WO1994024698A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO1994024698A1
WO1994024698A1 PCT/JP1994/000551 JP9400551W WO9424698A1 WO 1994024698 A1 WO1994024698 A1 WO 1994024698A1 JP 9400551 W JP9400551 W JP 9400551W WO 9424698 A1 WO9424698 A1 WO 9424698A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor chip
overlapping
semiconductor device
bump
circuit board
Prior art date
Application number
PCT/JP1994/000551
Other languages
English (en)
French (fr)
Inventor
Yoshitaka Iijima
Shigeaki Seki
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to KR1019940704091A priority Critical patent/KR100296834B1/ko
Priority to US08/351,383 priority patent/US5563445A/en
Priority to DE69433543T priority patent/DE69433543T2/de
Priority to EP94910595A priority patent/EP0645806B1/en
Publication of WO1994024698A1 publication Critical patent/WO1994024698A1/ja
Priority to HK98115925A priority patent/HK1014612A1/xx

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49572Lead-frames or other flat leads consisting of thin flexible metallic tape with or without a film carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3157Partial encapsulation or coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/50Tape automated bonding [TAB] connectors, i.e. film carriers; Manufacturing methods related thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/818Bonding techniques
    • H01L2224/81801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a semiconductor device, and more particularly, to a structure suitable for mounting a semiconductor chip having a relatively large chip size and a structure suitable for mounting a semiconductor chip on a flexible substrate frequently used in a quartz watch or the like.
  • the present invention relates to a semiconductor device provided. Background art
  • a trap which is electrically insulated from the internal circuit is provided on the semiconductor chip 54 side.
  • a method of increasing the bonding strength between the semiconductor chip 54 and the circuit board 52 can be considered by providing overuse bumps and making the bonding portions as small as the number of bumps.
  • forming the bumps requires forming processing on them as well.
  • a solder bump 62 formed on a semiconductor chip 61 is heated while applying pressure to the solder bump 62.
  • the solder bumps 62 and the conductor patterns 64 of the circuit board 63 are joined.
  • the circuit board 63 has a portion that overlaps with the active surface of the conductor chip 61, the conductor pattern 64 can be formed also in this overlap portion. Therefore, since the degree of freedom in pattern design is high, it is suitable for thinning semiconductor devices.
  • the manufacturing process of the solder bump 62 is complicated, there is a problem that the manufacturing cost is high.
  • solder bumps 62 In such a mounting structure using the solder bumps 62, in order to prevent a short circuit between the circuit board 63 and the semiconductor chip 61, the force for thickening the solder bumps 62, Or a method of forming a blank solder bump is conceivable. You. However, as long as solder bumps are used, there are manufacturing problems described above.
  • the present invention provides a circuit board having a conductor pattern formed on an insulating base material, and a semiconductor chip disposed in a device hole of the circuit board.
  • a semiconductor device in which a lead portion protruding into a device hole and a bump of a semiconductor chip are joined, a superimposed portion overlapping with the semiconductor chip is formed on a circuit board.
  • a spacer portion On the side of the overlapping portion or on the surface of the semiconductor chip overlapping therewith, a spacer portion whose thickness does not change before and after the bonding step between the conductor pattern and the bump is formed.
  • the semiconductor device is characterized in that the semiconductor portion is interposed between the circuit board and the semiconductor chip and a predetermined gap is secured there.
  • a spacer portion that is not bonded to the conductor pattern but is interposed between the circuit board and the semiconductor chip to secure a predetermined gap.
  • the gap between the circuit board and the semiconductor chip is automatically secured by the thick bump which is not crushed by the joining process but remains thick. There is no short between the edge and the conductor pattern. Therefore, single point bonding Even when the method or the gear bonding method is used, it is not necessary to form the lead portion. Also, there is no need to use solder bumps that are difficult to reduce cost. Therefore, a semiconductor device which has higher reliability than conventional semiconductor devices and can achieve a reduction in thickness and cost can be realized.
  • the size of the gap is determined by the initial thickness of the spacer portion such as a dummy bump set in advance, the reliability is high.
  • the dummy bump can be formed simultaneously with the bonding bump, the cost of the semiconductor chip does not increase.
  • dummy means that it is unnecessary in an electric circuit, and that the above-mentioned dummy bump or a later-described dummy pad is electrically insulated from a circuit in a semiconductor chip.
  • a bump means a thick electrode protruding from an active surface of a semiconductor chip or the like, and a pad means an electrode which does not protrude from an active surface of the semiconductor chip.
  • unnecessary conductor patterns on the circuit board that are not required to be connected to other electric circuits and that are unnecessary on the electric circuit may be used as spacers. It can be.
  • the conductor pattern overlaps the dummy bump in the overlapping portion. This is because the gap between the semiconductor chip edge and the conductor pattern can be more reliably secured if the dummy bump overlaps the conductor pattern itself.
  • a predetermined gap is provided between the circuit board and the semiconductor chip without being bonded to the bonding electrode at the overlapping portion of the circuit board overlapping with the semiconductor chip. It is characterized in that the projection of the conductor pattern as a spacer part is formed. Even in this case, the gap between the circuit board and the semiconductor chip is automatically secured by the projection of the conductor pattern which is not crushed by the joining process but is initially thick. Therefore, even when the single point bonding method or the gear bonding method is used, the forming process is not required.
  • a bump as a bonding electrode is formed on the side of the semiconductor chip, and a dummy bump not bonded to the bump is formed at a position overlapping the protrusion. This is because the dimension of the gap can be expanded by a dimension corresponding to the thickness of the bump.
  • a pad as a bonding electrode may be formed on the side of the semiconductor chip, and a dummy pad which is not bonded to the projection may be formed at a position overlapping the protrusion.
  • the device hole has a substantially quadrangular outline
  • an overlapping portion is formed at the four corners. Further, it is preferable that the overlapping portion is formed on each side portion of the device hole. This is because a gap can be secured between the circuit board and the semiconductor chip in a stable state.
  • the overlapping portion is formed to the inside of the device hole, and the device hole is divided into a plurality of holes by the overlapping portion. This is because when the molding material is injected into the device hole, the molding material can be spread easily if it is injected from each hole.
  • the overlapping portion is divided into a plurality of holes through the approximate center position of the device hole, and a through hole is formed in the overlapping portion at a portion corresponding to the approximate center position. It is preferable to form it. This is because air can escape from the through holes when the molding material is injected.
  • the device hole is divided into multiple holes, it is possible to form a conductor pattern with a crossover section that crosses the hole even when wiring is performed on the active surface side of the semiconductor chip. You.
  • Such a cross bar portion is supported by the overlapping portion and is in a reinforced state, and therefore has high strength. Therefore, freedom of wiring pattern design is maintained while maintaining high reliability. The degree can be increased.
  • FIG. 1 is a plan view showing a configuration of a semiconductor device according to a first embodiment of the present invention.
  • FIG. 1 A first figure.
  • FIG. 2A is a longitudinal sectional view taken along the line I-II in FIG. 1
  • FIG. 2B is a longitudinal sectional view taken along the line I-111 in FIG.
  • FIG. 3A is a longitudinal sectional view schematically showing the structure of the semiconductor device according to the first embodiment of the present invention before the soldering
  • FIG. 3 is a first embodiment of the present invention
  • FIG. 4 is a longitudinal sectional view schematically showing a structure of a semiconductor device according to an example in a state after bonding.
  • FIG. 4A is a longitudinal sectional view schematically showing a structure of a semiconductor device according to a second embodiment of the present invention before bonding
  • FIG. FIG. 4 is a longitudinal sectional view schematically showing the structure of the semiconductor device according to the second embodiment in a state after bonding.
  • FIG. 5A is a longitudinal sectional view schematically showing the structure of a semiconductor device according to a third embodiment of the present invention before bonding
  • FIGS. 5A and 5B show the third embodiment of the present invention
  • FIG. 1 is a longitudinal sectional view schematically showing the structure of a semiconductor device according to an example in a state after bonding.
  • FIG. 6 is a cross-sectional view schematically showing a bonding process using a gang bonding method in a semiconductor device according to a first embodiment as another embodiment of the present invention.
  • FIG. 7 is a longitudinal sectional view showing the configuration of a conventional semiconductor device.
  • FIG. 8 is a longitudinal sectional view showing the configuration of another conventional semiconductor device. BEST MODE FOR CARRYING OUT THE INVENTION
  • BEST MODE FOR CARRYING OUT THE INVENTION a semiconductor device according to an embodiment of the present invention will be described with reference to the drawings.
  • FIG. 1 is a plan view showing the configuration of a semiconductor device according to a first embodiment of the present invention.
  • FIG. 2 (a) is a longitudinal sectional view taken along the line I-II
  • FIG. 3 is a vertical sectional view taken along line I-III.
  • the semiconductor device 1 of the present example is a device used as a circuit block of an analog multifunction electronic timepiece, and includes a circuit board 2 and a CPU. And a semiconductor chip 3.
  • the active surface 30 of the semiconductor chip 3 has a size of about 5 mm ⁇ about 5 mm, and is formed with 36 bumps 31 which require bonding.
  • a semiconductor chip used in a quartz watch has a size of about 2 mm ⁇ about 2 mm and the number of bumps is about 10 or more, so the semiconductor chip 3 in this example is a normal semiconductor chip. It has about 6 times the area and has more than twice the bonding area.
  • the circuit board 2 includes a flexible base material 21 made of a polyimide resin tape material having a thickness of about 130, and a conductor pattern 22 (bonded to the base material 21). Line).
  • the conductor pattern 22 is a conductive member in which a copper foil adhered to the base material 21 is formed in a predetermined pattern, and the surface thereof is provided with a metal plating having a thickness of about 1 / m. It has been.
  • a portion of the base material 21 corresponding to the arrangement position of the semiconductor chip 3 is removed to form a device hole 23 having a rectangular outline.
  • the semiconductor chip 3 is arranged and fixed to the device hole 23.
  • the fixing structure includes a lead portion 221, which protrudes inside the device hole 23 of the conductor pattern 22, and a semiconductor chip.
  • the structure is such that the bumps 31 of the chip 3 are joined one by one by a single point bonding method, and then the molding material 4 is filled inside the device holes 23.
  • the width of the lead portion 22 1 is narrower than the width of the other conductor pattern 22, which facilitates bonding with the bump 31.
  • the bump 31 is crushed and thinned at the time of joining with the lead portion 221, and the side of the lead portion 21 is slightly bent downward.
  • the four corner regions A, B, C, and D of the device hole 23 are provided with the circuit board 2 overlapping the corners of the semiconductor chip 3.
  • a superimposed portion 2 1 1 is formed.
  • Dummy bumps 32 a spacer portions are formed at four positions on the active surface 30 of the semiconductor chip 3 overlapping with the superimposed portion 2 11.
  • the Damino pump 32 a overlaps with the extended portion 20 of the conductor pattern 2 whose width is increased. This is to ensure that even if the position of the semiconductor chip 3 is slightly displaced, the dummy bump 32 a is overlapped with the conductor pattern 2.
  • the dummy bump 32 a since the dummy bump 32 a is not electrically connected to any circuit inside the semiconductor chip 3, it does not cause a malfunction of the semiconductor device 1.
  • the dummy bump 3 2 a overlaps the conductor pattern 2 (lead portion 2 2 1), but is not bonded, so the dummy bump 3 2 a differs from the bump 31. It is not crushed and the initial thickness is maintained.
  • a superimposed portion 211 of the circuit board 2 overlapping the semiconductor chip 3 is also formed inside the device hole 23.
  • the superimposed portion 2 12 passes through substantially the center of the device hole 23 and is in contact with the approximate center of each of the four sides.
  • Dummy bumps 33b spacer portions are formed at four places on the active surface 30 of the semiconductor chip 3 overlapping with the superimposed portion 212.
  • the dummy bumps 33 b are also formed inside the semiconductor chip 3. Are not electrically connected to any of the circuits. Also, since the dummy bump 33b is not bonded to the conductor pattern 22 (lead portion 2211), unlike the bump 31 it is not crushed and the initial thickness is maintained. Have been.
