WO2015092941A1 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
WO2015092941A1
WO2015092941A1 PCT/JP2013/084371 JP2013084371W WO2015092941A1 WO 2015092941 A1 WO2015092941 A1 WO 2015092941A1 JP 2013084371 W JP2013084371 W JP 2013084371W WO 2015092941 A1 WO2015092941 A1 WO 2015092941A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
exhaust
nox
purification catalyst
gas recirculation
Prior art date
Application number
PCT/JP2013/084371
Other languages
English (en)
French (fr)
Inventor
嘉人 野木
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2013/084371 priority Critical patent/WO2015092941A1/ja
Priority to CN201380081680.8A priority patent/CN105829688B/zh
Priority to US15/104,798 priority patent/US10184411B2/en
Priority to EP13899583.2A priority patent/EP3085935B1/en
Priority to JP2015553323A priority patent/JP6191702B2/ja
Publication of WO2015092941A1 publication Critical patent/WO2015092941A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0871Regulation of absorbents or adsorbents, e.g. purging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0203Variable control of intake and exhaust valves
    • F02D13/0215Variable control of intake and exhaust valves changing the valve timing only
    • F02D13/0219Variable control of intake and exhaust valves changing the valve timing only by shifting the phase, i.e. the opening periods of the valves are constant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0242Variable control of the exhaust valves only
    • F02D13/0249Variable control of the exhaust valves only changing the valve timing only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0055Special engine operating conditions, e.g. for regeneration of exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/006Controlling exhaust gas recirculation [EGR] using internal EGR
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/06Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a temperature sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/04Methods of control or diagnosing
    • F01N2900/0416Methods of control or diagnosing using the state of a sensor, e.g. of an exhaust gas sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1614NOx amount trapped in catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0811NOx storage efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to an exhaust purification device for an internal combustion engine.
  • An exhaust turbocharger that drives a compressor disposed in the engine intake passage upstream of the throttle valve by an exhaust turbine disposed in the engine exhaust passage includes an engine exhaust passage upstream of the exhaust turbine and an engine intake passage downstream of the throttle valve.
  • the high-pressure side exhaust gas recirculation passage is connected to the high-pressure side exhaust gas recirculation passage, and the high-pressure side exhaust gas recirculation control valve is arranged in the high-pressure side exhaust gas recirculation passage so that the engine exhaust passage downstream of the exhaust turbine and the engine intake passage upstream of the compressor are connected to the low-pressure side.
  • the low pressure side exhaust gas recirculation control valve Connected by the exhaust gas recirculation passage and disposed in the low pressure side exhaust gas recirculation passage, the low pressure side exhaust gas recirculation control valve is arranged in the expansion stroke or exhaust stroke in a state where the exhaust gas recirculation rate is lowered.
  • the air-fuel ratio of the exhaust gas discharged from the engine combustion chamber is temporarily kept richer than the stoichiometric air-fuel ratio.
  • pitch control is known an exhaust purification system of an internal combustion engine.
  • the exhaust gas recirculation gas from the high pressure exhaust gas recirculation passage is reduced to reduce the exhaust gas recirculation rate, and when rich control is finished, the high pressure side exhaust gas is exhausted.
  • the exhaust gas recirculation rate is restored by restoring the exhaust gas recirculation gas amount from the gas recirculation passage.
  • the temperature of the exhaust gas recirculation gas supplied from the low pressure side exhaust gas recirculation passage is relatively low. Therefore, the risk of breakage due to heat is reduced. At the same time, the amount of exhaust gas recirculation from the low-pressure side exhaust gas recirculation passage is increased, so that generation of NOx can be reliably suppressed.
  • Patent Document 1 since the low-pressure side exhaust gas recirculation passage and the low-pressure side exhaust gas recirculation control valve are essential, an internal combustion engine that does not include the low-pressure side exhaust gas recirculation passage and the low-pressure side exhaust gas recirculation control valve. The technique of Patent Document 1 cannot be applied. Further, since the exhaust gas recirculation gas supply from the low pressure side exhaust gas recirculation passage has low responsiveness, there is a possibility that the generation of NOx cannot be reliably suppressed immediately after the rich control is finished.
  • An object of the present invention is to provide an exhaust emission control device for an internal combustion engine that can reliably suppress the generation of NOx while suppressing the occurrence of breakage due to heat.
  • the exhaust gas recirculation that connects the engine intake passage and the engine exhaust passage downstream of the throttle valve by the exhaust gas recirculation passage and controls the amount of the recirculated exhaust gas that circulates in the exhaust gas recirculation passage.
  • a control valve is provided and exhausted from the engine combustion chamber by injecting additional fuel into the cylinder during the expansion stroke or exhaust stroke under the condition that the exhaust gas recirculation rate is lower than the base exhaust gas recirculation rate.
  • an overlap period in which the valve opening period of the intake valve overlaps the valve opening period of the exhaust valve
  • the injection of additional fuel is stopped with the exhaust gas recirculation rate kept lower than the base exhaust gas recirculation rate.
  • the overlap period is kept larger than the base overlap period, and then the exhaust gas recirculation rate and the overlap period are set to the base exhaust gas recirculation rate and the base overlap, respectively, when a predetermined delay period elapses.
  • FIG. 1 is an overall view of a compression ignition type internal combustion engine.
  • FIG. 2 is a view schematically showing the surface portion of the catalyst carrier.
  • FIG. 3 is a view for explaining an oxidation reaction in the exhaust purification catalyst.
  • FIG. 4 is a diagram showing changes in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
  • FIG. 5 is a diagram showing the NOx purification rate.
  • 6A and 6B are diagrams for explaining the oxidation-reduction reaction in the exhaust purification catalyst.
  • 7A and 7B are diagrams for explaining the oxidation-reduction reaction in the exhaust purification catalyst.
  • FIG. 8 is a diagram showing a change in the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst.
  • FIG. 9 is a diagram showing the NOx purification rate.
  • FIG. 10 is a graph showing the relationship between the hydrocarbon injection period ⁇ T and the NOx purification rate.
  • FIG. 11 is a map showing the injection amount of hydrocarbons.
  • FIG. 12 is a diagram showing NOx release control.
  • FIG. 13 is a view showing a map of the exhausted NOx amount NOXA.
  • FIG. 14 shows the fuel injection timing.
  • FIG. 15 is a diagram showing a map of the fuel supply amount WR. 16A and 16B are diagrams illustrating the overlap period.
  • FIG. 17 is a time chart illustrating the rich control.
  • FIG. 18 is a flowchart for performing NOx purification control.
  • FIG. 19 is a flowchart for executing the NOx purification action by the second NOx purification method.
  • FIG. 1 shows an overall view of a compression ignition type internal combustion engine.
  • 1 is an engine body
  • 2 is a combustion chamber of each cylinder
  • 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber
  • 4 is an intake manifold
  • 5 is an exhaust manifold.
  • the intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 via the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 9 via the intake air amount detector 8.
  • a throttle valve 10 driven by an actuator is disposed in the intake duct 6, and a cooling device 11 for cooling intake air flowing through the intake duct 6 is disposed around the intake duct 6.
  • the engine cooling water is guided into the cooling device 11, and the intake air is cooled by the engine cooling water.
  • the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7b of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7b is connected to the inlet of the exhaust purification catalyst 13 via the exhaust pipe 12a.
  • the exhaust purification catalyst 13 is composed of a NOx storage catalyst.
  • the outlet of the exhaust purification catalyst 13 is connected to the particulate filter 14 through the exhaust pipe 12b.
  • a hydrocarbon supply valve 15 for supplying hydrocarbons made of light oil or other fuel used as fuel for the compression ignition internal combustion engine is arranged in the exhaust pipe 12a upstream of the exhaust purification catalyst 13, a hydrocarbon supply valve 15 for supplying hydrocarbons made of light oil or other fuel used as fuel for the compression ignition internal combustion engine is arranged.
  • light oil is used as the hydrocarbon supplied from the hydrocarbon supply valve 15.
  • the present invention can also be applied to a spark ignition type internal combustion engine in which combustion is performed under a lean air-fuel ratio.
  • the hydrocarbon supply valve 15 supplies hydrocarbons made of gasoline or other fuel used as
  • the exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 16, and an electronically controlled EGR control valve 17 is disposed in the EGR passage 16.
  • EGR exhaust gas recirculation
  • a cooling device 18 for cooling the EGR gas flowing in the EGR passage 16 is disposed around the EGR passage 16.
  • the engine cooling water is guided into the cooling device 18, and the EGR gas is cooled by the engine cooling water.
  • Each fuel injection valve 3 is connected to a common rail 20 via a fuel supply pipe 19, and this common rail 20 is connected to a fuel tank 22 via an electronically controlled fuel pump 21 having a variable discharge amount.
  • the fuel stored in the fuel tank 22 is supplied into the common rail 20 by the fuel pump 21, and the fuel supplied into the common rail 20 is supplied to the fuel injection valve 3 through each fuel supply pipe 19.
  • the electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31.
  • a temperature sensor 24 for detecting the temperature of the exhaust gas flowing out from the exhaust purification catalyst 13 is attached to the exhaust pipe 12 b downstream of the exhaust purification catalyst 13. The temperature of the exhaust gas flowing out from the exhaust purification catalyst 13 represents the temperature of the exhaust purification catalyst 13.
  • a differential pressure sensor 26 for detecting the differential pressure across the particulate filter 14 is attached to the particulate filter 14.
  • Output signals of the temperature sensor 24, the differential pressure sensor 26, and the intake air amount detector 8 are input to the input port 35 via corresponding AD converters 37, respectively.
  • a load sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. Is done.
  • the input port 35 is connected to a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 15 °.
  • the output port 36 is connected to the fuel injection valve 3, the actuator for driving the throttle valve 10, the hydrocarbon supply valve 15, the EGR control valve 17, the fuel pump 21, and the variable valve timing mechanism 43 through a corresponding drive circuit 38.
  • FIG. 2 schematically shows a surface portion of the catalyst carrier carried on the substrate of the exhaust purification catalyst 13 shown in FIG.
  • a noble metal catalyst 51 made of platinum Pt is supported on a catalyst carrier 50 made of alumina, for example, and further on the catalyst carrier 50 potassium K, sodium Na, From alkali metals such as cesium Cs, alkaline earth metals such as barium Ba and calcium Ca, rare earths such as lanthanoids and metals capable of donating electrons to NOx such as silver Ag, copper Cu, iron Fe and iridium Ir
