer Menge, z. B. organische Substanzen oder Schwermetallionen oder Mineralsäuren, die vor der Durchführung des erfindungsgemäßen Verfahrens mindestens teilweise abgetrennt werden sollten. Dies erfolgt in bekannter Weise dadurch, daß die Lösung vor der Aufkonzentrierung durch Oxidation und/oder durch Behandlung mit Adsorptionsmitteln und/oder durch Neutralisation und/oder durch Filtration vorgereinigt wird. Bei der Behandlung mit Adsorptionsmitteln werden organische Substanzen abgetrennt; durch eine Neutralisation werden Schwermetallionen gefällt und Säuren gebunden; durch Oxidation werden z. B. organische Substanzen zerstört; durch Filtration werden die Feststoffe aus der Lösung abgetrennt, bevor sie dem erfindungsgemäßen Verfahren zugeführt wird.
Nach der Erfindung ist es möglich, die Alkali- und Erdalkalihydroxide sowie die Amine vor, während oder nach der Aufkonzentrierung in die Lösung einzubringen, wobei es besonders vorteilhaft ist, wenn die Lösung vor der Aufkonzentrierung mit dem Hydroxid oder dem Amin gemischt wird.
In weiterer Ausgestaltung der Erfindung ist vorgesehen, daß das Hydroxid durch Zugabe einer entsprechenden Menge eines Alkali- oder Erdalkalioxids zur Lösung in situ gebildet wird. Beispielsweise kann die Lösung mit CaO versetzt werden, denn aus diesem Oxid, das gut verfügbar ist, bildet sich in der wäßrigen Lösung sehr schnell Ca(OH)2.
Das erfindungsgemäße Verfahren kann besonders vorteilhaft durchgeführt werden, wenn als Hydroxid LiOH, NaOH, Ca(OH)2 oder Ba(OH)2 und als Amin Tetraethylenpentamin verwendet wird. Von den Hydroxiden wird das LiOH besonders bevorzugt, da es in einfacher Weise mit HC1 zu LiCl umgesetzt werden kann. Ferner ist NaOH besonders bevorzugt, da es mit LiCl durch Umsalzung zu NaCl reagiert, das dann bei der Abkühlung ausfällt.
Das erfindungsgemäße Verfahren wird vorteilhaft in der Weise durchgeführt, daß die Lösung bis zu einem LiCl-Gehalt > 25 Gew.-% aufkonzentriert wird, wobei die Aufkonzentrierung bis zu einem LiCl-Gehalt von 35 bis 45 Gew.-% bevorzugt ist. Die Aufkonzentrierung erfolgt in bekannter Weise durch Eindampfung der mit NaCl verunreinigten LiCl-Lösung oder durch Auflösen von festem LiCl in der LiCl-Lösung, das einen erhöhten Gehalt an NaCl aufweist. Die Eindampfung wird vorzugsweise unter vermindertem Druck durchgeführt.
Die Abtrennung des während der Abkühlung der Lösung auskristallisierten NaCl erfolgt durch Filtration oder Zentrifugation bei der Temperatur, auf welche die Lösung abgekühlt wurde. Die Lösung wird schließlich neutralisiert. Die Weiterverarbeitung der konzentrierten LiCl-Lösung, die nur noch sehr geringe Mengen an NaCl enthält, kann in bekannter Weise erfolgen. Entweder wird sie als solche, z. B. in der Klimatechnik verwendet, oder aus der konzentrierten Lösung wird durch weiteres Eindampfen LiCl auskristallisiert. Die nach dem erfindungsgemäßen Verfahren gewonnenen konzentrierten LiCl-Lösungen haben in jedem Fall nur noch einen NaCl-Gehalt von max. 0,3 Gew.%, bezogen auf LiCl, was einem Na-Gehalt von 0,12 Gew.%, bezogen auf LiCl, entspricht.
Durch die nach dem erfindungsgemäßen Verfahren verwendeten Erdalkalihydroxide wird die konzentrierte LiCl-Lösung zwar verunreinigt, aber die Erdalkalien können ohne weiteres in bekannter Weise als Oxalat oder Sulfat gefällt werden.
Der Gegenstand der Erfindung wird nachfolgend anhand mehrerer Ausführungsbeispiele näher erläutert.
Beispiel 1 :
1000 g einer wässrigen Lösung, die 409 g LiCl und 6,1 g NaCl enthielt, wurden mit 8 g LiOH (1,96 Gew.%, bezogen auf LiCl) versetzt. Die Lösung wurde unter Rühren auf -10°C abgekühlt, wobei NaCl auskristallisierte. Das NaCl wurde bei -10°C abfiltriert. Die NaCl-arme Lösung hatte einen NaCl-Gehalt von 0,25 Gew.% (bezogen auf LiCl), was einem Na-Gehalt von