  • the dimension of the gap t 1 is set to the predetermined value of the dummy bump 3 2. Is determined by the initial thickness dimension of Further, since the dummy bumps 32 overlap the conductor patterns 22, a gap t 1 is reliably secured between the conductor patterns 22 and the semiconductor chip 3. Therefore, the semiconductor device 1 has high reliability. In addition, since the dummy bumps 32 can be formed simultaneously with the bonding bumps 31, the cost of the semiconductor chip 3 does not increase.
  • the active surface 30 of the semiconductor chip 3 is provided with bumps 31 and a gap t1 necessary for an electric circuit, as schematically shown in a longitudinal section before the bonding step.
  • the dummy bumps 3 2 necessary for the operation free dummy bumps 3 4 and 3 5 which are unnecessary in the electric circuit and are not used for securing the gap t 1 are formed.
  • the dummy bumps 34 of the free are located in the formation regions of the device holes 23.
  • the dummy bumps 35 of the free are located in the formation region of the overlapping portion 212, the conductor pattern 22 is not formed there.
  • the device hole 23 is divided into four holes 2 3 1, 2 3 2, 2 3 3, and 2 3 4 by the overlapping section 2 12. Therefore, even if it is formed so as to cross the device hole 23 as in the crossover portion 2 2 2 of the conductor pattern 2 2, the crossover portion 2 2 2 only needs to straddle one hole 2 3 2. It is often in a state where it is reinforced by the superimposed portion 212. Similarly, the crossover bar portion 2 23 of the conductor pattern 22 has its leading end supported by the overlapping portion 2 12 across only one hole 2 32. Therefore, wiring can be freely performed at a position facing the active surface 30 of the semiconductor chip 3, and the strength of the conductive pattern formed there is high. In addition, the circuit board 2 can be strengthened by leaving the superimposed portion 2 1 1 1 2 1 2 inside the device hole 23, so that unnecessary deformation of the flexible circuit board 2 can be prevented.
  • the lead portion 211 is vertically and horizontally facing the drawing. It can be projected in any of the directions. Therefore, for example, as in the case of the lead portion 211a, it is possible to protrude along the inner peripheral edge of the device hole 23.
  • the flexibility of wiring pattern design is high, such as the formation of lead portions 211a and 211b protruding in the direction in which the wiring pattern is formed. Therefore, the semiconductor device 1 of this example has high reliability and a high degree of freedom in design, and can be used for a wide range of applications.
  • the superimposed portion 2 1 2 is formed so as to divide the device hole 23 through a substantially central portion of the device hole 23, and to form the central portion of the device hole 23, that is, the semiconductor chip 3.
  • a through hole 230 is formed in the overlapping portion 212 at a portion corresponding to a substantially central portion of the hole. Therefore, as described below, there is an advantage that productivity in the mounting process is high.
  • the semiconductor chip 3 is positioned with respect to the device hole 23 of the circuit board 2. In this state, the superimposed portion 211 overlaps with the semiconductor chip 3.
  • the thickness of the dummy bump 32 changes before and after the joining step between the bump 31 and the lead portion 22 1. Without maintaining the initial thickness. For this reason, a gap t1 between the circuit board 2 and the semiconductor chip 3 according to the initial thickness of the dummy bump 32 is secured.
  • the molding material 4 is filled in the device holes 23.
  • the device hole 2 3 is divided into four holes 2 3 1, 2 3 2 ′, and the molding material 4 is injected from each of the holes 2 3 1, 2 3 2. . Therefore, the wrap around of the molding material 4 is smooth.
  • the through hole 230 is formed in a region corresponding to the center of the device hole 23 in the superimposed portions 2 1 1 and 2 1 2, when the molding material 4 is injected, Since the air escapes from the through hole 230, the molding Lumber 4 is smoothly wrapped around. Therefore, the productivity in the mounting process is high.
  • the dummy bump 32 overlaps the conductive pattern 22 formed on the overlapping portion 211 of the circuit board 2, but the rigidity of the base 21 is relatively large.
  • a structure is adopted in which the dummy bump 32 directly overlaps the base material 21 of the overlapping portion 211. You may. Second embodiment
  • the semiconductor device of this example has a basic configuration similar to that of the semiconductor device according to the first embodiment. Therefore, portions having common functions are denoted by the same reference numerals, and detailed description thereof is omitted. I do.
  • Fig. 4 (a) is a vertical cross-sectional view schematically showing a state before the semiconductor chip is mounted on the circuit board in the semiconductor device of this example
  • Fig. 4 (b) is a semiconductor device mounted on the circuit board. It is a longitudinal cross-sectional view which shows the state afterward typically.
  • the active surface 30 of the semiconductor chip 3 has bumps 3 1 (joint) required on an electric circuit. Electrodes and a dummy bump 32 (spacer part) that is unnecessary in the electrical circuit.
  • a device hole 23 is formed on the circuit board 2 side, and a lead portion 22 1 of the conductor pattern 22 protrudes toward the inside.
  • the circuit board 2 has an overlapping portion 2 1 1 overlapping the semiconductor chip 3 with the semiconductor chip 3 positioned with respect to the device hole 2 3.
  • the overlapping portion 2 1 1 also has a conductive pattern 2 2. Are formed.
  • the conductor pattern 2 2 formed on the superimposed portion 2 1 1 When the semiconductor chip 3 is positioned with respect to the circuit board 2, a protrusion 222 (a spacer portion) protruding from the conductive pattern 22 is formed in a portion overlapping the dummy bump 32.
  • the projections 224 are bumps transferred to the circuit board 2 side.
  • the dummy bump 32 is not bonded to the conductive pattern 22 (projection 222), so that the dummy bump 32 is not deformed, and the lead portion 222 and the bump 31 are not deformed.
  • the initial thickness is maintained even after the bonding process.
  • the protrusions 2 2 4 are not deformed and maintain the initial thickness. Therefore, between the circuit board 2 and the semiconductor chip 3, the thickness of the dummy bumps 32 and the protrusions 2 2 4 Since a gap t2 having a size corresponding to the sum of the thickness of the semiconductor chip 3 and the thickness of the semiconductor chip 3 is ensured, no short-circuit occurs between the circuit board 2 and the edge of the semiconductor chip 3 without forming.
  • the dimension of the gap t2 is determined by the thickness of the dummy bump 32 and the thickness of the projection 222, it is not necessary to set the dimension unnecessarily large. Therefore, even with the semiconductor device 11 employing the structure joined by the single point bonding method, the thickness can be reduced and the reliability is high.
  • the dummy bumps 32 can be formed simultaneously with the bonding bumps 31, the cost of the semiconductor chip 3 does not increase.
  • the semiconductor device 1 of the present embodiment also has the same planar structure as the semiconductor device of the first embodiment shown in FIG. 1, so that the molding material 4 is provided in the device hole 23.
  • the molding material 4 can be injected from the respective holes 2 3 1, 2 3 2 ⁇ .
  • the mold When the material 4 is injected, air escapes from the through hole 230. Therefore, the surrounding of the injected molding material 4 is smooth.
  • the projections 2 24 of the conductive pattern 22 are arranged to overlap the dummy bumps 32 of the semiconductor chip 3.However, if the projections 2 24 are sufficiently thick, an insulation coating is applied.
  • the active surface 30 of the semiconductor chip 3 may be overlapped with the active surface 30 itself.
  • the semiconductor device of the present embodiment also has the same basic configuration as the semiconductor device according to the first embodiment. Therefore, portions having common functions are denoted by the same reference numerals, and detailed description thereof is omitted. I do.
  • Fig. 5 (a) is a vertical cross-sectional view schematically showing a state before the semiconductor chip is mounted on the circuit board in the semiconductor device of this example, and Fig. 5 (b) shows a semiconductor device mounted on the circuit board. It is a longitudinal cross-sectional view schematically showing a later state.
  • a device hole 23 is formed on the circuit board 2 side, and a lead portion 2 of the conductor pattern 22 is formed toward the inside thereof. 2 1 is sticking out.
  • the conductor pattern 22 is composed of a gold-plated lead wire.
  • an aluminum pad 38 is formed on the semiconductor chip 3, and a lead portion 221 is bonded to only the aluminum pad 38a (joining electrode).
  • the aluminum pad 38a is a necessary pad for an electric circuit, but the aluminum pad 38b is electrically connected to any circuit formed inside the semiconductor chip 3. It is unnecessary pad on the electric circuit.
  • the semiconductor chip 3 is inexpensive.
  • a portion overlapping the aluminum pad 38 b is a projection 2 25 (spacer portion) protruding from other portions of the conductor pattern 22.
  • the projections 225 are portions where the etching of the portions where the projections 225 are to be formed is stopped by hammering when the conductor pattern 222 is formed by etching, and the projections 225 are thicker than the other portions.
  • the portion located around the semiconductor chip 22 is made thinner, and the projections 225 are made thicker than this portion.
  • ultrasonic vibration is applied to the lead portion 221, so that the lead portion 221 and the aluminum pad 38a are formed by a single point bonding method.
  • the lead portion 22 1 bends downward, but the protrusion 2 25 is not bonded to the semiconductor chip 3 side. 2 2 5 is not crushed.
  • a gap t3 is provided between the circuit board 2 and the semiconductor chip 3 according to the initial thickness of the projections 2 25. No short-circuit occurs between them.
  • the thickness of the projection 2 25 does not change before and after the joining process between the lead portion 2 21 and the aluminum pad 38 a, and the dimension of the gap t 3 is set in advance.
  • the gap t3 which is determined by the initial thickness dimension of the projections 225, does not have to be set unnecessarily large. Therefore, the semiconductor device 21 of the present example can be reduced in thickness and has high reliability. Also, since the projections 222 use a part of the conductive pattern 22, the cost of the circuit board 3 does not rise.
  • the semiconductor device 12 of the present embodiment also has the same planar structure as the semiconductor device of the first embodiment shown in FIG. Therefore, when filling the molding material 4 with the device holes 23, the respective holes 2 3 1 Mold material 4 can be injected from 2 3 2. Further, when the molding material 4 is injected, air escapes from the through hole 230. Therefore, the surroundings of the molding material 4 are smooth.
  • the projections 22 of the conductive pattern 22 overlap the aluminum pad 38 b of the semiconductor chip 3, but are insulated from the circuit of the semiconductor chip 3. For example, it may overlap the active surface 30 itself provided with the insulating coating.
  • the projections 22 of the conductive pattern 22 overlap the aluminum pad 38 b of the semiconductor chip 3, but are insulated from the circuit of the semiconductor chip 3.
  • it may overlap the active surface 30 itself provided with the insulating coating.
  • a superimposed portion overlapping the semiconductor chip is formed on the circuit board, and a conductor pattern is formed on the superimposed portion or the surface of the semiconductor chip overlapping therewith. If a spacer portion whose thickness does not change before and after the bonding process between the semiconductor chip and the bumps is formed, for example, from the protrusion of the base material constituting the circuit board or from the active surface itself of the semiconductor chip Protrude
  • Insulating protrusions may be used.
  • the bottom surface of the bonding tool T is not a plane, but a bond T1 etc. is formed so as to avoid the overlapping portions 2 1 1 and 2 1 2 and the crossover portions 2 2 2 and 2 Tool T may be used.
  • the superimposed portion of the semiconductor chip disposed in the device hole is formed on the circuit board side.
  • a predetermined gap is ensured by a spacer portion such as a formed dummy bump or a protrusion formed on a conductor pattern of a superimposed portion. Therefore, according to the present invention, in the single point bonding method or the like, a predetermined gap can be secured between the superimposed portion and the semiconductor chip without forming the lead portion of the circuit board.
  • shorts at the edge of the semiconductor chip can be prevented while keeping the semiconductor device thin, and the reliability is high.
  • the productivity is improved.
  • a conductive pattern can be formed in the superimposed area, and wiring can be applied to the area facing the active surface of the semiconductor chip. This increases the degree of freedom in pattern design and increases the versatility of the semiconductor chip. Become.
  • a dummy bump is formed on the side of the semiconductor chip and a projection of the conductor pattern is formed on the overlapping portion of the circuit board, the dummy bump formed on the side of the semiconductor chip is provided between the circuit board and the semiconductor chip.
  • a wide gap corresponding to the sum of the thicknesses of the projections can be easily formed.
  • a uniform gap can be ensured even for a semiconductor chip having a large chip size. Further, when the overlapping portion is also formed on the side portion of the device hole, a more uniform gap can be ensured even for a semiconductor chip having a larger chip size.
  • the molding material can be injected from each hole, so that the molding material can be smoothly wrapped around.
  • the crossover part is reinforced by the superimposed part, so the freedom of circuit pattern design can be maintained while maintaining high reliability. Is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Description

