WO1998019211A1 - Ecran de projection et son systeme d'eclairage optique - Google Patents

Ecran de projection et son systeme d'eclairage optique Download PDF

Info

Publication number
WO1998019211A1
WO1998019211A1 PCT/JP1997/003900 JP9703900W WO9819211A1 WO 1998019211 A1 WO1998019211 A1 WO 1998019211A1 JP 9703900 W JP9703900 W JP 9703900W WO 9819211 A1 WO9819211 A1 WO 9819211A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
partial
small lenses
lens array
Prior art date
Application number
PCT/JP1997/003900
Other languages
English (en)
French (fr)
Inventor
Toshiaki Hashizume
Yoshitaka Itoh
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to JP52028498A priority Critical patent/JP3879125B2/ja
Priority to DE69737091T priority patent/DE69737091T2/de
Priority to EP97909650A priority patent/EP0889351B1/en
Priority to US09/091,830 priority patent/US6109751A/en
Publication of WO1998019211A1 publication Critical patent/WO1998019211A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/10Simultaneous recording or projection
    • G03B33/12Simultaneous recording or projection using beam-splitting or beam-combining systems, e.g. dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • G02B27/1046Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources for use with transmissive spatial light modulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/143Beam splitting or combining systems operating by reflection only using macroscopically faceted or segmented reflective surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0062Stacked lens arrays, i.e. refractive surfaces arranged in at least two planes, without structurally separate optical elements in-between
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3105Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying all colours simultaneously, e.g. by using two or more electronic spatial light modulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0043Inhomogeneous or irregular arrays, e.g. varying shape, size, height
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • G02F1/133607Direct backlight including a specially adapted diffusing, scattering or light controlling members the light controlling member including light directing or refracting elements, e.g. prisms or lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/74Projection arrangements for image reproduction, e.g. using eidophor
    • H04N5/7416Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal
    • H04N5/7441Projection arrangements for image reproduction, e.g. using eidophor involving the use of a spatial light modulator, e.g. a light valve, controlled by a video signal the modulator being an array of liquid crystal cells

