WO1998003693A1 - Element decoratif a base de titane et procede de durcissement dudit element - Google Patents

Element decoratif a base de titane et procede de durcissement dudit element Download PDF

Info

Publication number
WO1998003693A1
WO1998003693A1 PCT/JP1997/002513 JP9702513W WO9803693A1 WO 1998003693 A1 WO1998003693 A1 WO 1998003693A1 JP 9702513 W JP9702513 W JP 9702513W WO 9803693 A1 WO9803693 A1 WO 9803693A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
atmosphere
curing
treatment
temperature
Prior art date
Application number
PCT/JP1997/002513
Other languages
English (en)
French (fr)
Inventor
Masahiro Sato
Yoshitugu Sibuya
Junji Sato
Original Assignee
Citizen Watch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co., Ltd. filed Critical Citizen Watch Co., Ltd.
Priority to JP50679798A priority Critical patent/JP3225263B2/ja
Priority to EP97930850A priority patent/EP0931848B1/en
Priority to DE69731101T priority patent/DE69731101T2/de
Priority to US09/230,131 priority patent/US6451129B2/en
Priority to BR9710379A priority patent/BR9710379A/pt
Priority to AU34629/97A priority patent/AU3462997A/en
Publication of WO1998003693A1 publication Critical patent/WO1998003693A1/ja
Priority to HK00101668A priority patent/HK1026926A1/xx

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/34Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in more than one step
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]

