WO1997013318A1 - Organe de commande de moteur - Google Patents

Organe de commande de moteur Download PDF

Info

Publication number
WO1997013318A1
WO1997013318A1 PCT/JP1995/002056 JP9502056W WO9713318A1 WO 1997013318 A1 WO1997013318 A1 WO 1997013318A1 JP 9502056 W JP9502056 W JP 9502056W WO 9713318 A1 WO9713318 A1 WO 9713318A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
control circuit
speed
motor
Prior art date
Application number
PCT/JP1995/002056
Other languages
English (en)
French (fr)
Inventor
Yasuo Notohara
Yukio Kawabata
Kazuo Tahara
Makoto Ishii
Yuhachi Takakura
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to US09/043,876 priority Critical patent/US6198240B1/en
Priority to EP95933635A priority patent/EP0856936B1/en
Priority to PCT/JP1995/002056 priority patent/WO1997013318A1/ja
Priority to JP51413597A priority patent/JP3395183B2/ja
Priority to DE69533001T priority patent/DE69533001T2/de
Priority to KR10-1998-0702394A priority patent/KR100456382B1/ko
Publication of WO1997013318A1 publication Critical patent/WO1997013318A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/40Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc
    • H02M5/42Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters
    • H02M5/44Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac
    • H02M5/453Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/458Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases with intermediate conversion into dc by static converters using discharge tubes or semiconductor devices to convert the intermediate dc into ac using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00642Control systems or circuits; Control members or indication devices for heating, cooling or ventilating devices
    • B60H1/00814Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation
    • B60H1/00821Control systems or circuits characterised by their output, for controlling particular components of the heating, cooling or ventilating installation the components being ventilating, air admitting or air distributing devices
    • B60H1/00828Ventilators, e.g. speed control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/04Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors by means of a separate brake
    • H02P29/045Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors by means of a separate brake whereby the speed is regulated by measuring the motor speed and comparing it with a given physical value
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • H02P2201/09Boost converter, i.e. DC-DC step up converter increasing the voltage between the supply and the inverter driving the motor

