WO2018128160A1 - 合金部材およびその表面硬化方法 - Google Patents
合金部材およびその表面硬化方法 Download PDFInfo
- Publication number
- WO2018128160A1 WO2018128160A1 PCT/JP2017/047224 JP2017047224W WO2018128160A1 WO 2018128160 A1 WO2018128160 A1 WO 2018128160A1 JP 2017047224 W JP2017047224 W JP 2017047224W WO 2018128160 A1 WO2018128160 A1 WO 2018128160A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium
- alloy member
- diffusion layer
- gas
- curing
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/02—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
- C22F1/183—High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/06—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
- C23C8/08—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
- C23C8/10—Oxidising
- C23C8/12—Oxidising using elemental oxygen or ozone
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/80—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
Definitions
- the present invention relates to an alloy member and a surface hardening method thereof.
- Titanium or titanium alloys are used in decorative items such as luxury watches, accessories, and eyeglass frames.
- titanium materials are used in decorative items such as luxury watches, accessories, and eyeglass frames.
- the surface hardness of the titanium material is low, the surface is easily scratched, and when used for a long time, the glossiness decreases and the appearance quality deteriorates. Therefore, in order to improve the surface hardness of the titanium material and maintain the glossiness and appearance quality, the surface of the titanium material may be cured.
- the finished oxide layer is gray, has no metallic luster, and the surface is rough, and post-treatment is required when used for decorative products.
- the vacuum diffusion treatment is further performed after the atmospheric thermal oxidation treatment, the crystal grains are coarsened, the surface glossiness is lowered, and the polishing treatment is difficult.
- the vacuum thermal oxynitridation diffusion treatment method can improve the coarsening of the crystal grains and the surface roughness, but if the ratio of nitrogen and oxygen or water vapor or the temperature of the heat treatment cannot be adjusted well, the surface of the titanium member Discolored and roughened.
- Patent Document 1 and Patent Document 2 disclose the above-described vacuum thermal oxynitridation diffusion treatment method. Although solid solution of nitrogen and oxygen can improve the surface hardness of the material, it is obtained by solid solution of nitrogen. Due to the high hardness value thus obtained, the adhesion of the subsequent deposited film is relatively lowered, and when nitrogen is introduced, the surface of the titanium material is easily discolored and roughened, and the appearance quality of the titanium material is lowered.
- the present invention has been made in view of the above problems, and one object thereof is to provide an alloy member having a high surface hardness and a high glossiness and capable of maintaining a good appearance, and a surface hardening method thereof. It is to be.
- the alloy member according to the first aspect of the present invention includes a titanium or titanium alloy base material, and a hardened layer formed by diffusing oxygen into the surface of the base material.
- the alloy member according to the second aspect of the present invention includes a titanium or titanium alloy base material and a hardened layer formed by diffusing nitrogen and oxygen into the surface of the base material.
- the hardened layer includes a surface transparent oxide layer and a diffusion layer located inside the surface transparent oxide layer.
- the diffusion layer is thicker than the surface transparent oxide layer.
- the hardened layer includes a surface transparent oxide layer, an external diffusion layer, and an internal diffusion layer sequentially from the surface of the base toward the inside, and the external diffusion layer is transparent to the surface of the base.
- a hardness of 300 Hv or more is configured, and the internal diffusion layer is configured of a region of the substrate having a hardness of 300 Hv or less.
- the surface transparent oxide layer is thinner than the outer diffusion layer and the inner diffusion layer.
- the outer diffusion layer has a higher concentration of dissolved oxygen than the inner diffusion layer, In the internal diffusion layer, the concentration of dissolved oxygen gradually decreases from the outside to the inside.
- the outer diffusion layer has a higher concentration of dissolved oxygen and nitrogen than the inner diffusion layer, In the internal diffusion layer, the concentration of dissolved oxygen and nitrogen gradually decreases from the outside to the inside.
- the titanium or titanium alloy member is used as an exterior part of a watch or a watch.
- the exterior part includes a bezel, a center, a back lid, and a band.
- the method of surface hardening of the titanium or titanium alloy member according to the third aspect of the present invention includes a heating step of heating the titanium or titanium alloy base material of the member to a predetermined temperature under an inert gas atmosphere, A curing step of introducing a mixed gas containing an inert gas and an oxygen gas as a curing process gas at the predetermined temperature to perform a curing process on the surface of the substrate; and under an inert gas atmosphere. And a cooling step of cooling the substrate to room temperature.
- the curing process gas further includes nitrogen gas.
- the curing process gas is introduced and the curing process is performed after a predetermined time has elapsed since the introduction of the mixed gas.
- the curing gas is introduced simultaneously with the introduction of the mixed gas, and the curing treatment is performed.
- the curing gas is introduced and stopped repeatedly.
- the mixed gas includes an inert gas and hydrogen gas.
- the method further includes a hydrogen removal step of removing hydrogen by introducing an inert gas after the curing step.
- the hydrogen removal step is performed at a higher temperature than the curing step.
- the surface of the titanium or titanium alloy base material has a hardened layer formed by diffusing oxygen, the base material is effectively protected, high surface hardness is obtained, and high glossiness is obtained. In addition, a good appearance can be maintained.
- the surface of the titanium or titanium alloy base material has a hardened layer formed by diffusing nitrogen and oxygen, so that the base material is effectively protected.
- surface hardness can be obtained, and high glossiness and good appearance can be maintained.
- a hardened layer is formed on the surface of the titanium or titanium alloy base material, high surface hardness is obtained, high glossiness and good appearance. Can be maintained.
- SEM scanning electron microscope
- FE-EPMA-WDS electron probe microanalysis
- FIG. 1 is a schematic diagram of the structure of a titanium or titanium alloy member according to the first embodiment of the present invention.
- a pure titanium or titanium alloy member 10 shown in FIG. 1 includes a base material 1 made of pure titanium or a titanium alloy, and a hardened layer 2 formed by diffusing oxygen into the surface of the base material 1 is provided on the surface of the base material 1.
- the hardened layer 2 includes a surface transparent oxide layer 3 and a diffusion layer 4.
- the surface transparent oxide layer 3 is thinner than the diffusion layer 4.
- the thin transparent oxide layer 3 suppresses discoloration due to light interference.
- the thickness of the transparent oxide layer 3 greatly affects the appearance of the surface of the substrate 1. If the transparent oxide layer 3 is too thick, an interference phenomenon due to visible light occurs, and the color of the surface changes as the thickness changes.
- the film thickness of the transparent oxide layer 3 is less than 10 nm, the surface of the substrate 1 has a metallic luster, and when the film thickness of the transparent oxide layer 3 is 10 to 25 nm, the surface of the substrate 1 is examined.
- the transparent oxide layer 3 has a thickness of 25 to 70 nm, the surface of the substrate 1 becomes blue, and when the transparent oxide layer 3 has a thickness of 70 to 150 nm, The surface becomes bluish purple.
- the thickness of the surface transparent oxide layer 3 is suppressed to 10 nm or less in order to obtain good metallic luster and maintain high glossiness.
- oxygen diffuses into the substrate 1 and is dissolved.
- phase transition temperature of titanium varies.
- An element that raises the ⁇ / ⁇ phase conversion temperature of titanium is called an ⁇ phase stable element of titanium.
- Oxygen is an ⁇ -phase stable element of titanium and has a high solid solubility in the titanium base material. When oxygen is dissolved in titanium, the ⁇ / ⁇ phase conversion temperature of titanium is greatly improved, and the hardness of titanium is remarkably improved.
- the diffusion layer 4 in which oxygen is diffused and solid-solved mainly constitutes the hardened layer 2 and improves the surface hardness of the pure titanium or titanium alloy member 10.
- a region of the hardened layer 2 having a thickness of about 10 ⁇ m or more was observed on the surface of the substrate 1.
- FIG. 3 shows the results of oxygen measurement by electron probe microanalysis (FE-EPMA-WDS) of a cross section of pure titanium or a titanium alloy member 10 according to Embodiment 1 of the present invention.
