WO1988002118A1 - Laser magnetic immunoassay method and apparatus therefor - Google Patents

Laser magnetic immunoassay method and apparatus therefor Download PDF

Info

Publication number
WO1988002118A1
WO1988002118A1 PCT/JP1987/000694 JP8700694W WO8802118A1 WO 1988002118 A1 WO1988002118 A1 WO 1988002118A1 JP 8700694 W JP8700694 W JP 8700694W WO 8802118 A1 WO8802118 A1 WO 8802118A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
laser
sample
antigen
labeled
Prior art date
Application number
PCT/JP1987/000694
Other languages
English (en)
French (fr)
Inventor
Koichi Fujiwara
Juichi Noda
Hiromichi Mizutani
Hiroko Mizutani
Original Assignee
Nippon Telegraph And Telephone Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP22456786A external-priority patent/JPH07111429B2/ja
Priority claimed from JP25242786A external-priority patent/JPS63106559A/ja
Priority claimed from JP61254164A external-priority patent/JP2502546B2/ja
Priority claimed from JP2206387A external-priority patent/JPS63188764A/ja
Priority claimed from JP2206287A external-priority patent/JPS63188766A/ja
Priority claimed from JP15279287A external-priority patent/JP2509227B2/ja
Priority claimed from JP15279187A external-priority patent/JPH07122636B2/ja
Priority claimed from JP62184902A external-priority patent/JPH0820450B2/ja
Application filed by Nippon Telegraph And Telephone Corporation filed Critical Nippon Telegraph And Telephone Corporation
Priority to DE3751865T priority Critical patent/DE3751865T2/de
Priority to EP87906109A priority patent/EP0287665B1/en
Publication of WO1988002118A1 publication Critical patent/WO1988002118A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/51Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54366Apparatus specially adapted for solid-phase testing
    • G01N33/54373Apparatus specially adapted for solid-phase testing involving physiochemical end-point determination, e.g. wave-guides, FETS, gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/0098Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor involving analyte bound to insoluble magnetic carrier, e.g. using magnetic separation

Definitions

  • the present invention relates to a laser immunoassay method and measurement apparatus utilizing an antigen-antibody reaction. More specifically, the present invention relates to a laser immunoassay method and measuring apparatus capable of detecting a specific antibody or antigen from an extremely small amount of sample.
  • RIA quantifies the amount of the sample that contributed to the antigen-antibody reaction by measuring the radiation dose of the labeled isotope. Is the only possible way. However, since the RIA has to handle radioactive substances, special equipment is required, and there are restrictions on the time of use, location, etc. from the viewpoint of half-life and waste treatment. Moreover, in the method using an enzyme or a fluorophore, since the presence or absence of an anti-antibody reaction is confirmed using color development or luminescence, the measurement is semiquantitative and the detection limit is about nanogram. Therefore, there has been a demand for an immunoassay method which has a detection sensitivity as high as RIA 'and which can be used without any limitation.
  • -Liver is a method to detect the presence of antigen-antibody reaction.
  • Liver For the purpose of detection of cancer, fine particles of ARAS (anti-AFP) antibody against AFP
  • ARAS anti-AFP
  • the detection sensitivity is 10 _ 1 Q g, which is 100 times or more that of the conventional method using laser light, but is less than 1/100 of the sensitivity of RIA.
  • the conventional laser light scattering measurement is performed only in the water in which the sample is dispersed. Since only a part of the solution is irradiated, there is essentially a limit to improving the detection sensitivity, and a large amount of sample is required.
  • One way to improve this drawback is to use a laser scatterer with a capillary tube of the same diameter as the laser beam diameter in order to shorten the measurement time and reduce the amount of sample used. It has been proposed to use it (US Patent No. 4, 605, 305), but the problem is that the detection sensitivity is reduced due to the interference of measurement by scattered light from the capillary wall. ..
  • magnetic fine particles are used in an attempt to facilitate the preparation of specimens. That is, magnetic particles are used to remove or separate various components from a liquid sample.
  • U.S. Pat.Nos. 4,018,886 and 3,970,58 use magnetic particles to collect specific proteins, and then Discloses a method of separating the protein and visually observing the precipitate of the produced protein.
  • US Pat. No. 3,933,997 discloses a method for using a magnetic microparticle to condense a radioactive label on a specimen.
  • this method directly measures the presence or abundance of labeled magnetic microparticles, laser light is incident on the measurement system containing the immunocomplex labeled with magnetic microparticles, and the emitted light is emitted. In principle, it is completely different from the optical measurement method.
  • the present inventors have previously studied a method for detecting a magnetic substance-labeled specimen with high sensitivity by using a magnetic head, and disclosed in Japanese Patent Publication No. Sho 5 2 — 1 0 4 0 6 6 “Magnetic substance detector”, Tokusho Sho 6 2 - ⁇ 3 7 9 8 8 We have applied for a patent as "Magnetic immunoassay and measuring device". However, even when the methods of improving the detection sensitivity invented by the inventors are applied, the detection sensitivity is 1 ⁇ 10 _ 9 units, which is 3 times higher than the laser magnetic immunity measurement method of the present invention. It was one digit lower. Announcement of announcement
  • the inventors of the present invention labeled the antigen or antibody with magnetic particles, reacted the obtained labeled substance with an antigen-antibody reaction with the sample, separated the resulting labeled immune complex from the unreacted labeled substance, and then measured.
  • By inducing a position and optically measuring the presence or absence of the complex We have found that it is possible to solve various restrictions such as half-life and waste treatment, and to perform immunoassays with detection sensitivity on the order of RIA and picograms on the order of weeks, and completed the present invention. ..
  • the present invention provides a step of labeling one antigen or antibody with magnetic microparticles as a magnetic substance-labeled body, reacting the magnetic substance-labeled body with a sample for an antigen-antibody reaction, and a magnetic body after the step.
  • the step of separating and removing the unreacted magnetic substance-labeled substance from the magnetic substance-labeled substance complex, which is the complex of the labeled substance and the specimen, the step of injecting laser light, and the pre-magnetic substance-labeled specimen by the step Provided is a laser magnetic immunoassay method which comprises a step of measuring light emitted from a measurement system including a composite system.
  • the present invention comprises: a sample container containing a sample labeled with magnetic substance particles, a dispersion means for inducing and dispersing the sample, and a laser light irradiation optical system for guiding laser light to the sample container.
  • a laser magnetic immunoassay device comprising a light receiving system installed so as to receive laser light emitted from the sample.
  • FIG. 1 is a schematic explanatory view of an apparatus for measuring the emitted light of laser light according to one embodiment of the present invention
  • FIG. 2 and FIG. 6 respectively show the laser of the present invention
  • FIG. 3 is an explanatory view of a method for preparing a sample liquid used for the magnetic immunoassay
  • FIG. 7 is a schematic view of a laser magnetic immunoassay device according to one embodiment of the present invention.
  • FIG. 8 is used in the laser magnetic immunoassay of the present invention, Induction of magnetic fine particles ⁇
  • FIG. 9 shows scattered light intensity (a) measured without applying periodic motion to magnetic fine particles and scattered light intensity (b) measured with periodic motion applied to magnetic fine particles according to the present invention. It is a graph showing changes in contrast,
  • FIG. 10 is a schematic view of a magnet drive unit for inducing and concentrating magnetic fine particles and a drive mechanism for magnetic fine particles, which is used in the laser magnetic immunoassay of the present invention, according to another embodiment of the present invention.
  • FIG. 11 shows a specimen container used according to a preferred embodiment of the present invention
  • FIG. 12 shows another embodiment of the present invention. Induction of magnetic fine particles for use in the laser magnetic immunoassay of the present invention according to an example ⁇ Concentrated magnet drive unit and magnetic fine particle drive mechanism In the schematic diagram of the part-
  • Figures 13 (a), (b) and (c) are cross-sectional views of the device shown in Figure 2 respectively.
  • Fig. 4 shows the energizing timing of the electromagnet of the device shown in Fig. 12 and Fig. 4 respectively.
  • FIGS. 15 (a) to (c) are diagrams for explaining the separation treatment of the liquid droplet sample from the suspended matter, which was performed according to the present invention.
  • FIG. 16 is a graph showing the relationship between the sample concentration and the scattered light intensity measured according to the method of the present invention.
  • FIG. 17 shows the quantitative analysis of the sample by laser light scattering according to the present invention. It is a schematic diagram for explaining a different measurement method.
  • FIGS. 18 (a) to (h) are diagrams for explaining a method for preparing a sample in the laser magnetic immunoassay method according to the present invention, and particularly, FIG.
  • FIGS. 20 (a) to 20 (e) illustrate a method for preparing a sample for another laser magnetic immunoassay method according to the present invention.
  • FIGS. 20 (a) to 20 (e) illustrate a method for preparing a sample for another laser magnetic immunoassay method according to the present invention.
  • FIG. 21 (a) shows that the operations shown in Figs. (A) to (g), Fig. 3 (a) to (e) and Fig. 2 can be performed collectively.
  • FIG. 3 is a diagram showing the structure of a device constructed in accordance with the invention.
  • Figure 21 (b-1) 'and (b-2) show the shape of the sample container that can be used particularly advantageously in the device shown in Figure 2 (a).
  • Fig. 21-1) is a plan view
  • Fig. 21 (b-2) is a sectional view.
  • Figure 22 (a) is a graph showing the modulation waveform of the power supply in the device shown in Figure 20.
  • Figure 22 is a graph showing the measurement results of the fluctuations of the waveform and periodic scattered light shown in Figure 21 (a).
  • FIG. 23 (a) is a diagram showing the configuration of a sample container that can be advantageously used in another embodiment of the laser magnetic immunoassay device according to the present invention.
  • FIG. 23 (b) shows a continuous test using the sample container shown in Fig. 6 (a).
  • FIG. 1 is a diagram schematically showing a layer of a device capable of processing a sample
  • FIG. 24 is a diagram showing a configuration of a container for storing a sample of the Ray magnetic immunoassay method according to the present invention.
  • Fig. 24 (a) is a plan view and Fig. 24 (b) is a sectional view.
  • FIGS. 25 (a) to 25 (i) are views for explaining, by hand, the method of preparing the fc sample for laser magnetic immunoassay performed using the sample container according to the present invention.
  • -Figs. 26 (a) and (b) show, for example, 'a diagram showing another aspect of the sample container according to the present invention, wherein FIG. 26 (a) shows the whole, and FIG. I draw out one structural unit of the container,
  • Figure 27 shows the actions of the instrument for the advantageous use of the sample container shown in Figure 26 (a).
  • FIG. 28 is a schematic configuration diagram of a laser magnetic immunoassay device according to the present invention
  • FIG. 29 is a circuit diagram of a power supply for exciting an electromagnet pair
  • FIGS. 30 (a), (b), Figures 31 (a) and (b) are plan views of the pole piece and the sample container when the electromagnet pair is viewed from above in Figure 28, and are shown in Figures 30 (a) and (b).
  • Fig. 3 is an explanatory diagram showing the concentration process of the magnetic substance
  • Figs. 3 (a) and (b) are explanatory diagrams showing the drive process of the magnetic substance labeled substance after concentration.
  • FIG. 32 illustrates one embodiment of the present invention in the case of scattered light measurement.
  • FIG. 3 is a schematic configuration diagram of a laser magnetic immunoassay device
  • FIGS. 33 (a) to (d) are diagrams for explaining the operation principle of the device of the present invention, and the circumferential diagram (a) is adjusted.
  • Fig. 3 shows the state immediately after the sample of Fig. 3 is placed in the sample container
  • Fig. (B) shows the state where the electromagnet is connected to the DC power supply and is excited by DC
  • Fig. (C) shows the electromagnet.
  • a peripheral diagram (d) is a diagram schematically showing a dispersion state of the magnetic substance-labeled analyte complex in a non-excitation state.
  • FIG. 34 is a schematic view of a laser magnetic immunoassay device for explaining an embodiment of the present invention in the case of reflected light measurement
  • FIGS. 35 (a) to (d) show the device of the present invention
  • Fig. 4 is a diagram for explaining the operation principle, where the diagram () is the state where the electromagnet is connected to the power supply and is excited by DC, the diagram (c) is the state where the electromagnet is strongly excited, and the diagram (d) is the electromagnet.
  • 'Is a schematic diagram showing the dispersion state of the magnetic substance-labeled analyte complex in the weakly excited state
  • Fig. 36 is a diagram showing interference fringes appearing in reflected light.
  • Fig. 37 is configured so that the magnetic substance-labeled analyte complex travels between the concentrated position and the non-concentrated position to perform time-series irradiation and to detect the difference in signal frequency from both positions.
  • Figure 38 shows the difference between the signals from both the concentrated and non-concentrated positions of the magnetic substance-labeled sample, which was irradiated by dividing the incident laser beam by the laser beam splitter.
  • FIG. 39 is a schematic illustration of a laser magnetic immunoassay apparatus according to an embodiment of the present invention equipped with a magnetic pole piece moving mechanism and a sample container moving mechanism. Is a figure,
  • FIG. 4 ⁇ is a diagram illustrating a method of solidifying an antigen or antibody according to the present invention
  • FIG. 41 is a diagram showing a test sample and a comparative test sample immobilized by the method shown in FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the present invention uses magnetic fine particles as a label to label a specific or unknown antigen or antibody, for example, various viral antigens or viral antibodies collected from the blood or stool of a patient with this label.
  • a specific or unknown antigen or antibody for example, various viral antigens or viral antibodies collected from the blood or stool of a patient with this label.
  • cancer antibodies in blood of cancer patients or lymphomas that specifically recognize cancer, monoclonal antibodies, or lymphomas that have become cancerous such as leukemia can be labeled with a magnetic substance.
  • the present invention can also be applied to the case of identifying the body.
  • the magnetic fine particles it is possible to use compound magnetic materials such as magnetite and r-ferrite, and metal magnetic materials such as iron and copal.