Definitions

  • the present invention relates to a projection display device having a color light synthesizing means and an illumination optical system for the same.
  • a cross dichroic prism As a projection display device that projects a color image on a projection screen, a cross dichroic prism is often used.
  • a cross dichroic prism is used as a color light combining unit that combines light of three colors, red, green, and blue, and emits the light in the same direction.
  • the cross dichroic prism In a reflection type liquid crystal projector, the cross dichroic prism is used as color light separation means for separating white light into red, green, and blue light, and the modulated three-color light is used again. It is also used as a color light combining means for combining and emitting in the same direction.
  • a projection type display device using a cross dichroic prism for example, the one described in Japanese Patent Application Laid-Open No. 1-320385 is known.
  • FIG. 17 is a conceptual diagram showing a main part of the projection display device.
  • This projection display device includes three liquid crystal light valves 42, 44, and 46, a cross dichroic prism 48, and a projection lens system 50.
  • the cross dichroic prism 48 combines the three colors of red, green, and blue modulated by the three liquid crystal light valves 42, 44, and 46, and emits the light toward the projection lens system 50. I do.
  • the projection lens system 50 forms an image of the combined light on a projection screen 52.
  • FIG. 18 is an exploded perspective view of a part of the cross dichroic prism 48.
  • the cross dichroic prism 4 8 is the right-angled surface of the four right-angle prisms, It is manufactured by bonding with an optical adhesive.
  • the cross dichroic prism is used as a color light synthesizing means.
  • a projection type display device when the light characteristics of the light source used cause dark shadows in the projected image due to light scattering at the junction of the four right-angle prisms. There is.
  • FIG. 19 is an explanatory diagram showing a problem when the cross dichroic prism 48 is used.
  • the cross dichroic prism 48 is a red light reflecting film arranged in a substantially X-shape at the X-shaped interface formed by the right-angled surfaces of the four right-angle prisms. 60 R and a blue light reflecting film 60 B.
  • the optical adhesive layer 62 is formed in the gap between the four right-angle prisms, the reflection films 60 R and 60 B are also located on the central axis 48 a of the cross dichroic prism 48. And has a gap.
  • FIG. 19 (B) shows an example of such a dark line DL.
  • the dark line D L is a slightly dark linear area colored differently from the other parts, and is formed substantially at the center of the projected image. It is considered that the dark line DL is caused by light rays being scattered in the gap between the reflective films near the central axis 48a and by not reflecting red light or blue light.
  • This problem also occurs in a cross dichroic mirror in which two types of dichroic mirrors each having a selective reflection film such as a red reflection film and a blue reflection film are crossed in an X shape. In this case, a dark line due to the central axis of the mirror is formed in the image.
  • the present invention has been made to solve the above-mentioned problems in the prior art, and has an X-shape such as a cross dichroic prism or a cross dichroic mirror.
  • a technology that can make the dark line due to the central axis of the color light combining means with two types of arranged dichroic films inconspicuous, and use these to provide an illumination optical system and a projection display device. Is to make it happen. Disclosure of the invention
  • the direction of light is z direction
  • the direction of 3 o'clock is x direction
  • the direction of 12 o'clock is y direction when viewed from the direction of light (z direction).
  • the X direction indicates the row direction
  • the y direction indicates the column direction.
  • a projection display device as a technology for reducing the in-plane illuminance unevenness of illumination light by dividing light from a light source into a plurality of partial luminous fluxes, as described in WO94Z2202, An illumination optical system using two lens arrays having a plurality of small lenses (referred to as an integrator optical system) is known.
  • FIG. 1 is a diagram illustrating the principle of dark line generation when an integral optical system is employed in a projection display device using a cross dichroic prism.
  • Figure 1 (A-1) and (B-1) show the luminous flux passing through the small lenses 10 whose positions in the X direction are different from each other, that is, the small lenses 10 existing in different column directions (shown by solid lines in the figure). , And its central optical axis (shown by the fine dotted line in the figure), and Figures 1 (A-2) and (B-2) show the locations of the dark lines DLa and DLb on the projection screen 7.
  • FIG. 1 is a diagram illustrating the principle of dark line generation when an integral optical system is employed in a projection display device using a cross dichroic prism.
  • Figure 1 (A-1) and (B-1) show the luminous flux passing through the small lenses 10 whose positions in the X direction are different from each other, that is, the small lenses 10 existing in different column directions (shown by solid lines in the figure). ,
  • a light beam emitted from a light source is split into a plurality of partial light beams by first and second lens arrays 1 and 2 each having a plurality of small lenses 10.
  • the light beam that has passed through each small lens 10 provided in the first and second lens arrays 1 and 2 is converted into a light beam that is parallel to the central axis of each light beam by the parallel lens 15.
  • Parallelization The light beams passing through the lens 15 are superimposed on the liquid crystal light valve 3 to uniformly illuminate the predetermined area.
  • FIG. 2 is a perspective view showing the appearance of the lens array 2.
  • FIG. 1 Each of the first and second lens arrays 1 and 2 has a configuration in which small lenses 10 each having a substantially rectangular outline are arranged in a matrix of M rows and N columns.
  • Fig. 1 (A-1) shows the tracking diagram of the partial luminous flux passing through the small lens 10 in the second row
  • Fig. 1 (B-1) A tracing diagram of the partial light beam that has passed through the small lens 10 in the seventh row is shown.
  • the light beam superimposed on the liquid crystal light valve 3 is modulated by the liquid crystal light valve 3 in accordance with image information, and then enters the cross dichroic prism 4.
  • the light beam emitted from the cross dichroic prism 4 is projected onto a projection screen 7 via a projection lens system 6.
  • the light passing through the central axis 5 (along the y direction in the figure) of the cross dichroic prism 4 is also projected, as indicated by the rough dotted lines in FIGS. 1 (A-1) and (B-1). It is projected on the positions of Pa and Pb on the screen 7.
  • light rays are scattered in the gap between the reflective films near the central axis 5 and light to be reflected is not reflected, so that the central axis 5 is not reflected.
  • the amount of light passing through the light source decreases. Therefore, as shown in FIGS. 1 (A-2) and (B-12), portions having lower luminance than the surroundings, that is, dark lines DLa and DLb are formed on the projection screen 7.
  • FIG. 3 (A) which is a partially enlarged view of FIG. 1 (A-1)
  • the image formed by the liquid crystal light valve 3 is inverted by the projection lens system 6 and enlarged. And projected on the projection screen 7.
  • Fig. 3 (B) shows the cross dichroic image.
  • FIG. 4 is a cross-sectional view of the XY plane including the central axis 5 of the check prism 4.
  • r 1 is from one end 11 of the cross section 8 of the partial light beam when the partial light beam is cut along the Xy plane including the central axis 5 of the cross dichroic prism 4.
  • r 2 is the distance from the other end 12 of the cross section 8 of the partial light beam to the central axis 5.
  • the image of the cross section 8 of the partial light beam is inverted by the projection lens system 6, enlarged and projected on the projection screen 7, so that the dark line DL extends from one end 13 of the projection area 9 on the projection screen 7.
  • the ratio between the distance R2 to a and the distance R1 from the other end 14 of the projection area 9 to the dark line DLa is equal to the ratio between the distance r2 and the distance r1. That is, the position where the dark line DLa is formed depends on the position of the cross section 8 of the partial light beam on the X plane including the central axis 5 of the cross dichroic prism 4 with respect to the central axis 5. Depends on.
  • the center axis 5 of the cross dichroic prism 4 The positions of the cross sections of the respective partial luminous fluxes in the xy plane including are different. Therefore, the dark lines DLa and DLb are formed at different positions. Similarly, the center axis of the cross dichroic prism 4 of the partial light beam passing through the small lens 10 existing in the columns other than the second and seventh columns of the first and second lens arrays 1 and 2 Since the positions of the cross-sections in the xy plane including 5 are also different, the number of columns of the first and second lens arrays 1 and 2, that is, N dark lines must be formed on the projection screen 7. become.
  • the position where the dark line is formed is also different.
  • the partial luminous fluxes passing through the different columns of the first and second lens arrays 2 form different dark lines at different positions because the positions with respect to the center axis 5 of the cross dichroic prism 4 are different from each other.
  • the position of the cross section of the partial light beam on the xy plane including the central axis 5 of the cross dichroic prism 4 is different because the angle of the partial light beam incident on the cross dichroic prism 4 is different (see FIG. 1).
  • the partial light beams passing through the different columns of the first and second lens arrays 1 and 2 are incident on the cross dichroic prism 4 at different angles, so that the positions of the partial light beams on the central axis 5 are different. Therefore, if the angle of the partial light beam incident on the cross dichroic prism 4 is different, or if the angle of the partial light beam superimposed on the liquid crystal light valve 3 is different, the position where the dark line is formed will be different.
  • the partial luminous fluxes passing through the M small lenses arranged in the same column direction position of the first and second lens arrays 1 and 2 are dark lines at substantially equal positions on the projection screen 7 respectively.
  • the darkness of the dark line is approximately equal to the sum of the darknesses of the dark lines formed by the respective small lenses. Therefore, the dark lines formed by each of the partial light beams passing through the M small lenses may be formed at different positions on the projection screen 7. In other words, in this way, although the number of dark lines increases, it is possible to reduce the darkness of each dark line. As a result, the dark line becomes very inconspicuous. Note that it is not necessary that all the dark lines passing through the M small lenses be formed at different positions, but it is sufficient if only some of them are formed at different positions.
  • the present invention has been able to solve the above-mentioned problems in the prior art.
  • the means and the effect will be described.
  • the first projection type display device of the present invention comprises:
  • An illumination optical system for emitting illumination light for emitting illumination light
  • Color light separating means for separating the illumination light into light of three colors
  • Three sets of light modulating means for modulating each of the three colors of light based on a given image signal
  • Projection means for projecting the light synthesized by the color light synthesis means on a projection surface.
  • the illumination optical system includes:
  • the position at which the central axis is projected on the projection surface by a partial light beam of the plurality of partial light beams existing in the same column direction is shifted from the position projected by another partial light beam. It is characterized in that it is configured to be shifted in a direction different from the direction corresponding to the central axis.
  • One partial light beam forms a dark line corresponding to the central axis by projecting the central axis of the color light combining means on the projection surface, and a plurality of partial light beams in a row usually have the central axis of the color light combining means projected on the projection surface.
  • the projection is made at almost the same position above to form a dark line.
  • a part of the plurality of partial light beams in one row projects a central axis of the color light combining means to different positions on the projection surface to form a dark line. It is possible to make the dark line formed on the surface inconspicuous.
  • Light beam splitting means for generating the plurality of partial light beams
  • the apparatus further includes an incident angle changing unit that causes a part of the partial light beams existing in the same column direction to enter the color light combining unit at an incident angle different from that of the other partial light beams.
  • the light beam splitting means includes at least one lens array including a plurality of small lenses arranged in the column direction and the row direction,
  • the incident angle changing means includes a stepped reflecting mirror having a step on the reflecting surface.
  • the light beam splitting means includes at least one lens array including a plurality of small lenses arranged in the column direction and the row direction,
  • the incident angle changing means includes a light-transmitting plate member which is arranged to be inclined with respect to the surface of the lens array.
  • the position of the central optical path of some partial light beams with respect to the central axis of the color light combining means can be shifted from the position of the central optical path of other partial light beams, and each partial light beam has a dark line at a different position.
  • by combining the above cases it is possible to make dark lines formed in the projected image less noticeable.
  • the second projection display device is
  • An illumination optical system for emitting illumination light for emitting illumination light
  • a color light separation unit that separates the illumination light into light of three colors
  • Three sets of light modulating means for modulating each of the three colors of light based on a given image signal
  • a projection unit for projecting the light recombined by the color light combining unit onto a projection surface
  • the illumination optical system includes:
  • a first lens array having a plurality of small lenses for dividing a light beam emitted from the light source into a plurality of partial light beams
  • a second lens array having a plurality of small lenses respectively corresponding to the plurality of small lenses of the first lens array
  • the color light combining means are arranged along a predetermined direction corresponding to the central axis.
  • An optical path changing unit that shifts an optical path of some partial light beams from an optical path of another partial light beam among a plurality of partial light beams passing through the plurality of small lenses;
  • the light passes through a plurality of small lenses arranged along a predetermined direction (the row direction in the above description) corresponding to the central axis of the color light combining means.
  • the plurality of partial luminous fluxes project a central axis of the color light combining means at substantially the same position on the projection surface to form a dark line. Therefore, if the optical path changing means shifts the optical path of some of the partial light fluxes from the optical path of the other partial light flux among these multiple partial light fluxes, based on the first principle described above,
  • the partial light beam can prevent the central axis of the color light combining means from being projected to almost the same position. As a result, it is possible to make dark lines formed in the projected image less noticeable.
  • the optical path changing unit may be configured to change an optical path of a partial light beam passing through a position that is separated from the optical axis of the light source by a predetermined distance along the predetermined direction, at another position. It is preferable to include means for shifting the partial light beam passing through the optical path from the optical path.
  • the intensity of light from a light source depends on its distance from the optical axis. Therefore, if the optical path through which the relatively high intensity partial light beam passes is shifted from the other partial light beams, the dark line formed in the projected image can be made less noticeable.
  • the predetermined distance is preferably substantially equal to a focal length of the concave mirror.
  • a partial light beam passing through a position separated by the focal length of the concave mirror is higher in intensity than other partial light beams. Therefore, by shifting the optical path of the partial light beam from the optical path of the partial light beam passing through another position, the dark line formed on the projected image can be made less noticeable.
  • the optical path changing unit includes a stepped reflecting mirror having a step on a reflecting surface. In this way, a very simple configuration It is possible to arbitrarily change the optical path of a specific partial light beam.
  • the stepped portion of the stepped reflecting mirror is provided along a direction perpendicular to a direction corresponding to the central axis of the color light combining means.
  • the optical paths of the partial light beams can be shifted along the direction corresponding to the central axis of the color light combining means.
  • the stepped reflecting mirror has a second reflecting surface and a second reflecting surface having different heights from each other, and extends along the predetermined direction corresponding to the central axis of the color light combining means. It is preferable that the second reflection surface is provided at each of two positions separated by a predetermined distance from the optical axis of the light source. With this configuration, the optical paths of the partial light beams having relatively high light intensity can be changed by the two second reflecting surfaces.
  • the optical path changing means may include a light-transmitting plate member that is arranged to be inclined from the surface of the second lens array. In this way, it is possible to arbitrarily change the optical path of a specific partial light beam.
  • the illumination optical system further comprises:
  • a polarization conversion element provided at any position between the second lens array and the optical path changing unit
  • the polarization conversion element has a plurality of sets of a polarization separation film and a reflection film that are parallel to each other, and converts a plurality of partial light beams that have passed through a plurality of small lenses of the second lens array into two types of linearly polarized light components.
  • a polarizing beam splitter array for separation
  • Polarization conversion means for aligning the polarization directions of the two types of linearly polarized light components separated by the polarization beam splitter array
  • the optical path changing unit passes through the plurality of small lenses arranged along a predetermined direction corresponding to the central axis of the color synthesizing unit, and is separated by the polarization beam splitter array. It is preferable that a part of the optical path of the linearly polarized light component is shifted from other optical paths.
  • This polarization conversion element converts incident light into two types using a polarizing beam splitter array. After being separated into a kind of linearly polarized light component, the light is emitted with the polarization directions thereof aligned by polarization conversion means. Therefore, by displacing part of the two types of linearly polarized light component optical paths separated by the polarization beam splitter array from the other optical paths, it is possible to make the dark lines formed in the projected image less noticeable. .
  • the amount by which a part of the optical path of these two types of linearly polarized light components is shifted from the other optical path by the optical path changing means is about 12 which is the distance between adjacent optical paths of the two types of linearly polarized light components. Is preferred.
  • the optical path is moved by about 1/2 of the distance between adjacent optical paths of these two types of linearly polarized light components, the two types of linearly polarized light paths that do not move and the two types of linearly polarized light before moving
  • the component optical paths are located approximately equidistant from each other. That is, since the four types of optical paths are arranged at substantially equal distances, it is possible to make the dark lines formed on the image most inconspicuous.