- the oxygen concentration is high in the region of the hardened layer 2 on the surface of the substrate 1. This indicates that the surface transparency 3 and the diffusion layer 4 in the hardened layer 2 contain a high concentration of oxygen.
- Table 1 shows an example of the relationship between the depth and hardness of the hardened layer 2 of the pure titanium or titanium alloy member 10 in the present embodiment.
- the hardness of the hardened layer 2 of the pure titanium or the titanium alloy member 10 was measured as follows.
- the surface of pure titanium or titanium alloy member 10 has the highest hardness, reaching about 600 Hv, and is sufficiently high for actual use. As it advances into the interior of the pure titanium or titanium alloy member 10, the hardness decreases, and at a very deep depth, the hardness decreases to the same level as the base material 1 of the pure titanium or titanium alloy member 10.
- the hardened layer 2 is defined as a region below the surface of the substrate 1 and having a hardness of 200 Hv or more. As shown in Table 1, in the present embodiment, the hardened layer 2 is a region where the depth below the surface of the substrate 1 is about 25 ⁇ m, and the hardness of this region is high.
- FIG. 4 is a schematic view of another structure of titanium or a titanium alloy member according to the first embodiment of the present invention.
- pure titanium or a titanium alloy member 10 includes a base material 1 made of pure titanium or a titanium alloy, and a hardened layer 2 is formed on the surface of the base material 1.
- a transparent oxide layer 3, an outer diffusion layer 5, and an inner diffusion layer 6 are included.
- the outer diffusion layer 5 is formed from a region having a hardness of 300 Hv or more inside the surface transparent oxide layer 3, and the inner diffusion layer 6 is formed from a region having a hardness of 300 Hv or less.
- the concentration of dissolved oxygen is high, and the thickness of the outer diffusion layer 5 greatly affects the surface hardness of the substrate 1.
- the outer diffusion layer 5 is a region from the inside of the surface transparent oxide layer 3 to the depth of the substrate 1 of about 15 ⁇ m.
- the dissolved oxygen concentration gradually decreases from the outside to the inside, and the hardness gradually decreases from 300 Hv to the same level as the base material 1 of the pure titanium or titanium alloy member 10.
- the inner diffusion layer 6 is a region having a depth from the surface of the outer diffusion layer 5 up to about 25 ⁇ m.
- the pure titanium or titanium alloy member 10 of the present embodiment has a uniformly white surface, little color unevenness, and no discoloration.
- the color difference in the surface gloss state is expressed by the E * ab value of CIE 1976 (L * , a * , b * ), and E * ab ⁇ 1. It was 0 and it was found that there was little color unevenness. That is, in the present embodiment, the surface hardness of the pure titanium or titanium alloy member 10 is high, and the metal glossiness is also high.
- Table 2 shows a comparison of the surface glossiness of the pure titanium or titanium alloy member 10 before and after the hardened layer 2 is formed on the surface of the pure titanium or titanium alloy member 10 in this embodiment.
- the L * value represents the brightness, and the higher the L * value, the higher the brightness.
- the a * value represents a reddish or greenish color, and the a * value is a positive value. The larger the value, the more red the color is, and the smaller the negative value, the greener the color is. I'm going
- the b * value is a positive value, the larger it is, the more yellow it is, and the negative value, the smaller it is, the color becomes bluish.
- the pure titanium or titanium alloy member 10 of the present embodiment has the same surface glossiness as that of metal titanium, although the transparent oxide layer 3 is formed on the surface and oxygen is diffused. It turns out that it has. That is, the pure titanium or titanium alloy member 10 of the present embodiment has a high hardness while maintaining a high appearance while maintaining a high hardness by forming the hardened layer 2.
- the pure titanium or titanium alloy member 10 of the present embodiment is used as an exterior part of a watch or watch. Further, the exterior parts include a bezel, a center, a back lid, a band, and the like.
- the pure titanium or titanium alloy member 10 of the present embodiment may be used as a decorative part such as a fastener, a spectacle frame, a ring, a bracelet, or the like.
- the pure titanium or titanium alloy member 10 of this embodiment can also be used as a component of a base material that requires titanium or a titanium alloy member such as tableware or a golf club.
- the present embodiment relates to a surface hardening method for pure titanium or a titanium alloy.
- FIG. 5 is a flowchart showing a method of hardening a titanium or titanium alloy member according to the second embodiment of the present invention.
- step S1 evacuation is performed. Specifically, the cleaned titanium or titanium alloy substrate is put into a kettle, and the kettle is vacuumed for at least 30 minutes. Here, vacuuming is performed until the degree of vacuum is 5 ⁇ 10 ⁇ 4 Pa or less.
- the cleaned titanium or titanium alloy substrate is cleaned with ultrasonic waves after the substrate is processed. Moreover, a grinding
- step S2 the titanium or titanium alloy substrate is heated to a predetermined temperature while introducing an inert gas into the vacuum kettle.
- an inert gas is continuously introduced during heating.
- the inert gas is, for example, argon gas or helium gas.
- the predetermined temperature is 600 to 800 ° C., and preferably 650 to 750 ° C.
- the heating temperature exceeds 750 ° C., it is easy to cause grain growth on the surface of pure titanium and titanium alloy, the roughness of the substrate surface increases, the glossiness decreases, and the appearance quality of the substrate may decrease. is there.
- the heating temperature is less than 650 ° C., the diffusion rate of the gas to the base material becomes slow, the curing treatment time becomes long, and the curing efficiency may be lowered.
- the temperature range of 650 ° C. to 750 ° C. is the recrystallization temperature of pure titanium or titanium alloy, and the base material is resistant to internal stress and crystal grains generated through processes such as forging, cutting, polishing, and polishing. Useful for resolving.
- step S3 after the temperature of the vacuum kettle rises to the predetermined temperature and stabilizes, further vacuuming is performed for at least 5 minutes to increase the degree of vacuum.
- step S4 the predetermined temperature is maintained for a certain period of time, a mixed gas of an inert gas, for example, a mixed gas of argon gas and hydrogen gas is introduced into the vacuum kettle, and a curing process is performed after a predetermined time.
- Oxygen gas is introduced as a gas and a curing process is performed for at least 60 minutes.
- the solid solution amount of oxygen gas is prevented from rapidly accumulating on the surface of titanium, the oxide layer on the substrate surface is prevented from becoming thick, Increase the diffusivity in the substrate.
- oxygen gas may be introduced intermittently. That is, after a certain period of time has passed since the introduction of oxygen gas, the supply of oxygen gas is stopped, and after a certain period of time has elapsed, oxygen gas is introduced again. In this way, oxygen is intermittently supplied. Inert oxygen and hydrogen gas are continuously introduced during intermittent oxygen supply.
- the surface of the base material is likely to be excessively oxidized, but if oxygen is supplied intermittently, oxygen will intermittently enter the base material to prevent excessive oxidation of the base material surface. Furthermore, the thickness of the transparent oxide layer formed on the substrate surface can be suppressed, and the transparent oxide film on the substrate surface is prevented from becoming thick.
- the thickness of the transparent oxide film is suppressed to 10 nm or less by the curing method of the present embodiment, discoloration can be avoided due to light interference, and the metallic gloss of the surface of the pure titanium or titanium alloy member 10 can be maintained.
- the oxygen gas may be continuously supplied without being intermittently introduced.
- oxygen gas may be introduced simultaneously with the mixed gas of the inert gas and the hydrogen gas, instead of being introduced after the mixed gas of the inert gas and the hydrogen gas.
- the mixed gas of inert gas, oxygen gas, and hydrogen gas has a total gas pressure of 9 ⁇ 10 ⁇ 4 Pa to 5 ⁇ 10 ⁇ 1 Pa, and the oxygen gas content is 1000 ppm in the total pressure. Occupies ⁇ 15000 ppm and the amount of hydrogen occupies 1000 ppm to 50,000 ppm in the total pressure.