  • ultrafine particles of the magnetic material described in U.S. Pat. No. 4,219,3335, line 3, line 58 to line 4, line 7 can be used.
  • magnetite is preferable because it has a good affinity for viruses and specific antibodies and is suitable for labeling viruses.
  • the magnetic domain preferably has a single domain particle structure and a particle size of 50. about nm The degree is appropriate.
  • These magnetic fine particles can be bound to the immunoreactant (antigen or antibody) by a known method.
  • the magnetic fine particles are encapsulated with an organic polymer capable of binding the immunoreactant.
  • the surface of the magnetic fine particles can be silanized by a known method, and then an organic compound can be bonded to a silane bond.
  • US Patent Nos. 3, 9 5 4 and 6 6 6 (A) Polymer encapsulation of materials is disclosed, and Zhou 3, 983, 2999 discloses that organic compounds are bonded to inorganic particles using a silane bond.
  • the antibody or antigen as the sample is reacted with the known solid-phased antigen or antibody and the antigen-antibody reaction ti, or the antibody or antigen as the sample is directly solidified and phased, and the magnetic label causess an antigen-antibody reaction with the body.
  • the immobilization method is performed using a non-magnetic support made of an inorganic material such as silicone or an organic material such as plastic resin.
  • the support may be a plate-shaped one, a microsphere having a diameter of 1 ⁇ 771 to 1 mm, or a sample container itself ⁇ organic thin film soluble in an organic solvent or An inorganic thin film is applied, and the above-mentioned antigen or antibody is fixed on these thin films.
  • the thin film can be selected from resists that are soluble in methanol and the like, which are used in semiconductor photolithography, for example. For example, when immobilizing influenza virus to the thin film, nopholac resin is preferable.
  • a magnetic support that can be applied to antibodies in a circular manner
  • the method for immobilizing the enzyme to the enzyme is also applicable to the method described in Method 1 in 3 * 4 * 3 * 2. ..
  • the support may be, for example, agar, C using gelatin, or the like.
  • the present invention is not limited to these conjugation methods, and other conjugation methods may be used as long as they do not impair the immunocomplex forming ability of the immunoreactor.
  • the pretreatment for reacting the specimen with the magnetic substance-labeled body is carried out by an indirect method of reacting a solid-phased known antigen or antibody with an antibody or antigen as the specimen, and an antibody as the specimen.
  • a direct method in which the antigen is directly immobilized there are a method of reacting the magnetic substance-labeled substance, there are a method of positively reacting the sample with the magnetic substance-labeled substance 'and a method of inhibiting the reaction (competitive inhibition reaction detection method).
  • the unreacted magnetic label When the plate-shaped support or the bottom surface of the sample container itself is used as the support and when the microspheres (hereinafter referred to as non-magnetic spheres) are used, the unreacted magnetic label The process of dividing and removing is different.
  • the removal step is performed by using a magnet, for example, a rare earth magnet, by utilizing the characteristics of the magnetic label, but the removal is also possible by washing. It is possible. The combined use of a magnet and cleaning is also effective.
  • the thin film is dissolved from the support by an organic solvent to break the bond between the support and the magnetic substance-labeled test substance, and thereby Liquid-state the body-labeled specimen.
  • the non-magnetic substance sphere floating in the liquid and the unreacted substance do not react with each other because the non-magnetic substance sphere is larger in size and mass than the magnetic substance-labeled substance. It can be separated from the magnetic substance labeled with the other by the induction by an appropriately adjusted magnetic force. In order to ensure separation, it is appropriate to use a filter that filters the magnetic resting substance and does not filter the non-magnetic sphere in combination with the magnetic force. In this way, adjust the sample for measurement.
  • the magnetic label remains in the liquid phase containing the sample, and other than that In the case of, there is no magnetic substance labeled in the liquid phase. Therefore, it is possible to identify and quantify the sample by knowing the presence or absence and the amount of the magnetic substance-labeled substance in the liquid phase.
  • the presence or absence and the amount of the magnetic label can be measured by irradiating (incident>) laser light to a measurement system consisting of the sample dispersed in the liquid phase and measuring the intensity change of the light emitted from the measurement system. You can learn more about it.
  • the “emitted light” means scattered light, transmitted light, reflected light, interference light or diffracted light of incident laser light.
  • FIG. 1 is a schematic explanatory diagram of a laser magnetic immunoassay device according to one embodiment of the present invention.
  • 1 2 is, for example, a He Ne laser with an output of 5 mW
  • 13 is an incident light beam
  • 15 a is a scattered light beam
  • 15 b is a transmitted light beam
  • 16 is a S i photo diode.
  • 1 is a lock-in
  • 18 is an electromagnet
  • ⁇ 9 is a low frequency power source of 0.5 HZ, for example, for moving the electromagnet 18 20 is a lens for collecting scattered light
  • 2 is a polarizing plate.
  • the glass 11 containing the sample or control sample is mounted in the electromagnet 18 and the magnetic label is induced around the laser 1 incident beam 1 3 ⁇ concentrated, and the liquid containing the sample by the laser ⁇ 2 is collected.
  • the scattered light beam 15 a or the transmitted light beam 15 b from is detected by the diode A 16. Since the movement of the magnetically labeled virus antibody 4 in the liquid phase is controlled by the electromagnet 18, the intensity of the scattered light flux 15 a and the transmitted light ray 15 b is the frequency of the low-frequency power source 18. It will be adjusted to '.
  • the lock-in amplifier ⁇ 7 tunes the scattered luminous flux 15 a or the'transmitted light ray 15 b tuned to the frequency of the low-frequency power supply 19 ', the disturbance of temperature fluctuations etc. It is possible to measure the intensity of scattered light or transmitted light from a liquid containing a sample without any influence.
  • the scattered light intensity from the liquid containing the specimen is measured in synchronization with the cycle of the alternating magnetic field, but it is synchronized with the alternating magnetic field because there is no magnetic substance in the control sample. There is no component that exists, and the scattered light intensity is direct current, and it is possible to know the packed ground level by measuring it through the lock-in amplifier 19.
  • Numeral 20 is a condenser lens for converging scattered light, and the light plate 21 is used to separate and measure the light component from the sample. That is, the incident laser light is close to linearly polarized light.
  • One ⁇ 5-Something was set to cross nicol so as to quench when no magnetic substance was present in the liquid phase, and magnetic substance I was induced in the optical path. At this point, the polarization state changes so that the emitted light is obtained.
  • the low-frequency power source is not limited to 0.5 Hz, but it is preferable to determine the optimum frequency according to the viscosity and magnetic field strength of the aqueous solution containing the sample.
  • a step of labeling one antigen or antibody with magnetic fine particles to form a magnetic substance-labeled substance, and subjecting the magnetic substance-labeled substance and the analyte to an antigen-antibody reaction The step of separating and removing the unreacted magnetic substance-labeled body from the magnetic substance-labeled detection complex after the step and the magnetic substance-specimen complex after separating and removing the unreacted magnetic substance-labeled body
  • Laser magnetic immunoassay method which comprises the steps of: Dispersing a solution in a liquid and irradiating it with laser light; and measuring the light emitted from the magnetic substance-labeled analyte complex by irradiation of the laser light.
  • the sample container containing the liquid in which the above-described magnetic resting complex was dispersed was held with its axial direction substantially coincident with the optical axis direction of the irradiation laser light, and the specimen container was held in the axial direction of the resting container. And moving the magnetic field sequentially to guide and concentrate the magnetic substance-labeled analyte complex to a position near the optical axis of the optical system that receives the emitted light.
  • a step of applying a magnetic field that periodically changes to the magnetic substance-labeled analyte complex in the vicinity of the output optical axis after guiding and concentrating to a position near the optical axis, and A laser magnetic immunoassay is provided, which is characterized by selectively detecting only synchronized emitted light.
  • the sample for the antigen-antibody reaction with the magnetic substance-specimen complex the sample after the antigen-antibody reaction between the sample and the specific antibody of the sample or the antigen is used, and Anti-immunoglobulin can be used as a more labeled antibody.
  • the sample that reacts with the magnetic substance-labeled substance and the antigen-antibody reaction cannot cause an antigen-antibody reaction, that is, the sample that reacts with the magnetic substance-labeled substance and the antigen-antibody reaction, and the magnetic substance-labeled substance complex. Together with the body it can be an antigen or an antibody.
  • the magnetic sample when the sample is an antigen or antibody that causes a specific antigen-antibody reaction with the magnetic label, the magnetic sample remains in the liquid phase containing the sample and changes periodically with the magnetic field.
  • the sample can be detected by measuring the emitted light.
  • the sample when the sample is an antigen or antibody that does not cause a specific antigen-antibody reaction with the magnetic label, the magnetic label does not exist in the liquid in the sample container.
  • the sample can be specified and quantified by measuring the presence / absence fi of the magnetic substance-labeled substance in the liquid phase.
  • the presence or absence and the amount of the magnetic substance-labeled substance can be known by measuring the intensity change of the emitted light from the sample dispersed in the liquid phase.
  • the step of separating and removing the unreacted magnetic substance-labeled substance may be carried out by a permanent magnet or an electromagnet.
  • a sample container containing a sample labeled with magnetic fine particles and a laser light are provided.
  • a laser magnetism immunoassay system including a laser light irradiation optical system for guiding to the sample container and a light receiving system installed to receive the emitted light of the laser beam from the sample, comprising: A magnetic field moving mechanism that moves the magnetic field along the axis toward the output optical axis, which is the optical axis of the light receiving system,
  • a magnetic field driving mechanism for periodically varying the magnetic field across the position of the sample container on the exit optical axis
  • An electronic circuit section that selectively detects only the emitted light that is periodic to the fluctuation component of the magnetic field by the magnetic field drive mechanism
  • the magnetic field driving mechanism can be configured by a magnet that moves along the axis of the sample container or a plurality of electromagnets that are arranged and excited along the axis of the sample container.
  • the magnetic field drive mechanism holds the sample container at regular intervals and periodically changes the relative distance to the sample container. It consists of a pair of magnets, or electromagnets that are excited alternately.
  • the sample container has an opening of large cross-sectional area at the laser light incident portion. It has a different diameter cross-section container that has a small cross-sectional area on the exit optical axis.
  • a magnetic substance-labeled product obtained by adding magnetic quiescent particles to a predetermined antigen or antibody as a label, and a first step of reacting an antibody or antigen as a sample with an antigen-antibody, A second step of separating and removing the magnetic substance-labeled body in the end reaction from the magnetic substance-labeled specimen complex after the first step, and an antigen-antibody complex containing a magnetic substance-labeled specimen complex dispersed in a liquid.
  • a laser magnetic immunoassay method which comprises at least a third step of irradiating the liquid, and a third step of irradiating the liquid with laser light to measure the emitted light from the magnetic substance-labeled analyte complex
  • a laser magnetic immunoassay method characterized by including a process of precipitating a suspended solid dispersed in a later liquid and separating the magnetic substance-labeled analyte complex by magnetic force from the precipitate. Will be provided.
  • the treatment for precipitating the suspended matter in the solution is performed by subjecting a container containing the solution in which the sample is dispersed to centrifugal separation treatment.
  • the process of separating the magnetic substance-labeled analyte complex from the sedimentation of the suspension formed once at the end of the vessel is carried out by using a magnet disposed outside the container, 0 by moving from near to far
  • the immunoassay method according to the present invention is the immunoassay method according to the fourth embodiment, wherein the container containing the liquid in which the magnetic substance-labeled sample complex is dispersed is held on the laser optical axis, and the axis of the sample container is held.
  • a magnetic field moving along the optical axis of the emitted laser beam to guide and concentrate the magnetic substance-labeled analyte complex on the laser optical axis.
  • an operation of applying a periodically changing magnetic field to the magnetic substance-labeled analyte complex in the vicinity of the emission optical axis and synchronizing with the changing component of the periodically changing magnetic field It is advantageous to include an operation of selectively detecting only the emitted light.
  • the magnetic substance-labeled analyte complex is separated from various suspended substances such as fragments of the solid-phased support material that are inevitably present in the liquid in which the analyte is dispersed.
  • suspended matter in the liquid does not simply increase the laser light scattering in the high-concentration region by merely backing the ground, and it is not necessary to induce the sample by the magnetic force. Even if it is moved together with the sample, it will hinder the improvement of measurement accuracy.
  • the immunoassay method according to the present invention after the liquid in which the sample is dispersed is put into a centrifuge or the like, all the floating substances including the sample are once crushed. In the same liquid, only the sample is guided to the detection area of the emitted light by magnetic force.
  • the specimen may be separated by using magnetic force at the time of liquid phase conversion.
  • the method of the present invention is advantageous because it can be operated consistently in the same container from the liquid phase treatment.
  • the magnetic substance-labeled analyte complex is oscillated in an alternating magnetic field, and only changes in the emitted light such as scattered light and transmission that are periodic with the alternating magnetic field are measured. By doing so, it is possible to easily eliminate the effects of disturbance and pack ground.
  • the analyte to be detected and the non-magnetic particles having a sufficiently large mass or size for the antibody and the antigen are immobilized and An antigen or antibody that specifically reacts with the sample to form an antigen-antibody complex, and an antigen or antibody that is labeled with magnetic fine particles and specifically reacts with the antigen-antibody complex
  • a magnetic substance-labeled substance is dispersed in a liquid to form a magnetic quiescent antigen-antibody complex which is a complex of the antigen-antibody complex and the magnetic substance-labeled substance, and the magnetic substance-antigen complex is not mixed with the magnetic substance-antigen complex.
  • a laser magnetic immunity measurement method characterized by detecting the emitted light of a laser beam emitted from a complex to detect the sample. Further, as an apparatus for carrying out the method according to the above fifth embodiment, an analyte to be detected and a non-magnetic particle having a sufficiently large quality S or size for the antibody and the antigen are immobilized.