0,1 Gew.% entspricht. Der NaCl-Gehalt wurde also von 6,1 g auf
1,02 g abgereichert .
Beispiel 2 :
1000 g einer wässrigen Lösung, die 409 g LiCl und 6,1 g NaCl enthielt, wurden mit 8,0 g NaOH (1,96 Gew.%, bezogen auf LiCl) versetzt. Die Lösung wurde unter Rühren auf -10°C abgekühlt. Anschließend wurde das auskristallisierte NaCl bei -10°C abfiltriert. Die NaCl-arme Lösung enthielt noch 0,25 Gew.% NaCl, bezogen auf LiCl, was einem Na-Gehalt von 0,1 Gew.% entspricht. Der NaCl-Gehalt wurde also von 6,1 g auf 1,02 g abgereichert .
Beispiel 3 :
1000 g einer wässrigen Lösung, die 415 g LiCl und 6,2 g NaCl enthielt, wurden mit 8,3 g Tetraethylenpentamin (2 Gew.%, bezogen auf LiCl) versetzt. Die Lösung wurde dann unter Rühren auf -10°C abgekühlt, und das auskristallisierte NaCl wurde anschließend bei -10°C abfiltriert. Die NaCl-arme Lösung enthielt noch 0,24 Gew.% NaCl, bezogen auf LiCl, was einem Na-Gehalt von 0,096 Gew.% entspricht. Der NaCl-Gehalt wurde also von 6,2 g auf 0,996 g abgereichert. Beispiel 4 :
1000 g einer wässrigen Lösung, die 422 g LiCl und 6,24 g NaCl enthielt, wurden mit 1,77 g CaO versetzt. Die Lösung wurde unter Rühren auf 0°C abgekühlt, wobei aus dem CaO 2,34 g Ca(OH)2 (0,55 Gew.%, bezogen auf LiCl) gebildet wurden. Anschließend wurde das auskristallisierte NaCl bei 0°C abfiltriert. Die NaCl-arme Lösung enthielt noch 0,29 Gew.% NaCl, bezogen auf LiCl, was einem Na-Gehalt von 0,116 Gew.% entspricht. Es erfolgte also eine NaCl-Abreicherung von 6,24 g auf 1,22 g.
Die Beispiele 1 bis 4 zeigen, daß die verwendeten Hydroxide bzw. das verwendete Amin in gleicher Weise vorteilhaft wirken. Offensichtlich sind die OH- Ionen für diese Wirkung verantwortlich. Die Beispiele 1 bis 4 zeigen ferner, daß bereits durch Abkühlung auf 0°C eine signifikante Abreicherung des NaCl erreicht werden kann.
Die vorteilhafte Wirkung des erfindungsgemäßen Verfahrens wird auch durch folgende Versuchsergebnisse bestätigt:
Beispiel 5 :
Bei 0°C beträgt die Löslichkeit von LiCl in Wasser 40,9 Gew.%. Wenn einer Lösung, die 40,9 Gew.% LiCl enthält, 1,96 Gew.% LiOH, bezogen auf LiCl, zugesetzt werden, sinkt der Kristallisationspunkt des LiCl auf ca. -20°C. Hierdurch wird erreicht, daß sich in einer Lösung, die 40,9 Gew.% LiCl und ca. 1,5 bis 3 Gew.% NaCl, bezogen auf LiCl, enthält, durch die erfindungsgemäße Abreicherung des NaCl folgende Restgehalte an NaCl einstellen lassen:
bei 20°C = 0,5 Gew.%, bei -3°C = 0,3 Gew.%, bei -5°C = 0,28 Gew.% und bei -10°C = 0,25 Gew.%.
Diese Versuchsergebnisse zeigen, daß die optimale Temperatur für die Abkühlung bei 0 bis -15°C liegt. Sie liegt umso höher, je größer die LiCl -Konzentration in der Lösung ist.
Verαleichsversuch :
Die vorteilhafte Wirkung des erfindungsgemäßen Verfahrens wird durch den folgenden Vergleichsversuch besonders deutlich bestätigt .
1000 g einer wässrigen Lösung mit einem pH-Wert von 7,1, die 440 g LiCl und 7,75 g NaCl enthielt, wurden unter Rühren auf +10 °C abgekühlt, wobei NaCl auskristallisierte. Das NaCl wurde bei 10°C abfiltriert. Die NaCl-arme Lösung hatte einen NaCl-Gehalt von 0,33 Gew.%, bezogen auf LiCl, was einem Na-Gehalt von 0,13 Gew.%, bezogen auf LiCl, entspricht. Der NaCl-Gehalt wurde also von 7,75 g auf 1,45 g abgereichert.
Eine weitere Abreicherung des NaCl -Gehalts wäre zwar wünschenswert, war aber nicht möglich, da die Lösung nur bis +10 °C abgekühlt werden konnte, denn bereits bei +9°C fiel das LiCl teilweise aus, was zu nachteiligen LiCl -Verlusten führte. Der Vergleichsversuch zeigt, daß die Löslichkeitsgrenze des LiCl nach dem erfindungsgemäßen Verfahren soweit abgesenkt werden kann, daß konzentrierte LiCl -Lösungen mit einem Na-Gehalt von 0,1 Gew.% Na, bezogen auf LiCl, bereitgestellt werden können, die insbesondere zur Herstellung von metallischem Lithium mit geringem Na-Gehalt erforderlich sind.