Definitions

  • the present invention relates to a titanium decorative member whose surface and inside are hardened, and a method of hardening the titanium decorative member.
  • titanium and titanium alloys have been used in various fields, taking advantage of their features of being light, not selling, and not causing metal allergy. Above all, the above features are very effective as a watch material, and have been applied in the past.
  • titanium and titanium alloys have the disadvantage that the surface is easily damaged due to problems inherent to the material. In particular, when considering a mirror surface, which is a surface with an aesthetic appearance, scratches on the surface are likely to be conspicuous. Therefore, in the past, a sand-plast treatment or the like was performed to make the scratches inconspicuous. This gave the general public the impression that decorative members made of titanium and titanium alloy had a dark surface.
  • the phenomenon of being easily scratched is due to the low surface hardness of the member, and various hardening treatments have been performed on titanium.
  • the surface hardening treatment of titanium is roughly classified into a method of coating a hard film on the surface of the titanium member and a method of hardening the titanium member itself.
  • ion implantation, ion nitriding, gas nitriding, gas carburizing, gas nitrocarburizing, etc. are known as methods for hardening a metal member itself such as titanium.
  • the processing temperature is high, and the crystal grains are coarsened, the surface is roughened, and the appearance quality is inferior.
  • hardening treatment is applied to the aesthetic surface of decorative members such as watches, eyeglasses, and jewelry while maintaining the surface condition before processing without causing surface roughness.
  • the method of curing the titanium member itself does not cause a film peeling problem because the diffusion element inside the metal member has a gradient concentration from the surface.
  • the force ⁇ considered to be useful as a treatment method and the appearance quality is degraded due to the surface roughness.
  • the problem of deterioration of the appearance quality is considered to be caused by surface roughness due to the prominence at the grain boundary, especially in the initial stage.
  • the bulges at the grain boundaries that occur during gas nitriding and oxynitriding are phenomena such as compound formation at the grain boundaries or stress concentration at the grain boundaries caused by lattice distortion due to solid solution diffusion of nitrogen and oxygen.
  • the maximum height R max and the average surface roughness Ra increase, and the appearance quality deteriorates.
  • the height of the bumps at the grain boundaries is caused by the size of the crystal grains of the titanium member itself before the treatment.
  • the height of the bumps grew in the plane direction after the treatment of the titanium hardened member. It was found that the higher the size of the crystal grains or the crystal grains before the treatment, the higher the size.
  • the method of hardening the titanium member itself such as gas nitriding, carburizing, oxidizing, or oxynitriding in the conventional method can solve the problem of deterioration of appearance quality after hardening, that is, surface roughness as described above. Did not.
  • An object of the present invention is to solve the problems or problems of the prior art described above and to provide a hardened titanium member capable of reducing surface roughness without deterioration in appearance quality even after a hardening treatment. Disclosure of the invention
  • a titanium cured member and a method for curing a titanium member of the present invention basically employ the following structure and method.
  • a titanium decorative member 2 having a hardened layer 20 hardened on the surface of the titanium member 21, wherein the hardened layer 20 on the surface contains an element consisting of nitrogen and oxygen, and the titanium decorative member 2
  • the titanium decorative member 2 is characterized in that the size of the crystal grains 24 on the surface (diameter indicated by 26 in FIG. 1) is 0.1 to 60 m.
  • a step of heating and heating the titanium member in an inert gas atmosphere, and a treatment temperature of 700 ° C. or more in an atmosphere containing nitrogen and oxygen as the first atmosphere a step of heating and heating the titanium member in an inert gas atmosphere, and a treatment temperature of 700 ° C. or more in an atmosphere containing nitrogen and oxygen as the first atmosphere.
  • the first curing process step where the temperature is high, and the atmosphere of inert gas such as argon, helium, etc.
  • a method for hardening a titanium member comprising a second atmosphere adjusting step of ripening to a processing temperature of 700 ° C. or more with air and a step of cooling in an inert gas atmosphere. is there.
  • fine crystals of 0.1 to 60 m are formed on the surface of the titanium-containing member 2.
  • a protective film having particles 24 a step of heating and heating the titanium member in an inert gas atmosphere, and a step of heating the titanium member in an atmosphere containing nitrogen and oxygen as the first atmosphere.
  • a method for curing a titanium-cured member obtained by curing a titanium member comprising a step of cooling in a gas atmosphere.
  • Another embodiment of the method for curing a titanium-cured member according to the present invention includes a surface Curing method for titanium decorative component with cured layer Forming a protective film having crystal grains of 0.1 to 60 / m on the surface of the titanium decorative member, heating the titanium member in an inert gas atmosphere, and heating nitrogen and oxygen.
  • This is a method for curing a titanium cured member obtained by curing a titanium member, which comprises a second atmosphere adjustment treatment step and a step of cooling in an inert gas atmosphere.
  • the titanium cured member obtained by the method for curing a titanium decorative member of the present invention has a crystal grain size of 0.1 to 60 m after the treatment, or a protective film having fine crystal grains.
  • the formation step enables the appearance quality to be maintained even after the curing treatment, that is, the surface roughness to be reduced.
  • the problem of the deterioration of the appearance quality in the present invention is caused by surface roughness due to the bulging at the crystal grain boundary part 22 particularly in the initial stage.
  • the bulge at the grain boundary 22 generated during gas nitriding, oxynitriding, etc. is caused by compound formation at the grain boundary or by lattice distortion caused by lattice distortion due to solid solution diffusion of nitrogen and oxygen. It was thought to arise from phenomena such as stress concentration.
  • the height of the bump increases, the maximum height R max and the average surface roughness Ra increase, and the appearance quality deteriorates.
  • the height of the protrusions is increased as the size of the crystal grains of the titanium decorative member itself increases, due to the size of the crystal grains of the titanium decorative member itself before the treatment. .
  • the height of the bumps increases as the size of the crystal grains of titanium and the titanium alloy itself before the treatment increases. When macroscopically observed, it was found that the surface seemed to be rough, the appearance quality was degraded, and it could not be applied particularly to mirror-surface decorative members.
  • TiN titanium nitride
  • a titanium member with a surface crystal grain size of 0.1 to 60 m or less is subjected to a heat treatment controlled at a temperature and time in an atmosphere containing nitrogen and oxygen. Due to the effect of small crystal grains on the surface and the effect of nitrogen and oxygen dissolved in the crystal grain boundaries to suppress the coarsening of the crystal grains, the surface grows in the 0.1 to 60 m plane direction.
  • the hardening treatment can be performed while maintaining the crystal grains in this condition.
  • the height of the protrusion at the crystal grain boundary at this time becomes low. That is, the strain stress at the crystal grain boundary generated from the lattice distortion due to the solid solution diffusion of nitrogen and oxygen is dispersed due to an effect such as an increase in the area of the crystal grain boundary occupying a unit area. This phenomenon reduces the surface roughness and makes it possible to suppress the deterioration of appearance quality when observed macroscopically.
  • a protective film having fine crystal grains of 0.1 to 60 m is formed on the surface of the titanium decorative member, heat treatment is performed in a nitrogen or oxygen atmosphere.
  • the effect of the fine structure before heat treatment and the effect of nitrogen and oxygen suppressing the coarsening of the crystal grains are to maintain the surface as crystal grains grown in the 0.1 to 60 m plane direction.
  • FIG. 1 is a three-dimensional view showing a titanium hardened member after a hardened layer is formed in an embodiment of the present invention.
  • FIG. 2 is a schematic view showing a processing apparatus for forming a hardened layer on a hardened titanium member according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing a process for forming a hardened layer on a hardened titanium member according to the embodiment of the present invention.
  • FIG. 4 (A) shows the size of crystal grains when a hardened layer is formed at a processing temperature of 700 ° C. for a titanium member having small crystal grains in the embodiment of the present invention.
  • 4 (B) is a graph showing the measurement results of the surface roughness.
  • FIG. 5 (A) shows the crystal grain size when a hardened layer is formed at a processing temperature of 700 ° C. for a titanium member having a large crystal grain in the embodiment of the present invention.
  • FIG. (B) is a graph showing the measurement results of the surface roughness.
  • FIGS. 6 (A) to 6 (C) show thin film X-ray diffraction data of the titanium decorative member according to the present invention and the conventional titanium cured member.
  • FIGS. (A) and (B) of FIG. 7 are views showing an example of a case where a protective film is formed on a titanium cured member according to the present invention and then a curing treatment method is performed.
  • FIG. 8 is a view showing an example of the shape of a titanium decorative member having a protective film before the curing treatment method according to the present invention can be executed.
  • a first aspect according to the present invention is a titanium cured member having a cured layer obtained by curing the surface of a titanium member as described above, wherein the cured layer on the surface contains an element consisting of nitrogen and oxygen.
  • a titanium decorative member characterized by having a crystal grain size of 0.1 to 60 m.
  • the surface roughness R max is A titanium decorative member having a surface of 100 nm or less.
  • FIG. 1 is a three-dimensionally enlarged view of a titanium hardened member having a hardened layer formed by a hardening treatment according to the embodiment of the present invention
  • FIG. 2 hardens the surface of the titanium hardened member of the present invention.
  • FIG. 3 is a schematic view showing a process for forming a hardened layer on the hardened titanium member in the embodiment of the present invention.
  • the curing treatment device used in the present invention includes a heating power supply i 4 in a vacuum treatment tank 6 having a gas inlet 8 and a sample outlet 18.
  • a device capable of heating the surface of the titanium decorative member 2 placed on the sample stage 4 by the heating means 12 to which energy is supplied can be used.
  • a vacuum exhaust device 16 and a gas exhaust port 10 are provided to enable the vacuum exhaust in the vacuum processing tank 6 so that the curing process can be performed in a reduced pressure atmosphere.
  • JIS type 2 pure titanium (equivalent to grade 2 of ASTM) having a shape of 25 mm X 25 mm was used as the titanium hardened member.
  • the treated surface was polished, and the surface roughness was 50 nm or less in maximum height R max value.
  • Untreated crystal grains have a polycrystalline structure with a size of 10 to 30 m.
  • FIG. 3 is a conceptual diagram showing the steps of the curing treatment method of the present invention.
  • the evacuation step 2 8 the inside of the processing vessel 6 is evacuated by the vacuum exhaust device 1 6, 1 X 1 0 - was [delta] 1 orr following reduced pressure atmosphere.
  • a certain amount of inert gas such as argon and helium was introduced from the gas inlet 8, and the amount of introduced gas and the amount of exhaust gas were adjusted to make the inside of the processing tank 6 an inert atmosphere under a reduced pressure of 0.1 torr. .
  • the titanium decorative member 2 was heated by the heating means 12, and the temperature was raised to a curing treatment temperature of 700 ° C.
  • pure nitrogen and a mixed gas containing a small amount of water vapor in nitrogen are introduced from the gas inlet 8, and the amount of introduced gas and the amount of exhaust gas are adjusted to about 0.it 0 rr Of nitrogen and a small amount of water vapor.
  • the ratio of water vapor to nitrogen was about 400 ppm. Then, the temperature was maintained for about 3 hours while keeping the curing temperature constant. After that, the inside of the processing tank was again kept under the reduced pressure of the inert gas atmosphere, and was maintained for about 0.1 “) for the second atmosphere adjustment processing step.
  • the treated surface was polished, and the surface roughness was 50 nm or less in maximum height R max value.
  • the size of untreated grains is less than 5 m.
  • a vacuum evacuation step 28 the inside of the treatment tank was evacuated by a vacuum evacuation device 16 to a reduced pressure atmosphere of i X 10 15 t 0 rr or less.
  • a certain amount of inert gas such as argon and helium was introduced from the gas inlet 8, and the amount of introduced gas and the amount of exhaust gas were adjusted to make the inside of the processing tank 6 an inert atmosphere under a reduced pressure of 0.1 torr. .
  • the titanium decorative member 2 was heated by the heating means 12, and the temperature was raised to a curing treatment temperature of 700 ° C.
  • the first curing step 32 pure nitrogen and a mixed gas containing a small amount of oxygen in nitrogen are introduced from the gas inlet 8, and the amount of introduced gas and the amount of exhaust gas are adjusted to about 0.1 torr.
  • the atmosphere was nitrogen and a small amount of oxygen.
  • the ratio of oxygen to nitrogen was about 500 ppm. Then, the temperature was kept for about 3 hours while keeping the curing temperature constant. Thereafter, the inside of the treatment tank was again set to an inert gas atmosphere under reduced pressure, and was maintained for about 0.5 hour to perform a second atmosphere adjustment treatment step. Then, cooling was performed while maintaining the inert atmosphere, and when the temperature of the surface of the titanium decorative member reached a temperature at which it did not oxidize, the treatment was completed and the sample was taken out.
  • the remaining amount was 4.5 wt% A1-3 w ⁇ % V-2 wt% Mo of 25 mm X 25 mm in shape.
  • the processing tank 6 is evacuated by the evacuation device 16 to reduce the pressure to 1 X 10—'t 0 r 1- Atmosphere.
  • a fixed amount of an inert gas such as argon or helium was introduced from the gas inlet 8, and the amount of the introduced gas and the amount of exhaust gas were adjusted to make the inside of the processing tank 6 an inert atmosphere under a reduced pressure of 0.1 torr.
  • the titanium decorative member 2 was heated by the heating means 2 to raise the temperature to a curing treatment temperature of 700 ° C.
  • pure nitrogen and pure nitrogen are A mixed gas containing a small amount of water vapor was introduced, and the amount of introduced gas and the amount of exhaust gas were adjusted to create an atmosphere of about 0.1 torr-nitrogen and a small amount of water vapor.
  • the ratio of water vapor to nitrogen was about 400 ppm.
  • the temperature was kept for about 3 hours while the curing temperature was kept constant. Thereafter, the inside of the treatment tank was again set to an inert gas atmosphere under reduced pressure, and was maintained for about 0.5 hour to perform a second atmosphere adjustment treatment step. Then, cooling was performed while maintaining the inert atmosphere, and when the temperature of the surface of the titanium decorative member reached a temperature at which it did not oxidize, the treatment was completed and the sample was taken out.
  • the hardening treatment method of the titanium decorative member used in the present invention will be described in more detail,
  • the temperature raising step 30 for making the atmosphere inert to titanium is performed by polishing the titanium.
  • the purpose is to recrystallize the work strain layer generated when working into a member.
  • the strained layer remains crystallographically close to the amorphous phase, with the stress during polishing remaining as a lattice strain. Therefore, if a gas containing nitrogen and oxygen is directly introduced into the polished titanium member and subjected to hardening treatment, the processed strain layer has a high reactivity between oxygen and nitrogen, and the surface of the strained member is nitrided as a coloring substance. And oxides are formed.
  • the temperature raising step before the first curing step in the present invention needs to be performed in an inert atmosphere.
  • a mixed gas obtained by adding a trace amount of oxygen component to nitrogen is introduced into the treatment apparatus, and the treatment pressure is reduced to 0. It is characterized in that processing is performed in a mixed gas atmosphere adjusted within the range of 0.001 to 10 T rr.
  • the second atmosphere adjusting treatment step 34 in the above-mentioned curing treatment method indicates a step for completely removing the nitrogen and oxygen component gases introduced into the treatment apparatus from the inside of the apparatus.
  • the nitrogen or oxygen component in the first curing step is performed. If the remaining gas remains, the diffusion into the titanium member is slow due to the low ambient temperature, and nitride or oxide is formed on the surface of the titanium member. As described above, these compounds cause problems of surface roughness and deterioration of appearance quality, and are not in a preferable state as a titanium decorative member.
  • cooling step 36 in the present invention is a step for rapidly cooling the glass member to room temperature and taking it out of the processing apparatus.
  • the cooling step if the same gas atmosphere as in the hardening step is used, nitrogen and oxygen are supplied while cooling, so that diffusion of nitrogen and oxygen from the surface of the titanium member is slowed down, and the surface is colored. To form nitrides and oxides. In order to prevent the formation of these coloring substances, the atmosphere in the cooling step needs to be an atmosphere inert to the titanium member.
  • the reason why the titanium decorative member according to the present invention can exhibit many excellent characteristics as described above as compared with a conventional metal hardened member is that the titanium decorative member constituting the titanium decorative member is used. This is considered to be due to maintaining a state of solid solution with oxygen at an appropriate ratio.
  • FIGS. 6 (A), (B) and (C) show the titanium hardened member before the hardening method according to the present invention, the titanium hardened member after the hardening method according to the present invention and the conventional technology.