  • the second projection display device further includes a superimposing optical system configured to superimpose a plurality of partial light beams that have sequentially passed through the first and second lens arrays to illuminate the three sets of light modulation units. It is preferable that the optical path changing means is provided between the second lens array and the superimposing optical system.
  • the third projection display device is
  • a color light separation unit that separates the illumination light into light of three colors
  • Three sets of light modulating means for modulating each of the three colors of light based on a given image signal
  • Projection means for projecting the light synthesized by the color light synthesizing means on a projection surface
  • the illumination optical system includes: A first lens array having a plurality of small lenses for dividing a light beam emitted from the light source into a plurality of partial light beams,
  • a second lens array having a plurality of small lenses respectively corresponding to the plurality of small lenses of the first lens array
  • Each of the first and second lens arrays is identical to each of the first and second lens arrays.
  • It is divided into a plurality of rows each having a plurality of small lenses along a row direction perpendicular to the direction corresponding to the central axis of the color light combining means, and corresponds to the central axis of the color light combining means.
  • rows that are located at a certain distance from the optical axis of the light source are arranged at positions that are shifted by a certain amount from other rows.
  • the plurality of partial luminous fluxes passing through the plurality of small lenses arranged along a predetermined direction corresponding to the central axis of the color light combining means are:
  • a dark line is formed by projecting the central axis of the photosynthesis means at approximately the same position on the projection plane.
  • the light source includes a light source lamp and a concave mirror that reflects light emitted from the light source lamp
  • rows that are respectively located at positions away from the optical axis of the light source by the focal length of the concave mirror are provided.
  • the intensity of the partial light beam passing through the small lens is relatively high. Therefore, if such a line is shifted from other lines, it is possible to make the dark line formed in the projected image less noticeable by the second principle described above.
  • the fourth projection display device is
  • An illumination optical system for emitting illumination light for emitting illumination light
  • a color light separation unit that separates the illumination light into light of three colors
  • Three sets of light modulating means for modulating each of the three colors of light based on a given image signal
  • Projection means for projecting the light synthesized by the color light synthesizing means on a projection surface
  • the illumination optical system includes:
  • a first lens array having a plurality of small lenses for dividing a light beam emitted from the light source into a plurality of partial light beams
  • a second lens array having a plurality of small lenses respectively corresponding to the plurality of small lenses of the first lens array
  • Each of the first and second lens arrays is identical to each of the first and second lens arrays.
  • It is divided into a plurality of rows each having a plurality of small lenses along a row direction perpendicular to the direction corresponding to the central axis of the color light combining means, and at least a part of the plurality of rows is divided.
  • the small lenses are equal to each other, and the number of rows arranged at positions is the total number of the plurality of rows. It is characterized by being set to 25 or less.
  • the plurality of partial luminous fluxes passing through the plurality of small lenses arranged along a predetermined direction corresponding to the central axis of the color light combining means are:
  • a dark line is formed by projecting the central axis of the photosynthesis means at substantially the same position. Therefore, as in the fourth projection type display device, if 2 to 5 or less of the total number of rows are arranged at the same position as each other, a projection image is formed according to the second principle described above. It is possible to make the dark line to be inconspicuous.
  • the plurality of rows of the first and second lens arrays have an arrangement sequentially shifted from each other by a fixed shift amount.
  • the first illumination optical system of the present invention is: Color light separation means for separating the illumination light into three colors of light,
  • Three sets of light modulating means for modulating each of the three colors of light based on a given image signal
  • Projection means for projecting the light synthesized by the color light synthesizing means on a projection surface, and a projection optical system for emitting the illumination light,
  • a split superimposing optical system configured to generate at least one row of a plurality of partial luminous fluxes that are divided substantially along at least a predetermined direction corresponding to the central axis of the color light combining unit, and to superimpose the plurality of partial spectral fluences;
  • a position where the central axis is projected on the projection surface by a partial light beam among the partial light beams in the row is a direction corresponding to the central axis from a position where another partial light beam is projected. It is characterized in that it is configured to be shifted in a direction different from that of.
  • the second illumination optical system is
  • An illumination optical system that emits illumination light
  • a first lens array having a plurality of small lenses for dividing a light beam emitted from the light source into a plurality of partial light beams
  • a second lens array having a plurality of small lenses respectively corresponding to the plurality of small lenses of the first lens array
  • An optical path changing means for shifting an optical path of a partial light beam from an optical path of another partial light beam among a plurality of partial light beams passing through the plurality of small lenses arranged along a predetermined direction; It is characterized by having.
  • the third illumination optical system is
  • An illumination optical system that emits illumination light
  • a first lens array having a plurality of small lenses for dividing a light beam emitted from the light source into a plurality of partial light beams
  • a second lens array having a plurality of small lenses respectively corresponding to the plurality of small lenses of the first lens array
  • Each of the first and second lens arrays is identical to each of the first and second lens arrays.
  • It is divided into a plurality of rows each having a plurality of small lenses along a row direction perpendicular to a predetermined direction, and is separated from the optical axis of the light source by a predetermined distance along the predetermined direction. Is characterized in that a row existing in is located at a position shifted from the other rows by a certain amount of shift.
  • the fourth illumination optical system is a mirror image
  • An illumination optical system that emits illumination light
  • a first lens array having a plurality of small lenses for dividing a light beam emitted from the light source into a plurality of partial light beams
  • a second lens array having a plurality of small lenses respectively corresponding to the plurality of small lenses of the first lens array
  • Each of the first and second lens arrays is identical to each of the first and second lens arrays.
  • It is divided into a plurality of rows each having a plurality of small lenses along a row direction perpendicular to the predetermined direction, and at least a part of the plurality of rows is arranged at a position shifted from other rows.
  • the number of rows in which the small lenses are arranged at equal positions when viewed in a direction perpendicular to the row direction is set to be less than or equal to 2 to 5 of the total number of the plurality of rows. If if symbol.
  • the “predetermined direction” in the second to fourth illumination optical systems is a direction corresponding to the central axis of the color light combining unit of the projection display device. Therefore, the row direction is Direction.
  • FIG. 1 is a diagram illustrating the principle of dark line generation when an integral optical system is employed in a projection display device using a cross dichroic prism.
  • FIG. 2 is a perspective view showing the appearance of the lens arrays 1 and 2.
  • FIG. 3 is a partially enlarged view of FIG. 1 (A-1) and a cross section ⁇ ⁇ ⁇ ⁇ in the xy plane including the center axis 5 of the cross dichroic prism 4.
  • FIG. 4 is a conceptual diagram showing a state in which a partial light beam that has passed through the Nth row of small lenses of the two lens arrays 1 and 2 is projected on a projection screen 7.
  • FIG. 5 is a schematic plan view showing a main part of a projection display 100 as a first embodiment of the present invention.
  • FIG. 6 is a perspective view showing the appearance of the first lens array 120.
  • FIG. 7 is an explanatory diagram showing the configuration of the polarization conversion element 140.
  • FIG. 8 is a diagram showing the configuration of the stepped reflecting mirror 150 in the first embodiment.
  • FIG. 9 is an explanatory diagram showing the function of the stepped reflection mirror 150.
  • FIG. 10 is an explanatory diagram showing the function of the stepped reflection mirror 150.
  • FIG. 11 is an enlarged view of the stepped reflection mirror 150 and the polarization conversion element 140 in FIG.
  • FIG. 12 is a diagram showing a projection display apparatus 2000 of a second embodiment according to the present invention and a main part of an illumination optical system thereof.
  • FIG. 13 is a front view showing a comparison between the lens arrays of the first embodiment and the third embodiment.
  • Fig. 14 shows that the partial light beam passing through the small lens is a cross dichroic prism 2
  • FIG. 15 is a diagram showing a comparison between the polarization conversion elements of the first embodiment and the third embodiment.
  • FIG. 16 is a front view showing a comparison between the lens arrays of the first embodiment and the fourth embodiment.
  • FIG. 17 is a conceptual diagram showing a main part of the projection display device.
  • FIG. 18 is an exploded perspective view of a part of the cross dichroic prism 48.
  • FIG. 19 is an explanatory diagram showing a problem when the cross dichroic prism 48 is used.
  • the traveling direction of light is unified as the z direction, the 3 o'clock direction as the X direction, and the 12:00 o'clock direction as the y direction as viewed from the z direction. .
  • FIG. 5 is a schematic plan view showing a main part of a projection display 100 as a first embodiment of the present invention.
  • the projection display device 100 is composed of an illumination optical system 100, dichroic mirrors 210, 212, reflection mirrors 220, 222, 224, and an entrance side.
  • the illumination optical system 100 includes a light source 110 that emits a substantially parallel light beam, a second lens array 120, a second lens array 130, and the incident light that is converted into a predetermined linear polarization component.
  • the illumination optical system 100 is an optical system for illuminating the three liquid crystal light valves 250, 255, and 254, which are the illuminated areas, almost uniformly.
  • the light source 110 includes a light source lamp 112 as a radiation light source that emits a radial light beam, and a concave mirror 111 that emits the radiation light emitted from the light source lamp 111 as a substantially parallel light beam.
  • a concave mirror ⁇ 14 it is preferable to use a parabolic mirror.
  • FIG. 6 is a perspective view showing the appearance of the first and second lens arrays 120 and 130.
  • the second lens array 130 also has a configuration in which small lenses are arranged in a matrix of M rows and N columns so as to correspond to the small lenses 122 of the first lens array 120.
  • Each of the small lenses 122 divides the light beam emitted from the light source 110 (FIG. 5) into a plurality of (ie, MXN) partial light beams, and divides each of the partial light beams in the vicinity of the second lens array 130. To collect light.
  • each small lens 122 viewed from the z direction is set so as to be similar to the shape of the liquid crystal light valves 250, 250, and 254.
  • the aspect ratio (the ratio between the horizontal and vertical dimensions) of the small lens 122 is set to 4: 3.
  • the second lens array 130 has a function of aligning the central optical path of each partial light beam in parallel with the system optical axis. If the light beam emitted from the light source unit 110 is parallel light parallel to the system optical axis, the partial light beam emitted from the small lens 122 of the first lens array 120 also has the central optical path of the system. Since it is parallel to the optical axis, the second lens array 130 can be omitted. However, when light from the light source 110 emits light whose central optical path has a certain angle with respect to the system optical axis, the central optical path of the partial light beam emitted from the small lens 122 also becomes systematic. Not parallel to the optical axis.
  • the partial light beam having such a tilted central optical path may not be able to illuminate a predetermined area to be illuminated, that is, the liquid crystal light valves 250, 255, and 254. this child This means that the light use efficiency of the projection display device is reduced.
  • the second lens array 130 is configured such that when a central light path of such light has a certain angle with respect to the system optical axis, and the partial light flux enters the small lens 132, the central light path is formed by a system. The light is converted to be parallel to the optical axis of the system to improve the light use efficiency.
  • FIG. 7 is an explanatory diagram showing the configuration of the polarization conversion element 140 (FIG. 5).
  • This polarization conversion element 140 includes a polarization beam splitter array 141 and a selective phase difference plate 142.
  • the polarizing beam splitter array 144 has a shape in which a plurality of columnar translucent plate members 144 each having a parallelogram cross section are alternately bonded. Polarized light separating films 144 and reflective films 15 are alternately formed on the interface between the transparent plate members 144. Note that this polarizing beam splitter array 144 is obtained by laminating a plurality of glass sheets having these films formed thereon such that the polarization separating films 144 and the reflecting films 144 are alternately arranged.
  • the selective retardation plate 142 has a ⁇ ⁇ 2 retardation layer 146 formed on the exit surface of the light passing through the polarization splitting film ⁇ 44, and the light reflected by the reflection film 145 is formed.
  • the exit surface is an optical element in which the two retardation layers are not formed. Therefore, the ⁇ -polarized light transmitted through the polarization separation film 144 is converted into s-polarized light by the ⁇ 2 retardation layer 144 and emitted. As a result, the light beam having a random polarization direction that has entered the polarization conversion element 140 is emitted as almost s-polarized light.
  • the center position of the s-polarized light emitted from one polarization separating film 144 of the polarization conversion element 140 (a bundle of two s-polarized light beams) Is shifted in the X direction from the center of the incident random luminous flux (mi-polarized light + pure polarized light).
  • This shift amount is ⁇ 2 retardation layer 1 4 It is equal to half of the width W p of 6 (that is, the width of the polarization separation film 144 in the X direction). For this reason, as shown in FIG.
  • the optical axis of the light source 110 (indicated by a two-dot chain line) is calculated from the system optical axis (indicated by a one-dot chain line) of the polarization conversion element 140 and W p Z 2 It is set at a position shifted by a distance D equal to.
  • a parallel light beam emitted from the light source 110 is divided into a plurality of parts by the first and second lens arrays 120 and 130 constituting the integrator optical system. It is split into luminous flux.
  • the small lens 122 of the first lens array 120 collects each partial light beam near the polarization splitting film 144 of the polarization conversion element ⁇ 40 (FIG. 7).
  • the partial light beam emitted from the polarization conversion element 140 is reflected by the stepped reflection mirror 150.
  • the configuration and function of the stepped reflecting mirror 150 will be described later.
  • the superimposing lens 160 has a function as a superimposing optical system that superimposes the plurality of partial luminous fluxes and condenses them on the liquid crystal light valves 250, 250, and 254 that are illuminated areas. As a result, the liquid crystal light bulbs 250, 252, and 2554 are almost uniformly illuminated.
  • the two dichroic mirrors 210 and 212 function as color light separating means for separating the white light condensed by the superimposing lens 160 into three color lights of red, green and blue. I do.
  • the first dichroic mirror 210 transmits the red light component of the white light flux emitted from the illumination optical system 100 and reflects the blue light component and the green light component.
  • the red light transmitted through the first dichroic mirror 210 is reflected by the reflecting mirror 220 and reaches the liquid crystal light valve 250 for red light through the field lens 240.
  • the field lens 240 has a function of converting a partial light beam emitted from the polarization conversion element 140 into a light beam parallel to the center optical path.
  • the field lenses 242 and 244 provided in front of the other liquid crystal light valves.
  • the green light is reflected by the second dichroic mirror 210, and passes through the field lens 242 for green light.
  • the liquid crystal light valve 2 reaches 52.
  • the blue light Through the dichroic mirror 2 1 2, through the relay lens system including the entrance lens 2 3 0, the relay lens 2 3 2 and the reflection mirrors 2 2, 2 2 4, and further through the field lens (the exit side). (Lens) 2 4 4 to reach the liquid crystal light valve 2 5 4 for blue light.
  • the reason why the relay lens system is used for blue light is to prevent a decrease in light use efficiency because the optical path length of blue light is longer than the optical path lengths of other color lights.
  • the three liquid crystal light valves 250, 255, and 254 are light modulating means for modulating the three color lights in accordance with given image information (image signals) to form images. It has all the functions.
  • the cross dichroic prism 260 has a function as a color light combining means for forming a color image by combining three color lights.
  • the configuration of the cross dichroic prism 260 is the same as that described with reference to FIGS. That is, in the cross dichroic prism 260, a dielectric multilayer film that reflects red light and a dielectric multilayer film that reflects blue light are formed in an approximately X-shape at the interface of the four right-angle prisms. I have.
  • the three colored lights are combined by these dielectric multilayer films to form a combined light for projecting a color image.
  • the combined light generated by the cross dike aperture prism 260 is emitted in the direction of the projection lens system 270.
  • the projection lens system 270 has a function as a projection optical system that projects the combined light onto a projection screen 300 and displays a color image.
  • the projection display apparatus 1000 shown in FIG. 5 is characterized by a stepped reflection mirror 150.
  • FIG. 8 is a front view (A) and plan views (B) and (C) showing the configuration of the stepped reflecting mirror 150.
  • (B) and (C) are views of (A) viewed from the side.
  • the stepped reflecting mirror 150 is formed by attaching two elongated strip-shaped sub-mirrors 154 onto a flat main mirror 152.
  • the two sub-mirrors 154 are pasted horizontally at substantially symmetrical heights from the center of the height of the main mirror 154.
  • These mirrors can be composed of total reflection mirrors or cold mirrors that transmit thermal energy. Furthermore, heat energy Not only that, it may have a function of transmitting ultraviolet light.
  • the stepped reflecting mirror 150 By providing the stepped reflecting mirror 150 with the function of transmitting heat energy and ultraviolet light, the deterioration of the polarizing plate and other elements normally provided in the liquid crystal light valves 250, 255, and 254 due to heat and ultraviolet light is reduced. Can be reduced.
  • FIG. 9 and FIG. 10 are explanatory diagrams showing the function of the stepped reflecting mirror 150.
  • FIG. 10 is a cross-sectional view along the XY plane including the line AA in FIG.
  • two central optical paths are shown by a solid line and a dashed line.
  • the solid line indicates the center optical path of the light reflected by the sub mirror 154
  • the dashed line indicates the center optical path of the light reflected by the main mirror 152.