Definitions

  • the present invention relates to a motor control device including a power supply circuit that rectifies an AC power supply and outputs a desired DC voltage and simultaneously improves a power factor of the AC power supply, and a motor drive circuit that drives a motor.
  • a rectifier circuit that rectifies an AC power supply and converts it to a DC power supply is a motor control device that controls the speed of the motor by combining a power supply circuit that suppresses harmonics of the power supply current and a motor drive circuit.
  • the one described in JP-A-6-105563 is known.
  • This motor controller consists of a power factor correction converter circuit using a booster circuit that simultaneously suppresses harmonics of the power supply current and DC voltage control, and an inverter circuit that drives the motor. Control the motor to the lowest voltage value that can improve the power factor, control the motor speed by PWM control by the inverter circuit, stop the PWM control of the inverter at high load, and control the motor speed by DC voltage control by the converter PAM control was performed, and the motor speed was controlled.
  • the configuration of the motor speed control circuit is different between a low load and a high load, and it is necessary to perform different speed control calculations in each case. That is, at low load, the duty ratio of the PWM signal of the inverter was calculated from the speed deviation, and at high load, the DC voltage command of the converter was calculated from the speed deviation. Switching between the control circuit under low load and the control circuit under high load was performed based on the DC voltage value of the duty ratio of the inverter PWM signal, the speed command value, and the current speed.
  • An object of the present invention is to eliminate the above-mentioned problems of the prior art and to provide a motor control device that controls the speed of a motor with one simple speed control circuit regardless of the size of the load. Disclosure of the invention
  • the present invention relates to a converter circuit including a rectifier circuit and a smoothing circuit for converting an AC power supply to a direct current, a chopper circuit for controlling a DC voltage by utilizing an energy storage effect by a switching operation and an inductance, and a converter.
  • a motor drive device comprising an inverter circuit and a motor connected to the output of the circuit, a converter control circuit for controlling the switching operation of the Chitsubasa circuit, and an inverter for controlling the switching operation of the inverter circuit and driving the motor
  • a control circuit a speed detection circuit for detecting the rotor position of the motor and calculating the speed, a speed control circuit for inputting the calculated speed value and the speed command value, and controlling the speed of the motor via an inverter control circuit; Inputs the output signal of the control circuit and controls the DC voltage via the converter control circuit according to this output signal.
  • a motor controller having a DC voltage control circuit.
  • the DC voltage control circuit is a speed control circuit.
  • a signal for decreasing the DC voltage is output to the converter control circuit.
  • the DC voltage control circuit is configured to control the DC voltage via the converter control circuit so that the output of the speed control circuit becomes a predetermined value.
  • the output of the speed control circuit is a conduction ratio signal or a speed deviation signal between the calculated speed value and the speed command value.
  • a DC voltage pulsation correction circuit for detecting a pulsation component of the DC voltage and changing an input signal to the inverter control circuit according to the pulsation component.
  • the inverter control circuit drives the switching element of the inverter and drives the motor based on the position signal from the speed detection circuit and the duty ratio signal from the speed control circuit.
  • the speed detection circuit detects the induced voltage of the motor, calculates the rotor position from the induced voltage, outputs a pulse position detection signal, calculates the speed from the calculated position signal, and detects the speed in the speed control circuit. Output as a value.
  • the speed control circuit calculates the duty ratio signal of the PWM pulse of the inverter from the external speed command and the detected speed value so that the speed deviation becomes zero.
  • the inverter circuit, the motor, the speed detection circuit, the inverter control circuit, and the speed control circuit constitute a motor speed control circuit, and the motor speed is controlled according to an external speed command.
  • the converter control circuit drives the switching element of the butterfly circuit according to a signal from the DC voltage control circuit.
  • the DC voltage control circuit detects the DC voltage and the output signal of the speed control circuit, for example, the duty ratio signal. And when the duty ratio signal reaches the lower limit, the DC voltage is DC voltage is controlled so that the voltage drops.
  • the converter circuit, the converter control circuit, and the DC voltage control circuit constitute a DC voltage control circuit of the converter and controls the DC voltage.
  • FIG. 1 is a configuration diagram of a motor control device according to a first embodiment of the present invention
  • FIG. 2 is a diagram illustrating a configuration of a DC voltage control circuit configuring the motor control device.
  • 3 and 4 are explanatory diagrams of the operation of the motor control device according to the first embodiment of the present invention.
  • FIG. 5, FIG. 6, FIG. 7, and FIG. 8 are diagrams showing another configuration of the DC voltage control circuit constituting the motor control device according to the first embodiment of the present invention.
  • 9 and 10 are explanatory diagrams of the operation of the motor control device according to the first embodiment of the present invention when the DC voltage control circuit shown in FIG. 7 or FIG. 8 is used.
  • FIG. 11 is a diagram showing still another configuration of the DC voltage control circuit constituting the motor control device according to the first embodiment of the present invention.
  • FIG. 12 is a configuration diagram of a motor control device according to another embodiment of the present invention
  • FIG. 13 is a diagram illustrating a configuration of a DC voltage control circuit configuring the motor control device. .
  • FIG. 14 is a configuration diagram of a motor control device according to still another embodiment of the present invention
  • FIG. 15 is a diagram showing a correction of a DC voltage pulsation in the motor control device. It is a figure explaining an operation.
  • FIG. 16 is a configuration diagram of an air conditioner control device to which the motor control device of the present invention is applied.
  • FIG. 17 is a diagram showing a configuration of a converter module in which some of the components of the motor control device of the present invention are modularized.
  • FIG. 1 and FIG. 2 are diagrams illustrating a first embodiment of the motor control device of the present invention.
  • FIG. 1 is an overall configuration diagram of a motor control device provided with a converter circuit using a rectifier circuit and a booster circuit, and a motor drive circuit including an inverter circuit and a motor.
  • the AC power supply 1 is connected to the converter circuit 2, and is output as a DC voltage through a rectifier circuit that forms the converter circuit 2 and a booster circuit composed of a reactor, a diode, and a transistor.
  • the booster circuit in the converter circuit 2 is connected to the output side of the rectifier circuit in the converter circuit 2, and forcibly flows the input current to boost the voltage due to the switching operation of the transistor and the effect of accumulating energy in the reactor. .
  • the boosted DC voltage is supplied to a smoothing capacitor to output a stable DC voltage.
  • the inverter 3 connected to the synchronous motor 4 is connected to a smoothing capacitor in the converter circuit 2, and this smoothing capacitor is Converts the DC voltage supplied from the controller to an arbitrary AC voltage and drives the synchronous motor 4.
  • the speed detection circuit 5 calculates the magnetic pole position from the induced voltage of the synchronous motor 4 and outputs a position signal to the inverter control circuit 6. In addition, the calculated position signal , And outputs the detected speed value to the speed control circuit 7.
  • the speed control circuit 7 outputs a duty ratio signal to the inverter control circuit 6 based on the speed detection value from the speed detection circuit 5 and an external speed command so that the speed deviation becomes zero.
  • the inverter control circuit 6 generates a drive signal based on the position detection signal from the speed detection circuit 5 and the duty ratio signal from the speed control circuit 7, and drives the transistor of the inverter circuit 3 to generate a synchronous motor.
  • the speed control of 4 is performed.
  • the converter control circuit 8 drives the transistor in the converter circuit 2 based on the current command value from the DC voltage control circuit 9, controls the input current of the converter circuit 2 in a sine wave shape, and improves the power factor of the power supply. At the same time, the DC voltage is controlled.
  • the DC voltage control circuit 9 detects the duty ratio signal output from the speed control circuit 7, and controls the DC voltage according to the value of the duty ratio signal.
  • FIG. 2 shows the internal configuration of the DC voltage control circuit 9.
  • the DC voltage control circuit 9 includes a selection circuit 93 for selecting and outputting one of a plurality of DC voltage command values generated by the DC voltage command value generation circuit 96 according to the conduction ratio signal, a multiplexer 95, and a converter circuit.
  • the control circuit 2 includes a detection circuit 94 for detecting the output DC voltage and converting the output DC voltage into a voltage value usable by the control circuit 2, a proportional term 91 and an integral term 92.
  • the proportional term 91 and the integral term 92 operate so that the deviation between the DC voltage command value and the DC voltage detection value becomes zero, and output the current command.
  • the multiplexer 95 is a circuit that selects one of a plurality of set DC voltage command values in accordance with an external signal and outputs only the selected DC voltage command value.
  • the DC voltage command values are Is set from 1 to 4.
  • the DC voltage command value 1 is set to the minimum DC voltage value that can be controlled by the converter circuit 2.
  • the selection circuit 93 receives the duty ratio signal output from the speed control circuit 7 and outputs a switching signal to the multiplexer 95 according to the value of the duty ratio signal.
  • FIG. Fig. 3 is a graph with the motor speed on the horizontal axis and the DC voltage, motor voltage and duty ratio on the vertical axis. The motor voltage, DC voltage and duty ratio with respect to the rotation speed when the load is constant are shown.
  • the selection circuit 93 At low rotation, such as when starting the motor, the selection circuit 93 outputs a switching signal to select the DC voltage command value 1, and the DC voltage control circuit controls the DC voltage so that the selected DC voltage command value 1 is reached. Control.
  • the selection circuit 93 outputs a switching signal to the multiplexer 95 so as to select the DC voltage command value 2.
  • the multiplexer 95 selects the DC voltage command value 2, and the DC voltage control circuit controls the DC voltage to be the DC voltage command value 2.
  • the flow rate decreases sharply to 60%, and the motor voltage increases.
  • the minimum value of the conduction ratio is 60%, but this is a value for convenience of explanation. Actually, there is no abrupt change in the duty ratio depending on the load condition, motor speed, response speed of the speed control circuit 7, and so on.
  • the DC voltage increases as the rotation speed increases.
  • the motor speed can be controlled by raising the speed.
  • the conduction ratio decreases and the motor voltage decreases.
  • the conduction ratio becomes 60% (point C)
  • the DC voltage command value is switched from the DC voltage command value 4 to the DC voltage command value 3, and the DC voltage is lowered.
  • the conduction ratio increases to a value close to 100%.
  • the decreasing range of the DC voltage needs to be set to a value such that the conduction ratio does not exceed 100% when the DC voltage is reduced.
  • the conduction ratio can always be maintained at a value close to 100%, and the DC voltage can always be maintained close to the voltage required by the motor.
  • the loss of the motor and the inverter is improved, and the motor is driven in a state where the motor efficiency and the inverter efficiency are always good.
  • the converter efficiency can be improved without increasing the DC voltage more than necessary for the converter.
  • the DC voltage can be changed according to the motor speed, one circuit can handle from low to high speed.