  • the results of thin film X-ray diffraction analysis of each of the titanium hardened members at an incident angle of 0.5 ° are shown.
  • the titanium-hardened member according to the conventional technique has a peak clearly different from that of the titanium member before hardening shown in FIG. 6 (A). Is recognized.
  • the peaks of the titanium-hardened member of the present invention were all found at substantially the same positions as compared with the titanium member, and the titanium-hardened member of the present invention exhibited a higher level of the hardening treatment. The peak value is slightly shifted to the lower angle side of the titanium hardened member before the method.
  • a titanium alloy composed of 25 mm X 25 mm 3 wt% A] -2.5 wt% V and the balance Ti was used as the titanium hardened member.
  • the treated surface was polished, and the surface roughness was 50 nm in maximum height Rmax value. Untreated grains have a fine structure of 5 m or less.
  • the inside of the treatment tank 6 is evacuated by the evacuation apparatus 16 to a reduced pressure atmosphere of 1 ⁇ 1 (T 5 torr or less.
  • a certain amount of an inert gas such as argon and helium was introduced from the inlet 8, and the amount of the introduced gas and the amount of exhaust gas were adjusted to make the inside of the processing tank 6 an inert atmosphere under a reduced pressure of 0.1 t0 rr.
  • the titanium decorative member 2 was heated by the heating means 12, and the temperature was raised to a curing treatment temperature of 700 ° C.
  • a mixed gas of pure nitrogen and nitrogen containing a small amount of water vapor is introduced from the gas inlet 8, and the amount of introduced gas and the amount of exhaust gas are adjusted.
  • the ratio of water vapor to nitrogen was about 400 ppm.
  • the temperature was kept for about 3 hours while keeping the curing temperature constant. Thereafter, the inside of the treatment tank was again set to an inert gas atmosphere under reduced pressure, and was maintained for about 0.5 hour to perform a second atmosphere adjustment treatment step. Then, cooling was performed while maintaining the inert atmosphere.
  • the temperature of the surface of the titanium decorative member reached a temperature at which the surface did not oxidize, the treatment was completed and the sample was taken out.
  • Table 1 is a table in which the evaluation results of the specific examples of the present invention and the evaluation results of the implementation of the prior art are compared, and the evaluation methods include a scratch resistance test (sand removal test), a hardness, a size of crystal grains, Pass / fail judgment was made based on the following criteria for the evaluation in which the surface roughness was used and the titanium bulk material was processed as it was without forming a protective film.
  • a scratch resistance test sand removal test
  • a hardness a size of crystal grains
  • Pass / fail judgment was made based on the following criteria for the evaluation in which the surface roughness was used and the titanium bulk material was processed as it was without forming a protective film.
  • the scratch resistance test was passed when the degree of occurrence of surface scratches was 50% or less as observed by an optical microscope at a magnification of 400 times after the sand removal test.
  • the hardness was determined to be acceptable by a Vickers hardness tester for those having a Pickers hardness of HV 600 or more at a depth of 5 m from the cured surface.
  • the size of the crystal grains is determined by observing the surface with an electron microscope and an optical microscope.If the size of the crystal grains on the surface is in the range of 0.1 to 60 m, the size is small, and the size is 60 ⁇ ⁇ or more. Was large.
  • a surface shape analysis in the range of 500 m was performed, and a sample having a maximum height Rmax of 100 nm or less was judged to be acceptable.
  • the overall evaluation results were acceptable for those that passed the scratch resistance test and hardness, and had a maximum height of 100 nm or less.
  • Table 1 shows that before the hardening treatment, using pure JIS type 2 (equivalent to ASTM grade 2) pure titanium, whose average size of the crystal grains in the horizontal direction of the surface is about 15 m and about 80 m, Scratch resistance test, surface hardness, surface roughness, average of crystal grains after performing the curing treatment of the present invention at a temperature of 50 ° C. to 900 ° C. and after performing the curing treatment according to the conventional technology. It is the table
  • a and i in Table 1 are evaluation results before processing, b and j in Table 1 are evaluation results at a processing temperature of 650 ° C, and c and k in Table 1 are processing temperatures at 700 ° C.
  • D, 1 are the evaluation results at the processing temperature of 750
  • e and m are the evaluation results at the processing temperature of 800
  • f and n are 85 (the evaluation results at the processing temperature of TC.
  • G, 0 are the evaluation results at the processing temperature of 850 ° C
  • h, p are the evaluation results by the conventional gas nitriding (850 ° C, 10 hours).
  • the surface roughness due to the implementation of the conventional technology is the maximum height R max and untreated JIS type 2 (corresponding to ASTM grade 2). On the other hand, it is as large as 150 nm, and the surface is rough. On the other hand, from a and d in Table 1, it can be seen that the surface roughness according to the embodiment of the present invention is [00] nm or less at the maximum height, which is lower than the conventional technology.
  • the size of the crystal grains is coarsened to 80 to 200 m in the conventional technology
  • the size of pure titanium before the practice of the present invention is 10 to 30 m by the practice of the present invention. It is now possible to maintain the same size.
  • the maximum height was as large as about 100 nm even at a processing temperature of 65 ° C., because the crystal grains at the initial stage were large.
  • the maximum height further increased at a processing temperature of 700 ° C. or higher.
  • the maximum height of the surface roughness is correlated with the prominence of the grain boundary in the above description. The effect of small It is thought that.
  • Table 2 shows that pure titanium equivalent to JIS class 4 (equivalent to grade 4 of ASTM) with a crystal grain size of 10 m or less, Ti-4.5 wt% A 1-3 wt% V -Titanium alloy of 2 wt% Mo and Ti-3 wt% A 1-2.5 Titanium alloy of 2.5 wt% V 5 is a table showing a scratch resistance test, a surface hardness, a surface roughness, and a size of a crystal grain after performing the curing treatment of the present invention in three hours and after performing the curing treatment according to the conventional technique.
  • the surface roughness is not increased in the initial stage, i.e., to reduce the crystal grains before the treatment, and within the temperature and time range where the crystal grains on the treated surface are not coarsened.
  • Treatment and selecting a treatment step in which the timing of gas introduction is controlled by temperature and time such as the practice of the present invention, which does not cause the compound to form thickly on the surface.
  • the fact that the crystal grains grown in the plane direction of the treated surface are not coarsened is a factor that prevents the maximum height of the surface roughness from being extremely increased.
  • Table 3 shows the results obtained by performing the curing treatment according to the method of the present invention using various gases in comparison with the conventional example.
  • gas species N 2 0, NO, may be used oxynitride gases N 0 2, and the like.
  • the treated surface is described as a polished mirror surface, but is not particularly limited, and the surface is relatively rough, such as a polished surface, a honed surface subjected to honing, a shot peened surface, and a hair-lined surface. Any of the faces can be applied.
  • an inert gas atmosphere such as argon or helium is used in the temperature increasing step, the second atmosphere adjusting step and the cooling step.
  • a gas containing nitrogen and oxygen as described above is introduced, a compound is formed on the surface, and the surface is roughened or discolored. Any atmosphere that does not affect these gases may be used. The atmosphere may be.
  • the first curing treatment step was performed for 3 hours and the treatment temperature was set at 700 ° C., but there is no particular limitation, and it is important that This is to treat the crystal grains grown in the plane direction of the treated surface within a temperature and time range that does not cause coarsening, and to set the time and temperature conditions so as to satisfy the required hardness and scratch resistance.
  • a long-time treatment and an increase in the treatment temperature affect the coarsening of crystal grains, so that any treatment may be performed as long as the treatment is performed within 10 hours.
  • the treatment is preferably performed at a very low temperature due to the problem of surface roughness, but any temperature may be used as long as the temperature is 700 ° C. or more and a ⁇ transformation point or less.
  • this concentration if it is water vapor, it may be in the range of 300 ppm to 300 ppm, and if it is oxygen, it is in the range of 300 ppm to 2000 ppm. Any concentration can be applied within the range. What is important is that if these gases are supplied in an excessive amount, the surface will be discolored by oxides, and if the amount is too small, the amount of oxygen will be insufficient. Applicable to
  • the processing pressure in all the steps is set to 0. ⁇ torr, and the described force ⁇ , without any particular limitation, is arbitrary from 0.001 to 10 t0 rr. Applicable at pressures of What is important is that, as with the treatment concentration, if the pressure is too low, the absolute amount of the diffusing element will be insufficient, and if the pressure is too high, compounds will be formed on the surface.
  • the description is made on the assumption that the time of the second atmosphere control treatment step is 0.5 hour.
  • the atmosphere before entering the cooling step becomes inactive. Any time is fine.
  • Example 5 Another specific example of a curing treatment method for manufacturing a titanium decorative member according to the present invention will be described as Example 5 with reference to the drawings.
  • the curing treatment method for a titanium decorative member having a cured layer whose surface is cured Forming a protective film having 0.1 to 60 m crystal grains on the surface of the titanium decoration member, heating the titanium member in an inert gas atmosphere, and heating the titanium member in an atmosphere containing nitrogen and oxygen.
  • FIG. 8 is a three-dimensional view showing the untreated titanium decorative member, and the three-dimensional view showing the titanium decorative member after the curing treatment is shown in FIG. 1 as already described.
  • the feature of this specific example is that the surface of the hardened titanium member has a fine structure in advance.
  • the cured layer is formed after the formation of the protective film, and the outline of the curing treatment method is shown in FIGS. 7 (A) and 7 (B).
  • the titanium decorative member two types of pure titanium of JIS having a shape of 25 mm ⁇ 25 mm were used as the titanium decorative member.
  • the treated surface was polished, and the surface roughness was less than 50 nm in maximum height Rmax value.
  • the size of the untreated crystal grains is a uniform structure having a size almost equal to 50 to 100 / m.
  • the forming method was selected from the vapor deposition method, the sputtering method, the plasma CVD method, and the DC sputtering method according to the type of the protective film.
  • the Ti film was selected as the protective film and the RF sputtering method was selected as the formation method
  • a high-purity pure titanium / silver type was used for the RF target, and the introduced gas was ultra-high. Pure argon gas was used.
  • the pure titanium sample was placed facing the RF target in the RF sputtering device.
  • a method of actively cooling with water was adopted so that the surface temperature of the pure titanium sample at the time of film formation was 0 to 50 ° C.
  • the temperature of the surface reaches 50 ° C or higher, it is affected by the crystal grains of the pure titanium sample itself, that is, the base itself. That is, a crystal grain having a fine structure of about 0.1 to 60 m cannot be obtained, but a crystal grain of 60 m or more.
  • the inside of the treatment tank 6 is evacuated by the evacuation device 16 and a reduced pressure atmosphere of 1 X 10-5 t0 rr or less is obtained. It was an atmosphere.
  • a fixed amount of an inert gas such as argon or helium was introduced from the gas inlet 8, and the amount of the introduced gas and the amount of exhaust gas were adjusted to make the inside of the processing tank 6 an inert atmosphere under a reduced pressure of 0.1 torr.
  • the temperature raising step 30 the titanium member 2 with the protective film was heated by the heating means 12 to raise the temperature to a curing treatment temperature of 700 ° C.
  • a mixed gas of pure nitrogen and oxygen was introduced from the gas inlet 8, and the amount of introduced gas and the amount of exhaust were adjusted to an atmosphere of 0.1 to 1-r of nitrogen and a small amount of oxygen.
  • the ratio of oxygen to nitrogen was set at about 500 ppm.
  • the temperature was kept for about 3 hours while keeping the curing temperature constant.
  • the inside of the treatment tank was again set to an inert gas atmosphere under reduced pressure, and was maintained for about 0.5 hour to perform a second atmosphere adjustment treatment step.
  • cooling was performed while maintaining the inert atmosphere.
  • a protective film having crystal grains of 0.1 to 60 m is formed on the surface of a JIS type 2 pure titanium sample by a sputtering apparatus or the like. Then, a hardened layer is formed by heat treatment in a nitrogen atmosphere using a vacuum heat treatment furnace.
  • Table 4 is a table comparing the evaluation results by the implementation of the present invention with the evaluation results by the implementation of the conventional technology.
  • the surface roughness, the Vickers hardness, and the size of the crystal grains were adopted.
  • the maximum height was measured by a surface roughness tester, the Vickers hardness was measured by a microhardness tester, and the size of crystal grains was measured by surface observation with an electron microscope.
  • the evaluation result of the sample on which the protective film was formed was 300 mm or less at the maximum height, and the sample having a surface hardness of 1200 or more was accepted.
  • a in Table 4 is an untreated JIS Class 2 pure titanium sample
  • B in Table 1 is an evaluation result by performing a conventional technique
  • C is an implementation of the present invention in which a hardened layer was formed after forming a protective film.
  • the practice of the present invention has made it possible to reduce the size to 20 to 50.
  • the maximum height corresponds to the elevation of the grain boundary in the description above, and the reason why the maximum height of the present invention is low is an effect due to the small crystal grains of the present invention. it is conceivable that.
  • titanium pure members of JIS 2 types as titanium decorative members.
  • present invention is also applicable to JIS Class 1 pure titanium members, JIS Class 3 pure titanium members, and titanium alloy members containing titanium base.
  • the surface to be treated here is not particularly limited, and any surface having a relatively rough surface such as a polished surface, a honed surface subjected to honing treatment, a shot peened surface, a hairline surface, etc. is applied. It is possible.
  • the protective film is formed by a vapor deposition method, a sputtering method, a plasma CVD method, or a sputtering DC method depending on the type of the protective film.
  • the present invention can be applied to the T i ⁇ 2 film and the T i N film.
  • the description has been made using a nitrogen gas as a gas for forming a hardened layer, but the present invention is also applicable to an oxynitriding gas such as NO 2 , NO, or N 2 .
  • an oxynitriding gas such as NO 2 , NO, or N 2 .
  • this specific example includes a step of forming a protective film having crystal grains of 0.1 to 60 m on the surface of the titanium decorative member, and a step of heating and heating the titanium member in an inert gas atmosphere.
  • JIS class 2 pure titanium having a shape of 25 mm X 25 mm was used as the titanium decorative member.
  • the treated surface was polished, and the surface roughness was less than 50 nm in maximum height R max value.
  • the size of the untreated crystal grains is a uniform structure of approximately equal size of 60 to 100 m.
  • An RF sputtering device was used to form a Ti film as a protective film.
  • High-purity pure titanium evening target was used for the RF target, and ultra-high-purity argon gas was used as the gas to be introduced.
  • the sample was placed so as to face the RF sunset in the RF sputtering apparatus.
  • the control of the surface temperature of the pure titanium sample is important in order to form a fine film having a fine structure of 1 to 50 / m.
  • a method of actively cooling with water was adopted so that the surface temperature of the pure titanium sample during film formation was 0 to 50 ° C.
  • the temperature of the surface reaches 50 ° C or more, it is affected by the crystal grains of the pure titanium sample itself, that is, the base itself. That is, crystal grains having a fine structure of about 0.1 to 60 / m cannot be obtained, and crystal grains having a size of 60 m or more are obtained.
  • the inside of the processing tank 6 is evacuated by the evacuation device 16;
  • the atmosphere was reduced in pressure.
  • a fixed amount of inert gas such as argon or helium was introduced from the gas inlet 8 and the amount of introduced gas and the amount of exhaust gas were adjusted to make the inside of the processing tank 6 an inert atmosphere under reduced pressure of 0.1 t0 rr. .
  • the temperature raising step 30 the titanium member 2 with the protective film was heated by the heating means 12 to raise the temperature to a curing treatment temperature of 700 ° C.
  • the first curing treatment step 32 pure nitrogen and a mixed gas containing a small amount of water vapor in nitrogen are introduced from the gas inlet 8, and the amount of introduced gas and the amount of exhaust gas are adjusted to 0.1 t0 rr.
  • the atmosphere was nitrogen and a small amount of water vapor.
  • the ratio of water vapor to nitrogen was about 400 ppm.
  • the temperature was kept for about 3 hours while keeping the curing temperature constant.
  • the inside of the processing tank was again set to an inert gas atmosphere under reduced pressure and maintained for about 0.5 hour to perform a second atmosphere adjustment processing step. Then, cooling was performed while maintaining the inert atmosphere, and when the temperature of the surface of the titanium decorative member reached a temperature at which it did not oxidize, the treatment was completed and the sample was taken out.
  • a step of forming a protective film having fine crystal grains of 0.2 to 60 m on the surface of the titanium decorative member, and under reduced pressure By heating the titanium decorative member in an atmosphere containing nitrogen and oxygen, a step of forming a hardened layer was performed, thereby enabling hardening treatment while keeping the surface roughness small. As a result, even after the hardening treatment of the titanium member itself, the appearance quality is not degraded and the titanium member can be applied particularly to decorative members.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Adornments (AREA)