  • each of the two optical paths indicates the central optical path of a partial light beam passing through a small lens arranged in the same column direction position (X direction position) of the lens arrays 120 and 130. The only difference is the position in the row direction (position in the y direction).
  • the optical path indicated by the solid line is shifted in the X direction with respect to the optical path indicated by the alternate long and short dash line after being reflected by the stepped reflecting mirror 150.
  • the central optical path of the light reflected by the sub-mirror 15 4 indicated by the solid line is different from the central optical path of the light reflected by the main mirror 15 2 indicated by the one-dot chain line.
  • Shifting by 0 means that among the partial light beams passing through the small lenses of the lens arrays 12 0 and 13 0 arranged in the same column direction, the light beam reflected by the submirror _ 15 4 and the main mirror 1 5 2 This is the same meaning that the light flux reflected by the mirror is shifted in the X direction by the reflecting mirror 150.
  • these partial luminous fluxes enter the superimposed lens 160 at different positions in the X direction, so that the incident angles passing through the liquid crystal light valve 252 by illuminating the liquid crystal light valve 252 differ. .
  • the partial luminous fluxes having passed through the liquid crystal light valve 255 at different incident angles are modulated in the liquid crystal light valve 252 and then pass through the cross dichroic prism 260.
  • the part reflected by the main mirror 1 52 The incident angle to the cross dichroic prism 260, that is, the passing angle in the cross dichroic prism 260, differs between the central optical path of the light beam and the central optical path of the partial light beam reflected by the sub-mirror 154. That is, the light passes through different positions with respect to the central axis 2 62 of the cross dichroic prism 260.
  • the center axis 2 of the cross dichroic prism 260 If the position of the central light path of the partial light beam with respect to 62 is different, the position where the dark line is formed will also be different. Therefore, the dark line formed by each of the partial luminous fluxes passing through the M small lenses arranged in the same column direction does not concentrate at one place, and the dark line can be made inconspicuous.
  • FIG. 11 is an enlarged view of the stepped reflection mirror 150 and the polarization conversion element 140 in FIG.
  • the polarization conversion element 140 converts the incident light beam having a random polarization component into an s-polarized light beam and emits the light beam.
  • the distance L from the central optical path is twice the distance W between the polarization separation film 144 and the reflection film 144.
  • the relationship between the distance L and the distance W corresponds to the fact that the polarization separation film 144 and the reflection film 144 are inclined by 45 degrees with respect to the light incident surface. Also, as can be seen from the figure, this relationship is common between the central optical path of the s-polarized light beam shown by the solid line and the central optical path of the s-polarized light beam shown by the one-dot chain line.
  • the thickness h of the sub-mirror 1 54 is set to 1 Z 2 which is the distance W between the polarization splitting film 144 and the reflecting film 144.
  • the stepped reflecting mirror 150 Since the stepped reflecting mirror 150 is tilted 45 degrees with respect to the system optical axis, after being reflected by the stepped reflecting mirror 150, the X of the central optical path indicated by the solid line and the dashed line is shown. As a result, the four central optical paths are equally spaced at a distance of 1_2 in the X direction.
  • the partial luminous flux passing through the liquid crystal light valve 252 at different incident angles is modulated by the liquid crystal light valve 252 and then cross-dichroic prism. Pass through 260. As can be seen from FIG.
  • the four center optical paths whose positions are shifted from each other in the stepped reflecting mirror 150 are different in the angle of incidence on the cross dichroic prism 260, and the cross dichroic prism It passes through different positions with respect to the center axis 2 62 of 260.
  • the incident angle of the central optical path of the partial light beam to the aperture dichroic prism 260 that is, the transmission through the cross dichroic prism 260 If the angle is different, and if the position of the center optical path of the partial light beam with respect to the center axis 262 of the cross dichroic prism 260 is different, the position where the dark line is formed will also be different. Therefore, the dark lines formed by each of the partial luminous fluxes passing through the M small lenses arranged in the same column direction do not concentrate at one place, and the dark lines can be made inconspicuous.
  • the dark line becomes inconspicuous only by employing the stepped reflecting mirror 150 in the illumination optical system having the Integra overnight optical system, but this can be combined with a polarization conversion element.
  • the dark line becomes less noticeable. This is because if a stepped reflection mirror 150 is employed in an illumination optical system having an integrator optical system, small lenses arranged in the same column direction position (X-direction position) of the lens arrays 12 0 and 13 0 can be used. Since the center optical path of the partial light beam passing through can be shifted to two different positions in the X direction, the dark line is also distributed to two places.
  • the center optical path of the partial luminous flux passing through the small lenses arranged in the same column direction (X direction position) of the lens arrays 120 and 130 will be shifted to four different X direction positions. This is because the dark line is also distributed to four places.
  • the thickness h of the submirror 154 is equal to the center optical path of the partial light beam whose position in the z direction is shifted by the stepped reflecting mirror 150 out of the partial light beam passing through the small lenses existing in the same row.
  • the distance I between the central light path of the partial light beam and the center light path of the s-polarized light beam emitted through the polarization separation film 144, ⁇ 2 retardation layer 1 46, and the polarization separation film 1 4 4, Reflection ⁇ 1 4 5 What is necessary is just to set it as a value different from the distance L.
  • the position and width in the height direction of the two sub-mirrors 154 shown in FIG. 8 are determined so as to correspond to the position where the intensity of the light beam from the light source 110 is large. That is, the light intensity of the partial luminous flux passing through the small lens located at a position away from the center of the height of the lens array 120, 130 by the focal length f of the concave mirror 114, is It is higher than the light intensity of the partial light beam passing through the small lens at the position. Therefore, it is effective to provide the sub-mirror 154 of the stepped reflecting mirror 150 so that the optical axis of the light passing through the region where the partial luminous flux having high light intensity is reflected can be shifted.
  • the width (dimension in the height direction) of the sub-mirror 154 may be made larger than the example shown in FIG. Dark lines on the projection screen are more conspicuous when the light intensity is about 95% or less of the light intensity of other parts, and not so much when the light intensity is about 98 to 97% or more. Accordingly, the width of the sub-mirror 154 may be adjusted so that the light amount of the dark line formed by projecting the central axis of the cross dichroic prism 260 is about 98% or more of the light amount of the other portions.
  • the stepped reflecting mirror 150 shown in FIG. 8 has a two-stage configuration of the main mirror 152 and the sub mirror 154, a multi-step reflecting mirror of three or more stages is used. It is also possible.
  • FIG. 12 is a diagram showing a projection display apparatus 2000 of a second embodiment according to the present invention and a main part of an illumination optical system thereof, and is a view corresponding to FIG. 9 of the first embodiment.
  • an ordinary flat reflecting mirror 150 is used instead of the stepped reflecting mirror 150 of the first embodiment, and a polarization conversion element 140 and a reflecting mirror 150 are used.
  • the light-transmitting plate material 158 is provided.
  • Other components are the same as those of the projection display 100 of the first embodiment.
  • the translucent plate member 158 may be provided between the second lens array 130 and the superimposing lens 160. For example, it may be provided between the reflecting mirror 156 and the superimposing lens 160.
  • the two translucent plate members 158 are provided at height positions corresponding to the two sub-mirrors 154 shown in FIG.
  • the size of the translucent plate member 158 in the height direction is substantially equal to the size of the sub mirror 154 (FIG. 8) described in the first embodiment.
  • the central axis 262 of the cross dichroic prism 260 extends along a direction perpendicular to the paper surface of FIG. Accordingly, the translucent plate member 158 is tilted from the plane of the lens arrays 120, 130 at a position rotated around the circumference in the direction corresponding to the central axis 262 of the cross dichroic prism 260. is set up.
  • a plate glass or a plate-like optical glass can be used as the translucent plate member 158.
  • the flat translucent plate member 158 has a function of moving the optical path of the obliquely incident light beam almost in parallel. Since the two translucent plate members 158 are provided at positions corresponding to the two sub mirrors 154, respectively, the optical path of the light beam passing through the translucent plate member 158 is shown in FIG. In 2, the parallel movement is performed as shown by the dashed line. On the other hand, the light path indicated by the solid line does not pass through the translucent plate member 158, so that the optical path is not changed.
  • the stepped reflection mirror 150 in the second embodiment and the translucent plate member 158 in the first embodiment both have the same column direction of the lens arrays 120 and 130. It has a function as an optical path changing unit that shifts some of the optical paths of the plurality of partial light beams that have passed through the position from the optical paths of other partial light beams.
  • these and the superimposing lens 160 are a cross dichroic prism 2 of the optical path of some of the partial light beams among the plurality of partial light beams that have passed through the same column direction position of the lens arrays 120 and 130. It has a function as an optical path angle changing means for making the incident angle at which the light beam enters 60 different from the incident angle of the optical path of another partial light beam.
  • the change width of the optical path by the optical path changing means is at least Is also set to a value different from the distance between the two linearly polarized light components separated by the polarization conversion element 140.
  • optical path changing means a means other than a stepped reflecting mirror or a translucent plate material may be used, and a plurality of kinds of optical path changing means may be used in combination.
  • FIG. 13 shows a comparison between the lens arrays 120 and 130 of the first embodiment and the lens arrays 122 and 134 used in the projection display device 300 of the third embodiment.
  • FIG. 13 shows a comparison between the lens arrays 120 and 130 of the first embodiment and the lens arrays 122 and 134 used in the projection display device 300 of the third embodiment.
  • these lens arrays 12 4 and 13 4 are used, and an ordinary flat reflection mirror is used in place of the stepped reflection mirror 150.
  • the projection display apparatus 300 of the third embodiment has the same configuration as the projection display apparatus 100 of the first embodiment except for these points and a change point of a polarization conversion element described later. are doing.
  • the lens arrays 12 4 and 13 4 of the third embodiment are arranged such that the small lenses in the fourth and seventh rows of the It is shifted left and right from the line. That is, the small lens in the fourth row is shifted to the right by the shift amount d from the other rows, and the small lens in the seventh row is shifted to the left by the shift amount d from
  • the fourth and seventh rows are located at positions away from the center of the lens array in the height direction by the focal length f of the concave mirror 114. As described above, the partial luminous flux passing through this height position is higher in intensity than the partial luminous flux passing through other height positions. Therefore, by shifting the small lenses in these rows to the left and right, the angle at which the partial luminous flux passing through these small lenses passes through the cross dichroic prism 260 can be changed. This will be described with reference to FIG. In FIG. 14, in order to make the explanation easy to understand, the components of the projection display device 300 A part of the polarization conversion element 148 described below) is omitted. FIG. 14 shows only the third and fourth rows of the second lens array 13 4.
  • the angles of the partial luminous fluxes passing through these small lenses when they pass through the cross dichroic aperture prism 260 are shifted, and the dark lines DL d and DL e are formed at different positions. ing.
  • the formation of dark lines on the projection screen 300 can be dispersed to make it less noticeable. This result is based on the second principle described above.
  • the displacement d between the fourth and seventh small lenses is set to about 13 of the width P of the small lenses.
  • the small lens in the fourth row and the small lens in the seventh row are arranged at positions shifted left and right from each other, and furthermore, the dark line forming position of the projection screen can be dispersed to make it less noticeable. It is.
  • FIG. 15 is a diagram showing a comparison between the polarization conversion element 140 used in the first embodiment and the polarization conversion element used in the third embodiment.
  • FIG. 15A is a plan view of the second lens array 130 and the polarization conversion element 140 in the first embodiment
  • FIG. 15B is a polarization conversion element 14 of the first embodiment.
  • the polarization beam splitter array 144 of the polarization conversion element 140 and the selective retardation plate 142 are composed of the components (transparent plate material ⁇ ⁇ ⁇ 2 retardation plate) from the front. They are arranged to extend vertically when viewed.
  • FIG. 15 (C) When using the lens arrays 12 4 and 13 4 shown in FIG. 13 ( ⁇ ), use a polarization conversion element as shown in FIG. 15 (C) or FIG. 15 (D).
  • the polarization conversion element 148 shown in Fig. 15 (C) has the same phase difference as that of the polarization beam splitter array at the position corresponding to the displaced row of the lens arrays 124 and 134, and the selected phase difference. It has a configuration in which the plate is shifted.
  • the polarization conversion element 149 shown in FIG. 4 (D) is configured such that the polarization beam splitter array and the selective retardation plate extend horizontally when viewed from the front. As shown in Fig.
  • the same polarization conversion element can be used even if the amount of displacement d of the lens array changes. There is an advantage that can be. However, in order to do this, it is necessary to set the width of the polarization conversion element in FIG. 4 (D) sufficiently large.
  • FIG. 16 is a front view showing a comparison between the lens arrays 120 and 130 of the first embodiment and the lens arrays 126 and 136 used in the fourth embodiment.
  • the fourth embodiment has the same configuration as that of the third embodiment except that the lens arrays 126 and 136 are used and a polarization conversion element corresponding thereto is used. Note that, as the polarization conversion element, the same element as that of the third embodiment shown in FIG. 15 can be used, and a description thereof will be omitted.
  • the rows of the small lenses are slightly shifted sequentially. That is, lines 1, 4, 7, and 10 are located at the same position, and similarly, lines 2, 5, and 8 and lines 3, 6, and 9 are located at the same position. Are located. With reference to the first line, the second, fifth, and eighth lines are shifted to the right by a shift amount d from the first line. On the other hand, the third, sixth, and ninth rows, on the other hand, are shifted to the left from the first row by the shift amount d.
  • the displacement d is preferably set to be about 1/3 of the width P of the small lens. In this way, only the 2Z5 rows of the 10 rows overlap each other in the vertical direction (ie, the column direction).
  • the plurality of small lenses arranged at the same position in the column direction project the central axis of the cross dichroic prism 260 at the same position on the projection screen to form a dark line. Therefore, by shifting the lens array rows left and right so that the number of rows of the lens array overlapping the same column direction position is about 2Z5 or less of the total number, it is possible to make dark lines on the projection screen 300 inconspicuous. Is possible. It is more preferable to set the value of the deviation d to about 14 of the width P of the small lens.
  • the central axis of the cross dichroic prism 260 is projected onto the projection screen 300 by applying various measures to the two lens arrays and the polarization conversion element. It is possible to make the dark lines formed by the process less noticeable.
  • the invention that makes dark lines less noticeable is not limited to the examples and embodiments described above, and can be implemented in various modes without departing from the gist of the invention.
  • the projection display device is arranged in an X-shape with an illumination optical system that emits illumination light, three sets of light modulation units that respectively modulate three colors of light based on the given image signals.
  • an illumination optical system that emits illumination light
  • three sets of light modulation units that respectively modulate three colors of light based on the given image signals.
  • Having two types of dichroic films having a central axis corresponding to a position where the dichroic films intersect each other, and synthesizing three colors of light modulated by the three sets of light modulating means and emitting the lights in the same direction.
  • a split superimposing optical system that generates at least one row of a plurality of partial light beams and substantially superimposes the plurality of partial light beams on the light modulation unit.
  • the split superposition optical system is configured such that the position at which the central axis of the color light combining means is projected on the projection surface by one of a plurality of partial light beams in a row is projected by another partial light beam. It may be configured so as to deviate from the position to be set in a direction different from the direction corresponding to the central axis of the color light combining means. According to this, some of the partial light fluxes in a row project the central axis of the color light combining means to different positions on the projection surface to form dark lines, so that a projected image is formed. It is possible to make the formed dark line less noticeable.
  • the light is converted into two linearly polarized light components using a polarization conversion element.
  • the polarization conversion element may be omitted. Also in this case, in each of the embodiments described above, the effect of making dark lines formed on the projection screen inconspicuous is Almost the same is achieved.
  • the present invention can also be applied to a reflection type projection display device.
  • “transmissive” means that the light modulating means such as a liquid crystal light valve transmits light
  • “reflective” means that the light modulating means transmits light. It means that it is a type that does.
  • the cross dichroic prism is used as a color light separation unit that separates white light into red, green, and blue light, and combines the modulated three colors again. It is also used as a color light combining means that emits light in the same direction. Even when the present invention is applied to a reflection type projection display device, it is possible to obtain substantially the same effect as that of a transmission type projection display device. Industrial applicability
  • the illumination optical system according to the present invention is applicable to various projection display devices. Further, the projection display device according to the present invention can be applied to, for example, project and display an image output from a computer or an image output from a video recorder on a screen.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Projection Apparatus (AREA)
  • Video Image Reproduction Devices For Color Tv Systems (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Optical Elements Other Than Lenses (AREA)