  • a basic layer 53 including at least one selected is formed.
  • This basic layer 53 contains ceria CeO 2 , and therefore the exhaust purification catalyst 13 has an oxygen storage capacity.
  • rhodium Rh or palladium Pd can be supported on the catalyst carrier 50 of the exhaust purification catalyst 13. Since the exhaust gas flows along the catalyst carrier 50, it can be said that the noble metal catalyst 51 is supported on the exhaust gas flow surface of the exhaust purification catalyst 13. Further, since the surface of the basic layer 53 is basic, the surface of the basic layer 53 is referred to as a basic exhaust gas flow surface portion 54.
  • FIG. 3 schematically shows the reforming action performed in the exhaust purification catalyst 13 at this time.
  • the hydrocarbon HC injected from the hydrocarbon feed valve 15 is converted into a radical hydrocarbon HC having a small number of carbons by the noble metal catalyst 51.
  • FIG. 4 shows the supply timing of hydrocarbons from the hydrocarbon supply valve 15 and the change in the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13. Since the change in the air-fuel ratio (A / F) in depends on the change in the concentration of hydrocarbons in the exhaust gas flowing into the exhaust purification catalyst 13, the air-fuel ratio (A / F) in shown in FIG. It can be said that the change represents a change in hydrocarbon concentration. However, since the air-fuel ratio (A / F) in decreases as the hydrocarbon concentration increases, the hydrocarbon concentration increases as the air-fuel ratio (A / F) in becomes richer in FIG.
  • FIG. 5 shows the cycle of the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 as shown in FIG. 4 by periodically changing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13.
  • the NOx purification rate by the exhaust purification catalyst 13 when the exhaust purification catalyst 13 is made rich is shown for each catalyst temperature TC of the exhaust purification catalyst 13.
  • FIGS. 6A and 6B schematically show the surface portion of the catalyst carrier 50 of the exhaust purification catalyst 13, and in these FIGS. 6A and 6B, the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is predetermined. The reaction is shown to be presumed to occur when oscillated with an amplitude within a range and a period within a predetermined range.
  • FIG. 6A shows a case where the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is low
  • FIG. 6B shows the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 when hydrocarbons are supplied from the hydrocarbon supply valve 15.
  • a / F When the in is made rich, that is, when the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 is high.
  • the first reducing intermediate produced at this time is considered to be the nitro compound R—NO 2 .
  • this nitro compound R—NO 2 becomes a nitrile compound R—CN, but since this nitrile compound R—CN can only survive for a moment in that state, it immediately becomes an isocyanate compound RNCO.
  • This isocyanate compound R—NCO becomes an amine compound R—NH 2 when hydrolyzed.
  • it is considered that a part of the isocyanate compound R—NCO is hydrolyzed. Therefore, as shown in FIG. 6B, most of the reducing intermediates retained or adsorbed on the surface of the basic layer 53 are considered to be an isocyanate compound R—NCO and an amine compound R—NH 2 .
  • a reducing intermediate is generated by increasing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13, and after reducing the concentration of hydrocarbons flowing into the exhaust purification catalyst 13,
  • the reducing intermediate reacts with NOx, active NOx * and oxygen in the exhaust gas, or self-decomposes, thereby purifying NOx. That is, in order to purify NOx by the exhaust purification catalyst 13, it is necessary to periodically change the concentration of hydrocarbons flowing into the exhaust purification catalyst 13.
  • the reducing intermediates are made basic until the generated reducing intermediates R—NCO and R—NH 2 react with NOx, active NOx * and oxygen in the exhaust gas, or self-decomposes. It must be retained on the layer 53, i.e. on the basic exhaust gas flow surface portion 54, for which a basic exhaust gas flow surface portion 54 is provided.
  • the active NOx * is reducing intermediate It is absorbed in the basic layer 53 in the form of nitrate without being formed. In order to avoid this, it is necessary to oscillate the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 with a period within a predetermined range.
  • NOx contained in exhaust gas is reacted with reformed hydrocarbons to produce reducing intermediates R—NCO and R—NH 2 containing nitrogen and hydrocarbons.
  • a noble metal catalyst 51 is supported on the exhaust gas flow surface of the exhaust purification catalyst 13, and in order to keep the generated reducing intermediates R—NCO and R—NH 2 in the exhaust purification catalyst 13,
  • a basic exhaust gas flow surface portion 54 is formed around the catalyst 51, and the reducing intermediates R—NCO and R—NH 2 held on the basic exhaust gas flow surface portion 54 are N 2 , It is converted into CO 2 and H 2 O, and the vibration period of the hydrocarbon concentration is the vibration period necessary to continue to produce the reducing intermediates R—NCO and R—NH 2 .
  • the injection interval is 3 seconds.
  • the oscillation period of the hydrocarbon concentration that is, the injection period of hydrocarbon HC from the hydrocarbon feed valve 15 is made longer than the period within the above-mentioned predetermined range, the reducing intermediate R- NCO and R—NH 2 disappear, and active NOx * generated on platinum Pt 53 at this time diffuses into the basic layer 53 in the form of nitrate ions NO 3 ⁇ as shown in FIG. 7A, and becomes nitrate. . That is, at this time, NOx in the exhaust gas is absorbed in the basic layer 53 in the form of nitrate.
  • FIG. 7B shows the case where the air-fuel ratio of the exhaust gas flowing into the exhaust purification catalyst 13 is made the stoichiometric air-fuel ratio or rich when NOx is absorbed in the basic layer 53 in the form of nitrate. Show.
  • the reaction proceeds in the reverse direction (NO 3 ⁇ ⁇ NO 2 ), and thus the nitrate absorbed in the basic layer 53 is successively converted into nitrate ions NO 3. ⁇ And released from the basic layer 53 in the form of NO 2 as shown in FIG. 7B.
  • the released NO 2 is reduced by the hydrocarbons HC and CO contained in the exhaust gas.
  • FIG. 8 shows a case where the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 is temporarily made rich slightly before the NOx absorption capacity of the basic layer 53 is saturated. .
  • the time interval of this rich control is 1 minute or more.
  • NOx absorbed in the basic layer 53 when the air-fuel ratio (A / F) in of the exhaust gas is lean is temporarily enriched in the air-fuel ratio (A / F) in of the exhaust gas.
  • the basic layer 53 serves as an absorbent for temporarily absorbing NOx.
  • the basic layer 53 may temporarily adsorb NOx. Therefore, if the term occlusion is used as a term including both absorption and adsorption, the basic layer 53 temporarily occludes NOx. Therefore, it plays the role of NOx occlusion agent. That is, in this case, if the ratio of air and fuel (hydrocarbon) supplied into the engine intake passage, the combustion chamber 2 and the exhaust passage upstream of the exhaust purification catalyst 13 is referred to as the air-fuel ratio of the exhaust gas, the exhaust purification catalyst. No. 13 functions as a NOx storage catalyst that stores NOx when the air-fuel ratio of the exhaust gas is lean and releases the stored NOx when the oxygen concentration in the exhaust gas decreases.
  • the solid line in FIG. 9 shows the NOx purification rate when the exhaust purification catalyst 13 is made to function as a NOx storage catalyst in this way.
  • the horizontal axis in FIG. 9 indicates the catalyst temperature TC of the exhaust purification catalyst 13.
  • the catalyst temperature TC is 300 ° C. to 400 ° C. as shown by the solid line in FIG. 9, but the catalyst temperature TC When the temperature becomes higher than 400 ° C., the NOx purification rate decreases.
  • the NOx purification rate shown in FIG. 5 is indicated by a broken line.
  • the NOx purification rate decreases when the catalyst temperature TC is 400 ° C. or higher because the nitrate is thermally decomposed and released from the exhaust purification catalyst 13 in the form of NO 2 when the catalyst temperature TC is 400 ° C. or higher. It is. That is, as long as NOx is occluded in the form of nitrate, it is difficult to obtain a high NOx purification rate when the catalyst temperature TC is high.
  • the new NOx purification method shown in FIGS. 4 to 6B as can be seen from FIGS. 6A and 6B, nitrate is not generated or is very small even if it is generated. Thus, as shown in FIG. Even when the temperature TC is high, a high NOx purification rate can be obtained.
  • a hydrocarbon supply valve 15 for supplying hydrocarbons is arranged in the engine exhaust passage so that NOx can be purified by using this new NOx purification method.
  • An exhaust purification catalyst 13 is disposed in the downstream engine exhaust passage, and a noble metal catalyst 51 is supported on the exhaust gas flow surface of the exhaust purification catalyst 13 and a basic exhaust gas flow surface portion around the noble metal catalyst 51. 54 is formed, and the exhaust purification catalyst 13 causes the concentration of hydrocarbons flowing into the exhaust purification catalyst 13 to oscillate with an amplitude within a predetermined range and a period within the predetermined range.
  • the NOx contained in the exhaust gas is increased if the oscillation period of the hydrocarbon concentration is longer than the predetermined range. It has properties, and hydrocarbons are injected from the hydrocarbon supply valve 15 at a predetermined cycle during engine operation, so that NOx contained in the exhaust gas is reduced by the exhaust purification catalyst 13. .
  • NOx purification method shown in FIGS. 4 to 6B in the case of using an exhaust purification catalyst that supports a noble metal catalyst and forms a basic layer capable of absorbing NOx, NOx is hardly formed while forming a nitrate. It can be said that this is a new NOx purification method for purification. In fact, when this new NOx purification method is used, the amount of nitrate detected from the basic layer 53 is very small compared to when the exhaust purification catalyst 13 functions as a NOx storage catalyst.
  • this new NOx purification method is referred to as a first NOx purification method.
  • the hydrocarbon injection period ⁇ T from the hydrocarbon supply valve 15 becomes longer, after the hydrocarbon is injected, the oxygen concentration around the active NOx * is increased during the next hydrocarbon injection.
  • the period of increase is longer.
  • the hydrocarbon injection period ⁇ T when the hydrocarbon injection period ⁇ T is longer than about 5 seconds, the active NOx * begins to be absorbed in the basic layer 53 in the form of nitrate, and thus shown in FIG.
  • the vibration period ⁇ T of the hydrocarbon concentration is longer than about 5 seconds, the NOx purification rate is lowered. Therefore, in the embodiment shown in FIG. 1, the hydrocarbon injection period ⁇ T needs to be 5 seconds or less.
  • the hydrocarbon injection period ⁇ T when the hydrocarbon injection period ⁇ T becomes approximately 0.3 seconds or less, the injected hydrocarbon starts to be deposited on the exhaust gas flow surface of the exhaust purification catalyst 13, and is therefore shown in FIG.
  • the hydrocarbon injection period is set between 0.3 seconds and 5 seconds.
  • the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 and the injection period ⁇ T are changed by changing the injection amount and injection timing of the hydrocarbon from the hydrocarbon supply valve 15. Is controlled to an optimum value according to the operating state of the engine.
  • the optimum hydrocarbon injection amount W when the NOx purification action by the first NOx purification method is performed is a function of the depression amount L of the accelerator pedal 40 and the engine speed N.