Description

明 細 書 チタン装飾部材及びその硬化処理方法 技術分野
本発明は、 表面及び内部が硬化処理されたチタン装飾部材及びその硬化処理方 法に関するものである。 背景枝術
近年、 チタン及びチタン合金は軽い、 銷びない、 メタルアレルギーを起こさな いといった特徴を利用して、 様々な分野に用いられている。 中でも上記の特徴は 時計材料と しても非常に有効であることから、 従来から応用展開が図られてきた。 その一方で材質固有の問題から、 チタン及びチタン合金は表面が傷つきやすい という欠点を有している。 特に美観を伴うような面である鏡面等を考えた場合、 表面に付いた傷が目立ちやすいという問題点から、 従来はサン ドプラス 卜処理等 を行い、 傷を目立ちにく く していた。 そのため、 一般の人々にはチタン、 チタン 合金を用いた装飾部材は、 表面が暗い、 という印象を与えていた。
傷が付きやすいという現象は、 部材が持つ表面硬度の低さに由来するものであ り、 チタンに対する各種の硬化処理がこれまで行われてきた。
チタンの表面硬化処理には、 大きく分けてチタン部材表面に硬質膜を被 する 方法とチタン部材自体を硬化する方法がある。
チ夕ン部材表面に硬 K膜を被覆する方法と しては電気メ ツキに代表されるゥェ ッ トプロセスと真空蒸着、 イオンプレーティ ング、 スパッタ リ ング、 プラズマ C V Dなどに代表される ドライプロセスが公知であるが、 いずれも部材との密着性 に難があり膜剥離問題に対しては完全に解決するまでには至っていない。
一方、 チタンの様な金属部材自体を硬化する方法と しては、 イオン注入、 ィォ ン窒化、 ガス窒化、 ガス浸炭、 ガス軟窒化などが知られているが、 処理時間が長 く生産性に問題があり、 また処理温度が高いために、 結晶粒が粗大化し、 表面荒 れを生じ、 外観品質が劣るという問題があり、 使用範囲が限定されていた。 この結果、 時計、 眼鏡、 宝飾などに代表される装飾部材の美観を伴うような表 面に対し、 表面荒れを生じさせずに処理前の表面状態を維持したままで硬化処理 をするようなことはできなかった。
上述の方法の中で、 チタン部材自体を硬化する方法は、 金属部材内部の拡散元 素が表面から傾斜的な濃度を有するという点から膜剥離問題を生じることがない よって、 チタン部材の表面硬化処理方法と して有用であると考えられている力 <、 表面荒れに起因する外観品質の劣化の問題がある。
イオン窒化技術の中で、 表面荒れを小さ くするために、 イオンスパッ夕効果を 減少させるということは行われてきているが、 根本的に部材自体に窒素や炭素や 酸素が入ることによって生じる表面荒れを低減化するということは行われていな かった。 よって、 ガス窒化、 浸炭、 酸化といったチタ ン部材自体を硬化する方法 において、 従来の技術の中では、 表面荒れを低減化することを目的と して、 処理 前の部材自体の表面状態を変える様な前処理とか、 金属部材自体の結晶粒の大き さ及び処理後の硬化表面の平面方向に成長した結晶粒の大きさに着目することも 考えられていなかった。
外観品質の劣化の問題は、 特にその初期段階では結晶粒界部での隆起による表 面荒れが原因と して考えられる。 ガス窒化、 酸窒化処理時に発生する結晶粒界部 での隆起は、 結晶粒界部での化合物形成または窒素や酸素の固溶拡散による格子 歪みから発生する結晶粒界部での応力集中といった現象から生じると考えられる 結晶粒界部での隆起をマクロで観察した場合、 表面が荒れているように感じら れ、 特に、 鏡面のチタン装飾部材には適用できないという問題があった。
この隆起の高さが高くなるほど、 最大高さ R m a x、 平均表面粗さ R aは大き く なり、 外観品質は劣化する。
この結晶粒界部での隆起の高さ力 <、 処理前のチタ ン部材自体の結晶粒の大きさ に起因しており、 隆起の高さはチタン硬化部材の処理後の平面方向に成長した結 晶粒或いは処理前の段階の結晶粒の大きさが大きく なるほど高く なることが分か つた。
また、 従来のガス窒化では、 変態点近くの温度 ( 8 5 0 ° (:〜 8 7 0 °C ) に加熱 するために、 結晶粒が粗大化するという現象が発生し、 上述の観点から結晶粒界 部での隆起等が更に大きくなつていた。
特にチタン及びチタン合金を用いた金属装飾部材の場合、 従来のガス窒化では, 変態点近くの温度 ( 8 0 0 °C〜 8 7 0 °C ) に加熱するために、 結晶粒が粗大化し、 また結晶粒界部での窒化チタン (T i N ) や酸化チタン (T i 0 2 ) といった化 合物形成または窒素や酸素や炭素の固溶拡散による格子歪みから発生する結晶粒 界部での応力集中といった現象により、 結晶粒界部での隆起を生じる。 そしてこ の隆起の高さは、 処理前のチタン及びチタン合金自体の結晶粒のサイズが大きく なるほど高くなる。 これをマクロで観察した場合、 表面が荒れているように感じ られ、 外観品質が劣化し、 特に鏡面の装飾部材には適用できないという問題があ つた。
即ち、 従来の方法に於けるガス窒化、 浸炭、 酸化、 酸窒化等のチタン部材自体 を硬化する手法では、 前述したような硬化後の外観品質の劣化すなわち表面荒れ の問題を解決することができなかった。
本発明の目的は、 上記従来技術の問題点或いは課題を解決して、 硬化処理後も 外観品質の劣化がなく、 表面荒れが小さくなることを可能とするチタン硬化部材 を提供することである。 発明の開示
上記目的を達成するために、 本発明のチタン硬化部材及びチタン部材の硬化方 法は、 基本的には、 以下に示す様な構造及び方法を採用するものである。
即ち、 チタン部材 2 1の表面に硬化した硬化層 2 0を有するチタン装飾部材 2 であって、 表面の硬化層 2 0が窒素、 酸素からなる元素を含有し、 且つ当該チタ ン装飾部材 2に於ける表面の結晶粒 2 4の大きさ (第 1 図の 2 6で示される径) が 0 . 1 〜 6 0 mであることを特徴としたチタン装飾部材 2であり、 更には、 当該チタン装飾部材 2に於ける表面粗さ R m a xが 1 0 0 0 n m以下の表面であ ることを特徵とするチタン装飾部材 2である。
又、 その硬化処理方法と しては、 チタン部材を不活性ガス棼囲気で昇温加熱す る工程と、 第 1の雰囲気である窒素と酸素を含む雰囲気で 7 0 0 °C以上の処理温 度に加熱する第一の硬化処理工程と、 アルゴン, ヘリ ウム等の不活性ガスの雰囲 気で 7 0 0 °C以上の処理温度に加熟する第 2の雰囲気調節処理工程と不活性ガス 雰囲気で冷却する工程とからなるチタン部材を硬化してなるチタン硬化部材の硬 化処理方法である。
又、 本発明に係るチタン硬化部材の硬化処理方法の他の態様としては、 チタ ン金属部材 2 1 において、 当該チ夕 ン含有部材 2の表面に 0 . 1〜 6 0 mの微 細な結晶粒 2 4を有する保護膜】 0を形成する工程と、 チタ ン部材を不活性ガス 雰囲気で昇温加熱する工程と、 第 1 の雰囲気と しての窒素と酸素を含む雰囲気で 7 0 0 °C以上の処理温度に加熱する第一の硬化処理工程と、 アルゴン, ヘリ ウム 等の不活性ガスの雰囲気で 7 0 0 °C以上の処理温度に加熱する第二の雰囲気調節 処理工程と不活性ガス雰囲気で冷却する工程とからなるチタン部材を硬化してな るチタ ン硬化部材の硬化処理方法であり、 又、 本発明に係るチタン硬化部材の硬 化処理方法の他の態様としては、 表面が硬化された硬化層を有したチタン装飾部 材の硬化処理方法において、 チタ ン装飾部材の表面に 0 . l〜 6 0 / mの結晶粒 を有する保護膜を形成する工程と、 チタン部材を不活性ガス雰囲気で昇温加熱す る工程と、 窒素と酸素を含む第 1の雰囲気で 7 0 0 °C以上の処理温度に加熱する 第一の硬化処理工程と、 アルゴン. ヘリ ウム等の不活性ガスの雰囲気で 7 0 (TC 以上の処理温度に加熱する第二の雰囲気調節処理工程と不活性ガス雰囲気で冷却 する工程とからなるチタン部材を硬化してなるチタン硬化部材の硬化処理方法で ある。
本発明のチタン装飾部材の硬化方法により得られるチタン硬化部材は、 処理後 の結晶粒の大きさを 0 . 1〜 6 0 mとすること、 或いは、 微細な結晶粒を有す る保護膜を形成する工程により、 硬化処理後も外観品質の劣化しない、 すなわち 表面粗さが小さくなることを可能とする。
本発明に於ける外観品質の劣化の問題は、 特にその初期段階では結晶粒界部 2 2での隆起による表面荒れが原因となつていることが明らかとなつた。 ガス窒化、 酸窒化等の処理時に発生する結晶粒界部 2 2での隆起は、 結晶粒界部での化合物 形成または窒素や酸素の固溶拡散による格子歪みから発生する結晶粒界部での応 力集中といった現象から生じると考えられた。
結晶粒界部 2 2での隆起を目視で観察した場合、 表面が荒れているように感じ られ、 特に、 鏡面の装飾部材には適用できないという問題があった。
この隆起の高さが高くなるほど、 最大高さ R m a x、 平均表面粗さ R aは大き くなり、 外観品質は劣化する。 本発明に於いては、 処理前のチタ ン装飾部材自体 の結晶粒のサイズに起因しており、 隆起の高さは、 チタン装飾部材自体の結晶粒 のサイズが大きく なるほど高く なることが分かつた。
金属装飾部材と してチタ ン及びチタン合金を用いた場合、 硬化処理後に、 結晶 粒界部で、 窒化チタン (T i N ) や酸化チタン (T i 0 2 ) といった化合物形成 または窒素や酸素の固溶拡散による格子歪みから発生する結晶粒界部での応力集 中といった現象により、 結晶粒界部での隆起が生じる。
そしてこの隆起の高さは、 処理前のチタン及びチタン合金自体の結晶粒のサイ ズが大き く なるほど高くなる。 これをマクロで観察した場合、 表面が荒れている ように感じられ、 外観品質が劣化し、 特に鏡面の装飾部材には適用できないとい う ことが分かった。
更に硬化処理後に、 結晶粒界部及び粒内部で、 窒化チタ ン (T i N ) といった 化合物形成が進行すると、 これをマクロで観察した場合、 表面が荒れているよう に感じられ、 同様に外観品質が劣化し、 特に鏡面の装飾部材には適用できないと いう ことが分かった。
表面の結晶粒の大きさが、 0 . 1 〜 6 0 m以下のチタン部材を用いて、 窒素 と酸素を含む雰囲気での温度及び時間で制御された加熱処理を行うことにより、 熱処理を行う前の表面の結晶粒の大きさが小さいという効果と結晶粒界部に固溶 した窒素や酸素が結晶粒の粗大化を抑制する効果により、 表面を 0 . 1〜 6 0 mの平面方向に成長した結晶粒に保ちながら、 硬化処理をすることが可能となる このときの結晶粒界部での隆起の高さは、 低く なる。 すなわち、 窒素や酸素の 固溶拡散による格子歪みから発生する結晶粒界部での歪み応力が、 単位面積に占 める結晶粒界の面積が増大すること等の効果により、 分散される。 この現象によ り、 表面粗さが低減化し、 マクロで観察した場合、 外観品質の劣化を抑制するこ とが可能となる。
又、 本発明に於て、 チタン装飾部材の表面に 0 . 1 〜 6 0 mの微細な結晶粒 を有する保護膜を形成した後で、 窒素や酸素雰囲気での加熱処理を行う ことによ り、 熱処理を行う前の組織が微細であるという効果と窒素や酸素が結晶粒の粗大 化を抑制する効果により、 表面を 0 . 1 ~ 6 0 mの平面方向に成長した結晶粒 に保ちながら、 硬化処理をすることが可能となる。
このときの結晶粒界部での隆起の高さは、 上記と同様の理由から低く なる。 つまり、 第 5図に示す様に、 表面の結晶粒の大きさが大きいチタン部材を用い て、 硬化処理を実行すると、 結晶粒が大きくなり、 結晶粒界部が隆起する状態と なるが、 第 4図に示す様に、 表面の結晶粒の大きさが小さいチタン部材を用いて、 硬化処理を実行すると、 結晶粒も小さく なり、 結晶粒界部での隆起も低く なると 言う事が知得されたものである。 図面の簡単な説明
第 1図は本発明の実施形態における硬化層を形成した後のチタン硬化部材を示 す立体図である。
第 2図は本発明の実施形態におけるチタ ン硬化部材に対して硬化層を形成する ための処理装置を示す模式図である。
第 3図は本発明の実施形態におけるチタン硬化部材に対して硬化層を形成する ための処理工程を示す模式図である。
第 4図 (A ) は本発明の実施形態における結晶粒の小さいチタ ン部材に対して 硬化層を処理温度 7 0 0 °Cで形成した場合に於ける結晶粒の大きさを示し、 又図 4 ( B ) はその表面粗さの測定結果を示すグラフである。
第 5図 (A ) は本発明の実施形態における結晶粒の大きいチタン部材に対して 硬化層を処理温度 7 0 0 °Cで形成した場合に於ける結晶粒の大きさを示し、 又第 5図 (B ) はその表面粗さの測定結果を示すグラフである。
第 6図 (A ) から第 6図 (C ) は、 本発明に係るチタ ン装飾部材及び従来に於 けるチタン硬化部材の薄膜 X線回折デ一夕を示したものである。