明 細 書 半導体装置
技術分野
本発明は、 半導体装置に関し、 特に、 チップサイズが比較的大きな 半導体チップの実装に適した構造、 およびク オ一ッ腕時計などに多用 されるフ レキシブル基板への半導体チップの実装に適した構造を備え た半導体装置に関するものである。 背景技術
回路基板に半導体チップを実装するにあたって、 たとえば、 図 7 に 示すように、 回路基板 5 1 に形成された導体バターン 5 2のうち、 デ バイ スホール 5 3内に突出する リー ド部分 5 2 1 と、 半導体チップ 5 4 のバンプ 5 4 1 とを接合した後に、 デバイ スホール 5 3 からモール ド材 5 5を充塡する場合には、 半導体チップ 5 4 のエッ ジが導体バタ —ン 5 2 とショー ト しないように、 リ ー ド部分 5 2 1 を下方にフ ォ ー ミ ング加工するのが一般的である。
しかしながら、 このような実装構造では、 リ一ド部分 5 2 1 を大き めに折り曲げるため、 折り曲げた分だけ、 半導体装置が厚く なるとい う問題点がある。 また、 リー ド部分 5 2 1 のフ ォ ー ミ ング加工は、 そ の本数が多く なるほど、 リー ド部分 5 2 1毎の形状や位置のばらつき が大き く なるので、 大きな半導体チップ 5 4 を実装する場合には、 フ ォ ー ミ ング加工のばらつきに起因して、 リ ー ド部分 5 2 1 と接合しな いバンプ 5 4 1 が発生してしま う という問題点がある。 さ らに、 半導 体チップ 5 4 のサイズが大き く なるほど、 デバイスホール 5 5 を大き く する必要があるため、 半導体装置の平面サイズが大き く なるので、 ク ォーッ腕時計のよう な小型化が要求される電子機器に搭載できない と いう問題点がある。
こ こで、 大きな半導体チ ッ プ 5 4 を実装したと きの歪みなどに対す る安定性を高める目的に、 半導体チ ッ プ 5 4 の側に、 内部の回路から 電気的に絶縁された捕強用のダミ一バンプを設け、 ダミ一バンプの数 だけ、 接合箇所を增やすこ と によ って、 半導体チ ッ プ 5 4 と回路基板 5 2 との接合強度を高める方法が考え られる。 しかしながら、 この構 造でも、 ダミ一バンプを接合するには、 それらにもフ ォー ミ ング加工
】 を施す必要があるので、 フ ォー ミ ング加工に起因する上記の問題点を 解消する こ とができない。
また、 半導体装置の薄型化に適した実装構造と しては、 たとえば、 図 8 に示すよう に、 半導体チ ッ プ 6 1 に形成した半田バンプ 6 2 に圧 力をかけながらそれを加熱して、 半田バンプ 6 2 と、 回路基板 6 3 の 導体パター ン 6 4 とを接合した構造がある。 このような実装構造では, 回路基板 6 3 には、 導体チ ッ プ 6 1 の能動面と重なり合う部分がある ため、 この重なり部分にも、 導体バターン 6 4 を形成でき る。 従って. パター ンの設計の自由度が高いこ とから も、 半導体装置の薄型化に適 している。 しかしながら、 半田バンプ 6 2 は、 その製造工程が複雑で あるため、 製造コス トが高いという問題点がある。 また、 回路基板 6 3 に半導体チッ プ 6 1 を実装する工程では、 半導体チ ッ プ 6 1 を加熱 した後に、 冷却する工程が必要であるため、 半導体装置を製造するた めのサイ クルタイムが長いので、 量産におけるコス トダウ ンが図れな いという問題点がある。
このよ う な半田バンプ 6 2 を用いた実装構造では、 回路基板 6 3 と 半導体チ ッ プ 6 1 との間のシ ョ ー トを防止するには、 半田バンプ 6 2 を厚く する力、、 またはダ ミ 一の半田バンプを形成する方法が考え られ る。 しかしながら、 半田バンプを利用する限り、 上述した製造上の問 題点がある。
このよ う な問題点を解消するために、 本発明の課題は、 シ ングルポ イ ン トボンディ ング法ゃギヤ ングボンディ ング法を用いても、 従来の 実装構造以上の信頼性を確保しながら、 薄型化および低コス ト化を達 成可能な半導体装置を提供する こ とにある。 さ らに、 本発明の課題は、 パター ン設計の自由度を向上可能な半導体装置を提供する こ と にある。 発明の開示
上記課題を解決するために、 本発明では、 絶縁性の基材に導体バタ ーンが形成された回路基板と、 この回路基板のデバイ スホールに配置 された半導体チッ プとを有し、 導体バターンのう ちデバイ スホール内 に突出する リ ー ド部分と半導体チッ プのバンプとが接合されている半 導体装置において、 回路基板には、 半導体チ ッ プと重な り合う重畳部 が形成され、 この重畳部の側、 またはそれと重なる半導体チ ッ プの面 上には、 導体パター ンとバンプとの接合工程の前後で厚さの変化しな ぃスぺーサ部が形成され、 このスぺ一サ部が回路基板と半導体チ ッ プ との間に介在してそこに所定の隙間を確保している こ と に特徵を有す る。
たとえば、 重畳部と重なる半導体チッ プの面上には、 導体パター ン と接合せずに、 回路基板と半導体チ ッ プとの間に介在して所定の隙間 を確保するスぺーサ部と してのダミ一バンプが形成されている こ と に 特徵を有する。
すなわち、 接合工程によって押し潰されずに、 厚いままの状態にあ るダ ミ一バンプによって、 回路基板と半導体チ ッ プとの間に隙間が自 動的に確保されるので、 半導体チ ッ プのエッ ジと、 導体パター ンとの 間にシ ョ ー トが発生しない。 従って、 シ ングルポイ ン ト ボンディ ング 法やギヤ ングボンディ ング法を用いる場合でも、 リ一ド部分にフ ォー ミ ング加工を施さな く てよい。 また、 低コス ト化が難しい半田バンプ を用いる必要がない。 それ故、 従来の半導体装置に比較して、 信頼性 が高く て、 薄型化および低コス ト化を達成可能な半導体装置を実現で き る。 しかも、 隙間の寸法は、 予め設定されたダミ ーバンプなどのス ぺーサ部の初期の厚さ寸法によって定ま るので、 信頼性が高い。 また、 ダミ ーバンプは、 接合用のバンプと同時に形成でき るため、 半導体チ ッ プのコス トが上昇しない。
本発明において、 ダミ ーと は、 電気回路上不必要である こ とを意味 し、 上記のダミ ーバンプ、 または後述するダミ ーパッ ドが半導体チ ッ プ内の回路に電気的に絶縁されているこ とを意味する。 また、 本発明 において、 バンプとは、 半導体チッ プの能動面などから突出した厚い 電極を意味し、 パッ ドと は、 半導体チッ プの能動面から突出 しない電 極を意味する。
また、 ダミ ーバンプやダミ ーパッ ド以外にも、 回路基板の側におい て他の電気回路に接続せず、 電気回路上不必要なダミ 一の導体パター ン もスぺ一サ部と して用いるこ とができ る。
本発明において、 重畳部では、 導体パター ンがダミ ーバンプに重な つている こ とが好ま しい。 ダミ ーバンプが導体パターン自身に重なつ ている方が、 半導体チ ッ プのェッ ジと導体バターンとの間に隙間をよ り確実に確保でき るからである。
また、 別の形態では、 半導体チ ッ プと重なり合う回路基板の重畳部 には、 接合用電極と接合せずに、 回路基板と半導体チ ッ プとの間に介 在して所定の隙間を確保する スぺーサ部と しての導体パター ンの突起 が形成されている こ とに特徴を有する。 この場合でも、 接合工程によ つて押 し潰されずに初期の厚いままの状態にある導体パター ンの突起 によ って、 回路基板と半導体チ ッ プとの間に隙間が自動的に確保され るので、 シ ングルポイ ン トボンディ ング法やギヤ ングボンディ ング法 を用いる場合でも、 フ ォー ミ ング加工が不要である。
この場合には、 半導体チ ッ プの側に接合用電極と してのバンプが形 成され、 突起と重なる位置には、 それと接合しないダミ ーバンプが形 成されている こ とが好ま しい。 ダミ一バンプの厚さ に応じた寸法だけ、 隙間の寸法を拡張でき るからである。
また、 半導体チ ッ プの側に接合用電極と してのパッ ドが形成され、 突起と重なる位置には、 それと接合しないダミ ーパッ ドが形成されて いてもよい。
本発明において、 デバイ スホールが略四角形の輪郭を有する場合に は、 その四隅部分に重畳部が形成されている こ とが好ま しい。 さ らに、 重畳部がデバイ スホールの各辺部分にも形成されている こ とが好ま し い。 安定した状態で、 回路基板と半導体チ ッ プとの間に隙間を確保で き るからである。
さ らに、 重畳部がデバイ スホールの内側にまで形成され、 この重畳 部によって、 デバイ スホールが複数の穴に分割されている こ とが好ま しい。 デバイ スホールにモール ド材を注入する と きに、 各穴から注入 すれば、 モール ド材が行き渡りやすいからである。 特に、 重畳部をデ バイ スホールの略中心位置を通ってデバイ スホールを複数の穴に分割 するよ う に し、 さ らに、 その略中心位置に対応する部分には、 重畳部 に貫通孔を形成しておく こ とが好ま しい。 モール ド材を注入する と き に、 空気を貫通孔から逃がすこ とができ るからである。
また、 デバイ スホールを複数の穴に分割してお く と、 半導体チ ッ プ の能動面側で配線を行なう場合でも、 穴を横切る ク ロスオーバー部を 備える導体パター ンを形成する こ とができ る。 このよ う なク ロスォ一 バー部は、 重畳部で支持され、 補強された状態にあるため、 強度が高 い。 従って、 高い信頼性を維持しながら、 配線パター ンの設計の自由 度を高めることができる。 図面の簡単な説明
図 1 は、 本発明の第 1 の実施例に係る半導体装置の構成を示す平面
5 図である。
図 2 ( a ) は、 図 1 における I 一 I I線における縦断面図、 図 2 ( b ) は、 図 1 における I — 1 1 1 線における縦断面図である。
である。
図 3 ( a ) は、 本発明の第 1 の実施例に係る半導体装置の構造をボ , ο ンディ ング前の状態で模式的に示す縦断面図、 図 3 は、 本発明 の第 1 の実施例に係る半導体装置の構造をボンディ ング後の状態で模 式的に示す縦断面図である。
図 4 ( a ) は、 本発明の第 2の実施例に係る半導体装置の構造をボ ンディ ング前の状態で模式的に示す縦断面図、 図 4 ( t は、 本発明 1 5 の第 2の実施例に係る半導体装置の構造をボンディ ング後の状態で模 式的に示す縱断面図である。
図 5 ( a ) は、 本発明の第 3の実施例に係る半導体装置の構造をボ ンディ ング前の状態で模式的に示す縦断面図、 図 5 ( , ) は、 本発明 の第 3の実施例に係る半導体装置の構造をボンディ ング後の状態で模 2 0 式的に示す縦断面図である。
図 6 は、 本発明のその他の実施例と して、 第 1 の実施例に係る半導 体装置において、 ギャ ングボンディ ング法を用いた接合工程を模式的 に示す断面図である。
図 7 は、 従来の半導体装置の構成を示す縦断面図である。
2 5 図 8 は、 従来の別の半導体装置の構成を示す縦断面図である。 発明を実施するための最良の形態 以下に、 図面を参照して、 本発明の実施例に係る半導体装置を説明 する。
第 1 の実施例
図 1 は、 本発明の第 1 の実施例に係る半導体装置の構成を示す平面 図であり、 図 2 ( a ) は、 その I 一 I I線における縱断面図、 図 2 ( b ) は、 その I 一 I I I 線における縦断面図である。
図 1 および図 2 ( a ) 、 ( b ) において、 本例の半導体装置 1 は、 アナログ多機能電子時計の回路ブロッ ク と して用いられる装置であつ て、 回路基板 2 と、 C P Uを搭載した半導体チップ 3 とを有する。
半導体チップ 3の能動面 3 0 は、 その大きさが約 5 m m x約 5 m m であり、 そこには、 ボンディ ングを必要とする 3 6個のバンプ 3 1 力く 形成されている。 通常、 ク ォーツ腕時計に用いられる半導体チップは、 その大きさが約 2 m m x約 2 m mであり、 バンプの数が 1 0数個であ るから、 本例の半導体チップ 3 は、 通常の半導体チップに比して、 約 6倍の面積を有し、 ボンディ ング箇所も 2倍以上ある。
回路基板 2 は、 厚さが約 1 3 0 のポリ イ ミ ド樹脂製のテープ材 からなるフ レキシブルな基材 2 1 と、 この基材 2 1 に一体に接着され た導体バターン 2 2 (リ ー ド線) から構成されている。 導体バタ一ン 2 2 は、 基材 2 1 に接着された銅箔が所定のパターンに形成された導 電部材であり、 その表面には、 厚さが約 1 / mの金めつきが施されて いる。
回路基板 2では、 半導体チップ 3の配置位置に相当する部分の基材 2 1 が除去されて、 輪郭が四角形のデバイスホール 2 3が形成されて いる。 このデバイスホール 2 3 に対して、 半導体チップ 3が配置され、 固定されている。
この固定構造については、 後述するが、 導体パターン 2 2のうち、 デバイ スホール 2 3 の内側に突出する リ ー ド部分 2 2 1 と、 半導体チ ッ プ 3 のバンプ 3 1 とがシ ングルポイ ン ト ボンディ ング法によ り 1 か 所ずつ接合された後に、 デバイスホール 2 3 の内部にモール ド材 4 が 充塡された構造になっている。 リ ー ド部分 2 2 1 の幅は、 他の導体パ ター ン 2 2 の幅に比して細く なつており、 バンプ 3 1 とのボンディ ン グを行いやすく なつている。 こ こで、 バンプ 3 1 は、 リ ー ド部分 2 2 1 との接合時に押し潰されて薄く なつており、 リ ー ド部分 2 2 1 の側 は、 やや下方に屈曲している。
このよ う な接合構造を有する半導体装置 1 において、 本例では、 デ バイ スホール 2 3 の四隅領域 A、 B、 C、 Dには、 半導体チ ッ プ 3 の 角部分に対して重なり合う回路基板 2 の重畳部 2 1 1 が形成されてい る。 また、 重畳部 2 1 1 と重なり合う半導体チッ プ 3 の能動面 3 0上 の 4 か所には、 ダミ ーバンプ 3 2 a (スぺーサ部) がそれぞれ形成さ れている。 このダミ ーノくンプ 3 2 a は、 導体パター ン 2 のう ち、 その 幅が拡げられた拡張部分 2 0 に重なっている。 半導体チッ プ 3 の位置 が多少ずれても、 ダミ一バンプ 3 2 aが導体バタ一ン 2 に対して確実 に重なるよ う にするためである。 但し、 ダミ ーバンプ 3 2 a は、 半導 体チ ッ プ 3 の内部にあるいずれの回路にも電気的に接続されていない ので、 半導体装置 1 の誤動作の原因になる こ と はない。 こ こで、 ダミ 一バンプ 3 2 a は、 導体パターン 2 (リ ー ド部 2 2 1 ) に重なっては いるが、 接合されていないので、 ダミ ーバンプ 3 2 a は、 バンプ 3 1 と相違して、 潰れておらず、 初期の厚さが保持されている。
さ らに、 デバイ スホール 2 3 の内側でも、 半導体チ ッ プ 3 に対して 重な り合う回路基板 2 の重畳部 2 1 2 が形成されている。 重畳部 2 1 2 は、 デバイスホール 2 3 の略中央部分を通って各四辺の略中央付近 に接铳している。 この重畳部 2 1 2 と重なる半導体チ ッ プ 3 の能動面 3 0上の 4 か所には、 ダ ミ ーバンプ 3 3 b (スぺーサ部) がそれぞれ 形成されている。 このダミ ーバンプ 3 3 b も、 半導体チ ッ プ 3 の内部 にあるいずれの回路にも電気的に接続されていない。 また、 ダミ ーバ ンプ 3 3 bは、 導体パターン 2 2 (リ ー ド部 2 2 1 ) に接合されてい ないので、 バンプ 3 1 と相違して、 潰れておらず、 初期の厚さが保持 されている。
このように構成した半導体装置 1 では、 半田バンプを用いないので、 生産性が高いことに加えて、 図 2 ( a ) 、 ( b ) に示すように、 回路 基板 2 と半導体チップ 3 との間には、 ダミ ーバンプ 3 2 ( 3 2 a , 3 2 b ) によって、 その厚さに相当する隙間 t 1 が自動的に確保される。 それ故、 導体パターン 2 2 と、 半導体チップ 3のエッ ジとの間でショ 一トが発生しない。
しかも、 ダミ ーバンプ 3 2の厚さは、 リ ー ド部分 2 2 1 とバンプ 3 1 との接合工程の前後で変化がないので、 隙間 t 1 の寸法は、 予め設 定されたダミ ーバンプ 3 2の初期の厚さ寸法によって定まる。 また、 ダミ ーバンプ 3 2 は、 導体パターン 2 2 に重なっているため、 導体パ ターン 2 2 と半導体チップ 3 との間に隙間 t 1 を確実に確保している。 それ故、 半導体装置 1 は、 信頼性が高い。 また、 ダミ ーバンプ 3 2 は、 接合用のバンプ 3 1 と同時に形成できるので、 半導体チップ 3 のコス ト も上昇しない。
なお、 図 3 ( a ) にボンディ ング工程前の縦断面を模式的に示すよ うに、 半導体チップ 3の能動面 3 0 には、 電気回路上必要なバンプ 3 1 、 および隙間 t 1 を確保するのに必要なダミ ーバンプ 3 2の他に、 電気回路上不必要であって、 かつ、 隙間 t 1 を確保するのにも利用さ れないフ リ ーのダミ ーバンプ 3 4、 3 5が形成されている。 そのうち. フ リ ーのダミ ーバンプ 3 4 は、 デバイスホール 2 3の形成領域内に位 置している。 また、 フ リ ーのダミ ーバンプ 3 5 は、 重畳部 2 1 2の形 成領域内に位置しているが、 そ こには、 導体パター ン 2 2が形成され ていな'いため、 図 3 ( b ) にボンディ ング工程の後の縦断面を模式的 に示すように、 回路基板 2の側に接していない。 但し、 このようなフ リーのダミ ーバンプ 3 4、 3 5を形成しておく ことによって、 たとえ ば、 回路基板 2 における重畳部 2 1 1 、 2 1 2の形成位置が変更にな つたときには、 これらのフ リーのダミ ーバンプ 3 4、 3 5が半導体チ ップ 3 と、 回路基板 2 との間に所定の隙間 t 1 を確保することになる c さ らに、 本例の半導体装置 1 は、 以下の特徴点を有する。
再び、 図 1 において、 デバイスホール 2 3 は、 重畳部 2 1 2 によつ て、 4つの穴 2 3 1 、 2 3 2、 2 3 3 、 2 3 4 に分割された状態にあ る。 従って、 導体パターン 2 2のクロスオーバー部 2 2 2のように、 デバイスホール 2 3を横切るように形成されていても、 クロスオーバ —部 2 2 2 は、 1 つの穴 2 3 2を跨ぐだけでよく 、 重畳部 2 1 2 によ つて補強された状態にある。 同様に、 導体パターン 2 2のクロスォ一 バー部 2 2 3は、 1つの穴 2 3 2だけを跨いで先端側が重畳部 2 1 2 に支持されている。 このため、 半導体チップ 3の能動面 3 0 に対向す る位置にも、 自由に配線できるとと もに、 そこに形成した導電パター ンの強度が高い。 しかも、 デバイスホール 2 3の内側に重畳部 2 1 1 . 2 1 2を残すことによって、 回路基板 2を捕強できるので、 フ レキシ ブルな回路基板 2が不必要に変形することを防止できる。
また、 デバイスホール 2 3の内周縁は、 重畳部 2 1 1、 2 1 2 によ つて入り く んだ形状になっているため、 リー ド部分 2 1 1 は、 図面に 向かって縦方向および横方向のいずれの方向にも突出させることがで き。 従って、 たとえば、 リー ド部分 2 1 1 aのように、 デバイスホー ル 2 3の内周縁に沿うように突出させることができるので、 デバイス ホール 2 3の辺の中央付近寄りの位置でも、 互いに直交する方向に突 出したリ ー ド部分 2 1 1 a、 2 1 1 bを形成できるなど、 配線パター ン設計の自由度が高い。 それ故、 本例の半導体装置 1 は、 信頼性が高 く て、 設計の自由度も高いので、 広い用途に使用できる。 それらに加えて、 重畳部 2 1 2 は、 デバイスホール 2 3の略中央部 分を通って、 デバイスホール 2 3を分割するように形成され、 デバイ スホール 2 3の中央部分、 すなわち、 半導体チップ 3の略中央部分に 相当する部分では、 重畳部 2 1 2 に貫通孔 2 3 0が形成されている。 従って、 以下に説明するように、 実装工程における生産性が高いとい う利点がある。
図 3 ( a ) 、 ( b ) を参照して、 回路基板 2 に半導体チップ 3を実 装する工程を説明する。
まず、 図 3 ( a ) に示すよ う に、 回路基板 2 のデバイスホール 2 3 に対して半導体チップ 3を位置決めする。 この状態で、 半導体チップ 3 に対しては、 重畳部 2 1 1 が重なり.合う。
この状態で、 リ ー ド部分 2 2 1 に対して超音波振動を加えて、 リー ド部分 2 2 1 とパンブ 3 1 とを 1 か所ずつ接合する。 その結果、 図 3 ( b ) に示すように、 リ ー ド部分 2 2 1 が下方に向けて屈曲する一方、 バンプ 3 1 は、 押し潰された状態になる。
これに対して、 ダミ ーバンプ 3 2 と、 導体パターン 2 2 とは、 接合 されないので、 ダミ ーバンプ 3 2 は、 バンプ 3 1 と リ ー ド部分 2 2 1 との接合工程の前後で厚さが変形せず、 初期の厚さを維持している。 このため、 回路基板 2 と半導体チップ 3 との間には、 ダミ ーバンプ 3 2の初期の厚さに応じた隙間 t 1が確保される。
次に、 デバイスホール 2 3 に対して、 モール ド材 4を充塡する。 こ こで、 デバイスホール 2 3 は、 4つの穴 2 3 1、 2 3 2 · ' に分割さ れているので、 それぞれの穴 2 3 1、 2 3 2 · · からモール ド材 4 を 注入する。 従って、 モール ド材 4 の回り込みがスムーズである。 しか も、 重畳部 2 1 1 、 2 1 2のうち、 デバイスホール 2 3の中心部に相 当する領域には、 貫通孔 2 3 0が形成されているため、 モール ド材 4 を注入するときには、 貫通孔 2 3 0から空気が抜けるので、 モール ド 材 4の周り込みがスムーズである。 それ故、 実装工程における生産性 が高い。
なお、 本例では、 ダミ ーバンプ 3 2が回路基板 2の重畳部 2 1 1 の うち、 そこに形成されている導電パターン 2 2 に重なっているが、 基 材 2 1 の剛性が比較的大き くて、 しかも、 導電パターン 2 2の厚さ分 まで隙間 t 1 の寸法に寄与させる必要がない場合には、 ダミ ーバンプ 3 2が重畳部 2 1 1 の基材 2 1 自身に直接重なる構造を採用してもよ い。 第 2の実施例
本例の半導体装置は、 基本的な構成が第 1 の実施例に係る半導体装 置と同様であるため、 共通する機能を有する部分には、 同じ符号を付 して、 その詳細な説明を省略する。
図 4 ( a ) は、 本例の半導体装置において、 回路基板に半導体チッ プを搭載する前の状態を模式的に示す縦断面図、 図 4 ( b ) は、 回路 基板に半導体チップを搭載した後の状態を模式的に示す縦断面図であ る。
図 4 ( a ) において、 本例の半導体装置 1 1 では、 第 1 の実施例に 係る半導体装置と同様に、 半導体チップ 3の能動面 3 0 には、 電気回 路上必要なバンプ 3 1 (接合用電極) と、 電気回路上不要なダミ ーバ ンブ 3 2 (スぺーサ部) が形成されている。 回路基板 2の側には、 デ バイスホール 2 3が形成されており、 その内側に向けて、 導体パター ン 2 2のリ ー ド部分 2 2 1 が突き出ている。 また、 回路基板 2 には、 デバイスホール 2 3 に対して半導体チップ 3 を位置決めした状態で半 導体チップ 3 に重なり合う重畳部 2 1 1 があって、 この重畳部 2 1 1 にも導体パターン 2 2が形成されている。
本例では、 重畳部 2 1 1 に形成されている導体パターン 2 2のうち 回路基板 2 に対して半導体チップ 3を位置決めしたときに、 ダミ ーバ ンプ 3 2 に重なる部分には、 導体パターン 2 2から突き出た突起 2 2 4 (スぺーサ部) が形成されている。 この突起 2 2 4 は、 回路基板 2 の側に転写されたバンプである。
従って、 リー ド部分 2 2 1 に超音波振動を加えて、 リ一ド部分 2 2 1 とバンプ 3 1 とをシングルポイ ン 卜ボンディ ング法により接合して いく と、 図 4 ( b ) に示すように、 リ ー ド部分 2 2 1 が下方に向けて 屈曲する一方、 バンプ 3 1 'は、 押し潰された伏態になる。
これに対して、 ダミ ーバンプ 3 2 と、 導体パターン 2 2 (突起 2 2 4 ) とは、 接合されないので、 ダミ ーバンプ 3 2 は、 変形せず、 リ ー ド部分 2 2 1 とバンプ 3 1 との接合工程後でも初期の厚さを維持して いる。 同様に、 突起 2 2 4 も、 変形せず、 初期の厚さを維持している このため、 回路基板 2 と半導体チップ 3 との間には、 ダミ ーバンプ 3 2の厚さと、 突起 2 2 4 の厚さとの和に相当する寸法の隙間 t 2が確 保されるので、 フォーミ ング加工を行なわなく ても、 回路基板 2 と半 導体チップ 3のエッ ジとの間でショー トが発生しない。 しかも、 隙間 t 2の寸法は、 予め設定されたダミ ーバンプ 3 2の厚さ寸法、 および 突起 2 2 4の厚さ寸法によって定まるので、 不必要に大き く設定する 必要がない。 それ故、 シングルポイ ン トボンディ ング法により接合し た構造を採用した半導体装置 1 1 でも、 薄型化が可能であるとと もに. 信頼性が高い。