Claims

Patentansprüche
1. Verfahren zur Abtrennung von NaCl aus einer mit NaCl verunreinigten wäßrigen LiCl-Lösung durch
Auf onzentrierung der Lösung bis zu einem LiCl-Gehalt > 25 Gew.-%, Abkühlung der aufkonzentrierten Lösung und Abtrennung des auskristallisierten NaCl, dadurch gekennzeichnet, daß der mit NaCl verunreinigten wäßrigen Lösung vor der Aufkonzentrierung oder während der Aufkonzentrierung oder vor der Abkühlung mindestens ein wasserlösliches Alkali- oder Erdalkalihydroxid oder mindestens ein gut wasserlösliches und schwer flüchtiges Amin in einer Menge von 0,3 bis 5 Gew.-% (bezogen auf LiCl) zugesetzt wird und daß die aufkonzentrierte Lösung auf eine Temperatur abgekühlt wird, die zwischen 0 und -15°C liegt.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die Lösung vor der Aufkonzentrierung mit dem Hydroxid oder dem Amin gemischt wird.
3. Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, daß das Hydroxid durch Zugabe einer entsprechenden Menge eines Alkali- oder Erdalkalioxids zur Lösung in situ gebildet wird.
4. Verfahren nach den Ansprüchen 1 bis 3 , dadurch gekennzeichnet, daß als Hydroxid LiOH, NaOH, Ca(OH)2 oder Ba(OH)2 und als Amin Tetraethylenpentamin verwendet wird.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die Lösung bis zu einem LiCl-Gehalt von 35 bis 45 Gew.-% aufkonzentriert wird.
PCT/EP1997/005994 1996-11-04 1997-10-30 VERFAHREN ZUR ABTRENNUNG VON NaCl AUS EINER LiCl-LÖSUNG WO1998019966A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP52102398A JP4111404B2 (ja) 1996-11-04 1997-10-30 LiCl溶液からのNaClの分離方法
GB9910270A GB2335187B (en) 1996-11-04 1997-10-30 Method of separating NaCl from a LiCl solution
US09/284,669 US6063345A (en) 1996-11-04 1997-10-30 Method of separating NaCl from a LiCl solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19645315.1 1996-11-04
DE19645315A DE19645315C1 (de) 1996-11-04 1996-11-04 Verfahren zur Abtrennung von NaCl aus einer LiCl-Lösung

Publications (1)

Publication Number Publication Date
WO1998019966A1 true WO1998019966A1 (de) 1998-05-14

Family

ID=7810546

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/005994 WO1998019966A1 (de) 1996-11-04 1997-10-30 VERFAHREN ZUR ABTRENNUNG VON NaCl AUS EINER LiCl-LÖSUNG

Country Status (6)