第了図 (A ) 及び第 7図 (B ) は、 本発明に係るチタ ン硬化部材に対して保護 膜を形成してから、 硬化処理方法を行う場合の例を示した図である。
第 8図は、 本発明に係る硬化処理方法を実行しうる以前に於ける保護膜を有す るチタン装飾部材の形状の一例を示す図である。 発明を実施する為の最良の形態
本発明に係る第 1の態様は、 上記した様に、 チタン部材の表面を硬化した硬化 層を有するチタ ン硬化部材であって、 表面の硬化層が窒素、 酸素からなる元素を 含有し、 表面の結晶粒の大きさが 0 . 1〜 6 0 mであることを特徴と したチタ ン装飾部材であり、 又第 2の態様と しては、 上記の構成に加えて表面粗さ R m a xが 1 0 0 0 n m以下の表面であることを特徴とするチタン装飾部材である。 又、 本発明に係る第 3の態様と しては、 上記した各態様のチタン装飾部材を製 造する為に、 チタ ン部材を不活性ガス雰囲気で昇温加熱する工程と、 窒素と酸素 を含む雰囲気で 7 0 0 °C以上の処理温度に加熱する第一の硬化処理工程と、 アル ゴン, ヘリ ウム等の不活性ガスの雰囲気で 7 0 0 °C以上の処理温度に加熱する第 二の雰囲気調節処理工程と不活性ガス雰囲気で冷却する工程とからなるチタ ン部 材の硬化処理方法である。
以下に、 本発明に係るチタン装飾部材及びその硬化方法の具体例に付いて図面を 参照しながら詳細に説明する。
即ち、 第 1 図は本発明の実施形態における硬化処理により硬化層を形成したチ 夕ン硬化部材を立体的に拡大した図であり、 第 2図は本発明のチタン硬化部材の 表面を硬化する硬化処理装置を示す概念図である。 又第 3図は本発明の実施形態 におけるチタン硬化部材に対して硬化層を形成するための処理工程を示す模式図 である。
本発明に於て使用される硬化処理装置と しては、 第 2図に示す様に、 ガス導入 口 8及び試料取り出し口 1 8を備えた真空処理槽 6中に、 加熱電源 i 4より電気 エネルギーが供給される加熱手段 1 2によって、 試料台 4上に配置されたチタン 装飾部材 2の表面を加熱できるようにした装置が使用出来る。
また真空排気装置 1 6及びガス排気口 1 0を設けて、 真空処理槽 6内の真空排 気を可能として、 減圧下の雰囲気で硬化処理できる様な構成と した。
実施例 1
本発明に係る第 1 の態様に関する具体例を図 1 、 2、 3を用いて更に詳細に説 明する。 本具体例においては、 チ夕 ン硬化部材と して、 形状が 2 5 m m X 2 5 m mの J I S 2種 (A S T Mのグレー ド 2相当) の純チタンを用いた。 処理面は研磨が施 してあり、 表面粗さは、 最大高さ R m a X値で 5 0 n m以下であった。 未処理の 結晶粒の大きさは 1 0 ~ 3 0 mの多結晶体の組織である。
第 3図は本発明の硬化処理方法の工程を示した概念図である。
まず、 真空排気工程 2 8では、 処理槽 6内を真空排気装置 1 6により排気し、 1 X 1 0 - δ 1 o r r以下の減圧雰囲気と した。
ガス導入口 8よりアルゴン、 ヘリ ウムといった不活性ガスを一定量導入し、 導 入ガス量と排気量を調節して処理槽 6内を 0 . 1 t o r rの減圧下の不活性雰囲 気と した。
そして昇温工程 3 0で示した様に、 チタン装飾部材 2を加熱手段 1 2により加 熱し、 硬化処理温度 7 0 0 °Cまで昇温した。 第一の硬化処理工程 3 2においては、 ガス導入口 8から純窒素及び窒素に微量の水蒸気を含有させた混合ガスを導入し、 導入ガス量と排気量を調節して約 0 . i t 0 r rの窒素と微量の水蒸気の雰囲気 と した。
ここでは、 窒素に対する水蒸気の割合は約 4 0 0 0 p p mと した。 そして、 硬 化処理温度を一定に保ったまま、 約 3時間保持した。 その後、 処理槽内を再び減 圧下の不活性ガス棼囲気と して、 約 0 . 「)時間保持し第二の雰囲気調節処理工程 を行った。
そして、 不活性雰囲気と したまま冷却し、 チタ ン装飾部材の表面が酸化しない 温度に到達したら、 処理を完了して試料を取り出した。
実施例 2
本発明に係る第 2の具体例を第 1図乃至第 3図を参照しながら説明する。
即ち、 チタン硬化部材と して、 A S T Mのグレー ド 4相当の結晶粒の細かい高 強度純チタン材の時計ケースを用いた。
処理面は研磨が施してあり、 表面粗さは、 最大高さ R m a x値で 5 0 n m以下 であった。 未処理の結晶粒の大きさは 5 m以下の組織である。
第 3図の硬化処理方法の工程に於て、 先ず真空排気工程 2 8では、 処理槽内を 真空排気装置 1 6により排気し、 i X 1 0 一5 t 0 r r以下の減圧雰囲気と した。 ガス導入口 8よりアルゴン、 ヘリ ウムといった不活性ガスを一定量導入し、 導 入ガス量と排気量を調節して処理槽 6内を 0 . 1 t o r rの減圧下の不活性雰囲 気と した。
そして昇温工程 3 0で示した様に、 チタン装飾部材 2を加熱手段 1 2により加 熱し、 硬化処理温度 7 0 0 °Cまで昇温した。
第一の硬化処理工程 3 2においては、 ガス導入口 8から純窒素及び窒素に微量 の酸素を含有させた混合ガスを導入し、 導入ガス量と排気量を調節して約 0 . 1 t o r rの窒素と微量の酸素の雰囲気と した。
ここでは窒素に対する酸素の割合は約 5 0 0 0 p p mと した。 そして、 硬化処 理温度を一定に保ったまま、 約 3時間保持した。 その後、 処理槽内を再び減圧下 の不活性ガス雰囲気と して、 約 0 . 5時間保持し第二の雰囲気調節処理工程を行 つた。 そして、 不活性雰囲気と したまま冷却し、 チタン装飾部材の表面が酸化し ない温度に到達したら、 処理を完了して試料を取り出した。
実施例 3
次に、 本発明の第 3の具体例を第 1図乃至第 3図を参照しながら説明する。 つまり、 本具体例に於いては、 チ夕ン硬化部材と して、 形状が 2 5 m m X 2 5 m mの 4 . 5 w t % A 1 ― 3 w ΐ % V - 2 w t % M oで残部が T i から構成され るチタ ン合金を用いた。 処理面は研磨が施してあり、 表面粗さは、 最大高さ R m a x値で 5 0 n m以下であった。 未処理の結晶粒の大きさは 5 m以下の微細組 織である。
第 3図の硬化処理方法の工程に於て、 まず、 真空排気工程 2 8では、 処理槽 6 内を真空排気装置 1 6により排気し、 1 X 1 0—' t 0 r 1-以下の減圧雰囲気と し た。 ガス導入口 8よりアルゴン、 ヘリ ウムといった不活性ガスを一定量導入し、 導入ガス量と排気量を調節して処理槽 6内を 0 . 1 t o r rの減圧下の不活性雰 囲気と した。
そして昇温工程 3 0で示した様に、 チタン装飾部材 2を加熱手段】 2により加 熱し、 硬化処理温度 7 0 0 °Cまで昇温した。
第 1 の硬化処理工程 3 2においては、 ガス導入口 8から純窒素及び純窒素に微 量の水蒸気を含有させた混合ガスを導入し、 導入ガス量と排気量を調節して約 0 . 1 t o r i-の窒素と微量の水蒸気の雰囲気と した。
窒素に対する水蒸気の割合は約 4 0 0 0 p p mとした。
そして、 硬化処埋温度を一定に保ったまま、 約 3時間保持した。 その後、 処理 槽内を再び減圧下の不活性ガス雰囲気と して、 約 0 . 5時間保持し第二の雰囲気 調節処理工程を行った。 そして、 不活性雰囲気と したまま冷却し、 チタン装飾部 材の表面が酸化しない温度に到達したら、 処理を完了して試料を取り出した。 ここで、 本発明に於て使用されるチタン装飾部材の硬化処理方法に付いて、 よ り詳細に説明するならば、
第 3図に示した本発明に於ける硬化処理方法において、 チタン部材を 7 0 0 °C まで昇温するときに、 チタンに不活性な雰囲気とする昇温工程 3 0は、 研磨加工 によりチタン部材に加工する時に発生する加工ひずみ層を再結晶化することを目 的と して なう ものである。
つまり、 加工ひずみ層は研磨加工時の応力が格子ひずみとなつて残っている状 態で結晶的にはアモルファ ス相に近い状態である。 従って、 研磨加工後のチタン 部材に対しそのまま窒素と酸素を含むガスを導入して硬化処理を施すと、 加工ひ ずみ層は酸素と窒素の反応性が大きい為に最表面に着色物質である窒化物、 酸化 物が形成される。
これら着色物質が形成されると外観品質が低下するため装飾部材と して好まし い状態ではない。 従って本発明における第一硬化処理工程に入る前の昇温工程は、 不活性雰囲気にする必要性がある。
次に、 上記硬化処理方法に於ける第一硬化処理工程 3 2 は昇温工程 3 0の後、 窒素に微量の酸素成分を添加した混合ガスを処理装置内に導入して、 処理圧力を 0 . 0 0 1〜 1 0 T 0 r rの範囲内に調整した混合ガス雰囲気中で処理すること を特徴と している。
更には、 上記硬化処理方法に於ける第二雰囲気調節処理工程 3 4 は、 当該処理 装置内に導入した窒素と酸素成分のガスが装置内から完全に排除するための工程 を示している c
すなわち、 この後の冷却工程 3 6時に第一硬化処理工程時の窒素或いは酸素成 分のガスが残存していると雰囲気温度が低いためチタ ン部材内部への拡散が遅く 、 チタン部材表面に窒化物或いは酸化物を形成してしまう。 これらの化合物は上記 と同様、 表面荒れ及び外観品質の低下の問題を引き起こし、 チタン装飾部材と し て好ま しい状態ではない。
又、 本発明に於ける冷却工程 3 6は、 速やかにチ夕 ン部材を常温まで冷却させ 処理装置内部から取り出すため工程である。
当該冷却工程でも、 硬化処理工程と同一のガス雰囲気にすると、 冷却しながら 窒素と酸素を供給しているため、 チタン部材の表面から窒素と酸素の拡散が遅く なった状態となり、 表面で着色物である窒化物、 酸化物を形成する。 これら着色 物質の形成を防止するために冷却工程の雰囲気もチタ ン部材に対して不活性な雰 囲気とする必要がある。
処で、 本発明に係るチタン装飾部材が、 従来の金属硬化処理部材に比べて上記 した様な多くの優れた特性を奏しえるのは、 当該チ夕ン装飾部材を構成するチ夕 ン部材が酸素と適宜の割合で固溶した状態を維持している事に起因していると考 元られる。
即ち、 第 6図 (A ) 、 (B ) 、 (C ) は、 本発明に係る硬化処理方法を施す前 のチタン硬化部材及び本発明の硬化処理方法を行ったチタン硬化部材及び従来技 術のチタン硬化部材のそれぞれに対して、 入射角 0 . 5 ° で薄膜 X線回折による 解析を行った結果をそれぞれ示したものである。
この結果から分かるように、 第 6図 (C ) に示す様に、 従来技術の実施による チタン硬化部材は第 6図 (A ) に示された硬化処理前のチタン部材とは明らかに 異なるピークが認められる。
これは着色化合物である窒化チタンに由来している。 一方、 本発明のチタ ン硬 化部材のピークはいずれもチタン部材と比铰してほぼ同様の位置にピークが認め られていて、 本発明に於けるチタ ン硬化部材の方が、 当該硬化処理方法前のチタ ン硬化部材ょり もやや低角度側にピーク値がシフ 卜 している。
これは、 チタン部材に酸素が固溶した状態にあり、 格子が歪んでいることによ つて生じているものと考えられる。 そのほかのピークが認められないことから、 化合物の形成は生じていないものと推定される。 実施例 4
次に、 本発明の第 4の具体例を第 1図乃至第 3図を参照しながら説明する。 本具体例においては、 チタ ン硬化部材と して、 形状が 2 5 m m X 2 5 m mの 3 w t % A 】 一 2 . 5 w t % V、 残部が T i から構成されるチタン合金を用いた。 処理面は研磨が施してあり、 表面粗さは、 最大高さ R m a X値で 5 0 n mであつ た。 未処理の結晶粒の大きさは 5 m以下の微細組織である。
第 3図の硬化処理方法の工程に於て、 まず真空排気工程 2 8では、 処理槽 6内 を真空排気装置 1 6により排気し、 1 X 1 (T 5 t o r r以下の減圧雰囲気と した。 ガス導入口 8よりアルゴン、 ヘリ ウムといった不活性ガスを一定量導入し、 導入 ガス量と排気量を調節して処理槽 6内を 0 . 1 t 0 r rの減圧下の不活性雰囲気 と した。
そして昇温工程 3 0で示した様に、 チタン装飾部材 2を加熱手段 1 2により加 熱し、 硬化処理温度 7 0 0 °Cまで昇温した。
第一の硬化処理工程 3 2においては、 ガス導入口 8から純窒素及び窒素に微量 の水蒸気を含有させた混合ガスを導入し、 導入ガス量と排気量を調節 0 . 1 t o r rの窒素と微量の水蒸気の雰囲気と した。 窒素に対する水蒸気の割合は約 4 0 0 0 p p mと した。