Description

明細書 投写型表示装置およびそのための照明光学系 技術分野
この発明は、 色光合成手段を備えた投写型表示装置およびそのための照明光学 系に関するものである。 背景技術
カラ一画像を投写スクリーンに投写する投写型表示装置としては、 クロスダイ クロイツクプリズムが用いられていることが多い。 例えば透過型の液晶プロジェ クタでは、 クロスダイクロイツクプリズムは、 赤、 緑、 青の 3色の光を合成して 同一の方向に出射する色光合成手段として利用される。 また、 反射型の液晶プロ ジェクタでは、 クロスダイクロイツクプリズムは、 白色光を赤、 緑、 青の 3色の 光に分離する色光分離手段として利用されると共に、 変調された 3色の光を再度 合成して同一の方向に出射する色光合成手段としても利用される。 クロスダイク ロイックプリズムを用いた投写型表示装置としては、 例えば特開平 1—3 0 2 3 8 5号公報に記載されたものが知られている。
図 1 7は、投写型表示装置の要部を示す概念図である。この投写型表示装置は、 3つの液晶ライトバルブ 4 2, 4 4 , 4 6と、 クロスダイクロイツクプリズム 4 8と、投写レンズ系 5 0とを備えている。クロスダイクロイツクプリズム 4 8は、 3つの液晶ライ卜バルブ 4 2, 4 4 , 4 6で変調された赤、 緑、 青の 3色の光を 合成して、 投写レンズ系 5 0の方向に出射する。 投写レンズ系 5 0は、 合成され た光を投写スクリーン 5 2上に結像させる。
図 1 8は、クロスダイクロイツクプリズム 4 8の一部を分解した斜視図である。 クロスダイクロイツクプリズム 4 8は、 4つの直角プリズムの互いの直角面を、 光学接着剤で貼り合わせることによつて作製されている。
クロスダイクロイツクブリズ厶を色光合成手段として用 t、た投写型表示装置で は、 用いる光源の光特性により、 4つの直角プリズムの接合部分で生じる光散乱 のために投写画像に暗い影が生じる場合がある。
図 1 9は、 クロスダイクロイツクプリズム 4 8を利用した場合の問題点を示す 説明図である。 図 8 ( A) に示すように、 クロスダイクロイツクプリズム 4 8は、 4つの直角プリズ厶の直角面で形成される X字状の界面において、 略 X字状に配 置された赤色光反射膜 6 0 Rと青色光反射膜 6 0 Bとを有している。 しかし、 4 つの直角プリズムの隙間には光学接着剤層 6 2が形成されているので、 反射膜 6 0 R , 6 0 Bも、 クロスダイクロイツクプリズム 4 8の中心軸 4 8 aの部分にお いて隙間を有している。
クロスダイクロイツクプリズム 4 8の中心軸 4 8 aを通る光が投写スクリーン 5 2上に投影されると、 中心軸 4 8 aに起因する暗線が画像中に形成されること がある。 図 1 9 ( B ) は、 このような暗線 D Lの一例を示している。 この暗線 D Lは、 他の部分とは異なる色がついた、 やや暗い線状の領域であり、 投写された 画像のほぼ中心に形成される。 この暗線 D Lは、 中心軸 4 8 a付近の反射膜の間 隙において光線が散乱されることや、 赤色光や青色光が反射されないことに起因 していると考えられる。 なお、 この問題は、 赤色反射膜、 青色反射膜等の選択反 射膜がそれぞれ形成された 2種類のダイクロイツクミラーを X字状に交差させた クロスダイクロイツクミラーにおいても同様に発生する。 この場合は、 ミラーに よる中心軸に起因する暗線が画像中に形成されることとなる。
このように、 従来の投写型表示装置では、 クロスダイクロイツクプリズム 4 8 やクロスダイクロイツクミラーの中心軸によって、 投写される画像のほぼ中心に 暗線が形成されてしまうことがあるという問題があった。
この発明は、 従来技術における上述の課題を解決するためになされたものであ リ、 クロスダイクロイツクプリズムやクロスダイクロイツクミラー等、 X字状に 配置された 2種類のダイクロイツク膜を備えた色光合成手段の中心軸に起因する 暗線を目立たなくすることのできる技術を提供し、 これらを用 L、た照明光学系お よび投写型表示装置を実現することにある。 発明の開示
(課題を解決するための原理の説明)
はじめに、 課題を解決するための原理を、 具体的な例に基づき、 図 1ないし図 4を用いて説明する。 図面では、 光の進行方向を z方向、 光の進行方向(z方向) からみて 3時の方向を X方向、 1 2時の方向を y方向として統一してある。また、 下記説明において、 便宜的に、 X方向は行方向、 y方向は列方向を表すものとす る。 なお、 下記の原理は、 説明を容易にするために具体的な例に基づいて説明を 行っているが、 本発明はそのような具体的な構成に限定されるものではない。 投写型表示装置において、 光源からの光を複数の部分光束に分割して照明光の 面内照度むらを低減する技術として、 WO 9 4 Z 2 2 0 4 2号公報に記載された ような、 複数の小レンズを有する 2つのレンズアレイを用いた照明光学系 (イン テグレー夕光学系という) が知られている。
図 1は、 クロスダイクロイツクプリズムを用いた投写型表示装置にインテグレ 一夕光学系を採用した場合の、暗線発生原理を説明する図である。図 1 (A— 1 ), ( B - 1 ) は、 X方向の位置が互いに異なる小レンズ 1 0、 すなわち、 異なる列 方向に存在する小レンズ 1 0を通過した光束 (図中実線で示す) 、 および、 その 中心光軸 (図中細かい点線で示す) の追跡図、 図 1 (A— 2 ) , (B— 2 ) は投 写スクリーン 7上の暗線 D L a、 D L bの形成位置を示す図である。
光源 (図示省略) から出射された光束は、 それぞれ複数の小レンズ 1 0を有す る第 1と第 2のレンズアレイ 1, 2によって複数の部分光束に分割される。 第 1 と第 2のレンズアレイ 1, 2に設けられた各小レンズ 1 0を通過した光束は、 平 行ィ匕レンズ 1 5によって、 各光束の中心軸に平行な光束に変換される。 平行化レ ンズレンズ 1 5を通過した各光束は、 液晶ライ卜バルブ 3上で重畳され、 その所 定領域を均一に照明する。 なお、 図 1においては 1枚の液晶ライ卜バルブ 3のみ が図示されているが、 他の 2枚の液晶ライ卜バルブにおいてもインテグレー夕光 学系の原理、 暗線の発生原理は同様である。
図 2はレンズアレイ 2の外観を示す斜視図である。 第 1と第 2のレンズァ レイ 1, 2は、 それぞれ略矩形状の輪郭を有する小レンズ 1 0が M行 N列のマ卜 リクス状に配置された構成を有している。 この例では、 M = 1 0, N = 8であり、 図 1 ( A— 1 )には 2列目の小レンズ 1 0を通過した部分光束の追跡図、図 1 ( B — 1 ) には 7列目の小レンズ 1 0を通過した部分光束の追跡図が示されているこ とになる。
液晶ライ卜バルブ 3上に重畳された光束は、 液晶ライ卜バルブ 3で画像情報に 応じた変調を受けた後、 クロスダイクロイツクプリズム 4に入射する。 クロスダ ィクロイツクプリズム 4から出射された光束は、 投写レンズ系 6を介して投写ス クリーン 7上に投影される。
図 1 (A— 1 ) , (B— 1 ) にそれぞれ荒い点線で示すように、 クロスダイク ロイックプリズム 4の中心軸 5 (図中 y方向に沿っている)部分を通過する光も、 それぞれ投写スクリーン 7上の P a, P bの位置に投影されることとなる。 とこ ろが、 発明の課題において述べたように、 この中心軸 5付近の反射膜の間隙にお いて光線が散乱されたり、 反射されるべき光が反射されなかったりするため、 中 心軸 5付近を通過する光の光量が減少してしまう。よって、 図 1 ( A— 2 ), ( B 一 2 ) に示すように、 投写スクリーン 7上に周囲よりも輝度の低い部分、 すなわ ち、 暗線 D L a, D L bが形成されてしまう。
ここで、 暗線と、 第 1と第 2のレンズアレイ 1, 2との関係を説明する。 図 1 ( A— 1 ) を一部拡大して示してある図 3 (A) から解るように、 液晶ライ卜バ ルブ 3によって形成された像は、 投写レンズ系 6によって反転され、 かつ拡大さ れて投写スクリーン 7上に投影される。 なお、 図 3 ( B ) は、 クロスダイクロイ ックプリズム 4の中心軸 5を含む x y平面における断面図である。 図 3 (A) , ( B ) において、 r 1は、 部分光束をクロスダイクロイツクプリズム 4の中心軸 5を含む X y平面で切断したときの、 部分光束の断面 8の一方の端 1 1から中心 軸 5までの距離を示し、 r 2は、 部分光束の断面 8の他方の端 1 2から中心軸 5 までの距離を示す。部分光束の断面 8の像は、投写レンズ系 6によって反転され、 かつ拡大されて投写スクリーン 7上に投影されるので、 投写スクリーン 7上にお ける投写領域 9の一方の端 1 3から暗線 D L aまでの距離 R 2と投写領域 9の他 方の端 1 4から暗線 D L aまでの距離 R 1との比は、 距離 r 2と距離 r 1との比 に等しい。 すなわち、 暗線 D L aが形成される位置は、 クロスダイクロイツクプ リズ厶 4の中心軸 5を含む X 平面における部分光束の断面 8が、 中心軸 5に対 してどのような位置に存在するかに依存している。
ここで、 図 1 (A— 1 ) と (B— 1 ) とを比較すれば解るように、 図 1 (A— 1 ) と (B— 1 ) とでは、 クロスダイクロイツクプリズム 4の中心軸 5を含む X y平面におけるそれぞれの部分光束の断面の位置が異なっている。 従って、 暗線 D L aと D L bとはそれぞれ異なる位置に形成されることとなる。 同様に、 第 1 と第 2のレンズアレイ 1, 2のうち、 2列目、 7列目以外の列に存在する小レン ズ 1 0を通過した部分光束の、 クロスダイクロイツクプリズム 4の中心軸 5を含 む X y平面における断面の位置もそれぞれ異なるため、投写スクリーン 7上には、 第 1と第 2のレンズアレイ 1, 2の列数だけ、 すなわち、 N本の暗線が形成され ることになる。
なお、 第 1と第 2のレンズアレイ 1, 2の同じ列方向位置に並ぶ M個の小レン ズを通過する部分光束は、 図 4に示したように、 投写スクリーン 7上のほぼ等し い位置に暗線 D L cを形成する。 従って、 N本の暗線のそれぞれは、 第 1と第 2 のレンズアレイ 1, 2の同じ列方向位置に並ぶ M個の小レンズを通過する部分光 束が重なり合って形成されており、 その暗度は、 それぞれの小レンズによって形 成される暗線の暗度の総和にほぼ等し L、。 以上をまとめると、 以下の原理が導き出せる。 (第 1の原理)
まず、 第 1に、 ク口スダイクロイツクプリズム 4の中心軸 5に対する部分光束 の中心光路の位置が異なれば暗線の形成される位置も異なる。 第 1と第 2のレン ズアレイし 2の異なる列を通過する部分光束は、 クロスダイクロイツクプリズ 厶 4の中心軸 5に対する位置が互いに異なるので、異なる位置に暗線を形成する。
(第 2の原理)
第 2に、 クロスダイクロイツクプリズム 4の中心軸 5を含む X y平面における 部分光束の断面の位置が異なるのは、 クロスダイクロイツクプリズム 4に入射す る部分光束の角度が異なるからである (図 1参照) 。 第 1と第 2のレンズアレイ 1, 2の異なる列を通過する部分光束は、 クロスダイクロイツクプリズム 4に対 して異なる角度で入射するので、 中心軸 5における部分光束の位置が異なる。 従って、 クロスダイクロイツクプリズム 4に入射する部分光束の角度が異なれ ば、 あるいは、 液晶ライ卜バルブ 3上に重畳される部分光束の角度が異なれば、 暗線の形成される位置も異なることになる。
(暗先を目立ちにくくする方法)
先に述べた通り、 第 1、 第 2のレンズアレイ 1, 2の同じ列方向位置に並ぶ M 個の小レンズを通過する部分光束が、 投写スクリーン 7上のほぼ等しい位置にそ れぞれ暗線を形成することにより、 その暗線の暗度は、 それぞれの小レンズによ つて形成される暗線の暗度の総和にほぼ等しい。 従って、 この M個の小レンズを 通過する部分光束のそれぞれによリ形成される暗線が、 投写スクリーン 7上の異 なる位置に形成されるようにすれば良い。 すなわち、 このようにすれば、 暗線の 数は増加するものの、 1本あたりの暗線の暗度を減少させることが可能となるた め、 結果として暗線が非常に目立ちにくくなる。 なお、 M個の小レンズを通過す る暗線のすべてが異なる位置に形成されるようにする必要はなく、 一部が異なる 位置に形成されるようにするだけでも十分である。
なお、 暗線を異なる位置に形成させることは、 先に述べた第 1の原理、 第 2の 原理により可能である。
すなわち、 第 1の原理に基づけば、 同じ列方向位置に並ぶ M個の小レンズを通 過する部分光束のうち、 一部について、 クロスダイクロイツクプリズム 4の中心 軸 5に対する部分光束の中心光路の位置を他と変化させれば良い。
さらに、 第 2の原理に基づけば、 同じ列方向位置に並ぶ M個の小レンズを通過 する部分光束のうち、 一部について、 液晶ライトバルブ 3上に重畳される部分光 束の角度、 あるいはクロスダイクロイツクプリズム 4に入射する部分光束の角度 を他と変化させれば良い。
本発明は、 上記のような原理を追求することによって、 前に述べたような従来 技術における課題を解決することができたのである。以下に、その手段、 および、 作用 '効果について述べる。
(課題を解決するための手段およびその作用 ·効果)
本発明の第 1の投写型表示装置は、
照明光を出射する照明光学系と、
前記照明光を 3色の光に分離する色光分離手段と、
前記 3色の光を与えられた画像信号に基づいてそれぞれ変調する 3組の光変調 手段と、
X字状に配置された 2種類のダイクロイツク膜を備え、 前記ダイクロイツク膜 が互いに交差する位置に相当する中心軸を有し、 前記 3組の光変調手段により変 調された 3色の光を合成して同一方向に出射する色光合成手段と、
前記色光合成手段により合成された光を投写面上に投写する投写手段とを備え る投写型表示装置であって、
前記照明光学系は、
前記色光合成手段の前記中心軸とほぼ平行な列方向、 および、 前記色光合成手 段の前記中心軸とほぼ垂直な行方向に分割された複数の部分光束を発生するとと もに、 前記複数の部分光束を重畳する分割重畳光学系を備え、
前記分割重畳光学系は、
同じ列方向に存在する前記複数の部分光束のうち一部の部分光束によつて前記 中心軸が前記投写面上に投写される位置が、 他の部分光束によつて投写される位 置から前記中心軸に相当する方向とは異なる方向にずれるように構成されている ことを特徴とする。
一つの部分光束は、 色光合成手段の中心軸を投写面上に投影して中心軸に相当 する暗線を形成し、 一列の複数の部分光束は、 通常、 色光合成手段の中心軸を投 写面上のほぼ同じ位置に投影して暗線を形成する。 上記構成によれば、 一列の複 数の部分光束のうち一部の部分光束は、 色光合成手段の中心軸を投写面上の異な つた位置に投影して暗線を形成するので、 投写される画像に形成される暗線を目 立ちにくくすることが可能である。
また、 上記第 1の投写型表示装置において、
前記分割重畳光学系は、
前記複数の部分光束を発生させる光束分割手段と、
同じ列方向に存在する前記部分光束のうち、 一部の部分光束を、 他の部分光束 と異なる入射角度で前記色光合成手段に入射させる入射角度変更手段を備えてい ることが好ましい。
ここで、 前記光束分割手段は前記列方向および前記行方向に配列された複数の 小レンズを備えた少なくとも 1枚のレンズアレイを備え、
前記入射角度変更手段は反射面に段差を有する段付き反射ミラーを備える構成 とすることが好ましい。 あるいは、 前記光束分割手段は前記列方向および前記行方向に配列された複数 の小レンズを備えた少なくとも 1枚のレンズァレイを備え、
前記入射角度変更手段は前記レンズアレイの面に対して傾いて配置された透光 性板材を備える構成とするこも好ましい。
このようにしても、 色光合成手段の中心軸に対する一部の部分光束の中心光路 の位置を他の部分光束の中心光路の位置からずらすことができ、 それぞれの部分 光束は異なった位置に暗線を形成する。 したがって、 投写される画像に形成され る暗線を目立ちにくくすることが可能である。 また、 上記各場合が組み合わせて 構成されることにより、 さらに、 投写される画像に形成される暗線を目立ちにく くすることが可能である。
第 2の投写型表示装置は、
照明光を出射する照明光学系と、
前記照明光を、 3色の光に分離する色光分離手段と、
前記 3色の光を与えられた画像信号に基づいてそれぞれ変調する 3組の光変調 手段と、
X字状に配置された 2種類のダイクロイツク膜を備え、 前記ダイクロイツク膜 が互いに交差する位置に相当する中心軸を有し、 前記 3組の光変調手段により変 調された 3色の光を合成して同一方向に出射する色光合成手段と、
前記色光合成手段によリ合成された光を投写面上に投写する投写する投写手段 と、 を備える投写型表示装置であって、
前記照明光学系は、
光源から出射される光束を複数の部分光束に分割する複数の小レンズを有する 第 1のレンズアレイと、
前記第 1のレンズアレイの前記複数の小レンズにそれぞれ対応する複数の小レ ンズを有する第 2のレンズアレイと、
前記色光合成手段の前記中心軸に相当する所定の方向に沿って配列されている 前記複数の小レンズを通過する複数の部分光束のうち、 一部の部分光束の光路を 他の部分光束の光路からずらす光路変更手段と、
を備えることを特徴とする。
第 1と第 2のレンズアレイの複数の小レンズのうちで、 色光合成手段の中心軸 に相当する所定の方向 (先の説明では行方向) に沿って配列されている複数の小 レンズを通過する複数の部分光束は、 色光合成手段の中心軸を投写面上のほぼ同 じ位置に投影して暗線を形成する。 従って、 光路変更手段によって、 これらの複 数の部分光束のうち、 一部の部分光束の光路を他の部分光束の光路からずらすよ うにすれば、 上記第 1の原理に基づき、 これらの複数の部分光束により、 色光合 成手段の中心軸がほぼ同じ位置に投影されるのを防止できる。 この結果、 投写さ れる画像に形成される暗線を目立ちにくくすることが可能である。
上記第 2の投写型表示装置において、 前記光路変更手段は、 前記所定の方向に 沿って、 前記光源の光軸から一定の距離だけそれぞれ離れた位置を通過する部分 光束の光路を、 他の位置を通過する部分光束の光路からずらす手段を備えること が好ましい。
光源からの光の強度は、 その光軸からの距離に依存する。 従って、 比較的強度 の高い部分光束が通過する光路を、 他の部分光束からずらすようにすれば、 投写 される画像に形成される暗線を目立ちにくくすることができる。
なお、 前記一定の距離は、 光源が、 光源ランプと前記光源ランプから出射され る光を反射する凹面鏡とを備える場合、 前記凹面鏡の焦点距離にほぼ等しいこと が好まし L 光源の光軸から前記凹面鏡の焦点距離だけそれぞれ離れた位置を通 過する部分光束は、 他の部分光束に比べて強度が高い。 従って、 この部分光束の 光路を他の位置を通過する部分光束の光路からずらすことによって、 投写される 画像に形成される暗線を目立ちにくくすることができる。
上記第 2の投写型表示装置において、 前記光路変更手段は、 反射面に段差を有 する段付き反射ミラーを備えることが好ましい。 こうすれば、 極めて簡単な構成 で特定の部分光束の光路を任意に変更することが可能である。
また、 前記段付き反射ミラーの段部は、 前記色光合成手段の前記中心軸に相当 する方向とは垂直な方向に沿って設けられていることが好ましい。 こうすれば、 一部の部分光束の光路を、 色光合成手段の中心軸に相当する方向に沿ってずらす ことができる。
また、 前記段付き反射ミラーは、 互いに高さの異なる第〗の反射面と第 2の反 射面とを有し、 前記色光合成手段の前記中心軸に相当する前記所定の方向に沿つ て前記光源の光軸から一定の距離だけそれぞれ離れた 2つの位置に前記第 2の反 射面がそれぞれ設けられていることが好ましい。 こうすれば、 比較的光強度の高 い部分光束の光路を、 2つの第 2の反射面でそれぞれ変更することができる。 あるいは、 前記光路変更手段は、 前記第 2のレンズアレイの面から傾いて配置 された透光性板材を備えるようにしてもよい。 こうすれば、 特定の部分光束の光 路を任意に変更することが可能である。
前記照明光学系は、 さらに、
前記第 2のレンズァレイと前記光路変更手段の間のいずれかの位置に設けられ た偏光変換素子を備え、
前記偏光変換素子は、 互いに平行な偏光分離膜と反射膜の複数の組を有し、 前 記第 2のレンズァレイの複数の小レンズを通過した複数の部分光束をそれぞれ 2 種類の直線偏光成分に分離する偏光ビームスプリッタアレイと、
前記偏光ビームスプリッタアレイで分離された前記 2種類の直線偏光成分の偏 光方向を揃える偏光変換手段と、 を備え、
前記光路変更手段によって、 前記色合成手段の前記中心軸に相当する所定の方 向に沿って配列されている前記複数の小レンズを通過し、 前記偏光ビームスプリ ッタアレイで分離された前記 2種類の直線偏光成分の光路の一部が他の光路から ずらされたことが好ましい。