- step S5 the supply of the inert gas and the mixed gas of hydrogen gas is stopped so that the hydrogen gas that has entered the titanium or titanium alloy base material treated as described above is removed, and An inert gas is introduced for 30 minutes or more while maintaining the temperature.
- the degree of vacuum is set to 1 ⁇ 10 ⁇ 3 to 5 ⁇ 10 ⁇ 1 Pa.
- the introduced inert gas is, for example, argon gas or helium gas.
- the temperature of the vacuum pot is higher than the temperature of the curing process (step S4), for example, 700 ° C. or higher.
- the release of hydrogen from the substrate surface has the effect of accelerating the diffusion of oxygen into titanium, preventing the amount of oxygen solid solution on the titanium surface from increasing, and the transparent oxide film on the substrate surface Has the effect of thinning.
- the transparent oxide layer on the substrate surface can be suppressed to 10 nm or less, and discoloration can be prevented by light interference.
- step S6 the substrate is cooled to room temperature in an inert gas atmosphere.
- an inert gas is continuously introduced when the temperature is lowered.
- the titanium or titanium alloy member treated by the surface hardening method of the present embodiment measured the change in the hardness of the substrate according to the depth in the direction perpendicular to the substrate surface (specific hardness measurement methods are shown in Table 1). (See description about.)
- FIG. 6 is a diagram showing an example of the relationship between the hardening depth and hardness of titanium or a titanium alloy member in the second embodiment of the present invention.
- the titanium or titanium alloy member treated by the surface hardening method of the present embodiment has the highest hardness on its surface, reaching 700 Hv, and is sufficiently hard for actual use.
- the outer diffusion layer is a region below the substrate surface and having a hardness of 300 Hv or more. According to FIG. 6, the thickness is about 24 ⁇ m.
- the internal diffusion layer is a region having a hardness of 300 Hv or less. According to FIG. 6, the depth is a region from 24 ⁇ m to 32 ⁇ m, and the thickness is about 8 ⁇ m.
- the thickness (depth from the surface) of the hardened layer of the titanium or titanium alloy member changes depending on the processing time of the hardening processing step, and is approximately 10 to 40 ⁇ m.
- the conventional surface hardening treatment method can obtain high hardness, there is a possibility that the surface of the substrate may be discolored due to oxygen diffusion / solid solution at high temperature. Since the thickness of the transparent oxide layer on the surface of the substrate greatly affects the color of the substrate due to light interference, the thickness of the oxide film must be specific to the curing treatment unless the curing process and the thickness of the transparent oxide layer are controlled. It changes according to the conditions, and the appearance and the color of the obtained titanium member vary. In the present embodiment, sufficiently high hardness is obtained, the thickness of the transparent oxide film is suppressed to 10 nm or less, the generation of impurities is suppressed, the surface of the titanium member can maintain a bright metallic luster, and high hardness. A good quality titanium or titanium alloy member having high metallic gloss can be obtained.
- FIG. 7 is a schematic view of the structure of a titanium or titanium alloy member according to the third embodiment of the present invention.
- a pure titanium or titanium alloy member 10 shown in FIG. 7 includes a base material 1 made of titanium or a titanium alloy, and a hardened layer 2 formed by diffusing oxygen and nitrogen on the surface of the base material 1. .
- the hardened layer 2 includes a surface transparent oxide layer 3 and a diffusion layer 7.
- the thickness of the surface transparent oxide layer 3 is suppressed to 10 nm or less.
- the diffusion layer 7 is formed by diffusing oxygen and nitrogen into the substrate 1 and forming a solid solution. Oxygen and nitrogen are ⁇ -phase stable elements of titanium and have a high solid solubility in the titanium base material. Oxygen and nitrogen are solid-dissolved in titanium, thereby significantly improving the hardness of titanium. In addition, description of points common to the pure titanium or titanium alloy member shown in FIG. 1 is omitted.
- FIG. 8 is a schematic view of another structure of titanium or a titanium alloy member according to the third embodiment of the present invention.
- pure titanium or a titanium alloy member 10 includes a base material 1 made of pure titanium or a titanium alloy, and a hardened layer 2 is formed on the surface of the base material 1.
- a transparent oxide layer 3, an outer diffusion layer 8, and an inner diffusion layer 9 are included.
- the outer diffusion layer 8 is a region having a hardness of 300 Hv or more inside the surface transparent oxide layer 3, and the inner diffusion layer 9 is a region having a hardness of 300 Hv or less. That is, in FIG. 8, the diffusion layer includes an outer diffusion layer 8 and an inner diffusion layer 9.
- the outer diffusion layer 8 has a high concentration of dissolved oxygen and nitrogen, and the thickness of the outer diffusion layer 8 affects the surface hardness of the substrate 1.
- the concentration of dissolved oxygen and nitrogen gradually decreases from the outside to the inside, and the hardness gradually decreases from 300 Hv to the same level as that of the base 1 of the pure titanium or titanium alloy member 10.
- the thickness of the outer diffusion layer 8 and the inner diffusion layer 9 is about 10 to 40 ⁇ m.
- description of points common to the pure titanium or titanium alloy member shown in FIGS. 1 and 4 is omitted.
- the pure titanium or titanium alloy member 10 of the present embodiment is formed with the hardened layer 2 so that a high surface glossiness is maintained and a good appearance is maintained while having a high hardness.
- the present embodiment relates to a surface hardening method for pure titanium or a titanium alloy.
- the surface hardening method of pure titanium or titanium alloy according to this embodiment is the same as the hardening method of the second embodiment shown in FIG. 5 except that nitrogen is contained in the effect processing gas.
- nitrogen is contained in the effect processing gas.
- common description is omitted.
- step S2 the titanium or titanium alloy substrate is heated to a predetermined temperature while introducing an inert gas into the vacuum kettle.
- an inert gas is continuously supplied during heating in order to prevent occurrence of discoloration due to oxidation on the surface of the substrate.
- the inert gas is, for example, argon gas or helium gas.
- the predetermined temperature is 600 to 800 ° C., preferably 650 to 750 ° C.
- oxygen gas and nitrogen gas may be repeatedly introduced. That is, the supply of oxygen gas and nitrogen gas is stopped after a certain period of time has passed after the introduction of oxygen gas and nitrogen gas, and oxygen gas and nitrogen gas are again introduced after a certain period of time has elapsed. In this manner, oxygen gas and nitrogen gas are repeatedly supplied. When the oxygen gas and the nitrogen gas are repeatedly supplied, the inert gas and the hydrogen gas are continuously introduced.
- the oxygen gas and the nitrogen gas may be continuously supplied without being repeatedly introduced. Further, the oxygen gas and the nitrogen gas may be introduced simultaneously with the mixed gas of the inert gas and the hydrogen gas, instead of being introduced after the mixed gas of the inert gas and the hydrogen gas.
- the thickness (depth from the surface) of the hardened layer of the titanium or titanium alloy member varies depending on the treatment time of the hardening treatment step, and 10 to 40 ⁇ m. become.
- the hardness of the hardened layer reaches 200 to 700 Hv.
- the thickness of the transparent oxide film is suppressed to 10 nm or less, the generation of impurities is suppressed, the surface of the titanium member can maintain a bright metallic luster, high hardness and high metal A good quality titanium or titanium alloy member having glossiness can be obtained.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
本発明は、チタンまたはチタン合金部材およびチタンまたはチタン合金部材の表面硬化方法に関するものである。チタンまたはチタン合金部材は、チタンまたはチタン合金の基材と、基材の表面に、酸素が前記表面へ拡散して形成された硬化層と、を備える。方法は、部材のチタンまたはチタン合金基材を、不活性ガスの雰囲気の下で所定の温度まで加熱する加熱工程と、所定の温度で、不活性ガスを含む混合ガスと、硬化処理ガスとしての酸素ガスとを導入し、基材の表面に対して硬化処理を行う硬化工程と、不活性ガスの雰囲気の下で基材を室温まで冷却する冷却工程とを含む。
Description
本発明は、合金部材およびその表面硬化方法に関する。
チタン又はチタン合金(以下、「チタン材」という)は高級腕時計、アクセサリ、メガネフレームなどの装飾品に用いられている。しかしながら、チタン材の表面硬度が低い場合、傷がつきやすく、長く使用すると、光沢度が低下し、外観品質が劣化していく。そのため、チタン材の表面硬度を向上し、光沢度並びに外観品質を維持するために、チタン材の表面に対して硬化処理することがある。
従来の表面硬化方法である、大気熱酸化処理方法では、出来上がった酸化層は灰色になり、金属光沢がなく表面も荒れ、装飾品に用いられる際に、後処理が必要となる。また、大気熱酸化処理後、更に真空拡散処理を行う方法では、結晶粒が粗大化し、表面の光沢感が落ち、研磨処理が困難である。また、真空熱酸化窒化拡散処理方法では、結晶粒の粗大化と表面の荒れを改善することができるものの、窒素と酸素または水蒸気の割合や熱処理の温度を上手く調節できないと、チタン部材の表面が変色し、荒れてしまう。
特許文献1および特許文献2には、上述した真空熱酸化窒化拡散処理方法が開示されており、窒素と酸素の固溶は材料の表面硬度を向上することができるものの、窒素の固溶で得られた高硬度値により、その後の蒸着膜の付着力が相対的に低下し、また、窒素の導入はチタン材の表面が変色し、荒れやすく、チタン材の外観品質は低下する。
本発明は、上記問題に鑑みてなされたものであり、その一つの目的は表面硬度が高く、かつ光沢度も高く、良好な外観を維持することができる合金部材、及びの表面硬化方法を提供することである。
本発明の第1側面に係る合金部材は、チタンまたはチタン合金の基材と、前記基材の表面に、酸素が前記表面へ拡散して形成された硬化層と、を備える。
本発明の第2側面に係る合金部材は、チタンまたはチタン合金の基材と、前記基材の表面に、窒素と酸素が前記表面へ拡散して形成された硬化層と、を備える。
好ましくは、前記硬化層は、表面透明酸化層と、前記表面透明酸化層よりも内側に位置する拡散層とを含む。
好ましくは、前記拡散層は、前記表面透明酸化層より厚い。
好ましくは、前記硬化層は、前記基材の表面から内部に向かって順次、表面透明酸化層、外部拡散層、および内部拡散層を含み、前記外部拡散層は、前記基材において、前記表面透明酸化層の内側に、硬度が300Hv以上の領域から構成され、前記内部拡散層は、前記基材において、硬度が300Hv以下の領域から構成される。
好ましくは、前記表面透明酸化層は、前記外部拡散層、前記内部拡散層より薄い。
好ましくは、前記外部拡散層は、固溶した酸素の濃度が前記内部拡散層より高く、
前記内部拡散層は、固溶した酸素の濃度が外側から内部へ徐々に低くなる。
前記内部拡散層は、固溶した酸素の濃度が外側から内部へ徐々に低くなる。
好ましくは、前記外部拡散層は、固溶した酸素と窒素の濃度が前記内部拡散層より高く、
前記内部拡散層は、固溶した酸素と窒素の濃度が外側から内部へ徐々に低くなる。
前記内部拡散層は、固溶した酸素と窒素の濃度が外側から内部へ徐々に低くなる。
好ましくは、前記チタンまたはチタン合金部材は、腕時計、時計の外装部品として使用される。
好ましくは、前記外装部品は、ベゼル、センター、裏ぶた、バンドを含む。
また、本発明の第3側面に係るチタンまたはチタン合金部材の表面硬化方法は、前記部材のチタンまたはチタン合金基材を、不活性ガスの雰囲気の下で所定の温度まで加熱する加熱工程と、前記所定の温度で、不活性ガスを含む混合ガスと、硬化処理ガスとしての酸素ガスと、を導入し、前記基材の表面に対して硬化処理を行う硬化工程と、不活性ガスの雰囲気下で前記基材を室温まで冷却する冷却工程と、を含む。
好ましくは、前記硬化工程において、前記硬化処理ガスは、窒素ガスをさらに含む。
好ましくは、前記硬化工程において、前記混合ガスを導入してから所定の時間経過後に、前記硬化処理ガスを導入し、前記硬化処理を行う。
好ましくは、前記硬化工程において、前記混合ガスを導入すると同時に前記硬化処理ガスを導入し、前記硬化処理を行う。
好ましくは、前記硬化工程において、前記硬化処理ガス導入と停止を繰り返して行う。
好ましくは、前記硬化工程において、前記混合ガスは不活性ガスと水素ガスとを含む。
好ましくは、前記硬化工程の後に、不活性ガスを導入して水素を除去する水素除去工程をさらに含む。
好ましくは、前記水素除去工程は、前記硬化工程より高い温度で行われる。
本発明によれば、チタンまたはチタン合金の基材の表面に、酸素が拡散して形成された硬化層を有するので、基材を効果的に保護し、高い表面硬度が得られ、高い光沢度並びに良好な外観を維持することができる。
また、本発明に係るチタンまたはチタン合金部材によれば、チタンまたはチタン合金の基材の表面に、窒素と酸素が拡散して形成された硬化層を有するので、その基材を効果的に保護し、表面硬度が得られ、高い光沢度並びに良好な外観を維持することができる。
また、本発明に係るチタンまたはチタン合金部材の表面硬化方法によれば、チタンまたはチタン合金の基材の表面に、硬化層が形成され、高い表面硬度が得られ、高い光沢度並びに良好な外観を維持することができる。
以下、添付の図面を参照しながら、本発明を実施するための形態を詳細に説明する。添付の図面において、同一または相当する構成要素に同じ符号を付し、重複する説明を省略する。なお、以下の実施形態は、本発明のチタン又はチタン合金部材およびその表面硬化方法の好適な実施形態に過ぎず、本発明は以下のものに限定されない。
(第1実施形態)
図1は、本発明の第1実施形態に係るチタンまたはチタン合金部材の構造の模式図である。
図1に示す純チタンまたはチタン合金部材10は、純チタンまたはチタン合金から構成される基材1を備え、基材1の表面に、酸素がその表面へ拡散して形成された硬化層2を有し、硬化層2は、表面透明酸化層3と拡散層4を含む。
図1は、本発明の第1実施形態に係るチタンまたはチタン合金部材の構造の模式図である。
図1に示す純チタンまたはチタン合金部材10は、純チタンまたはチタン合金から構成される基材1を備え、基材1の表面に、酸素がその表面へ拡散して形成された硬化層2を有し、硬化層2は、表面透明酸化層3と拡散層4を含む。
硬化層2は、基材1を保護し、基材1の表面硬度を向上し、光沢度並びに良好な外観を長期的に維持する。
表面透明酸化層3は、拡散層4より薄い。薄い表面透明酸化層3により、光の干渉による変色が抑えられる。
チタンと酸素との親和性が高いので、チタンの表面に透明な酸化層3が形成されやすく、酸化層3により、外部の酸素がチタンとさらに反応することが防げられる。しかしながら、透明酸化層3の厚さは、基材1の表面の外観に大きく影響する。透明酸化層3が厚すぎると、可視光による干渉現象が生じ、その厚さの変化に伴い表面の色が変化する。実験で調べたところ、透明酸化層3の膜厚が10nm未満である場合、基材1の表面が金属光沢となり、透明酸化層3の膜厚が10~25nmである場合、基材1の表面が黄金色になり、透明酸化層3の膜厚が25~70nmである場合、基材1の表面が青色になり、透明酸化層3の膜厚が70~150nmである場合、基材1の表面が青紫色になる。
本実施形態では、良好な金属光沢が得られ、高光沢度を維持するために、表面透明酸化層3の厚さが10nm以下に抑えられている。
また、拡散層4は、酸素が基材1に拡散し、固溶されている。
チタンと添加元素との間の相互作用の性質に応じて、チタンの相転換温度は変わる。チタンのβ/α相転換温度を上昇させる元素は、チタンのα相安定元素と呼ばれる。酸素は、チタンのα相安定元素であり、チタン基材において高い固溶度を有する。酸素はチタンに固溶されることによって、チタンのα/β相転換温度は大幅に向上され、チタンの硬度は著しく向上する。
本実施形態において、酸素が拡散、固溶されてなった拡散層4は、主として硬化層2を構成し、純チタンまたはチタン合金部材10の表面硬度を向上する。拡散層4が厚ければ厚いほど、固溶した酸素の含有量が高くなり、純チタンまたはチタン合金部材10の表面硬度が高くなる。
図2は、本発明の実施形態1に係る純チタンまたはチタン合金部材10の断面の走査型電子顕微鏡(SEM)の測定結果を示す。
図2に示すように、基材1の表面に、厚さが約10μm以上の硬化層2の領域が観測された。
上述したように、硬化層2の表面に、厚さが10nm以下の表面透明酸化層3が形成されている。拡散層4は表面透明酸化層3より遥かに厚いので、拡散層4の厚さは硬化層2の厚さとほぼ同じである。
図3は、本発明の実施形態1に係る純チタンまたはチタン合金部材10の断面の電子プローブマイクロ分析(FE-EPMA-WDS)による酸素の測定の結果を示す。
図3に示すように、基材1の表面の硬化層2の領域に、酸素の濃度が高い。これは、硬化層2における表面透明度3、拡散層4は、高濃度の酸素が含まれていることを示す。
表1は、本実施形態において、純チタンまたはチタン合金部材10の硬化層2の深さと硬度との関係の一例を示す。
なお、以下のように純チタンまたはチタン合金部材10の硬化層2の硬度を測定した。
試料:DCL処理後の本実施形態の純チタンまたはチタン合金部材10のテストプレート
硬度測定方法:ナノインデンター
測定荷重:0.5gf
硬度測定箇所:樹脂包埋・断面を表面より5μm間隔で20箇所測定
試料中央部でのナノインデンターとビッカース硬度の相関を取り、ビッカース硬度値に換算する。
試料:DCL処理後の本実施形態の純チタンまたはチタン合金部材10のテストプレート
硬度測定方法:ナノインデンター
測定荷重:0.5gf
硬度測定箇所:樹脂包埋・断面を表面より5μm間隔で20箇所測定
試料中央部でのナノインデンターとビッカース硬度の相関を取り、ビッカース硬度値に換算する。
表1に示すように、純チタンまたはチタン合金部材10の表面に、硬度が最も高く、約600Hvに達し、実際の使用にとって十分高い硬度である。純チタンまたはチタン合金部材10の内部に進めば進むほど、硬度が下がり、非常に深いところで、硬度は純チタンまたはチタン合金部材10の基材1と同じ程度まで下がる。
なお、本実施形態において、硬化層2とは、基材1の表面以下、硬度が200Hv以上の領域であると定義する。表1に示すように、本実施形態において、硬化層2は、基材1の表面以下深さは25μm程度までの領域であり、この領域の硬度が高い。
図4は、本発明の第1実施形態に係るチタンまたはチタン合金部材の他の構造の模式図である。
図4に示すように、純チタンまたはチタン合金部材10は、純チタンまたはチタン合金から構成される基材1を含み、基材1の表面に硬化層2が形成され、硬化層2は、表面透明酸化層3、外部拡散層5、および内部拡散層6を含む。
本実施形態において、外部拡散層5は、表面透明酸化層3の内側に、硬度が300Hv以上の領域から構成され、内部拡散層6は、硬度が300Hv以下の領域から構成される。
即ち、図4に示す純チタンまたはチタン合金部材10の硬化層2は、外部拡散層5、内部拡散層6という2つの拡散層を含む。表面透明酸化層3は、外部拡散層5、内部拡散層6より薄い。
外部拡散層5では、固溶した酸素の濃度が高く、外部拡散層5の厚さが基材1の表面硬度果に大きく影響する。表1によれば、外部拡散層5は、表面透明酸化層3の内側から基材1の深さ15μm程度までの領域である。
内部拡散層6では固溶した酸素濃度が外側から内部へ徐々に低くなり、その硬度も300Hvから徐々に純チタンまたはチタン合金部材10の基材1と同じ程度まで下がる。表1によれば、内部拡散層6は外部拡散層5の内側から、表面からの深さが25μm程度までの領域である。
以上のように、本実施形態の純チタンまたはチタン合金部材10は、硬化層2が形成されているため、表面硬度が十分高い。
また、本実施形態の純チタンまたはチタン合金部材10は、その表面が均一に白く、色むらが少なく、変色がない。純チタンまたはチタン合金部材10の一例を分光光度計で測定した結果、表面光沢状態の色差をCIE1976(L*、a*、b*)のE*ab値で表すと、E*ab≦1.0であり、色むらが少ないことが解った。即ち、本実施形態において、純チタンまたはチタン合金部材10の表面硬化度が高く、金属光沢度も高い。
表2に、本実施形態において、純チタンまたはチタン合金部材10の表面に、硬化層2が形成された前後、純チタンまたはチタン合金部材10の表面光沢度の比較を示す。
表2において、L*値は明るさを表し、L*値が高ければ高いほど明るさが高い。a*値は赤っぽい色、又は、緑っぽい色を表し、a*値は正の値で、大きければ大きいほど色が赤っぽく、負の値で小さければ小さいほど、色が緑っぽくなる。b*値は正の値で大きければ大きいほど黄っぽく、負の値で小さければ小さいほど色は青っぽくなる。
表2のデータにより、本実施形態の純チタンまたはチタン合金部材10は、表面に透明酸化層3が形成され、酸素が拡散されているにもかかわらず、金属のチタンとほぼ同じ表面光沢度を有することが分かる。即ち、本実施形態の純チタンまたはチタン合金部材10は、硬化層2が形成されることにより、高い硬度を有しながら、高い表面光沢度が維持され、良好な外観が維持されている。
なお、本実施形態の純チタンまたはチタン合金部材10は腕時計、時計の外装部品として使用される。また、外装部品は、ベゼル、センター、裏ぶた、バンドなどを含む。また、本実施形態の純チタンまたはチタン合金部材10は、ファスナー、メガネフレーム、リング、ブレスレットなどの装飾部品として使用されても宜しい。また、本実施形態の純チタンまたはチタン合金部材10は、食器、ゴルフクラブなどのチタンまたはチタン合金部材が必要である基材の部品として使用することもできる。
(第2実施形態)
本実施形態は、純チタンまたはチタン合金の表面硬化方法に関わる。
本実施形態は、純チタンまたはチタン合金の表面硬化方法に関わる。
図5は、本発明の第2実施形態に係るチタンまたはチタン合金部材の硬化方法を示すフローチャートである。
図5に示すように、まず、ステップS1において、真空引きを行う。具体的に、洗浄したチタンまたはチタン合金基材を釜に投入して、少なくとも30分以上釜を真空引く。ここで、真空度を5×10-4Pa以下になるまで真空引きする。また、洗浄したチタンまたはチタン合金の基材とは、基材が加工された後に、超音波で洗浄処理される。また、必要に応じて、基材の表面に対して、研磨処理、ヘアライン処理、ブラスト処理などを行う。
次に、ステップS2において、真空釜に不活性ガスを導入しながら、チタンまたはチタン合金基材を所定の温度まで加熱する。本実施形態において、基材の表面に酸化による変色を防止するために、加熱の際に不活性ガスを継続して導入する。不活性ガスは、例えば、アルゴンガスまたはヘリウムガスである。不活性ガス導入と加熱の際に、真空釜内部の真空度は、1~5×10-1Paである。
また、所定の温度は、600~800℃であり、好ましくは、650~750℃である。加熱温度が750℃を超えると、純チタンとチタン合金の表面に明らかに粒成長を起こしやすく、基材表面の粗さが増し、光沢度が低下し、基材の外観品質が低下する恐れがある。一方、加熱温度が650℃未満の場合、ガスが基材への拡散速度が遅くなり、硬化処理時間が長くなり、硬化効率が低くなる恐れがある。
また、650℃~750℃の温度範囲は、純チタンまたはチタン合金の再結晶温度であり、基材が鍛造、切削、研磨、磨きなどの工程を経て発生された内応力および結晶粒の破壊を解消するのに役に立つ。
次に、ステップS3において、真空釜の温度が前記所定の温度まで上昇して安定した後に、少なくとも5分以上さらに真空引きし、真空度を上げる。
次に、ステップS4において、前記所定の温度を一定の時間維持し、真空釜に不活性ガスの混合ガス、例えば、アルゴンガスと水素ガスとの混合ガスを導入し、所定の時間後に、硬化処理ガスとして酸素ガスを導入し、少なくとも60分以上硬化処理を行う。
本実施形態において、水素ガスを導入することにより、チタンの表面に酸素ガスの固溶量が急速に蓄積することを阻止し、基材表面の酸化層が厚くなることを防ぎ、また、酸素の基材での拡散率を増大する。
本実施形態において、酸素ガスを断続的に導入してもよい。
すなわち、酸素ガスを導入して一定の時間が経過した後に、酸素ガスの供給を停止し、一定時間経過後に、再び酸素ガスを導入する。このように断続的に酸素の供給を行う。断続的に酸素供給の際に、不活性ガスと水素ガスを継続して導入する。
すなわち、酸素ガスを導入して一定の時間が経過した後に、酸素ガスの供給を停止し、一定時間経過後に、再び酸素ガスを導入する。このように断続的に酸素の供給を行う。断続的に酸素供給の際に、不活性ガスと水素ガスを継続して導入する。
酸素ガスを継続して供給すると、基材の表面が過剰に酸化しやすいが、酸素を断続的に供給すると、酸素が断続的に基材の内部に進入し、基材表面の過剰酸化を防止することができ、さらに、基材表面に形成される透明酸化層の厚みを抑えることができ、基材表面の透明酸化膜が厚くなることを防止する。
本実施形態の硬化方法により、透明酸化膜の厚みが10nm以下に抑えられ、光の干渉により変色を避け、純チタンまたはチタン合金部材10の表面の金属光沢度を維持することができる。
勿論、酸素ガスの導入を断続的に行わずに、継続的に供給してもよい。
また、酸素ガスを、不活性ガス、水素ガスの混合ガスに遅れて導入するのではなく、不活性ガス、水素ガスの混合ガスと同時に導入してもよい。
たとえば、不活性ガス、酸素ガス、水素ガスの混合ガスは、気体の総圧力は、9×10-4Pa~5×10-1Paであり、酸素ガスの含有量が総圧力の中に1000ppm~15000ppmを占め、水素の量が総圧力の中に1000ppm~50000ppmを占める。
次に、ステップS5において、以上のように処理したチタンまたはチタン合金基材の内部へ進入した水素ガスを除去するように、不活性ガス、水素ガスの混合ガスの供給を停止し、真空釜の温度を維持しながら、30分以上不活性ガスを導入する。例えば、真空度を1×10-3~5×10-1Paとする。導入した不活性ガスは、例えば、アルゴンガスまたはヘリウムガスである。好ましくは、ステップS5(水素の除去工程)において、真空釜の温度は、硬化処理工程(ステップS4)の温度より高く、例えば、700℃以上である。
以上のように、本実施形態において水素を導入することによって、チタンの表面透明酸化層の厚さの控えに寄与するとともに、酸素が基材への拡散率を増加することができる。しかしながら、水素の導入により、不純物(例えば、水素化物)が形成されてしまい、水素脆性の懸念がある。従って、本実施形態において、硬化処理の後に、水素を除去する処理(S5)を行う。水素除去工程S5において、不活性ガスが高温で流され、基材内部に蓄積された水素を追い出し、基材内部の水素を除去し、水素化物の生成を抑制し、水素脆性の現象を防ぐ。また、基材表面から水素が放出されることにより、酸素がチタンへの拡散が加速される効果があり、チタン表面の酸素固溶量が高くなることを防止し、基材表面の透明酸化膜を薄くする効果がある。その結果、基材表面の透明酸化層が10nm以下に抑えることができ、光の干渉により変色を防止することができる。
次に、ステップS6において、不活性ガスの雰囲気で基材を室温まで冷却する。
基材表面の酸化による変色を防止するために、降温の際に不活性ガスを継続して導入する。
基材表面の酸化による変色を防止するために、降温の際に不活性ガスを継続して導入する。
本実施形態の表面硬化方法により処理されたチタンまたはチタン合金部材は、基材表面に垂直する方向の深さに応じて基材の硬度の変化を測定した(具体的な硬度測定方法は表1に関する記載を参照。)。
図6は、本発明の第2実施形態においてチタンまたはチタン合金部材の硬化深度と硬度との関係の一例を示す図である。
図6に示すように、本実施形態の表面硬化方法により処理されたチタンまたはチタン合金部材は、その表面に硬度が最も高く、700Hvに達し、実際の使用にとって十分高い硬度である。チタンまたはチタン合金部材の内部に進めば進むほど、硬度が下がり、非常に深いところで、硬度はチタンまたはチタン合金基材と同じ程度まで下がる。
また、外部拡散層は、基材表面以下、硬度が300Hv以上の領域であり、図6によると、その厚さは約24μmである。また、内部拡散層は、硬度が300Hv以下の領域であり、図6によると、深さは24μmから32μmまでの領域であり、その厚さは約8μmである。
なお、硬化処理工程の処理時間により、チタンまたはチタン合金部材の硬化層の厚さ(表面からの深さ)が変化するものであり、略10~40μmになる。
従来の表面硬化処理方法は、高い硬度が得られるものの、高温での酸素拡散/固溶により、基材の表面が変色する恐れがある。光の干渉により、基材表面の透明酸化層の厚みが基材の色に大きく影響するので、硬化処理工程並びに透明酸化層の厚みをコントロールしないと、酸化膜の厚みが硬化処理の具体的な条件により変化し、得られたチタン部材の外観や色がばらばらになる。本実施形態において、十分に高い硬度が得られると共に、透明酸化膜の厚みが10nm以下に抑え、不純物の発生を抑制し、チタン部材の表面は明るい金属光沢を維持することができ、高い硬度と高い金属光沢度を兼ねた良品質のチタンまたはチタン合金部材が得られる。
(第3実施形態)
図7は、本発明の第3実施形態に係るチタンまたはチタン合金部材の構造の模式図である。
図7は、本発明の第3実施形態に係るチタンまたはチタン合金部材の構造の模式図である。
図7に示す純チタンまたはチタン合金部材10は、チタンまたはチタン合金から構成される基材1と、基材1の表面に、酸素と窒素がその表面へ拡散して形成された硬化層2と、を備える。硬化層2は、表面透明酸化層3と拡散層7を含む。
本実施形態では、表面透明酸化層3の厚さが10nm以下に抑えられている。
拡散層7は、酸素と窒素が基材1に拡散し、固溶されてなる。
酸素と窒素は、チタンのα相安定元素であり、チタン基材において高い固溶度を有する。酸素と窒素はチタンにおいて固溶されることによって、チタンの硬度を著しく向上させる。
ほかに、図1に示す純チタンまたはチタン合金部材と共通する点について、説明を省略する。
拡散層7は、酸素と窒素が基材1に拡散し、固溶されてなる。
酸素と窒素は、チタンのα相安定元素であり、チタン基材において高い固溶度を有する。酸素と窒素はチタンにおいて固溶されることによって、チタンの硬度を著しく向上させる。
ほかに、図1に示す純チタンまたはチタン合金部材と共通する点について、説明を省略する。
図8は、本発明の第3実施形態に係るチタンまたはチタン合金部材の他の構造の模式図である。
図8に示すように、純チタンまたはチタン合金部材10は、純チタンまたはチタン合金から構成される基材1を含み、基材1の表面に硬化層2が形成され、硬化層2は、表面透明酸化層3、外部拡散層8、内部拡散層9を含む。外部拡散層8は、表面透明酸化層3の内側に、硬度が300Hv以上の領域であり、内部拡散層9は、硬度が300Hv以下の領域である。即ち、図8において、拡散層は、外部拡散層8、内部拡散層9を含む。
外部拡散層8では、固溶した酸素と窒素の濃度が高く、外部拡散層8の厚さが基材1の表面硬度に影響する。内部拡散層9では固溶した酸素と窒素の濃度が外側から内部へ徐々に下がり、その硬度も300Hvから徐々に純チタンまたはチタン合金部材10の基材1と同じ程度まで下がる。
外部拡散層8と内部拡散層9の厚さは10から40μm程度である。
ほかに、図1、図4に示す純チタンまたはチタン合金部材と共通する点について、説明を省略する。
ほかに、図1、図4に示す純チタンまたはチタン合金部材と共通する点について、説明を省略する。
本実施形態の純チタンまたはチタン合金部材10は、硬化層2が形成されることにより、高い硬度を有しながら、高い表面光沢度が維持され、良好な外観が維持されている。
(第4実施形態)
本実施形態は、純チタンまたはチタン合金の表面硬化方法に関する。
本実施形態に係る純チタンまたはチタン合金の表面硬化方法は、効果処理ガスに窒素が含まれる点を除き、図5に示す第2実施形態の硬化方法と同じである。以下、共通する説明を省略する。
本実施形態は、純チタンまたはチタン合金の表面硬化方法に関する。
本実施形態に係る純チタンまたはチタン合金の表面硬化方法は、効果処理ガスに窒素が含まれる点を除き、図5に示す第2実施形態の硬化方法と同じである。以下、共通する説明を省略する。