そして、 硬化処理温度を一定に保ったまま、 約 3時間保持した。 その後、 処理 槽内を再び減圧下の不活性ガス雰囲気と して、 約 0 . 5時間保持し第二の雰囲気 調節処理工程を行った。 そして、 不活性雰囲気としたまま冷却し、 チタン装飾部 材の表面が酸化しない温度に到達したら、 処理を完了して試料を取り出した。 表 1 は、 本発明の具体例による評価結果と従来技術の実施による評価結果を比 絞した表であり、 評価方法として、 耐傷性試験 (砂落と し試験) 、 硬度、 結晶粒 の大きさ、 表面粗さを採用し、 保護膜を形成せずにチタ ンバルク材をそのまま処 理した評価に関しては下記の基準を持って合否の判定を行った。
耐傷性試験は、 砂落と し試験後の光学顕微鏡 4 0 0倍の観察で表面傷の発生度 合いが 5 0 %以下であるものに関して合格と した。
硬度はビッカース硬さ試験機により、 硬化処理表面から 5 mの深さのピツカ —ス硬度が H V 6 0 0以上あるものに関して合格とした。 結晶粒の大きさは、 電子顕微鏡及び光学顕微鏡による表面観察により行い、 表 面の結晶粒の大きさが 0 . 1〜 6 0 mの範囲であるものは小、 6 0 ^ ηι以上で あるものに関しては大と した。
表面粗さに関しては、 5 0 0 mの範囲の表面形状解析を行い、 最大高さ R m a Xで 1 0 0 0 n m以下であるものに関して合格と した。 総合評価結果は、 耐傷 性試験、 硬度が合格であり、 かつ最大高さで 1 0 0 0 n m以下であるものに関し て合格と した。
表 1 は、 表面の平 ¾方向の結晶粒の平均サイズが約 1 5 m及び約 8 0 mの J I S 2種 (A S T Mのグレード 2相当) 純チタンを用いて、 硬化処理する前、 処理温度 6 5 0 °C〜 9 0 0 °Cまで変化させて本発明の硬化処理を行った後及び従 来技術による硬化処理を行った後の耐傷性試験、 表面硬度、 表面粗さ、 結晶粒の 平均サイズを示した表である。 表 1の a、 i は処理前の評価結果であり、 表 1の b、 j は 6 5 0 °Cの処理温度による評価結果、 表 1 の c、 kは 7 0 0 °Cの処理温 度による評価結果、 d、 1 は 7 5 0ての処理温度による評価結果、 e、 mは 8 0 0での処理温度による評価結果、 f 、 nは 8 5 (TCの処理温度による評価結果で あり、 g、 0は 8 5 0 °Cの処理温度による評価結果であり、 h、 pは従来技術の ガス窒化 ( 8 5 0 °C、 1 0時間) による評価結果である。
表 1 の a と gより、 従来技術の実施による表面荒れは、 最大高さ R m a xで未 処理の J I S 2種 (A S T Mのグレー ド 2に相当) 純チ夕ンが 5 0 n m以下であ るのに対して、 1 5 0 0 n mと大きくなつており、 表面が荒れている。 一方、 表 1 の aと dより、 本発明の実施による表面粗さは、 最大高さで ] 0 0 0 n m以下 と従来技術より低くなつていることが分かる。 また、 結晶粒の大きさは、 従来技 術では 8 0〜2 0 0 mと粗大化するのに対して、 本発明の実施により、 1 0〜 3 0 mと本発明の実施前の純チタンと同じ程度の大きさに保持することが可能 となった。 一方、 hから nは、 初期の段階での結晶粒が大き くなつているために、 処理温度 6 5 0 °Cでもその最大高さは大きく 1 0 0 0 n m程度となっていた。 そ して、 処理温度 7 0 0 °C以上では更に最大高さが増大していた。 上述の通り、 表 面粗さの最大高さは、 これまでの説明の中の結晶粒界部の隆起と相関しており、 本発明の最大高さが低いのは、 本発明の結晶粒が小さいことに起因した効果であ ると考えられる。
表 2は、 結晶粒の大きさが 1 0 m以下の J I S 4種相当 (A S TMのグレー ド 4 に相当) の純チ夕ン、 T i 一 4. 5 w t % A 1 - 3 w t % V - 2 w t % M o のチタン合金及び T i - 3 w t % A 1 - 2. 5 w t %Vのチタン合金を用いて、 処理する前、 処理温度 6 5 0〜 9 0 (TCまで変化させ、 処理時間 3時間で本発明 の硬化処理をおこなつた後及び従来技術による硬化処理を行つた後の耐傷性試験、 表面硬度、 表面粗さ、 結晶粒の大きさを示した表である。
表 2からも分かるように、 第一硬化処理工程の保持時間が 3時間で処理温度が 7 0 0 °C〜 8 5 0 °Cの温度範囲においては、 4種相当の純 T i 、 T i 一 4. 5 w t %A l — 3 w t %V 2 w t %M oのチタン合金、 T i 一 3 w t %A l — 2. 5 w t %Vのチタン合金の各材質ともに、 結晶粒が粗大化することなく、 表面粗 さが小さく、 硬度が上昇して、 耐傷性試験も良好であった。
しかし、 9 0 0 °Cの温度では表面荒れが増大した。 また従来のガス窒化も結晶 粒が粗大化して、 表面荒れが増大していた。 これらのチタン硬化部材の表面荒れ が小さいのは、 硬化処理前の表面の結晶粒の大きさが小さいことに起因した効果 であると考えられる。
よって表面荒れを增大させないことにおいて重要なことは、 初期の段階すなわ ち処理前の結晶粒を小さ くするということと、 処理表面の結晶粒を粗大化させな い温度及び時間範囲内で処理すること及び化合物を表面に厚く形成させない本発 明の実施のようなガス導入のタイ ミ ングを温度と時間で制御するような処理工程 を選択することである。
すなわち処理表面の平面方向に成長した結晶粒を粗大化させないことが表面粗 さの最大高さを極度に上昇させないことの要因になっている。
表 3に様々なガスを用いて本発明の方法による硬化処理を行った結果について 従来例と比較した結果を示した。 このように、 ガス種については、 N 2 0、 N O、 N 02 等の酸化窒化性ガスを使用しても良い。
ここでは、 チタン装飾部材として J I S 2種及び 4種相当の純チタン部材を例 にとつて説明を行ったが、 J I S 1種及び 3種純チタ ン部材にも適用可能である c また、 ここでは、 T i - 4. 5 w t % A 1 ― 3 w t % V— 2 w t %M 0のチタ ン 合金及び T i - 3 w t % A 1 - 2 . 5 w t % Vのチタン合金について説明を行つ たが、 他の α型チタン合金、 他の α + 型チタン合金、 さらには /3型合金にも適 用可能であり、 重要なことは変態温度を超えないようにし、 結晶粒を粗大化させ ない温度と時間を設定することである。
ここでの処理面については研磨した鏡面について説明したが、 特に限定せず、 研磨面、 ホーニング処理を行ったホーニング面、 ショ ッ 卜 ピーニング面、 ヘア一 ラィン面等の比較的表面が荒れている面のいずれも適用可能である。
本発明の上記具体例において、 実施例 1、 3、 4では板状のチタン硬化部材、 実施例 2では時計ケースを用いて説明を行ったが、 これらの部材に限らず、 チ夕 ン製の時計バン ド、 ベゼル、 ピアス、 イヤリ ング、 指輪、 めがねのフレーム等の 装飾用品に適用可能なものすベてを意味しており、 ゴルフクラブのへッ ド及びシ ャフ ト、 自転車のフ レーム等、 チタン部材を応用した製品であれば全てに適用可 能である。
本発明の実施例においては、 昇温工程、 第二の雰囲気調節処理工程及び冷却ェ 程時において、 アルゴン、 ヘリ ウムといった不活性ガス雰囲気と して説明を行つ たが、 この工程間に上述したような窒素と酸素を含むガスが導入されると表面に 化合物を形成し、 表面が荒れたり、 変色したりするためであり、 これらのガスが 影響を及ぼさない雰囲気であれば良く、 高真空雰囲気であっても良い。
本発明の実施例において、 第一の硬化処理工程の時間はいずれも 3時間で、 処 理温度は 7 0 0 °Cで説明を行ったが、 特に限定する必要性はなく、 重要なことは 処理表面の平面方向に成長した結晶粒を粗大化させない温度及び時間範囲内で処 理することであり、 必要硬度及び耐傷性を満たすように時間、 温度条件を設定す ることである。
よって、 長時間の処理及び処理温度の上昇は結晶粒の粗大化に影響してく るた め、 1 0時間以内の処理であれば任意の時間でよい。 処理温度も表面荒れの問題 からなるベく低温度で処理することが好ましいが、 7 0 0 °C以上で a→ 変態点 以下の温度であれば任意の温度でよい。
本発明の実施例において、 第一の硬化処理工程の水蒸気濃度及び酸素濃度は水 蒸気濃度が約 4 0 0 0 p p mで酸素濃度が約 5 0 0 0 p p mと して説明を行った が、 この濃度に特に限定する必要はなく水蒸気であれば、 3 0 0 p p m〜 3 0 0 O O p mの範囲内であれば良く、 酸素であれば 3 0 0〜 2 0 0 0 0 p p mの範 囲内であれば任意の濃度に適用可能である。 重要なことは、 あまりに過剰にこれ らのガスを供給すると、 表面が酸化物で変色してしまい、 少なすぎると酸素量が 不足するため、 その間の濃度に調節されたものであれば任意の濃度に適用可能で ある。
本発明の実施例において、 すべての工程の処理圧力を 0 . 〗 t o r rと して、 説明を行った力 <、 特に限定する必要性がなく、 0 . 0 0 1〜 1 0 t 0 r rの任意 の圧力において適用可能である。 重要なことは、 処理濃度と同様に、 圧力が低す ぎると拡散元素の絶対量が不足し、 圧力を高く しすぎると表面に化合物を形成す るためその範囲内に設定することである。
また本発明の実施例において、 第二の雰囲気調節処理工程の時間として 0 . 5 時間として説明を行ったが、 特に限定する必要性はなく 、 冷却工程に入る前の雰 囲気が不活性となっていれば任意の時間で良い。
次に、 本発明に係るチタン装飾部材を製造する為の硬化処理方法に関する他の 具体例を実施例 5と して以下に図面を参照しながら説明する。
実施例 5
即ち、 本発明に於ける当該硬化処理方法に於ける他の具体例と しては、 上記し た様に、 表面が硬化された硬化層を有したチタン装飾部材の硬化処理方法におい て、 チタ ン装飾部材の表面に 0 . I〜 6 0 mの結晶粒を有する保護膜を形成す る工程と、 チタン部材を不活性ガス雰囲気で昇温加熱する工程と、 窒素と酸素を 含む雰囲気で 7 0 0 °C以上の処理温度に加熱する第一の硬化処理工程と、 ァルゴ ン, ヘリ ゥム等の不活性ガスの雰囲気で 7 0 0 °C以上の処理温度に加熱する第二 の雰囲気調節処理工程と不活性ガス雰囲気で冷却する工程とからなるチタ ン部材 を硬化してなるチタン硬化部材の硬化処理方法である。
以下図面を用いて、 本発明のチタ ン装飾部材の硬化方法について説明する。 第 8図は、 未処理のチタン装飾部材を示す立体図であり、 硬化処理後のチタン装飾 部材を示す立体図は、 既に説明した様に第 1図に示されている。
本具体例に於ける特徴は、 予め、 チタン硬化部材の表面に微細な組織を有する 保護膜を形成した後に硬化層を形成する様にするものであり、 その硬化処理方法 の概略が第 7図 (A) 及び第 7図 (B) に示されている。
本具体例に於いては、 チ夕 ン装飾部材と して、 形状が 2 5 mm X 2 5 mmの J I S 2種の純チタ ンを用いた。 処理面は研磨が施してあり、 表面粗さは、 最大高 さ Rm a X値で 5 0 nm以下であった。 第 8図に示したように未処理の結晶粒の 大きさは 5 0〜 1 0 0 / mとほぼ同等の大きさをもつ均一組織である。
保護膜形成は、 保護膜の種類により形成方法を蒸着法、 スパッタリ ング法、 プ ラズマ CVD法、 D Cスパッ夕法の中から選択した。 保護膜と して T i膜を、 形 成方法と して R Fスパッタリ ング方式を選択したときは、 R F夕ーゲッ トに高純 度の純チタン夕一ゲッ トを用い、 導入ガスは、 超高純度のアルゴンガスを用いた。 純チタ ンサンプルは、 R Fスパッ 夕装置内の R Fタ一ゲッ 卜に対向させて配置 した。 真空排気用のポンプにより、 1 x 1 0 - 5〜 1 X 1 0 - 6 t 0 r r以下の 減圧雰囲気下に排気した後、 高純度ァルゴンガスを流量計により一定流量で導入 し、 処理槽内を 0. 0 0 1〜0. 1 t o r i-とする。
その後、 1 3. 5 6 MH zの高周波電力を純チタンターゲッ トに印加し、 あら かじめ算出した成膜レ一 トカ、ら、 膜の厚さが 1. 0 mになるように微細組織の T i膜を形成する。 このとき、 0. 1〜 6 0 mの微細な組織の T i膜を形成す るためには、 純チタンサンプルの表面温度のコン トロールが重要となる。
本具体例では、 膜形成時の純チタンサンプルの表面温度が、 0~5 0°Cとなる ように積極的に水冷する方式を採用した。 表面が 5 0°C以上の温度となると、 純 チタンサンプル自体すなわち下地自体の結晶粒の影響を受ける。 すなわち、 0. 1〜6 0 m程度の微細な組織を有する結晶粒は得られず、 6 0 m以上の結晶 粒となる。