この偏光変換素子は、 入射した光を、 偏光ビームスプリッタアレイにより 2種 類の直線偏光成分に分離した後、 偏光変換手段によリそれらの偏光方向を揃えて 出射する。 従って、 偏光ビームスプリッタアレイで分離された 2種類の直線偏光 成分光路の一部が他の光路からずらされることで、 投写される画像に形成される 暗線を、 さらに目立ちにくくすることが可能である。
また、 これら 2種類の直線偏光成分の光路の一部が前記光路変更手段によって 他の光路からずらされる量は、 前記 2種類の直線偏光成分の隣接する光路間の距 離の約 1 2であることが好ましい。
これらの 2種類の直線偏光成分の隣接する光路間の距離の約 1 / 2だけ光路を 移動させるようにすれば、 移動しない 2種類の直線偏光成分の光路と、 移動前の 2種類の直線偏光成分の光路とが、 互いにほぼ等距離に配置される。 すなわち、 4種類の光路がそれぞれほぼ等距離に配置されるので、画像に形成される暗線を、 最も目立ちにくくすることが可能である。
また、 上記第 2の投写型表示装置において、 前記第 1と第 2のレンズアレイを 順次通過した複数の部分光束を重畳させて前記 3組の光変調手段を照明する重畳 光学系を備え、 前記光路変更手段は、 前記第 2のレンズアレイと前記重畳光学系 との間に設けられていることが好ましい。
第 3の投写型表示装置は、
前記照明光を、 3色の光に分離する色光分離手段と、
前記 3色の光を与えられた画像信号に基づいてそれぞれ変調する 3組の光変調 手段と、
X字状に配置された 2種類のダイクロイツク膜を備え、 前記ダイクロイツク膜 が互いに交差する位置に相当する中心軸を有し、 前記 3組の光変調手段により変 調された 3色の光を合成して同一方向に出射する色光合成手段と、
前記色光合成手段により合成された光を投写面上に投写する投写する投写手段 と、 を備える投写型表示装置であって、
前記照明光学系は、 光源から出射される光束を複数の部分光束に分割する複数の小レンズを有する 第 1のレンズアレイと、
前記第 1のレンズアレイの前記複数の小レンズにそれぞれ対応する複数の小レ ンズを有する第 2のレンズアレイと、 を備え、
前記第〗と第 2のレンズアレイのそれぞれは、
前記色光合成手段の前記中心軸に相当する方向と垂直な行方向に沿って、 それ ぞれ複数の小レンズを有する複数の行に分割されており、 前記色光合成手段の前 記中心軸に相当する方向に沿つて、 前記光源の光軸から一定の距離だけそれぞれ 離れた位置に存在する行が、 他の行から一定のずれ量だけずれた位置に配置され ていることを特徴とする。
第 1と第 2のレンズアレイの複数の小レンズのうちで、 色光合成手段の中心軸 に相当する所定の方向に沿って配列されている複数の小レンズを通過する複数の 部分光束は、 色光合成手段の中心軸を投写面上のほぼ同じ位置に投影して暗線を 形成する。 この中で、 特に、 光源が、 光源ランプと前記光源ランプから出射され る光を反射する凹面鏡とを備える場合、 光源の光軸から凹面鏡の焦点距離だけそ れぞれ離れた位置に存在する行の小レンズを通過する部分光束の強度が比較的高 い。 従って、 このような行を他の行からずらすようにすれば、 前述した第 2の原 理により、 投写される画像に形成される暗線を目立ちにくくすることが可能であ る。
第 4の投写型表示装置は、
照明光を出射する照明光学系と、
前記照明光を、 3色の光に分離する色光分離手段と、
前記 3色の光を与えられた画像信号に基づいてそれぞれ変調する 3組の光変調 手段と、
X字状に配置された 2種類のダイクロイツク膜を備え、 前記ダイクロイツク膜 が互いに交差する位置に相当する中心軸を有し、 前記 3組の光変調手段によリ変 調された 3色の光を合成して同一方向に出射する色光合成手段と、
前記色光合成手段により合成された光を投写面上に投写する投写する投写手段 と、 を備える投写型表示装置であって、
前記照明光学系は、
光源から出射される光束を複数の部分光束に分割する複数の小レンズを有する 第 1のレンズアレイと、
前記第 1のレンズアレイの前記複数の小レンズにそれぞれ対応する複数の小レ ンズを有する第 2のレンズアレイと、 を備え、
前記第 1と第 2のレンズアレイのそれぞれは、
前記色光合成手段の前記中心軸に相当する方向と垂直な行方向に沿って、 それ ぞれ複数の小レンズを有する複数の行に分割されており、 前記複数の行の少なく とも一部の行が他の行からずれた位置に配置されて、 行方向と垂直な方向に見た ときに前記小レンズが互いに等し L、位置に配列されている行の数が、 前記複数の 行の総数の 2 5以下に設定されていることを特徴とする。
第 1と第 2のレンズアレイの複数の小レンズのうちで、 色光合成手段の中心軸 に相当する所定の方向に沿って配列されている複数の小レンズを通過する複数の 部分光束は、 色光合成手段の中心軸をほぼ同じ位置に投影して暗線を形成する。 従って、 第 4の投写型表示装置のように、 行の総数の 2ノ 5以下が互いに等しい 位置に配列されているようにすれば、 前述した第 2の原理により、 投写される画 像に形成される暗線を目立ちにくくすることが可能である。
第 4の投写型表示装置において、 前記第 1と第 2のレンズアレイの前記複数の 行が、 一定のずれ量だけ順次互いにずれた配置を有するようにすることが好まし い。
こうすれば、 互いに等価な位置に配列される行の数を少なくすることが容易で ある。
本発明の第 1の照明光学系は、 照明光を、 3色の光に分離する色光分離手段と、
前記 3色の光を与えられた画像信号に基づいてそれぞれ変調する 3組の光変調 手段と、
X字状に配置された 2種類のダイクロイック膜を備え、 前記ダイクロイツク膜 が互いに交差する位置に相当する中心軸を有し、 前記 3組の光変調手段により変 調された 3色の光を合成して同一方向に出射する色光合成手段と、
前記色光合成手段により合成された光を投写面上に投写する投写する投写手段 とを備える投写型表示装置に使用され、 前記照明光を出射する照明光学系であつ て、
少なくとも前記色光合成手段の前記中心軸に相当する所定の方向にほぼ沿って 分割された少なくとも一列の複数の部分光束を発生するとともに、 前記複数の部 分光束を重畳する分割重畳光学系を備え、
前記分割重畳光学系は、
前記一列の複数の部分光束のうち一部の部分光束によつて前記中心軸が前記投 写面上に投写される位置が、 他の部分光束によって投写される位置から前記中心 軸に相当する方向とは異なる方向にずれるように構成されていることを特徴とす る。
第 2の照明光学系は、
照明光を出射する照明光学系であって、
光源から出射される光束を複数の部分光束に分割する複数の小レンズを有する 第 1のレンズアレイと、
前記第 1のレンズアレイの前記複数の小レンズにそれぞれ対応する複数の小レ ンズを有する第 2のレンズァレイと、
所定の方向に沿って配列されている前記複数の小レンズを通過する複数の部分 光束のうち、 一部の部分光束の光路を他の部分光束の光路からずらす光路変更手 段と、 を備えることを特徴とする。
第 3の照明光学系は、
照明光を出射する照明光学系であって、
光源から出射される光束を複数の部分光束に分割する複数の小レンズを有する 第 1のレンズアレイと、
前記第 1のレンズアレイの前記複数の小レンズにそれぞれ対応する複数の小レ ンズを有する第 2のレンズァレイとを有し、
前記第 1と第 2のレンズァレイのそれぞれは、
所定の方向と垂直な行方向に沿ってそれぞれ複数の小レンズを有する複数の行 に分割されており、 前記所定の方向に沿って、 前記光源の光軸から一定の距離だ けそれぞれ離れた位置に存在する行が、 他の行から一定のずれ量だけずれた位置 に配置されていることを特徴とする。
第 4の照明光学系は、
照明光を出射する照明光学系であって、
光源から出射される光束を複数の部分光束に分割する複数の小レンズを有する 第 1のレンズアレイと、
前記第 1のレンズアレイの前記複数の小レンズにそれぞれ対応する複数の小レ ンズを有する第 2のレンズァレイとを備え、
前記第 1と第 2のレンズアレイのそれぞれは、
所定の方向とは垂直な行方向に沿って、 それぞれ複数の小レンズを有する複数 の行に分割されており、 前記複数の行の少なくとも一部の行が他の行からずれた 位置に配置されて、 行方向と垂直な方向に見たときに前記小レンズが互いに等し い位置に配列されている行の数が、 前記複数の行の総数の 2ノ 5以下に設定され ていることを if寺徴とする。
第 2ないし第 4の照明光学系における 「所定の方向」 は、 投写型表示装置の色 光合成手段の中心軸に相当する方向である。 従って、 行方向は、 この中心軸の方 向と垂直な方向である。
第 1ないし第 4の照明光学系を投写型表示装置に用いることによって、 第 1な いし第 4の投写型表示装置と同様に、 投写された画像に形成される暗線を目立た なくすることが可能である。 図面の簡単な説明
図 1は、 クロスダイクロイツクプリズムを用いた投写型表示装置にインテグレ 一夕光学系を採用した場合の、 暗線発生原理を説明する図である。
図 2は、 レンズアレイ 1 , 2の外観を示す斜視図である。
図 3は、 図 1 (A— 1 ) の一部拡大図、 及び、 クロスダイクロイツクプリズム 4の中心軸 5を含む X y平面における断面囡である。
図 4は、 2つのレンズアレイ 1, 2の N列目の小レンズを通過した部分光束が 投写スクリーン 7上に投写される様子を示す概念図である。
図 5は、 この発明の第 1実施例としての投写型表示装置 1 0 0 0の要部を示す 概略平面図である。
図 6は、 第 1のレンズアレイ 1 2 0の外観を示す斜視図である。
図 7は、 偏光変換素子 1 4 0の構成を示す説明図である。
図 8は、 第 1実施例における段付き反射ミラー 1 5 0の構成を示す図である。 図 9は、 段付き反射ミラー 1 5 0の機能を示す説明図である。
図 1 0は、 段付き反射ミラー 1 5 0の機能を示す説明図である。
図 1 1は、 図 9における段付き反射ミラー 1 5 0と偏光変換素子 1 4 0の部分 を拡大して示す図である。
図 1 2は、 この発明による第 2実施例の投写型表示装置 2 0 0 0およびその照 明光学系の要部を示す図である。
図 1 3は、 第 1実施例と第 3実施例のレンズアレイとを比較して示す正面図で ある。 図 1 4は、 小レンズを通過する部分光束が、 クロスダイクロイツクプリズム 2
6 0を通過する様子を示す図である。
図 1 5は、 第 1実施例と第 3実施例の偏光変換素子を比較して示す図である。 図 1 6は、 第 1実施例と第 4実施例のレンズアレイとを比較して示す正面図で ある。
図 1 7は、 投写型表示装置の要部を示す概念図である。
図 1 8は、クロスダイクロイツクプリズム 4 8の一部を分解した斜視図である。 図 1 9は、 クロスダイクロイツクプリズム 4 8を利用した場合の問題点を示す 説明図である。 発明を実施するための最良の形態
以下に、 図面を参照して本発明の各実施例について説明する。 尚、 以下の各実 施例においては、 特にことわりのない限り、 光の進行方向を z方向、 z方向から みて 3時の方向を X方向、 1 2時の方向を y方向として統一してある。
A . 第 1実施例:
図 5は、 この発明の第 1実施例としての投写型表示装置 1 0 0 0の要部を示す 概略平面図である。 この投写型表示装置 1 0 0 0は、 照明光学系 1 0 0と、 ダイ クロイツクミラー 2 1 0, 2 1 2と、 反射ミラー 2 2 0, 2 2 2 , 2 2 4と、 入 射側レンズ 2 3 0と、 リレーレンズ 2 3 2と、 3枚のフィールドレンズ 2 4 0, 2 4 2, 2 4 4と、 3枚の液晶ライ卜バルブ (液晶パネル) 2 5 0, 2 5 2, 2 5 4と、 クロスダイクロイツクプリズム 2 6 0と、 投写レンズ系 2 7 0とを備え ている。
照明光学系 1 0 0は、 ほぼ平行な光束を出射する光源 1 1 0と、 第〗のレンズ アレイ 1 2 0と、 第 2のレンズアレイ 1 3 0と、 入射光を所定の直線偏光成分に 変換する偏光変換素子 1 4 0と、 段付き反射ミラー〗 5 0と、 重畳レンズ 1 6 0 とを備えている。 照明光学系 1 0 0は、 被照明領域である 3枚の液晶ライ卜バル ブ 2 5 0, 2 5 2, 2 5 4をほぼ均一に照明するための光学系である。
光源 1 1 0は、放射状の光線を出射する放射光源としての光源ランプ 1 1 2と、 光源ランプ 1 1 2から出射された放射光をほぼ平行な光線束として出射する凹面 鏡 1 1 4とを有している。 凹面鏡〗 1 4としては、 放物面鏡を用いることが好ま しい。
図 6は、第 1と第 2のレンズアレイ 1 2 0, 1 3 0の外観を示す斜視図である。 第 1のレンズアレイ 1 2 0は略矩形状の輪郭を有する小レンズ 1 2 2が M行 N列 のマトリクス状に配列された構成を有している。 この例では、 M = 1 0, N = 8 である。 第 2のレンズアレイ 1 3 0も、 第 1のレンズアレイ 1 2 0の小レンズ 1 2 2に対応するように、 小レンズが M行 N列のマトリクス状に配列した構成を有 している。 各小レンズ 1 2 2は、 光源 1 1 0 (図 5 ) から出射された光束を複数 の (すなわち M X N個の) 部分光束に分割し、 各部分光束を第 2のレンズァレ ィ 1 3 0の近傍で集光させる。 各小レンズ 1 2 2を z方向から見た外形形状は、 液晶ライ卜バルブ 2 5 0 , 2 5 2, 2 5 4の形状と相似形をなすように設定され ている。 この実施例では、小レンズ 1 2 2のァスぺク卜比(横と縦の寸法の比率) は 4 : 3に設定されている。
第 2のレンズアレイ 1 3 0は、 各部分光束の中心光路をシステム光軸に平行に 揃える機能を有している。 光源部 1 1 0から出射される光束がシステム光軸に平 行な平行光であれば、 第 1のレンズアレイ 1 2 0の小レンズ 1 2 2から出射され る部分光束もその中心光路がシステム光軸に平行であるため、 第 2のレンズァレ ィ 1 3 0を省略することができる。 しかし、 光源 1 1 0から、 光の中心光路がシ ステ厶光軸に対してある角度をもった光が出射されると、 小レンズ 1 2 2から出 射される部分光束の中心光路もシステム光軸に平行ではない。 このような傾いた 中心光路を有する部分光束は、 本来照明すべき所定の領域、 すなわち、 液晶ライ 卜バルブ 2 5 0, 2 5 2, 2 5 4を照明することができない場合がある。 このこ とは、 投写型表示装置において、 光の利用効率を低下させることになる。 第 2の レンズアレイ 1 3 0は、 このような光の中心光路がシステム光軸に対してある角 度をもった部分光束が小レンズ 1 3 2に入射された場合に、 その中心光路をシス テム光軸に平行となるように変換し、 光の利用効率を向上させる。
図 7は、 偏光変換素子 1 4 0 (図 5 ) の構成を示す説明図である。 この偏光変 換素子 1 4 0は、 偏光ビームスプリッタアレイ 1 4 1と、 選択位相差板 1 4 2と を備えている。 偏光ビー厶スプリツ夕アレイ 1 4 1は、 それぞれ断面が平行四辺 形の柱状の複数の透光性板材 1 4 3が、交互に貼り合わされた形状を有している。 透光性板材 1 4 3の界面には、 偏光分離膜 1 4 4と反射膜 1 5とが交互に形成 されている。 なお、 この偏光ビ一ムスプリッタアレイ 1 4 1は、 偏光分離膜 1 4 4と反射膜 1 4 5が交互に配置されるように、 これらの膜が形成された複数枚の 板ガラスを貼り合わせて、所定の角度で斜めに切断することによつて作製される。 第 1と第 2のレンズアレイ 1 2 0, 1 3 0を通過したランダムな偏光方向を有 する光は、偏光分離膜 1 4 4で s偏光光と p偏光光とに分離される。 s偏光光は、 偏光分離膜 1 4 4によってほぼ垂直に反射され、 反射膜 1 4 5によってさらに垂 直に反射されてから出射される。 一方、 P偏光光は、 偏光分離膜 1 4 4をそのま ま透過する。 選択位相差板 1 4 2は、 偏光分離膜〗 4 4を通過する光の出射面部 分に λ Ζ 2位相差層 1 4 6が形成されており、 反射膜 1 4 5で反射された光の 出射面部分は 2位相差層が形成されていない光学素子である。 従って、 偏 光分離膜 1 4 4を透過した ρ偏光光は、 λ Ζ 2位相差層 1 4 6によって s偏光 光に変換されて出射する。 この結果、 偏光変換素子 1 4 0に入射したランダムな 偏光方向を有する光束は、 ほとんど s偏光光となって出射する。
なお、 図 7 (Α) から解るように、 偏光変換素子 1 4 0の一ヶ所の偏光分離膜 1 4 4から出射する s偏光光の中心の位置 (2つの s偏光光をひとまとまりの光 束とみなした場合の中心の位置) は、 入射するランダムな光束 (ミ偏光光+卩偏 光光) の中心よりも X方向にずれている。 このずれ量は、 ぇ 2位相差層1 4 6の幅 W p (すなわち偏光分離膜 1 4 4の X方向の幅) の半分に等しい。 このた め、 図 5に示すように、 光源 1 1 0の光軸 (2点鎖線で示す) は、 偏光変換素子 1 4 0以降のシステム光軸 (一点鎖線で示す) から、 W p Z 2に等しい距離 Dだ けずれた位置に設定されている。
図 5に示す投写型表示装置において、 光源 1 1 0から出射された平行光束は、 インテグレータ光学系を構成する第 1と第 2のレンズアレイ 1 2 0, 1 3 0によ つて、 複数の部分光束に分割される。 第 1のレンズアレイ 1 2 0の小レンズ 1 2 2は、 各部分光束を偏光変換素子〗 4 0の偏光分離膜 1 4 4 (図 7 ) の近傍で集 光させる。 偏光変換素子 1 4 0から出射された部分光束は、 段付き反射ミラー 1 5 0で反射される。 この段付き反射ミラー 1 5 0の構成と機能については後述す る。 重畳レンズ 1 6 0は、 これらの複数の部分光束を重畳させて、 被照明領域で ある液晶ライトバルブ 2 5 0, 2 5 2, 2 5 4に集光させる重畳光学系としての 機能を有する。 この結果、 各液晶ライ卜バルブ 2 5 0, 2 5 2 , 2 5 4は、 ほぼ 均一に照明される。
2枚のダイクロイツクミラー 2 1 0 , 2 1 2は、 重畳レンズ 1 6 0で集光され た白色光を、 赤、 緑、 青の 3色の色光に分離する色光分離手段としての機能を有 する。 第 1のダイクロイツクミラー 2 1 0は、 照明光学系 1 0 0から出射された 白色光束の赤色光成分を透過させるとともに、 青色光成分と緑色光成分とを反射 する。 第 1のダイクロイツクミラー 2 1 0を透過した赤色光は、 反射ミラー 2 2 0で反射され、 フィールドレンズ 2 4 0を通って赤光用の液晶ライ卜バルブ 2 5 0に達する。 このフィールドレンズ 2 4 0は、 偏光変換素子 1 4 0から出射され た部分光束をその中心光路に対して平行な光束に変換する機能を有する。 他の液 晶ライ卜バルブの前に設けられたフィールドレンズ 2 4 2 , 2 4 4も同様である。 第 1のダイクロイツクミラ一 2 1 0で反射された青色光と緑色光のうちで、 緑色 光は第 2のダイクロイツクミラ一 2 1 2によって反射され、 フィールドレンズ 2 4 2を通って緑光用の液晶ライ卜バルブ 2 5 2に達する。 一方、 青色光は、 第 2 のダイクロイツクミラー 2 1 2を透過し、 入射側レンズ 2 3 0、 リレーレンズ 2 3 2および反射ミラー 2 2 2, 2 2 4を備えたリレーレンズ系を通り、 さらにフ ィ一ルドレンズ (出射側レンズ) 2 4 4を通って青色光用の液晶ライ卜バルブ 2 5 4に達する。 なお、 青色光にリレーレンズ系が用いられているのは、 青色光の 光路の長さが他の色光の光路の長さよりも長いので、 光の利用効率の低下を防止 するためである。
3枚の液晶ライ卜バルブ 2 5 0 , 2 5 2, 2 5 4は、 与えられた画像情報 (画 像信号) に従って、 3色の色光をそれぞれ変調して画像を形成する光変調手段と しての機能を有する。 クロスダイクロイツクプリズム 2 6 0は、 3色の色光を合 成してカラー画像を形成する色光合成手段としての機能を有する。 なお、 クロス ダイクロイツクプリズム 2 6 0の構成は、 図 1 8および図 1 9で説明したものと 同じである。 すなわち、 クロスダイクロイツクプリズム 2 6 0には、 赤光を反射 する誘電体多層膜と、 青光を反射する誘電体多層膜とが、 4つの直角プリズムの 界面に略 X字状に形成されている。 これらの誘電体多層膜によって 3つの色光が 合成されて、 カラー画像を投写するための合成光が形成される。 クロスダイク口 イツクプリズム 2 6 0で生成された合成光は、 投写レンズ系 2 7 0の方向に出射 される。 投写レンズ系 2 7 0は、 この合成光を投写スクリーン 3 0 0上に投写し て、 カラー画像を表示する投写光学系としての機能を有する。
さて、 図 5に示す投写型表示装置 1 0 0 0は、 段付き反射ミラー 1 5 0に特徴 がある。 図 8は、 段付き反射ミラー 1 5 0の構成を示す正面図 (A) および平面 図 (B ) , ( C) である。 なお、 (B ) , ( C ) は、 (A) を側方から見た図で ある。 この段付き反射ミラー 1 5 0は、 平坦なメインミラー 1 5 2の上に、 細長 い帯状の 2つのサブミラー 1 5 4を貼りつけたものである。 2つのサブミラー 1 5 4は、 メインミラー 1 5 2の高さの中心からほぼ対称な高さに、 それぞれ水平 に貼りつけられている。 これらのミラーは、 全反射ミラ一、 または、 熱エネルギ 一を透過させるコールドミラーで構成することができる。 さらに、 熱エネルギー だけでなく、 紫外線を透過させる機能を持たせても良い。 熱エネルギーや紫外線 を透過させる機能を段付き反射ミラー 1 5 0に持たせることにより、 液晶ライト バルブ 2 5 0, 2 5 2, 2 5 4に通常設けられる偏光板等の熱や紫外線による劣 化を低減することができる。