Country Link
US (1) US6063345A (de)
JP (1) JP4111404B2 (de)
AR (1) AR009604A1 (de)
DE (1) DE19645315C1 (de)
GB (1) GB2335187B (de)
WO (1) WO1998019966A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015000872A1 (de) 2015-01-23 2016-07-28 K-Utec Ag Salt Technologies Methode zur Gewinnung von Lithiumchlorid
CN112794348A (zh) * 2021-04-06 2021-05-14 山东智永化工产业技术研究院有限公司 一种聚苯硫醚生产过程中产生混盐回收氯化锂的方法
CN114573006A (zh) * 2022-03-24 2022-06-03 甘肃睿思科新材料有限公司 镍钴锰酸锂正极材料回收提锂过程中副产物含锂粗硫酸钠的提纯及回收锂的方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157065B2 (en) * 1998-07-16 2007-01-02 Chemetall Foote Corporation Production of lithium compounds directly from lithium containing brines
CN105833830A (zh) * 2016-04-19 2016-08-10 天齐锂业股份有限公司 离子筛型钠离子吸附剂及除去氯化锂中杂质钠的方法
CN106186006B (zh) * 2016-07-27 2017-08-25 浙江鸿浩科技有限公司 一种氯化锂提纯方法
CN110482577A (zh) * 2019-09-25 2019-11-22 青海盐湖工业股份有限公司 一种利用高锂高钠溶液制备高纯氯化锂的方法
KR102401348B1 (ko) * 2019-12-20 2022-05-23 재단법인 포항산업과학연구원 리튬 함유 용액으로부터 리튬 추출 방법
CN111268704B (zh) * 2020-02-13 2022-11-11 青海盐湖工业股份有限公司 一种沉锂母液处理的方法和装置
KR102405778B1 (ko) * 2020-05-13 2022-06-07 타운마이닝리소스주식회사 리튬 이차전지의 폐 전극재로부터 리튬을 회수하여 탄산리튬을 제조하는 방법
CN112408436B (zh) * 2020-12-11 2022-05-06 武汉工程大学 一种部分电离含钠锂卤水的钠锂分离的方法
CN114261980A (zh) * 2021-11-24 2022-04-01 湖北金泉新材料有限公司 一种盐湖卤水生产氯化锂的方法
CN114949893B (zh) * 2022-06-01 2024-04-19 启东神农机械有限公司 从盐湖卤水中生产氯化锂的蒸发结晶工艺及装置
GB202210875D0 (en) * 2022-06-24 2022-09-07 Chemionex Inc Process for recovery of lithium from brine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2726138A (en) * 1952-12-06 1955-12-06 Chempatents Inc Preparation of high purity lithium chloride from crude aqueous lithium chloride
US4271131A (en) * 1979-04-11 1981-06-02 Foote Mineral Company Production of highly pure lithium chloride from impure brines
JPH04193711A (ja) * 1990-11-26 1992-07-13 Nkk Corp 高純度リチウム化合物の精製方法
DE19541558A1 (de) * 1995-11-08 1997-05-15 Bayer Ag Verfahren zur Reinigung von Lithiumchlorid-Lösungen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1093783B (de) * 1956-10-12 1960-12-01 Scient Design Co Verfahren zur Aufarbeitung von Lithiumerzen
DE1228594B (de) * 1960-09-30 1966-11-17 Dow Chemical Co Verfahren zur Abtrennung von Lithiumanteilen aus natuerlich vorkommenden Salzsolen, die Lithium und Erdalkalien enthalten
US3789059A (en) * 1972-03-31 1974-01-29 Ppg Industries Inc Method of producing high purity lithium chloride
DE2841991A1 (de) * 1978-09-27 1980-04-17 Bayer Ag Plakette zur dosimetrie von reaktiven gasen
US4723962A (en) * 1985-02-04 1988-02-09 Lithium Corporation Of America Process for recovering lithium from salt brines

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2726138A (en) * 1952-12-06 1955-12-06 Chempatents Inc Preparation of high purity lithium chloride from crude aqueous lithium chloride
US4271131A (en) * 1979-04-11 1981-06-02 Foote Mineral Company Production of highly pure lithium chloride from impure brines
JPH04193711A (ja) * 1990-11-26 1992-07-13 Nkk Corp 高純度リチウム化合物の精製方法
DE19541558A1 (de) * 1995-11-08 1997-05-15 Bayer Ag Verfahren zur Reinigung von Lithiumchlorid-Lösungen

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 71, no. 6, 11 August 1969, Columbus, Ohio, US; abstract no. 25153, KYDYNOV, M. ET AL: "Solubility of a quaternary system of lithium, sodium, and strontium chlorides in an aqueous medium at 25.deg.. II" XP002058897 *
CHEMICAL ABSTRACTS, vol. 89, no. 26, 25 December 1978, Columbus, Ohio, US; abstract no. 217499, TORMA, A. E. ET AL: "Lithium chloride recovery by organic amines and amides" XP002058898 *
METALL (BERLIN) (1978), 32(6), 581-4 CODEN: MTLLAF;ISSN: 0026-0746, 1978 *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 518 (C - 0999) 26 October 1992 (1992-10-26) *
ZH. PRIKL. KHIM. (LENINGRAD) (1969), 42(4), 771-5 CODEN: ZPKHAB, 1969 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015000872A1 (de) 2015-01-23 2016-07-28 K-Utec Ag Salt Technologies Methode zur Gewinnung von Lithiumchlorid
CN112794348A (zh) * 2021-04-06 2021-05-14 山东智永化工产业技术研究院有限公司 一种聚苯硫醚生产过程中产生混盐回收氯化锂的方法
CN114573006A (zh) * 2022-03-24 2022-06-03 甘肃睿思科新材料有限公司 镍钴锰酸锂正极材料回收提锂过程中副产物含锂粗硫酸钠的提纯及回收锂的方法
CN114573006B (zh) * 2022-03-24 2023-06-30 甘肃睿思科新材料有限公司 镍钴锰酸锂正极材料回收提锂过程中副产物含锂粗硫酸钠的提纯及回收锂的方法