  • a single controller can handle several types of motors with different motor design points, and can always operate at an efficient point.
  • FIG. 4 is an explanatory diagram of the control operation in a case where the points for switching the DC voltage are collected on the high rotation speed side as compared with the case shown in FIG.
  • the basic operation is the same as in Fig. 3.
  • the difference is the value of the duty ratio that switches the DC voltage. Are 100% and 9 ⁇ %.
  • Converter circuit 2 uses a booster circuit, and the DC voltage cannot be reduced to less than twice the received voltage.Therefore, in the actual operation, the operation shown in FIG. Is valid. In this embodiment, the converter circuit using the booster circuit is described. However, the same operation can be performed by a converter circuit that can lower the DC voltage by using a step-up / down circuit circuit.
  • the current command value is calculated from the DC voltage deviation, but the DC voltage command value may be calculated directly.
  • FIG. 5 is a diagram showing an internal configuration of a DC voltage control circuit of an embodiment different from the DC voltage control circuit shown in FIG. The difference from FIG. 2 is the DC voltage command value generation circuit 98 and the DC voltage detection circuit 97.
  • the DC voltage command value is one, and a plurality of detection circuits 97 are provided.
  • Other circuits operate in the same manner as those in FIG.
  • the duty ratio signal is input, the multiplexer 95 is switched by the switching signal generated by the selection circuit 93, and one of the plurality of detection circuits is selected.
  • the DC voltage is controlled according to the detection signal of the selected detection circuit.
  • the detection circuit 97 is a circuit that converts a DC voltage into a voltage level that can be handled by the control circuit, and has a circuit configuration that generates the same voltage as the DC voltage command value when a predetermined DC voltage is reached. Recently, a large number of devices that control the DC voltage by adjusting the gain of the detection circuit, such as Ic for converter circuit control, have been manufactured.
  • the method shown in Fig. 5 is effective for a motor control device using a converter circuit control IC.
  • FIG. 6 is a diagram showing a specific circuit of the configuration shown in FIG.
  • the selection circuit 93 shown in FIG. 5 is realized by software using the microcomputer 70.
  • the proportional term 91 and the integral term 92 shown in Fig. 5 are realized by an analog circuit using the operational amplifier 71.
  • the DC voltage detection circuit 96 was composed of a resistance ladder circuit 72 as shown in FIG.
  • the microcomputer 70 also has the functions of the speed detection circuit 5 and the speed control circuit 7 shown in FIG.
  • the DC voltage control circuits shown in Figs. 2, 5, and 6 select DC voltage command values or DC voltage detection values with a multiplexer 95 or the like and perform DC voltage control. However, in these methods, the command value or detection value switches discontinuously. This causes a large change in the DC voltage at the switching point.
  • FIG. 7 shows a configuration of a DC voltage control circuit when a DC voltage command operation circuit 90 is used to continuously change the DC voltage command value 96 shown in FIG.
  • FIG. 8 shows a case where the DC voltage detection circuit 97 shown in FIG. 5 is replaced with a DC voltage detection operation circuit 99.
  • the DC voltage command calculation circuit 90 detects the duty ratio signal and calculates a DC voltage command value so that the duty ratio becomes a predetermined value. Further, the DC voltage detection arithmetic circuit 99 detects the duty ratio signal, calculates the DC voltage detection gain so that the duty ratio becomes a predetermined value, and determines the DC voltage detection value in accordance with the detected gain. Is output. As described above, the DC voltage command value or the DC voltage detection value becomes a continuous output, and the DC voltage can be controlled linearly.
  • Figure 9 shows the DC voltage, conduction ratio, and motor voltage with respect to the rotation speed when the DC voltage control circuits in Figs. 7 and 8 were used.
  • the DC voltage can be controlled linearly, so that smooth motor control is possible.
  • FIG. 10 shows the relationship between the DC voltage, the conduction ratio, and the motor voltage with respect to the number of revolutions when a converter circuit that can freely control the DC voltage is used.
  • FIG. 11 is a circuit diagram of a duty ratio command value generation circuit 80, a proportional term 81, and an integral term 82 in order to output a DC voltage command value linearly as in the circuit shown in FIG. 1 shows a configuration of a DC voltage control circuit in which a flow rate control circuit is introduced.
  • the above-described duty ratio control circuit can calculate a DC voltage command value such that the duty ratio becomes constant. Even if the DC voltage control circuit shown in FIG. 11 is used, the operation shown in FIGS. 9 and 10 can be performed.
  • FIGS. 12 and 13 show the configuration of a motor control device according to another embodiment of the present invention.
  • FIG. 12 is an overall configuration diagram of the motor control device
  • FIG. 13 is an internal configuration diagram of the DC voltage control circuit 11 shown in FIG.
  • the difference between the embodiment shown in FIG. 1 and the embodiment shown in FIG. 1 is a DC voltage control circuit 11 in which the duty ratio signal and the speed shown in FIG. This is where the speed deviation signal inside the control circuit 12 is used.
  • the selection circuit 110 When the duty ratio reaches 100% and the speed deviation is in a direction to further increase the duty ratio, the selection circuit 110 increases the output of the DC voltage detection circuit 97 to increase the DC voltage. Switch to the one you want. Conversely, when the duty ratio decreases to 60% and the speed deviation is in a direction to further reduce the duty ratio, the output of the DC voltage detection circuit 97 is switched to the one in which the DC voltage decreases. As a result, the motor control circuit according to the present embodiment operates as shown in FIG.
  • the selection circuit 93 uses only the duty ratio signal as a criterion for selection, so that when the duty ratio is 100% or 60%, the motor load and Even if the motor output is balanced, the DC voltage is changed.
  • the present embodiment is a method in which such a point is improved.
  • a signal for detecting whether the motor load and the motor output are balanced, in this case, a speed deviation signal is detected, Useless change of the DC voltage value is prevented.
  • the speed deviation signal is detected, but another signal may be used as long as the signal indicates the equilibrium state between the motor load and the motor output.
  • any one of the DC voltages is selected in the DC voltage detection circuit 97.
  • a plurality of DC voltage command values may be provided, and the DC voltage command value may be selected from these.
  • FIG. 14 shows a DC voltage pulsation correction motor control device in which a DC voltage pulsation correction circuit 10 is added to the motor control device shown in FIG.
  • FIG. 15 is a diagram for explaining the operation of the DC voltage pulsation correction motor control device of FIG.
  • Each circuit of the DC voltage pulsation correction motor control device shown in FIG. 14 performs the same operation as the first embodiment shown in FIG. 1 except for the DC voltage pulsation correction circuit 10.
  • the DC voltage pulsation correction circuit 10 detects the pulsation component of the DC voltage, multiplies the pulsation signal having the opposite phase to the pulsation component by the duty ratio signal created by the speed control circuit 7, and outputs the corrected duty ratio signal. Is a circuit for creating.
  • Fig. 15 shows how the conduction ratio changes over time when DC voltage pulsation correction is performed.
  • the horizontal axis represents time
  • the vertical axis represents DC voltage, duty ratio and corrected duty ratio. It can be seen that the corrected conduction ratio changes in the opposite phase of the pulsating component of the DC voltage.
  • the motor can be controlled without being affected by the pulsation.
  • the DC voltage control circuit 9 needs to control the conduction ratio at 100% or less.
  • FIG. 16 shows a configuration of an air conditioner control device to which the motor control device of the present invention is applied.
  • This embodiment is an inverter air conditioner that detects a room temperature and controls the room temperature to a set temperature.
  • the air conditioner control device includes a room temperature sensor 203 for detecting a room temperature, and a temperature control circuit 200 for calculating a rotation speed command value of the compressor 200 so as to make the temperature deviation between the room temperature set value and the detected room temperature zero.
  • a compressor rotation speed control circuit 201 that controls the rotation speed of the compressor 200 according to the rotation speed command, detects the rotation speed command value, and sets the refrigeration cycle so that the rotation speed command value becomes a predetermined value.
  • the refrigeration cycle control circuit 206 that calculates and outputs control signals for controlling the outdoor fan 204, the indoor fan 210, and the expansion valve 208 that constitute the refrigeration cycle control device 206,
  • Each refrigeration cycle component (outdoor cooling From the control circuit (outdoor air flow control circuit 205, indoor air flow control circuit 209, expansion valve opening control circuit 207) that controls the ANS 204, indoor fan 210, and expansion valve 208) It is configured.
  • the compressor rotation speed control circuit 201 is a motor control device that controls the speed of the motor directly connected to the compressor in accordance with the rotation speed command value from the temperature control circuit 202. Applied.
  • the outdoor air flow control circuit 205 and the indoor air flow control circuit 209 also include a motor control device that controls the speed of an outdoor fan or a motor directly connected to the indoor fan.
  • the signal sent from the refrigeration cycle control circuit 206 is a rotation speed command value of the outdoor fan or the indoor fan.
  • the expansion valve degree-of-opening controller 200 is directly connected to the expansion valve 208 and is a step motor control unit for adjusting the degree of opening of the expansion valve. Is generated and the step motor is driven.
  • the expansion valve 208 is an electric expansion valve whose expansion valve opening changes in proportion to the rotation angle of the step motor.
  • the refrigeration cycle control device 206 sets the refrigeration cycle components (outdoor fan 204, indoor fan 210) so that the rotation speed command value of the output of the temperature control circuit 202 becomes a preset value. 0, Calculates the control signal for controlling the expansion valve 208) and outputs the rotation speed command and the opening command value to each control device.
  • the control signals for the refrigeration cycle components are calculated so that the entire refrigeration cycle operates at maximum efficiency.
  • the rotational speed command value preset in the refrigeration cycle controller 206 is changed according to the operating conditions of the inverter air conditioner.
  • the Elimination of rotation prolongs the life of the compressor.
  • the entire refrigeration cycle can be operated with maximum efficiency, the low-temperature heating capacity is improved, and the electricity cost required for operation can be reduced.
  • Converter module 2 converter control circuit 8 and DC voltage control circuit 9 are integrated into a module.
  • This module uses a step-up chopper circuit.
  • the converter circuit consists of a rectifier circuit 101, a reactor 102, a transistor 104, a diode 103 and a smoothing capacitor 105, and a rectifier circuit 101, a transistor 104 and a diode.
  • 105 semiconductor elements are modularized.
  • Converter control circuit 106 performs the same operation as converter control circuit 8 shown in FIG.
  • the selection circuit 108 selects one of the DC voltage values in the DC voltage detection circuit 107 according to the external signal.
  • 110 selects any one of the DC voltage command values in the DC voltage command circuit 109 by an external signal.
  • a converter device capable of controlling a DC voltage can be easily and compactly manufactured.
  • the loss of the motor, the inverter, and the converter can be reduced with a simple configuration, and the control device can be operated efficiently.
  • the DC voltage can be varied according to the motor speed, one control circuit can handle from low to high speed.
  • Several types of motors with different motor design points can be controlled by one controller, and can always be operated at an efficient point.
  • DC voltage pulsations can be easily corrected, and stable motor speed control can be performed.
  • the converter circuit in the motor control device of the present invention is modularized, a compact motor control device can be easily manufactured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Dc-Dc Converters (AREA)
  • Control Of Ac Motors In General (AREA)

Description

明 細 書
モータ制御装置 技術分野
この発明は、 交流電源を整流し所望の直流電圧を出力すると同時に交 流電源の力率を改善する電源回路と、 モータを駆動するモータ駆動回路 から構成されるモータ制御装置に関する。 背景技術
従来、 交流電源を整流して直流電源に変換する整流回路にあって、 電 源電流の高調波を抑制する電源回路とモータ駆動回路とを組み合わせ、 モータの速度制御を行うモータ制御装置として、 日本特開平 6— 105563 号記載のものが知られている。
このモータ制御装置は、 電源電流の高調波抑制と直流電圧制御を同時 に行う昇圧チヨツバ回路を用いた力率改善コンバータ回路とモータを駆 動するィ ンバータ回路からなり、 低負荷時は直流電圧を力率改善が行え る最低電圧値に制御し、 ィンバータ回路による P W M制御によりモータ の速度制御を行い、 高負荷時はイ ンバータの P W M制御をやめ、 コンパ ータによる直流電圧制御でモータの速度制御を行う P A M制御を行い、 モータの速度制御を行っていた。
上記従来技術では、 モータの速度制御回路の構成が低負荷時と高負荷 時で異なり、 各場合で異なった速度制御演算を行う必要があった。 すな わち、 低負荷時は速度偏差からインバータの P W M信号の通流率を、 高 負荷時は速度偏差からコンバータの直流電圧指令をそれぞれ算出してい た。 また、 低負荷時の制御回路と高負荷時の制御回路の切り替えは、 イ ン バータの P W M信号の通流率の直流電圧値と速度指令値及び現在速度に 基づいて行われていた。
しかし、 上記従来技術では、 低負荷時と高負荷時の 2種類の速度制御 回路を持つ必要があり、 制御回路が複雑になる。
また、 低負荷時と高負荷時の制御回路の切替判定は多数の異なった信 号を用いて行われるため、 それらの信号を得るための多数の検出回路が 必要であった。
本発明の目的は、 上記従来技術の問題点をなく し、 負荷の大小にかか わりなく簡単な一つの速度制御回路でモータの速度制御を行うモータ制 御装置を提供することにある。 発明の開示
本発明は、 交流電源を直流に変換する整流回路及び平滑回路と、 スィ ツチング動作とィンダクタンスによるエネルギー蓄積効果を利用して直 流電圧の制御を行うチヨッパ回路から成るコンバータ回路と、 コンパ一 タ回路の出力に接続したィンバ一タ回路及びモータから成るモータ駆動 装置と、 チヨツバ回路のスイ ッチング動作を制御するコンバータ制御回 路と、 イ ンバータ回路のスイ ッチング動作を制御しモータを駆動するィ ンバータ制御回路と、 モータのロータ位置を検出し速度を演算する速度 検出回路と、 演算速度値及び速度指令値を入力し、 イ ンバータ制御回路 を介してモータの速度制御を行う速度制御回路と、 速度制御回路の出力 信号を入力し、 この出力信号に従ってコンバータ制御回路を介して直流 電圧を制御する直流電圧制御回路とを備えたモータ制御装置にある。
より好ま しい実施態様としては、 直流電圧制御回路は、 速度制御回路 の出力が所定値になると、 直流電圧を増滅させる信号をコンバータ制御 回路に出力する構成とする。
より好ましい実施態様としては、 直流電圧制御回路は、 速度制御回路 の出力が所定の値になるよう、 コンバータ制御回路を介して直流電圧を 制御する構成とする。
より好ましい実施態様としては、 速度制御回路の出力は、 通流率信号 または演算速度値と速度指令値の速度偏差信号とする。
より好ましい実施態様としては、 さらに、 直流電圧の脈動成分を検出 し、 脈動成分に応じてィンバータ制御回路への入力信号を変更する直流 電圧脈動補正回路を設ける。
上記構成において、 インバータ制御回路は、 速度検出回路からの位置 信号及び速度制御回路からの通流率信号に基づいてィンバータのスイツ チング素子を駆動しモータを駆動する。 速度検出回路はモータの誘起電 圧を検出し誘起電圧よりロータの位置を算出し、 パルス上の位置検出信 号を出力するとともに、 算出した位置信号から速度を演算し速度制御回 路に速度検出値として出力している。 速度制御回路は外部からの速度指 令と速度検出値から速度偏差が零になるようにインバータの P W Mパル スの通流率信号を算出している。 上記イ ンバ一タ回路, モータ, 速度検 出回路, インバータ制御回路及び、 速度制御回路によりモータの速度制 御回路が構成され、 外部からの速度指令に従ってモータの速度制御が行 われる。 コンバータ制御回路は直流電圧制御回路からの信号に従ってチ ョツバ回路のスィツチング素子を駆動する。 直流電圧制御回路は直流電 圧と速度制御回路の出力信号、 例えば通流率信号を検出し、 通流率信号 が所定値、 例えばある通流率範囲の上限値に達したら直流電圧を所定の 幅だけ上昇させ、 通流率信号が下限値に達したら直流電圧を所定の幅だ け降下させるように直流電圧を制御する。 上記コンバータ回路, コンパ 一タ制御回路及び、 直流電圧制御回路によりコンバータの直流電圧^御 回路が構成され直流電圧を制御する。
上記、 モータ速度制御回路及びコンバータ直流電圧制御回路を組み合 わせそれぞれ動作させることにより、 負荷の状態に関係なく簡単な構成 でモータ速度制御が可能となる。 図面の簡単な説明
第 1 図は、 本発明の第 1 の実施例に係るモータ制御装置の構成図であ り、 第 2図は、 このモータ制御装置を構成する直流電圧制御回路の構成 を示す図である。
第 3図及び第 4図は、 本発明の第 1 の実施例に係るモータ制御装置の 動作説明図である。
第 5図, 第 6図, 第 7図及び第 8図は、 本発明の第 1 の実施例に係る モータ制御装置を構成する直流電圧制御回路の他の構成を示す図である。 第 9図及び第 1 0図は、 第 7図または第 8図に示す直流電圧制御回路 を用いた場合における本発明の第 1 の実施例に係るモータ制御装置の動 作説明図である。
第 1 1 図は、 本発明の第 1 の実施例に係るモータ制御装置を構成する 直流電圧制御回路のさらに他の構成を示す図である。
第 1 2図は、 本発明の他の実施例に係るモータ制御装置の構成図であ り、 第 1 3図は、 このモータ制御装置を構成する直流電圧制御回路の構 成を示す図である。
第 1 4図は、 本発明のさらに他の実施例に係るモータ制御装置の構成 図であり、 第 1 5図はこのモータ制御装置における直流電圧脈動の補正 動作を説明する図である。
第 1 6図は、 本発明のモータ制御装置を適用したエアコン制御装置の 構成図である。
第 1 7図は、 本発明のモータ制御装置の構成要素の一部をモジュール 化したコンバータモジュールの構成を示す図である。 発明を実施するための最良の形態
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明 する。
第 1 図及び第 2図は、 本発明のモータ制御装置の第 1 の実施例を説明 する図である。 第 1 図は、 整流回路及び昇圧チヨツバ回路を用いたコン バ一タ回路と、 ィンバータ回路及びモータから成るモータ駆動回路を備 えたモータ制御装置の全体構成図である。
交流電源 1 はコンバータ回路 2に接続され、 コンバータ回路 2 を構成 する整流回路と、 リアク トル, ダイオー ド及びトランジスタよりなる昇 圧チヨツバ回路を通して直流電圧として出力される。 コンバータ回路 2 内の昇圧チヨツバ回路はコンバータ回路 2内の整流回路の出力側に接続 され、 前記トランジスタのスィ ツチング動作及びリァク トルのエネルギ 一蓄積効果により、 入力電流を強制的に流し電圧を昇圧する。 昇圧され た直流電圧は平'滑用コンデンサに供給され安定した直流電圧を出力する < 同期モータ 4 を接続したィンバータ 3は、 コンバータ回路 2内の平滑 用コンデンサに接続されており、 この平滑用コンデンサから供給される 直流電圧を任意の交流電圧に変換し同期モータ 4 を駆動する。
速度検出回路 5は同期モータ 4の誘起電圧より磁極位置を算出しイン バ一タ制御回路 6に位置信号を出力している。 また、 算出した位置信号 から速度演算を行い速度検出値を速度制御回路 7に出力している。
速度制御回路 7は速度検出回路 5からの速度検出値及び外部からの速 度指令より、 速度偏差が零になるように通流率信号をィ ンバータ制御回 路 6に出力している。
イ ンバータ制御回路 6は速度検出回路 5からの位置検出信号を及び速 度制御回路 7からの通流率信号を基に ドライブ信号を作成し、 イ ンバー タ回路 3のトランジスタを駆動し、 同期モータ 4の速度制御を行ってい る。
コンバータ制御回路 8は直流電圧制御回路 9からの電流指令値に基づ いてコンバータ回路 2内の 卜ランジスタを駆動し、 上記コンバータ回路 2の入力電流を正弦波状に制御し、 電源の力率改善と同時に直流電圧の 制御を行う。
直流電圧制御回路 9は速度制御回路 7の出力である通流率信号を検出 し、 通流率信号の値に応じて直流電圧を制御する。
第 2図は、 直流電圧制御回路 9の内部構成を示す。 直流電圧制御回路 9は、 前記通流率信号に従って直流電圧指令値発生回路 9 6が発生する 複数の直流電圧指令値からいずれかを選択し出力する選択回路 9 3及び マルチプレクサ 9 5 と、 コンバータ回路 2の出力直流電圧を検出し、 制 御回路 2で使用できるレベルの電圧値に変換する検出回路 9 4 , 比例項 9 1及び積分項 9 2 とから構成されている。
比例項 9 1 及び積分項 9 2は直流電圧指令値と直流電圧検出値との偏 差が零になるように動作し電流指令として出力している。
マルチプレクサ 9 5は複数設定してある直流電圧指令値のいずれかを 外部信号に従って選択し、 選択した直流電圧指令値のみを出力する回路 である。 第 2図に示した例では、 直流電圧指令値は値の低いものから順 に 1 から 4 まで設定してある。 直流電圧指令値 1 はコンバータ回路 2力 制御できる最低直流電圧値に設定してある。
選択回路 9 3は速度制御回路 7の出力である通流率信号を入力し、 通 流率信号の値に応じて切替信号をマルチプレクサ 9 5に出力している。 次に選択回路 9 3の動作を第 3図の制御動作説明図を用いて説明する。 第 3図は横軸にモータの回転数, 縦軸に直流電圧, モータ電圧及び通流 率をとつたグラフであり、 負荷が一定の場合の回転数に対するモータ電 圧, 直流電圧及び通流率の変化を示す図である。
モータの起動時など低回転時には、 選択回路 9 3は直流電圧指令値 1 を選択するように切替信号を出力し、 直流電圧制御回路は選択された直 流電圧指令値 1 になるよう直流電圧を制御する。
この制御された直流電圧の状態では電圧が低いため、 回転数を上昇さ せると早い時期に通流率は 1 0 0 %に到達し、 これ以上モータの回耘数 を上げることができなくなる (A点) 。 ここで選択回路 9 3は直流電圧 指令値 2 を選択するように切替信号をマルチプレクサ 9 5に出力する。 マルチプレクサ 9 5は直流電圧指令値 2 を選択し、 直流電圧制御回路は 直流電圧を直流電圧指令値 2になるように制御する。 これによリ通流率 は 6 0 %まで急激に減少し、 モータ電圧は増加する。 図では通流率の最 小値は 6 0 %となっているが、 これは説明のための便宜上の値である。 実際には負荷の状態, モータの回転数, 速度制御回路 7の応答速度など により依存し通流率の急激な変化はない。
さらにモータの回転数を上昇させると再度通流率は 1 0 0 %となる ( B点) 。 ここで再度上記動作を行い直流電圧指令値 3 を選択すると直 流電圧は上昇し通流率は 6 0 %まで减少する。
以上のような動作を繰り返すことで回転数の増加に従い直流電圧を上 昇させモータの速度制御が行える。
次に上記とは反対にモータが減速する場合について説明する。
モータが高回転で回転中減速指令がきてモータの回転数を下げる場合、 通流率が減少しモータ電圧を下げていく。 ここで通流率が 6 0 %になる と (C点) 、 先ほどとは反対に直流電圧指令値を直流電圧指令値 4から 直流電圧指令値 3に切り替え、 直流電圧を下げる。 直流電圧を下げると 通流率は増加し 1 0 0 %近い値となる。 ここで直流電圧の減少幅は、 直 流電圧を下げたときに通流率が 1 0 0 %を越えない値に設定される必要 がある。
さらに回転数を下げるためには通流率を減少させ B点で直流電圧指令 値を直流電圧指令値 3から直流電圧指令値 2に切り替え、 上記動作を繰 り返し行いモータの回転数を制御していく。
以上の動作を繰り返し行うことにより、 通流率を常に 1 0 0 %近い値 で保て、 直流電圧もモータが必要としている電圧に近い状態に常に維持 できる。 これによりモータ及びインバータの損失が改善され、 モータ効 率及びインバータ効率が常に良好な状態でモータが駆動される。 また、 コンバータに関しても必要以上に直流電圧を上昇させることがなく コン バータ効率を改善できる。
さらに、 モータ回転数に応じて直流電圧を変えることができることか ら、 一つの回路で低回転から高回転まで対応できる。 言い換えれば、 モ ータ設計点の異なる数種のモータでも一つの制御装置で対応でき、 常に 効率の良い点で運転ができる。