図 9、 図 1 0は、 段付き反射ミラー 1 5 0の機能を示す説明図である。 なお、 図 1 0は、 図 9の A— A線を含む X y平面における断面図である。 図 9、 図 1 0 には、 実線と一点鎖線により 2本の中心光路が示されている。 実線はサブミラー 1 5 4で反射される光の中心光路を示し、 一点鎖線はメインミラー 1 5 2で反射 される光の中心光路を示している。 これらの図から解るように、 2本の光路は、 いずれもレンズアレイ 1 2 0, 1 3 0の同じ列方向位置 (X方向位置) に並ぶ小 レンズを通過する部分光束の中心光路を示すものであり、 その行方向位置 (y方 向位置) が異なるだけである。 図 9から解るように、 実線で示す光路は、 段付き 反射ミラー 1 5 0で反射された後に、 一点鎖線で示す光路に対して X方向にずら される。
ここで、 実線で示されるサブミラー 1 5 4で反射される光の中心光路が、 一点 鎖線で示されるメインミラ一 1 5 2で反射される光の中心光路に対して、 段付き 反射ミラ一 1 5 0によってずらされるということは、 レンズアレイ 1 2 0, 1 3 0の同じ列方向に並ぶ小レンズを通過する部分光束のうち、 サブミラ _ 1 5 4で 反射される光束と、 メインミラー 1 5 2で反射される光束とが、 反射ミラー 1 5 0により X方向にずらされるということと同じ意味である。 この結果、 これらの 部分光束は、 重畳レンズ 1 6 0の X方向の互いに異なる位置に入射するため、 液 晶ライ卜バルブ 2 5 2上を照明して通過する入射角度がそれぞれ異なることにな る。
液晶ライ卜バルブ 2 5 2上を異なる入射角度で通過した部分光束は、 液晶ライ 卜バルブ 2 5 2において変調を受けた後、 クロスダイクロイツクプリズム 2 6 0 内を通過する。 図 9から解るように、 メインミラー 1 5 2により反射された部分 光束の中心光路と、 サブミラー 1 5 4により反射された部分光束の中心光路とで は、 クロスダイクロイツクプリズム 2 6 0への入射角度、 すなわち、 クロスダイ クロイツクプリズム 2 6 0内の通過角度が異なることになり、 クロスダイクロイ ックプリズム 2 6 0の中心軸 2 6 2に対して異なる位置をそれぞれ通過する。 先 に、 第 1、 第 2の原理として述べたように、 部分光束の中心光路のクロスダイク ロイックプリズム 2 6 0内の通過角度が異なれば、 また、 クロスダイクロイツク プリズム 2 6 0の中心軸 2 6 2に対する部分光束の中心光路の位置が異なれば暗 線の形成される位置も異なることになる。 よって、 同じ列方向に並ぶ M個の小レ ンズを通過する部分光束のそれぞれにより形成される暗線が 1 ケ所に集中するこ とがなく、 暗線を目立ちにくくすることが可能となる。
図 1 1は、 図 9における段付き反射ミラー 1 5 0と偏光変換素子 1 4 0の部分 を拡大して示す図である。 偏光変換素子 1 4 0は、 入射したランダムな偏光成分 を有する光束を、 s偏光光束に変換して出射する。 偏光分離膜 1 4 4、 λ / 2 位相差層 1 4 6を経て出射される s偏光光束の中心光路と、 偏光分離膜 1 4 4、 反射膜 1 4 5を経て出射される s偏光光束の中心光路との間の距離 Lは、 偏光分 離膜 1 4 4と反射膜 1 4 5の距離 Wの 2倍である。 この距離 Lと距離 Wとの 関係は、 偏光分離膜 1 4 4と反射膜 1 4 5が光入射面に対して 4 5度傾いている ことに対応している。 また、 図から解るように、 この関係は、 実線で示す s偏光 光束の中心光路と、 一点鎖線で示す s偏光光束の中心光路とで共通である。 この実施例において、 サブミラー〗 5 4の厚さ hは、 偏光分離膜 1 4 4と反射 膜 1 4 5の距離 Wの 1 Z 2に設定されている。 段付き反射ミラー 1 5 0はシステ 厶光軸に対して 4 5度傾いているので、 この段付き反射ミラー 1 5 0で反射され た後は、 実線と一点鎖線とで示される中心光路の X方向の位置がずれ、 4つの中 心光路がそれぞれ X方向に 1_ 2の距離で等間隔に配置されることになる。 液晶ライ卜バルブ 2 5 2上を互いに異なる入射角度で通過した部分光束は、 液 晶ライ卜バルブ 2 5 2において変調を受けた後、 クロスダイクロイツクプリズム 2 6 0内を通過する。 図 9からも解るように、 段付き反射ミラー 1 5 0において 互いに位置がずらされた 4つの中心光路は、 クロスダイクロイツクプリズム 2 6 0への入射角度が異なることになリ、 クロスダイクロイツクプリズム 2 6 0の中 心軸 2 6 2に対してそれぞれ異なる位置をそれぞれ通過する。 先に、 第 1、 第 2 の原理として述べたように、 部分光束の中心光路のク口スダイクロイツクプリズ 厶 2 6 0への入射角度、 すなわち、 クロスダイクロイツクプリズム 2 6 0内の通 過角度が異なれば、 また、 クロスダイクロイツクプリズム 2 6 0の中心軸 2 6 2 に対する部分光束の中心光路の位置が異なれば暗線の形成される位置も異なるこ とになる。 よって、 同じ列方向に並ぶ M個の小レンズを通過する部分光束のそれ ぞれにより形成される暗線が 1ケ所に集中することがなく、 暗線を目立ちにくく することが可能となる。
なお、 図 9に関する説明からわかるように、 インテグレ一夕光学系を備えた照 明光学系に段付き反射ミラー 1 5 0を採用しただけでも暗線は目立たなくなるが、 これに偏光変換素子を組み合わせればさらに暗線が目立たなくなる。なぜならば、 ィンテグレータ光学系を備えた照明光学系に段付き反射ミラ一 1 5 0を採用すれ ば、 レンズアレイ 1 2 0 , 1 3 0の同じ列方向位置 (X方向位置) に並ぶ小レン ズを通過する部分光束の中心光路を 2つの異なる X方向位置にずらすことができ るため、 暗線も 2ケ所に分散されることとなる。 これに、 さらに偏光変換素子を 組み合わせれば、 レンズアレイ 1 2 0, 1 3 0の同じ列方向 (X方向位置) に並 ぶ小レンズを通過する部分光束の中心光路を 4つの異なる X方向位置にずらすこ とができるため、 暗線も 4ケ所に分散されることになるからである。
なお、 サブミラー 1 5 4の厚さ hは、 同じ列に存在する小レンズを通過する部 分光束のうち、 段付き反射ミラー 1 5 0により z方向の位置がずらされる部分光 束の中心光路と、 そうでない部分光束の中心光路との間の距離 Iが、 偏光分離膜 1 4 4、 λ Ζ 2位相差層 1 4 6を経て出射される s偏光光束の中心光路と、 偏 光分離膜 1 4 4、 反射腠 1 4 5を経て出射される s偏光光束の中心光路との間の 距離 Lと異なる値になるように設定すれば良い。 特に、 図 1 1に示すように、 I = L _ 2となるように厚さ hを設定すると、 スクリーン上に投影される暗線の分 散される位置が最も離れることになリ、 従って、 最も暗線を目立ちにくくするこ とができる。
ところで、図 8に示す 2つのサブミラー 1 5 4の高さ方向における位置と幅は、 光源 1 1 0からの光束の強度が大きい位置に対応するように決定されている。 す なわち、 レンズアレイ 1 2 0, 1 3 0の高さの中心から凹面鏡 1 1 4の焦点距離 fだけ離れた位置に存在する小レンズを通過する部分光束の光強度は、 他の高さ 位置の小レンズを通過する部分光束の光強度よりも大きい。 従って、 段付き反射 ミラー 1 5 0のサブミラー 1 5 4を、 これらの光強度の大きい部分光束が反射す る領域を通過する光の光軸をずらすことができるように設けると効果的である。 サブミラー 1 5 4の幅 (高さ方向の寸法) は、 図 8に示す例よりも大きくするよ うにしてもよい。 投写スクリーン上の暗線は、 その光量が他の部分の光量の約 9 5 %以下になると目立ちやすく、約 9 8〜 9 7 %程度以上ではあまり目立たない。 従って、 クロスダイクロイツクプリズム 2 6 0の中心軸が投影されてできる暗線 の光量が、 他の部分の光量の約 9 8 %以上になるように、 サブミラー 1 5 4の幅 を調整すればよい。
なお、 図 8に示す段付き反射ミラー 1 5 0では、 メインミラー 1 5 2とサブミ ラー 1 5 4の 2段の構成としていたが、 3段以上の多段の段付き反射ミラ一を使 用することも可能である。
B . 第 2実施例:
図 1 2は、 この発明による第 2実施例の投写型表示装置 2 0 0 0およびその照 明光学系の要部を示す図であり、 第 1実施例の図 9に相当する図である。 第 2実 施例は、 第 1実施例の段付き反射ミラー 1 5 0の代わリに通常の平坦な反射ミラ 一 1 5 6を用い、 また、 偏光変換素子 1 4 0と反射ミラ一 1 5 6との間に平板状 の透光性板材 1 5 8を設けたものである。 他の構成要素は、 第 1実施例の投写型 表示装置 1 0 0 0と同じである。 なお、 透光性板材 1 5 8は、 第 2のレンズァレ ィ 1 3 0と重畳レンズ 1 6 0との間に設ければよい。 例えば、 反射ミラー 1 5 6 と重畳レンズ 1 6 0の間に設けるようにしてもよい。
透光性板材 1 5 8は、 図 8に示す 2枚のサブミラー 1 5 4に相当する高さ位置 に、 2枚設けられている。 なお、 透光性板材 1 5 8の高さ方向の大きさは、 第 1 実施例で説明したサブミラー 1 5 4 (図 8 ) にほぼ等しい。 ところで、 クロスダ ィクロイツクプリズム 2 6 0の中心軸 2 6 2は、 図 1の紙面と垂直な方向に沿つ て伸長している。 従って、 透光性板材 1 5 8は、 クロスダイクロイツクプリズム 2 6 0の中心軸 2 6 2に相当する方向の周リに回転した位置に、 レンズァレイ 1 2 0, 1 3 0の面から傾いて設置されている。 透光性板材 1 5 8としては、 板ガ ラスや板状の光学ガラスを用いることができる。
周知のように、 平板状の透光性板材 1 5 8は、 斜めに入射した光線の光路をほ ぼ平行移動させる機能を有している。 2枚の透光性板材 1 5 8は、 2枚のサブミ ラー 1 5 4に相当する位置にそれぞれ設けられているので、 この透光性板材 1 5 8を通過する光線の光路は、図 1 2において一点鎖線で示すように平行移動する。 一方、 実線で示す光線は、 透光性板材 1 5 8を通過しないので光路が変更されて いない。
このように、 第 2実施例における段付き反射ミラー 1 5 0と、 第 1実施例にお ける透光性板材 1 5 8は、 どちらも、 レンズアレイ 1 2 0, 1 3 0の同じ列方向 位置を通過した複数の部分光束の中の一部の光路を、 他の部分光束の光路からず らす光路変更手段としての機能を有する。 また、 これらと、 重畳レンズ 1 6 0と は、 レンズアレイ 1 2 0, 1 3 0の同じ列方向位置を通過した複数の部分光束の うち、 一部の部分光束の光路のクロスダイクロイツクプリズム 2 6 0へ入射する 入射角度が、 他の部分光束の光路の入射角度と異なるようにする光路角度変更手 段としての機能を有する。 なお、 光路変更手段による光路の変更幅は、 少なくと も偏光変換素子 1 4 0で分離される 2本の直線偏光成分の間の距離と異なる値に なるように設定されている。 第 2実施例の場合には、 透光性板材 1 5 8の屈折率 と傾き角と厚みとを調整することによつて、 光路の変更幅を調整することが可能 である。
なお、 光路変更手段としては、 段付き反射ミラーや透光性板材以外のものを使 用するようにしてもよく、 複数種類の光路変更手段を組み合わせて使用すること も可能である。
C . 第 3実施例:
図 1 3は、 第 1実施例のレンズアレイ 1 2 0, 1 3 0と、 第 3実施例の投写型 表示装置 3 0 0 0に用いられるレンズアレイ 1 2 4, 1 3 4とを比較して示す正 面図である。第 3実施例は、 これらのレンズアレイ 1 2 4 , 1 3 4を用い、 また、 段付き反射ミラー 1 5 0の代わりに通常の平坦な反射ミラ一を用いている。 第 3 実施例の投写型表示装置 3 0 0 0は、 これらの点と、 後述する偏光変換素子の変 更点以外は、 第 1実施例の投写型表示装置 1 0 0 0と同じ構成を有している。 図 1 3 ( B ) に示すように、 第 3実施例のレンズアレイ 1 2 4, 1 3 4は、 1 0行の小レンズの中で、 4行目と 7行目の小レンズを他の行から左右にずらした ものである。 すなわち、 4行目の小レンズは他の行からずれ量 dだけ右にずれて おり、 7行目の小レンズは、 逆に、 他の行からずれ量 dだけ左にずれている。
4行目と 7行目は、 レンズアレイの高さ方向の中心から、 凹面鏡 1 1 4の焦点 距離 fだけ離れた位置にそれぞれ存在する。 前述したように、 この高さ位置を通 過する部分光束は、他の高さ位置を通過する部分光束よりも強度が高い。従って、 これらの行の小レンズを左右にずらすことによって、 これらの小レンズを通過す る部分光束が、 クロスダイクロイツクプリズム 2 6 0を通過する時の角度を変更 することができる。 この様子を図 1 4を用いて説明する。 図 1 4においては、 説 明をわかりやすくするために本実施例の投写型表示装置 3 0 0 0の構成要素 (後 述する偏光変換素子 1 4 8等) の一部を省略してある。 また、 図 1 4には、 第 2 のレンズアレイ 1 3 4のうち、 3行目と 4行目の部分のみが図示されている。 こ の図から解るように、 これらの小レンズを通過する部分光束の、 クロスダイク口 イツクプリズム 2 6 0内を通過する時の角度はずれており、 暗線 D L d, D L e が異なる位置に形成されている。 この結果、 投写スクリーン 3 0 0上の暗線形成 を分散させて目立ちにくくすることができる。 なお、 この結果は先に述べた第 2 の原理に基づくものである。
4 ラ目と 7 ラ目の小レンズのずれ量 dは、 小レンズの幅 Pの約 1 3に設定す ることが好ましい。 こうすれば、 4行目の小レンズと、 7行目の小レンズも互い に左右にずれた位置に配置され、 さらに投写スクリーンの暗線形成位置を分散さ せて、 目立ちにくくすることができるからである。
図 1 5は、 第 1実施例に使用される偏光変換素子 1 4 0と、 第 3実施例に使用 される偏光変換素子とを比較して示す図である。 図 1 5 (A) は、 第 1実施例に おける第 2のレンズアレイ 1 3 0と偏光変換素子 1 4 0の平面図、 図 1 5 ( B ) は第 1実施例の偏光変換素子 1 4 0の正面図である。 これから解るように、 偏光 変換素子 1 4 0の偏光ビームスプリッタアレイ 1 4 1と選択位相差板 1 4 2は、 それらの構成要素 (透光性板材ゃ λ Ζ 2位相差板) が、 正面から見て垂直方向 に伸長する向きに配置されている。
図 1 3 ( Β )に示すレンズアレイ 1 2 4, 1 3 4を用いる場合には、図 1 5 ( C ) または図 1 5 ( D) に示すような偏光変換素子を使用する。 図 1 5 ( C ) に示す 偏光変換素子 1 4 8は、 レンズアレイ 1 2 4, 1 3 4のずれた行に対応する位置 において、 そのずれ量 dと同じだけ偏光ビームスプリッタアレイと選択位相差板 とをずらせた構成を有している。一方、 図 4 ( D ) に示す偏光変換素子 1 4 9は、 偏光ビームスプリッタアレイと選択位相差板が、 正面から見て水平方向に伸長す る向きに構成されている。 図 4 ( D) のように、 水平方向に伸長する向きに配置 すれば、 レンズァレイの行のずれ量 dが変わつても同じ偏光変換素子を用いるこ とができるという利点がある。 但し、 こうするためには、 図 4 ( D ) の偏光変換 素子の横幅を十分に大きく設定しておく必要がある。
D . 第 4実施例:
図 1 6は、 第 1実施例のレンズアレイ 1 2 0, 1 3 0と、 第 4実施例に用いら れるレンズアレイ 1 2 6 , 1 3 6とを比較して示す正面図である。第 4実施例は、 これらのレンズアレイ 1 2 6, 1 3 6を用いる点と、 これに対応した偏光変換素 子を用いる点以外は、 第 3実施例と同じ構成を有している。 なお、 偏光変換素子 としては、 図 1 5に示す第 3実施例と同様なものを使用できるので、 その説明は 省略する。
図 1 6 ( B ) に示すように、 第 4実施例のレンズアレイ 1 2 6 , 1 3 6は、 小 レンズの各行が順次少しずつずれている。 すなわち、 1, 4, 7, 1 0行目は等 しい位置に配置されており、 同様に、 2, 5, 8行目と、 3, 6, 9行目も、 そ れぞれ等しい位置に配置されている。 1行目を基準にすれば、 2, 5, 8行目は、 1行目からずれ量 dだけ右にずれた位置にある。 また、 3 , 6, 9行目は、 これ とは反対に、 1行目からずれ量 dだけ左にずれた位置にある。
ずれ量 dは、 小レンズの幅 Pの約 1 / 3に設定することが好ましい。 こうすれ ば、 1 0行のうちの 2 Z 5の行が互いに垂直方向 (すなわち列方向) に重なるだ けである。 上述したように、 列方向の同じ位置に並ぶ複数の小レンズは、 投写ス クリーン上において同じ位置にクロスダイクロイツクプリズム 2 6 0の中心軸を 投影して暗線を形成する。 従って、 同じ列方向位置に重なるレンズアレイの行数 が、 その総数の約 2 Z 5以下になるようにレンズァレイの行を左右にずらすこと によって、投写スクリーン 3 0 0上の暗線を目立ちにくくすることが可能である。 なお、 ずれ量 dの値は、 小レンズの幅 Pの約 1 4に設定することがもっと好 ましい。一般には、小レンズの幅 Pの約 1 3〜約 1 Z 5の範囲のずれ量 dだけ、 各行を相互に左右にずらすようにすることが好ましい。 以上の第 3および第 4実施例のように、 2枚のレンズァレイと偏光変換素子に 種々の工夫を施すことによって、 クロスダイクロイツクプリズム 2 6 0の中心軸 が投写スクリーン 3 0 0上に投影されて形成される暗線を目立ちにくくすること が可能である。 なお、 暗線を目立ちにくくする発明は、 上記の実施例や実施形態に限られるも のではなく、 その要旨を逸脱しない範囲において種々の態様において実施するこ とが可能である。
すなわち、 投写型表示装置は、 照明光を出射する照明光学系と、 3色の光を与 えられた画像信号に基づいてそれぞれ変調する 3組の光変調手段と、 X字状に配 置された 2種類のダイクロイック膜を備え、 前記ダイクロイック膜が互いに交差 する位置に相当する中心軸を有し、 前記 3組の光変調手段により変調された 3色 の光を合成して同一方向に出射する色光合成手段と、 色光合成手段によリ合成さ れた光を投写面上に投写する投写手段と、 を備え、 少なくとも色光合成手段の中 心軸に相当する所定の方向にほぼ沿って分割された少なくとも一列の複数の部分 光束を発生するとともに、 光変調手段上で複数の部分光束をほぼ重畳する分割重 畳光学系を、 備えている。 そして、 この分割重畳光学系は、 一列の複数の部分光 束のうち一部の部分光束によつて、 色光合成手段の中心軸が投写面上に投写され る位置が、 他の部分光束によって投写される位置から、 色光合成手段の中心軸に 相当する方向とは異なる方向にずれるように構成されていればよい。 これによれ ば、 一列の複数の部分光束のうち一部の部分光束は、 色光合成手段の中心軸を投 写面上の異なった位置に投影して暗線を形成するので、 投写される画像に形成さ れる暗線を目立ちにくくすることが可能である。
また、 上記各実施例では、 偏光変換素子を用いて〗つの直線偏光成分に変換し ていたが、 偏光変換素子を省略することも可能である。 この場合にも、 上述した 各実施例において、 投写スクリーン上に形成される暗線を目立たなくする効果は ほぼ同様に達成される。
また、 上記各実施例では、 透過型の投写型表示装置に本発明を適用した場合の 例について説明したが本発明は、 反射型の投写型表示装置にも適用することが可 能である。 ここで、 「透過型」 とは、 液晶ライ卜バルブ等の光変調手段が光を透 過するタイプであることを意味しており、 「反射型」 とは、 光変調手段が光を透 過するタイプであることを意味している。 反射型の投写型表示装置では、 クロス ダイクロイツクプリズムは、 白色光を赤、 緑、 青の 3色の光に分離する色光分離 手段として利用されると共に、 変調された 3色の光を再度合成して同一の方向に 出射する色光合成手段としても利用される。 反射型の投写型表示装置にこの発明 を適用した場合にも、 透過型の投写型表示装置とほぼ同様な効果を得ることがで さる。 産業上の利用可能性
この発明にかかる照明光学系は、 種々の投写型表示装置に適用可能である。 ま た、 この発明による投写型表示装置は、 例えばコンピュータから出力された画像 やビデオレコーダから出力された画像をスクリーン上に投写して表示するために 適用可能である。