  • 11 is stored in advance in the ROM 32 in the form of a map as shown in FIG. 11, and the optimum hydrocarbon injection cycle ⁇ T at this time is also a map as a function of the depression amount L of the accelerator pedal 40 and the engine speed N. Is stored in the ROM 32 in advance.
  • the NOx purification method when the exhaust purification catalyst 13 functions as a NOx storage catalyst will be specifically described with reference to FIGS.
  • the NOx purification method when the exhaust purification catalyst 13 functions as a NOx storage catalyst is referred to as a second NOx purification method.
  • the air-fuel ratio (A / F) in is temporarily made rich.
  • the occluded NOx amount ⁇ NOX is calculated from the NOx amount discharged from the engine, for example.
  • the exhausted NOx amount NOXA discharged from the engine per unit time is stored in advance in the ROM 32 in the form of a map as shown in FIG. 13 as a function of the depression amount L of the accelerator pedal 40 and the engine speed N.
  • the stored NOx amount ⁇ NOX is calculated from the exhausted NOx amount NOXA.
  • the period during which the air-fuel ratio (A / F) in of the exhaust gas is made rich is usually 1 minute or more.
  • the NOx purification action by the first NOx purification method and the NOx purification action by the second NOx purification method are selectively performed. Whether to perform the NOx purification action by the first NOx purification method or the NOx purification action by the second NOx purification method is determined as follows, for example. That is, the NOx purification rate when the NOx purification action by the first NOx purification method is performed begins to rapidly decrease when the temperature TC of the exhaust purification catalyst 13 becomes equal to or lower than the limit temperature TX as shown in FIG. On the other hand, as shown in FIG.
  • the NOx purification rate when the NOx purification action by the second NOx purification method is performed decreases relatively slowly when the temperature TC of the exhaust purification catalyst 13 decreases. Therefore, in the embodiment according to the present invention, when the temperature TC of the exhaust purification catalyst 13 is higher than the limit temperature TX, the NOx purification action by the first NOx purification method is performed, and the temperature TC of the exhaust purification catalyst 13 is lower than the limit temperature TX. Sometimes the NOx purification action by the second NOx purification method is performed.
  • variable valve timing mechanism 43 (FIG. 1) is for changing the overlap period in which the intake valve and the exhaust valve are simultaneously opened.
  • the valve closing timing of the exhaust valve is advanced by the variable valve timing mechanism 43, and therefore the overlap period OL is shortened.
  • the valve closing timing of the exhaust valve is retarded by the variable valve timing mechanism 43, and thus the overlap period OL is lengthened.
  • the opening timing of the intake valve is controlled to control the overlap period OL.
  • the opening timing of the intake valve and the closing timing of the exhaust valve are controlled in order to control the overlap period OL.
  • burnt gas flows backward from the combustion chamber 2 to the intake manifold 4 via the intake valve 1i. This burned gas is then sucked into the combustion chamber 2 together with fresh air, that is, returned.
  • the amount of burned gas returned from the intake manifold 4 into the combustion chamber 2 increases as the overlap period OL increases, and the burned gas returns from the intake manifold 4 into the combustion chamber 2 as the overlap period OL decreases. The amount of gas decreases.
  • variable valve timing mechanism 43 is controlled so that the actual overlap period OL coincides with the base overlap period OLB during normal control when rich control (described later) is not performed.
  • the base overlap period OLB is stored in the ROM 32 in advance in the form of a map as a function of the engine operating state, for example, the engine load and the engine speed. Note that the base overlap period OLB is one of a positive value, zero, and a negative value.
  • EGR rate the ratio of the amount of EGR gas supplied from the EGR passage 16 to the combustion chamber 2 to the total amount of gas supplied into the combustion chamber 2
  • rich control (described later) is performed.
  • the opening degree of the EGR control valve 17 is controlled so that the actual EGR rate coincides with the target base EGR rate REGRB at the time of normal control when the control is not performed.
  • the base EGR rate REGRB is stored in the ROM 32 in advance in the form of a map as a function of the engine operating state, for example, the engine load and the engine speed.
  • the throttle opening is further controlled so that the actual intake air amount Ga coincides with the target base intake air amount GaB during normal control when rich control (described later) is not performed.
  • the base intake air amount GaB is stored in the ROM 32 in advance in the form of a map as a function of the engine operating state, for example, the engine load and the engine speed.
  • the exhaust gas in order to enrich the air-fuel ratio (A / F) in of the exhaust gas flowing into the exhaust purification catalyst 13 in the second NOx purification method, the exhaust gas is discharged from the combustion chamber 2. Rich control is performed to temporarily hold the air-fuel ratio of the exhaust gas to be richer than the stoichiometric air-fuel ratio. In this case, rich control is performed by injecting additional fuel WR into the combustion chamber 2.
  • the rich control of the embodiment according to the present invention will be further described with reference to FIG.
  • the intake air amount Ga is decreased from the base intake air amount GaB to the intake air amount GaR decreased for the rich control.
  • the EGR rate REGR is lowered from the base EGR rate REGRB to the EGR rate REGRR that has been lowered for rich control.
  • additional fuel WR is injected.
  • the air-fuel ratio (A / F) in of the exhaust gas discharged from the combustion chamber 2 is switched from the base air-fuel ratio, which is a lean air-fuel ratio, to the rich air-fuel ratio.
  • the engine combustion chamber 2 is injected by injecting additional fuel into the cylinder in the expansion stroke or the exhaust stroke in a state where the EGR rate REGR is lower than the base EGR rate REGRB.
  • the air-fuel ratio (A / F) in of the exhaust gas discharged from the engine is temporarily kept richer than the stoichiometric air-fuel ratio.
  • the intake air amount is returned to the base intake air amount GaB, and the additional fuel injection is stopped. Therefore, the air-fuel ratio (A / F) in of the exhaust gas is returned to the base air-fuel ratio, and the temperature TEX of the exhaust gas discharged from the combustion chamber 2 is lowered.
  • the EGR rate REGR is not returned to the base EGR rate REGRB, but is maintained at the lowered EGR rate REGRR.
  • the overlap period OL is extended from the base overlap period OLB to the overlap period OLI increased for rich control.
  • the overlap period OL is returned to the base overlap period OLB. Further, the EGR rate REGR is returned to the base EGR rate REGRB. Therefore, in the embodiment according to the present invention, when the rich control is terminated, the injection of additional fuel is stopped while the EGR rate REGR is lower than the base EGR rate REGRB, and the overlap period OL is set to be longer than the base overlap period OLB. When the delay period dt elapses, the EGR rate REGR and the overlap period OL are returned to the base EGR rate REGRB and the base overlap period OLB, respectively.
  • the EGR rate REGR is kept low when the rich control is finished, so that a large amount of high-temperature EGR gas is prevented from flowing into the EGR passage 16. Therefore, durability of the EGR passage 16 and the EGR control valve 17 is improved.
  • the overlap period OL is extended.
  • This burned gas is an inert gas and can function in the same manner as the EGR gas. Therefore, even if the EGR rate REGR is kept low, the generation of NOx can be reliably suppressed.
  • the increased overlap period OLI is set so that the burned gas is increased by the decrease in the EGR rate REGR (REGRB-REGRR).
  • the delay time dt described above is set to a time required for the temperature of the EGR gas supplied from the EGR passage 16 into the combustion chamber 2 to be lower than the allowable temperature.
  • FIG. 18 shows a routine for executing the NOx purification control of the embodiment according to the present invention. This routine is executed by interruption every predetermined time.
  • step 100 it is determined which of the NOx purification action by the first NOx purification method and the NOx purification action by the second NOx purification method is to be performed.
  • step 101 it is judged if the NOx purification action by the first NOx purification method should be performed.
  • the routine proceeds to step 102 where the NOx purification action by the first NOx purification method is performed. That is, the injection amount W of hydrocarbons shown in FIG. 11 is injected from the hydrocarbon supply valve 15 with an injection cycle ⁇ T that is predetermined according to the operating state of the engine.
  • step 101 when the NOx purification action by the second NOx purification method is to be executed, the routine proceeds to step 103, where a routine for executing the NOx purification action by the second NOx purification method is executed.
  • This routine is shown in FIG.
  • FIG. 19 shows a routine for executing the NOx purification action by the second NOx purification method.
  • This routine is executed in step 103 of FIG. Referring to FIG. 19, first, at step 120, the stored NOx amount ⁇ NOX is calculated. That is, the exhausted NOx amount NOXA per unit time is calculated from the map shown in FIG. 13, and the stored NOx amount ⁇ NOX is calculated by integrating the exhausted NOx amount NOXA. Next, at step 121, it is judged if the occluded NOx amount ⁇ NOX exceeds the allowable value MAX.
  • step 122 the throttle opening is controlled so that the intake air amount Ga becomes the base intake air amount GaB, and the EGR control valve 17 is opened so that the EGR rate REGR becomes the base EGR rate REGRB. The degree is controlled. Further, the additional fuel injection is stopped. Further, the variable valve timing mechanism 43 is controlled so that the overlap period OL becomes the base overlap period OLB.
  • step 121 the routine proceeds from step 121 to step 123, where the throttle opening is controlled so that the intake air amount GaR becomes the reduced intake air amount GaR, and the EGR rate REGR becomes the reduced EGR rate REGRR.
  • the opening degree of the EGR control valve 17 is controlled. Further, an additional fuel amount WR is calculated from the map shown in FIG. 15, and additional fuel injection is performed. Therefore, rich control is started.
  • step 124 it is determined whether or not the rich control should be terminated.
  • the rich control should be terminated when a predetermined time has elapsed since the rich control was started.
  • the routine returns from step 124 to step 123.
  • the routine proceeds from step 124 to step 125, the throttle opening is controlled so that the intake air amount Ga becomes the base intake air amount GaB, and the additional fuel injection is stopped. Therefore, rich control is terminated. Further, the variable valve timing mechanism 43 is controlled so that the overlap period OL becomes the increased overlap period OLI.
  • step 126 it is determined whether or not the delay time dt has elapsed since the rich control was terminated. The process returns from step 126 to step 125 until the delay time dt elapses.
  • the routine proceeds from step 126 to step 127, where the opening degree of the EGR control valve 17 is controlled so that the EGR rate REGR becomes the base EGR rate REGRB. Further, the variable valve timing mechanism 43 is controlled so that the overlap period OL becomes the base overlap period OLB. Further, the stored NOx amount ⁇ NOX is cleared.
  • an oxidation catalyst for reforming hydrocarbons can be disposed in the engine exhaust passage upstream of the exhaust purification catalyst 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