  • Formation of the antigen-antibody complex by adding the antibody or antigen and the magnetic fine particles to the magnetic particles, and labeling with the magnetically-reactive fine particles of the antigen-antibody complex And a first magnetic force capable of inducing the magnetic substance-antigen antibody complex, and capable of inducing the magnetic fine particles not bound to the non-magnetic substance particles.
  • An induction means having a second magnetic force that is incapable of inducing the magnetic-antigen-antibody complex, an upper part that communicates with the first container so that the liquid can move, and By moving the guiding means in the state of magnetic force, a second container capable of receiving the magnetic substance-antigen-antibody complex derived from the liquid in the first container and the liquid are moved.
  • the first container and the upper container are in communication with each other, and the guiding means is moved in the state of the second magnetic force, whereby the first container or the second container is moved.
  • a third container capable of receiving the magnetic fine particles which are not bound to the non-magnetic particles derived from the liquid suspension therein, means for irradiating the second container with laser light, and the second container Laser magnetic immunoassay device characterized by comprising means for measuring the scattering of laser light in the container Or'provided.
  • the laser magnetic immunoassay according to the present embodiment uses magnetic fine particles as a labeling substance, and it is more effective than an antigen and an antibody and an antigen-antibody complex thereof by an antigen or an antibody that causes an antigen-antibody reaction with a specimen.
  • One of the main characteristics is to fix non-magnetic particles having a large mass or size to the inside.
  • the method of the present invention of irradiating the complex with laser light and detecting the emitted light is more sensitive than the method in which non-magnetic particles are not present. Has the advantage of being significantly improved. It goes without saying that neither the magnetic fine particles nor the non-magnetic particles themselves have problems such as radiation or poisoning, and there is no particular limitation in using them.
  • magnetic fine particles are supplied from various materials such as various compound magnetic materials such as magnetite and r-ferrite, and metallic magnetic materials such as iron and copal, which are stable to samples. It is possible to easily select an appropriate identification quality.
  • non-magnetic particles many materials such as plastics such as polystyrene latex or inorganic substances such as silica are supplied, and non-magnetic particles that are stable against the antigen or antibody to be measured can be obtained. It can be easily obtained.
  • the non-magnetic particles are specifically suitable for immobilizing an antigen or antibody on the surface with fine particles having a high density as a nucleus. It is formed by coating with a substance.
  • the fact that the labeling substance is a magnetic substance is utilized, and the labeled antigen or antibody (magnetic substance-labeled substance) is further reacted with these to give a rest.
  • the magnetically resting antigen-antibody complex can be selectively manipulated by magnetic attraction.
  • the non-magnetic particles attached to the antigen or antibody that reacts with the sample in the antigen-antibody reaction have a larger mass or size than the magnetic particles. Therefore, the antibody or antigen that has reacted with the antigen or antibody immobilized on the non-magnetic particles cannot be pulled without using a larger magnetic force than the unreacted antibody or antigen. ..
  • the main characteristic is that the detection step using laser light scattering is continuously performed after the above-mentioned sample preparation step.
  • a light receiving element may be installed at a position deviated from the laser beam output optical path to measure the intensity of the output light, or a light receiving element may be installed on the laser optical path to disperse the SL light.
  • the intensity of the laser beam that has decreased with respect to the emission intensity may be measured ⁇
  • the present inventors irradiate the laser beam from the opening direction (actually above) of the sample container, and By measuring the emitted light from the direction (actually, from above), we confirmed that highly sensitive detection is possible without being affected by the shadow of the container.
  • the sample when measuring the above-mentioned laser light scattering, the sample was filled.
  • the magnetic-antigen-antibody complex can be condensed to a predetermined area in pure water. It was confirmed that with such an operation, the detection sensitivity was further improved, and picogram level detection was possible.
  • the applied magnetic field as described above is modulated by an AC power supply at a predetermined frequency, and only the fluctuation of laser light scattering that is periodic at this modulation frequency is detected.
  • an apparatus proposed by the inventors of the present invention is, at least, a container for holding a sample and an inside of the container. It is indispensable to provide a guide means for performing various operations on the sample and a means for performing measurement by laser light scattering.
  • Shells As will be described later, as a container, the antigen-antibody reaction and unreacted antigen were detected in the two specimen containers with a low bulkhead configured so that the contents communicated near the water surface. It is advantageous that the separation of the antibody and the selective separation of the magnetic substance-antibody complex are continuously carried out. In this method, along with unreacted magnetic substance-labeled substances, antigens, antibodies, etc., which have been factors that limit the detection limit and improvement of detection accuracy, various suspended substances inevitably present in the liquid are surrounded by the sample container. It is possible to achieve extremely efficient separation by a series of operations that are performed in-house.
  • the induction means there are two or more permanent magnets with a specified magnetic force. May be used, but it is advantageous to use an electromagnet or the like that can change the magnetic force arbitrarily. That is, by using this electromagnet, it is possible to easily perform the concentration of the sample in pure water or the application of an alternating magnetic field as described above.
  • the device is configured so that the container containing the sample moves with respect to the guiding means fixed on the pedestal of the device, and laser light is irradiated directly below the guiding means. This is advantageous, but details will be described later with specific examples.
  • the method of the present invention greatly exceeds the limits of the method using AFP, while utilizing the laser light scattering measurement by frequency, and the detection sensitivity and detection accuracy of the RIA method are greatly exceeded. I was able to achieve what is close to. Furthermore, the method according to the present invention is an extremely advantageous method for automation of inspections as will be described later.
  • the indirect method further includes a method of actively reacting the sample with the magnetic substance-labeled substance, a method of inhibiting the reaction between the sample and the magnetic substance-labeled substance, a so-called competitive inhibition reaction detection method, and the like.
  • the present invention can be effectively applied to any of them.
  • the sample is immobilized on a support such as gelatin, Since it does not depend on the method of separating from the antigen or antibody labeled with unreacted magnetic fine particles, it is not necessary to destroy the supporting rest and remove it from the sample when measuring the scattering with laser light. It's simple.
  • a storage part defined by a side wall having a predetermined height and a side wall lower than the side wall disposed in the storage part.
  • a sample container for laser magnetic immunoassay which is configured to be capable of performing fc and is characterized by fc.
  • first and second storage sections separated by the first partition that is lower than the side wall that is implemented by using this sample container, the first storage section, and the first partition.
  • a second operation for forming a complex, the second accommodating portion and the third accommodating portion are grooved with pure water to the height of the side wall, and the first accommodating portion, the second accommodating portion, and the By a third operation of communicating the third container part on the first partition wall and the second partition wall, and a guiding means for generating a magnetic force for the unreacted magnetic substance labeling rest in the first housing part.
  • a method for preparing a sample in laser magnetic immunoassay is provided, which comprises subjecting the antigen-antibody complex in the sample to quantification.
  • the mechanical method using a permanent magnet complicates the mechanism, and the method using an electromagnet has a structure that is not suitable for generating a strong magnetic field. There was a drawback that it took a long time to concentrate the body locally.
  • the present invention provides a laser magnetic immunoassay apparatus having a simple structure and capable of locally concentrating a magnetic substance-labeled body in a short time. This is the purpose.
  • a sample container containing a liquid containing a magnetic substance-labeled body, a pair of electromagnets sandwiching the sample container, and two types of direct current and intermittent pulse are generated, A power supply that supplies this to the electromagnet, a laser light irradiation optical system that guides laser light to the sample container, and a light-receiving device that is set to receive laser light emitted by the magnetic substance-labeled sample complex.
  • the electromagnet includes a system and an electronic circuit section that selectively detects only the emitted light that is periodic to the intermittent pulse from the light receiving system, and repeats and adds the emitted light signal.
  • the pair of magnetic cores and pole pieces are made of a material with a small remanent magnetization so that the magnetic field at the center of the magnetic core is maximum and the magnetic field increases toward the center of the magnetic core.
  • the specimen container is a thin tube, a mechanism for holding the thin tube horizontally between the electromagnet pair, and the irradiation laser light.
  • An optical system for guiding to the double tube is provided.
  • the power source continuously outputs a large direct current for a predetermined time and then intermittently has a period within a range of 0.05 Hz to 10 Hz.
  • the pulse is controlled so that its peak value is smaller than the continuous DC value and the pulse without DC offset is output.
  • the electromagnet pair is A current circuit and a magnetic circuit are provided so that independent excitation or sum excitation can be selected.
  • the emission light signal from the sample is repeatedly added.
  • the sensitivity and reproducibility of the measurement could be improved significantly.
  • a magnetic substance-labeled substance obtained by adding magnetic fine particles as a label to a predetermined antigen or antibody, and a first step of reacting an antibody or antigen as a sample with an antigen-antibody reaction.
  • a magnetic field is applied to a solution containing a magnetic substance-labeled analyte complex, which is a complex of the magnetic substance-labeled substance and the analyte after the first step, to induce the magnetic substance-labeled analyte complex in a laser light irradiation region,
  • the laser magnetic immunoassay method including at least the second step of concentrating, (i) selectively detecting only the emitted light that is periodic in the pulsation-free pulse, or () the concentrated magnetic substance
  • a laser magnetic immunoassay method characterized in that the movement of a labeled sample is controlled by a magnetic force and the surface tension of a liquid, and emitted light that is cycled under the control is detected.
  • the step is performed using a sample container having an opening at the top, and the guiding / constricting step and the detecting step are placed below the sample container.
  • Electromagnet and the electromagnetic A change in the amount of reflected light is detected by a magnetic pole piece placed directly above the water surface of the specimen container facing the magnetic core of the stone, and the amount of reflected light is changed periodically from the water surface directly below the magnetic pole piece to the fluctuation magnetic field cycle. It is carried out by
  • the quantification of the sample is performed by counting the number of interference fringes appearing in the laser reflected light due to the movement of the magnetic substance-labeled sample complex.
  • an inspection container having an upper opening for accommodating a magnetic substance-labeled analyte complex, an incident optical system for guiding a laser light source to the surface of the analyte container, and the analyte A receiving system for reflected light of laser light, a concentrating mechanism for concentrating the magnetic substance-labeled sample complex at one point just below the surface of the sample container, and a drive mechanism for periodically driving the magnetic substance-labeled sample complex.
  • the laser magnetic immunoassay device including at least, the concentrating mechanism and the driving mechanism are arranged so as to sandwich the sample container facing the electromagnet and the magnetic core of the electromagnet.
  • a laser magnetic immunoassay device comprising: a magnetic pole piece; and a power supply for exciting the electromagnet, and an electronic circuit section that selectively detects only the reflected light in synchronization with the cycle. Be done.
  • the mechanism in which either the sample container or the electromagnet or the magnetic pole piece moves in a horizontal plane is troubled.
  • the present inventors have studied a method for detecting reflected light from a composite material labeled with a magnetic substance, and as a result of the unique effect of the configuration of the present invention, a change in the intensity of reflected light that is periodic in an alternating magnetic field is observed.
  • a phenomenon occurs in which the water surface immediately below the magnetic pole piece is slightly raised. When the suction of the magnetic substance-labeled analyte complex by magnetic force is stopped, the raised water surface automatically returns to the horizontal level due to the surface tension of the water.
  • interference fringes are generated in the reflected light according to the degree of ridges. These interference fringes are also generated by suspended matter on the water surface, so if only the interference fringes that are synchronized with the magnetic field fluctuations are detected, they will not be affected by the disturbance. It should be noted that when the amount of the magnetic substance-labeled analyte complex is less than the picogram, the number of interference fringes is less than one, but the intensity of the reflected light changes in a cycle of magnetic field fluctuations. .. Also, a change in the diameter of the interference fringes may be detected.
  • the concentration position where the magnetic substance-labeled analyte complex is present and the solution portion where the magnetic substance-labeled analyte complex is absent are included in the laser magnetic immunoassay method including at least the second step of concentration.
  • Laser light is radiated to the non-concentration position of the laser beam in a circular or time-series manner, and the light emitted from the concentration position
  • a laser magnetic immunoassay method characterized by detecting the difference between the emitted light and the light emitted from the non-concentrated position.
  • the second step is performed using a sample container having an opening at the upper side, and the magnet placed below the sample container and the sample container facing the magnet.
  • Induction / concentration is performed by a magnet piece placed directly above the water surface, and in the detection step, the water surface immediately below the magnetic pole piece and the water surface in the vicinity of the magnetic pole piece are irradiated in a circumferential or time-series manner. Is done by.
  • the second step is performed using a thin tubular sample container, and the magnetic field at one defined point of the sample container is the maximum, and the maximum point of the magnetic field is the maximum. If the sample container part where the magnetic field is maximized and the sample container part where the magnetic field is maximized is simultaneously induced by the magnet configured so that the magnetic field increases toward Is performed by irradiating in time series.
  • any of the emitted light, transmitted light, reflected light, interference light and diffracted light from the sample may be returned in the m E detection step.
  • the laser beam can be divided into two so that the irradiation at the circumference can be performed.
  • the laser beam is irradiated between the concentrated position and the non-concentrated position to perform time-sequential irradiation.
  • a sample container containing a sample labeled with magnetic microparticles and a magnetic substance-labeled sample complex are induced at one point in the sample container.
  • a laser magnetic immunoassay apparatus including at least an optical system for receiving diffracted light, comprising a gradient magnetic field generator and a beam splitter or a deflector. Will be provided.
  • the gradient magnetic field generating device is composed of a permanent magnet or an electromagnet, and a magnetic pole piece installed so as to sandwich the sample container so as to face the permanent magnet or the electromagnet.
  • any one of the sample container or the permanent magnet or electromagnet, and the magnetic pole piece is configured to move in a horizontal plane.
  • the follow-up to the external magnetic force is naturally limited due to the viscous resistance of the solution. Therefore, in order to improve the SZN ratio, the emitted light, transmitted light, reflected light, or interference light from the magnetic substance-labeled analyte complex is repeatedly added.
  • the tenth and eleventh embodiments described above since it is possible to eliminate the squeal of the grounding from the sample other than the sample that interferes with the signal from the magnetic substance-labeled sample complex, it is possible to achieve high speed and high speed.