第 4図は、 第 3図に示した場合に比べて直流電圧を切リ替える点を高 回転数側に集めた場合の制御動作の説明図である。 基本的な動作は第 3 図の場合と同じである。 異なる所は、 直流電圧を切り替える通流率の値 が 1 0 0 %と 9 ◦ %になっていることである。
コンバータ回路 2では昇圧チヨツバ回路を用いており、 直流電圧を受 電電圧の 2倍以下に下げることはできないことから、 実際の動作では 第 3図に示す動作に比べ第 4図に示す動作の方が有効である。 また、 本 実施例では昇圧チヨツバ回路を使用したコンバータ回路で説明している が、 昇降圧チヨツバ回路などを用いた直流電圧を下げることができるコ ンバータ回路でも同様の動作が可能である。
今回直流電圧指令値の選択レベルが 4 レベルの場合で動作を説明した。 しかし、 直流電圧指令値は細かく設定することが可能であり、 さらに広 い範囲で直流電圧を制御できることから、 選択可能な直流電圧指令値の 数は回路構成が許す限り多い方が良い。
また、 第 2図に示す直流電圧制御回路では直流電圧偏差から電流指令 値を算出しているが、 直接直流電圧指令値を算出しても良い。
第 5図は、 第 2図に示した直流電圧制御回路とは異なる実施例の直流 電圧制御回路の内部構成を示す図である。 第 2図と異なる所は直流電圧 指令値発生回路 9 8 と直流電圧の検出回路 9 7である。 第 5図に示した 方式では、 直流電圧指令値は一つであり、 検出回路 9 7 を複数個設けて いる。 その他の回路は第 2図のものと同様の動作を行う。
第 5図の場合、 通流率信号を入力して選択回路 9 3が発生する切替信 号によりマルチプレクサ 9 5 を切り替え、 複数の検出回路のいずれかを 選択する。 選択した検出回路の検出信号に従って直流電圧の制御を行う。 この方式でも第 3図, 第 4図に示した動作を行うことができ、 同様の効 果が得られる。 なお、 検出回路 9 7は直流電圧を制御回路で扱える電圧 レベルに変換する回路であり、 所定の直流電圧になったら直流電圧指令 値と同じ電圧を発生する回路構成になっている。 最近、 コンバータ回路制御用 I cなど、 検出回路のゲイ ンを調整して 直流電圧を制御する方式のものが多数製作されている。 コンバータ回路 制御用 I Cを用いたモータ制御装置では第 5図に示した方式が有効であ る。
第 6図は、 第 5図に示した構成を具体的な回路で示した図である。 第 6図では第 5図に示した選択回路 9 3 をマイコン 7 0 を用いソフ トゥェ ァで実現している。 また、 第 5図に示した比例項 9 1 , 積分項 9 2 をォ ペアンプ 7 1 を用いたアナログ回路で実現している。 直流電圧の検出回 路 9 6 を第 6図に示す様な抵抗ラダー回路 7 2で構成した。 なお、 マイ コン 7 0は第 1 図に示した速度検出回路 5及び、 速度制御回路 7の機能 も有している。
第 2図, 第 5図及び第 6図に示した直流電圧制御回路は直流電圧指令 値もしくは直流電圧検出値をマルチプレクサ 9 5等で選択し直流電圧制 御を行うものであった。 しかし、 これらの方式では指令値もしくは検出 値が不連続的に切り替わる。 このため、 切り替え点で直流電圧の大きな 変化が生じる。
第 7図は第 2図に示した直流電圧指令値 9 6 を連続的に可変にするた めに直流電圧指令演算回路 9 0 を用いた場合の直流電圧制御回路の構成 を示す。 また、 第 8図は第 5図に示した直流電圧検出回路 9 7 を直流電 圧検出演算回路 9 9に置き換えた場合を示す。
直流電圧指令演算回路 9 0は通流率信号を検出し、 通流率が所定の値 になるように直流電圧指令値を算出するものである。 また、 直流電圧検 出演算回路 9 9は通流率信号を検出し、 通流率が所定の値になるように 直流電圧検出ゲイ ンを算出し、 検出したゲイ ンに応じて直流電圧検出値 を出力するものである。 上記により直流電圧指令値あるいは直流電圧検出値は連続的な出力と なり、 直流電圧をリニアに制御できる。
上記第 7図や第 8図の直流電圧制御回路を用いた場合の回転数に対す る直流電圧, 通流率, モータ電圧を第 9図に示す。 この方式の場合、 直 流電圧をリニアに制御できるため、 滑らかなモータ制御が可能になる。
また、 第 1 図に示すコンバータ回路 2に昇降圧チヨツバ回路を用いれ ば直流電圧を電源電圧以下に制御できるため、 第 1 0図に示すように低 回耘時から通流率を大きく制御できる。 このため、 低回転でも効率の良 いモータ制御が可能になる。 第 1 0図は直流電圧を自由に制御できるコ ンバータ回路を使用した場合の回転数に対する直流電圧, 通流率, モー タ電圧の関係を示した図である。
これまで第 3図, 第 4図, 第 9図及び第 1 0図に示した制御動作説明 図は回転数を横軸に示したカ 、 モータ負荷やモータ出力を横軸にとって も同様のグラフとなる。
第 1 1 図は、 第 7図に示した回路と同様直流電圧指令値をリニアに出 力するために通流率指令値発生回路 8 0, 比例項 8 1及び積分項 8 2か らなる通流率制御回路を導入した直流電圧制御回路の構成を示す。 上記 通流率制御回路により通流率が一定になるような直流電圧指令値を算出 できる。 第 1 1 図に示す直流電圧制御回路を用いても、 第 9図や第 1 0 図に示す動作が可能である。
次に本発明の他の実施例に係るモータ制御装置の構成を第 1 2図及び 第 1 3図に示す。 第 1 2図はモータ制御装置の全体構成図であり、 第 1 3図は第 1 2図に示す直流電圧制御回路 1 1 の内部構成図である。 本 実施例で第 1 図に示した実施例と異なる所は直流電圧制御回路 1 1 で、 直流電圧検出回路 9 7における選択に通流率信号と第 1 2図に示す速度 制御回路 1 2内部の速度偏差信号を用いる所である。
第 1 3図に示す選択回路 1 1 0の動作を第 3図を用いて説明する。 選 択回路 1 1 0は、 通流率が 1 0 0 %に達し、 かつ速度偏差が通流率をさ らに増加させる方向にある時、 直流電圧検出回路 9 7の出力を直流電圧 が増加する方に切り替える。 反対に、 通流率が 6 0 %に低下し、 かつ速 度偏差が通流率をさらに減少させる方向にある時、 直流電圧検出回路 9 7の出力を直流電圧が減少する方に切り替える。 これにより本実施例 におけるモータ制御回路は第 3図に示したように動作する。
第 1 図に示したモータ制御装置を用いた場合、 選択回路 9 3は通流率 信号のみを選択の判断基準にしているため、 通流率が 1 0 0 %や 6 0 % でモータ負荷とモータ出力が平衡した場合でも、 直流電圧の変更を行つ てしまう。
本実施例はこのような点を改善した方式であり、 通流率信号以外にモ ータ負荷とモータ出力が平衡しているかどうかを検出する信号、 ここで は、 速度偏差信号を検出し、 無駄な直流電圧値の変更を防止している。 本実施例は速度偏差信号を検出しているが、 モータ負荷とモータ出力の 平衡状態が判る信号であれば別の信号を用いても良い。
また、 本実施例では直流電圧検出回路 9 7においていずれかの直流電 圧を選択しているが、 直流電圧指令値を複数持ち、 この中から直流電圧 指令値を選択しても良い。
本発明のさらに他の実施例に係るモータ制御装置を第 1 4図及び第 1 5図を用いて説明する。 第 1 4図は、 第 1 図に示したモータ制御装置 に直流電圧脈動補正回路 1 0 を追加した直流電圧脈動補正モータ制御装 置である。 第 1 5図は第 1 4図の直流電圧脈動補正モータ制御装置の動 作説明図である。 第 1 4図に示す直流電圧脈動補正モータ制御装置の各回路は直流電圧 脈動補正回路 1 0を除いて第 1 図に示した第 1 の実施例と同様の動作を 行う。 直流電圧脈動補正回路 1 0は直流電圧の脈動成分を検出し、 脈動 成分と逆位相になる脈動信号を、 速度制御回路 7で作成された通流率信 号に掛け合わせ、 補正通流率信号を作成する回路である。
第 1 5図に直流電圧脈動補正を行った時の通流率の時間変化の様子を 示す。 第 1 5図において、 横軸は時間、 縦軸は直流電圧, 通流率及び補 正通流率を示す。 直流電圧の脈動成分の逆位相で補正通流率が変化して いるのがわかる。
本実施例では直流電圧脈動があってもその影響を受けないモータ制御 が可能である。 また、 本方式においては、 直流電圧制御回路 9は通流率 を 1 0 0 %以下で制御する必要がある。
次に、 本発明のモータ制御装置を適用したエアコン制御装置の構成を 1 0 0 %以下で制御する必要がある。
次に、 本発明のモータ制御装置を適用したエアコン制御装置の構成を 第 1 6図に示す。 本実施例は室温を検出し室温を設定温度に制御するィ ンバータエアコンである。
エアコン制御装置は、 室温を検出する室温センサ 2 0 3 , 室温設定値 と室温検出値との温度偏差を零にするように圧縮機 2 0 0の回転数指令 値を算出する温度制御回路 2 0 2 , この回転数指令に従い圧縮機 2 0 0 の回転数を制御する圧縮機回転数制御回路 2 0 1 , 回転数指令値を検出 し回転数指令値が所定の値になるよう、 冷凍サイクルを構成する室外フ アン 2 0 4 , 室内ファン 2 1 0及び膨張弁 2 0 8 を制御する制御信号を 演算し出力する冷凍サイクル制御回路 2 0 6、 及びこの冷凍サイクル制 御装置 2 0 6からの制御信号に従って各冷凍サイ クル構成要素 (室外フ アン 2 0 4, 室内フアン 2 1 0 , 膨張弁 2 0 8 ) を制御する制御回路 (室外風量制御回路 2 0 5 , 室内風量制御回路 2 0 9 , 膨張弁開度制御 回路 2 0 7 ) から構成されている。
圧縮機回転数制御回路 2 0 1 は温度制御回路 2 0 2からの回転数指令 値に従って圧縮機に直結されているモータの速度制御を行うモータ制御 装置であり、 上記実施例のモータ制御装置を適用したものである。
室外風量制御回路 2 0 5及び室内風量制御回路 2 0 9 も圧縮機回転数 制御回路 2 0 1 と同様、 室外ファンないし室内ファンに直結したモータ の速度制御を行うモータ制御装置から構成されている。 前記冷凍サイク ル制御回路 2 0 6から送られてくる信号は、 前記室外ファンないし室内 フアンの回転数指令値である。
膨張弁解度制御装置 2 0 7は膨張弁 2 0 8に直結され、 膨張弁の開度 を調節するステップモータの制御装置であり、 冷凍サイクル制御回路 2 0 6が出力する開度信号に従いステツプ信号を発生し、 ステップモー タを駆動する。 膨張弁 2 0 8はステップモータの回転角度に比例して膨 張弁開度が変化する電動膨張弁である。
冷凍サイクル制御装置 2 0 6は温度制御回路 2 0 2の出力の回転数指 令値が、 あらかじめ設定されている値になるように冷凍サイクル構成要 素 (室外ファン 2 0 4, 室内ファン 2 1 0, 膨張弁 2 0 8 ) を制御する 制御信号を算出し、 各制御装置に回転数指令及び開度指令値を出力する。 冷凍サイクル構成要素の制御信号は冷凍サイクル全体が最大効率で動作 するように計算される。
冷凍サイクル制御装置 2 0 6にあらかじめ設定される回転数指令値は、 インバータエアコンの動作条件により変更される。
本実施例のエアコン制御装置を用いることにより圧縮機の過度な高速 回転がなくなり圧縮機の寿命が延びる。 また、 冷凍サイクル全体を最大 効率で動作できるため、 低温暖房能力が向上し運転に必要な電気代を低 減できる。
次に本発明の実施例に係るコンバータモジュールの構成を第 1 7図に 示す。 本実施例は第 1 の実施例で説明した。 コンバータ回路 2, コンパ ータ制御回路 8、 及び直流電圧制御回路 9 をモジュールに組み込み、 一 体化したコンバータモジュールである。 本モジュールでは昇圧チヨッパ 回路を用いている。
コンバータ回路は整流回路 1 0 1 , リアク 卜ル 1 0 2 , トランジスタ 1 0 4 , ダイオー ド 1 0 3及び平滑コンデンサ 1 0 5から構成され、 整 流回路 1 0 1 , トランジスタ 1 0 4及びダイオー ド 1 0 5の半導体素子 がモジュール化されている。
コンバータ制御回路 1 0 6は第 2図に示すコンバータ制御回路 8と同 様の動作を行う。 選択回路 1 0 8は外部信号により直流電圧検出回路 1 0 7内のいずれかの直流電圧値を選択する。 また、 1 1 0は外部信号 により直流電圧指令回路 1 0 9内のいずれかの直流電圧指令値を選択す る。
本実施例により、 直流電圧を制御できるコンバータ装置を容易にかつ コンパク 卜に作製できる。 産業上の利用可能性
以上のように、 本発明のモータ制御装置によれば、 簡単な構成でモー タ, インバータ及びコンバータの損失を低減でき、 制御装置を効率よく 運転できる。 また、 モータ回転数に応じて直流電圧を可変できることか ら、 一つの制御回路で低回転から高回転まで対応できる。 言い換えれば、 モータ設計点の異なる数種のモータでも一つの制御装置で制御でき、 常 に効率の良い点で運転ができる。 さらに、 直流電圧脈動の補正を簡単に 行え、 安定したモータの速度制御ができる。
また、 このモータ制御装置をインバータエアコンに適用した場合、 高 効率な冷凍サイクル制御ができ、 電気代を安くできる。
さらに、 本発明のモータ制御装置におけるコンバータ回路をモジュ一 ル化すれば容易にコンパク 卜なモータ制御装置を作製できる。