 EGR率をベースEGR率よりも低くした状態のもとで膨張行程又は排気行程に筒内に追加の燃料を噴射することにより燃焼室から排出される排気ガスの空燃比を一時的に理論空燃比よりもリッチに保持するリッチ制御を行う。オーバラップ期間を変更可能な可変バルブタイミング機構を備える。リッチ制御を終了するとき(ta2)には、EGR率(REGR)をベースEGR率(REGRB)よりも低くしたまま追加の燃料の噴射を停止すると共にオーバラップ期間(OL)をベースオーバラップ期間(OLB)よりも増大して保持し、次いで遅延期間(dt)が経過したときにEGR率及びオーバラップ期間をそれぞれベースEGR率及びベースオーバラップ期間まで復帰させる。

Description

内燃機関の排気浄化装置
 本発明は内燃機関の排気浄化装置に関する。
 機関排気通路内に配置された排気タービンによりスロットル弁上流の機関吸気通路内に配置されたコンプレッサを駆動する排気ターボチャージャを備え、排気タービン上流の機関排気通路とスロットル弁下流の機関吸気通路とを高圧側排気ガス再循環通路により連結すると共に高圧側排気ガス再循環通路内に高圧側排気ガス再循環制御弁を配置し、排気タービン下流の機関排気通路とコンプレッサ上流の機関吸気通路とを低圧側排気ガス再循環通路により連結すると共に低圧側排気ガス再循環通路内に低圧側排気ガス再循環制御弁を配置し、排気ガス再循環率を低くした状態のもとで膨張行程又は排気行程に筒内に追加の燃料を噴射することにより機関燃焼室から排出される排気ガスの空燃比を一時的に理論空燃比よりもリッチに保持するリッチ制御を行う、内燃機関の排気浄化装置が公知である。この排気浄化装置では、リッチ制御を開始するときに高圧側排気ガス再循環通路からの排気再循環ガスを減量することにより排気ガス再循環率を低くし、リッチ制御を終了するときに高圧側排気ガス再循環通路からの排気再循環ガス量を復帰させることにより排気ガス再循環率を復帰させている。
 ところが、リッチ制御が行われているときには燃焼室から排出される排気ガスの温度がかなり高くなっている。このため、リッチ制御を終了するときに直ちに高圧側排気ガス再循環通路からの排気再循環ガス量を復帰させると、高温の排気ガスが大量に高圧側排気ガス再循環通路内に流入し、高圧側排気ガス再循環通路又は高圧側排気ガス再循環制御弁が熱により破損するおそれがある。
 この点、リッチ制御が行われた後に一定時間、高圧側排気ガス再循環通路からの排気再循環ガス量を減少させ続ければ、熱による破損の問題は解決できるかにみえる。しかしながら、排気ガス再循環率が低く保持されると、NOxの発生を低減できないおそれがある。
 そこで、リッチ制御を終了するときには、高圧側排気ガス再循環通路からの排気再循環ガスを減量しつつ追加の燃料の噴射を停止すると共に、低圧側排気ガス再循環通路からの排気再循環ガスを増量して保持し、次いで遅延時間が経過したときに高圧側排気ガス再循環通路からの排気再循環ガス量及び低圧側排気ガス再循環通路からの排気再循環ガス量を復帰させる、内燃機関の排気浄化装置が公知である(特許文献1参照)。すなわち、リッチ制御が終了されてから遅延時間が経過するまでは高圧側排気ガス再循環通路からの排気再循環ガスが減量され続ける。また、低圧側排気ガス再循環通路から供給される排気再循環ガスの温度は比較的低い。したがって、熱による破損の危険性が低減される。同時に、低圧側排気ガス再循環通路からの排気再循環ガスが増量されるので、NOxの発生を確実に抑制できる。
特開2008-038803号公報
 ところで、上述した熱による破損の問題は低圧側排気ガス再循環通路及び低圧側排気ガス再循環制御弁を備えていない内燃機関でも発生しうる。しかしながら、特許文献1では低圧側排気ガス再循環通路及び低圧側排気ガス再循環制御弁が必須であるので、低圧側排気ガス再循環通路及び低圧側排気ガス再循環制御弁を備えていない内燃機関に特許文献1の技術を適用することはできない。また、低圧側排気ガス再循環通路からの排気再循環ガス供給は応答性が低いので、リッチ制御を終了した直後は、NOxの発生を確実に抑制できないおそれもある。
 本発明の目的は、熱による破損の発生を抑制しつつNOxの発生を確実に抑制することのできる内燃機関の排気浄化装置を提供することにある。
 本発明によれば、スロットル弁下流の機関吸気通路と機関排気通路とを排気ガス再循環通路により連結すると共に、排気ガス再循環通路内を流通する再循環排気ガス量を制御する排気ガス再循環制御弁を設け、排気ガス再循環率をベース排気ガス再循環率よりも低くした状態のもとで膨張行程又は排気行程に筒内に追加の燃料を噴射することにより機関燃焼室から排出される排気ガスの空燃比を一時的に理論空燃比よりもリッチに保持するリッチ制御を行う、内燃機関の排気浄化装置において、吸気弁の開弁期間と排気弁の開弁期間とが重なるオーバラップ期間を変更可能な可変バルブタイミング機構を備え、リッチ制御を終了するときには、排気ガス再循環率をベース排気ガス再循環率よりも低くしたまま追加の燃料の噴射を停止すると共にオーバラップ期間をベースオーバラップ期間よりも増大して保持し、次いで予め定められた遅延期間が経過したときに排気ガス再循環率及びオーバラップ期間をそれぞれベース排気ガス再循環率及びベースオーバラップ期間まで復帰させる、内燃機関の排気浄化装置が提供される。
 熱による破損の発生を抑制しつつNOxの発生を確実に抑制することができる。
図1は圧縮着火式内燃機関の全体図である。 図2は触媒担体の表面部分を図解的に示す図である。 図3は排気浄化触媒における酸化反応を説明するための図である。 図4は排気浄化触媒への流入排気ガスの空燃比の変化を示す図である。 図5はNOx浄化率を示す図である。 図6Aおよび6Bは排気浄化触媒における酸化還元反応を説明するための図である。 図7Aおよび7Bは排気浄化触媒における酸化還元反応を説明するための図である。 図8は排気浄化触媒への流入排気ガスの空燃比の変化を示す図である。 図9はNOx浄化率を示す図である。 図10は炭化水素の噴射周期ΔTとNOx浄化率との関係を示す図である。 図11は炭化水素の噴射量を示すマップである。 図12はNOx放出制御を示す図である。 図13は排出NOx量NOXAのマップを示す図である。 図14は燃料噴射時期を示す図である。 図15は燃料供給量WRのマップを示す図である。 図16Aおよび16Bはオーバラップ期間を説明する線図である。 図17はリッチ制御を説明する示すタイムチャートである。 図18はNOx浄化制御を行うためのフローチャートである。 図19は第2のNOx浄化方法によるNOx浄化作用を実行するためのフローチャートである。
 図1に圧縮着火式内燃機関の全体図を示す。
 図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内に夫々燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドを夫々示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口は吸入空気量検出器8を介してエアクリーナ9に連結される。吸気ダクト6内にはアクチュエータにより駆動されるスロットル弁10が配置され、吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置11が配置される。図1に示される実施例では機関冷却水が冷却装置11内に導かれ、機関冷却水によって吸入空気が冷却される。
 一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結され、排気タービン7bの出口は排気管12aを介して排気浄化触媒13の入口に連結される。本発明による実施例では、この排気浄化触媒13はNOx吸蔵触媒からなる。排気浄化触媒13の出口は排気管12bを介してパティキュレートフィルタ14に連結される。排気浄化触媒13上流の排気管12a内には圧縮着火式内燃機関の燃料として用いられる軽油その他の燃料からなる炭化水素を供給するための炭化水素供給弁15が配置される。図1に示される実施例では炭化水素供給弁15から供給される炭化水素として軽油が用いられている。なお、本発明はリーン空燃比のもとで燃焼の行われる火花点火式内燃機関にも適用することができる。この場合、炭化水素供給弁15からは火花点火式内燃機関の燃料として用いられるガソリンその他の燃料からなる炭化水素が供給される。
 一方、排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路16を介して互いに連結され、EGR通路16内には電子制御式EGR制御弁17が配置される。また、EGR通路16の周りにはEGR通路16内を流れるEGRガスを冷却するための冷却装置18が配置される。図1に示される実施例では機関冷却水が冷却装置18内に導かれ、機関冷却水によってEGRガスが冷却される。各燃料噴射弁3は燃料供給管19を介してコモンレール20に連結され、このコモンレール20は電子制御式の吐出量可変な燃料ポンプ21を介して燃料タンク22に連結される。燃料タンク22内に貯蔵されている燃料は燃料ポンプ21によってコモンレール20内に供給され、コモンレール20内に供給された燃料は各燃料供給管19を介して燃料噴射弁3に供給される。
 電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35および出力ポート36を具備する。排気浄化触媒13下流の排気管12bには排気浄化触媒13から流出した排気ガスの温度を検出するための温度センサ24が取付けられている。排気浄化触媒13から流出した排気ガスの温度は排気浄化触媒13の温度を表している。また、パティキュレートフィルタ14にはパティキュレートフィルタ14の前後差圧を検出するための差圧センサ26が取付けられている。これら温度センサ24、差圧センサ26および吸入空気量検出器8の出力信号は夫々対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁10の駆動用アクチュエータ、炭化水素供給弁15、EGR制御弁17、燃料ポンプ21および可変バルブタイミング機構43に接続される。