  • FIG. 2 is a diagram illustrating a ⁇ example of a method for preparing a liquid in which a magnetic substance-specimen complex is provided for use in the laser magnetic immunoassay of the present invention.
  • Fig. 2 (a) to (d) show the process of preparing the test sample liquid
  • (e) to (F) show the process of preparing the comparative control sample.
  • Figure 2 (a) shows the process of solidifying a known viral body 2 on a support made of agar, and (b) shows the unknown viral virus in the blood of a patient affected by solidified viral antibody 2.
  • the step of injecting antigen 3 to carry out antigen-antibody reaction (c) the step of reacting virus-labeled viral antibody 4 with viral antigen 3, and (d) the step of dissolving and removing support 1 and then magnetic
  • the liquid phase conversion step of placing the body-labeled analyte complex in the glass cell 11 and dispersing it in an aqueous solution is illustrated.
  • FIG. 2 (e) shows that the magnetic substance-labeled viral antibody 4 that did not undergo antigen-antibody reaction with the sample due to the absence of viral antigen 3 was immobilized by the rare earth magnet 5.
  • Figure 2 (f) shows the liquid phase process of the comparative control sample in which the support 1 is dissolved and removed, and then the sample 2 is placed in the glass cell 11 and dispersed in the aqueous solution.
  • the removal process shown in Fig. 2 (e) may use both magnets and washing.
  • a magnetic substance-labeled viral antibody 4 it is suitable for labeling viruses and the like with good affinity for viruses and specific antigens, and the antigen that specifically binds to virus antigen 3 is magnetite fine particles.
  • the one coated on the surface It was appropriate that the particle size of the magnetic particles be about 50 nm.
  • FIG. 3 is a diagram illustrating a second example of a method for preparing a liquid in which a magnetic substance-labeled sample complex to be subjected to the laser magnetic immunoassay of the present invention is prepared, and FIG. 3 (a) ⁇ (D) is the process of preparing the test sample,
  • FIG. 3 shows the steps for preparing the comparative control sample.
  • the virus antigen 3 is immobilized on the support 1 as shown in Fig. 3 (a) .
  • the virus antigen 3 and the virus antibody 2 in the blood of the patient as the sample are used.
  • Antigen ⁇ and anti body reaction Fig. 3
  • Figure 3 shows unreacted magnetic substance labeled anti-immunoglobulin 4 '. Is separated and removed from the solid-phased antigen by using a rare earth magnet 5, and (f) shows a liquid phase forming step of the comparative control sample.
  • the sample is quantified by the laser light scattering method of the present invention.
  • FIG. 4 is a diagram illustrating a third example of a method for preparing a liquid in which a magnetic substance-labeled rest complex is used for the laser magnetic immunoassay method of the present invention.
  • a support made of gelatin is immobilized on an unknown influenza virus 3 taken from a patient, for example.
  • the influenza virus 3 and a known magnetically labeled viral antibody 4 labeled with ultrafine iron particles were allowed to undergo an antigen ⁇ anti-body reaction (Fig. 4 (b)), and an excess of magnetically labeled viral antibody was used. 4 is separated by electromagnet ⁇ and removed (Fig. 4 (c)).
  • the magnetically non-labeled sample complex is placed in glass 6 and dispersed in an aqueous solution to prepare the test sample liquid (Fig. 4 (d)).
  • FIG. 5 is a diagram illustrating an example of a method for preparing a liquid in which a magnetic substance-labeled analyte complex is dispersed for use in the laser magnetic immunoassay method of the present invention in a competitive inhibition reaction detection method.
  • a known viral body 2 is immobilized on a support ⁇ made of gelatin. This solid-phased body 2 is allowed to react with the patient's viral antigen 3 (Fig. 5 (b)).
  • Magnetic substance-labeled viral antigen 2 ' which was labeled with a magnetic substance in a separate step, was reacted with the sample after the antigen-antibody reaction in step (b) (Fig. 5 (c)), excess, that is, The unreacted magnetic substance-labeled virus antigen 2 'is separated and removed by the electromagnet 5 (Fig. 5
  • the support 1 is then dissolved and removed, and then the magnetic substance-labeled sample complex is placed in the glass cell 11 and dispersed in an aqueous solution to prepare a test sample liquid.
  • Fig. 5 shows the step of reacting the magnetic substance-labeled viral antigen 2'with the control sample, and (f) shows the step of collecting the unreacted magnetic substance-labeled viral antigen 2'with the magnet 5. Show.
  • FIG. 6 is a diagram explaining another example of a method for preparing a liquid in which a magnetic substance-labeled analyte complex is dispersed for use in the laser magnetic immunoassay method of the present invention in a competitive inhibition reaction detection method. ..
  • a known viral antigen 3 is immobilized on a support 1 made of vitamin.
  • the immobilized antigen 3 and the virus body 2 of the patient are allowed to react with the antigen body (Fig. 6 (b)).
  • the magnetic substance-labeled virus antibody 4 labeled with a magnetic substance in a separate step was reacted with the sample after the antigen-antibody reaction in step (b) (Fig. 6 (c)), and excess. That is, the unreacted magnetic substance-labeled virus antibody 4 is separated and removed by the electromagnet 5 (Fig. 6 (d)).
  • FIG. 6 shows the step of reacting the magnetic substance-labeled virus antibody 4 with the comparative control sample, and (f) shows the step of collecting the unreacted magnetic substance-labeled virus antibody 4 with the magnet 5.
  • the magnetically non-labeled viral antibody 4 is removed by the magnet as it is unreacted because the reaction with the viral antigen 3 is inhibited by the viral antibody 2 in the liquid phase containing the sample.
  • virus antigen 3 does not exist in the liquid phase containing the control sample
  • magnetic substance-labeled virus antibody 4 reacts with virus antibody 2 and is detected.
  • the magnetic substance-labeled sample complex is not detected in the liquid phase containing the sample, and the magnetic substance-labeled complex is detected only in the liquid phase containing the comparative control sample.
  • the assay method according to this example has high detection sensitivity, it is possible to identify influenza virus at an early stage of virus infection as compared with the conventional method using an enzyme or a fluorophore. done.
  • the specimen and the comparative control sample were prepared according to Preparation Method IV (Fig. 5), and then measured by the laser light scattering method of Example 1 above.
  • the body-labeled virus antigen 2' is removed by the unreacted magma because the virus antigen 3 inhibits the reaction with virus antibody 2 in the liquid phase containing the sample. ..
  • virus antigen 3 was not present in the liquid phase containing the comparative control sample, the magnetic substance-labeled virus antigen 2'reacted with virus antibody 2 and was detected.
  • the magnetic substance-labeled sample complex was not detected in the liquid phase containing the sample, and the magnetic substance-labeled sample complex was detected only in the liquid phase containing the comparative control sample.
  • step (b) since the number of virus antigens 3 was extremely small in the samples from patients at the initial stage of virus infection, only some of the immobilized wells reacted with virus antigen 3 in step (b). Therefore, the magnetic substance-labeled analyte complex can be detected even in the liquid phase containing the analyte, but the detected amount decreases as the virus antigen 3 increases. The amount of virus antigen 3 can be quantified by this decrease. It
  • test sample liquid was prepared and measured in the same manner as in Example 4 above.
  • agar or gelatin was used as the support, but there is no essential difference between them, and the support is the antigen to be solidified or the well. It is selected empirically from the combination with the body.
  • FIG. 7 is a side view of the laser magnetic immunoassay device of the present invention.
  • the magnet drive unit for inducing and concentrating the labeled magnetic microparticles and the labeled magnetic microparticles are cyclically suppressed by the external magnetic field.
  • the illustration of the labeling magnetic fine particle drive mechanism section to be performed is omitted.
  • the laser magnetic immunoassay device of the present invention is provided with a laser light source ⁇ 2 provided on an optical stage ⁇ 0 and a laser light source 1 2 from which a laser beam 1 3 is changed.
  • the laser light ⁇ 2 has its optical path changed by the mirrors 1 4, 1 4 ′, 4 ", and the sample container 1 ⁇ is placed on the optical path.
  • the specimen container I 1 is disposed in an optical path substantially coincides the lasers ray I 3 the axial, 0 having a different diameter cross-section, as described below
  • the laser beam 13 enters the specimen container 11 in the axial direction. Then, it is scattered by the magnetic substance-labeled sample complex in the liquid contained in the sample container 11. This scattered light is extracted from the small-diameter part ⁇ of the sample container 11, and the slit 16 on the scattered light flux 15 and the condenser lens 2
  • a photomultiplier tube 24 is provided at a position where the scattered light flux is condensed by the condenser lens 20.
  • sample container 11 a different-diameter cross-section container made of Pyrex glass having two kinds of inner diameters, 8 mm and 0.5 mm was used.
  • the laser beam was incident from the large-diameter end of the different-diameter cross-section container and scattered light was extracted from the small-diameter part.
  • the reason why the laser beam was incident from the large diameter side was used as the sample container with the different-diameter cross-section container as the sample container.
  • the diameter of the container is larger than that of the incident laser beam, only a part of the sample contributes to light scattering, which limits the improvement in measurement sensitivity.
  • the diameter is equivalent to the diameter of the sample, if the laser beam is incident from the opening of the container as in this example, the incident beam is widened due to the meniscus on the sample surface, and the measurement sensitivity is improved. This is because they do not like it.
  • the method of injecting the laser beam from the side surface of the measuring cell which is commonly used in the conventional light scattering measuring device, can also be applied.
  • measuring cell inside the laser beam in order to introduce rather by efficiency
  • the method of introducing a laser beam which does not use a matching tool as in this embodiment is more advantageous.
  • FIG. 8 shows a magnet drive unit for inducing and concentrating labeled magnetic fine particles of the laser magnetic immunoassay device of the present invention, and a labeled magnetic fine particle driving mechanism for periodically controlling the movement of the target magnetic fine particles by an external magnetic field. It is a schematic diagram of a part.
  • magnet slider and ultrafine particle drive mechanism are mounted on a fixed table 25 and driven by a sample container support table 26 that vertically supports the sample container 11 and an induction * concentration motor 27. It includes a screwing housing 29 that moves up and down in association with the feed screw 28, and a moving stage 30 mounted on the housing.
  • the specimen container ⁇ ⁇ is a container with a different diameter
  • the laser beam 13 is incident from the large diameter end
  • the small diameter part penetrates the moving stage 30 as described later.
  • the transfer stage 30 includes a motor 3 1, a concentric force 3 2 mounted on the shaft of the motor 3 1, and a guide stage connected to the center cam 3 2 via a rod 3 3. 3 4 and.
  • the guide stage 34 is slidable in a reciprocating direction on a track defined by a pair of guide members.
  • a pair of permanent magnets 35 are attached to the guide stage 34, and an opening 36 is provided between the permanent magnets 35.
  • the small diameter part of the sample container penetrates this opening 36.
  • the inner diameter of the opening 36 is sufficiently larger than the outer diameter of the small diameter portion of the sample container, and the small diameter portion of the sample container is configured so as not to collide with the guide stage 34 even when the guide stage 34 reciprocates. There is.
  • the sample container 11 was pinched, and a guide stage 3 4 equipped with a pair of permanent magnets 35 fixed at a distance of ⁇ 2 mm was attached to the motion control motor 31 and the eccentric cam. 3 2 and rod 3 3 are used to reciprocate at a stroke of 5 mm and a moving speed of 300 mm / min. By this operation, the concentrated labeled magnetic fine particles move in the small diameter part of the sample container in a cycle of the reciprocating motion of the permanent magnet 35.
  • Figure 9 shows the shift in light scattering intensity from the ultrafine particles measured by the photomultiplier tube 24 shown in Figure 7.
  • (a) shows the case where the permanent magnet 35 was measured while it was stationary. In this case, only irregular'intensity fluctuations due to the Brownian motion of the super-hyperparticles are observed.
  • (b>) is shown in Fig. 9 when the measurement is performed by reciprocating the permanent magnet 35.
  • the permanent magnet 35 is reciprocated, the scattering occurs in the cycle of the reciprocating motion. The fluctuation of the light intensity was observed.
  • the detection of scattered light that oscillates in a reciprocating motion by the lock-in amplifier resulted in an improvement in the measurement sensitivity of about 2 digits, and the ultra-trace measurement of picograms was possible. Became.
  • the tenth surface is based on the second embodiment of the present invention.
  • FIG. 10 the members shown in FIG. 8 that are the same as or corresponding to the members shown in FIG.
  • the magnet drive unit for inducing * concentrating the labeled magnetic particles has an induction motor 27 attached to the fixed table 25 and a feed screw 2 8 directly driven by this.
  • the moving stage 30 can be installed.
  • a pair of electromagnets 37 are arranged on both sides of an opening 36 through which the small-diameter portion of the sample container 11 on the moving stage 30 penetrates, and constitutes a labeled magnetic fine particle drive mechanism section.
  • the permanent magnet is used in the embodiment of ⁇ shown in Fig. 8, while the electromagnet 37 is used in this embodiment of Fig. 10. Therefore, there is no moving part in the labeled magnetic fine particle drive mechanism, and the difference is that ultrafine particle drive is performed electrically.
  • the induction of the fine particles ⁇ concentration and control of the passage were performed by alternately energizing a pair of electromagnets.
  • induction ⁇ During concentration, the electromagnet was excited at the same time with 37, and the movable stage 30 was moved up and down in the same manner as in the example to move the fine particles to a small diameter of the sample container ⁇ ⁇ . Guide to the specified position of the part and concentrate. Then, at the concentration position, the electromagnet 37 is excited alternately. The concentrated labeled magnetic fine particles move in a small diameter portion of the specimen container within 1 ⁇ with an excitation cycle. The excitation period differs depending on the magnetic field of the electromagnet, the distance between the sample container electromagnets, the outer shape of the sample container, etc., but in this example, about 1 Hz was appropriate.
  • the optical system is the same as that of the first embodiment.
  • FIG. 11 shows a sample container according to the present invention.
  • the sample container has a cylindrical outer shape, and the inner diameter is partially thin. Induction of labeled magnetic particles to this small diameter area ⁇ Concentrate.
  • FIG. 12 shows a magnet driving unit for inducing and concentrating labeled magnetic fine particles according to another embodiment of the present invention, and labeled magnetic fine particles for periodically controlling the movement of the labeled magnetic fine particles by an external magnetic field. It is a schematic diagram.
  • the apparatus of the present embodiment is provided with an induction core of labeled magnetic fine particles formed by laminating silicon steel sheets.
  • These iron cores 4 2 The spacer 4 4 and the spacer 4 4 form a C-shape as a whole, and the sample container 4 1 is arranged in the gap.
  • a coil 4 3 is wound around each of the iron cores 4 2 -1, 4 2 -2, and ⁇ 4 2 — 8 to form an electromagnet.
  • the core 4 5 at the substantially central position of the laminated body of the core 4 2 has coils 4 6 and 4 7 wound on both sides sandwiching the sample container 41.
  • the sample container 41 is a glass tube having an inner diameter of 2.0 mm and an outer diameter of 2.8 mm.
  • Induction of labeled magnetic fine particles ⁇ There were 8 layers of iron cores 4 2 for concentration from 4 2 — ⁇ to 4 2 — 8, and 1 layer of iron cores 4 5 for controlling the movement of labeled magnetic fine particles was provided at the center position. ..
  • Fig. 13 (a) shows induction of labeled magnetic particles ⁇ Concentration iron core 42, Fig. 13 (b) shows spacer 44, and Fig. 13 (c) shows movement control of labeled magnetic particles.
  • the cross-sections of the iron core 4 5 are shown respectively.
  • Induction ⁇ One coil 4 3 is wound around the concentration iron core 4 2 and coils 4 6 and 4 7 are wound around the motion control iron core 4 5.
  • the apparatus shown in FIG. 12 is such that the scattered light measuring portion of the laser magnetic immunoassay apparatus of the present invention shown in FIG. 7, that is, the axis of the specimen container 41 overlaps with the laser light incident optical axis 48. Will be placed.
  • the sample container 41 used in the apparatus shown in Fig. 12 is a glass cell with a circumference and inner diameter, but the shape shown in Fig. 1 ⁇ is also preferable.
  • the scattered light detection axis is indicated by reference numeral 49.
  • Fig. ⁇ 4 is a timing diagram of the excitation of the electromagnet shown in Fig. 12. Induction ⁇ Assuming that the coils wound around the enrichment iron core 4 2 — ⁇ ⁇ 4 2 _ 8 are 4 3 — 1 ⁇ 4 3 — 8 respectively, as shown in the figure Excited by the external electromagnet, the labeled magnetic fine particles in the sample container 4 1 are guided to the position of the motion control iron core 4 5 ⁇ Abraded. Next, the pair of electromagnets 46 and 47 of the iron core 45 are alternately excited to impart a periodic motion to the labeled magnetic fine particles.
  • the device shown in Fig. 12 was incorporated into the laser magnetic immunoassay system of the present invention shown in Fig. 7 and the detection sensitivity was measured. As a result, the device using the permanent magnet shown in Fig. 8 was used. It was possible to detect picogram orders such as lap and lap.
  • the device of this embodiment has no mechanical parts, and is therefore advantageous for downsizing and long life of the device.
  • a magnet with a large energy product such as a rare earth Co magnet can be used, whereas in the device of this embodiment, a magnetic field is used. Since the strength of the sample is small, it is desirable to use a sample container having a small cross-sectional area in order to exert the characteristics of the present invention.
  • the core 4 5 for controlling motion of the standard magnetic fine particles was placed in the central portion, but it is not always necessary and it may be placed at any position.
  • the iron cores for concentration 42 are arranged so as to face the sample container and face each other, but they are arranged only on one side surface of the sample container 41. This is also possible.
  • the motion control iron cores 45 it is desirable to sandwich the sample container so as to face it. The reason is that increasing the displacement of the labeled magnetic fine particles is more advantageous for controlling the intensity fluctuation of scattered light.
  • Example 9 (Fig. 15) to (c) illustrate the pretreatment of the immunoassay method according to the method of the present invention, which was carried out on each liquid phase magnetic substance-labeled analyte complex prepared in the same manner as in Preparation method.
  • FIG. 10 illustrates the pretreatment of the immunoassay method according to the method of the present invention, which was carried out on each liquid phase magnetic substance-labeled analyte complex prepared in the same manner as in Preparation method.
  • Figure 15 (a) shows that each magnetic substance-labeled sample complex prepared as described above was dispersed in water and the sample immediately after being liquid-phased had an inner diameter of 2 mm and an outer diameter of 2, It is housed in an 8 mm glass cell 11.
  • Hata mark 6 shows a magnetic substance-labeled sample complex sample complex
  • ⁇ mark 7 is an unnecessary suspended matter mainly composed of the fragments of the microfabricated solid-phased support layer.
  • a pair of rare earth permanent magnets 18 are positioned so as to sandwich the glass cell 11 and moved from the bottom of the glass cell 11 to the top of the magnet 18 to move the specimen 6 containing the magnetic substance-labeled specimen complex.
  • the glass cell was guided to near the center of the height of 1 ⁇ , only the magnetic substance-labeled analyte complex 6 was almost completely induced and rose.
  • Figure 16 is a graph showing the results of immunoassays performed by hand as described later on a plurality of samples whose concentrations were regularly changed. In addition, the results of performing the frequency measurement by omitting the above-mentioned suspension sedimentation operation and sample induction operation are also shown in this taraf for comparison and control.
  • the linearity of the detection accuracy was good, and the change in the scattering intensity which was accurately proportional to the analyte concentration could be detected.
  • the dotted line with each detection result shows the amount of back ground corresponding to each detection limit. That is, in the method of the present invention, the back ground is extremely low, and the detection limit is about double that of the comparative method.
  • FIG. 17 is a diagram schematically showing this method.
  • a pair of electromagnets ⁇ 8 sandwiching the glass tur 1 1 are placed on the side of the glass tur ⁇ ⁇ containing the prepared test sample liquid.
  • This electromagnet 18 has a function of holding the magnetically non-labeled analyte complex 6 separated from other suspended matter 7 precipitated in the glass cell 1 ⁇ at the middle of the height of the glass cell 1 1. ..
  • the electromagnet 18 may be used for separating the floating substance 7 and the magnetic substance-labeled analyte complex 6 described above.
  • the electromagnet 18 is driven by an AC lightning source 19 with a low frequency of 0.5 Hz, and the magnetic field generated by it changes with the power supply frequency.
  • the first photo diode ⁇ 6 a is arranged via the polarizing plate 21 on the extension line of the laser optical axis via the glass cell ⁇ ⁇ . Further, at a position deviated from the optical axis of the laser light, a condensing lens 20 should be provided between the magnetic substance-labeled analyte complex 6 and the glass cell 11 so that the precipitate 7 does not intervene.
  • a second photo diode 16 b is arranged so as to be sandwiched. These photo diodes 16 a and 16 b generate an electric signal corresponding to incident light by a lock-in amplifier 17 that operates cyclically with the AC power supply 19 of the electromagnet 18 described above. Output.
  • the magnetic substance-labeled analyte complex 6 is concentrated in the magnetic field formed by the electromagnet 18 to locally increase the analyte concentration. Therefore, the ray light radiated to the group of the magnetic substance-labeled rest complex 6 is scattered according to the concentration of the magnetic substance-labeled complex complex.
  • the second ⁇ photo diode ⁇ 6 a measures the intensity of the laser light transmitted through the group of the magnetic substance-labeled analyte complex 6, and the second photo diode 16 b is the magnetic field.
  • the intensity of scattered light by the group of the body-labeled analyte complex 6 will be measured.
  • ordinary measurement can be performed sufficiently with scattered light, but depending on the sample type * concentration, transmitted light could be detected with a higher SZN ratio.
  • the electromagnet 18 since the electromagnet 18 is driven by the AC power source, the magnetic field formed by the electromagnet 18 is accordingly changed. It fluctuates, and the group of the magnetic substance-labeled rest complex 6 trapped in this magnetic field also fluctuates.
  • the operation of the written diode is also cycled by the variation of the magnetic field by the lock-in amplifier ⁇ 7, so each photo diode is Only changes in the laser light intensity due to the trapped magnetic substance-labeled sample complex 6 are selectively detected. By such an operation, it is possible to eliminate the influence of temperature change or disturbance, and the detection accuracy is further enhanced.
  • FIGS. 18 (a) to 18 (h) are diagrams showing, by hand, the procedure for preparing the test sample liquid in the laser magnetic immunoassay method according to the present invention.
  • the operation described here was performed by immobilizing known pits on the surface of non-magnetic particles, causing an antigen pit reaction with unknown antigens, and then labeling specific pits with ultrafine magnetic particles.
  • the antigen anti-body reaction ti is the key.
  • Figure 18 (a) and (a) ' show a cross-sectional view of the sample container for accommodating the sample and performing the preparation operation, and subsequently, as shown in Figure 18 (c), Use the range 8a to The specimen collected from the body fluid of the patient was injected into Rule A.
  • the liquid injected here contains an unknown viral antigen 53, which forms an antigen-antibody complex by an antigen-antibody reaction with the body 52.
  • the micro-syringe 8b is used to inject into the hole A the specific body 5 4 labeled with the magnetic ultrafine particles 5 5.
  • Anti-immunoglobulin was used as the specific body. In this way, the injected fc-specific aggregate 54 reacts with the above-mentioned antigen-aggregate complex.
  • Non-magnetic particles 5 1 Antigen 5 2 — Anti-aggregate 5 3 — Unique anti-aggregate 5 4 Monomagnetic particles 5 5]
  • the prepared sample can be stored in the sample container "1" and then subjected to laser scattered light measurement.
  • the pure water is injected from the side of the fuel B and the fuel C. This is because unreacted magnetic substance-labeled analytes in the well A, unreacted microspheres, and various suspended substances inevitably present in the liquid flow into the wells B or C, Impairs detection limit or detection accuracy Because. For the same reason, it is preferable that the induction of particles containing magnetic fine particles by magnetic force is performed only near the water surface of each well. .
  • FIG. 19 is a diagram for explaining this operation.
  • the sample shown in Fig. ⁇ 9 is in a state in which it is in the same state as that of Fig. 18 (g). Therefore, in the pure water in the sample container ⁇ , the unreacted pit body 52 and its Fixed non-magnetic particles 5 1, unreacted pits 5 4 labeled on magnetic particles 5 5 in well B, and unreacted antigen pit complexes in well G (5 1 1 5 2-53-5 4-1 5 5) are dispersed. Also, the antigen-antibody complex (5 1-5 2-53-5 4-5 5) in the well G is densely clustered near the water surface by the magnet 4.
  • the irradiated laser beam 13 was mostly scattered by the antigen-antibody complex (5 1 — 5 2— 53-54-5 5) in pure water, but most of it was pure water in the well C. And is emitted to the lower side of the sample container.
  • the other is to arrange the polarizing plate 21 on the irradiated laser optical axis so that the laser light is extinguished without scattering, and the intensity of the scattered light transmitted through this polarizing plate 21.
  • the light receiving element 24 shown in Fig. 19 is a light receiving element that measures the intensity of scattered light, and here a photomultiplier tube is used. Since the scattered light is comparatively weak, a slit 22 2 is provided between the magnetic substance-labeled sample composite suspension and the light receiving element 24 to define the measurement range and to set the focusing lens 20. We have also provided a light reception, sensitivity and measurement accuracy improvement.
  • the light-receiving element 16 shown in Fig. 9 is a light-receiving element for measuring the scattering on the optical axis of the laser light that has passed through the magnetic substance-labeled analyte complex, and in this case, it is a The diode is appropriate. Further, it is preferable to provide an ND filter 2 3 between the laser light 13 and the sample for adjusting the light amount of the laser beam with which the magnetic substance-labeled sample complex is irradiated. ..
  • the irradiating laser beam 13 is incident on the water surface in the well A at an angle of 60 degrees, and the scattered light 15 is emitted.
  • the light receiving element 24 that receives the light is placed against the water surface inside the well A. Then, it is set to measure the intensity of scattered light emitted in the direction of 45 degrees.
  • pure is used for the preparation of the sample, but it is not limited to pure, and any normal liquid may be used.
  • any normal liquid may be used.
  • organic solvents and non-volatile solvents such as paraffin oil, which could not be used in the conventional method, are preferable to prevent evaporation of the liquid.
  • FIG. 20 (a ′) to (e) are diagrams showing, by hand, the sample preparation operation in another laser magnetic immunoassay method according to the present invention.
  • the operation described here is an operation of immobilizing known particles on the surface of non-magnetic particles, causing an antigen reaction with an unknown antigen labeled with magnetic particles, and then separating.
  • Specimen container 1 1 is used in this method, view the 1 8 (a) ⁇ Pi (a) 'is quite Ji peripheral to that shown in ⁇ i.e., the sample container 1 has a side wall than the height L
  • the container is divided into three wells A, B, and G by two low bulkheads a and b.
  • Non-magnetic particles have an average particle size A 3 mm square polyethylene latex was used.
  • the sample taken from the body fluid of the patient was injected into the well A by using the micro- syringe 8a.
  • the unknown virus antigen 5 3 injected here had magnetic particles 5 5 added in advance. Therefore, in the fuel A, the antigen-antibody reaction with the previously known pit 52 is exhibited, and [non-magnetic particle-antibody-antigen-magnetic fine particle] 5 1 — 5 2 — 5 3 — 5 5 — to form.
  • Non-magnetic particles 5 1 Single antigen 5 2 -Underground body 5 3 —Complex of magnetic ultra-fine particles 5 5]
  • a blunt water in which only the complex of is dispersed is obtained.