Claims

求 の 範 囲
1 . 交流電源を直流に変換する整流回路及び平滑回路と、
スイ ッチング動作とイ ンダクタンスによるエネルギー蓄積効果を利用 して直流電圧の制御を行うチヨツバ回路から成るコンバータ回路と、 前記コンバータ回路の出力に接続したイ ンバータ回路及びモータから 成るモータ駆動装置と、
前記チヨツバ回路のスィ ツチング動作を制御するコンバータ制御回路 と、
前記ィ ンバ一タ回路のスィ ツチング動作を制御しモータを駆動するィ ンバータ制御回路と、
前記モータのロータ位置を検出し速度を演算する速度検出回路と、 前記演算速度値及び速度指令値を入力し、 前記ィンバータ制御回路を 介して前記モータの速度制御を行う速度制御回路と、
前記速度制御回路の出力信号を入力し、 この出力信号に従って前記コ ンバータ制御回路を介して前記直流電圧を制御する直流電圧制御回路と を備えたモータ制御装置。
2 . 特許請求の範囲第 1 項記載のモータ制御装置において、
前記直流電圧制御回路は、 前記速度制御回路の出力が所定値になると 前記直流電圧を増加させる信号を前記コンバータ制御回路に出力するモ 一タ制御装置。
3 . 特許請求の範囲第 1項記載のモータ制御装置において、
前記直流電圧制御回路は、 前記速度制御回路の出力が所定の値になる ように、 前記コンバータ制御回路を介して前記直流電圧を制御するモー タ制御装置。
4 . 特許請求の範囲第 1 項記載のモータ制御装置において、 前記速度制御回路の出力は、 通流率信号または前記演算速度値と速度 指令値の速度偏差信号であるモータ制御装置。
5 . 特許請求の範囲第 1 項記載のモータ制御装置において、
前記直流電圧の脈動成分を検出し、 脈動成分に応じて前記ィンバ一タ 制御回路への入力信号を変更する直流電圧脈動補正回路を備えたモータ 制御装置。
6 . 交流電源を直流に変換する整流回路及び平滑回路と、
スィツチング動作とィ ンダクタンスによるエネルギー蓄積効果を利用 して直流電圧の制御を行うチヨツバ回路から成るコンバータ回路と、 前記コンバータ回路の出力に接続したインバータ回路及びモータから 成るモータ駆動装置と、
前記チヨツバ回路のスィ ツチング動作を制御するコンバータ制御回路 と、
前記イ ンバータ回路のスイ ッチング動作を制御しモータを駆動するィ ンバータ制御回路と、
前記モータのロータ位置を検出し速度を演算する速度検出回路と、 前記演算速度値及び速度指令値を入力し、 速度偏差が零に近づくよう に通流率信号を前記ィ ンバータ制御回路に供給する速度制御回路と、 前記通流率信号を入力し、 直流電圧指令値を発生する直流電圧指令値 発生回路、 及び前記コンバータ回路の出力に応じた直流電圧を検出する 直流電圧検出回路とを備え、 前記通流率信号が所定範囲内の値となるよ う直流電圧指令値または直流電圧検出値を選択し、 直流電圧指令値と直 流電圧検出値の偏差が零に近づくよう電流指令値を生成し、 この電流指 令値を前記コンバータ制御回路に出力する直流電圧制御回路
とを備えたモータ制御装置。
7 . 特許請求の範囲第 6項記載のモータ制御装置において、 前記速度制御回路はさらに前記速度偏差を出力し、 これを前記直流電 圧制御回路に入力するモータ制御装置。
8 . 特許請求の範囲第 6項記載のモータ制御装置において、
前記直流電圧制御回路は、 前記通流率信号が前記所定範囲の上限値ま たは下記値となった時、 前記直流電圧を増加または減少させる電流指令 値を発生させるモータ制御装置。
9 . 特許請求の範囲第 6項記載のモータ制御装置において、
前記直流電圧の脈動成分を検出し、 前記脈動成分と逆位相となる脈動 信号を前記通流率信号に掛け合わせて補正通流率信号を生成し、 これを 前記ィ ンバータ制御回路に入力する直流電圧脈動補正回路を備えたモー タ制御装置。
1 0 . 交流電源を直流に変換する整流回路及び平滑回路と、
スイッチング動作とイ ンダクタンスによるエネルギー蓄積効果を利用 して直流電圧の制御と電源力率の改善制御を行う昇圧チョッパ回路から 成る力率改善コンバータ回路と、
前記力率改善コンバータ回路の出力に接続したィンバータ回路及びモ ータから成るモータ駆動装置と、
前記昇圧チヨツバ回路のスィ ツチング動作を制御するコンバータ制御 回路と、
前記ィ ンバータ回路のスィ ツチング動作を制御しモータを駆動するィ ンバータ制御回路と、
エアコンの温度制御回路からくる速度指令値に従って前記ィンバータ 制御回路を用いて前記モータの速度制御を行う速度制御回路を備えたィ ンバータエアコンにおいて、 前記速度制御回路の出力信号を検出し、 前記出力信号が所定の上限値 に達すると直流電圧を上昇させ、 出力値が所定の下限値に達すると直流 電圧を降下させる直流電圧制御回路を備えたィンバータエアコン。
1 1 . 特許請求の範囲第 1 0項記載のィンバータエアコンにおいて、 前記速度制御回路の出力は通流率信号であるィンバータエアコン。
1 2 . 圧縮機の回転数制御と膨張弁開度や熱交換機風量等冷凍サイクル 制御で室温を所定の温度に制御するィ ンバータエアコンにおいて、 圧縮 機の回転数指令値を検出し、 前記回転数指令値に応じて前記膨張弁開度 や前記熟交換機風量等冷凍サイ クル制御量を変更し、 室温制御を行うィ ンノ 一タエアコン。
1 3 . 交流を直流に変換する整流回路とスイ ッチング素子及びダイォ一 ドからなるチヨツバ回路と、 前記スィ ツチング素子を制御し直流電圧を 制御する制御回路からなるコンバータモジュールにおいて、
直流電圧検出ゲイ ンの異なる検出端子を複数備え、 前記検出端子の一 つもしくは複数を外部信号よリ選択し、 選択した検出端子からの検出値 に基づいて直流電圧を制御するコンバータモジュール。
1 4 . 交流を直流に変換する整流回路とスィ ツチング素子及びダイォ一 ドからなるチヨツバ回路と、 前記スィ ツチング素子を制御し直流電圧を 制御する制御回路からなるコンバータモジュールにおいて、
直流電圧指令値を複数備え、 前記直流電圧指令値の一つを外部信号よ り選択し、 選択した直流電圧指令値に基づいて直流電圧を制御するコン バータモジュール。
1 5 . 異なる複数の操作量を操作することにより状態が変化する制御対 象を有する制御装置において、
前記複数の操作量のうち一つを生の操作量とし、 その他の操作鼋を主 の操作量によつて変更可能とすることにより制御対象を制御する制御装 置。
PCT/JP1995/002056 1995-10-06 1995-10-06 Organe de commande de moteur WO1997013318A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/043,876 US6198240B1 (en) 1995-10-06 1995-10-06 Motor controller
EP95933635A EP0856936B1 (en) 1995-10-06 1995-10-06 Motor controller
PCT/JP1995/002056 WO1997013318A1 (fr) 1995-10-06 1995-10-06 Organe de commande de moteur
JP51413597A JP3395183B2 (ja) 1995-10-06 1995-10-06 モータ制御装置
DE69533001T DE69533001T2 (de) 1995-10-06 1995-10-06 Motorregler
KR10-1998-0702394A KR100456382B1 (ko) 1995-10-06 1995-10-06 모터제어장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/002056 WO1997013318A1 (fr) 1995-10-06 1995-10-06 Organe de commande de moteur

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/043,876 A-371-Of-International US6198240B1 (en) 1995-10-06 1995-10-06 Motor controller
US09/761,702 Division US6603280B2 (en) 1998-04-02 2001-01-18 Motor controller
US09/761,702 Continuation US6603280B2 (en) 1998-04-02 2001-01-18 Motor controller

Publications (1)

Publication Number Publication Date
WO1997013318A1 true WO1997013318A1 (fr) 1997-04-10

Family

ID=14126354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/002056 WO1997013318A1 (fr) 1995-10-06 1995-10-06 Organe de commande de moteur

Country Status (6)

Country Link
US (1) US6198240B1 (ja)
EP (1) EP0856936B1 (ja)
JP (1) JP3395183B2 (ja)
KR (1) KR100456382B1 (ja)
DE (1) DE69533001T2 (ja)
WO (1) WO1997013318A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6244061B1 (en) * 1998-06-18 2001-06-12 Hitachi, Ltd. Refrigerator
CN102441927A (zh) * 2011-12-01 2012-05-09 镇江中福马机械有限公司 剥皮机电机运行控制装置
WO2013129230A1 (ja) * 2012-02-29 2013-09-06 サンデン株式会社 モータ制御装置、モータ制御プログラム
JP2016158418A (ja) * 2015-02-25 2016-09-01 東芝キヤリア株式会社 モータ駆動装置
JP2018094082A (ja) * 2016-12-13 2018-06-21 コニカミノルタ株式会社 超音波探触子ユニットおよび超音波診断装置
JP2018130030A (ja) * 2018-05-14 2018-08-16 東芝キヤリア株式会社 モータ駆動装置