 図2は、図1に示される排気浄化触媒13の基体上に担持された触媒担体の表面部分を図解的に示している。この排気浄化触媒13では図2に示されるように例えばアルミナからなる触媒担体50上には白金Ptからなる貴金属触媒51が担持されており、更にこの触媒担体50上にはカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類金属、ランタノイドのような希土類および銀Ag、銅Cu、鉄Fe、イリジウムIrのようなNOxに電子を供与しうる金属から選ばれた少なくとも一つを含む塩基性層53が形成されている。この塩基性層53内にはセリアCeOが含有せしめられており、従って排気浄化触媒13は酸素貯蔵能力を有している。また、排気浄化触媒13の触媒担体50上には白金Ptに加えてロジウムRh或いはパラジウムPdを担持させることができる。なお、排気ガスは触媒担体50上に沿って流れるので貴金属触媒51は排気浄化触媒13の排気ガス流通表面上に担持されていると言える。また、塩基性層53の表面は塩基性を呈するので塩基性層53の表面は塩基性の排気ガス流通表面部分54と称される。
 炭化水素供給弁15から排気ガス中に炭化水素が噴射されるとこの炭化水素は排気浄化触媒13において改質される。本発明ではこのとき改質された炭化水素を用いて排気浄化触媒13においてNOxを浄化するようにしている。図3はこのとき排気浄化触媒13において行われる改質作用を図解的に示している。図3に示されるように炭化水素供給弁15から噴射された炭化水素HCは貴金属触媒51によって炭素数の少ないラジカル状の炭化水素HCとなる。
 図4は炭化水素供給弁15からの炭化水素の供給タイミングと排気浄化触媒13への流入排気ガスの空燃比(A/F)inの変化とを示している。なお、この空燃比(A/F)inの変化は排気浄化触媒13に流入する排気ガス中の炭化水素の濃度変化に依存しているので図4に示される空燃比(A/F)inの変化は炭化水素の濃度変化を表しているとも言える。ただし、炭化水素濃度が高くなると空燃比(A/F)inは小さくなるので図4においては空燃比(A/F)inがリッチ側となるほど炭化水素濃度が高くなっている。
 図5は、排気浄化触媒13に流入する炭化水素の濃度を周期的に変化させることによって図4に示されるように排気浄化触媒13への流入排気ガスの空燃比(A/F)inを周期的にリッチにしたときの排気浄化触媒13によるNOx浄化率を排気浄化触媒13の各触媒温度TCに対して示している。さて、長期間に亘るNOx浄化に関する研究の結果、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると、図5に示されるように400℃以上の高温領域においても極めて高いNOx浄化率が得られることが判明している。
 更にこのときには窒素および炭化水素を含む多量の還元性中間体が塩基性層53の表面上に、即ち排気浄化触媒13の塩基性排気ガス流通表面部分54上に保持又は吸着され続けており、この還元性中間体が高NOx浄化率を得る上で中心的役割を果していることが判明している。次にこのことについて図6Aおよび6Bを参照しつつ説明する。なお、これら図6Aおよび6Bは排気浄化触媒13の触媒担体50の表面部分を図解的に示しており、これら図6Aおよび6Bには排気浄化触媒13に流入する炭化水素の濃度が予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動せしめたときに生ずると推測される反応が示されている。
 図6Aは排気浄化触媒13に流入する炭化水素の濃度が低いときを示しており、図6Bは炭化水素供給弁15から炭化水素が供給されて排気浄化触媒13への流入排気ガスの空燃比(A/F)inがリッチにされたとき、即ち排気浄化触媒13に流入する炭化水素の濃度が高くなっているときを示している。
 さて、図4からわかるように排気浄化触媒13に流入する排気ガスの空燃比は一瞬を除いてリーンに維持されているので排気浄化触媒13に流入する排気ガスは通常酸素過剰の状態にある。このとき排気ガス中に含まれるNOの一部は排気浄化触媒13上に付着し、排気ガス中に含まれるNOの一部は図6Aに示されるように白金51上において酸化されてNOとなり、次いでこのNOは更に酸化されてNOとなる。また、NOの一部はNO となる。従って白金Pt51上にはNO とNOとが生成されることになる。排気浄化触媒13上に付着しているNOおよび白金Pt51上において生成されたNO とNOは活性が強く、従って以下これらNO、NO およびNOを活性NOxと称する。
 一方、炭化水素供給弁15から炭化水素が供給されて排気浄化触媒13への流入排気ガスの空燃比(A/F)inがリッチにされるとこの炭化水素は排気浄化触媒13の全体に亘って順次付着する。これら付着した炭化水素の大部分は順次酸素と反応して燃焼せしめられ、付着した炭化水素の一部は順次、図3に示されるように排気浄化触媒13内において改質され、ラジカルとなる。従って、図6Bに示されるように活性NOx周りの炭化水素濃度が高くなる。ところで活性NOxが生成された後、活性NOx周りの酸素濃度が高い状態が一定時間以上継続すると活性NOxは酸化され、硝酸イオンNO の形で塩基性層53内に吸収される。しかしながらこの一定時間が経過する前に活性NOx周りの炭化水素濃度が高くされると図6Bに示されるように活性NOxは白金51上においてラジカル状の炭化水素HCと反応し、それにより還元性中間体が生成される。この還元性中間体は塩基性層53の表面上に付着又は吸着される。
 なお、このとき最初に生成される還元性中間体はニトロ化合物R-NOであると考えられる。このニトロ化合物R-NOは生成されるとニトリル化合物R-CNとなるがこのニトリル化合物R-CNはその状態では瞬時しか存続し得ないのでただちにイソシアネート化合物R-NCOとなる。このイソシアネート化合物R-NCOは加水分解するとアミン化合物R-NHとなる。ただしこの場合、加水分解されるのはイソシアネート化合物R-NCOの一部であると考えられる。従って図6Bに示されるように塩基性層53の表面上に保持又は吸着されている還元性中間体の大部分はイソシアネート化合物R-NCOおよびアミン化合物R-NHであると考えられる。
 一方、図6Bに示されるように生成された還元性中間体の周りに炭化水素HCが付着しているときには還元性中間体は炭化水素HCに阻まれてそれ以上反応が進まない。この場合、排気浄化触媒13に流入する炭化水素の濃度が低下し、次いで還元性中間体の周りに付着している炭化水素が酸化せしめられて消滅し、それにより還元性中間体周りの酸素濃度が高くなると、還元性中間体は排気ガス中のNOxや活性NOxと反応するか、周囲の酸素と反応するか、或いは自己分解する。それによって還元性中間体R-NCOやR-NHは図6Aに示されるようにN,CO,HOに変換せしめられ、斯くしてNOxが浄化されることになる。
 このように排気浄化触媒13では、排気浄化触媒13に流入する炭化水素の濃度を高くすることにより還元性中間体が生成され、排気浄化触媒13に流入する炭化水素の濃度を低下させた後、酸素濃度が高くなったときに還元性中間体が排気ガス中のNOxや活性NOxや酸素と反応し、或いは自己分解し、それによりNOxが浄化される。即ち、排気浄化触媒13によりNOxを浄化するには排気浄化触媒13に流入する炭化水素の濃度を周期的に変化させる必要がある。
 無論、この場合、還元性中間体を生成するのに十分高い濃度まで炭化水素の濃度を高める必要があり、生成された還元性中間体を排気ガス中のNOxや活性NOxや酸素と反応させ、或いは自己分解させるのに十分低い濃度まで炭化水素の濃度を低下させる必要がある。即ち、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅で振動させる必要がある。なお、この場合、生成された還元性中間体R-NCOやR-NHが排気ガス中のNOxや活性NOxや酸素と反応するまで、或いは自己分解するまでこれら還元性中間体を塩基性層53上に、即ち塩基性排気ガス流通表面部分54上に保持しておかなければならず、そのために塩基性の排気ガス流通表面部分54が設けられている。
 一方、炭化水素の供給周期を長くすると炭化水素が供給された後、次に炭化水素が供給されるまでの間において酸素濃度が高くなる期間が長くなり、従って活性NOxは還元性中間体を生成することなく硝酸塩の形で塩基性層53内に吸収されることになる。これを回避するためには排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の周期でもって振動させることが必要となる。
 そこで本発明による実施例では、排気ガス中に含まれるNOxと改質された炭化水素とを反応させて窒素および炭化水素を含む還元性中間体R-NCOやR-NHを生成するために排気浄化触媒13の排気ガス流通表面上には貴金属触媒51が担持されており、生成された還元性中間体R-NCOやR-NHを排気浄化触媒13内に保持しておくために貴金属触媒51周りには塩基性の排気ガス流通表面部分54が形成されており、塩基性の排気ガス流通表面部分54上に保持された還元性中間体R-NCOやR-NHはN,CO,HOに変換せしめられ、炭化水素濃度の振動周期は還元性中間体R-NCOやR-NHを生成し続けるのに必要な振動周期とされる。因みに図4に示される例では噴射間隔が3秒とされている。