また、 ダミ ーバンプ 3 2 は、 接合用のバンプ 3 1 と同時に形成でき るので、 半導体チ ッ プ 3 のコス トが上昇しない。
さ らに、 本例の半導体装置 1 も、 その平面構造は、 図 1 に示した第 1 の実施例の半導体装置と同様であるため、 デバイスホール 2 3 に対 して、 モール ド材 4を充塡するときには、 それぞれの穴 2 3 1、 2 3 2 · · からモール ド材 4 を注入することができる。 しかも、 モール ド 材 4 を注入するときには、 貫通孔 2 3 0から空気が抜ける。 それ故、 注入したモール ド材 4の周り込みがスムーズである。
なお、 本例では、 導電パターン 2 2の突起 2 2 4が半導体チップ 3 のダミ ーバンプ 3 2 に重なるようになっていたが、 突起 2 2 4が充分 に厚い場合には、 絶縁コーティ グが施されている半導体チップ 3の能 動面 3 0 自身に重なっていてもよい。 第 3 の実施例
本例の半導体装置も、 基本的な構成が第 1 の実施例に係る半導体装 置と同様であるため、 共通する機能を有する部分には、 同じ符号を付 して、 その詳細な説明を省略する。
図 5 ( a ) は、 本例の半導体装置において、 回路基板に半導体チッ プを搭載する前の状態を模式的に示す縦断面図、 図 5 ( b ) は、 回路 基板に半導体チップを搭載した後の状態を模式的に示す縦断面図であ る
図 5 ( a ) において、 本例の半導体装置 1 2では、 回路基板 2の側 には、 デバイスホール 2 3が形成されており、 その内側に向けて、 導 体バターン 2 2のリー ド部分 2 2 1 が突き出ている。 この導体バタ一 ン 2 2 は、 金めつきされたリー ド線から構成されている。 本例では、 半導体チップ 3 に、 アルミニウムパッ ド 3 8が形成されており、 その うち、 アルミ ニウムパッ ド 3 8 a (接合用電極) のみにリー ド部分 2 2 1 がボンディ ングされている。 このアルミニウムパッ ド 3 8 a は、 電気回路上必要なパッ ドであるが、 アルミ ニウムパッ ド 3 8 bは、 半 導体チップ 3の内部に構成されているいずれの回路にも電気的に接続 されておらず、 電気回路上不必要なパッ ドである。 このように、 本例 では、 半導体チップ 3 にバンプが形成されていないので、 安価である, 回路基板 2 には、 デバイスホール 2 3 に対して半導体チップ 3を位 置決めした状態で半導体チップ 3 に重なり合う重畳部 2 1 1 があって、 この重畳部 2 1 1 にも導体パター ン 2 2 が形成されている。 この導体 パターン 2 2のうち、 アルミ ニウムパッ ド 3 8 bに重なる部分は、 導 体パターン 2 2の他の部分より も突き出た突起 2 2 5 (スぺーサ部) になっている。 突起 2 2 5 は、 導体パターン 2 2をエッチングにより 形成する時に、 突起 2 2 5を形成すべき部分に対するエッチングをハ —フェッ チングに止めて、 他の部分より も厚く した部分である。 なお、 導体パター ン 2 2 は、 半導体チップ 2 2の周囲に位置する部分を薄く してあり、 この部分より も、 突起 2 2 5を厚く してある。
このよ う に構成した半導体装置 1 2でも、 リ ー ド部分 2 2 1 に対し て超音波振動を加えて、 リー ド部分 2 2 1 とアルミ ニウムパッ ド 3 8 a とをシングルポイ ン トボンディ ング法により接合していく と、 図 5 ( b ) に示すように、 リ ー ド部分 2 2 1 が下方に向けて屈曲するが、 突起 2 2 5 は、 半導体チップ 3 の側と接合されないので、 突起 2 2 5 は、 押し潰されない。 従つて、 回路基板 2 と半導体チップ 3 との間に は、 突起 2 2 5の初期の厚さに応じた隙間 t 3が確保されるので、 回 路基板 2 と半導体チップ 3のエツ ジとの間でショー 卜が発生しない。 しかも、 突起 2 2 5 の厚さは、 リ ー ド部分 2 2 1 とアルミ ニウムパッ ド 3 8 a との接合工程の前後で厚さに変化がなく 、 隙間 t 3の寸法は. 予め設定された突起 2 2 5の初期の厚さ寸法によって定まるでの、 隙 間 t 3を不必要に大き く設定しなく てもよい。 それ故、 本例の半導体 装置 2 1 は、 薄型化が可能であり、 また、 信頼性が高い。 また、 突起 2 2 5 は、 導電パターン 2 2 の一部を利用するため、 回路基板 3 のコ ス トが上昇しない。
さ らに、 本例の半導体装置 1 2 も、 その平面構造は、 図 1 に示した 第 1 の実施例の半導体装置と同様である。 従って、 デバイスホール 2 3 に対して、 モール ド材 4 を充塡するときには、 それぞれの穴 2 3 1 2 3 2 . ' からモール ド材 4 を注入する こ とができ る。 また、 モール ド材 4 を注入したと きには、 貫通孔 2 3 0 から空気が抜ける。 それ故、 モール ド材 4 の周り込みがスムーズである。
なお、 本例において、 導電パターン 2 2 の突起 2 2 5 は、 半導体チ ッ プ 3 のアルミ ニウムパッ ド 3 8 b に重なるよ う になっていたが、 半 導体チ ッ プ 3 の回路から絶縁された部分であれば、 たとえば、 絶縁コ —ティ ングが施された能動面 3 0 自身に重な っていてもよい。 その他の実施例
i o また、 上記の実施例の他にも、 回路基板には、 半導体チ ッ プと重な り合う重畳部が形成され、 この重畳部、 またはそれと重なる半導体チ ッ プの面上に、 導体パターンとバンプとの接合工程の前後で厚さの変 化しないスぺーサ部が形成されておれば、 たとえば、 回路基板を構成 する基材自身の突起、 または、 半導体チ ッ プの能動面自身から突出す
1 5 る絶縁性の突起であってもよい。
さ らにまた、 シングルボンディ ング法だけでな く 、 ギャ ングボンデ ィ ング法を用いた場合でも同様な効果を得る こ とができる。 こ こで、 ギャ ングボンディ ング法を用いる場合には、 図 6 にギャ ングボンディ ング用のボンディ ングツールの下端側の構造を模式的に示すよう に、
2 0 ボンディ ングツール Tの下面を平面ではな く 、 重畳部 2 1 1、 2 1 2 および導体パターンのク ロスオーバー部 2 2 2、 2 2 3 を避けるよう に凹部 T 1 などを形成したボンディ ングツール Tを用いればよい。 産業上の利用可能性
2 5 以上のとおり、 本発明に係る半導体装置においては、 回路基板の側 に、 デバイ スホールに配置される半導体チ ッ プとの重畳部が形成され ており、 この重畳部と半導体チ ッ プとの間では、 半導体チ ッ プの側に 形成したダミ ーバンプ、 または重畳部の導体パター ンに形成された突 起などのスぺーサ部によって、 所定の隙間が確保された状態にある。 従って、 本発明によれば、 シングルポイ ン トボンディ ング法などにお いて、 回路基板のリー ド部分をフォー ミ ング加工しなくても、 重畳部 と半導体チップとの間に所定の隙間を確保できるので、 半導体装置を 薄型化したままで、 半導体チップのエッ ジでのショー トを防止でき、 信頼性が高い。 しかも、 フ ォー ミ ング加工を省略できるので、 生産性 が向上する。 また、 重畳部に導電パターンを形成して、 半導体チップ の能動面に対向する領域にも配線を施した構成にできるので、 パター ン設計の自由度が高ま り、 半導体チップの汎用性も高く なる。
半導体チップの側にダミ 一バンプを形成し、 回路基板の重畳部に導 体パターンの突起を形成した場合には、 回路基板と半導体チップとの 間には、 半導体チップの側に形成したダミ ーバンプおよび突起の厚さ の和に相当する広い隙間を容易に形成できる。
デバイスホールの四隅部分に重畳部がある場合には、 チップサイズ の大きな半導体チップであっても、 均等な隙間を確保できる。 また、 デバイスホールの辺部分にも重畳部を形成した場合には、 チップサイ ズがより大きな半導体チップであっても、 より均等な隙間を確保でき る。
デバイスホールが重畳部によって複数の穴に分割されている場合に は、 各穴からモール ド材を注入することができるので、 モール ド材の 周り込みがスムーズである。 しかも、 導電パターンに、 分割する穴を 横切るク ΰスオーバ一部を設けても、 クロスオーバー部は、 重畳部で 補強されるので、 高い信頼性を維持したまま、 回路パター ン設計の自 由度が向上する。
デバイスホールの略中心位置を通る重畳部に対して、 貫通孔を形成 した場合には、 モール ド材を注入するときに、 貫通孔から空気を抜く こ とができ るので、 モール ド材の周り込みがスムーズである。

Claims

請 求 の 範 囲
1 . 絶緣性の基材に導体パターンが形成された回路基板と、 この回 路基板のデバイスホールに配置された半導体チップとを有し、 前記導 体バターンのうち前記デバィスホール内に突出する リ一ド部分と前記 半導体チップのバンプとが接合されている半導体装置において、 前記回路基板は、 前記半導体チップと重なり合う重畳部を有し、 この重畳部、 およびそれと重なる前記半導体チップの面上の少なく とも一方の側には、 前記リー ド部分と前記バンプとの接合工程の前後 で厚さの変化しないスぺ一サ部が形成され、 このスぺ一サ部が前記回 路基板と前記半導体チップとの間に介在してそ こに所定の隙間を確保 していることを特徵とする半導体装置。
2 . 請求の範囲第〗 項において、 前記スぺーサ部は、 前記重畳部と 重なる前記半導体チップの面上において、 前記導体パター ンと接合せ ずに、 前記回路基板と前記半導体チップとの間に介在してそこに所定 の隙間を確保するダミ ーバンプであることを特徵とする半導体装置。
3 . 請求の範囲第 2項において、 前記重畳部では、 前記導体パター ンが前記ダミ ーバンプに重なっていることを特徴とする半導体装置。
4 . 請求の範囲第 1項において、 前記スぺーサ部は、 前記重畳部の 側において、 前記接合用電極と接合せずに、 前記回路基板と前記半導 体チップとの間に介在してそこに所定の隙間を確保する前記導体パ夕 — ンの突起であることを特徴とする半導体装置。
5 . 請求の範囲第 4項において、 前記半導体チップは、 前記接合用 電極と してのバンプを有し、 前記突起と重なる位置には、 それと接合 しないダミ ーバンプを有することを特徴とする半導体装置。
6 . 請求の範囲第 4項において、 前記半導体チップは、 前記接合用 電極と してのパッ ドを有し、 前記突起と重なる位置には、 それと接合 しないダミ ーパッ ドを有することを特徴とする半導体装置。
7 . 請求の範囲第 1項ないし第 6項のいずれかの項において、 前記 デバイスホールは、 略四角形の輪郭を有し、 その四隅部分に前記重畳 部があることを特徴とする半導体装置。
8 . 請求の範囲第 7項において、 前記重畳部は、 前記デバイスホ一 ルの各辺部分にもあることを特徴とする半導体装置。
9 . 請求の範囲第 1項ないし第 8項のいずれかの項において、 前記 重畳部は、 前記デバィスホールの内側にまで形成されて前記デバィス ホールを複数の穴に分割していることを特徴とする半導体装置。
1 0 . 請求の範囲第 9項において、 前記重畳部は、 前記デバイスホ 一ルの略中心位置を通って、 前記デバイスホールを複数の穴に分割し ており、 その略中心位置に対応する部分では、 前記重畳部に貫通孔が 形成されていることを特徴とする半導体装置。
1 1 . 請求の範囲第 9項または第 1 0項において、 前記導体パター ンは、 前記穴を横切るクロスオーバー部を有することを特徴とする半 導体装置。
PCT/JP1994/000551 1993-04-08 1994-04-04 Semiconductor device WO1994024698A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1019940704091A KR100296834B1 (ko) 1993-04-08 1994-04-04 반도체장치
US08/351,383 US5563445A (en) 1993-04-08 1994-04-04 Semiconductor device
DE69433543T DE69433543T2 (de) 1993-04-08 1994-04-04 Halbleitervorrichtung.
EP94910595A EP0645806B1 (en) 1993-04-08 1994-04-04 Semiconductor device
HK98115925A HK1014612A1 (en) 1993-04-08 1998-12-28 Semiconductor device.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP08220793A JP3269171B2 (ja) 1993-04-08 1993-04-08 半導体装置およびそれを有した時計
JP5/82207 1993-04-08

Publications (1)

Publication Number Publication Date
WO1994024698A1 true WO1994024698A1 (en) 1994-10-27

Family

ID=13767983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/000551 WO1994024698A1 (en) 1993-04-08 1994-04-04 Semiconductor device

Country Status (9)