  • the sample liquid to be tested thus prepared can be subjected to laser scattered light measurement while being stored in the sample container 1.
  • the laser light scattering measurement can be performed using the magnetic substance-labeled analyte complex shown in FIG. 20 (e) by the method described in FIG.
  • FIG. 21 (a) is a diagram showing a configuration of a laser magnetic immunoassay apparatus capable of collectively performing the operations shown in Example 9 and Example 0.
  • a table 0 2 is placed on a pedestal 100 which is integrally formed with the guide member 1 0 1, and the table 1 0 2 is driven by a screen 1 0 4 driven by a motor 1 0 3. It is configured to move. Also, on this table 102, a pair of columns 105 a, an electromagnet 10 7 supported by a support member ⁇ 0 6 is provided. This electromagnet 10 7 is driven by a power source 10 8 with variable output, and can generate an arbitrary magnetic force.
  • this device is provided with an exchangeable ND filter 109, and irradiates a laser beam to the sample directly below the magnet 107 described above.
  • a slit plate 1 1 2 and a condenser lens 1 3 are arranged between the light receiving element 1 1 ⁇ and the sample.
  • the sample container 1 ⁇ 4 placed on the tape 1 0 2 is
  • each is composed of wells X, Y, and Z separated by a low partition wall ⁇ and q as ⁇ ⁇ . ing. That is, each of the wells X, Y, and Z of this sample container corresponds to each of the wells A, B, and C of the sample container 1 shown in Fig. 8 (a). Consideration is given to the fact that the operations shown can be performed manually.
  • this sample container three flies of the wel are formed on one plate-shaped member.
  • the wells X, Y, and Z are arranged in the longitudinal direction of the member, and further, the folds of other wells are arranged in the same direction on the extension of the arrangement direction of this well.
  • the electromagnet 1 07 was weakly excited by the power supply 10 8 and the unreacted magnetic substance marker having a small mass was guided to the vicinity of the water surface in the fuel X, and the moving table 1 2 was set on the diagram. Move to the right. That is, the electromagnet ⁇ 0 7 moved relatively to the well Y with respect to the sample container ⁇ ⁇ 4, and the unreacted magnetic substance-labeled body was the well Y.
  • the detection sensitivity of the laser magnetic immunoassay by the above operation was about 5 picograms.
  • the magnetic field generated by the electromagnet 107 is an alternating magnetic field
  • the magnetic rest trapped by this magnetic field rotates in synchronization with the change in the polarity of the magnetic field. Therefore, if the fluctuation of scattered light synchronized with the modulation of the power supply current is detected, the influence of the pack ground such as inevitable impurity particles dispersed in the sample can be eliminated.
  • Figure 22 (b) is a graph showing the results of measuring the variation of laser light scattering due to the above-mentioned operation. Note that Fig. 22 (b) is the same as Fig. 22 (a) on the horizontal scale.
  • the detection sensitivity was 2 picograms or more, 1, which was about three times that of the static measurement.
  • FIGS 23 (a-1) to (a-3) and (c) schematically show the construction of an apparatus capable of continuously carrying out the method according to the present invention.
  • the sample container used in this device is the same as the sample container shown in Fig. 8 (a) and (a) 'as well as the sample A for performing the antigen-antibody reaction, and the sample container separated from this sample A. It consists of the well B containing the antigen or the body of the reaction and the well C containing the complex of the antigen and the body containing the substance to be detected.
  • the sequence gradients of are different, and as shown in Fig. 23 (a), they are arranged in the order of A-C-B.
  • the partition walls X and Y that separate each fuel well have a partition wall X that separates fuel A and fuel C from a partition Y that separates fuel C and fuel B from each other. ing.
  • FIG. 23 (b) schematically shows the configuration of an apparatus capable of continuously processing a sample contained in such a container.
  • This device is configured so that multiple specimen containers as shown in Fig. 23 (b) are connected in the array direction of the tool and moved from the right to the left in the figure at a predetermined speed. ..
  • a water injection means 66 for the sample container and a magnet 5H with a strong magnetic force a water injection means 67 for the sample container and a magnet 5 with a weak magnetic force are provided above the sample container, and further due to laser light scattering.
  • Sample measurement. Means. 68 are placed in this order in Sfi.
  • test sample liquid preparation operation using this container is performed as follows.
  • the sample container 1 ⁇ is With the water injection means 66, fill the pure water from the side of the fuel C to the height of (partition).
  • the specimen container 1 ⁇ passes below the electromagnet 5 H that generates a strong magnetic force, and at this time, the magnetic particles are included, that is, (1) and (2) are guided by the magnet 5 H and then to the well C.
  • the sample container ⁇ 1 moves further, (1) and (2) collide with the partition Y, so they are all inside the well C. To remain.
  • This sample container 11 moves further and reaches below the magnet 5 L, as shown in Fig. 23 (c-4).
  • the magnet 5 L can induce a light 2, but S i 1 generates a magnetic force that cannot be induced. By this operation, only 2 is induced to the fuel B.
  • the measuring means 68 by laser light scattering provided further downstream of the device was used to measure the antigen-antibody complex in the fuel C [6 ⁇ -6 2- 6 3-6 4-6 5] can be measured.
  • an electromagnet ⁇ 8 driven by an alternating current ⁇ 9 is provided together with the laser light irradiating means 12 and the light receiving element 16 to provide a lock-in amplifier 1 By 7 Sensitivity can be further increased by detecting alternating current ⁇ 9 and periodic laser light scattering.
  • FIG. 24 (a) and (b) are diagrams showing the shape of the sample container according to the present invention, and FIG. 24 (a) is a plan view from above and FIG. 24 (b) is a plan view. It is sectional drawing seen from the side.
  • the sample container according to the present invention is configured by providing three wells X, Y, and Z on a support 7-1 arranged in a straight line so that the well X is located at the center.
  • the wells X and ⁇ and the wells X and ⁇ are separated by septa a and b, respectively.
  • the bulkiness of the septum a is larger than that of the common side wall of the sample container.
  • the bulkiness of partition b is b, which is even lower than that of J a.
  • a step 74 is provided at the position of height L, which is lower than the side wall and higher than a, as a water injection index for the entire specimen container.
  • the well support 71 was made of polystyrene, and the dimensions of each well were set as follows.
  • the upper end of the bulkhead a is one finer than the water injection index 4 and the upper end of the bulkhead b is one thigh lower than the bulkhead a.
  • the volume of each fuel is the amount of liquid that can be independently taken out from each fuel after the sample container is filled up to the water injection index ⁇ Therefore, the capacity of fuel X is less than the height J b.
  • the capacity of the well Y is a combination of the volume of the common storage part of all the wells from the water injection index to the height J a and the volume of the well Y unique below the height J a.
  • the volume of Well Z is the volume of the common containment area of Well X and Well Z below height ib combined with the volume of its own containment area of Well Z below height b. '
  • FIGS. 25 (a) to 25 (i) are diagrams for explaining a method of preparing a test sample liquid using the sample container shown in FIG. 24 step by step.
  • the following operation is an operation of quantifying the pits extracted from the patient using a known antigen.
  • labeling is performed by adding an antibody to which magnetic microparticles have been added to the sample by an antigen-antibody reaction.
  • a known antigen immobilized by holding rest 81 is immobilized on the bottom of the well X.
  • the support 81 is a nopollac resin thin film formed according to the method of Example 21 described later. In other words, an ethanol solution containing 20% nopollac resin was applied to the bottom of Fuel X and dried, and the surface was contacted overnight with a PBS solution containing a known virus antigen 80, such as inactivated influenza virus, to thin the nopolak thin film. It was immobilized on the membrane.
  • the pit body 82 collected from the cerebrospinal fluid of the patient was dispersed, and the fc liquid was injected into the well X by the micro-syringe 8a. 82 and antigen 80 and antigen Antibodies reacted to form an antigen-antibodies complex.
  • the liquid in which the anti-immunoglobulin 83 with the magnetic fine particles 84 was dispersed was injected into the well X by the micro-syringe 8b.
  • the anti-immune murine purine 83 undergoes an antigen-antibody reaction with the antigen-antibody complex rest 80-82 formed in the procedure shown in Fig. 25 (b), and is thus labeled with magnetic fine particles.
  • Magnetic antigen-antibody complex 80 0-8 2-8 3-8 4 is formed.
  • the remaining anti-immune globulin 83 which did not contribute to the reaction, floated in the fuel X as it was.
  • the magnet 5 is brought close to the water surface of the well Z, and then moved toward the well Y along the surface of the pure water.
  • the unreacted anti-immunoglobulin 8 3 to which the magnetic microparticles 8 4 remaining in the fuel X have been added is completely induced in the fuel Y. Therefore, as shown in Fig. 2 ⁇ f), the liquid vacancy in the well Y can be sucked up by the microphone syringe 8d to eliminate fc extra pits accompanied by magnetic fine particles.
  • the excess anti-immunoglobulin 83 eliminated by this operation was quantified, and It is also possible to know the stalk of anti-immunoglobulin 83 that contributed to the body reaction.
  • Fig. 25 (g) alcohol such as methanol and ethanol is added to the well X by a syringe 8e with a microphone mouth or a pipette to dissolve the nopolak resin thin film, and the specimen is liquidized.
  • alcohol such as methanol and ethanol
  • 'In the figure shows the disassembled support as a pseudo [massage] 81a.
  • a part of the suspension of support 81 is dispersed as a solid.
  • the antigen-antibody complex 80-82-83-84 containing the magnetic fine particles 84 floats in the fuel X.
  • the heater 85 is shown in the figure, it is not used (not necessary) in this case.
  • the magnet 5 is brought close to the water surface of the well X and moved along the water surface from the well X to the well Z.
  • the antigen-inactive complex compound 80-82-83-84 containing the magnetic fine particles 84 is induced in the well Z.
  • particles that do not contain magnetic material, that is, fragments of the support 81, impurities that inevitably float in the liquid, etc. remain in the well X.
  • the antigen-antibody complex suspensions 80-8.2-83-84 containing the sample are dispersed. Therefore, as shown in FIG. 25 (i), a desired sample can be obtained by collecting only the liquid in the well Z with the microsyringe 2 f.
  • a nopolak resin thin film was formed on the bottom of the sample container to solidify the antigen.
  • the silicon chip on which the virus prepared according to Example 21 below was solidified was placed as it was on the bottom of the well X, and then the sample was removed. You may operate it.
  • Fig. 25 (b) to ( ⁇ ) are similar to those in the above case, but in the process shown in Fig. 253 ⁇ 4 (g), when the ratin support is used, the fuel X is applied from below. Heat the sample at a temperature of 60 ° C for about 2 minutes with the heater 85 to dissolve the support 81, which had immobilized the antigen 80, to make the sample into the liquid phase. In this case, do not use the microsyringe 8e.
  • the decomposed support is shown as a pseudo [ ⁇ ] 8 a.
  • part of the support 81 is dispersed as a solid. In this way, the antigen-antibody complex 80-82-83-84 containing the magnetic fine particles 84 floats in the well X.
  • FIG. 26 (a>) shows the structure of another embodiment of the sample container according to the present invention.
  • each sample container 9 1 is composed of a set of wells A and B ⁇ C separated by partition walls 9 2 and 9 3 having different heights.
  • the partition wall 92 is formed lower than the partition wall 93, and each of the wells A, B, and C is attached to each of the wells X, ⁇ , and ⁇ of the sample container shown in Fig. 24. It is equivalent. Therefore, the operating procedure for use can be the same as that shown in Example 14 (Fig. 25). It is advantageous to use a nopolak resin thin film for immobilization.
  • the sample container is arranged on the ⁇ straight line in the direction of the well of a single sample container (hereinafter, this direction is referred to as the Y direction, as shown in Fig. 26 (a)).
  • this direction In the direction perpendicular to this direction (as shown in Fig. 26 (a), this direction will be referred to as the X direction hereinafter), a plurality of sample containers are aligned and aligned. All sample containers arranged on one The order of the array of wel is unified.
  • FIG. 27 shows the structure of a sample preparation instrument that can be used when the sample container as described above is used advantageously.
  • this device is provided with a rectangular table 20 1 which is provided on a frame 200 and is movable in the longitudinal direction, and it does not hinder the movement of the table 20 1.
  • a permanent magnet 2 0 2 supported on the table 2 0 1 by two columns 2 0 3 a and 2 0 3 and a supporting member 2 0 4.
  • the table 2 0 ⁇ is slid onto the data 2 0 7 via a fc bar 2 0 6 which cuts a screw through its own base.
  • the columns 203a and 203 also have a twist, which can be rotated to move the permanent magnet 202 up and down to adjust the magnetic force to the object on the table 210. it can.
  • the magnet ⁇ 02 has a width substantially equal to the entire width of the tail 20 as described later in detail. Next, the operation of the device shown in Fig. 27 will be described.
  • an example was shown in which the antigen or anti-body was immobilized on the antigen anti-antibody reaction wall using nopolak resin, but the sample container of the present invention is not necessarily limited to these Examples. Absent.
  • an antigen an anti-body is immobilized on the surface of a non-magnetic particle such as polystyrene latex, and the particle is suspended in the antigen-anti-body reaction tube of the present invention. It can also be used in a method of discriminating unreacted labeled substances by the difference in mass between the antigen-antibody complex containing non-magnetic particles and the antigen or anti-body not containing it.
  • FIG. 28 is a schematic view of a laser magnetic immunoassay device for explaining the ⁇ embodiment of the present invention, in which 2 1 1 is a sample container, 2 1 2 is an electromagnet, 21 2 ⁇ 1, 21 2 ⁇ 2 is an electromagnet coil, 2 13 ⁇ !, 2 3 1 2 is the magnetic core of the electromagnet, 2 ⁇ 4 ⁇ , 2;! 4-2 is a pole piece of the electromagnet, 215 ⁇ 1, 2 5-2 is a yoke of the electromagnet, 21 6 is a magnetic flux control piece for controlling the magnetic flux generated by the electromagnet, 2 ⁇ 7 is a stand, 220 is a laser light source (laser light irradiation optical system), and 221 is an irradiation laser.