第 3図に於ける硬化処理方法の工程に於てまず、 真空排気工程 2 8では、 処理 槽 6内を真空排気装置 1 6により排気し、 1 X 1 0 - 5 t 0 r r以下の減圧雰囲 気と した。 ガス導入口 8よりアルゴン、 ヘリ ウムといった不活性ガスを一定量導 入し、 導入ガス量と排気量を調節して処理槽 6内を 0. 1 t o r rの減圧下の不 活性雰囲気と した。 そして昇温工程 3 0で示した様に、 保護膜付きのチタ ン部材 2を加熱手段 1 2により加熱し、 硬化処理温度 7 0 0 °Cまで昇温した。 第一の硬 化処理工程 3 2においては、 ガス導入口 8から純窒素及び酸素の混合ガスを導入 し、 導入ガス量と排気量を調節 0 . 1 t o 1- rの窒素と微量の酸素の雰囲気とし た。 窒素に対する酸素の割台は約 5 0 0 0 p p mと した。 そして、 硬化処理温度 を一定に保ったまま、 約 3時間保持した。 その後、 処理槽内を再び減圧下の不活 性ガス雰囲気と して、 約 0 . 5時間保持し第二の雰囲気調節処理工程を行った。 そして、 不活性雰囲気と したまま冷却し、 チタン装飾部材の表面が酸化しない温 度に到達したら、 処理を完了して試料を取り出した。
つまり、 本具体例に於いては、 前述したように、 J I S 2種純チタ ンサンプル の表面に 0 . 1〜 6 0 mの結晶粒を有する保護膜をスパッ タ リ ング装置等によ り形成し、 窒素雰囲気での加熱処理による硬化層の形成を真空熱処理炉により行 ラ o
表 4は、 本発明の実施による評価結果と従来技術の実施による評価結果を比較 した表であり、 評価方法として、 表面粗さ、 ビッカース硬度、 結晶粒の大きさを 採用した。 最大高さは表面粗さ計により、 ビッカース硬度は微小硬さ試験機によ り、 結晶粒の大きさは、 電子顕微鏡による表面観察により行った。 保護膜を形成 した試料に関する評価結果は、 最大高さで 3 0 0 n m以下であり、 かつ表面硬度 1 2 0 0以上を有するものに関して合格と した。
表 4の Aは、 未処理の J I S 2種純チタンサンプルであり、 表 1 の Bは従来枝 術の実施による評価結果、 Cは保護膜の形成をした後に硬化層を形成した本発明 の実施による評価結果である。 表 1の Aと Bより、 従来技術の実施による表面荒 れは、 最大高さ R m a xで未処理時の純チ夕ンサンプルが 1 0 0 n mであるのに 対して、 6 0 0 n mと大きくなっているのが分かる。 一方、 表 1の Aとじより、 本発明の実施による表面粗さは、 2 0 0 n mと従来技術より低く なっていること が分かる。 また、 結晶粒の大きさは、 従来技術では 8 0〜 2 0 0 mと粗大化す るのに対して、 本発明の実施により、 2 0〜5 0 と小さくすることが可能と なった。 最大高さは、 これまでの説明の中の結晶粒界部の隆起に相当しており、 本発明の最大高さが低いのは、 本発明の結晶粒が小さいことに起因した効果であ ると考えられる。
ここでは、 チタン装飾部材と して J I S 2種の純チタン部材を例にとって説明 を行ったが、 J I S 1種純チタン部材、 J I S 3種純チタン部材、 チタン基を含 むチタ ン合金部材にも適用可能である。 また、 ここでの処理面については特に 限定せず、 研磨面、 ホ一ニング処理を行ったホーニング面、 ショ ッ 卜ピーニング 面、 ヘアーライ ン面等の比較的表面が荒れている面のいずれも適用可能である。 ここでは保護膜と して T i膜を選択したときについて説明を行ったが、 保護膜 形成は、 保護膜の種類により形成方法を蒸着法、 スパッ タ リ ング法、 プラズマ C V D法、 スパッタ D C法の中から選択することによって、 T i 〇 2 膜、 T i N 膜にも適用可能である。 さらにここでは、 硬化層形成用のガスと して窒素ガスを 用いて説明を行ったが、 N 0 2 、 N O、 N 2 〇等の酸窒化用ガスにも適用される。 次に、 本発明に於ける硬化処理方法の別の具体例に付いて実施例 6と して説明 する。
実施例 6
即ち、 本具体例は、 チタ ン装飾部材の表面に 0 . 1〜 6 0 mの結晶粒を有す る保護膜を形成する工程と、 チタン部材を不活性ガス雰囲気で昇温加熱する工程 と、 窒素と水蒸気の雰囲気で 7 0 0 °C以上の処理温度に加熱する第一の硬化処理 工程と、 アルゴン, ヘリウム等の不活性ガスの雰囲気で 7 0 0 °C以上の処理温度 に加熱する第二の雰囲気調節処理工程と不活性ガス雰囲気で冷却する工程とから なるチタン部材を硬化してなるチタン硬化部材の硬化処理方法である。
具体的には、 チ夕 ン装飾部材と して、 形状が 2 5 m m X 2 5 m mの J I S 2種 の純チタンを用いた。 処理面は研磨が施してあり、 表面粗さは、 最大高さ R m a X値で 5 0 n m以下であった。 第 8図に示したように未処理の結晶粒の大きさは 6 0〜 1 0 0 mのほぼ等大の均一組織である。 保護膜と して T i膜を形成する ために、 R Fスパッ タ リ ング装置を用いた。 R Fターゲッ トに高純度の純チタン 夕一ゲッ トを用い、 導入ガスは、 超高純度のアルゴンガスを用いた。 試料は、 R Fスパッタ装置内の R F夕一ゲッ 卜に対向させて配置した。 真空排気用のポンプ により、 1 X 1 0 - 5 t o r r以下の減圧雰囲気下に排気した後、 高純度アルゴ ンガスを流量計により一定流量で導入し、 処理槽内を 0 . 0 0 1 t o r i-程度と する。 その後、 1 3 . 5 6 M H zの高周波電力を純チタ ン夕一ゲッ 卜に印加し、 あらかじめ算出した成膜レー 卜から、 膜の厚さが 3 . 0 mになるように組織の 微細な T i膜を形成した。
このとき、 1〜5 0 / mの微細な組織の丁 i膜を形成するためには、 純チタ ン サンプルの表面温度のコン トロールが重要となる。
本具体例では、 膜形成時の純チタンサンプルの表面温度が、 0〜 5 0 °Cとなる ように積極的に水冷する方式を採用した。 表面が 5 0 °C以上の温度となると、 純 チタンサンプル自体すなわち下地自体の結晶粒の影響を受ける。 すなわち、 0 . 1〜 6 0 / m程度の微細な組織を有する結晶粒は得られず、 6 0 m以上の結晶 粒となる。
第 3図の硬化処理方法の工程を示した概念図に従えば、 まず、 真空排気工程 2 8では、 処理槽 6内を真空排気装置 1 6により排気し、 】 X 1 0 5 t o r r以 下の減圧雰囲気と した。 ガス導入口 8よりアルゴン、 ヘリ ウムといった不活性ガ スを一定量導入し、 導入ガス量と排気量を調節して処理槽 6内を 0 . 1 t 0 r r の減圧下の不活性雰囲気とした。 そして昇温工程 3 0で示した様に、 保護膜付き のチタ ン部材 2を加熱手段 1 2により加熱し、 硬化処理温度 7 0 0 °Cまで昇温し た。 第一の硬化処理工程 3 2においては、 ガス導入口 8から純窒素及び窒素に微 量の水蒸気を含有させた混合ガスを導入し、 導入ガス量と排気量を調節 0 . 1 t 0 r rの窒素と微量の水蒸気の雰囲気と した。 窒素に対する水蒸気の割合は約 4 0 0 0 p p mと した。 そして、 硬化処理温度を一定に保ったまま、 約 3時間保持 した。 その後、 処理槽内を再び減圧下の不活性ガス雰囲気と して、 約 0 . 5時間 保持し第二の雰囲気調節処理工程を行った。 そして、 不活性雰囲気と したまま冷 却し、 チタン装飾部材の表面が酸化しない温度に到達したら、 処理を完了して試 料を取り出した。
以上のように、 チタン部材の表面を硬化した硬化層を有するチタン硬化部材で あって、 表面の硬化層が窒素、 酸素からなる元素を含有し、 表面の結晶粒の大き さが 0 . 1〜6 0 mであることを特徴としたチタン装飾部材及び表面粗さ R m a Xが 1 0 0 0 n m以下の表面であることを特徴とするチタン装飾部材であり、 その硬化処理方法はチタン部材を不活性ガス雰囲気で昇温加熱する工程と、 窒素 と酸素を含む雰囲気で 7 0 0 °C以上の処理温度に加熱する第一の硬化処理工程と、 アルゴン, ヘリ ウム等の不活性ガスの雰囲気で 7 0 0 °C以上の処理温度に加熱す る第二の雰囲気調節処理工程と不活性ガス雰囲気で冷却する工程とからなるチタ ン部材を硬化してなるチタン硬化部材の硬化処理方法を行うことにより、 表面粗 さが小さく、 表面の外観品質が劣化しないチタン硬化部材が得られた。
より具体的には、 表面が硬化された硬化層を有するチタン装飾部材において、 チタ ン装飾部材の表面に 0 . ] ~ 6 0 mの微細な結晶粒を有する保護膜を形成 する工程と減圧下の窒素と酸素を含む雰囲気で、 チタン装飾部材を加熱すること により、 硬化層を形成する工程をとることにより、 表面荒れを小さ く したまま硬 化処理することが可能となった。 これによつて、 チタン部材自体の硬化処理を行 つた後でも、 外観品質の劣化がなく 、 特に装飾部材にも適用することができるよ うになつた。
表 1
番 処理 使用ガス 耐 硬 結 表 号 材 n m度 傷 度 晶 面 m
- 性 粒 粗 結 試 大 さ 果 驗 さ
さ a «T i 2種未処理 X X 小 o X b HT i 2種 6 5 0 N2 + H ,0 X X 小 o X c «T i 2種 7 0 0 N2 + H ,0 〇 〇 小 〇 〇 d 純 T i 2種 7 5 0 N2 + H zO 〇 〇 小 〇 〇 e «T i 2種 8 0 0 N 2 + H aO o 〇 小 〇 〇 f 純 T i 2種 8 5 0 N, + H 〇 〇 大 X X
«T i 2種 9 0 0 N2 + H 〇 〇 大 X X
11 W T 1 i 1 ク趣慣 N, 太 X X i «Τ i 2種未処理 X X 大 〇 X
J 純 T i 2種 6 5 0 N2 + H X X 大 Δ X k «T i 2種 7 0 0 N 2 + H 〇 〇 大 X X
1 6T i 2種 7 5 0 N + H 〇 〇 大 X X m >6T i 2種 8 0 0 N2 + H ,0 〇 〇 大 X X n *6 T i 2種 8 5 0 N2 + H 〇 o 大 X X o 崦 T i 2種 9 0 0 N2 + H 〇 〇 大 X X
P 純 T i 2種従来 N, o 〇 大 X X 表 2
番 処理 第一硬化処 耐 m 結 表 評 号 材 質 度 理工程に用 傷 度 晶 面 優
CC) いたガス種 性 粒 粗 結 試 大 さ 果 さ さ q 純 T i 4種相当未処理 X X 小 〇 X r 純 T i 4種相当 6 5 0 Ν,+ HaO X X 小 〇 X s «T i 4種相当 7 0 0 N2+ H 20 〇 〇 小 〇 〇 t «Τ i 4種相当 8 5 0 Ν2+ Η ,0 O 〇 大 X X u 純 T i 4種相当 9 0 0 ΝΪ+ Η 20 〇 〇 大 X X
V «Τ i 4種相当従来 Ν2 〇 〇 大 X X w Ti-4.5A1-3V-2MO未 ½理 Δ X 小 o 厶
X Ti-4.5Al-3V-2Mo 6 5 0 Ν2+ Η 20 △ X 小 〇 Δ y Ti-4.5Al-3V-2Mo 7 0 0 Ν 2+ H QO 〇 〇 小 o 〇 z Ti-4.5Al-3V-2Mo 8 5 0 Ν2+ Η JO 〇 〇 大 X X a a Ti-4.5Al-3V-2Mo 9 0 0 Na + Η ϊθ 〇 〇 大 X X ab Ti-4.5Al-3V-2Mo従来 Ν2 〇 〇 大 X X a c Ti-3Al-2.5V 未 ft理 X X 小 〇 X ad ΤΪ-3Α1-2.5V 6 5 0 Ν2+ ΗιΟ X X 小 〇 X a e Ti-3Al-2.5V 7 0 0 Ν2+ Η jO 〇 〇 小 〇 o a f Π-3Α1-2.5V 8 5 0 Ns+ Ha0 〇 〇 大 X X a g Π-3Α1-2.5V 9 0 0 Ν 2+ Η 2Ο X X 大 X X ah Ti-3Al-2.5V 従来 Ν2 X X 大 X X 表 3
番 処理 第一硬化処 耐 硬 結 表 総 号 材 質 濾度 理工程に用 傷 度 晶 面 合
( ) いたガス種 性 粒 粗 評 試 サ さ 価 験 ィ
ズ a 1 ητ i 2種 7 0 0 Na+ 0 〇 X 小 O Δ am m i 2種 8 0 0 N2 + 0 〇 〇 小 〇 〇 a n 純 T i 2種従来 N2+ 0 Ϊ 〇 〇 大 X X a r >6T i 2種 7 0 0 Ar + Na0 〇 〇 小 〇 O a s *6T i 2種 7 0 0 Ar + NO 〇 〇 小 〇 〇 a t «Τ i 2種 7 0 0 Ar + N02 〇 〇 小 〇 〇
表 4
βϊλ iS 結晶粒の
ビヅカース R m a x 大きさ 評価結果 mm \ nm ) ( um)
A«理する前 180 1 0 0 50〜: I 00
B従来の実 K結果 1350 6 0 0 80—2 00 X
D本発明の実 Λ結果 1500 2 0 0 2 0〜5 0 O (蔆化膽形成後)