Country Link
US (1) US5563445A (ja)
EP (1) EP0645806B1 (ja)
JP (1) JP3269171B2 (ja)
KR (1) KR100296834B1 (ja)
CN (1) CN1047470C (ja)
DE (1) DE69433543T2 (ja)
HK (1) HK1014612A1 (ja)
TW (1) TW301793B (ja)
WO (1) WO1994024698A1 (ja)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5834339A (en) 1996-03-07 1998-11-10 Tessera, Inc. Methods for providing void-free layers for semiconductor assemblies
US6232152B1 (en) 1994-05-19 2001-05-15 Tessera, Inc. Method of manufacturing a plurality of semiconductor packages and the resulting semiconductor package structures
US6359335B1 (en) 1994-05-19 2002-03-19 Tessera, Inc. Method of manufacturing a plurality of semiconductor packages and the resulting semiconductor package structures
US5706174A (en) * 1994-07-07 1998-01-06 Tessera, Inc. Compliant microelectrionic mounting device
US6169328B1 (en) 1994-09-20 2001-01-02 Tessera, Inc Semiconductor chip assembly
US5915170A (en) * 1994-09-20 1999-06-22 Tessera, Inc. Multiple part compliant interface for packaging of a semiconductor chip and method therefor
US6870272B2 (en) 1994-09-20 2005-03-22 Tessera, Inc. Methods of making microelectronic assemblies including compliant interfaces
US5659952A (en) * 1994-09-20 1997-08-26 Tessera, Inc. Method of fabricating compliant interface for semiconductor chip
US6046076A (en) * 1994-12-29 2000-04-04 Tessera, Inc. Vacuum dispense method for dispensing an encapsulant and machine therefor
JP3643640B2 (ja) * 1995-06-05 2005-04-27 株式会社東芝 表示装置及びこれに使用されるicチップ
JP3270807B2 (ja) * 1995-06-29 2002-04-02 シャープ株式会社 テープキャリアパッケージ
US6284563B1 (en) * 1995-10-31 2001-09-04 Tessera, Inc. Method of making compliant microelectronic assemblies
US6211572B1 (en) 1995-10-31 2001-04-03 Tessera, Inc. Semiconductor chip package with fan-in leads
US6686015B2 (en) 1996-12-13 2004-02-03 Tessera, Inc. Transferable resilient element for packaging of a semiconductor chip and method therefor
JPH11260863A (ja) * 1998-03-09 1999-09-24 Sumitomo Electric Ind Ltd 半導体装置用接続端子とその製造方法
FR2778475B1 (fr) * 1998-05-11 2001-11-23 Schlumberger Systems & Service Carte a memoire du type sans contact, et procede de fabrication d'une telle carte
KR20000012074A (ko) * 1998-07-31 2000-02-25 야스카와 히데아키 반도체 장치 및 그 제조 방법, 반도체 장치의 제조 장치, 회로기판 및 전자 기기
JP3919972B2 (ja) 1998-07-31 2007-05-30 セイコーエプソン株式会社 半導体装置の製造方法
US6214640B1 (en) 1999-02-10 2001-04-10 Tessera, Inc. Method of manufacturing a plurality of semiconductor packages
US6146984A (en) * 1999-10-08 2000-11-14 Agilent Technologies Inc. Method and structure for uniform height solder bumps on a semiconductor wafer
US6096649A (en) * 1999-10-25 2000-08-01 Taiwan Semiconductor Manufacturing Company Top metal and passivation procedures for copper damascene structures
US6833557B1 (en) * 2000-06-27 2004-12-21 Agere Systems Inc. Integrated circuit and a method of manufacturing an integrated circuit
JP3490987B2 (ja) * 2001-07-19 2004-01-26 沖電気工業株式会社 半導体パッケージおよびその製造方法
JP4099673B2 (ja) * 2004-12-21 2008-06-11 セイコーエプソン株式会社 半導体装置
KR101357765B1 (ko) * 2005-02-25 2014-02-11 테세라, 인코포레이티드 유연성을 갖는 마이크로 전자회로 조립체
TWI310983B (en) * 2006-10-24 2009-06-11 Au Optronics Corp Integrated circuit structure, display module, and inspection method thereof
US7749886B2 (en) 2006-12-20 2010-07-06 Tessera, Inc. Microelectronic assemblies having compliancy and methods therefor
US8045333B2 (en) * 2008-01-14 2011-10-25 Rosemount Inc. Intrinsically safe compliant circuit element spacing
TWI429000B (zh) * 2010-07-08 2014-03-01 Novatek Microelectronics Corp 晶片線路扇出方法及薄膜晶片裝置
US9691686B2 (en) 2014-05-28 2017-06-27 Taiwan Semiconductor Manufacturing Company, Ltd. Contact pad for semiconductor device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123074A (en) * 1977-04-01 1978-10-27 Nec Corp Semiconductor device
JPS6031244A (ja) * 1983-08-01 1985-02-18 Oki Electric Ind Co Ltd 半導体装置
JPS6395639A (ja) * 1986-10-09 1988-04-26 Mitsubishi Electric Corp テ−プキヤリア
JPH03126237A (ja) * 1989-10-12 1991-05-29 Sumitomo Bakelite Co Ltd 半導体装置の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3871015A (en) * 1969-08-14 1975-03-11 Ibm Flip chip module with non-uniform connector joints
JPS601968A (ja) * 1983-06-17 1985-01-08 Matsushita Electric Ind Co Ltd 半導体装置
JPS6286737A (ja) * 1985-10-11 1987-04-21 Seiko Epson Corp フエイスダウンボンデイング用基板
JP2623578B2 (ja) * 1987-07-14 1997-06-25 日本電気株式会社 半導体集積回路装置
JPH01319957A (ja) * 1988-06-21 1989-12-26 Nec Corp 集積回路
JPH0574852A (ja) * 1991-09-17 1993-03-26 Nec Corp 半導体装置
US5186383A (en) * 1991-10-02 1993-02-16 Motorola, Inc. Method for forming solder bump interconnections to a solder-plated circuit trace
US5198963A (en) * 1991-11-21 1993-03-30 Motorola, Inc. Multiple integrated circuit module which simplifies handling and testing
US5400950A (en) * 1994-02-22 1995-03-28 Delco Electronics Corporation Method for controlling solder bump height for flip chip integrated circuit devices

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53123074A (en) * 1977-04-01 1978-10-27 Nec Corp Semiconductor device
JPS6031244A (ja) * 1983-08-01 1985-02-18 Oki Electric Ind Co Ltd 半導体装置
JPS6395639A (ja) * 1986-10-09 1988-04-26 Mitsubishi Electric Corp テ−プキヤリア
JPH03126237A (ja) * 1989-10-12 1991-05-29 Sumitomo Bakelite Co Ltd 半導体装置の製造方法

Also Published As

Publication number Publication date
EP0645806A4 (en) 1995-10-11
KR950701769A (ko) 1995-04-28
EP0645806B1 (en) 2004-02-11
JP3269171B2 (ja) 2002-03-25
US5563445A (en) 1996-10-08
DE69433543T2 (de) 2004-12-23
EP0645806A1 (en) 1995-03-29
KR100296834B1 (ko) 2001-10-24
JPH06295939A (ja) 1994-10-21
CN1047470C (zh) 1999-12-15
HK1014612A1 (en) 1999-09-30
DE69433543D1 (de) 2004-03-18
TW301793B (ja) 1997-04-01
CN1104415A (zh) 1995-06-28

Similar Documents

Publication Publication Date Title
WO1994024698A1 (en) Semiconductor device
JP3797992B2 (ja) 半導体装置
EP3226292B1 (en) Lead frame, semiconductor device, method for manufacturing lead frame, and method for manufacturing semiconductor device
JP3793628B2 (ja) 樹脂封止型半導体装置
KR100374241B1 (ko) 반도체 장치 및 그 제조 방법
JP2001118877A (ja) 半導体装置及びその製造方法
JPH11289024A (ja) 半導体装置及びその製造方法
US20110316172A1 (en) Semiconductor package and manufacturing method thereof
US11024563B2 (en) Semiconductor device and manufacturing method thereof
JP3656861B2 (ja) 半導体集積回路装置及び半導体集積回路装置の製造方法
JP2004281486A (ja) 半導体パッケージ及び同パッケージを用いた半導体装置
KR19980063740A (ko) 몰딩된 패키지용 다층 리드프레임
JPH09199631A (ja) 半導体装置の構造と製造方法
JP2551243B2 (ja) 半導体装置
TW393708B (en) A manufacturing device of a semiconductor device and a practical method for assembling the semiconductor device and the circuit board
JP2000114415A (ja) 電子部品
US20070290365A1 (en) Electronic Device Including a Component Stack and Connecting Elements, and Connecting Elements, and Method for Producing the Electronic Device
JP2005353704A (ja) 積層型半導体装置及びその製造方法
JP2003007899A (ja) 半導体装置及びその製造方法
JP2000124251A (ja) 半導体装置及びその製造方法、回路基板並びに電子機器
JP2001094031A (ja) 無線周波数タグ及びその製造方法
CN115332210A (zh) 封装体及其封装方法
JP4678223B2 (ja) 半導体装置及びその製造方法
JP2006278724A (ja) 半導体装置及びその製造方法
JP2004087894A (ja) パッケージ部品およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 1994910595

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08351383

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1994910595

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1994910595

Country of ref document: EP