 炭化水素濃度の振動周期、即ち炭化水素供給弁15からの炭化水素HCの噴射周期を上述の予め定められた範囲内の周期よりも長くすると塩基性層53の表面上から還元性中間体R-NCOやR-NHが消滅し、このとき白金Pt53上において生成された活性NOxは図7Aに示されるように硝酸イオンNO の形で塩基性層53内に拡散し、硝酸塩となる。即ち、このときには排気ガス中のNOxは硝酸塩の形で塩基性層53内に吸収されることになる。
 一方、図7BはこのようにNOxが硝酸塩の形で塩基性層53内に吸収されているときに排気浄化触媒13内に流入する排気ガスの空燃比が理論空燃比又はリッチにされた場合を示している。この場合には排気ガス中の酸素濃度が低下するために反応が逆方向(NO →NO)に進み、斯くして塩基性層53内に吸収されている硝酸塩は順次硝酸イオンNO となって図7Bに示されるようにNOの形で塩基性層53から放出される。次いで放出されたNOは排気ガス中に含まれる炭化水素HCおよびCOによって還元される。
 図8は塩基性層53のNOx吸収能力が飽和する少し前に排気浄化触媒13に流入する排気ガスの空燃比(A/F)inを一時的にリッチにするようにした場合を示している。なお、図8に示す例ではこのリッチ制御の時間間隔は1分以上である。この場合には排気ガスの空燃比(A/F)inがリーンのときに塩基性層53内に吸収されたNOxは、排気ガスの空燃比(A/F)inが一時的にリッチにされたときに塩基性層53から一気に放出されて還元される。従ってこの場合には塩基性層53はNOxを一時的に吸収するための吸収剤の役目を果している。
 なお、このとき塩基性層53がNOxを一時的に吸着する場合もあり、従って吸収および吸着の双方を含む用語として吸蔵という用語を用いるとこのとき塩基性層53はNOxを一時的に吸蔵するためのNOx吸蔵剤の役目を果していることになる。即ち、この場合には、機関吸気通路、燃焼室2および排気浄化触媒13上流の排気通路内に供給された空気および燃料(炭化水素)の比を排気ガスの空燃比と称すると、排気浄化触媒13は、排気ガスの空燃比がリーンのときにはNOxを吸蔵し、排気ガス中の酸素濃度が低下すると吸蔵したNOxを放出するNOx吸蔵触媒として機能している。
 図9の実線は、排気浄化触媒13をこのようにNOx吸蔵触媒として機能させたときのNOx浄化率を示している。なお、図9の横軸は排気浄化触媒13の触媒温度TCを示している。排気浄化触媒13をこのようにNOx吸蔵触媒として機能させた場合には図9において実線で示されるように触媒温度TCが300℃から400℃のときには極めて高いNOx浄化率が得られるが触媒温度TCが400℃以上の高温になるとNOx浄化率が低下する。なお、図9には、図5に示されるNOx浄化率が破線でもって示されている。
 このように触媒温度TCが400℃以上になるとNOx浄化率が低下するのは、触媒温度TCが400℃以上になると硝酸塩が熱分解してNOの形で排気浄化触媒13から放出されるからである。即ち、NOxを硝酸塩の形で吸蔵している限り、触媒温度TCが高いときに高いNOx浄化率を得るのは困難である。しかしながら図4から図6Bに示される新たなNOx浄化方法では図6A,6Bからわかるように硝酸塩は生成されず或いは生成されても極く微量であり、斯くして図5に示されるように触媒温度TCが高いときでも高いNOx浄化率が得られることになる。
 本発明による実施例では、この新たなNOx浄化方法を用いてNOxを浄化しうるように、炭化水素を供給するための炭化水素供給弁15を機関排気通路内に配置し、炭化水素供給弁15下流の機関排気通路内に排気浄化触媒13を配置し、排気浄化触媒13の排気ガス流通表面上には貴金属触媒51が担持されていると共に貴金属触媒51周りには塩基性の排気ガス流通表面部分54が形成されており、排気浄化触媒13は、排気浄化触媒13に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOxを還元する性質を有すると共に、炭化水素濃度の振動周期をこの予め定められた範囲よりも長くすると排気ガス中に含まれるNOxの吸蔵量が増大する性質を有しており、機関運転時に炭化水素供給弁15から予め定められた周期でもって炭化水素を噴射し、それにより排気ガス中に含まれるNOxを排気浄化触媒13において還元するようにしている。
 即ち、図4から図6Bに示されるNOx浄化方法は、貴金属触媒を担持しかつNOxを吸収しうる塩基性層を形成した排気浄化触媒を用いた場合において、ほとんど硝酸塩を形成することなくNOxを浄化するようにした新たなNOx浄化方法であると言うことができる。実際、この新たなNOx浄化方法を用いた場合には排気浄化触媒13をNOx吸蔵触媒として機能させた場合に比べて、塩基性層53から検出される硝酸塩は極く微量である。なお、この新たなNOx浄化方法を以下、第1のNOx浄化方法と称する。
 さて、前述したように、炭化水素供給弁15からの炭化水素の噴射周期ΔTが長くなると炭化水素が噴射された後、次に炭化水素が噴射される間において、活性NOx周りの酸素濃度が高くなる期間が長くなる。この場合、図1に示される実施例では、炭化水素の噴射周期ΔTが5秒程度よりも長くなると活性NOxが硝酸塩の形で塩基性層53内に吸収され始め、従って図10に示されるように炭化水素濃度の振動周期ΔTが5秒程度よりも長くなるとNOx浄化率が低下することになる。従って図1に示される実施例では、炭化水素の噴射周期ΔTは5秒以下とする必要がある。
 一方、本発明による実施例では、炭化水素の噴射周期ΔTがほぼ0.3秒以下になると噴射された炭化水素が排気浄化触媒13の排気ガス流通表面上に堆積し始め、従って図10に示されるように炭化水素の噴射周期ΔTがほぼ0.3秒以下になるとNOx浄化率が低下する。そこで本発明による実施例では、炭化水素の噴射周期が0.3秒から5秒の間とされている。
 さて、本発明による実施例では、炭化水素供給弁15からの炭化水素噴射量および噴射時期を変化させることによって排気浄化触媒13への流入排気ガスの空燃比(A/F)inおよび噴射周期ΔTが機関の運転状態に応じた最適値となるように制御される。この場合、本発明による実施例では、第1のNOx浄化方法によるNOx浄化作用が行われているときの最適な炭化水素噴射量Wが、アクセルペダル40の踏み込み量Lおよび機関回転数Nの関数として図11に示すようなマップの形で予めROM32内に記憶されており、また、このときの最適な炭化水素の噴射周期ΔTもアクセルペダル40の踏み込み量Lおよび機関回転数Nの関数としてマップの形で予めROM32内に記憶されている。
 次に図12から図15を参照しつつ排気浄化触媒13をNOx吸蔵触媒として機能させた場合のNOx浄化方法について具体的に説明する。このように排気浄化触媒13をNOx吸蔵触媒として機能させた場合のNOx浄化方法を以下、第2のNOx浄化方法と称する。
 この第2のNOx浄化方法では図12に示されるように塩基性層53に吸蔵された吸蔵NOx量ΣNOXが予め定められた許容量MAXを越えたときに排気浄化触媒13に流入する排気ガスの空燃比(A/F)inが一時的にリッチにされる。排気ガスの空燃比(A/F)inがリッチにされると、排気ガスの空燃比(A/F)inがリーンのときに塩基性層53内に吸蔵されたNOxが塩基性層53から一気に放出されて還元される。それによってNOxが浄化される。
 吸蔵NOx量ΣNOXは例えば機関から排出されるNOx量から算出される。本発明による実施例では機関から単位時間当り排出される排出NOx量NOXAがアクセルペダル40の踏み込み量Lおよび機関回転数Nの関数として図13に示すようなマップの形で予めROM32内に記憶されており、この排出NOx量NOXAから吸蔵NOx量ΣNOXが算出される。この場合、前述したように排気ガスの空燃比(A/F)inがリッチにされる周期は通常1分以上である。
 この第2のNOx浄化方法では図14に示されるように燃焼室2内に燃料噴射弁3から燃焼用燃料Qに加え、追加の燃料WRを噴射することによって排気浄化触媒13に流入する排気ガスの空燃比(A/F)inがリッチにされる。なお、図14の横軸はクランク角を示している。この追加の燃料WRは燃焼はするが機関出力となって現われない時期に、即ち圧縮上死点後ATDC90°の少し手前で噴射される。この燃料量WRはアクセルペダル40の踏み込み量Lおよび機関回転数Nの関数として図15に示すようなマップの形で予めROM32内に記憶されている。
 本発明による実施例では第1のNOx浄化方法によるNOx浄化作用と第2のNOx浄化方法によるNOx浄化作用が選択的に行われる。第1のNOx浄化方法によるNOx浄化作用と第2のNOx浄化方法によるNOx浄化作用のいずれを行うかは例えば次のようにして決定される。即ち、第1のNOx浄化方法によるNOx浄化作用が行われたときのNOx浄化率は図5に示されるように排気浄化触媒13の温度TCが限界温度TX以下になると急速に低下しはじめる。これに対し、図9に示されるように第2のNOx浄化方法によるNOx浄化作用が行われたときのNOx浄化率は排気浄化触媒13の温度TCが低下したときに比較的ゆっくりと低下する。従って本発明による実施例では排気浄化触媒13の温度TCが限界温度TXよりも高いときには第1のNOx浄化方法によるNOx浄化作用が行われ、排気浄化触媒13の温度TCが限界温度TXよりも低いときには第2のNOx浄化方法によるNOx浄化作用が行われる。
 ところで、可変バルブタイミング機構43(図1)は吸気弁及び排気弁が同時に開弁しているオーバラップ期間を変更するためのものである。図16Aに示される例では、可変バルブタイミング機構43により排気弁の閉弁時期が進角され、したがってオーバラップ期間OLが短くなっている。これに対し、図16Bに示される例では、可変バルブタイミング機構43により排気弁の閉弁時期が遅角され、したがってオーバラップ期間OLが長くなっている。別の実施例では、オーバラップ期間OLを制御するために吸気弁の開弁時期が制御される。更に別の実施例では、オーバラップ期間OLを制御するために吸気弁の開弁時期及び排気弁の閉弁時期が制御される。