  • 2 1 1 is a sample container
  • 2 1 2 is an electromagnet
  • 21 2 ⁇ 1, 21 2 ⁇ 2 is an electromagnet coil
  • 2 13 ⁇ ! 2 3 1 2 is the magnetic core of the electromagnet
  • One beam, 222 is a laser scattered light flux from the specimen
  • 223 is a slit
  • 224 is a lens for condensing the laser scattered light flux
  • 225 is a photomultiplier tube for receiving the laser scattered light
  • Reference numeral 226 is an electronic circuit unit that processes the output of the photomultiplier tube.
  • the sample container 21 ⁇ is a thin tube having an inner diameter of 2.5, and the thin tube is horizontally attached to the center of the electromagnet pair.
  • the laser light sources 220 are installed such that the laser light source 221 is parallel to the axis of the thin tube and passes through the center of the thin tube.
  • the slit 223, the lens 224, and the photomultiplier tube 225 (these members constitute a light receiving system for receiving the laser scattered light flux) are used to detect the magnetic substance in the sample container 221 at the center of the electromagnet pair. It is installed so as to receive the scattered light of directly above.
  • the electromagnet pair is composed of a coil, a pure iron magnetic core, a magnetic pole piece and a black iron, and the coils 21 2 -1 and 21 2-2 are wound 5000 times in the circumferential direction.
  • the yokes 215-1 and 215-2 are mounted on a stand 7 made of non-magnetic material, and can be slid on the stand 21 7 so that the magnetic gap length of the electromagnet pair can be adjusted. ..
  • the magnetic flux control piece 2 ⁇ 6 has a wedge shape and can be attached and detached between the yokes 2 ⁇ 5 — ⁇ and 21 5 — 2.
  • the electromagnet 2 The magnetic flux generated by 2 is controlled by the magnetic flux control piece 21 6, and when the magnetic flux control piece 21 6 is inserted between the yokes 21 5 — ⁇ and 2 ⁇ 5 — 2, the magnetic gap of the sample is inserted. The magnetic flux density increases.
  • the electromagnet pair acts as two independent electromagnets.
  • the magnetic flux density of the magnetic gap between the electromagnet pairs can be arbitrarily adjusted within a certain range by inserting and removing the magnetic flux control piece between the yokes.
  • the magnetic pole pieces 2 ⁇ 4-1 and 21 4-2 preferably have a conical shape, and the magnetic pole pieces 21 4-1 and 2 4 -2 are formed on the magnetic cores 21 3 1 1 and 21 3-2 by a vortex. It has been stopped.
  • FIG. 29 shows a power supply and a power supply circuit for exciting the electromagnet pair, and this power supply is used for shrinking the magnetic marker and for driving the magnetic marker after compression.
  • the electromagnet coils 2 1 2 1 and 21 2-2 can be connected or disconnected by a switch SW1, and the switch SW1 is interlocked with the switching switch of the DC power supply 227 during the cycle.
  • the electromagnet coils 21 2 12 are connected to the intermittent pulse power supply 228 through the switch SW2.
  • the switch SW2 has an opening / closing direction opposite to that of the switch SW1, and when the switch SW1 is closed, the switch SW2 is opened.
  • FIG. 30 and Fig. 3 ⁇ are the plan views of the magnetic pole pieces 21 4-1 and 21 4-2 and the sample container 1 when the electromagnet pair is viewed from above in Fig. 28.
  • FIG. 30 illustrates the shrinkage process of the above-described magnetic substance-labeled body
  • FIG. 3E illustrates the driving process of the magnetic substance-labeled body after concentration.
  • the switch SW 1 of Fig. 29 is closed, and the direct power source 227 is connected to the coils 2 ⁇ 2 - ⁇ and 2 ⁇ 2-2.
  • the magnetic flux control piece 21 6 shown in Fig. 1 is held between the black irons 21 5-1 and 21 5-2. Since the pole pieces of the pair of magnets have a conical shape, the magnetic flux density in the magnetic gap at the center of the electromagnet pair is maximized when the electromagnet is directly excited.
  • the magnetic gap length was 5 times, and when ⁇ A was energized, a maximum ⁇ 2000 G was obtained at the center of the electromagnet pair.
  • FIG. 30 shows the distribution of the magnetic substance-labeled body in the lower part of the sample container after concentration, and (b) shows it schematically.
  • the magnetic labels inside the sample container are evenly distributed in the solution before exciting the electromagnet pair, but after exciting the electromagnet pair by direct current (b) )
  • the magnetic substance-labeled body is collected on the inner surface of the sample container wall at the apex of the magnetic pole piece.
  • (B) is a schematic representation of the distribution of the magnetic substance labeled body under excitation by a pulse of 0.2 H z
  • (b) is the distribution of the magnetic substance labeled body during non-excitation of the electromagnet coil. .. That is, in (a), the magnetic substance-labeled body is concentratedly distributed on the inner surface of the sample container wall at the apex of the magnetic pole piece, but in (b), the magnetic cores 2 ⁇ 3-1, 1, 2 1 3 Since the residual magnetization of the magnetic pole piece and the magnetic pole piece is small, there is almost no magnetic field at the center of the electromagnet pair, and the magnetic substance label diffuses from the sample container wall surface to the surroundings in the solution due to Brownian motion.
  • the magnetic pole pieces are evenly distributed inside the specimen container with the apex of the pole piece as the center. Therefore, the laser beam guided to the center of the thin tube along the axis of the thin tube is scattered by the specimen at the center of the electromagnet pair, and the scattered light corresponding to the period of the pulse power supply is recorded. The intensity changes.
  • the scattered light from the sample can be taken out from above or below the sample container.
  • the sample container 2 "11 is preferably a thin tube having a larger diameter than the laser beam diameter, and the thin tube sucks the sample after the antigen-antibody reaction into the thin tube attached to the microsyringe. After that, it is convenient for the subsequent handling of the sample if one of the mouths is sealed with petrolatum etc. It is preferable that the thin tube is horizontally attached to the center of the electromagnet pair. When the thin tube is held vertically, when the electromagnet coil is de-excited, the magnetic marker concentrated in the center of the pole piece falls from the center of the pole piece due to its own gravity. This is because there is a defect that the scattering center part goes up and down with each pulse excitation.
  • the pulse excitation preferably has a period of Q .05 Hz to ⁇ 0 Hz. It takes a long time for measurement at less than 0.05 Hz,
  • the pulse has a peak value smaller than a DC exciting current value and no DG offset. This is because if the D C offset is present, the magnetic marker always remains wrapped around the inner wall of the thin tube at the center of the pole piece, and fluctuations in scattered light intensity do not occur.
  • the two electromagnet coils can be selected from independent excitation and sum excitation, for example, the current circuit as in this embodiment and the magnetic circuit are It is preferable that it is provided.
  • the scattered light from the sample is received by the photomultiplier tube 2 25. Photoelectric?
  • the output of the multiplier 2 2 5 is supplied to the electronic circuit section 2 26, which selectively detects only the scattered light synchronized with the intermittent pulse and repeats the scattered light signal. Addition ⁇ Averaging process ⁇ This makes it possible to detect a very small amount of magnetic substance-labeled substances on the bicogram scale.
  • FIG. 32 is a schematic drawing of a laser magnetic immunoassay system for explaining an embodiment of the present invention.
  • Reference numeral 301 denotes a sample container
  • 302 denotes a sample container in the sample container
  • 303 is an electromagnet
  • 304 is a magnetic core of the electromagnet
  • 305 is a pole piece
  • 306 is a laser light source
  • 3 0 7 is the laser incident optical axis
  • 30 8 is scattered light Detecting axis
  • 309 is a slit
  • 310 is a condenser lens
  • 3 ⁇ ⁇ is a photomultiplier tube
  • 3 12 is the pole piece holding part
  • 3 13 is a guide groove for moving the sample container
  • 3 1 4 is the electromagnet support
  • 350 is the electronic circuit section.
  • the sample container 302 of the sample container 301 is opened upward, and the sample container 302 contains, for example, a magnetic substance-labeled sample after an antigen-antibody reaction.
  • the sample container 301 and the method for preparing the sample are preferably the sample container and the method for preparing the sample described in Example 15 above. Since the sample container 301 can move in one direction along the guide groove 3 1 3 in the horizontal plane, the measurement of multiple samples can be performed continuously in one container.Therefore, the measurement of multiple samples can be performed continuously in the same container. Can be done.
  • the electromagnet core 304 and the pole piece 305 are preferably made of a high magnetic permeability material having a small residual magnetization. For example, pure iron or permalloy alloy having high purity is recommended. It is essential that the diameter of the electromagnet core 304 is sufficiently larger than the diameter of the sample container 302 of the sample container 301, and the diameter of the magnetic pole piece 305 is sufficiently smaller than the diameter of the sample container 302 of the sample container 30 ⁇ . Is. For example, when the sample container 302 has a diameter of 10 mm, the diameters of the magnetic core 304 and the magnetic pole piece 305 are 50 m and 5 females, respectively. Further, the pole piece 305 preferably has a sharp tip on the side facing the magnetic core 304.
  • the magnetic pole piece 305 is screwed to the magnetic pole piece holding part 3 12 so that the gap between the magnetic pole piece 305 and the sample container 30 ⁇ can be adjusted.
  • the laser incident optical axis 307 is relative to the water surface of the sample container 301.
  • the scattered light detection axis 308 is set at an angle of 45 degrees with respect to the water surface.
  • the slit 309 and the condenser lens 310 are used to guide only the scattered light from the specimen concentrated directly under the magnetic pole piece 305 to the photomultiplier tube 3 ⁇ 1. These slits 309, lens 310, and photomultiplier tube 31 constitute a light receiving system that receives scattered light of laser light.
  • the scattered light detection axis 308 is set so as to avoid the reflected light from the water surface of the laser irradiation beam which interferes, and it is preferable that the laser incident light axis 307 is at a lower angle than the scattered light detection axis 308. is there.
  • the electronic circuit section 305 processes the output of the photomultiplier tube 3 1.
  • FIG. 33 is a diagram for explaining the operating principle of the device of this embodiment in the case of measuring scattered light, where 3 15 is a DC power supply, 3 16 is an intermittent pulse power supply, and 3 20 is a magnetic substance labeled specimen.
  • 3 15 is a DC power supply
  • 3 16 is an intermittent pulse power supply
  • 3 20 is a magnetic substance labeled specimen.
  • A is a state immediately after the adjusted sample is put into the sample storage unit 302
  • (b) is a state in which the electromagnet 3O3 is connected to the DC power supply 315 and is excited by DC
  • (c) Shows a state in which the electromagnet 303 is connected to an intermittent pulse power supply and is excited
  • (d) schematically shows a dispersed state of the magnetic substance-labeled specimen in a non-excited state.
  • step (a) since the electromagnet 303 is not excited, the sample is uniformly distributed in the container.
  • the magnetic field of the electromagnet 3 0 3 concentrates on the pole piece 3 0 5 placed directly above the sample container 3 0 1, so the magnetic substance labeled specimen 3 20 concentrates on the water surface immediately below the pole piece 3 0 5. Be done. Therefore, the sharper the tip of the pole piece 305, the more localized the concentration.
  • Steps (c) and (d) are concentrated directly under the pole piece 305. This is a step of exciting the obtained sample by intermittent pulse and detecting the laser scattered light from the sample. Related When the pulsed power supply 3 16 is de-energized, the concentrated sample diffuses in the solution due to Brownian motion.
  • the sample repeats concentration and diffusion in synchronization with the excitation period.
  • the magnetic core 30 4 of the electromagnet 30 3 and the pole piece 3 05 have no residual magnetization. Since gravity acts on the diffusion of the sample, it is mainly directed downward.As described above, the laser incident optical axis 307 is set to a low angle, and only the water near the water surface of the sample storage part 302 is set. The intensity of scattered light from the specimen increases when the irradiation is performed.
  • the magnetic substance-labeled specimen after concentration as described above is periodically driven.
  • the scattered light from the sample is received by the photomultiplier tube 3 1 1.
  • the output of the photomultiplier tube 3 11 is supplied to the electronic circuit section 350, which selectively detects only the scattered light synchronized with the intermittent pulse and repeats the scattered light signal.
  • the scattered light from the sample can be advantageously removed, including disturbances and background effects, by repeatedly averaging only the fluctuations synchronized with the intermittent pulse frequency and performing averaging.
  • the suitable pulse frequency is within the range of 0.05 HZ to 20 HZ. This is because the measurement takes a long time below 0.05 Hz, and the sample does not follow above 20 Hz. Further, it is preferable that the crest value of the pulse is smaller than the DC exciting current value, and that there is no DC bias. With this device, If so, it is possible to detect a trace amount of a magnetic substance-labeled sample on the picogram level.
  • sample container 301 is configured to be movable in the horizontal plane in the above embodiment, instead of this configuration, the electromagnet and the pole piece are configured to be moved in the horizontal plane relative to the sample container. May be.
  • the laser magnetic immunoassay device has a structure in which an electromagnet and a magnetic pole piece facing the electromagnet are connected to each other. Therefore, the structure is simple and a high gradient magnetic field can be locally generated. Therefore, it is possible to locally reduce the adjusted sample after the antigen-antibody reaction in an extremely short time. In addition, since the sample contracted directly under the magnetic pole piece moves up and down by the intermittent pulse magnetic field, it is possible to increase the scattered light intensity change from the sample by injecting the laser at a low angle to the sample. I can.
  • the scattered light signal from the sample is added back and added * averaging processing is performed to obtain the measurement sensitivity and measurement.
  • the reproducibility of can be remarkably improved.
  • the scattered light synchronized with this intermittent pulse is selectively measured, it is possible to extremely effectively remove the influence of the external environment and the scattering of the packed ground, thus further improving the detection sensitivity.