Also Published As

Publication number Publication date
JP2001503367A (ja) 2001-03-13
GB9910270D0 (en) 1999-06-30
US6063345A (en) 2000-05-16
DE19645315C1 (de) 1998-04-16
JP4111404B2 (ja) 2008-07-02
AR009604A1 (es) 2000-04-26
GB2335187B (en) 2000-10-04
GB2335187A (en) 1999-09-15

Similar Documents

Publication Publication Date Title
DE19645315C1 (de) Verfahren zur Abtrennung von NaCl aus einer LiCl-Lösung
DE2518431C3 (de) Verfarhen zur Entfernung der schädlichen organischen Verbindungen aus der bei der Tonerdegewinnung nach dem Bayer-Verfarhen anfallenden Aluminatlauge
DE2700748A1 (de) Verfahren zum herstellen von lithiumhydroxid hoher reinheit aus einer lithium- und andere alkali- und erdalkali-metallhalogenide enthaltenden lauge
DE2231595B2 (de) Verfahren zur Reinigung von beim Auslaugen von Zinkerzen anfallenden Zinksulfat-Lösungen
DE2807862B2 (de) Verfahren zur Herstellung sehr reiner Tonerde
EP0767140B1 (de) Verfahren zur Wiedergewinnung der Salzbestandteile aus Härtereisalzbädern
DE2735873C3 (de) Verfahren zur Herstellung von Natriumammoniumhydrogenphosphat und Ammoniumchlorid aus Naßverfahren-Phosphorsäure
DE2425923C3 (de) Verfahren zur Abtrennung von Kaliumkationen von Natriumkationen
DE2647084C2 (de) Verfahren zur Reinigung einer verdünnten Schwefelsäurelösung
DE1467072A1 (de) Verfahren zur Herstellung von Ammoniumperchlorat
DE10304315B4 (de) Verfahren zur Herstellung von reinem für eine Magnesium-Metallherstellung geeignetem Carnallit-NaCI-Kristallisat aus Carnallitsole
DE2415872A1 (de) Verfahren zur verminderung des gehaltes an organischen verbindungen in der aluminatlauge bei der tonerdeherstellung nach dem bayer-verfahren
EP0379876B1 (de) Verfahren zur Abtrennung von Barium aus wasserlöslichen Strontiumsalzen
DE2757068B2 (de) Verfahren zur Gewinnung von Gallium unter Aufbereitung von Aluminatlösungen aus dem Aufschluß von Nephelin o.a. minderwertigen aluminiumhaltigen Erzen
EP0002016B1 (de) Verfahren zur Reinigung von Ammoniumfluoridlösungen
DE3223673C2 (de)
DE3908127C2 (de) Verfahren zur Herstellung von Kaliumpersulfat hoher Reinheit
DE3601304A1 (de) Verfahren zur herstellung von ammoniumparawolframat
DE2704073A1 (de) Verfahren zur entfernung von sulfationen aus extrahierter phosphorsaeure
DE3301399C2 (de)
DE2432789A1 (de) Verfahren zur herstellung von strontiumhydroxyd aus coelestin
DD274018A1 (de) Verfahren zur gewinnung von kcl und mgcl tief 2 hoch x 4 h tief 2 hoch o aus carnallitischen rohsalzen
DD259097A3 (de) Verfahren zur herstellung reiner calciumchloridprodukte aus unteraceotroper magnesiumchloridhaltiger salzsaeure
DE2613289A1 (de) Verfahren zur herstellung von hochkonzentrierten magnesiumchloridloesungen
DE2307254A1 (de) Verfahren zum abtrennen von calcium aus unreinem strontiumsulfat und bzw. oder bariumsulfat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR DE GB JP RU US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 1998 521023

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: GB

Ref document number: 9910270

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09284669

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642