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6075328A (en) * 1996-10-18 2000-06-13 Hitachi, Ltd. PWM/PAM control mode switching type motor control apparatus, and motor drive and air-conditioner using the same
WO2000074225A1 (en) * 1999-05-31 2000-12-07 Aselsan Elektronik Sanayi Ve Ticaret A.S. Alternating current motor drive for electrical multiple units (emu)
JP4239372B2 (ja) * 1999-09-17 2009-03-18 株式会社安川電機 Ac同期モータの初期磁極推定装置
JP3442024B2 (ja) * 2000-02-29 2003-09-02 株式会社日立製作所 モータ駆動回路及びモータ駆動方法、並びに半導体集積回路装置
DE10032762B4 (de) * 2000-07-05 2005-02-24 Rational Ag "Gargerät mit Spannungs-,Phasen-und /oder Frequenzumwandler"
JP3481205B2 (ja) 2000-11-24 2003-12-22 松下電器産業株式会社 インバータ制御用半導体装置および制御方法
JP3909465B2 (ja) * 2001-07-26 2007-04-25 株式会社日立製作所 ガスタービンシステム及びその制御方法
US6768284B2 (en) * 2002-09-30 2004-07-27 Eaton Corporation Method and compensation modulator for dynamically controlling induction machine regenerating energy flow and direct current bus voltage for an adjustable frequency drive system
JP2004215406A (ja) * 2002-12-28 2004-07-29 Daikin Ind Ltd 空気調和装置用モータ駆動装置
US7268505B2 (en) * 2003-09-12 2007-09-11 A. O. Smith Corporation Electric machine and method of operating the electric machine
US7327118B2 (en) * 2003-09-12 2008-02-05 A. O. Smith Corporation Electric machine and method of operating the electric machine
US7102324B2 (en) * 2003-09-12 2006-09-05 A.O. Smith Corporation Fixed speed drive
KR20050056125A (ko) * 2003-12-09 2005-06-14 마쯔시다덴기산교 가부시키가이샤 인버터 제어 장치 및 인버터 제어 방법
US6949006B1 (en) * 2004-08-11 2005-09-27 Fego Precision Industrial Co., Ltd. Belt-disc sander having speed adjuster
JPWO2006132115A1 (ja) * 2005-06-08 2009-01-08 ローム株式会社 撮像装置
JP4444195B2 (ja) * 2005-10-04 2010-03-31 パナソニック株式会社 送風装置およびそれを搭載した電気機器
KR101395891B1 (ko) * 2007-11-20 2014-05-15 엘지전자 주식회사 공기조화기의 전동기 제어장치
JP5146011B2 (ja) * 2008-02-28 2013-02-20 ダイキン工業株式会社 直接形交流電力変換装置
US7944161B2 (en) * 2008-03-12 2011-05-17 GM Global Technology Operations LLC DC bus discharge in an electric motor system
US7944160B2 (en) * 2008-03-12 2011-05-17 GM Global Technology Operations LLC Redundant DC bus discharge for an electric motor system
JP4512145B2 (ja) * 2008-03-21 2010-07-28 ファナック株式会社 モータ制御装置
US7929305B1 (en) 2009-07-16 2011-04-19 Hamilton Sundstrand Corporation Power electronics cooling system with flow orifice control
US8508166B2 (en) 2009-08-10 2013-08-13 Emerson Climate Technologies, Inc. Power factor correction with variable bus voltage
US8698433B2 (en) * 2009-08-10 2014-04-15 Emerson Climate Technologies, Inc. Controller and method for minimizing phase advance current
US8264192B2 (en) 2009-08-10 2012-09-11 Emerson Climate Technologies, Inc. Controller and method for transitioning between control angles
DE102009048550A1 (de) * 2009-09-29 2011-04-07 Lenze Automation Gmbh Verfahren zum Erzeugen einer Ausgangsspannung
JP5896143B2 (ja) * 2012-03-29 2016-03-30 日立工機株式会社 電動工具
JP5935983B2 (ja) * 2012-03-29 2016-06-15 日立工機株式会社 電動工具
US9634593B2 (en) 2012-04-26 2017-04-25 Emerson Climate Technologies, Inc. System and method for permanent magnet motor control
CN107645264B (zh) 2012-08-10 2021-03-12 艾默生环境优化技术有限公司 控制电路、驱动电路以及控制压缩机的电动机的方法
CN103023392A (zh) * 2012-11-26 2013-04-03 江苏力普电子科技有限公司 一种具有转速跟踪起动的低压变频器
JP6154704B2 (ja) * 2013-09-20 2017-06-28 山洋電気株式会社 ファンモータの制御装置
DE102014217005A1 (de) * 2014-08-26 2016-03-03 BSH Hausgeräte GmbH Verfahren zum Bremsen eines Verdichters und Verdichter eines Kältegerätes, Klimageräts oder einer Wärmepumpe sowie Kältegerätes, Klimageräts oder Wärmepumpe damit
US10243491B2 (en) 2014-12-18 2019-03-26 Black & Decker Inc. Control scheme to increase power output of a power tool using conduction band and advance angle
CN105827177B (zh) * 2015-01-05 2020-06-09 德昌电机(深圳)有限公司 引擎冷却模组
JP6384398B2 (ja) * 2015-05-13 2018-09-05 株式会社デンソー 回転電機の制御システム
EP3370924B1 (en) 2015-11-02 2021-05-05 Black & Decker Inc. Reducing noise and lowering harmonics in power tools using conduction band control schemes
CN108702096B (zh) * 2015-12-22 2022-01-11 色玛图尔公司 用于加热工件的具有高度稳定输出的高频电源系统
CN108631679A (zh) * 2017-03-24 2018-10-09 湖南中车时代电动汽车股份有限公司 一种位置信号滤波方法及系统
DE102017130882A1 (de) * 2017-12-21 2019-06-27 Sma Solar Technology Ag Wechselrichter und Betriebsverfahren für einen Wechselrichter
CN111512541A (zh) * 2017-12-22 2020-08-07 东芝三菱电机产业系统株式会社 电动机驱动装置
JP2019140804A (ja) * 2018-02-09 2019-08-22 オムロン株式会社 モータ制御装置
DE102018202447B4 (de) * 2018-02-19 2022-03-10 Vitesco Technologies GmbH Verfahren zum Heizen zumindest einer Komponente eines Fahrzeugs und Fahrzeugbordnetz
JP7154019B2 (ja) * 2018-03-08 2022-10-17 ナブテスコ株式会社 Ac-ac電力変換装置
KR102185798B1 (ko) * 2018-08-28 2020-12-02 (주)에이엠케이 소비전력저감형 bldc 모터
JP6721097B2 (ja) 2018-09-27 2020-07-08 ダイキン工業株式会社 直接形電力変換器、制御装置
CN114270688A (zh) * 2019-08-30 2022-04-01 三菱电机株式会社 电力变换装置以及空气调节机
EP3806273A1 (en) 2019-10-11 2021-04-14 Black & Decker Inc. Power tool receiving different capacity batttery packs
CN112003515B (zh) * 2020-07-21 2022-08-23 珠海格力电器股份有限公司 一种空调器及空调器步进电机的控制方法
CN115218367A (zh) * 2022-07-28 2022-10-21 昂顿科技(上海)有限公司 空调集控管理系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233245A (ja) * 1987-03-23 1988-09-28 Hitachi Ltd 空気調和装置
JPH044701A (ja) * 1990-04-18 1992-01-09 Hitachi Ltd 電気車制御装置及びインバータ制御装置
JPH0454872A (ja) * 1990-06-22 1992-02-21 Hitachi Ltd 電力変換装置
JPH04281144A (ja) * 1991-03-07 1992-10-06 Sanyo Electric Co Ltd 冷凍装置
JPH04313651A (ja) * 1991-04-12 1992-11-05 Hitachi Ltd 多室冷暖房装置
JPH06105563A (ja) * 1992-09-21 1994-04-15 Hitachi Ltd 電動機駆動装置及びこれを用いた空気調和機
JPH07115788A (ja) * 1993-10-14 1995-05-02 Hitachi Ltd モータ制御装置
JPH07210202A (ja) * 1994-01-21 1995-08-11 Mitsubishi Heavy Ind Ltd 水中ロボット姿勢制御装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1813384B2 (de) * 1968-12-07 1973-04-19 Honeywell Gmbh, 6000 Frankfurt Schaltungsanordnung zur drehzahlregelung eines gleichstrommotors
US3584279A (en) * 1969-05-28 1971-06-08 Borg Warner Motor control system with volts/hertz regulation
US4329630A (en) * 1980-01-04 1982-05-11 General Electric Company Single transistor power control circuit for a DC motor washing machine drive
JPS57129198A (en) * 1981-01-30 1982-08-11 Hitachi Ltd Controlling method and device for ac motor
US4364237A (en) 1981-02-02 1982-12-21 Borg-Warner Corporation Microcomputer control for inverter-driven heat pump
JPS60137789A (ja) * 1983-12-26 1985-07-22 三菱電機株式会社 交流エレベ−タの速度制御装置
JPS61247292A (ja) 1985-04-24 1986-11-04 Hitachi Ltd インバ−タ制御装置
US4763600A (en) * 1986-08-05 1988-08-16 Saunders Eugene M Apparatus for permanently setting creases in pants
JP2577897B2 (ja) * 1986-10-31 1997-02-05 日本テキサス・インスツルメンツ 株式会社 定電圧電源回路
US4855652A (en) * 1987-01-28 1989-08-08 Hitachi, Ltd. Speed control apparatus for a brushless direct current motor
US4926009A (en) * 1989-05-26 1990-05-15 Northern Telecom Limited Apparatus for organizing equipment cables
US5270623A (en) * 1989-09-26 1993-12-14 Honda Giken Kogyo Kabushiki Kaisha Method of controlling speed of rotation of motor
NL9101453A (nl) * 1990-09-10 1992-04-01 Barmag Barmer Maschf Frequentie-omvormer.
US5257508A (en) 1990-09-14 1993-11-02 Nartron Corporation Environmental control system
WO1992015148A1 (en) * 1991-02-22 1992-09-03 U.S. Windpower, Inc. Four quadrant motor controller
US5262704A (en) * 1991-03-05 1993-11-16 Tecumseh Products Company Protection circuit in inverter for refrigerators
JP3411310B2 (ja) * 1992-09-09 2003-05-26 富士通株式会社 モータ駆動回路及びその駆動方法
US5255530A (en) * 1992-11-09 1993-10-26 Whirlpool Corporation System of two zone refrigerator temperature control
US5347211A (en) 1993-03-11 1994-09-13 Innova Electronics Corporation Selectable output power converter
BR9301879A (pt) * 1993-05-31 1994-12-13 Brasil Compressores Sa Sistema e método de acionamento de motores de múltiplas velocidades comutados eletronicamente
JP3399621B2 (ja) 1994-03-11 2003-04-21 松下冷機株式会社 電源回路の制御装置
US5447414A (en) * 1994-05-27 1995-09-05 Emerson Electric Co. Constant air flow control apparatus and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63233245A (ja) * 1987-03-23 1988-09-28 Hitachi Ltd 空気調和装置
JPH044701A (ja) * 1990-04-18 1992-01-09 Hitachi Ltd 電気車制御装置及びインバータ制御装置
JPH0454872A (ja) * 1990-06-22 1992-02-21 Hitachi Ltd 電力変換装置
JPH04281144A (ja) * 1991-03-07 1992-10-06 Sanyo Electric Co Ltd 冷凍装置
JPH04313651A (ja) * 1991-04-12 1992-11-05 Hitachi Ltd 多室冷暖房装置
JPH06105563A (ja) * 1992-09-21 1994-04-15 Hitachi Ltd 電動機駆動装置及びこれを用いた空気調和機
JPH07115788A (ja) * 1993-10-14 1995-05-02 Hitachi Ltd モータ制御装置
JPH07210202A (ja) * 1994-01-21 1995-08-11 Mitsubishi Heavy Ind Ltd 水中ロボット姿勢制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0856936A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6244061B1 (en) * 1998-06-18 2001-06-12 Hitachi, Ltd. Refrigerator
US6367273B2 (en) 1998-06-18 2002-04-09 Hitachi, Ltd. Refrigerator
CN102441927A (zh) * 2011-12-01 2012-05-09 镇江中福马机械有限公司 剥皮机电机运行控制装置
WO2013129230A1 (ja) * 2012-02-29 2013-09-06 サンデン株式会社 モータ制御装置、モータ制御プログラム
JP2013183468A (ja) * 2012-02-29 2013-09-12 Sanden Corp モータ制御装置、モータ制御プログラム
US9219434B2 (en) 2012-02-29 2015-12-22 Sanden Corporation Motor control device and motor control program
JP2016158418A (ja) * 2015-02-25 2016-09-01 東芝キヤリア株式会社 モータ駆動装置
JP2018094082A (ja) * 2016-12-13 2018-06-21 コニカミノルタ株式会社 超音波探触子ユニットおよび超音波診断装置
JP2018130030A (ja) * 2018-05-14 2018-08-16 東芝キヤリア株式会社 モータ駆動装置

Also Published As

Publication number Publication date
EP0856936B1 (en) 2004-05-06
KR100456382B1 (ko) 2005-01-15
DE69533001D1 (de) 2004-06-09
JP3395183B2 (ja) 2003-04-07
DE69533001T2 (de) 2005-05-04
EP0856936A4 (en) 1999-11-10
EP0856936A1 (en) 1998-08-05
KR19990063921A (ko) 1999-07-26
US6198240B1 (en) 2001-03-06

Similar Documents

Publication Publication Date Title
WO1997013318A1 (fr) Organe de commande de moteur
US6603280B2 (en) Motor controller
USRE39060E1 (en) Power supply device and air conditioner using the same
JP4444195B2 (ja) 送風装置およびそれを搭載した電気機器
JP3738685B2 (ja) インバータ装置および送風装置
JP4799512B2 (ja) 電力変換装置およびその装置を用いた空気調和機
CA2557586A1 (en) System and method for increasing output horsepower and efficiency in a motor
US20120161525A1 (en) Motor control device of air conditioner using distributed power supply
WO2001075372A1 (fr) Climatiseur
CA3108845A1 (en) Power converting apparatus and air conditioner including the same
JP2003319676A (ja) 電動機駆動装置
JP3534110B2 (ja) モータ制御装置
JPH09149690A (ja) インバータエアコン
JP2002252994A (ja) モータ制御装置
JP2009264387A (ja) 送風装置およびそれを搭載した電気機器
JP2002159194A (ja) インバータ制御モジュール及び室外機用ハイブリッドic並びに空気調和機および空気調和機用インバータ制御システム
KR102058042B1 (ko) 전력변환장치, 및 이를 구비하는 공기조화기
JP2003143890A (ja) 直流ブラシレスモータ駆動装置およびその方法
JPH08237957A (ja) 空気調和機の制御方法およびその装置
JPH0715966A (ja) 電動機駆動装置
JPH0658607A (ja) 空気調和機の制御方法
JP2003018877A (ja) 冷蔵庫
JP2000350442A (ja) 可変電圧コンバータとこの可変電圧コンバータを用いた空気調和機およびその制御方法
JP2004147388A (ja) コンバータ装置、空気調和装置及び系統連系システム
JPH11332123A (ja) 蓄電式空気調和装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 95197970.1

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019980702394

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09043876

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1995933635

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1995933635

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980702394

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019980702394

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1995933635

Country of ref document: EP