 オーバラップ期間中には燃焼室2から既燃ガスが吸気弁1iを介し吸気マニホルド4に逆流する。この既燃ガスは次いで新気と共に燃焼室2内に吸入され、すなわち戻される。その結果、オーバラップ期間OLが長くなると吸気マニホルド4から燃焼室2内に戻される既燃ガスの量が増大し、オーバラップ期間OLが短くなると吸気マニホルド4から燃焼室2内に戻される既燃ガスの量が減少する。
 図1に示される内燃機関では、リッチ制御(後述する)が行なわれていない通常制御時において実際のオーバラップ期間OLがベースオーバラップ期間OLBに一致するように可変バルブタイミング機構43が制御される。ベースオーバラップ期間OLBは機関運転状態、例えば機関負荷及び機関回転数の関数としてあらかじめマップの形でROM32内に記憶されている。なお、ベースオーバラップ期間OLBは正値、ゼロ、負値のいずれかである。
 一方、燃焼室2内に供給される総ガス量に対するEGR通路16から燃焼室2内に供給されるEGRガス量の比をEGR率と称すると、本発明による実施例ではリッチ制御(後述する)が行なわれていない通常制御時において実際のEGR率が目標となるベースEGR率REGRBに一致するようにEGR制御弁17の開度が制御される。ベースEGR率REGRBは機関運転状態、例えば機関負荷及び機関回転数の関数としてあらかじめマップの形でROM32内に記憶されている。
 本発明による実施例では更に、リッチ制御(後述する)が行なわれていない通常制御時において実際の吸入空気量Gaが目標となるベース吸入空気量GaBに一致するようにスロットル開度が制御される。ベース吸入空気量GaBは機関運転状態、例えば機関負荷及び機関回転数の関数としてあらかじめマップの形でROM32内に記憶されている。
 さて、本発明による実施例では上述したように、第2のNOx浄化方法において排気浄化触媒13に流入する排気ガスの空燃比(A/F)inをリッチにするために、燃焼室2から排出される排気ガスの空燃比を一時的に理論空燃比よりもリッチに保持するリッチ制御が行われる。この場合、燃焼室2内に追加の燃料WRを噴射することにより、リッチ制御が行なわれる。
 次に、図17を参照して本発明による実施例のリッチ制御を更に説明する。
 図17を参照すると、時間ta1においてリッチ制御を開始すべき信号が発せられると、吸入空気量Gaがベース吸入空気量GaBからリッチ制御のために減少された吸入空気量GaRまで少なくされる。また、EGR率REGRがベースEGR率REGRBからリッチ制御のために低下されたEGR率REGRRまで低くされる。その上で、図14に示されるように、追加の燃料WRが噴射される。その結果、燃焼室2から排出される排気ガスの空燃比(A/F)inがリーン空燃比であるベース空燃比からリッチ空燃比に切り換えられる。したがって、本発明による実施例のリッチ制御では、EGR率REGRをベースEGR率REGRBよりも低くした状態のもとで膨張行程又は排気行程に筒内に追加の燃料を噴射することにより機関燃焼室2から排出される排気ガスの空燃比(A/F)inが一時的に理論空燃比よりもリッチに保持されるということになる。
 次いで、時間ta2においてリッチ制御を停止すべき信号が発せられると、吸入空気量がベース吸入空気量GaBに戻され、追加の燃料噴射が停止される。したがって、排気ガスの空燃比(A/F)inがベース空燃比に戻され、燃焼室2から排出される排気ガスの温度TEXが低下する。しかしながら、時間ta2において、EGR率REGRはベースEGR率REGRBに戻されず、低下されたEGR率REGRRに維持される。一方、時間ta2において、オーバラップ期間OLがベースオーバラップ期間OLBからリッチ制御のために増大されたオーバラップ期間OLIまで延長される。
 次いで、時間ta3になると、すなわちあらかじめ定められた遅延時間dtが経過すると、オーバラップ期間OLがベースオーバラップ期間OLBに戻される。また、EGR率REGRがベースEGR率REGRBに戻される。したがって、本発明による実施例では、リッチ制御を終了するときには、EGR率REGRをベースEGR率REGRBよりも低くしたまま追加の燃料の噴射を停止すると共にオーバラップ期間OLをベースオーバラップ期間OLBよりも増大して保持し、次いで遅延期間dtが経過したときにEGR率REGR及びオーバラップ期間OLをそれぞれベースEGR率REGRB及びベースオーバラップ期間OLBまで復帰させるということになる。
 リッチ制御を終了するときにこのような制御を行なっているのは次の理由による。すなわち、リッチ制御中は追加の燃料の燃焼により、燃焼室2から排出される排気ガスの温度TEXはかなり高くなっている。このため、リッチ制御を終了するときに直ちにEGR率REGRをベースEGR率REGRBに復帰させると、高温のEGRガスが大量にEGR通路16内に流入し、EGR通路16又はEGR制御弁17が熱により破損するおそれがある。
 この点、本発明による実施例では、リッチ制御を終了するときにはEGR率REGRが低く維持されるので、高温のEGRガスが大量にEGR通路16内に流入するのが阻止される。したがって、EGR通路16及びEGR制御弁17の耐久性が高められる。
 また、EGR率REGRが低く維持されている間、オーバラップ期間OLが延長される。その結果、燃焼室2から吸気マニホルド4に逆流し次いで燃焼室2内に戻される既燃ガスの量が増大される。この既燃ガスは不活性ガスであり、EGRガスと同様に機能し得る。したがって、EGR率REGRが低く維持されていても、NOxの発生を確実に抑制することができる。
 本発明による実施例では、EGR率REGRの減少分(REGRB-REGRR)だけ既燃ガスが増大されるように増大されたオーバラップ期間OLIが設定される。また、上述した遅延時間dtはEGR通路16から燃焼室2内に供給されるEGRガスの温度が許容温度よりも低くなるのに必要な時間に設定される。
 図18は本発明による実施例のNOx浄化制御を実行するためのルーチンを示している。このルーチンは一定時間毎の割込みによって実行される。
 図18を参照するとまず初めにステップ100において、第1のNOx浄化方法によるNOx浄化作用と第2のNOx浄化方法によるNOx浄化作用のいずれを行うかが決定される。次いでステップ101では第1のNOx浄化方法によるNOx浄化作用を行うべきか否かが判別される。第1のNOx浄化方法によるNOx浄化作用を行うべきときにはステップ102に進んで第1のNOx浄化方法によるNOx浄化作用が行われる。即ち、炭化水素供給弁15からは図11に示される噴射量Wの炭化水素が機関の運転状態に応じて予め定められている噴射周期ΔTでもって噴射される。
 ステップ101において第2のNOx浄化方法によるNOx浄化作用を実行すべきときにはステップ103に進んで第2のNOx浄化方法によるNOx浄化作用を実行するルーチンが実行される。このルーチンは図19に示されている。
 図19は第2のNOx浄化方法によるNOx浄化作用を実行するルーチンを示している。このルーチンは図18のステップ103で実行される。
 図19を参照するとまず初めにステップ120では吸蔵NOx量ΣNOXが算出される。すなわち、図13に示すマップから単位時間当りの排出NOx量NOXAが算出され、排出NOx量NOXAを積算することによって吸蔵NOx量ΣNOXが算出される。次いでステップ121では吸蔵NOx量ΣNOXが許容値MAXを越えたか否かが判別される。ΣNOX≦MAXのときには次いでステップ122に進み、吸入空気量Gaがベース吸入空気量GaBになるようにスロットル開度が制御され、EGR率REGRがベースEGR率REGRBになるようにEGR制御弁17の開度が制御される。また、追加の燃料噴射が停止される。更に、オーバラップ期間OLがベースオーバラップ期間OLBになるように可変バルブタイミング機構43が制御される。
 ΣNOX>MAXになるとステップ121からステップ123に進み、吸入空気量Gaが減少された吸入空気量GaRになるようにスロットル開度が制御され、EGR率REGRが低下されたEGR率REGRRになるようにEGR制御弁17の開度が制御される。また、図15に示すマップから追加の燃料量WRが算出され、追加の燃料噴射が行われる。したがって、リッチ制御が開始される。
 次いでステップ124ではリッチ制御を終了すべきか否かが判別される。本発明による実施例では、リッチ制御が開始されてからあらかじめ定められた時間が経過したときにリッチ制御を終了すべきと判別される。リッチ制御を終了すべきでないとき、すなわちリッチ制御を継続すべきときにはステップ124からステップ123に戻る。リッチ制御を終了すべきときにはステップ124からステップ125に進み、吸入空気量Gaがベース吸入空気量GaBになるようにスロットル開度が制御され、追加の燃料噴射が停止される。したがって、リッチ制御が終了される。更に、オーバラップ期間OLが増大されたオーバラップ期間OLIになるように可変バルブタイミング機構43が制御される。
 次いでステップ126ではリッチ制御が終了されてから遅延時間dtが経過したか否かが判別される。遅延時間dtが経過するまではステップ126からステップ125に戻る。遅延時間dtが経過すると、ステップ126からステップ127に進み、EGR率REGRがベースEGR率REGRBになるようにEGR制御弁17の開度が制御される。また、オーバラップ期間OLがベースオーバラップ期間OLBになるように可変バルブタイミング機構43が制御される。更に、吸蔵NOx量ΣNOXがクリアされる。
 なお、別の実施例として排気浄化触媒13上流の機関排気通路内に炭化水素を改質させるための酸化触媒を配置することもできる。
 2  燃焼室
 4  吸気マニホルド
 5  排気マニホルド
 13  排気浄化触媒
 15  炭化水素供給弁
 16  EGR通路
 17  EGR制御弁
 43  可変バルブタイミング機構