Claims

請求の範囲
1 . チタン部材の表面を硬化した硬化層を有するチタ ン硬化部材であって、 表面 の硬化層が窒素、 酸素からなる元素を含有し、 表面の結晶粒の大きさが 0 . 1〜 6 0 / mであることを特徴と したチタン装飾部材。
2 . 表面粗さ R m a xが 1 0 0 0 n m以下の表面であることを特徴とする請求の 範囲第 1項記載のチタン装飾部材。
3 . チタン部材を不活性ガス雰囲気で昇温加熱する工程と、 窒素と酸素を含む第 1の雰囲気で 7 0 0 °C以上の処理温度に加熱する第一の硬化処理工程と、 ァルゴ ン, ヘリ ゥム等の不活性ガスの雰囲気で 7 0 0 °C以上の処理温度に加熱する第 2 の雰囲気調節処理工程と不活性ガス雰囲気で冷却する工程とからなるチタ ン部材 を硬化してなるチタン硬化部材の硬化処理方法。
4 . チタン装飾部材の硬化処理方法において、 チタン装飾部材の表面に 0 . 1 〜 6 0 mの結晶粒を有する保護膜を形成する工程と、 チタ ン部材を不活性ガス雰 囲気で昇温加熱する工程と、 窒素と酸素を含む第 1 の雰囲気で 7 0 0 °C以上の処 理温度に加熱する第一の硬化処理工程と、 アルゴン, ヘリ ウム等の不活性ガスの 雰囲気で 7 0 0 °C以上の処理温度に加熱する第 2の雰囲気調節処理工程と不活性 ガス雰囲気で冷却する工程とからなるチタン部材を硬化してなるチタン硬化部材 の硬化処理方法。
5 . 当該第 1 の雰囲気が、 窒素と酸素若しく は窒素と水蒸気である事を特徵とす る請求範囲第 3項又は第 4項記載のチタン硬化部材の硬化処理方法。
PCT/JP1997/002513 1996-07-18 1997-07-18 Element decoratif a base de titane et procede de durcissement dudit element WO1998003693A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP50679798A JP3225263B2 (ja) 1996-07-18 1997-07-18 チタン装飾部材及びその硬化処理方法
EP97930850A EP0931848B1 (en) 1996-07-18 1997-07-18 Titanium-base decoration member and method for curing the same
DE69731101T DE69731101T2 (de) 1996-07-18 1997-07-18 Dekorationsteil aus titanbasis und verfahren zum härten
US09/230,131 US6451129B2 (en) 1996-07-18 1997-07-18 Titanium-base decoration member and method for curing the same
BR9710379A BR9710379A (pt) 1996-07-18 1997-07-18 Material decorativo de tit-nio e m-todo de endurecimento para o mesmo
AU34629/97A AU3462997A (en) 1996-07-18 1997-07-18 Titanium-base decoration member and method for curing the same
HK00101668A HK1026926A1 (en) 1996-07-18 2000-03-20 Titanium-base decoration member and method for curing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/189110 1996-07-18
JP18911096 1996-07-18
JP6626397 1997-03-19
JP9/66263 1997-03-19

Publications (1)

Publication Number Publication Date
WO1998003693A1 true WO1998003693A1 (fr) 1998-01-29

Family

ID=26407444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002513 WO1998003693A1 (fr) 1996-07-18 1997-07-18 Element decoratif a base de titane et procede de durcissement dudit element

Country Status (10)

Country Link
US (1) US6451129B2 (ja)
EP (1) EP0931848B1 (ja)
JP (1) JP3225263B2 (ja)
KR (1) KR100494751B1 (ja)
CN (1) CN1333102C (ja)
AU (1) AU3462997A (ja)
BR (1) BR9710379A (ja)
DE (1) DE69731101T2 (ja)
HK (1) HK1026926A1 (ja)
WO (1) WO1998003693A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045535A (ja) * 2018-09-20 2020-03-26 Ntn株式会社 機械部品

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9715175D0 (en) * 1997-07-19 1997-09-24 Univ Birmingham Method of case hardening
US6720089B2 (en) * 2002-02-12 2004-04-13 Architectural Titanium Llc Decorative architectural titanium panels and method of fabrication thereof
KR100771018B1 (ko) * 2002-04-08 2007-10-29 주식회사 만도 전자제어식 브레이크 시스템의 펌프
JP3930420B2 (ja) * 2002-11-20 2007-06-13 愛三工業株式会社 チタン部材の表面処理方法
US20140141698A1 (en) * 2012-11-16 2014-05-22 Chi-Hung Su Surface treating method for a golf club head
US9127343B2 (en) * 2012-11-16 2015-09-08 Chi-Hung Su Surface treating method for a golf club head
KR101454514B1 (ko) 2012-11-30 2014-10-23 주식회사 포스코 티타늄 판재의 열처리방법 및 열처리장치
WO2016084980A1 (ja) * 2014-11-28 2016-06-02 新日鐵住金株式会社 チタン合金部材およびチタン合金部材の製造方法
EP3192737B1 (en) * 2016-01-14 2020-12-02 Safran Landing Systems UK Limited Shock strut
US11060175B2 (en) * 2016-06-02 2021-07-13 Danmarks Tekniske Universitet Case hardened component of titanium
CN106637049A (zh) * 2017-01-03 2017-05-10 中山源谥真空科技有限公司 一种纯钛或钛合金及其表面硬化方法
JP6911651B2 (ja) * 2017-08-31 2021-07-28 セイコーエプソン株式会社 チタン焼結体、装飾品および時計
US11661645B2 (en) 2018-12-20 2023-05-30 Expanite Technology A/S Method of case hardening a group IV metal
EP4018011A1 (en) * 2019-08-23 2022-06-29 Danmarks Tekniske Universitet Low temperature titanium hardening
CN111270198A (zh) * 2020-03-27 2020-06-12 广东省新材料研究所 一种钛合金离子渗氮方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5837383B2 (ja) * 1980-02-18 1983-08-16 住友金属工業株式会社 チタンおよびチタン合金ストリツプの連続焼鈍法
JPS5910429B2 (ja) * 1977-03-30 1984-03-08 シチズン時計株式会社 チタンおよびチタン合金の表面硬化法
JPS6169956A (ja) * 1984-09-14 1986-04-10 Citizen Watch Co Ltd チタンの表面硬化処理方法
JPS6221865B2 (ja) * 1980-04-18 1987-05-14 Ebara Mfg
JPH0641715A (ja) * 1992-05-25 1994-02-15 Nippon Steel Corp チタン合金バルブの製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD146556B1 (de) 1979-09-19 1982-09-29 Wilm Heinrich Hochverschleissfeste teile,insbesondere fuer misch-und mahlaggregate und verfahren zu ihrer herstellung
JPS5837383A (ja) 1981-08-26 1983-03-04 Matsushita Electric Ind Co Ltd 流量制御装置
JPS5910429A (ja) 1982-07-09 1984-01-19 Sanden Corp 電磁クラツチロ−タの成形方法
JPS6221865A (ja) 1985-07-22 1987-01-30 株式会社 山東鉄工所 布帛の連続樹脂加工方法
DE3705710A1 (de) * 1986-02-24 1987-08-27 Ohara Co Verfahren zum nitrieren der oberflaeche von formteilen aus titan und vorrichtung zur nitrierbehandlung
JPS63210286A (ja) 1987-02-26 1988-08-31 Mitsubishi Heavy Ind Ltd Ti合金の耐水素脆化処理方法
US5316594A (en) * 1990-01-18 1994-05-31 Fike Corporation Process for surface hardening of refractory metal workpieces
JP3022015B2 (ja) 1991-12-26 2000-03-15 新日本製鐵株式会社 チタン合金バルブの製造方法
KR100301677B1 (ko) 1996-03-26 2001-11-22 하루타 히로시 티타늄또는티타늄합금부재와그표면처리방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5910429B2 (ja) * 1977-03-30 1984-03-08 シチズン時計株式会社 チタンおよびチタン合金の表面硬化法
JPS5837383B2 (ja) * 1980-02-18 1983-08-16 住友金属工業株式会社 チタンおよびチタン合金ストリツプの連続焼鈍法
JPS6221865B2 (ja) * 1980-04-18 1987-05-14 Ebara Mfg
JPS6169956A (ja) * 1984-09-14 1986-04-10 Citizen Watch Co Ltd チタンの表面硬化処理方法
JPH0641715A (ja) * 1992-05-25 1994-02-15 Nippon Steel Corp チタン合金バルブの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0931848A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020045535A (ja) * 2018-09-20 2020-03-26 Ntn株式会社 機械部品

Also Published As

Publication number Publication date
CN1229441A (zh) 1999-09-22
AU3462997A (en) 1998-02-10
EP0931848A4 (en) 2001-10-24
EP0931848A1 (en) 1999-07-28
HK1026926A1 (en) 2000-12-29
BR9710379A (pt) 1999-08-17
US20010053460A1 (en) 2001-12-20
KR100494751B1 (ko) 2005-06-13
JP3225263B2 (ja) 2001-11-05
DE69731101D1 (de) 2004-11-11
KR20000067920A (ko) 2000-11-25
EP0931848B1 (en) 2004-10-06
DE69731101T2 (de) 2006-02-23
CN1333102C (zh) 2007-08-22
US6451129B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
WO1998003693A1 (fr) Element decoratif a base de titane et procede de durcissement dudit element
JP3179787B2 (ja) チタンまたはチタン合金部材とその表面処理方法
CN109306446B (zh) 一种钛或钛合金部件及其表面硬化方法
CN111441025B (zh) 一种耐腐蚀高熵合金薄膜、制备方法及其在海水环境下的应用
CN110565047A (zh) 一种钛合金表面渗氮工艺
CN117867447A (zh) 一种硬质高熵合金氮化物薄膜材料及其制备方法
EP1146136A1 (en) Ornament and method for preparation thereof
JP4664465B2 (ja) 硬質装飾被膜を有する基材
JP3898288B2 (ja) チタン硬化部材及びその硬化処理方法
JPWO2017170324A1 (ja) 装飾部材およびその製造方法
JP2001081544A (ja) チタン、あるいはチタン合金製食器およびその表面処理方法
WO2018128160A1 (ja) 合金部材およびその表面硬化方法
CN114941122A (zh) 一种医疗器械用高硬度TiTaCrMoNbNx高熵合金薄膜及其制备方法
JP4668442B2 (ja) 硬質層を有する装飾部材
JP2000096208A (ja) チタン製ゴルフクラブ部材とその硬化処理方法
JPH10195612A (ja) 金属装飾部材の硬化処理方法
CN213447263U (zh) 钛部件
JP7320979B2 (ja) チタン部材の製造方法
JP2972878B1 (ja) チタン酸化物の厚被膜を有するチタン系金属材料及びその製造方法
JPH04200557A (ja) 生体用インプラント材料
JPS6172634A (ja) ガラス製品成形用金型
JPH10237619A (ja) 金属装飾部材の硬化処理方法
JP2000144356A (ja) 部材の硬化処理方法
JPH1192911A (ja) チタン硬化部材の硬化処理方法
JP3319217B2 (ja) 光学レンズ用金型およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97197692.9

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AU BA BB BG BR CA CN CU CZ EE GE GH HU IL IS JP KR LC LK LR LT LV MG MK MN MX NO NZ PL RO SG SI SK SL TR TT UA US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019997000378

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09230131

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997930850

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997930850

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: CA

WWP Wipo information: published in national office

Ref document number: 1019997000378

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997930850

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997000378

Country of ref document: KR