Claims

請求の範囲
1 . 照明光を出射する照明光学系と、
前記照明光を 3色の光に分離する色光分離手段と、
前記 3色の光を与えられた画像信号に基づいてそれぞれ変調する 3組の光変調 手段と、
X字状に配置された 2種類のダイクロイック膜を備え、 前記ダイクロイツク膜 が互いに交差する位置に相当する中心軸を有し、 前記 3組の光変調手段によリ変 調された 3色の光を合成して同一方向に出射する色光合成手段と、
前記色光合成手段により合成された光を投写面上に投写する投写手段とを備え る投写型表示装置であって、
前記照明光学系は、
前記色光合成手段の前記中心軸とほぼ平行な列方向、 および、 前記色光合成手 段の前記中心軸とほぼ垂直な行方向に分割された複数の部分光束を発生するとと もに、 前記複数の部分光束を重畳する分割重畳光学系を備え、
前記分割重畳光学系は、
同じ列方向に存在する前記複数の部分光束のうち一部の部分光束によつて前記 中心軸が前記投写面上に投写される位置が、 他の部分光束によって投写される位 置から前記中心軸に相当する方向とは異なる方向にずれるように構成されている ことを特徴とする、 投写型表示装置。
2 . 請求項 1記載の投写型表示装置であって、
前記分割重畳光学系は、
前記複数の部分光束を発生させる光束分割手段と、
同じ列方向に存在する前記部分光束のうち、 一部の部分光束を、 他の部分光束 と異なる入射角度で前記色光合成手段に入射させる入射角度変更手段を備えてい ることを特徴とする、 投写型表示装置。
3 . 請求項 2記載の投写型表示装置であつて、
前記光束分割手段は前記列方向および前記行方向に配列された複数の小レンズ を備えた少なくとも 1枚のレンズアレイを備え、
前記入射角度変更手段は反射面に段差を有する段付き反射ミラーを備える、 投
4 . 請求項 2記載の投写型表示装置であつて、
前記光束分割手段は前記列方向および前記行方向に配列された複数の小レンズ を備えた少なくとも 1枚のレンズアレイを備え、
前記入射角度変更手段は前記レンズァレイの面に対して傾 t、て配置された透光 性板材を備える、 投写型表示装置。
5 . 照明光を出射する照明光学系と、
前記照明光を、 3色の光に分離する色光分離手段と、
前記 3色の光を与えられた画像信号に基づいてそれぞれ変調する 3組の光変調 手段と、
X字状に配置された 2種類のダイクロイツク膜を備え、 前記ダイクロイツク膜 が互いに交差する位置に相当する中心軸を有し、 前記 3組の光変調手段により変 調された 3色の光を合成して同一方向に出射する色光合成手段と、
前記色光合成手段により合成された光を投写面上に投写する投写する投写手段 と、 を備える投写型表示装置であって、
前記照明光学系は、
光源から出射される光束を複数の部分光束に分割する複数の小レンズを有する 第 1のレンズアレイと、 前記第 1のレンズアレイの前記複数の小レンズにそれぞれ対応する複数の小レ ンズを有する第 2のレンズァレイと、
前記色光合成手段の前記中心軸に相当する所定の方向に沿って配列されている 前記複数の小レンズを通過する複数の部分光束のうち、 一部の部分光束の光路を 他の部分光束の光路からずらす光路変更手段と、
を備えることを特徴とする投写型表示装置。
6 . 請求項 5記載の投写型表示装置であって、
前記光路変更手段は、 前記所定の方向に沿って、 前記光源の光軸から一定の距 離だけそれぞれ離れた位置を通過する部分光束の光路を、 他の位置を通過する部 分光束の光路からずらす手段を備える、 投写型表示装置。
7 . 請求項 6記載の投写型表示装置であつて、
前記光源は、 光源ランプと、 前記光源ランプから出射される光を反射する凹面 鏡とを備え、
前記一定の距離は、 前記凹面鏡の焦点距離にほぼ等しい、 投写型表示装置。
8 . 請求項 5記載の投写型表示装置であつて、
前記光路変更手段は、 反射面に段差を有する段付き反射ミラーを備える、 投写
9 . 請求項 8記載の投写型表示装置であつて、
前記段付き反射ミラーの段部は、 前記所定の方向とは垂直な方向に沿って設け られている、 投写型表示装置。
1 0 . 請求項 8記載の投写型表示装置であって、 前記段付き反射ミラーは、 互いに高さの異なる第 1の反射面と第 2の反射面と を有し、 前記色光合成手段の前記中心軸に相当する前記所定の方向に沿って前記 光源の光軸から一定の距離だけそれぞれ離れた 2つの位置に前記第 2の反射面が それぞれ設けられている、 投写型表示装置。
1 1 . 請求項 5記載の投写型表示装置であって、
前記光路変更手段は、 前記第 2のレンズァレイの面から傾いて配置された透光 性板材を備える、 投写型表示装置。
1 2 . 請求項 5ないし請求項 1 1のいずれか記載の投写型表示装置であって、 前記照明光学系は、 さらに、
前記第 2のレンズァレイと前記光路変更手段の間のいずれかの位置に設けられ た偏光変換素子を備え、
前記偏光変換素子は、 互いに平行な偏光分離膜と反射膜の複数の組を有し、 前 記第 2のレンズァレイの複数の小レンズを通過した複数の部分光束をそれぞれ 2 種類の直線偏光成分に分離する偏光ビームスプリッタアレイと、
前記偏光ビームスプリッタアレイで分離された前記 2種類の直線偏光成分の偏 光方向を揃える偏光変換手段と、 を備え、
前記光路変更手段によって、 前記色光合成手段の前記中心軸に相当する所定の 方向に沿って配列されている前記複数の小レンズを通過し、 前記偏光ビー厶スプ リッタアレイで分離された前記 2種類の直線偏光成分の光路の一部が他の光路か らずらされる、 投写型表示装置。
1 3 . 請求項 1 2記載の投写型表示装置であって、
前記 2種類の直線偏光成分の光路の一部が前記光路変更手段によつて他の光路 からずらされる量は、 前記 2種類の直線偏光成分の隣接する光路間の距離の約 1 2である、 投写型表示装置。
1 4 .請求項 5ないし請求項 1 3のいずれかに記載の投写型表示装置であって、 さらに、
前記第 1と第 2のレンズアレイを順次通過した複数の部分光束を重畳させて前 記 3組の光変調手段を照明する重畳光学系を備え、
前記光路変更手段は、 前記第 2のレンズァレイと前記重畳光学系との間に設け られている、 投写型表示装置。
1 5 . 照明光を出射する照明光学系と、
前記照明光を、 3色の光に分離する色光分離手段と、
前記 3色の光を与えられた画像信号に基づいてそれぞれ変調する 3組の光変調 手段と、
X字状に配置された 2種類のダイクロイツク膜を備え、 前記ダイクロイツク膜 が互いに交差する位置に相当する中心軸を有し、 前記 3組の光変調手段により変 調された 3色の光を合成して同一方向に出射する色光合成手段と、
前記色光合成手段により合成された光を投写面上に投写する投写する投写手段 と、 を備える投写型表示装置であって、
前記照明光学系は、
光源から出射される光束を複数の部分光束に分割する複数の小レンズを有する 第 1のレンズアレイと、
前記第 1のレンズアレイの前記複数の小レンズにそれぞれ対応する複数の小レ ンズを有する第 2のレンズアレイと、 を備え、
前記第 1と第 2のレンズアレイのそれぞれは、
前記色光合成手段の前記中心軸に相当する方向と垂直な行方向に沿って、 それ ぞれ複数の小レンズを有する複数の行に分割されており、 前記色光合成手段の前 記中心軸に相当する方向に沿って、 前記光源の光軸から一定の距離だけそれぞれ 離れた位置に存在する行が、 他の行から一定のずれ量だけずれた位置に配置され ていることを特徴とする、 投写型表示装置。
1 6 . 請求項 1 5記載の投写型表示装置であって、
前記光源は、 光源ランプと、 前記光源ランプから出射される光を反射する凹面 鏡とを備え、
前記一定の距離は、 前記凹面鏡の焦点距離にほぼ等しい、 投写型表示装置。
1 7 . 照明光を出射する照明光学系と、
前記照明光を、 3色の光に分離する色光分離手段と、
前記 3色の光を与えられた画像信号に基づいてそれぞれ変調する 3組の光変調 手段と、
X字状に配置された 2種類のダイクロイツク膜を備え、 前記ダイクロイツク膜 が互いに交差する位置に相当する中心軸を有し、 前記 3組の光変調手段によリ変 調された 3色の光を合成して同一方向に出射する色光合成手段と、
前記色光合成手段により合成された光を投写面上に投写する投写する投写手段 と、 を備える投写型表示装置であって、
前記照明光学系は、
光源から出射される光束を複数の部分光束に分割する複数の小レンズを有する 第 1のレンズアレイと、
前記第 1のレンズアレイの前記複数の小レンズにそれぞれ対応する複数の小レ ンズを有する第 2のレンズアレイと、 を備え、
前記第 1と第 2のレンズアレイのそれぞれは、
前記色光合成手段の前記中心軸に相当する方向と垂直な行方向に沿って、 それ ぞれ複数の小レンズを有する複数の行に分割されており、 前記複数の行の少なく とも一部の行が他の行からずれた位置に配置されて、 行方向と垂直な方向に見た ときに前記小レンズが互いに等し t、位置に配列されて t、る行の数が、 前記複数の 行の総数の 2 5以下に設定されていることを特徴とする、 投写型表示装置。
1 8 . 請求項 1 7記載の投写型表示装置であって、
前記第 1と第 2のレンズアレイの前記複数の行が、 一定のずれ量だけ順次互い にずれた配置を有する、 投写型表示装置。
1 9 . 照明光を、 3色の光に分離する色光分離手段と、
前記 3色の光を与えられた画像信号に基づいてそれぞれ変調する 3組の光変調 手段と、
X字状に配置された 2種類のダイクロイック膜を備え、 前記ダイクロイツク膜 が互いに交差する位置に相当する中心軸を有し、 前記 3組の光変調手段により変 調された 3色の光を合成して同一方向に出射する色光合成手段と、
前記色光合成手段によリ合成された光を投写面上に投写する投写する投写手段 とを備える投写型表示装置に使用され、 前記照明光を出射する照明光学系であつ て、
前記色光合成手段の前記中心軸とほぼ平行な列方向、 および、 前記色光合成手 段の前記中心軸とほぼ垂直な行方向に分割された複数の部分光束を発生するとと もに、 前記複数の部分光束を重畳する分割重畳光学系を備え、
前記分割重畳光学系は、
同じ列方向に存在する前記複数の部分光束のうち一部の部分光束によつて前記 中心軸が前記投写面上に投写される位置が、 他の部分光束によつて投写される位 置から前記中心軸に相当する方向とは異なる方向にずれるように構成されている ことを特徴とする照明光学系。
2 0 . 請求項 1 9記載の照明光学系であって、
前記分割重畳光学系は、
前記複数の部分光束を発生させる光束分割手段と、
同じ列方向に存在する前記部分光束のうち、 一部の部分光束を、 他の部分光束 と異なる入射角度で前記色光合成手段に入射させる入射角度変更手段を備えてい ることを特徴とする照明光学系。
2 1 . 請求項 2 0記載の照明光学系であって、
前記光束分割手段は前記列方向および前記行方向に配列された複数の小レンズ を備えた少なくとも 1枚のレンズアレイを備え、
前記入射角度変更手段は反射面に段差を有する段付き反射ミラーを備える、 照 明光学系。
2 2 . 請求項 2 0記載の照明光学系であって、
前記光束分割手段は前記列方向および前記行方向に配列された複数の小レンズ を備えた少なくとも 1枚のレンズアレイを備え、
前記入射角度変更手段は前記レンズァレイの面に対して傾いて配置された透光 性板材を備える、 照明光学系。
2 3 . 照明光を出射する照明光学系であって、
光源から出射される光束を複数の部分光束に分割する複数の小レンズを有する 第 1のレンズアレイと、
前記第 1のレンズアレイの前記複数の小レンズにそれぞれ対応する複数の小レ ンズを有する第 2のレンズァレイと、
所定の方向に沿って配列されている前記複数の小レンズを通過する複数の部分 光束のうち、 一部の部分光束の光路を他の部分光束の光路からずらす光路変更手 段と、
を備えることを特徴とする照明光学系。
2 4 . 請求項 2 3記載の照明光学系であって、
前記光路変更手段は、 前記所定の方向に沿って前記光源の光軸から一定の距離 だけそれぞれ離れた位置を通過する部分光束の光路を、 他の位置を通過する部分 光束の光路からずらす手段を備える、 照明光学系。
2 5 . 請求項 2 4記載の照明光学系であつて、
前記光源は、 光源ランプと、 前記光源ランプから出射される光を反射する凹面 鏡とを備え、
前記一定の距離は、 前記凹面鏡の焦点距離にほぼ等しい、 照明光学系。
2 6 . 請求項 2 3記載の照明光学系であつて、
前記光路変更手段は、 反射面に段差を有する段付き反射ミラーを備える、 照明 光学系。
2 7 . 請求項 2 6記載の照明光学系であって、
前記段付き反射ミラーの段部は、 前記所定の方向とは垂直な方向に沿って設け られている、 照明光学系。
2 8 . 請求項 2 6記載の照明光学系であつて、
前記段付き反射ミラーは、 互いに高さの異なる第 1の反射面と第 2の反射面と を有し、 前記色光合成手段の前記中心軸に相当する前記所定の方向に沿って前記 光源の光軸から一定の距離だけそれぞれ離れた 2つの位置に前記第 2の反射面が それぞれ設けられている、 照明光学系。
2 9 . 請求項 2 3記載の照明光学系であって、
前記光路変更手段は、 前記第 2のレンズァレイの面から傾いて配置された透光 性板材を備える、 照明光学系。
3 0 . 請求項 2 3ないし請求項 2 9のいずれかに記載の照明光学系であって、 さらに、
前記第 2のレンズァレイと前記光路変更手段の間のいずれかの位置に設けられ た偏光変換素子を備え、
前記偏光変換素子は、 互いに平行な複数組の偏光分離膜と反射膜を有し、 前記 第 2のレンズァレイの複数の小レンズを通過した複数の部分光束をそれぞれ 2種 類の直線偏光成分に分離する偏光ビームスプリッタアレイと、
前記偏光ビームスプリッタアレイで分離された前記 2種類の直線偏光成分の偏 光方向を揃える偏光変換手段と、 を備え、
前記光路変更手段によって、 前記所定の方向に沿って配置される前記複数の小 レンズを通過し、 前記偏光ビームスプリッタアレイで分離された前記 2種類の直 線偏光成分の光路の一部が他の光路からずらされる、 照明光学系。
3 1 . 請求項 3 0記載の照明光学系であって、
前記 2種類の直線偏光成分の光路の一部が前記光路変更手段によつて他の光路 からずらされる量は、 前記 2種類の直線偏光成分の隣接する光路間の距離の約 1 2である、 照明光学系。
3 2 . 請求項 2 3ないし請求項 3 1のいずれかに記載の照明光学系であって、 さらに、
前記第 1と第 2のレンズァレイを順次通過した複数の部分光束を重畳させて前 記 3組の光変調手段を照明する重畳光学系を備え、
前記光路変更手段は、 前記第 2のレンズァレイと前記重畳光学系との間に設け られている、 照明光学系。
3 3 . 照明光を出射する照明光学系であって、
光源から出射される光束を複数の部分光束に分割する複数の小レンズを有する 第 1のレンズアレイと、
前記第 1のレンズァレイの前記複数の小レンズにそれぞれ対応する複数の小レ ンズを有する第 2のレンズァレイとを有し、
前記第 1と第 2のレンズアレイのそれぞれは、
所定の方向と垂直な行方向に沿ってそれぞれ複数の小レンズを有する複数の行 に分割されており、 前記所定の方向に沿って、 前記光源の光軸から一定の距離だ けそれぞれ離れた位置に存在する行が、 他の行から一定のずれ量だけずれた位置 に配置されていることを特徴とする、 照明光学系。
3 4 . 請求項 3 3記載の照明光学系であって、
前記光源は、 光源ランプと、 前記光源ランプから出射される光を反射する凹面 鏡とを備え、
前記一定の距離は、 前記凹面鏡の焦点距離にほぼ等しい、 照明光学系。
3 5 . 照明光を出射する照明光学系であって、
光源から出射される光束を複数の部分光束に分割する複数の小レンズを有する 第 1のレンズアレイと、
前記第 1のレンズアレイの前記複数の小レンズにそれぞれ対応する複数の小レ ンズを有する第 2のレンズアレイとを備え、
前記第 1と第 2のレンズアレイのそれぞれは、 所定の方向とは垂直な行方向に沿って、 それぞれ複数の小レンズを有する複数 の行に分割されており、 前記複数の行の少なくとも一部の行が他の行からずれた 位置に配置されて、 行方向と垂直な方向に見たときに前記小レンズが互いに等し い位置に配列されている行の数が、 前記複数の行の総数の 2 5以下に設定され ていることを特徴とする、 照明光学系。
3 6 . 請求項 3 5記載の照明光学系であつて、
前記第 1と第 2のレンズアレイの前記複数の行が、 一定のずれ量だけ順次互い にずれた配置を有する、 照明光学系。
PCT/JP1997/003900 1996-10-30 1997-10-27 Ecran de projection et son systeme d'eclairage optique WO1998019211A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP52028498A JP3879125B2 (ja) 1996-10-30 1997-10-27 投写型表示装置およびそのための照明光学系
DE69737091T DE69737091T2 (de) 1996-10-30 1997-10-27 Projektionsbildschirm und optisches beleuchtungssystem dafür
EP97909650A EP0889351B1 (en) 1996-10-30 1997-10-27 Projection display and illuminating optical system therefor
US09/091,830 US6109751A (en) 1996-10-30 1997-10-27 Projector and lighting optical system therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/305734 1996-10-30
JP30573496 1996-10-30
JP9/93003 1997-03-26
JP9300397 1997-03-26

Publications (1)

Publication Number Publication Date
WO1998019211A1 true WO1998019211A1 (fr) 1998-05-07

Family

ID=26434384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003900 WO1998019211A1 (fr) 1996-10-30 1997-10-27 Ecran de projection et son systeme d'eclairage optique

Country Status (8)

Country Link
US (1) US6109751A (ja)
EP (3) EP1645905B1 (ja)
JP (1) JP3879125B2 (ja)
KR (1) KR100395149B1 (ja)
CN (1) CN100413347C (ja)
DE (3) DE69738383T2 (ja)
TW (1) TW434444B (ja)
WO (1) WO1998019211A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259494A (ja) * 2007-06-07 2007-10-04 Casio Comput Co Ltd 画像データ処理装置、画像データ処理方法及びプログラム
JP2009025512A (ja) * 2007-07-19 2009-02-05 Sanyo Electric Co Ltd 照明装置、投写型映像表示装置およびフライアイレンズ

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3959878B2 (ja) 1998-04-08 2007-08-15 セイコーエプソン株式会社 光選択プリズムの製造方法
US6618202B2 (en) * 2001-05-29 2003-09-09 Aurora Systems, Inc. Projection system with an offset lens array to reduce vertical banding
JP2003142759A (ja) * 2001-11-06 2003-05-16 Toshiba Corp ファイバレーザ装置およびそれを用いた映像表示装置
US7841728B2 (en) 2005-10-20 2010-11-30 Seiko Epson Corporation Image display apparatus
JP2011221303A (ja) * 2010-04-09 2011-11-04 Sanyo Electric Co Ltd 投写型映像表示装置及び光変調素子
JP5772143B2 (ja) * 2011-03-28 2015-09-02 ソニー株式会社 照明装置、投射型表示装置および直視型表示装置
CN102508402B (zh) * 2011-11-23 2014-05-21 苏州佳世达光电有限公司 投影装置
US20150237334A1 (en) * 2012-09-27 2015-08-20 Sharp Kabushiki Kaisha Stereoscopic display device
JP6236975B2 (ja) * 2013-08-09 2017-11-29 セイコーエプソン株式会社 プロジェクター
JP6277816B2 (ja) 2014-03-26 2018-02-14 セイコーエプソン株式会社 プロジェクター
CN106168333B (zh) * 2015-05-20 2020-11-06 日亚化学工业株式会社 发光装置
CN105511087B (zh) * 2016-01-13 2017-09-22 晋煤激光科技股份有限公司 基于复眼透镜的激光显示匀场整形装置
CN108594432B (zh) * 2018-04-02 2021-05-28 东莞广辰光电科技有限公司 一种使用三原色光源的高效率抬头显示器照明系统
CN108895313A (zh) * 2018-08-01 2018-11-27 苏州汇影光学技术有限公司 一种阵列式紫外led平行光源

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371342U (ja) * 1989-11-15 1991-07-18
EP0646828A1 (en) * 1993-03-16 1995-04-05 Seiko Epson Corporation Projection type display device
JPH09113994A (ja) * 1995-10-18 1997-05-02 Sanyo Electric Co Ltd 液晶プロジェクタ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2326970A (en) * 1939-05-25 1943-08-17 Rantsch Kurt Illuminating system, particularly for projection purposes
US4850685A (en) * 1984-10-22 1989-07-25 Seiko Epson Corporation Projection-type color display device
JPS6430385A (en) * 1987-07-27 1989-02-01 Nec Corp Demagnetizing circuit
JPH068985B2 (ja) * 1988-05-31 1994-02-02 松下電器産業株式会社 投写型表示装置
JP2791668B2 (ja) * 1988-08-31 1998-08-27 旭光学工業株式会社 微小画素列による画像光学系の画素間マスクのコントラスト低下装置
NL8901077A (nl) * 1989-04-28 1990-11-16 Koninkl Philips Electronics Nv Optische belichtingsstelsel en projectie-apparaat voorzien van een dergelijk stelsel.
JPH0371342A (ja) * 1989-08-11 1991-03-27 Nec Corp 予約語判定方式
JPH04212104A (ja) * 1990-07-06 1992-08-03 Hitachi Ltd 非吸収型偏光素子、該素子の製法および該素子を用いた表示装置
JP2605470B2 (ja) * 1990-09-17 1997-04-30 日本電気株式会社 背面投射型液晶表示装置
JPH04253044A (ja) * 1990-12-27 1992-09-08 Sanyo Electric Co Ltd 液晶プロジェクタ
JP2830534B2 (ja) * 1991-09-18 1998-12-02 日本電気株式会社 偏光変換素子
JP2973750B2 (ja) * 1992-03-31 1999-11-08 松下電器産業株式会社 照明光学装置とそれを用いた投写型表示装置
US5510861A (en) * 1993-05-11 1996-04-23 Proxima Corporation Compact projector and method of using same
WO1995033227A1 (en) * 1994-05-26 1995-12-07 Philips Electronics N.V. Image projection device
EP1063554B1 (en) * 1994-12-28 2004-03-03 Seiko Epson Corporation Polarization luminaire and projector using it
JPH08234205A (ja) * 1994-12-28 1996-09-13 Seiko Epson Corp 偏光照明装置および投写型表示装置
US5786939A (en) * 1996-02-26 1998-07-28 Fuji Photo Optical Co., Ltd. Illumination optical system
US5826959A (en) * 1996-05-09 1998-10-27 Pioneer Electronic Corporation Projection image display apparatus
US5971546A (en) * 1996-06-15 1999-10-26 Lg Electronics Inc. Image display device
JP3473335B2 (ja) * 1996-08-19 2003-12-02 セイコーエプソン株式会社 投写型表示装置
JPH10170869A (ja) * 1996-12-06 1998-06-26 Seiko Epson Corp 偏光照明装置および投写型表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0371342U (ja) * 1989-11-15 1991-07-18
EP0646828A1 (en) * 1993-03-16 1995-04-05 Seiko Epson Corporation Projection type display device
JPH09113994A (ja) * 1995-10-18 1997-05-02 Sanyo Electric Co Ltd 液晶プロジェクタ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0889351A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007259494A (ja) * 2007-06-07 2007-10-04 Casio Comput Co Ltd 画像データ処理装置、画像データ処理方法及びプログラム
JP4497177B2 (ja) * 2007-06-07 2010-07-07 カシオ計算機株式会社 画像データ処理装置、画像データ処理方法及びプログラム
JP2009025512A (ja) * 2007-07-19 2009-02-05 Sanyo Electric Co Ltd 照明装置、投写型映像表示装置およびフライアイレンズ

Also Published As

Publication number Publication date
DE69738383T2 (de) 2008-11-13
TW434444B (en) 2001-05-16
EP1670262A1 (en) 2006-06-14
EP0889351A1 (en) 1999-01-07
JP3879125B2 (ja) 2007-02-07
US6109751A (en) 2000-08-29
KR100395149B1 (ko) 2003-12-01
CN100413347C (zh) 2008-08-20
CN1212060A (zh) 1999-03-24
EP1670262B1 (en) 2007-12-12
DE69738440D1 (de) 2008-02-14
EP1645905B1 (en) 2008-01-02
DE69738383D1 (de) 2008-01-24
EP1645905A1 (en) 2006-04-12
DE69738440T2 (de) 2008-12-11
DE69737091T2 (de) 2007-07-12
KR19990076892A (ko) 1999-10-25
EP0889351A4 (en) 2002-04-17
DE69737091D1 (de) 2007-01-25
EP0889351B1 (en) 2006-12-13

Similar Documents

Publication Publication Date Title
EP1772766B1 (en) Illumination system and projection display apparatus
JPH11183848A (ja) 偏光照明装置および投写型表示装置
JP3891178B2 (ja) 照明光学系およびプロジェクタ
WO1998019211A1 (fr) Ecran de projection et son systeme d'eclairage optique
US6860607B2 (en) Integrator type illumination optical system and projector having the same
JPWO2020137749A1 (ja) 光源装置および投写型映像表示装置
JP2000194068A (ja) 照明光学系および投写型表示装置
USRE38225E1 (en) Projection display and illuminating optical system for it
US6491397B2 (en) Illumination optical system and projector using the same
US6987618B2 (en) Polarization converting device, illumination optical system and projector
US20100177287A1 (en) Illumination apparatus and projector having the same
JP3632436B2 (ja) 照明光学系、およびこれを用いた投写型表示装置
US11543743B2 (en) Light source apparatus and projector
JP2000121997A (ja) 投写型表示装置
JP3733691B2 (ja) 照明光学系、およびこれを用いた投写型表示装置
JP3646525B2 (ja) 照明光学系、及びこれを用いた投写型表示装置
JP3582292B2 (ja) 照明光学系、およびこれを用いた投写型表示装置
JP4066992B2 (ja) 照明光学系および投写型表示装置
JP2003241145A (ja) 照明光学系およびプロジェクタ
JPH11183898A (ja) 投写型表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97192404.X

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 09091830

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019980705019

Country of ref document: KR

WR Later publication of a revised version of an international search report
WWE Wipo information: entry into national phase

Ref document number: 1997909650

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997909650

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980705019

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980705019

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997909650

Country of ref document: EP