図5を参照し、ステップS2において、真空釜に不活性ガスを導入しながら、チタンまたはチタン合金基材を所定の温度まで加熱する。本実施形態において、基材の表面に酸化による変色の発生を防止するために、加熱の際に不活性ガスを継続的に供給する。不活性ガスは、例えば、アルゴンガスまたはヘリウムガスである。また、所定の温度は、600~800℃であり、好ましくは、650~750℃である。
次に、ステップS4において、前記所定の温度を一定の時間維持し、真空釜に不活性ガスの混合ガス、例えば、アルゴンガスと水素ガスとの混合ガスを導入し、所定の時間後に、硬化処理ガスとして、酸素ガスと窒素ガスを導入し、少なくとも60分以上硬化処理を行う。
本実施形態において、酸素ガスと窒素ガスを繰り返して導入してもよい。
すなわち、酸素ガスと窒素ガスを導入して一定の時間が経過した後に、酸素ガスと窒素ガスの供給を停止し、さらに一定時間経過後に、再び酸素ガスと窒素ガスを導入する。このように繰り返して酸素ガスと窒素ガスの供給を行う。繰り返して酸素ガスと窒素ガス供給の際に、不活性ガスと水素ガスを継続して導入する。
すなわち、酸素ガスと窒素ガスを導入して一定の時間が経過した後に、酸素ガスと窒素ガスの供給を停止し、さらに一定時間経過後に、再び酸素ガスと窒素ガスを導入する。このように繰り返して酸素ガスと窒素ガスの供給を行う。繰り返して酸素ガスと窒素ガス供給の際に、不活性ガスと水素ガスを継続して導入する。
酸素ガスと窒素ガスを繰り返して供給するので、基材表面の過剰酸化を防止することができ、さらに、基材表面に形成される透明酸化層の厚みを抑えることができる。本実施形態の硬化方法により、透明酸化膜の厚みが10nm以下に抑えられ、光の干渉により変色を避け、チタンまたはチタン合金部材表面の金属光沢度を維持することができる。
勿論、酸素ガスと窒素ガスの導入を繰り返さずに、継続して供給してもよい。
また、酸素ガスと窒素ガスを、不活性ガス、水素ガスの混合ガスに遅れて導入するのではなく、不活性ガス、水素ガスの混合ガスと同時に導入してもよい。
また、酸素ガスと窒素ガスを、不活性ガス、水素ガスの混合ガスに遅れて導入するのではなく、不活性ガス、水素ガスの混合ガスと同時に導入してもよい。
本実施形態の表面硬化方法により処理されたチタンまたはチタン合金部材は、硬化処理工程の処理時間により、チタンまたはチタン合金部材の硬化層の厚さ(表面からの深度)が変化し、10~40μmになる。また、硬化層の硬度は200~700Hvに達する。
本実施形態において、高い硬度が得られると共に、透明酸化膜の厚みが10nm以下に抑え、不純物の発生を抑制し、チタン部材の表面は明るい金属光沢を維持することができ、高い硬度と高い金属光沢度を兼ねた良品質のチタンまたはチタン合金部材が得られる。
この発明は、この発明の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この発明を説明するためのものであり、この発明の範囲を限定するものではない。すなわち、この発明の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の発明の意義の範囲内で施される様々な変形が、この発明の範囲内とみなされる。
本出願は、2017年1月3日に出願された中国特許出願201710000671.1号、及び2017年12月7日に出願された中国特許出願201711284040.3号に基づくものであり、その明細書、特許請求の範囲、図面および要約書を含むものである。上記中国特許出願における開示は、その全体が本明細書中に参照として含まれる。
1…基材、2…硬化層、3…表面透明酸化層、4…拡散層、5…外部拡散層、6…内部拡散層、10…純チタンまたはチタン合金部材
Claims (18)
- チタンまたはチタン合金の基材と、
前記基材の表面に、酸素が前記表面へ拡散して形成された硬化層と、
を備える、ことを特徴とする合金部材。 - チタンまたはチタン合金の基材と、
前記基材の表面に、窒素と酸素が前記表面へ拡散して形成された硬化層と、
を備える、ことを特徴とする合金部材。 - 前記硬化層は、表面透明酸化層と、前記表面透明酸化層よりも内側に位置する拡散層と、を含む、
ことを特徴とする請求項1又は2に記載の合金部材。 - 前記拡散層は、前記表面透明酸化層より厚い、
ことを特徴とする請求項3に記載の合金部材。 - 前記硬化層は、前記基材の表面から内部に向かって順次、表面透明酸化層、外部拡散層、および内部拡散層を含み、
前記外部拡散層は、前記基材において、前記表面透明酸化層の内側に、硬度が300Hv以上の領域から構成され、
前記内部拡散層は、前記基材において、硬度が300Hv以下の領域から構成される、
ことを特徴とする請求項1又は2に記載の合金部材。 - 前記表面透明酸化層は、前記外部拡散層、前記内部拡散層より薄い、
ことを特徴とする請求項5に記載の合金部材。 - 前記外部拡散層は、固溶した酸素の濃度が前記内部拡散層より高く、
前記内部拡散層は、固溶した酸素の濃度が外側から内部へ徐々に低くなる、
ことを特徴とする請求項5又は6に記載の合金部材。 - 前記外部拡散層は、固溶した酸素と窒素の濃度が前記内部拡散層より高く、
前記内部拡散層は、固溶した酸素と窒素の濃度が外側から内部へ徐々に低くなる、
ことを特徴とする請求項5又は6に記載の合金部材。 - 前記チタンまたはチタン合金部材は、腕時計、時計の外装部品として使用される、
ことを特徴とする請求項1から8のいずれか一項に記載の合金部材。 - 前記外装部品は、ベゼル、センター、裏ぶた、バンドを含む、
ことを特徴とする請求項9に記載の合金部材。 - チタンまたはチタン合金部材の表面硬化方法であって、
前記部材のチタンまたはチタン合金基材を、不活性ガスの雰囲気の下で所定の温度まで加熱する加熱工程と、
前記所定の温度で、不活性ガスを含む混合ガスと、硬化処理ガスとしての酸素ガスと、を導入し、前記基材の表面に対して硬化処理を行う硬化工程と、
不活性ガスの雰囲気下で前記基材を室温まで冷却する冷却工程と、
を含むことを特徴とする表面硬化方法。 - 前記硬化工程において、前記硬化処理ガスは、窒素ガスをさらに含む、
ことを特徴とする請求項11に記載の表面硬化方法。 - 前記硬化工程において、前記混合ガスを導入してから所定の時間経過後に、前記硬化処理ガスを導入し、前記硬化処理を行う、
ことを特徴とする請求項11又は12に記載の表面硬化方法。 - 前記硬化工程において、前記混合ガスを導入すると同時に前記硬化処理ガスを導入し、前記硬化処理を行う、
ことを特徴とする請求項11又は12に記載の表面硬化方法。 - 前記硬化工程において、前記硬化処理ガスの導入と停止とを繰り返して行う、
ことを特徴とする請求項11から14のいずれかに記載の表面硬化方法。 - 前記硬化工程において、前記混合ガスは不活性ガスと水素ガスとを含む、
ことを特徴とする請求項11に記載の表面硬化方法。 - 前記硬化工程の後に、不活性ガスを導入して水素を除去する水素除去工程をさらに含む、
ことを特徴とする請求項16に記載の表面硬化方法。 - 前記水素除去工程は、前記硬化工程より高い温度で行われる、
ことを特徴とする請求項17に記載の表面硬化方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018560394A JP6860020B2 (ja) | 2017-01-03 | 2017-12-28 | 合金部材の表面硬化方法及び製造方法 |
US16/457,938 US11578399B2 (en) | 2017-01-03 | 2019-06-29 | Alloy member and method for hardening surface thereof |
US18/097,536 US20230167533A1 (en) | 2017-01-03 | 2023-01-17 | Alloy member and method for hardening surface thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710000671.1 | 2017-01-03 | ||
CN201710000671.1A CN106637049A (zh) | 2017-01-03 | 2017-01-03 | 一种纯钛或钛合金及其表面硬化方法 |
CN201711284040.3A CN109306446B (zh) | 2017-01-03 | 2017-12-07 | 一种钛或钛合金部件及其表面硬化方法 |
CN201711284040.3 | 2017-12-07 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/457,938 Continuation-In-Part US11578399B2 (en) | 2017-01-03 | 2019-06-29 | Alloy member and method for hardening surface thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018128160A1 true WO2018128160A1 (ja) | 2018-07-12 |
Family
ID=62791270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2017/047224 WO2018128160A1 (ja) | 2017-01-03 | 2017-12-28 | 合金部材およびその表面硬化方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20230167533A1 (ja) |
WO (1) | WO2018128160A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109536876A (zh) * | 2018-11-30 | 2019-03-29 | 中国航发沈阳黎明航空发动机有限责任公司 | 一种提高tc11钛合金表面渗氧能力的预处理方法 |
CN115927988A (zh) * | 2022-06-08 | 2023-04-07 | 湖南湘投金天钛金属股份有限公司 | 高深冲性能钛材及其制备方法和应用、钛制品 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0390555A (ja) * | 1989-08-31 | 1991-04-16 | Showa Electric Wire & Cable Co Ltd | チタンまたはチタン合金の白色化法 |
JP2000144356A (ja) * | 1998-11-04 | 2000-05-26 | Citizen Watch Co Ltd | 部材の硬化処理方法 |
JP2000220967A (ja) * | 1999-01-27 | 2000-08-08 | Citizen Watch Co Ltd | 部材の硬化処理装置と硬化処理方法 |
JP2005248256A (ja) * | 2004-03-04 | 2005-09-15 | Shimano Inc | ベータ型チタンの表面硬化処理方法およびベータ型チタン系部材、ベータ型チタンの表面硬化処理装置 |
JP2008013833A (ja) * | 2006-07-07 | 2008-01-24 | National Institute Of Advanced Industrial & Technology | 発色を制御したチタン合金部材 |
-
2017
- 2017-12-28 WO PCT/JP2017/047224 patent/WO2018128160A1/ja active Application Filing
-
2023
- 2023-01-17 US US18/097,536 patent/US20230167533A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0390555A (ja) * | 1989-08-31 | 1991-04-16 | Showa Electric Wire & Cable Co Ltd | チタンまたはチタン合金の白色化法 |
JP2000144356A (ja) * | 1998-11-04 | 2000-05-26 | Citizen Watch Co Ltd | 部材の硬化処理方法 |
JP2000220967A (ja) * | 1999-01-27 | 2000-08-08 | Citizen Watch Co Ltd | 部材の硬化処理装置と硬化処理方法 |
JP2005248256A (ja) * | 2004-03-04 | 2005-09-15 | Shimano Inc | ベータ型チタンの表面硬化処理方法およびベータ型チタン系部材、ベータ型チタンの表面硬化処理装置 |
JP2008013833A (ja) * | 2006-07-07 | 2008-01-24 | National Institute Of Advanced Industrial & Technology | 発色を制御したチタン合金部材 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109536876A (zh) * | 2018-11-30 | 2019-03-29 | 中国航发沈阳黎明航空发动机有限责任公司 | 一种提高tc11钛合金表面渗氧能力的预处理方法 |
CN115927988A (zh) * | 2022-06-08 | 2023-04-07 | 湖南湘投金天钛金属股份有限公司 | 高深冲性能钛材及其制备方法和应用、钛制品 |
CN115927988B (zh) * | 2022-06-08 | 2023-09-01 | 湖南湘投金天钛金属股份有限公司 | 高深冲性能钛材及其制备方法和应用、钛制品 |
Also Published As
Publication number | Publication date |
---|---|
US20230167533A1 (en) | 2023-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6860020B2 (ja) | 合金部材の表面硬化方法及び製造方法 | |
JP3179787B2 (ja) | チタンまたはチタン合金部材とその表面処理方法 | |
US20230167533A1 (en) | Alloy member and method for hardening surface thereof | |
CN1149301C (zh) | 表面硬化钛材料和钛材料的表面硬化方法 | |
JP6084286B2 (ja) | グレー色調層を有する硬質装飾部材 | |
CN109072405B (zh) | 装饰构件及其制造方法 | |
CN1229441A (zh) | 装饰性钛材料及其硬化方法 | |
JP4658843B2 (ja) | チタンまたはチタン合金装飾部材の製造方法 | |
JP3898288B2 (ja) | チタン硬化部材及びその硬化処理方法 | |
JP4664465B2 (ja) | 硬質装飾被膜を有する基材 | |
CN112243464B (zh) | 金色构件的制造方法及金色构件 | |
JP2001081544A (ja) | チタン、あるいはチタン合金製食器およびその表面処理方法 | |
JP2000096208A (ja) | チタン製ゴルフクラブ部材とその硬化処理方法 | |
JP3958838B2 (ja) | チタン硬化部材の硬化処理方法 | |
US11661645B2 (en) | Method of case hardening a group IV metal | |
JP2005068491A (ja) | チタン材の表面硬化処理方法 | |
JPH10195612A (ja) | 金属装飾部材の硬化処理方法 | |
JP2000220967A (ja) | 部材の硬化処理装置と硬化処理方法 | |
CN213447263U (zh) | 钛部件 | |
JP2000144356A (ja) | 部材の硬化処理方法 | |
JP7332446B2 (ja) | 金色装飾品及び金色装飾品の製造方法 | |
JPH1192911A (ja) | チタン硬化部材の硬化処理方法 | |
JPH11264063A (ja) | チタン装飾部材の硬化処理方法 | |
JP2008231559A (ja) | 装飾部材およびその製造方法 | |
JP2021183344A (ja) | へら絞りによるチタン製金属容器を製造する方法、ならびに、へら絞りによるチタン製金属容器を製造する方法で得られたチタン製金属容器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17890059 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018560394 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17890059 Country of ref document: EP Kind code of ref document: A1 |