Claims (4)

  1.  スロットル弁下流の機関吸気通路と機関排気通路とを排気ガス再循環通路により連結すると共に、排気ガス再循環通路内を流通する再循環排気ガス量を制御する排気ガス再循環制御弁を設け、排気ガス再循環率をベース排気ガス再循環率よりも低くした状態のもとで膨張行程又は排気行程に筒内に追加の燃料を噴射することにより機関燃焼室から排出される排気ガスの空燃比を一時的に理論空燃比よりもリッチに保持するリッチ制御を行う、内燃機関の排気浄化装置において、吸気弁の開弁期間と排気弁の開弁期間とが重なるオーバラップ期間を変更可能な可変バルブタイミング機構を備え、リッチ制御を終了するときには、排気ガス再循環率をベース排気ガス再循環率よりも低くしたまま追加の燃料の噴射を停止すると共にオーバラップ期間をベースオーバラップ期間よりも増大して保持し、次いで予め定められた遅延期間が経過したときに排気ガス再循環率及びオーバラップ期間をそれぞれベース排気ガス再循環率及びベースオーバラップ期間まで復帰させる、内燃機関の排気浄化装置。
  2.  機関排気通路内に排気浄化触媒を配置すると共に排気浄化触媒上流の機関排気通路内に炭化水素供給弁を配置し、該排気浄化触媒の排気ガス流通表面上には貴金属触媒が担持されていると共に該貴金属触媒周りには塩基性の排気ガス流通表面部分が形成されており、該排気浄化触媒は、排気浄化触媒に流入する炭化水素の濃度を予め定められた範囲内の振幅および予め定められた範囲内の周期でもって振動させると排気ガス中に含まれるNOxを還元する性質を有すると共に、該炭化水素濃度の振動周期を該予め定められた範囲よりも長くすると排気ガス中に含まれるNOxの吸蔵量が増大する性質を有しており、炭化水素供給弁から該予め定められた周期でもって炭化水素を噴射することにより排気ガス中に含まれるNOxを浄化する第1のNOx浄化方法と、排気浄化触媒に流入する排気ガスの空燃比を該予め定められた周期よりも長い周期でもってリッチにすることにより排気浄化触媒から吸蔵NOxを放出させてNOxを浄化する第2のNOx浄化方法とが選択的に用いられる、請求項1に記載の内燃機関の排気浄化装置。
  3.  第2のNOx浄化方法において排気浄化触媒に流入する排気ガスの空燃比をリッチにするためにリッチ制御が行われる、請求項2に記載の内燃機関の排気浄化装置。
  4.  排気浄化触媒の温度が限界温度よりも高いときに第1のNOx浄化方法が用いられ、排気浄化触媒の温度が限界温度よりも低いときに第2のNOx浄化方法が用いられる、請求項2に記載の内燃機関の排気浄化装置。
PCT/JP2013/084371 2013-12-20 2013-12-20 内燃機関の排気浄化装置 WO2015092941A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2013/084371 WO2015092941A1 (ja) 2013-12-20 2013-12-20 内燃機関の排気浄化装置
CN201380081680.8A CN105829688B (zh) 2013-12-20 2013-12-20 内燃机的排气净化装置
US15/104,798 US10184411B2 (en) 2013-12-20 2013-12-20 Exhaust purification system for internal combustion engine
EP13899583.2A EP3085935B1 (en) 2013-12-20 2013-12-20 Exhaust gas purification device for internal combustion engine
JP2015553323A JP6191702B2 (ja) 2013-12-20 2013-12-20 内燃機関の排気浄化装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/084371 WO2015092941A1 (ja) 2013-12-20 2013-12-20 内燃機関の排気浄化装置

Publications (1)

Publication Number Publication Date
WO2015092941A1 true WO2015092941A1 (ja) 2015-06-25

Family

ID=53402333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/084371 WO2015092941A1 (ja) 2013-12-20 2013-12-20 内燃機関の排気浄化装置

Country Status (5)

Country Link
US (1) US10184411B2 (ja)
EP (1) EP3085935B1 (ja)
JP (1) JP6191702B2 (ja)
CN (1) CN105829688B (ja)
WO (1) WO2015092941A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085982A (ja) * 2017-11-10 2019-06-06 マツダ株式会社 圧縮着火式エンジンの制御装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6252450B2 (ja) * 2014-11-28 2017-12-27 トヨタ自動車株式会社 内燃機関の制御装置
JP6589938B2 (ja) * 2017-06-02 2019-10-16 トヨタ自動車株式会社 内燃機関の排気浄化装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008038803A (ja) 2006-08-08 2008-02-21 Toyota Motor Corp 内燃機関の排気浄化システム
JP2008513285A (ja) * 2004-09-17 2008-05-01 イートン コーポレーション クリーンな動力システム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3216139B2 (ja) * 1996-03-08 2001-10-09 三菱自動車工業株式会社 筒内噴射式内燃機関の制御装置
US6519933B2 (en) 2000-03-21 2003-02-18 Toyota Jidosha Kabushiki Kaisha Internal combustion engine having variable valve control system and NOx catalyst
JP4438880B2 (ja) * 2008-04-11 2010-03-24 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2011001893A (ja) 2009-06-19 2011-01-06 Denso Corp 排気浄化システム
EP2460995B1 (en) * 2010-03-23 2016-03-23 Toyota Jidosha Kabushiki Kaisha Exhaust purification device for an internal combustion engine
ES2599154T3 (es) * 2010-08-30 2017-01-31 Toyota Jidosha Kabushiki Kaisha Dispositivo de purificación de gases de escape para motor de combustión interna
EP2495409B1 (en) * 2010-12-24 2017-04-19 Toyota Jidosha Kabushiki Kaisha Exhaust gas purification system for internal combustion engine
WO2012108062A1 (ja) * 2011-02-08 2012-08-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
US9140162B2 (en) 2011-02-10 2015-09-22 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine
US8701392B2 (en) * 2012-01-30 2014-04-22 Toyota Jidosha Kabushiki Kaisha Exhaust purification system of internal combustion engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008513285A (ja) * 2004-09-17 2008-05-01 イートン コーポレーション クリーンな動力システム
JP2008038803A (ja) 2006-08-08 2008-02-21 Toyota Motor Corp 内燃機関の排気浄化システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019085982A (ja) * 2017-11-10 2019-06-06 マツダ株式会社 圧縮着火式エンジンの制御装置

Also Published As

Publication number Publication date
JPWO2015092941A1 (ja) 2017-03-16
JP6191702B2 (ja) 2017-09-06
EP3085935A4 (en) 2017-01-04
US10184411B2 (en) 2019-01-22
EP3085935B1 (en) 2018-08-08
CN105829688A (zh) 2016-08-03
EP3085935A1 (en) 2016-10-26
CN105829688B (zh) 2018-09-18
US20160319757A1 (en) 2016-11-03

Similar Documents

Publication Publication Date Title
JP5304948B1 (ja) 内燃機関の排気浄化装置
JP6024835B2 (ja) 内燃機関の排気浄化装置
JP6024834B2 (ja) 内燃機関の排気浄化装置
JP6003847B2 (ja) 内燃機関の排気浄化装置
JP6191702B2 (ja) 内燃機関の排気浄化装置
JP5994931B2 (ja) 内燃機関の排気浄化装置
JP5610083B1 (ja) 内燃機関の排気浄化装置
JP5880776B2 (ja) 内燃機関の排気浄化装置
JP5610082B1 (ja) 内燃機関の排気浄化装置
JP5892290B2 (ja) 内燃機関の制御装置
JP5880781B2 (ja) 内燃機関の排気浄化装置
JP6183537B2 (ja) 内燃機関の排気浄化装置
JP5704257B2 (ja) 内燃機関の排気浄化装置
JP5811286B2 (ja) 内燃機関の排気浄化装置
JP5880497B2 (ja) 内燃機関の排気浄化装置
JP5741643B2 (ja) 内燃機関の排気浄化装置
JP5811290B2 (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13899583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015553323

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15104798

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2013899583

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013899583

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE