WO1997033082A1 - Dispositif de commande d'un moteur a combustion interne de type a injection de carburant dans les cylindres - Google Patents

Dispositif de commande d'un moteur a combustion interne de type a injection de carburant dans les cylindres Download PDF

Info

Publication number
WO1997033082A1
WO1997033082A1 PCT/JP1997/000683 JP9700683W WO9733082A1 WO 1997033082 A1 WO1997033082 A1 WO 1997033082A1 JP 9700683 W JP9700683 W JP 9700683W WO 9733082 A1 WO9733082 A1 WO 9733082A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel injection
internal combustion
combustion engine
timing
fuel
Prior art date
Application number
PCT/JP1997/000683
Other languages
English (en)
French (fr)
Inventor
Hideyuki Oda
Hitoshi Kamura
Nobuaki Murakami
Original Assignee
Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Jidosha Kogyo Kabushiki Kaisha filed Critical Mitsubishi Jidosha Kogyo Kabushiki Kaisha
Priority to EP97906835A priority Critical patent/EP0829633A4/en
Priority to AU22321/97A priority patent/AU702713B2/en
Priority to JP52587297A priority patent/JP3216139B2/ja
Publication of WO1997033082A1 publication Critical patent/WO1997033082A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B47/00Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines
    • F02B47/04Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only
    • F02B47/08Methods of operating engines involving adding non-fuel substances or anti-knock agents to combustion air, fuel, or fuel-air mixtures of engines the substances being other than water or steam only the substances including exhaust gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D37/00Non-electrical conjoint control of two or more functions of engines, not otherwise provided for
    • F02D37/02Non-electrical conjoint control of two or more functions of engines, not otherwise provided for one of the functions being ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • F02D41/345Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P15/00Electric spark ignition having characteristics not provided for in, or of interest apart from, groups F02P1/00 - F02P13/00 and combined with layout of ignition circuits
    • F02P15/006Ignition installations combined with other systems, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/045Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions combined with electronic control of other engine functions, e.g. fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for a direct injection internal combustion engine, which controls a fuel injection timing, an ignition timing and an exhaust gas flow rate.
  • an in-cylinder injection engine is an internal combustion engine (engine) having a spark plug, in which fuel is injected directly into a cylinder.
  • engine internal combustion engine
  • injector injector
  • premixing is called so that the entire inside of the cylinder has an optimum air-fuel ratio (stoichiometric or enriched state). It is necessary to perform fuel injection (intake stroke injection mode) centering on the intake stroke so that it can be performed sufficiently. Of course, if the fuel injection timing is too early, the injected fuel may collide with the piston and deteriorate the combustion, adversely affecting the exhaust gas properties. Fuel injection is performed by the wing ; lean-burn combustion (lean burn) that emphasizes fuel consumption over output can be performed even in such an intake stroke injection mode.
  • the intake air is guided so as to form a layered vertical swirl, which is called a tumbled flow.
  • a tumbled flow By injecting fuel into the fuel flow, it is possible to perform combustion operation in a lean state having a large air-fuel ratio as a whole, while maintaining an air-fuel ratio state in which specific ignition is easily performed in the vicinity of the ignition plug.
  • stratified combustion operation in an ultra-lean state with an extremely large air-fuel ratio as a whole is performed.
  • fuel is injected during the compression stroke (compression stroke injection mode), and the injected fuel is guided by the curved surface of the upper surface of the piston and collected near the spark plug. Therefore, it is possible to form a fuel-rich air-fuel ratio portion that is relatively easy to ignite in the vicinity of the ignition plug, and to form an extremely fuel-lean air-fuel ratio in other portions. Fuel economy is realized.
  • the combustion fluctuation is caused by an excessive air-fuel ratio (that is, the fuel concentration is too lean).
  • an excessive air-fuel ratio that is, the fuel concentration is too lean.
  • combustion fluctuations in the compression stroke injection mode of the direct injection internal combustion engine are caused by smoldering caused by fuel contamination of the ignition plug and its surroundings. Therefore, if an attempt is made to reduce the combustion fluctuations in the compression stroke injection mode of the direct injection type internal combustion engine only by enriching the air-fuel ratio, the spark plug is further polluted by the fuel that is not atomized, and thus further reduced. There is a problem that smoldering easily occurs. In each of the technologies, there is no suggestion as to how to balance the improvement of fuel consumption with the securing of combustion stability and the reduction of NOx in the compression stroke injection mode of the direct injection internal combustion engine.
  • the present invention has been made in view of the above-mentioned problems, and in a compression stroke injection mode of an in-cylinder injection type internal combustion engine, an exhaust gas purifying performance is achieved by simultaneously improving combustion efficiency and ensuring combustion stability. It is an object of the present invention to provide a control device for a direct injection internal combustion engine, which is capable of securing the same. Disclosure of the invention
  • the control device for a direct injection internal combustion engine of the present invention includes a fuel injection mode.
  • An in-cylinder injection type internal combustion engine that can select an intake stroke injection mode in which fuel injection is mainly performed in an intake stroke and a compression stroke injection mode in which fuel injection is mainly performed in a compression stroke.
  • An exhaust gas recirculation device a combustion fluctuation detecting means for detecting a combustion fluctuation state of the internal combustion engine, and a target fuel injection timing set in advance corresponding to the operation state of the internal combustion engine during normal operation of the internal combustion engine
  • Fuel injection timing control means for controlling the fuel injection timing of the fuel injection valve based on the following conditions: during a normal operation of the internal combustion engine, a target ignition timing set in advance corresponding to the operating state of the internal combustion engine; Base Ignition timing control means for controlling the ignition timing of the ignition plug; and during normal operation of the internal combustion engine, the exhaust gas based on a target exhaust gas flow rate preset in accordance with the operating state of the internal combustion engine.
  • Exhaust gas recirculation flow rate control means for controlling the exhaust gas recirculation flow rate of the recirculation device; and, when the compression stroke injection mode is selected, the fuel injection timing according to the detection result of the combustion fluctuation detection means; It is characterized in that the combustion fluctuation is reduced by correcting at least one of the ignition timing and the exhaust gas ring flow rate.
  • combustion fluctuation is reduced by correcting at least the ignition timing and the exhaust gas ring flow according to the detection result of the combustion fluctuation detection means. I do.
  • the compression stroke injection mode is selected, at least the fuel injection timing and the exhaust gas flow rate are corrected in accordance with the detection result of the combustion fluctuation detection means to reduce the combustion fluctuation. Reduce. As a result, it is possible to reliably suppress the deterioration of the combustion stability and the exhaust gas performance while reliably improving the fuel efficiency.
  • At least the fuel injection timing and the ignition timing are corrected in accordance with the detection result of the combustion fluctuation detection means to reduce combustion fluctuation. .
  • the fuel injection timing, the ignition timing, and the exhaust gas ring flow rate are corrected according to the detection result of the combustion fluctuation detecting means. Reduces combustion fluctuations. As a result, it is possible to ensure the stability of combustion while promoting the improvement of fuel efficiency, and to improve the fuel efficiency and combustion stability and purify the exhaust gas. Both can be realized at an extremely high level.
  • the pedestal controlling the fuel injection timing control means delays the fuel injection timing by a first predetermined value when the combustion fluctuation is detected by the combustion fluctuation detection means, and further comprises the ignition timing control means.
  • the ignition timing is delayed by a second predetermined value.
  • the exhaust gas ring flow rate controlling means is controlled, the ignition fluctuation is controlled.
  • the exhaust gas flow rate is reduced by a predetermined amount.
  • the fuel injection mode is switched from the compression stroke injection mode to the intake stroke injection mode.
  • combustion can be reliably stabilized even when combustion stability cannot be achieved in the compression stroke injection mode.
  • the air-fuel ratio of the air-fuel mixture supplied to the internal combustion engine is controlled by the air-fuel ratio control means in accordance with the detection result of the combustion fluctuation detection means. Correction reduces combustion fluctuations.
  • an optimal control corresponding to the fuel injection mode can be performed in order to improve the stability of combustion by a control means different from the compression stroke injection mode.
  • the target fuel injection timing and the target ignition timing are set to a time at which the best fuel efficiency is obtained or a time near the time at which the best fuel efficiency is obtained, with respect to the operating state of the internal combustion engine.
  • the target fuel injection timing and the target ignition timing are set to a time at which the best fuel efficiency is obtained or a time near the time at which the best fuel efficiency is obtained, with respect to the operating state of the internal combustion engine.
  • the correction amount of the fuel injection timing and the correction amount of the ignition timing when the combustion fluctuation is detected by the combustion fluctuation detecting means are set to be substantially the same. This makes it possible to obtain the above-mentioned effects or advantages while simplifying the control logic.
  • the amount of retardation of the fuel injection timing, the amount of retardation of the ignition timing, and the amount of decrease of the exhaust gas flow rate are determined by the operating state of the internal combustion engine. Is preferably set according to the following. to this As a result, the retard control at the time of combustion fluctuation can be appropriately performed, and each of the effects or advantages described above can be obtained more reliably.
  • the internal combustion engine has a plurality of cylinders, and detects combustion fluctuations by the combustion fluctuation detection means; controls the fuel injection timing by the fuel injection timing control means and the ignition timing control means; It is preferable that the ignition timing retard control is performed for each cylinder. As a result, the retard control at the time of the combustion fluctuation can be performed precisely and appropriately for each cylinder, and the above-mentioned effects and advantages can be more reliably obtained.
  • the detecting means may determine the occurrence of misfire in the combustion chamber. As a result, a misfire that interferes with the operation of the engine is detected, so that it is possible to prevent deterioration in driver's spirit.
  • FIG. 1 is a schematic configuration diagram showing a control device for a direct injection internal combustion engine as one embodiment of the present invention.
  • FIG. 2 is a flowchart showing the control content of the control device for the direct injection internal combustion engine as one embodiment of the present invention (when both the fuel injection timing and the ignition timing are retarded).
  • F 1 G.3 is a diagram showing a control map of the control device for the direct injection internal combustion engine as one embodiment of the present invention.
  • FIG. 4 is a diagram showing characteristics of a direct injection internal combustion engine in a compression stroke injection mode under control by a control device as one embodiment of the present invention.
  • FIG. 5 is a diagram showing characteristics in a compression stroke injection mode of the direct injection internal combustion engine under control by the control device as one embodiment of the present invention.
  • FIG. 6 shows the control contents of the control device for a direct injection internal combustion engine as one embodiment of the present invention (retard control of fuel injection timing and / or ignition timing and EG control). In the case where both the reduction rate control of the R rate and the reduction rate are performed).
  • REtard control of fuel injection timing and / or ignition timing and EG control In the case where both the reduction rate control of the R rate and the reduction rate are performed.
  • FIG. 1 to FIG. 5 show a control device of a direct injection internal combustion engine as an embodiment of the present invention and its characteristics.
  • .1 is a schematic configuration diagram.
  • a piston 3 is provided in a cylinder 2 formed in a cylinder block 1 as shown in FIG.
  • a fuel injection valve (injector) 5 is installed in a combustion chamber 4 above 3.
  • the injection port 5 A of the fuel injection valve 5 faces directly into the combustion chamber 4, and is configured to directly inject fuel into the combustion chamber 4.
  • a curved concave portion 3A is formed on the top surface of the piston 3, and the air taken in from the intake port 8 becomes a vertical swirl flow.
  • the injector 5 is provided in the ceiling 4A of the combustion chamber 4 formed in the cylinder head 6, and the spark plug 7 is also provided in the combustion chamber ceiling 4A.
  • the positional relationship between the injector 5 and the ignition plug 7 is such that the fuel injected from the injector 5 in the intake stroke flows along the airflow flowing from the intake port 8 into the ignition portion of the ignition plug 7. It is set to flow around 7 A. Further, when fuel is injected in the compression stroke, the injected fuel flows so as to be guided to the curved recess 3A and concentrates near the ignition portion 7A of the ignition plug 7.
  • 9 is an intake valve
  • 10 is an exhaust port
  • 11 is an exhaust valve
  • the EGR passage 12 is connected to the above-described exhaust port through the EGR valve 13 and the intake port. It communicates with the upstream side of the air port.
  • the valve 0 13 is a stepper motor type whose opening degree can be changed according to the operation state of the engine, and the EGR rate is changed by driving this motor at a predetermined step.
  • the EGR passage 12 and the EGR valve 13 constitute an exhaust gas recirculation device that recirculates a part of the engine exhaust gas to the intake system.
  • the actuator for driving the EGR valve 13 is not limited to the stepper motor type, but may be another type such as an electromagnetic type.
  • the operation of the injector 5, the spark plug 7, and the EGR valve 13 is controlled by an electronic control unit (ECU) 20.
  • the ECU 20 has a function (fuel injection timing control means) 21 for controlling the fuel injection timing of the injector 5 based on a preset target fuel injection timing, and a preset target ignition timing.
  • the fuel injection timing control means 21 controls the operation of the injector 5 based on a target fuel injection timing set in advance in accordance with the operating state of the internal combustion engine, that is, the engine load and the engine speed. Control operation
  • the ignition timing control means 22 operates the injector 5 based on a target ignition timing set in advance according to the operating state of the internal combustion engine, that is, the engine load and the engine speed. Control.
  • the exhaust gas ring flow rate control means 25 is used during normal combustion of the internal combustion engine. According to the operating state of the internal combustion engine, that is, the engine load and the engine speed, The opening of the EGR valve 13 is controlled based on a target EGR rate set in advance. Furthermore, during normal combustion of the internal combustion engine, the air-fuel ratio control means 26 controls the injector 5 based on a target air-fuel ratio set in advance according to the operating state of the internal combustion engine, that is, the engine load and the engine speed. Controls the operation of.
  • the target fuel injection timing, the target ignition time, and the target EGR rate in the compression stroke injection mode will be described based on FIGS. 4 and 5, and the engine speed Ne, the fuel injection amount, and the throttle
  • the throttle opening and the EGR ratio for example, 50%
  • the fuel consumption and combustion stability characteristics with respect to the fuel injection completion timing and ignition timing are as shown in Fig. 4.
  • the characteristics of the amount of NOx generated in the exhaust gas with respect to the fuel injection completion timing and the ignition timing are as shown in FIG.
  • a 1, A 2, and A 3 are contour lines indicating the fuel consumption level, and A l , A 2, A 3, the fuel efficiency improves (that is, the fuel efficiency becomes lower), and the fuel efficiency improves at the point indicated by the best fuel efficiency point.
  • B 1, B 2, B 3, and B 4 are contour lines indicating the combustion stability level, and the combustion stability increases in the order of B 1, B 2, B 3, and B.
  • Fig. 5 shows the actual amount of NOx generated in the exhaust gas with respect to the fuel injection completion timing and ignition timing under the same conditions as in Fig. 4, and combustion proceeds faster when the ignition timing is advanced. It shows that the stratification of the air-fuel mixture decreases and the NOx generation increases when the NOx generation increases and the fuel injection completion timing is advanced, and the C1, C2, C3, and C4 The NO x generation amount decreases in order.
  • FIG.4 and FIG. The same conditions as those indicated by the solid line in 5.
  • the dashed lines show the combustion stability obtained with respect to the fuel injection completion timing and ignition timing.
  • b1, b2, b3, and b4 are contour lines indicating the combustion stability levels, and each level is the aforementioned combustion stability level Bl, B It shows the same combustion stability as 2, B3 and B4.
  • Fig. 5 the amount of N 0 X generated in the exhaust gas with respect to the fuel injection completion timing and ignition timing is indicated by a broken line, and the amount of N 0 X generated decreases in the order of cl, c 2, c 3, and c 4.
  • Each NOx generation amount indicates the same NOX generation amount as that of C1, C2, C3, and C4 described above, and the same fuel injection completion timing is obtained by decreasing the EGR rate. Also, even at ignition timing, the amount of N 0 X generated increases.
  • the fuel injection completion timing and ignition timing are such that the fuel consumption performance, combustion stability, and NOx reduction performance are balanced according to the engine load (eg, throttle opening) and engine speed Ne. It is necessary to determine the timing and EGR rate, map them to the load-one-rotation map, and perform fuel injection control, ignition timing control, and EGR control, respectively. Of course, considering fuel efficiency, it is most preferable to set the fuel injection completion timing and ignition timing to the timing at or near the best fuel efficiency point.
  • the fuel injection completion timing, ignition timing and EGR rate at which fuel efficiency is the best that is, the target fuel injection timing and target ignition timing based on the fuel injection completion timing, ignition timing and EGR rate at the best fuel efficiency point And the target exhaust gas recirculation rate may be determined.
  • the best fuel efficiency point changes according to changes in the engine speed Ne, the fuel injection amount, the throttle opening, and the EGR rate. Since the net average effective pressure Pe is optimal, the throttle opening and the accelerator opening (accelerator depression amount) are also possible.) And the engine speed Ne is often used, so the best fuel efficiency is obtained. It is considered appropriate to set the value according to the engine load (throttle opening and accelerator opening) and the engine speed Ne.
  • the fuel injection timing control means 21, the ignition timing control means 22, the exhaust gas ring flow rate control means 25, and the air-fuel ratio control means 26 are provided with the target fuel injection timing and the target fuel injection rate with respect to the engine load-engine speed.
  • the maps in which the ignition timing, the target EGR rate, and the target air-fuel ratio are mapped are stored, and the target fuel injection timing, the target ignition timing, the target ignition timing, and the target ignition timing are determined based on the engine load and the engine speed using these maps.
  • the EGR rate and the target air-fuel ratio are set, and the drive of the injector 5, the spark plug 7, and the EGR valve 13 is controlled based on the target fuel injection timing, the target ignition timing, the target EGR rate, and the target air-fuel ratio. Has become.
  • the map and the target ignition timing setting map ⁇ The target EGR ratio map and the target air-fuel ratio map are not necessarily set at the best fuel efficiency point, but can be satisfied to some extent in consideration of combustion stability and the amount of NOx generated. It is set based on fuel injection completion timing, ignition timing, EGR rate, and air-fuel ratio that are close to the best fuel efficiency point.
  • the target fuel injection timing for controlling the injector 5 is defined by a fuel injection start timing and a fuel injection completion timing.
  • the fuel injection completion timing is set by the target fuel injection timing described above.
  • the fuel injection start timing is also calculated from the injector drive time corresponding to the fuel injection amount calculated based on the engine load, engine speed, etc., and the fuel injection completion timing obtained from the target fuel injection timing setting map. Make sure.
  • target fuel injection timing, target ignition timing, target EGR rate, and target air-fuel ratio are set so that fuel efficiency can be obtained while ensuring combustion stability during normal operation, the engine environment and fuel Depending on the conditions of the engine itself, combustion stability may be reduced.
  • combustion fluctuation detection means for detecting combustion fluctuations is provided in the ECU 20, and when the combustion fluctuations are detected, the target fuel injection timing and It is configured to correct the target ignition timing and the target EGR rate.
  • misfire which is a typical phenomenon of combustion fluctuation, and consider the occurrence of this misfire as the occurrence of combustion fluctuation.
  • misfire judging means 23 is provided, and when misfire is judged by the misfiring judging means (combustion fluctuation detecting means) 23 in the compression stroke injection mode (ie, combustion When the fluctuation is detected), the fuel injection timing control means 21, the ignition timing control means 22, and the exhaust gas ring flow rate control means 25 delay the target fuel injection timing and the target ignition timing by a predetermined crank angle. It is configured to reduce the angle or reduce the target EGR rate.
  • the determination signal from the crank angle sensor 24 is It can be determined based on this.
  • the crank angle signal obtained for each predetermined crank angle While determining the input time interval of the crank angle signal obtained for each predetermined crank angle, the crank angular acceleration becomes smaller than the first predetermined negative value.
  • the crank angle acceleration deviation is larger than the third predetermined positive value, it can be estimated that a misfire has occurred.
  • the misfired cylinder can be specified based on the crank angle signal.
  • the target fuel injection timing and the target ignition timing are controlled by the fuel injection timing control means 21 and the ignition timing control means 22 with respect to the misfired cylinder.
  • retard control is not performed, and each control is performed based on the target fuel injection timing and target ignition timing obtained from the maps.
  • reduction control of the target EGR rate may be performed by the exhaust gas ring flow rate control means 25.
  • the force at which the EGR rate decreases even for a cylinder that has not been misfired is shown in FIG. There is no particular problem because the control is directed to increase combustion stability.
  • the zones are divided into zones such as Z one O to Z one 5, and the initial retard amount X n (that is, , X 0 to X 5) and are set with the initial value of the weight loss Y n (that is, ⁇ 0 to ⁇ 5).
  • the initial value of the retard amount according to the determined engine load and engine speed.
  • the initial value of the retard amount Xn for each zone is not always optimal for each cylinder, and the initial value of the retard amount Yn is not always optimal for all cylinders.
  • learning the fuel injection timing control, ignition timing control, or exhaust gas ring flow rate control with the value X n or the initial amount of ignition Yn learn the more appropriate retardation or amount of ignition for each zone.
  • the learning amount RXn and the learning value RYn for each zone the actual control is performed based on the learning value RXn and the learning value RYn for each zone.
  • the value of the amount of retardation RX to be used and the value of the amount of weight loss RY are set.
  • the learning value of the retardation amount RXn and the learning value of the weight loss amount RYn for each zone are controlled so as to be able to be controlled with smaller retardation value and smaller amount while learning data in other zones.
  • the learning amount for retardation RX n and the learning value for weight loss RY n are set.
  • in-cylinder injection engines are generally set to ignite when fuel gathers near the ignition plug, so that an almost optimal fuel injection timing with respect to the ignition timing is determined. Can be estimated. Therefore, when only the ignition timing is excessively retarded as in a conventional engine, the combustion stability deteriorates, as apparent from FIG. Therefore, when only the ignition timing is retarded, combustion stability can be improved by delaying only the ignition timing at least immediately before the fuel spray passes through the spark plug electrode portion.
  • the target ignition timing is retarded by gradually reducing the retardation amount if there is no further misfire after the control is started. The ignition timing is gradually advanced to return to the original target ignition timing.
  • combustion stability can be improved by retarding only the fuel injection timing until the fuel injection timing at which the tip of the fuel spray can reach the ignition Bragg electrode during discharge of the spark plug. Then, in the retard control of the target fuel injection timing by the fuel injection timing control means 21 at the time of misfire determination, if there is no further misfire after the start of the control, the retard amount is gradually reduced, that is, the retard Later, the fuel injection timing is gradually advanced to return to the original target fuel injection timing.
  • the target EGR rate reduction control by means of the exhaust gas ring flow control means 25 at the time of misfire determination is performed by gradually decreasing the reduction amount if there is no further misfire after the control is started, that is, gradually after the reduction.
  • the target EGR rate is being returned to the original target EGR rate.
  • the combustion stability can be improved more satisfactorily as compared with the case where only one of them is retarded, as is clear from FIG. it can.
  • the optimal retard amount of the target fuel injection timing at the time of such misfire and the optimal retard amount of the target ignition timing can be set to be substantially equal. Therefore, here, the retard amount RX used for the set control is used for both the retard amount of the target fuel injection timing and the retard amount of the target ignition timing.
  • the retard control of the target fuel injection timing and the target ignition timing by the fuel injection timing control means 21 and the ignition timing control means 22 at the time of misfire determination is performed if there is no further misfire after the control is started.
  • the amount is gradually reduced, that is, gradually advanced after retarding, and returned to the original target fuel injection timing and target ignition timing.
  • a map (or table) as shown in FIG. are separately prepared for the target ignition timing and the target EGR rate, and the retard amount and the reduction amount are set according to these.
  • the original target ignition timing and the target EGR rate are returned while gradually decreasing the angle amount and the amount of decrease, that is, gradually advancing and increasing the amount after the retard and the amount of decrease.
  • the combustion stability can be improved with a smaller retardation amount and a reduced amount as compared with the above method.
  • the addition of NO x can be further suppressed, so that the combustion stability can be improved promptly when a misfire occurs.
  • the combustion stability may be improved, and in the case of the severe combustion deterioration, the combustion stability may be improved by controlling all of the above.
  • the intake stroke injection mode a uniform air-fuel mixture is introduced into the entire combustion chamber, so that the target air-fuel ratio is richened by the air-fuel ratio control means 26 as in the conventional engine. This reduces combustion fluctuations. Also, in the compression stroke injection mode, despite the fact that the combustion stabilization was performed by performing the fuel injection timing, the ignition timing, the retard control of the EGR rate, and the decrease control, the combustion fluctuation still occurs.
  • Inhibiting the compression stroke injection mode selecting the intake stroke injection, and controlling the target air-fuel ratio near the theoretical air-fuel ratio by the target air-fuel ratio control means 26 to improve the combustion stability and improve the fuel system , Ignition system, EGR system file determination and countermeasures at the time of file (for example, prohibition of the compression stroke injection mode) may be provided.
  • the control device of the internal combustion engine is configured as described above, its operation will be described as follows. The control performed for each cylinder when the fuel injection timing and the ignition timing are both retarded will be described in detail. For example, the control is performed as shown in a flowchart of FIG.
  • a misfire determination result is determined by the misfire determination means 23 (step S10), and when a misfire is determined, a misfire determination flag is set (step S2). 0), if the misfire has not been determined, the misfire determination flag is reset (step S30).
  • step S40 it is determined whether the misfire determination flag is set. If the misfire determination flag is set, that is, at the time of misfire determination, the routine proceeds to step S50, where the engine speed N e And the engine load (net average effective pressure) Pe, it is determined which of the zones Z one 0 to Z one 5 is the current engine operating state. Then, in step S60, it is determined whether or not the zone determined in step S50 is different from the previous determination zone, and if different from the previous determination zone, the current retard amount RX is retarded. It is set to the quantity learning value RXn (step S70).
  • the current retard amount RX is the retard amount used at the closest point in time, that is, the retard amount used for control in the previous control, and at the start of control, the retard corresponding to the determination zone in step S50. Corner
  • the initial value of the amount (one of X0 to X5) is set as the current retard amount RX.
  • step S80 it is determined whether or not the retard amount initial value (one of X0 to X5) corresponding to the determination zone in step S50 is equal to or greater than the retard amount learning value RXn. If the initial value of the retard amount corresponding to the judgment zone is equal to or greater than the retard value learning value RXn, the retard value learning value RXn is set to the present retard value RX (step S100), and the decision is made. If the initial retard amount corresponding to the zone is not equal to or greater than the retard learning value RXn, the initial retard value (one of X0 to X5) corresponding to the determination zone is used as the current retard amount RX. Set (Step S90). In other words, as the current retard amount (the retard amount used for control) RX, the smaller one of the retard amount initial value and the retard amount learning value RX n corresponding to the determination zone is used. .
  • retard control of the target fuel injection timing and the target ignition timing is performed according to the current retard amount RX.
  • the retard amount RX is gradually reduced by the unit angle, and eventually the retard amount RX becomes 0, and the retard control ends.
  • the target fuel injection is made in advance so as to improve the fuel efficiency.
  • Ten Control is performed while setting the timing and target ignition timing, and if a misfire occurs, further misfire can be prevented by retarding the fuel injection timing and ignition timing. As a result, it is possible to achieve both stability and combustion stability. Of course, if combustion becomes stable, it will also be advantageous to reduce NOx, so it is possible to achieve a high level of balance between improving fuel efficiency, ensuring combustion stability, and purifying exhaust gas.
  • both or three of the above-described control for retarding the fuel injection timing and Z or the ignition timing and the control for decreasing the EGR rate may be performed.
  • the flowchart shown in Fig. 6 shows both the retard control of the fuel injection timing or ignition timing and the decrease control of the EGR rate, or the retard control of the fuel injection timing or ignition timing and the control of the EGR rate.
  • C indicating control in the case of performing the three operations with weight loss control
  • step S10 when the misfire determination flag is set by the misfire determination (step S10) (step S20), the process proceeds from step S40 to step S50 and the zone determination is performed. However, if the zone judgment result of the current engine running state is different from the previous zone judgment result, the process proceeds from step S60 to step S70 to learn the current retard amount RX. In addition to setting to the value RXn, the current weight loss RY of the EGR rate is set to the weight loss learning value RYn (step S130).
  • step S140 it is determined whether or not the weight loss initial value ⁇ ⁇ (any of ⁇ 0 to ⁇ 5) corresponding to the determination zone in step S 50 is equal to or greater than the weight loss learning value R ⁇ ⁇ . Is determined, and if the weight loss initial value ⁇ ⁇ corresponding to the determination zone is equal to or greater than the weight loss learning value RY ⁇ , the weight loss learning value R ⁇ ⁇ is set to the current weight loss R ((step S 15).
  • the weight loss initial value ⁇ ⁇ corresponding to the determination zone is not equal to or greater than the weight loss learning value RY ⁇
  • the weight loss initial value ⁇ ⁇ is set to the current weight loss RY (step S 16 0). That is, as the current 'weight loss (amount used for control) RY', the smaller one of the 'weight loss initial value ⁇ ' and the weight loss learning value RY ⁇ corresponding to the judgment zone is used.
  • step S30 When the misfire determination flag is reset (step S30) as a result of the misfire determination (step S10), the process proceeds from step S40 to steps SI10 to S120 and retards In addition to subtracting the amount RX, in steps S170 to S180, the reduction amount RY is subtracted. That is, the process proceeds from step S170 to step S180 until the weight loss RY reaches 0, and the weight loss RY is subtracted by the unit weight ⁇ .
  • the combustion fluctuation is detected by the determination of misfire.
  • the present invention is not limited to such an embodiment, but detects combustion fluctuation that does not lead to misfire.
  • the target fuel injection timing retard control and the target ignition timing retard control by the fuel injection timing control means 21 and the ignition timing control means 22, and the target EGR rate by the exhaust gas Weight reduction control may be performed.
  • the retardation amount of the target fuel injection period, the retardation amount of the target ignition timing, and the decrease amount of the target EGR rate may be set to be smaller than that of the base of a combustion fluctuation that may cause a misfire.
  • it is also possible to improve the combustion stability by controlling one or two of the fuel injection timing, ignition timing, and EGR rate while setting the same as in the case of combustion fluctuations leading to misfire. Good. Industrial applicability
  • a cylinder injection type internal combustion engine it is possible to ensure combustion stability while promoting fuel efficiency improvement by compression stroke injection, and to improve fuel efficiency, improve combustion stability and purify exhaust gas. It can be realized at the same time. For this reason, it is suitable, for example, for vehicles and other engines for vehicles, and improves vehicle driver stability through stable combustion, reduces operating costs due to lower fuel consumption, and protects the environment by promoting exhaust gas purification. It is extremely useful because it can simultaneously satisfy various demands on the engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

明 細 書 筒内噴射式内燃機関の制御装置 技術分野
本発明は燃料噴射時期、 点火時期及び排気ガス環流量の制御を行なう、 筒内噴射式内燃機関の制御装置に関する。 背景技術
近年、 点火プラグを有する内燃機関 (エンジン) で、 シリ ンダ内に直 接燃料噴射を行なうようにした、 いわゆる筒内噴射式内燃機関 (以下、 筒内噴射式ェンジンという) と呼ばれているエンジンが開発されている c このような筒内噴射式エンジンでは、 燃料噴射弁 (ィ ンジニクタ) によ る燃料噴射を、 目的とする燃焼に最適な噴射タイ ミ ングで燃料噴射を行 なう必要がある。
例えば、 大きな出力を得るには、 シリ ンダ内全体が最適な空燃比 (ス 卜ィキォ又はエンリ ッチ状態) となるように、 いわゆる予混合と称され ているが、 燃料と空気との混合を十分に行なえるよう吸気行程を中心と して燃料噴射 (吸気行程噴射モー ド) を行なう必要がある。 もちろん、 燃料噴射タイ ミ ングが早過ぎれば、 噴射燃料がビス 卜ンに衝突して燃焼 が悪化し排ガス性状に悪影響を及ぼすおそれがあるので、 このようなこ とのないように、 早過ぎないタイ ミ ングで燃料噴射を行なうことになる ; また、 このような吸気行程噴射モー ドにおいても、 出力よりも燃費を 重視した希薄燃焼 (リーンバーン) を行なうことができる。 つまり、 吸 気通路及びピス ト ン上面の形状の設定により、 吸気流がいわゆるタ ンブ ル流と称される層状の縦スワールを形成するように案内し、 このタンブ ル流内に燃料噴射を行なうことで、 点火ブラグの近傍については比絞的 着火し易い空燃比状態としながら全体として空燃比の大きい希薄状態と した燃焼運転を行なうことができる。
さらに、 予混合リーンバーンではなく、 全体としては空燃比が極めて 大きい超希薄状態とした層状化燃焼運転 (超リーンバーン) を行なうこ とも考えられている。 この層状化燃焼運転では、 圧縮行程に燃料噴射 (圧縮行程噴射モー ド) を行ない、 この噴射燃料はピス ト ン上面の弯曲 面で案内されて点火プラグの近傍に集められる。 したがって、 点火ブラ グの近傍については比較的着火し易い燃料過濃な空燃比部を形成し、 そ の他の部分では極めて燃料希薄な空燃比の伏態を形成することが可能に なり、 優れた燃費が実現する。
ところで、 このようなエンジンの圧縮行程噴射モー ドでは、 噴射と点 火との夕イ ミ ングの最適化を図り、 燃費を向上させようとすると、 燃焼 安定性が低下しやすくなり、 排気ガス中の N O Xが増大する傾向にある。 また、 E G R率を低下すると燃焼安定性が向上するが排気ガス中の N O Xが増大する傾向にもある。 すなわち、 燃費と燃焼安定性及び排気ガス '净化とが卜レー ドオフの関係にあることが本発明者の研究により判明し た。
そこで、 通常運転時には燃費性能と燃焼安定性及び N 0 X低減性とが バランスするように、 運転状態に応じて噴射と点火のタイ ミ ング及び E G R率を最適にマツチングするのである力 ェンジンの使用環境や使用 燃料やエンジン自体のコンディ シヨ ンによっては、 燃焼安定性が低下し て、 燃焼変動を生じて、 場合によっては失火が発生する場合が考えられ る。
この燃焼変動や失火の対策としてディーゼルエンジンにおいては、 失 火発生時に燃料噴射時期を遅角させる技術が、 例えば特公平 7 - 1 8 3 7 5号公報に提案されている。
また、 吸気管にィンジェクタを取り付けた、 いわゆる吸気ポー 卜噴射 式リーンバーンエンジンにおいては、 燃焼変動の原因が空燃比が大き過 ぎる (即ち、 燃料濃度がリーン過ぎる) ことにより発生するために、 燃 焼変動時に空燃比を減少 (リ ッチ化) させる技術がある。
しかしながら、 上述の各技術では、 前述したような筒内噴射式内燃機 関の圧縮行程噴射モー ドにおける点火時期と燃料噴射時期との関係が記 載されておらず、 上述の技術を筒内噴射式内燃機関の圧縮行程噴射モー ドにおける燃焼変動対策に単純に応用すると過度の遅角により失火の頻 度が増える等の問題がある。
また、 筒内噴射式内燃機関の圧縮行程噴射モー ドでの燃焼変動は、 点 火プラグ及びその周辺部分が燃料の汚損により生じるくすぶりに起因し ていることが本発明者の研究により判明した。 よって、 空燃比をリ ッチ 化することのみによって筒内噴射式内燃機関の圧縮行程噴射モ一ドにお ける燃焼変動を低減しょうとすると、 点火プラグが微粒化されない燃料 により汚損されてより一層くすぶりが発生し易いという問題がある。 各 技術ともに、 筒内噴射式内燃機関の圧縮行程噴射モー ドにおいて、 燃費 の向上と燃焼安定性の確保及び N 0 X削減とをどのようにバランスさせ るかに関しては、 何ら示唆されていない。
本発明は、 上述の課題に鑑み創案されたもので、 筒内噴射式内燃機関 の圧縮行程噴射モ一 ドにおいて、 燃費の向上を促進しながら併せて燃焼 安定性の確保を行ない排気ガス浄化性能も確保できるようにした、 筒内 噴射式内燃機関の制御装置を提供することを目的とする。 発明の開示
このため、 本発明の筒内噴射式内燃機関の制御装置は、 燃料噴射モー ドとして、 主として吸気行程において燃料噴射を行う吸気行程噴射モー ドと、 主として圧縮行程において燃料噴射を行う圧縮行程噴射モードと を、 運転状態に応じて選択可能な筒内噴射式内燃機関であって、 該内燃 機関の燃焼室内に燃料を直接噴射する燃料噴射弁と、 該燃焼室に設けら れた点火プラグと、 該内燃機関の排気ガスの一部を該内燃機関の吸気系 へ璟流する排気ガス環流装置と、 該内燃機関の燃焼変動状態を検出する 燃焼変動検出手段と、 該内燃機関の通常運転時に、 該内燃機関の運転状 態に対応して予め設定された、 目標燃料噴射時期に基づいて該燃料噴射 弁の燃料噴射時期を制御する燃料噴射時期制御手段と、 該内燃機関の通 常運転時に、 該内燃機関の運転状態に対応して予め設定された、 目標点 火時期に基づいて該点火ブラグの点火時期を制御する点火時期制御手段 と、 該内燃機関の通常運転時に、 該内燃機関の運転状態に対応して予め 設定された、 目標排気ガス環流量に基づいて該排気ガス環流装置の排気 ガス環流量を制御する排気ガス環流量制御手段と、 該圧縮行程噴射モー ドを選択しているときに、 該燃焼変動検出手段の検出結果に応じて該燃 料噴射時期、 該点火時期、 該排気ガス環流量の少なく とも何れか一つを 補正することにより燃焼変動を低減することを特徴としている。
このような構成により、 筒内噴射式内燃機関の圧縮行程噴射モードに おいて、 燃費の向上を促進しながら併せて燃焼安定性の確保を行なうこ とが可能になり、 ひいては、 燃費の向上と燃焼の安定性の向上及び排気 ガスの浄化とをともに実現することが可能になる。
また、 好ましくは、 該圧縮行程噴射モ一ドを選択しているときに、 該 燃焼変動検出手段の検出結果に応じて少なくとも該点火時期及び該排気 ガス環流量を補正することにより燃焼変動を低減する。 これにより、 確 実に燃費を向上させながら燃焼安定性と排気ガス性能の悪化の抑制を確 保することができる。 また、 好ましくは、 該圧縮行程噴射モー ドを選択しているときに、 該 燃焼変動検出手段の検出結果に応じて少なく とも該燃料噴射時期及び該 排気ガス環流量を補正することにより燃焼変動を低減する。 これにより、 確実に燃費を向上させながら燃焼安定性と排気ガス性能の悪化の抑制を 確保することができる。
また、 好ましく は、 該圧縮行程噴射モー ドを選択しているときに、 該 燃焼変動検出手段の検出結果に応じて少なく とも該燃料噴射時期及び該 点火時期を補正することにより燃焼変動を低減する。 これにより、 確実 に燃費の向上を促進させながら併せて燃焼安定性の確保を行なうことが 可能になり、 ひいては、 燃費の向上と燃焼の安定性の向上及び排気ガス の浄化とをともに高いレベルで実現することが可能になる。
また、 好ましくは、 該圧縮行程噴射モー ドを選択しているときに、 該 燃焼変動検出手段の検出結果に応じて該燃料噴射時期, 該点火時期, 及 び該排気ガス環流量を補正することにより燃焼変動を低減する。 これに より、 確実に燃費の向上を促進させながら併せて燃焼安定性の確保を行 なうことが可能になり、 ひいては、 燃費の向上と燃焼の安定性の向上及 び排気ガスの浄化とをともに極めて高いレベルで実現することが可能に なる。
さらに、 好ましくは、 該燃料噴射時期制御手段を制御する場台は、 該 燃焼変動検出手段により燃焼変動が検出されると燃料噴射時期を第 1の 所定値だけ遅らせ、 また、 該点火時期制御手段を制御する場合は、 該燃 焼変動検出手段により燃焼変動が検出されると点火時期を第 2の所定値 だけ遅らせ、 また、 該排気ガス環流量制御手段を制御する場合は、 該燃 焼変動検出手段により燃焼変動が検出されると排気ガス環流量を所定量 だけ減量する。 これにより、 確実に燃費の向上を促進させながら併せて 燃焼安定性の確保を行なうことが可能になり、 ひいては、 燃費の向上と 燃焼の安定性の向上及び排気ガスの浄化とをともに極めて高いレベルで 実現することが可能になるとともに、 制御ロジックを簡素化することが できる。
また、 好ましくは、 該内燃機関の燃焼変動が該補正を行なっても低減 しない塲合は、 該圧縮行程噴射モー ドから該吸気行程噴射モー ドに燃料 噴射モー ドを切り換える。 これにより、 圧縮行程噴射モー ドで燃焼の安 定性が行えない場合でも確実に燃焼を安定することができる。
また、 好ましくは、 該吸気行程噴射モー ドを選択しているときに、 該 燃焼変動検出手段の検出結果に応じて該内燃機関に供給される混合気の 空燃比を空燃比制御手段によつて補正することにより燃焼変動を低減す る。 これにより、 吸気行程噴射モー ドでは圧縮行程噴射モー ドとは異な る制御手段によって燃焼の安定性の向上を図るため燃料噴射モー ドに応 じた最適な制御を行なうことができる。
また、 該目標燃料噴射時期及び該目標点火時期が、 該内燃機関の運転 状態に対して、 最良燃費の得られる時期又は最良燃費の得られる時期の 近くに設定されていることが好ましい。 これにより、 確実に燃費の向上 させながら燃焼の安定性を確保できるようになり、 さらには、 燃費の向 上と燃焼の安定性の確保と排気ガスの浄化とを高いレベルでバランスさ せることができる。
また、 該燃焼変動検出手段によって燃焼変動が検出されたときの該燃 料噴射時期の補正量と該点火時期の補正量がほぼ同一に設定されている ことが好ましい。 これにより、 制御ロジックを簡素化しながら上記の各 効果ないし利点を得ることができるようになる。
さらに、 該燃焼変動検出手段によつて燃焼変動が検出されたときの該 燃料噴射時期の遅角量, 該点火時期の遅角量, 該排気ガス環流量の減量 量は、 内燃機関の運転状態に応じて設定されることが好ましい。 これに より、 燃焼変動時の遅角制御を適切に行なえるようになり、 上記の各効 果ないし利点をより確実に得ることができるようになる。
また、 該内燃機関が複数の気筒を有し、 該燃焼変動検出手段による燃 焼変動の検出と、 該燃料噴射時期制御手段及び該点火時期制御手段によ る該燃料噴射時期の遅角制御, 該点火時期の遅角制御とが、 いずれも各 気筒毎に行われるように構成されることが、 好ましい。 これにより、 燃 焼変動時の遅角制御を各気筒毎に綿密且つ適切に行なえるようになり、 上記の各効果ないし利点をより一層確実に得ることができるようになる c さらに、 該燃焼変動検出手段は、 該燃焼室での失火の発生を判定する ものとしてもよい。 これにより、 エンジンの運転に支障をきたす失火を 検出するので、 ドライバピリティが悪化するのを防止できる。 図面の簡単な説明
F I G . 1は、 本発明の一実施形態としての筒内噴射式内燃機関の制 御装置を示す模式的な構成図である。
F I G . 2は、 本発明の一実施形態としての筒内噴射式内燃機関の制 御装置の制御内容 (燃料噴射時期と点火時期とを共に遅角させる場合) を示すフローチャー 卜である。
F 1 G . 3は、 本発明の一実施形態としての筒内噴射式内燃機関の制 御装置の制御マップを示す図である。
F I G . 4は、 本発明の一実施形態としての制御装置による制御下で の筒内噴射式内燃機関の圧縮行程噴射モー ドでの特性を示す図である。
F I G . 5は、 本発明の一実施形態としての制御装置による制御下で の筒内噴射式内燃機関の圧縮行程噴射モー ドでの特性を示す図である。
F I G . 6は、 本発明の一実施形態としての筒内噴射式内燃機関の制 御装置の制御内容 (燃料噴射時期及び/又は点火時期の遅角制御と E G R率の減量制御との両者を実施する場合) を示すフローチヤ一トである。 発明を実施するための最良の形態
以下、 図面により、 本発明の実施の形態について説明すると、 F I G . 1〜F I G . 5は本発明の一実施形態としての筒内噴射式内燃機関の制 御装置及びその特性を示すもので、 F I G . 1 はその模式的な構成図で ある。
本装置にかかる筒内噴射式内燃機関 (以下、 エンジンという) では、 F I G . 1に示すように、 シリ ンダブロック 1に形成されたシリ ンダ 2 内にはピス トン 3が装備され、 このピス トン 3の上方の燃焼室 4内に燃 料噴射弁 (インジェクタ) 5が設置されている。 この燃料噴射弁 5の噴 射口 5 Aは直接燃焼室 4内に臨んでおり、 燃焼室 4に直接燃料噴射する ように構成されている。
また、 ピストン 3の頂面には、 弯曲した凹所 3 Aが形成されており、 吸気ポ一 ト 8から吸入された空気は縦方向のスワール流となる。
インジヱクタ 5は、 シリ ンダへッ ド 6に形成された燃焼室 4の天井部 4 Aに設けられるが、 点火プラグ 7 も、 この燃焼室天井部 4 Aにそなえ られる。 特に、 これらのィ ンジヱクタ 5 と点火ブラグ 7 との位置関係は、 インジヱクタ 5から吸気行程で噴射された燃料が、 吸気ポ一 卜 8から流 入する空気流に沿ってこの点火プラグ 7の発火部 7 A付近に流動してい くように、 設定されている。 また、 圧縮行程で燃料噴射した場合には、 弯曲凹所 3 Aに噴射燃料が案内されるように流れて点火ブラグ 7の発火 部 7 A付近に集中していく ように構成されている。
なお、 F I G . 1中、 9は吸気弁、 1 0は排気ポー 卜、 1 1は排気弁 である。
また、 E G R通路 1 2が E G R弁 1 3を介して上述の排気ポー 卜と吸 気ポー トの上流側とを連通している。 £ 0 1^弁 1 3はエンジンの運転状 態に応じてその開度を変更可能に設定されたステツパモータ式であり、 このモー夕を所定ステツプ駆動することにより E G R率を変化させてい る。 このような E G R通路 1 2, E G R弁 1 3により、 エンジンの排気 ガスの一部を吸気系へ環流する排気ガス環流装置が構成される。 なお、 E G R弁 1 3を駆動するァクチユエ一タはステツパモータ式に限るもの ではなく、 電磁式等の他のタイプのものでもよい。
そして、 インジヱクタ 5、 点火プラグ 7及び E G R弁 1 3は、 電子制 御ユニッ ト (E C U ) 2 0により作動を制御されるようになっている。 このため、 E C U 2 0内には、 予め設定された目標燃料噴射時期に基づ いてィンジ クタ 5の燃料噴射時期を制御する機能 (燃料噴射時期制御 手段) 2 1 と、 予め設定された目標点火時期に基づいて点火プラグ 7の 点火時期を制御する機能 (点火時期制御手段) 2 2と、 予め設定された 目標 E G R率に基づいて E G R弁 1 3の開度を制御する機能 (排気ガス 環流量制御手段) 2 5と、 予め設定された目標空燃比に基づいてイ ンジ クタ 5からの燃料噴射量を制御する機能 (空燃比制御手段) 2 6 とが そなえられる。
燃料噴射時期制御手段 2 1では、 内燃機関の通常燃焼時には、 内燃機 関の運転状態、 即ち、 エンジン負荷やエンジン回転数に対応して、 予め 設定された目標燃料噴射時期に基づいてィンジ クタ 5の作動を制御す る
また、 点火時期制御手段 2 2は、 内燃機関の通常燃焼時には、 内燃機 関の運転状態、 即ち、 エンジン負荷やエンジン回転数に対応して、 予め 設定された目標点火時期に基づいてィンジュクタ 5の作動を制御する。
さらに、 排気ガス環流量制御手段 2 5は、 内燃機関の通常燃焼時には. 内燃機関の運転状態、 即ち、 エンジン負荷やエンジン回転数に対応して, 予め設定された目標 E G R率に基づいて E G R弁 1 3の開度を制御する。 さらにまた、 空燃比制御手段 2 6は、 内燃機関の通常燃焼時には、 内 燃機関の運転状態、 即ち、 エンジン負荷やエンジン回転数に対応して、 予め設定された目標空燃比に基づいてィンジヱクタ 5の作動を制御する。
ここで、 圧縮行程噴射モー ドにおける目標燃料噴射時期、 目標点火時 期及び目標 E G R率について、 F I G. 4 , F I G. 5に基づいて説明 すると、 エンジン回転数 N e, 燃料噴射量, スロ ッ トル開度, E GR率 (例えば 5 0 %) がいずれも一定の条件下では、 燃料噴射完了時期及び 点火時期に対する燃費及び燃焼安定性の特性は、 F I G. 4に示すよう になり、 また、 同様に、 燃料噴射完了時期及び点火時期に対する排気ガ ス中の N 0 X発生量の特性は、 F I G. 5に示すようになる。
F I G. 4及び F I G. 5に基づいて圧縮行程噴射モードでの特性を 説明すると、 F I G. 4中、 A 1 , A 2 , A 3は燃費レベルを示す等高 線であり、 A l , A 2 , A 3の順で燃費がよくなり (即ち、 より低燃費 になり) 、 最良燃費点と示す点で最も燃費がよくなる。 また、 B l , B 2, B 3 , B 4は、 燃焼安定性のレベルを示す等高線であり、 B l , B 2 , B 3, B の順で燃焼安定性が高まる。
さらに、 F I G. 5では F I G. 4と同様な条件における燃料噴射完 了時期及び点火時期に対する排気ガス中の NO X発生量を実箜で示し、 点火時期を進角すると燃焼が早くなつて NO x発生量が増加し、 燃料の 噴射完了時期を早くすると混合気の層状化が低下し N 0 X発生量が增加 することを示しており、 C l, C 2 , C 3 , C 4の順で NO x発生量が '减少する。
またさらに、 E GR率を減少 (例えば 3 0 %) する力〈、 これ以外の条 件、 つまり、 エンジン回転数 N e, 燃料噴射量, スロッ トル開度につい ては F I G. 4及び F I G. 5にて実線で示したものと同様の条件とし て得られた、 燃料噴射完了時期及び点火時期に対する燃焼安定性を破線 で示す。 F I G. 4中、 b 1, b 2 , b 3, b 4は、 燃焼安定性のレべ ルを示す等高線であり、 各々のレベルは前述の燃焼安定性のレベルであ る B l , B 2 , B 3 , B 4と同一の燃焼安定性を示しており、 E GR率 を減少することにより同一の燃料噴射完了時期及び点火時期であつても 燃焼安定性が高まる。
さらに、 F I G. 5では燃料噴射完了時期及び点火時期に対する排気 ガス中の N 0 X発生量を破線で示し、 c l, c 2 , c 3 , c 4の順で N 0 X発生量が減少し、 各々の N 0 X発生量は前述の C 1, C 2 , C 3 , C 4と同一の NO X発生量を示しており、 E GR率が減少することによ り同一の燃料噴射完了時期及び点火時期であつても N 0 X発生量が増大 する。
これらの F I G. 4 , F I G. 5に示すように、 最良燃費状態となる ように燃料噴射完了時期、 点火時期及び E G R率を設定すると、 燃焼安 定性及び N 0 X低減性に関しては必ずしも満足できるものとはならない ので、 エンジン負荷 (例えばスロ ッ トル開度) 及びエンジン回転数 N e に応じて、 燃費性能と燃焼安定性及び NO X低減性とがバランスするよ うな燃料噴射完了時期, 点火時期及び E GR率を求めて、 それぞれ、 負 荷一回転数マップにマッピングして、 燃料噴射制御, 点火時期制御及び E GR制御を行なうことが必要となる。 もちろん、 燃費を考えれば、 燃 料噴射完了時期及び点火時期を最良燃費点の時期又はこれに近い時期に , 設定することが最も好ましい。
基本的には、 燃費の最も良くなる燃料噴射完了時期, 点火時期及び E GR率、 即ち、 最良燃費点となる燃料噴射完了時期, 点火時期及び E G R率に基づいて目標燃料噴射時期, 目標点火時期及び目標排気ガス環流 量を決めればよい。 このような最良燃費点は、 エンジン回転数 N e , 燃料噴射量, スロッ トル開度, E G R率が変化すれば、 これに応じて変化するが、 燃料噴射 量や E G R率については、 エンジン負荷 〔正味平均有効圧 P eが最適だ 力く、 スロッ 卜ル開度やアクセル開度 (アクセル踏込量) も可〕 及びェン ジン回転数 N eに応じて制御する場合が多いので、 最良燃費点はェンジ ン負荷 (スロッ トル開度やアクセル開度) 及びエンジン回転数 N eに応 じて設定することが適していると考えられる。
そこで、 燃料噴射時期制御手段 2 1 , 点火時期制御手段 2 2, 排気ガ ス環流量制御手段 2 5及び空燃比制御手段 2 6に、 エンジン負荷 -ェン ジン回転数に対する目標燃料噴射時期, 目標点火時期, 目標 E G R率及 び目標空燃比をマツビングしたマップをそれぞれ記憶させておき、 これ らのマップを用いてェンジン負荷とェンジン回転数とに基づいて、 目標 燃料噴射時期, 目標点火時期, 目標 E G R率及び目標空燃比を設定し、 これらの目標燃料噴射時期, 目標点火時期, 目標 E G R率及び目標空燃 比に基づきィンジヱクタ 5や点火プラグ 7及び E G R弁 1 3の駆動を制 御するようになっている。
ただし、 一般に想定されるエンジンの運転状態において、 最良燃費点 では燃焼安定性が十分に確保できない場合や、 最良燃費点では N O X発 生量が多くなる場合も考えられ、 上述の目標燃料噴射時期設定マップや 目標点火時期設定マップゃ目標 E G R率マツプ及び目標空燃比マップは、 必ずしも最良燃費点に設定するのでなく、 燃焼安定性と N 0 X発生量と を考慮してこれらをある程度満足できるような最良燃費点に近い燃料噴 射完了時期, 点火時期, E G R率, 空燃比に基づいて設定している。 なお、 インジ二クタ 5の制御にかかる目標燃料噴射時期とは、 燃料噴 射開始時期と燃料噴射完了時期とで規定されるが、 ここでは、 燃料噴射 完了時期については上記の目標燃料噴射時期設定マップから求めるが、 燃料噴射開始時期については、 やはりエンジン負荷, エンジン回転数等 に基づいて算出される燃料噴射量に応じたィンジェクタ駆動時間と目標 燃料噴射時期設定マップから求めた燃料噴射完了時期とから逆算して求 めるようにする。
しかしながら、 通常運転時には燃焼安定性を確保できるようにしなが ら好燃費の得られる目標燃料噴射時期、 目標点火時期, 目標 E G R率, 目標空燃比を設定しても、 ェンジンの使用環境や使用燃料ゃェンジン自 体のコンディ ショ ンによっては、 燃焼安定性が低下する場合が想定され る。
燃焼安定性が低下すれば燃焼変動が生じるので、 本装置では、 E C U 2 0内に、 燃焼変動を検出する機能 (燃焼変動検出手段) を設けて、 燃 焼変動検出時には、 目標燃料噴射時期や目標点火時期や目標 E G R率を 補正させるように構成されている。 ここでは、 燃焼変動の典型的な現象 である失火に着目して、 この失火の発生を燃焼変動の発生としてとらえ るようにしている。
このため、 失火を判定する機能 (失火判定手段) 2 3を設けており、 圧縮行程噴射モー ド時に、 失火判定手段 (燃焼変動検出手段) 2 3で失 火が判定されると (即ち、 燃焼変動が検出されると) 、 燃料噴射時期制 御手段 2 1, 点火時期制御手段 2 2 , 排気ガス環流量制御手段 2 5では. 目標燃料噴射時期や目標点火時期を所定のクランク角度分だけ遅角させ たり、 目標 E G R率を減量させるように構成されている。
なお、 失火判定手段 2 3による失火判定には、 種々の手法がある力 例えば特開平 6— 2 2 9 3 1 0号公報にも開示されているが、 クランク 角センサ 2 4からの判定信号に基づいて判定することができる。 つまり. 失火が発生するとこの失火時だけ瞬間的にエンジン回転速度 (したがつ て、 クランクシャフ トの角速度) が低下するので、 この点に着目して、 所定のクランク角度毎に得られるクランク角信号の入力時間間隔を判定 しながら、 クランク角加速度が所定の第 1の負の値よりも小さくなつて、 しかも、 このようにクランク角加速度が所定の第 1の負の値よりも小さ くなる直前にクランク角加速度偏差が所定の第 2の負の値よりも小さく 、 且つ、 クランク角加速度が所定の第 1の負の値よりも小さくなつた直 後のクランク角加速度偏差が所定の第 3の正の値よりも大きい場合には、 失火が発生したと推定することができる。 もちろん、 クランク角信号に 基づいて、 失火した気筒を特定することもできる。
そして、 このような失火判定時には、 失火した気筒に関して、 燃料噴 射時期制御手段 2 1、 点火時期制御手段 2 2による目標燃料噴射時期や 目標点火時期の遅角制御を行なうようにし、 もちろん、 失火していない 気筒に関しては、 遅角制御は行なわずそれぞれマップから求められた目 標燃料噴射時期や目標点火時期により各制御を行なう。
または、 排気ガス環流量制御手段 2 5による目標 E GR率の減量制御 を行なってもよい、 もちろん、 失火していない気筒に関しても E G R率 が減少することになる力^ F I G. 4に示すように燃焼安定性が増す方 向の制御であるため特に問題はない。
ところで、 このような失火判定時の燃料噴射時期制御手段 2 1及び点 火時期制御手段 2 2による目標燃料噴射時期の遅角量や目標点火時期の 遅角量、 さらには排気ガス環流量制御手段 2 5による目標 E GR率の減 量量については、 ェンジンの運転状態によって最適な遅角量及び減量量 が異なるので、 ェンジン負荷及びェンジン回転数に対応したものに設定 することが好ましい。 例えば、 F I G. 3に示すように、 エンジン負荷 及びェンジン回転数に応じて、 Z o n e O〜Z o n e 5のようにゾ一ン を区切って各ゾーン毎に遅角量初期値 X n (つまり、 X 0〜X 5 ) 及び を減量量初期値 Y n (つまり、 Υ 0〜Υ 5 ) 設定したマップを設けてお き、 判定されたェンジン負荷及びェンジン回転数に応じて遅角量初期値
X 0〜X 5または、 '减量量初期値 Y 0〜Y 5の中から一つを選択するの 'あ Ο ο
ただし、 エンジン負荷及びエンジン回転数のゾーンが Z o n e 0〜Ζ o n e 5から外れてしまった場合には、 前回に選択したゾ一ン (Z o n e 0〜Z o n e 5のいずれか) を用いるようにする。 したがって、 選択 ゾーンを記憶する手段 (図示略) がそなえられ、 新たにゾーンを選択す るごとに現在のゾーンを更新しながら前回に選択したゾーンとして記憶 するようになつている。
また、 各ゾーン毎の遅角量初期値 X nは各気筒において、 また'减量量 初期値 Y nは全気筒においては必ずしも最適なものとはできないので、 本装置では、 この遅角量初期値 X nまたは'减量量初期値 Y nで燃料噴射 時期制御または点火時期制御または排気ガス環流量制御を開始しながら 各ゾ一ン毎のより適した遅角量又は'减量量を学習しながら各ゾーン毎の 遅角量学習値 R X n、 減量量学習値 R Y nとして設定し、 各ゾーン毎の 遅角量学習値 R X n、 減量量学習値 R Y nに基づいて、 実際に制御に使 用にする遅角量の値 R X及び減量量の値 R Yを設定するようになってい る。 なお、 この各ゾーン毎の遅角量学習値 R X n、 減量量学習値 R Y n は、 他のゾーンでのデータを学習しながら、 より小さな遅角量値及び'减 量量で制御できるように遅角量学習値 R X n, 減量量学習値 R Y nを設 定していくのである。
また、 エンジンの特性にもよるが、 筒内噴射エンジンでは、 一般に、 点火ブラグの近傍に燃料が集まった時に点火するように設定されている ため、 点火時期に対してほぼ最適な燃料噴射時期を推定することができ る。 したがって、 従来のエンジンのように点火時期のみを過度に遅角し た場合には、 F I G . 4から明らかなように、 却って燃焼安定性が悪化 するおそれが生じるため、 点火時期のみを遅角する場合は、 少なく とも 燃料噴霧が点火プラグ電極部分を通過する直前までは点火時期のみを遅 角することにより燃焼安定性を向上することができる。 そして、 失火判 定時の点火時期制御手段 2 2による目標点火時期の遅角制御は、 制御開 始後に更なる失火がなければ、 その遅角量を漸減させていきながら、 即 ち、 遅角後に点火時期を徐々に進角させていきながら、 本来の目標点火 時期に戻していくようになっている。
また、 燃料噴射時期のみを過度に遅角した場合には、 F I G . 4から 明らかなように、 却って燃焼安定性が悪化するおそれが生じるため、 燃 料噴射時期のみを遅角する場合は、 少なく とも点火プラグの放電中に燃 料噴霧の先端部分が点火ブラグ電極部分に到達可能な燃料噴射時期まで は燃料噴射時期のみを遅角することにより燃焼安定性を向上することが できる。 そして、 失火判定時の燃料噴射時期制御手段 2 1による目標燃 料噴射時期の遅角制御は、 制御開始後に更なる失火がなければ、 その遅 角量を漸減させていきながら、 即ち、 遅角後に燃料噴射時期を徐々に進 角させていきながら、 本来の目標燃料噴射時期に戻していく ようになつ ている。
さらに、 E G R率のみを減量する場合には、 F I G . 4から明らかな ように、 燃焼安定性が悪化するおそれはない。 しかしながら、 E G R率 を過度に減量すると N O X発生量が増加し排ガス性能が悪化するおそれ があるため、 排ガス性能に多大な悪影響を及ぼさない範囲で E G R率を 減量することが望ましい。 そして、 失火判定時の排気ガス環流量制御手 段 2 5による目標 E G R率の減量制御は、 制御開始後に更なる失火がな ければ、 その減量量を漸減させていきながら、 即ち、 減量後に徐々に增 量させていきながら、 本来の目標 E G R率に戻していくようになってい る。
1 fi またさらに、 点火時期と燃料噴射時期とを共に遅角させる場合は、 F I G . 4から明らかなようにどちらか片方のみを遅角する場合に比べて、 燃焼安定性をより良好に向上することができる。 このような失火時の目 標燃料噴射時期の最適な遅角量と目標点火時期の最適な遅角量とは、 ほ ぼ等しいものに設定できる。 そこで、 ここでは、 設定された制御に使用 にする遅角量 R Xを、 目標燃料噴射時期の遅角量と目標点火時期の遅角 量との両方に用いるようにしている。
もちろん、 エンジンの特性によって失火時の目標燃料噴射時期の最適 な遅角量と目標点火時期の最適な遅角量とが大きく異なれば、 F I G . 3に示すようなマップ (又は、 テーブル) を、 目標燃料噴射時期に関す るものと目標点火時期に関するものとで別個に用意して、 これらに従つ て遅角量を設定するようにする。
そして、 失火判定時の燃料噴射時期制御手段 2 1及び点火時期制御手 段 2 2による目標燃料噴射時期及び目標点火時期の遅角制御は、 制御開 始後に更なる失火がなければ、 その遅角量を漸減させていきながら、 即 ち、 遅角後に徐々に進角させていきながら、 本来の目標燃料噴射時期及 び目標点火時期に戻していくようになっている。
またさらに、 点火時期を遅角させ、 E G R率を減量する場合は、 F I G . 4から明らかなようにどちらか片方のみを遅角、 減量する場台に比 ベて、 燃焼安定性をより良好に向上することができるとともに、 E G R 率減量に伴う N O Xの増加を抑制することができる。 このような失火時 の目標点火時期の最適な遅角量と目標 E G R率の最適な減量量とは、 ほ ぼ等しい運転領域で設定できる。 そこで、 ここでは、 設定された制御に 使用にする遅角量 R X及び R Yを同一のマツプ内に記憶するようにして いる。
もちろん、 ェンジンの特性によって失火時の目標点火時期の最適な遅 角量と目標 E G R率の最適な減量量が運転領域で大きく異なったり、 一 つのマップ容量が大きくなるのを防止するのが望ましいのであれば、 F I G . 3に示すようなマップ (又は、 テーブル) を、 目標点火時期に関 するものと目標 E G R率に関するものとで別個に用意して、 これらに従 つて遅角量と減量量を設定するようにする。
そして、 失火判定時の点火時期制御手段 2 2及び排気ガス環流量制御 手段 2 5による目標点火時期の遅角制御及び目標 E G R率の減量制御は、 制御開始後に更なる失火がなければ、 その遅角量及び減量量を漸減させ ていきながら、 即ち、 遅角後及び減量後に徐々に進角及び増量させてい きながら、 本来の目標点火時期及び目標 E G R率に戻していくようにな つている。
またさらに、 燃料噴射時期を遅角させ、 E G R率を減量する場合も上 述と同様である。
またさらに、 燃料噴射時期及び点火時期を遅角させ、 E G R率を減量 する場合は、 F I G . 4から明らかなように上述の方法に比べてより小 さい遅角量、 減量量で燃焼安定性をより良好に向上することができると ともに、 より一層 N O xの增加を抑制できるため、 失火発生時に速やか に燃焼安定性を向上することができる。
また、 燃焼変動の判定値を例えば軽度の燃焼悪化判定値と重度の燃焼 悪化判定値のように複数個有するものでは軽度な燃焼悪化では、 燃料噴 射時期、 点火時期、 E G R率の内の一つまたは二つを制御することによ つて燃焼安定性を向上させ、 上記重度の燃焼悪化では上記すベてを制御 することによって燃焼安定性を向上させるようにしてもよい。
次に、 吸気行程噴射モ— ドにおいては、 燃焼室全体に均一な混合気が 導入されているため、 従来エンジンと同様に空燃比制御手段 2 6によつ て目標空燃比をリ ツチ化することにより、 燃焼変動を低減させている。 また、 圧縮行程噴射モー ドにおいて、 燃料噴射時期、 点火時期、 E G R率の遅角制御、 減量制御を行なつて燃焼安定化を図ったにもかからわ ず、 相変わらず燃焼変動が生じる場合は、 圧縮行程噴射モー ドを禁止し、 吸気行程噴射を選択して目標空燃比制御手段 2 6により目標空燃比を理 論空燃比近傍として制御を実施することにより燃焼安定性を向上すると ともに、 燃料系, 点火系, E G R系のフヱ一ル判定及びフヱ一ル時の対 策 (例えば圧縮行程噴射モー ドを禁止) を兼ね備えるようにしてもよい 本発明の一実施形態としての筒内噴射式内燃機関の制御装置は、 上述 のように構成されるので、 その作用を説明すると以下のようになる。 燃料噴射時期と点火時期とを共に遅角させる場合における各気筒毎に 行われる制御について詳細に説明すると、 例えば F I G . 2のフローチ ヤー卜に示すように、 制御が行なわれる。
つまり、 F I G . 2に示すように、 まず、 失火判定手段 2 3によって 失火判定結果を判断して (ステップ S 1 0 ) 、 失火判定された時には失 火判定フラグをセッ 卜して (ステップ S 2 0 ) 、 失火判定されなければ 失火判定フラグをリセッ 卜する (ステップ S 3 0 ) 。
さらに、 失火判定フラグのセッ トを判断して (ステップ S 4 0 ) 、 失 火判定フラグがセッ 卜されていれば、 即ち、 失火判定時には、 ステップ S 5 0に進んで、 エンジン回転数 N eとエンジン負荷 (正味平均有効 圧) P eとから現在のエンジン運転状態のゾーンが Z o n e 0〜Z o n e 5のいずれであるかが判定される。 そして、 ステップ S 6 0で、 ステ ップ S 5 0で判定したゾーンが前回の判定ゾーンと異なるか否かが判断 されて、 前回の判定ゾーンと異なれば、 現在の遅角量 R Xを遅角量学習 値 R X nに設定する (ステップ S 7 0 ) 。 現在の遅角量 R Xとは、 最も 近い時点で使用した遅角量、 即ち、 前回制御に制御に使用した遅角量で あり、 制御開始時には、 ステップ S 5 0での判定ゾーンに対応した遅角 量初期値 (X 0〜X 5のいずれか) が現在の遅角量 R Xとされる。
次に、 ステップ S 8 0で、 ステップ S 5 0での判定ゾーンに対応した 遅角量初期値 (X 0〜X 5のいずれか) が遅角量学習値 RX n以上か否 かを判断して、 判定ゾーンに対応した遅角量初期値が遅角量学習値 RX n以上なら、 遅角量学習値 RX nを現在の遅角量 RXに設定し (ステツ プ S 1 0 0 ) 、 判定ゾーンに対応した遅角量初期値が遅角量学習値 RX n以上でなければ、 判定ゾーンに対応した遅角量初期値 (X 0〜X 5の いずれか) を現在の遅角量 RXに設定する (ステップ S 9 0 ) 。 即ち、 現在の遅角量 (制御に使用する遅角量) RXとしては、 判定ゾーンに対 応した遅角量初期値と遅角量学習値 RX nとの内の小さい方を使用する のである。
これにより、 制御に使用する遅角量 RXとして、 より小さな最適値が 学習されながら更新されていき、 燃費低下を抑制しながらエンジンの燃 焼安定化を図ることができる。
そして、 現在の遅角量 RXに応じて、 目標燃料噴射時期及び目標点火 時期の遅角制御を行なう。
また、 この失火判定フラグのセッ 卜判定時に失火判定フラグをリセッ トされていれば、 ステップ S 4 0からステップ S 1 1 0に進んで、 現在 の遅角量 (ここでは、 前回使用した遅角量) RXが 0か否かを判定し、 現在の遅角量 (前回の遅角量) RXが 0でなければ、 前回の遅角量 RX から単位角度 (ここでは 1 となっている) を減算した遅角量 (=RX— 1 ) 今回使用する遅角量 RXとする。
したがって、 失火判定後に続いて失火がなければ、 遅角量 RXは単位 角度ずつ漸減されていき、 やがて、 遅角量 RXが 0となって、 遅角制御 が終了する。
このように、 本装置では、 予め燃費を良好にするように目標燃料噴射
1 0 時期及び目標点火時期を設定しながら制御し、 失火が発生した場合には、 燃料噴射時期及び点火時期を遅角制御することで、 更なる失火を防止す るようにできるので、 燃費の向上と燃焼の安定性確保とを両立させるこ とができるようになる。 もちろん、 燃焼が安定すると、 NO X低減にも 有利になるので、 燃費の向上と燃焼の安定性の確保と排気ガスの浄化と を高いレベルでバランスさせることができる。
また、 遅角制御時の遅角量 RXは学習により極力小さなものに設定さ れるので、 遅角制御時の燃費悪化も僅かであるとぃゔ利点がある。
さらに、 遅角制御は遅角量 R Xを漸減させながら終了するので、 遅角 制御終了時に至る過渡時の燃焼フィーリ ングが良好なものとなる。
また、 上述のフローチヤ一トでは、 燃料噴射時期と点火時期とを共に 遅角させる場合の制御を説明したが、 これらに替えて E G R率の減量制 御のみにより燃焼安定性を向上させる場合は、 F I G. 2における R x, R x n, X η, αを、 それぞれ R y, R y n, Y n, 3に置き換えれば よい。 ここで、 ;8は E GR率を減量する際の単位量 (単位減量量) であ る。 このような E G R率の減量制御のみによっても、 燃費の向上, 燃焼 の安定性向上及び排気ガスの浄化を実現することができる。
さらに、 上述の燃料噴射時期及び Z又は点火時期の遅角制御と E G R 率の減量制御との両者又は三者を行なうようにしてもよい。 例えば F I G. 6に示すフローチヤ一 卜は、 燃料噴射時期又は点火時期の遅角制御 と E GR率の減量制御との両者、 又は、 燃料噴射時期及び点火時期の遅 角制御と E GR率の減量制御との三者を行なう場合の制御を示している c
F I G. 6において、 S 1 0〜S 1 2 0の各ステップの処理は、 F I G. 2に示すフローチヤ一卜と同一なのでこれらについては詳細な説明 は省略し、 S 1 3 0〜S 1 8 0の各ステップが追加されているので、 こ れらのステツプを中心に説明する。 F I G. 6に示すように、 失火判定 (ステップ S 1 0 ) により、 失火 判定フラッグがセッ トされる (ステップ S 2 0 ) と、 ステップ S 4 0か らステップ S 5 0に進みゾーン判定が行なわれるが、 現在のエンジン運 転伏態のゾーン判定結果が前回のゾーン判定結果と異なる場合は、 ステ ップ S 6 0からステップ S 7 0に進み、 現在の遅角量 RXを遅角学習値 R X nに設定するのに加えて、 現在の E G R率の減量量 R Yを減量量学 習値 RY nに設定する (ステップ S 1 3 0 ) 。
ついで、 ステップ S 8 0〜 S 1 0 0の処理により現在の遅角量を更新 した後、 ステップ S 1 4 0〜S 1 6 0の処理により現在の減量量を更新 する。 つまり、 ステップ S 1 4 0で、 ステップ S 5 0での判定ゾ一ンに 対応した減量量初期値 Υ η (Ύ 0〜Υ 5のいずれか) が減量量学習値 R Υ η以上か否かを判断して、 判定ゾ一ンに対応した減量量初期値 Υ ηが 減量量学習値 RY η以上なら、 減量量学習値 R Υ ηを現在の減量量 R Υ に設定し (ステップ S 1 5 0 ) 、 判定ゾーンに対応した減量量初期値 Υ ηが減量量学習値 RY η以上でなければ、 減量量初期値 Υ ηを現在の減 量量 RYに設定する (ステップ S 1 6 0 ) 。 即ち、 現在の'減量量 (制御 に使用する减量量) RYとしては、 判定ゾーンに対応した'减量量初期値 Υ ηと減量量学習値 RY ηとの内の小さい方を使用する。
—方、 失火判定 (ステップ S 1 0 ) の結果、 失火判定フラッグがリセ ッ トされる (ステップ S 3 0 ) と、 ステップ S 4 0からステップ S I 1 0〜S 1 2 0に進み、 遅角量 RXの減算を行なうのに加えて、 ステップ S 1 7 0〜 S 1 8 0で、 減量量 R Yの減算を行なう。 つまり、 減量量 R Yが 0に達するまで、 ステップ S 1 7 0からステップ S 1 8 0に進み、 減量量 R Yを単位減量量 βずつ減算する。
この F I G. 6に示すように、 燃料噴射時期及び/ '又は点火時期の遅 角制御と E G R率の減量制御の両者又は三者を行なうようにすると、 燃 費の向上, 燃焼の安定性向上及び排気ガスの浄化を極めて高い
実現することができる。
なお、 上記実施形態では燃焼変動を失火の判別によって検出している 力 <、 本発明はこのような実施形態に限定されるものではなく、 失火まで には至らないような燃焼変動を検出して、 燃料噴射時期制御手段 2 1及 び点火時期制御手段 2 2による目標燃料噴射時期の遅角制御や目標点火 時期の遅角制御、 さらには、 排気ガス環流量制御手段 2 5による目標 E G R率の減量制御を行なってもよい。 この場合に用いる目標燃料噴射時 期の遅角量や目標点火時期の遅角量や目標 E G R率の減量量については、 失火に至るような燃焼変動の場台のものよりも、 小さく設定したり、 失 火に至るような燃焼変動の場合と同様に設定しながら、 燃料噴射時期, 点火時期, E G R率の内の一つまたは二つを制御することによって燃焼 安定性を向上させるようにしてもよい。 産業上の利用可能性
筒内噴射式内燃機関において、 圧縮行程噴射により燃費の向上を促進 しながら燃焼安定性の確保を行なうことが可能になり、 燃費の向上と燃 焼の安定性の向上と排気ガスの浄化とを同時に実現することが可能にな る。 このため、 例えば自動車をはじめとした乗物用のエンジンに好適で あり、 安定燃焼による ドライバピリティの向上, 低燃費化による運転コ ス トの低减, 排気ガス浄化の促進による環境保護といった、 乗物用ェン ジンへの種々の要求を同時に満たすことができ、 極めて有用である。

Claims

請 求 の 範 囲
1. 燃料噴射モードとして、 主として吸気行程において燃料噴射を行う 吸気行程噴射モードと、 主として圧縮行程において燃料噴射を行う圧縮 行程噴射モードとを、 運転状態に応じて選択可能な筒内噴射式内燃機関 であって、
該内燃機関の燃焼室 ( 4 ) 内に燃料を直接噴射する燃料噴射弁 ( 5) と、
該燃焼室 ( 4 ) に設けられた点火プラグ (7 ) と、
該内燃機関の排気ガスの一部を該内燃機関の吸気系へ環流する排気ガ ス環流装置 ( 1 2, 1 3 ) と、
該内燃機関の燃焼変動状態を検出する燃焼変動検出手段 ( 2 3 ) と、 該内燃機関の通常運転時に、 該内燃機関の運転状態に対応して予め設 定された、 目標燃料噴射時期に基づいて該燃料噴射弁の燃料噴射時期を 制御する燃料噴射時期制御手段 (2 1 ) と、
該内燃機関の通常運転時に、 該内燃機関の運転状態に対応して予め設 定された、 目標点火時期に基づいて該点火プラグ ( 7 ) の点火時期を制 御する点火時期制御手段 ( 2 2 ) と、
該内燃機関の通常運転時に、 該内燃機関の運転状態に対応して予め設 定された、 目標排気ガス環流量に基づいて該排気ガス環流装置 ( 1 2 , 1 3 ) の排気ガス環流量を制御する排気ガス環流量制御手段 ( 2 5) と が設けられて、
該圧縮行程噴射モ一ドを選択しているときに、 該燃焼変動検出手段 ( 2 3 ) の検出結果に応じて該燃料噴射時期, 該点火時期, 該排気ガス 環流量の少なく とも何れか一つを補正することにより燃焼変動を低減す ることを特徴とする、 筒内噴射式内燃機関の制御装置。
2. 該圧縮行程噴射モー ドを選択しているときに、 該燃焼変動検出手段 ( 2 3 ) の検出結果に応じて少なくとも該点火時期, 該排気ガス環流量 を補正することにより燃焼変動を低減することを特徴とする、 請求の範 囲第 1項記載の筒内噴射式内燃機関の制御装置。
3. 該圧縮行程噴射モードを選択しているときに、 該燃焼変動検出手段 ( 2 3 ) の検出結果に応じて少なく とも該燃料噴射時期, 該排気ガス環 流量を補正することにより燃焼変動を低減することを特徴とする、 請求 の範囲第 1項記載の筒内噴射式内燃機関の制御装置。
4. 該圧縮行程噴射モー ドを選択しているときに、 該燃焼変動検出手段 ( 2 3 ) の検出結果に応じて少なく とも該燃料噴射時期, 該点火時期を 補正することにより燃焼変動を低減することを特徴とする、 請求の範囲 第 1項記載の筒内噴射式内燃機関の制御装置。
5. 該圧縮行程噴射モードを選択しているときに、 該燃焼変動検出手段 ( 2 3 ) の検出結果に応じて該燃料噴射時期, 該点火時期, 該排気ガス 環流量を補正することにより燃焼変動を低減することを特徴とする、 請 求の範囲第 1項記載の筒内噴射式内燃機関の制御装置。
6. 該燃料噴射時期制御手段 ( 2 1 ) を介して制御する場合は、 該燃焼 変動検出手段 (2 3 ) により燃焼変動が検出されると燃料噴射時期を第 1の所定値だけ遅らせ、 また、 該点火時期制御手段 ( 2 2 ) を介して制 御する場合は、 該燃焼変動検出手段 ( 2 3 ) により燃焼変動が検出され ると点火時期を第 2の所定値だけ遅らせ、 また、 該排気ガス環流量制御 手段 ( 2 5 ) を介して制御する場合は、 該燃焼変動検出手段 ( 2 3 ) に より燃焼変動が検出されると排気ガス環流量を所定量だけ減量するもの であることを特徴とする、 請求の範囲第 1項記載の筒内噴射式内燃機関 の制御装置。
7. 該内燃機関の燃焼変動が該補正を行なっても低減しない場合は、 該 圧縮行程噴射モー ドから該吸気行程噴射モードに燃料噴射モードを切り 換えることを特徴とする、 請求の範囲第 1項記載の筒内噴射式内燃機関 の制御装置。
8. 該吸気行程噴射モードを選択しているときに、 該燃焼変動検出手段 ( 2 3 ) の検出結果に応じて該内燃機関に供給される混合気の目標空燃 比を空燃比制御手段 ( 2 6 ) によって補正することにより燃焼変動を低 減することを特徴とする、 請求の範囲第 1項記載の筒内噴射式内燃機関 の制御装置。
9. 該目標燃料噴射時期及び該目標点火時期が、 該内燃機関の運転状態 に対して、 最良燃費の得られる時期又は最良燃費の得られる時期の近く に設定されていることを特徴とする、 請求の範囲第 1項記載の筒内噴射 式内燃機関の制御装置。
1 0. 該燃焼変動検出手段 ( 2 3 ) によって燃焼変動が検出されたとき の該燃料噴射時期の補正量と該点火時期の補正量がほぼ同一角度に設定 されていることを特徵とする、 請求の範囲第 4項記載の筒内噴射式内燃 機関の制御装置。
1 1. 該燃焼変動検出手段 ( 2 3) によって燃焼変動が検出されたとき の該第 1の所定値, 該第 2の所定値, 該所定量は、 内燃機関の運転状態 に応じて設定されることを特徴とする、 請求項 6記載の筒内噴射式内燃 機関の制御装置。
1 2. 該内燃機関が複数の気筒を有し、 該燃焼変動検出手段 ( 2 3 ) に よる燃焼変動の検出と、 該燃料噴射時期制御手段 (2 1 ) 及び該点火時 期制御手段 ( 2 2 ) による該燃料噴射時期の遅角制御, 該点火時期の遅 角制御とが、 いずれも各気筒毎に行われるように構成されたことを特徴 とする、 請求の範囲第 4項記載の筒内噴射式内燃機関の制御装置。
1 3. 該燃焼変動検出手段 ( 2 3) は、 該燃焼室での失火の発生を判定 するものであることを特徴とする、 請求の範囲第 項記載の筒内噴射式 内燃機関の制御装置。
PCT/JP1997/000683 1996-03-08 1997-03-05 Dispositif de commande d'un moteur a combustion interne de type a injection de carburant dans les cylindres WO1997033082A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97906835A EP0829633A4 (en) 1996-03-08 1997-03-05 DEVICE FOR CONTROLLING A FUEL INJECTION TYPE INTERNAL COMBUSTION ENGINE IN CYLINDERS
AU22321/97A AU702713B2 (en) 1996-03-08 1997-03-05 Control system for in-cylinder injection internal combustion engine
JP52587297A JP3216139B2 (ja) 1996-03-08 1997-03-05 筒内噴射式内燃機関の制御装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/51911 1996-03-08
JP5191196 1996-03-08
JP8/227220 1996-08-28
JP22722096 1996-08-28

Publications (1)

Publication Number Publication Date
WO1997033082A1 true WO1997033082A1 (fr) 1997-09-12

Family

ID=26392505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000683 WO1997033082A1 (fr) 1996-03-08 1997-03-05 Dispositif de commande d'un moteur a combustion interne de type a injection de carburant dans les cylindres

Country Status (8)

Country Link
US (1) US5749334A (ja)
EP (1) EP0829633A4 (ja)
JP (1) JP3216139B2 (ja)
KR (1) KR100237533B1 (ja)
CN (1) CN1083529C (ja)
AU (1) AU702713B2 (ja)
TW (1) TW388786B (ja)
WO (1) WO1997033082A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190511A (ja) * 2007-02-08 2008-08-21 Hitachi Ltd 直噴ガソリンエンジンの排気低減装置
WO2022249395A1 (ja) * 2021-05-27 2022-12-01 日産自動車株式会社 内燃機関の排気還流制御方法および制御装置

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268942A (ja) * 1996-04-03 1997-10-14 Mitsubishi Electric Corp 筒内噴射式内燃機関の制御装置
JP3265997B2 (ja) * 1996-08-20 2002-03-18 三菱自動車工業株式会社 内燃機関の制御装置
JPH1061477A (ja) * 1996-08-26 1998-03-03 Mitsubishi Motors Corp 筒内噴射型火花点火式内燃エンジンの制御装置
JP3211677B2 (ja) * 1996-08-28 2001-09-25 三菱自動車工業株式会社 筒内噴射式内燃機関の点火時期制御装置
DE19642654B4 (de) * 1996-10-16 2004-02-05 Daimlerchrysler Ag Verfahren zur Regelung der einstellbaren Betriebsparameter einer direkteinspritzenden Brennkraftmaschine
JP3828221B2 (ja) * 1997-01-16 2006-10-04 三菱電機株式会社 内燃機関の筒内噴射式燃料制御装置及び方法
AT1922U3 (de) * 1997-03-14 1998-06-25 Avl List Gmbh Verfahren zur einbringung von kraftstoff in den brennraum einer direkteinspritzenden otto-brennkraftmaschine
JPH10266901A (ja) * 1997-03-26 1998-10-06 Mitsubishi Electric Corp 内燃機関の排気ガス還流制御装置
JPH10288057A (ja) * 1997-04-16 1998-10-27 Komatsu Ltd 過給機付エンジンの燃料噴射装置およびその制御方法
FR2763997B1 (fr) * 1997-05-29 1999-08-13 Inst Francais Du Petrole Nouvel arrangement d'un moteur a combustion interne a 4 temps, allumage commande et injection directe
JPH10339215A (ja) * 1997-06-09 1998-12-22 Nissan Motor Co Ltd エンジンのegr制御装置
JP3538003B2 (ja) * 1997-08-29 2004-06-14 三菱電機株式会社 内燃機関の筒内噴射式燃料制御装置
DE19743492B4 (de) * 1997-10-01 2014-02-13 Robert Bosch Gmbh Verfahren zum Starten einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
JP3971004B2 (ja) * 1997-12-19 2007-09-05 株式会社日立製作所 内燃機関の燃焼切換制御装置
US6041756A (en) * 1998-10-08 2000-03-28 Chrysler Corporation Active adaptive EGR and spark advance control system
US6463907B1 (en) 1999-09-15 2002-10-15 Caterpillar Inc Homogeneous charge compression ignition dual fuel engine and method for operation
DE19948298A1 (de) 1999-10-06 2001-04-12 Volkswagen Ag Direkteinspritzende Brennkraftmaschine mit NOx-reduzierter Emission
US6272426B1 (en) * 1999-11-24 2001-08-07 Ford Global Technologies, Inc. Predicting cylinder pressure for on-vehicle control
DE10039788B4 (de) * 2000-08-16 2014-02-13 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP2002339789A (ja) * 2001-05-16 2002-11-27 Mazda Motor Corp 火花点火式直噴エンジンの制御装置および燃料噴射時期設定方法
CN100436808C (zh) * 2003-04-01 2008-11-26 Avl里斯脱有限公司 一种驱动直接喷射式柴油机的方法和装置
CN1878947B (zh) * 2003-09-10 2013-02-06 Pcrc产品有限公司 用于控制具有电子燃油调节系统的内燃机的操作的装置和处理
JP2005248748A (ja) * 2004-03-02 2005-09-15 Isuzu Motors Ltd ディーゼルエンジン
JP2005291001A (ja) * 2004-03-31 2005-10-20 Isuzu Motors Ltd ディーゼルエンジン
US6966309B1 (en) 2004-08-09 2005-11-22 Southwest Research Institute In-cylinder reburn method for emissions reduction
ATE413525T1 (de) * 2005-08-11 2008-11-15 Delphi Tech Inc Verfahren und vorrichtung zur steuerung eines motors
JP4242390B2 (ja) * 2006-01-31 2009-03-25 本田技研工業株式会社 内燃機関の制御装置
JP4682935B2 (ja) * 2006-07-03 2011-05-11 株式会社デンソー 噴射特性の学習方法及び燃料噴射制御装置
JP4333725B2 (ja) * 2006-10-25 2009-09-16 トヨタ自動車株式会社 内燃機関の排気還流装置
DE102007006937A1 (de) * 2007-02-13 2008-08-14 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE602008001660D1 (de) * 2008-01-29 2010-08-12 Honda Motor Co Ltd Steuersystem für einen Verbrennungsmotor
US9123020B2 (en) * 2008-09-25 2015-09-01 International Business Machines Corporation Modeling, monitoring, and managing system dimensions for a service assurance system
JP5337065B2 (ja) * 2010-01-22 2013-11-06 本田技研工業株式会社 Egr率推測検知装置
DE102010003281A1 (de) 2010-03-25 2011-09-29 Robert Bosch Gmbh Verfahren und Vorrichtung zur Regelung der Abgasrückführungsrate für Verbrennungsmotoren im Magerbetrieb
US9115655B2 (en) 2011-04-26 2015-08-25 Allen B. Rayl Cylinder pressure parameter correction systems and methods
US8983753B2 (en) 2011-04-29 2015-03-17 GM Global Technology Operations LLC Combustion setpoint control systems and methods
CN102305141B (zh) * 2011-09-05 2013-04-17 天津大学 Hcci汽油发动机负荷和燃烧模式连续平滑调节的方法
EP2623755A3 (en) * 2012-01-31 2017-04-19 International Engine Intellectual Property Company, LLC Oxygen concentration setpoint modification
US9127601B2 (en) 2012-08-07 2015-09-08 Joel Cowgill Cylinder to cylinder balancing using fully flexible valve actuation and cylinder pressure feedback
JP6221321B2 (ja) * 2013-04-17 2017-11-01 株式会社デンソー 内燃機関の制御装置
WO2015092941A1 (ja) * 2013-12-20 2015-06-25 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP6856050B2 (ja) * 2018-04-25 2021-04-07 トヨタ自動車株式会社 内燃機関及びそれを備えたハイブリッド車両

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666426A (en) * 1979-11-05 1981-06-04 Nissan Motor Co Ltd Fuel injection type internal combustion engine
JPH04183951A (ja) * 1990-11-16 1992-06-30 Toyota Motor Corp 筒内直接噴射式火花点火機関
JPH06123245A (ja) * 1992-10-08 1994-05-06 Fuji Heavy Ind Ltd 筒内直噴式エンジンの燃料噴射方法
JPH0932651A (ja) * 1995-05-16 1997-02-04 Mitsubishi Motors Corp 排出ガス還流制御装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR920000053B1 (ko) * 1987-05-26 1992-01-06 미쓰비시전기 주식회사 엔진 제어장치
US5086737A (en) * 1989-06-29 1992-02-11 Fuji Jukogyo Kabushiki Kaisha Fuel injection timing control system for an internal combustion engine with a direct fuel injection system
JPH0552145A (ja) * 1990-12-19 1993-03-02 Toyota Motor Corp 内燃機関の制御装置
JP2765305B2 (ja) * 1991-10-25 1998-06-11 トヨタ自動車株式会社 内燃機関
JP2753412B2 (ja) * 1992-02-04 1998-05-20 三菱電機株式会社 内燃機関失火判定装置
JP3357091B2 (ja) * 1992-07-21 2002-12-16 富士重工業株式会社 エンジンの失火検出方法
JPH0718375A (ja) * 1993-07-02 1995-01-20 Kawasaki Steel Corp 耐衝撃性に優れる薄鋼板およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666426A (en) * 1979-11-05 1981-06-04 Nissan Motor Co Ltd Fuel injection type internal combustion engine
JPH04183951A (ja) * 1990-11-16 1992-06-30 Toyota Motor Corp 筒内直接噴射式火花点火機関
JPH06123245A (ja) * 1992-10-08 1994-05-06 Fuji Heavy Ind Ltd 筒内直噴式エンジンの燃料噴射方法
JPH0932651A (ja) * 1995-05-16 1997-02-04 Mitsubishi Motors Corp 排出ガス還流制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0829633A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190511A (ja) * 2007-02-08 2008-08-21 Hitachi Ltd 直噴ガソリンエンジンの排気低減装置
WO2022249395A1 (ja) * 2021-05-27 2022-12-01 日産自動車株式会社 内燃機関の排気還流制御方法および制御装置

Also Published As

Publication number Publication date
TW388786B (en) 2000-05-01
KR19990008443A (ko) 1999-01-25
CN1083529C (zh) 2002-04-24
EP0829633A4 (en) 2007-09-26
KR100237533B1 (ko) 2000-01-15
JP3216139B2 (ja) 2001-10-09
CN1181800A (zh) 1998-05-13
AU702713B2 (en) 1999-03-04
EP0829633A1 (en) 1998-03-18
US5749334A (en) 1998-05-12
AU2232197A (en) 1997-09-22

Similar Documents

Publication Publication Date Title
WO1997033082A1 (fr) Dispositif de commande d&#39;un moteur a combustion interne de type a injection de carburant dans les cylindres
US6425371B2 (en) Controller for internal combustion engine
JP3233039B2 (ja) 筒内噴射型火花点火式内燃エンジンの制御装置
JP4063197B2 (ja) 内燃機関の噴射制御装置
US6928983B2 (en) Fuel injection controller for internal combustion engine
US7168409B2 (en) Controller for direct injection internal combustion engine
JPH1068375A (ja) 筒内噴射式内燃機関の点火時期制御装置
EP0926327A2 (en) Combustion controller for lean burn engines
JP2007016685A (ja) 内燃機関の制御装置
JP3971004B2 (ja) 内燃機関の燃焼切換制御装置
JP3198957B2 (ja) 希薄燃焼内燃機関の出力変動抑制制御装置
EP0894962A2 (en) Exhaust purification apparatus and method for internal combustion engines
JP4178386B2 (ja) 内燃機関のノッキング抑制制御装置
KR19980019021A (ko) 내연기관의 제어장치(control system for internal combustion engine)
JP2003013784A (ja) 直噴火花点火式内燃機関の制御装置
JPH11287143A (ja) 内燃機関制御装置
US9032942B2 (en) Control apparatus and control method for internal combustion engine
JP2007064187A (ja) 内燃機関のノック抑制装置
JP3845866B2 (ja) 筒内噴射式内燃機関の燃料噴射制御装置
JP3648864B2 (ja) 希薄燃焼内燃機関
JP3846481B2 (ja) 筒内噴射式内燃機関の制御装置
JP4453187B2 (ja) 内燃機関の制御装置
JP2007077842A (ja) 内燃機関の制御装置
JP2010168931A (ja) 火花点火式内燃機関の点火時期制御装置
JP4339599B2 (ja) 筒内噴射式内燃機関の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97190162.7

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1019970707973

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1997906835

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1997906835

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019970707973

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019970707973

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1997906835

Country of ref document: EP