  • the laser incident optical axis 307 and the reflected light detection axis 308 need to be set at the same angle with respect to the water surface of the sample container 3101. Those angles 3 are 4 5 It was degree.
  • the slit 309 is used to guide only the reflected light from the magnetic substance-labeled specimen concentrated just below the magnetic pole piece 5 to the light receiver 310.
  • FIG. 35 is a diagram for explaining the operating principle of the device of the present invention, in which 3 14 is a power source for exciting the electromagnet 30 3, 3 20 is a magnetic substance labeled sample, 3 2 ⁇ is It is a raised part of the water surface.
  • (A) is the state immediately after the adjusted sample is put in the sample storage section 302
  • (b) is the state in which the electromagnet 303 is connected to the power source 314, and is in the DC excitation state, (0 is The electromagnet 303 is in a strongly excited state
  • (d) is a weakly excited state, and the dispersion state of the magnetic substance-labeled specimen is schematically shown.
  • the front power supply 3 14 preferably outputs both direct current and alternating current.
  • the power supply 3 1 4 is composed of a function generator and a current amplifier.
  • the strong excitation and the weak excitation are achieved, for example, by generating a sine wave, a sawtooth wave, or a rectangular wave with the function generator.
  • the electromagnet 3 0 3 is not excited, so that the magnetic substance-labeled specimen 3 2 0 is uniformly distributed in the container.
  • the magnetic flux generated from the electromagnet 3 0 3 concentrates on the magnetic pole piece 3 0 5 placed directly above the sample container 30 ⁇ .
  • Figure 35 is a diagram showing the interference fringes that appear in the reflected light when the white plate is placed vertically at the position of the light receiver 3 10 in Figure 1, where 3 2 2 is the reflected light flux and 3 2 3 Is an interference fringe. Since the degree of ridges on the water surface is proportional to the amount of magnetic substance-labeled specimen 320, if the height of ridges is greater than 1/2 wavelength of the laser light used, the reflected light will show in Fig. 36. Interference fringes' appear. Therefore, the amount of the magnetic substance-labeled specimen 320 can be known from the number of interference fringes.
  • the reflected light from the magnetic substance-labeled specimen 320 can be detected very effectively by the influence of disturbance or pack ground by detecting only the fluctuation in synchronization with the alternating frequency.
  • the frequency is suitably in the range of 0.05HZ to 10HZ. In 0. 05HZ below it takes a long time to measure, Ru fc Medea not follow the specimen at least 0
  • the reflected light from the magnetic substance-labeled specimen 320 is received by the light receiving element 310.
  • the output of the light-receiving element 3 0 is supplied to the electronic circuit section 350, and the electronic circuit section 350 selectively detects only the reflected light having the 1: excitation period.
  • the electronic circuit section 350 selectively detects only the reflected light having the 1: excitation period.
  • the surface tension acts as a restoring force of the motion of the magnetic substance-labeled sample against the attraction of the magnetic substance-labeled sample by the magnetic force, and thus the present inventors previously invented the method.
  • the response speed was improved by ⁇ 0 times or more as compared with the method using the diffusion phenomenon as the restoring force. Therefore, the reflected light from the magnetic substance-labeled specimen can be controlled extremely efficiently, and an ultrasensitive antigen-antibody reaction test comparable to the RIA method can be realized at high speed.
  • the magnetic ultrafine particles used as the labeling substance have no problem in terms of radiation or toxicity, and those which are stable to the specimen can be easily obtained.
  • FIG. 37 is a schematic explanatory view of a laser magnetic immunoassay device for explaining an embodiment of the present invention.
  • the specimen container 4 0 1 with an opening at the top is placed horizontally on the electromagnet or permanent magnet 4 0 3 directly or through a table, and the magnetic substance labeled specimen is directly above the specimen container 4 0 ⁇ . Induce ⁇ to concentrate
  • the magnetic pole piece 4 0 3 is mounted.
  • a magnetic substance-labeled specimen 40 4 prepared according to any one of the adjustment methods I to V is contained in the detection container 4 01.
  • a laser light source 450 and an illuminator 407 for changing the direction of the laser light source 4056 emitted from the light source 450 are installed so as to form an appropriate incident angle on one side with respect to the pole piece.
  • a photodiode diode 408 for detecting reflected light, interference light, or diffracted light is arranged.
  • a light receiving system for scattered light is arranged at another position, and this light receiving system is composed of a slit 409, a condenser lens 4 ⁇ 0, and a photomultiplier tube 4 1.
  • the scattered light receiving system is arranged so as to be able to receive outgoing light, which is preferably at a right angle to the incident system.
  • the laser light source 4 0 6 from the laser light source 4 0 5 passes through the redirector 4 0 7 at an angle of 3 ⁇ ⁇ with respect to the liquid surface of the sample container 4 0 1 immediately below the magnetic pole piece 4 0 3-or in the vicinity thereof.
  • the light emitted as scattered light, reflected light, interference light, or diffracted light in the region where the magnetic substance-labeled specimen gathers near the water surface after being incident on the water surface and attracted by the magnetic pole pieces 40 3 is output to the phosphor diode 4 0 8 or photomultiplier tube 4 1 1 to detect.
  • the laser beam 406 is deflected by the deflector 407 and traversed on the liquid surface, where the magnetic substance-labeled sample is densely aggregated and the magnetic substance-labeled sample is not concentrated.
  • the optical signals emitted from the concentrated position region and the non-concentrated position are detected by the photodiode 408 or the photomultiplier tube 4 ⁇ ⁇ , respectively, and the difference between the signal from the concentrated position and the signal from the non-concentrated position is detected. It is detected by known means.
  • the signals at the strained position and the non-concentrated position are obtained without being affected by the viscous resistance because the magnetic substance-labeled sample in the liquid contained in the sample container 40 1 does not move. Therefore, the followability is excellent and the measurement time can be shortened.
  • FIG. 38 is a schematic view for explaining another embodiment of the present invention.
  • a gradient magnetic field generating device 50.sub.3 composed of a pair of electromagnets or permanent magnets 50.sub.2 is arranged with a glass-like cylindrical sample container 50.sub.0 .vertline.
  • the gradient magnetic field generator for example, the one having the configuration shown in Fig. 28 can be used.
  • the sample container 50 contains the magnetic substance-labeled sample 50 4 prepared according to any one of the above Preparation Methods I to V, and the magnetic substance-labeled sample was prepared by the gradient magnetic field generation device. Induction ⁇ It is contracted.
  • the laser light source 505 and the beam splitter 507 that splits the laser beam 506 emitted from the light source 505 into two should form an appropriate incident angle on one side with respect to the specimen container.
  • a photodiode diode 5 09 a, 5 for detecting transmitted light or diffracted light corresponding to each split laser beam 5 08 a, 5 08 b on the other side. 0 9 b is located.
  • the scattered light composed of the slits 5 1 0 a, 5 ⁇ 0 b, the condenser lens 5 ⁇ ⁇ a, 5 1 1 b, and the photomultiplier tubes 5 ⁇ 2 a, 5 ⁇ 2 b.
  • the scattered light receiving system is preferably arranged so as to be able to receive scattered light at a right angle to the human radiation system.
  • Two photodiodes or photomultiplier tubes It is connected to an electronic circuit 5 E 3 for processing the output signal obtained.
  • a laser beam 506 from a laser light source 50 5 passes through a beam splitter 50 7 and is divided into two and enters a liquid containing a magnetic substance-labeled sample through the tube wall of the sample container 50.
  • Incident light is preferably incident at right angles to the axial direction of the cylindrical sample container 501.
  • One of the split beams, 508 a is attracted by the gradient magnetic field generator and passes through the concentration position where the magnetic substance-labeled specimen gathers in the vicinity of the maximum magnetic field point in the specimen container and exits as transmitted light or diffracted light. .. Further, the other split beam 508b passes through the non-concentrated position where the magnetic substance-labeled specimen does not exist and is emitted as transmitted light or diffracted light.
  • the difference between the signal from the concentrated position obtained by simultaneous irradiation and the signal from the non-concentrated position is detected by the electronic circuit.
  • the signals at the concentrated position and the non-concentrated position can be obtained at the same time, it was possible not only to effectively remove the influence of disturbance and the packed ground, but also to significantly shorten the measurement time. .. Example 20
  • FIG. 39 shows a moving mechanism of pole pieces and It is a schematic diagram of a laser magnetic immunoassay device equipped with a moving mechanism of a specimen container.
  • 50 ⁇ is a sample container
  • 502 is a sample container in the sample container
  • 503 is a permanent magnet
  • 504 is a magnetic pole piece
  • 505 is a laser light source
  • 506 is an ND filter
  • 507 is a laser incident optical axis
  • 508 is scattered light.
  • Detecting axis 509 is a slit
  • 570 is a condenser lens
  • 51 1 is a photomultiplier tube
  • 51 2 is the pole piece moving mechanism
  • 51 2 — ⁇ is a column
  • 51 2-2 is a support member
  • 5 ⁇ 2-3 is a hydraulic moving mechanism
  • 51 2-14 is a hydraulic tube
  • 513 is a guide guide for moving the sample container
  • 514 is the magnet support
  • 520 is an electronic circuit section.
  • the sample container 502 of the sample container 501 is open upward, and the sample container 502 contains, for example, a magnetic substance-labeled sample after an antigen-antibody reaction.
  • the sample container 501 and the sample adjusting method the sample container and the sample adjusting method described in Example 15 above are preferable. Since the sample container 501 is slid by being slid by the motor 5 15 on the guide guide 513 and the feed screw 5 16, it is placed on the upper surface of the box-shaped magnet support 514 which can move in one direction in the horizontal plane. , Multiple samples can be measured continuously in the same container, and multiple samples can be measured continuously in one container.
  • the permanent magnet 503 and the magnetic pole piece 504 are similar to the case of the embodiment 17.
  • the pole piece 504 is screwed to the hydraulic moving mechanism 51 2-1 of the pole piece moving device 5 ⁇ 2, and the gap between the pole piece 504 and the specimen 501 can be adjusted.
  • the moving mechanism 51 2 — ⁇ is supported by a column 51 ′ 2 — 3 via a supporting member 5 2 — 2 and a hydraulic tube 51. •
  • the magnetic pole piece can be moved in the direction perpendicular to the moving direction of the sample container 50 1 by being driven by the hydraulic pressure transmitted by 24.
  • the laser incident optical axis 50 7 is at an angle of 30 degrees with respect to the water surface of the specimen 5 01
  • the scattered light detection axis 50 8 is at an angle of 45 degrees with respect to the water surface. It is set.
  • the slit 509 and the condenser lens 510 are reduced immediately below the pole piece 504 and are used to guide only the scattered light from the fc sample to the photomultiplier tube 5 ⁇ .
  • These slits 509, lens 510, and photomultiplier tube 511 constitute a light receiving system for receiving scattered light of laser light.
  • the scattered light detection axis 508 is set so as to avoid the reflected light from the water surface of the laser irradiation beam which interferes, and it is preferable that the laser incident light axis 507 is at a lower angle than the scattered light detection axis 508. is there.
  • the electronic circuit section 5 20 processes the output of the photomultiplier tube 5 1.
  • a magnetic substance-labeled sample complex that is placed in a constant magnetic field is moved by moving the pole piece while the direction of the incident optical axis of the Ray i beam is fixed. Due to the movement of the body within the specimen housing part 52, relative movement between the incident laser optical axis and the magnetic substance-labeled analyte complex occurs, and the incident laser light beam is localized at a certain moment by the magnetic substance-labeled analyte complex.
  • the measurement sensitivity was further improved.
  • FIG. 40 illustrates one embodiment of the present invention. It is a figure explaining the method of immobilizing an antigen or an antibody.
  • 60 1 is a silicon wafer
  • 60 ⁇ ' is a silicon chip
  • 60 2 is a nopolak resin thin film
  • 60 3 is a container
  • 60 4 is a PBS solution containing inactivated influenza virus
  • 60 5 is inactive. It is a transformed influenza virus.
  • an ethanol solution containing 20% of the Nopollac resin was applied on the surface at a rotation speed of 300 rpm and a ⁇ ⁇ minute. Spin coating was performed to form Nopolak resin thin film 2.
  • FIG. 41 shows a test sample for confirming the effectiveness of the solid phase immobilization method of the present invention, and Table 1 shows the experimental results.
  • 606 is an anti-virus antibody against the immobilized influenza virus
  • 607 is an enzyme antibody.
  • the immobilized influenza virus is reacted with the anti-virus antibody by an antigen-antibody reaction, and after washing, the unreacted anti-virus antibody is separated and removed.
  • the enzyme antibody used in the known EIA is reacted with the anti-virus antibody and the antigen antibody. After that, the unreacted enzyme antibody was washed and a substrate was further added to obtain a second test sample (a).
  • the same enzyme antibody was labeled using the chip after the step of Fig. 1 (c), which did not immobilize the influenza virus, and the antibody control (b) and virus control (G ) Got.
  • the virus control (b) since the virus does not exist on the immobilized thin film, it is removed by washing.
  • virus control (c) since the influenza virus does not adhere to the solid-phased thin film in a short time, it can be easily removed by washing.
  • Table ⁇ shows the measured values of the test suspension (a), antibody control (b) and'wiss control (c) by the known EIA method.
  • -Table ⁇ shows the measured values of the test suspension (a), antibody control (b) and'wiss control (c) by the known EIA method.
  • Nopolak resin Resin M Specimen according to this example (a) 0.34 0.17 Antibody control (b) 0.09 0.13 Virus control (c) .0.08 0.07 07 Nopolak resin solid phase thin film It is clear that the EIA value of the test sample was higher than that of the resin M, and that the EIA value of the control body and the virus control were lower than that of the test substance. Therefore, in the case of influenza virus, the effectiveness of this example using nopolak resin was confirmed.
  • the solid phase immobilization method of the present invention is not limited to the above examples.
  • the above-mentioned magnetic fine particle plastic resin and glass can be applied.
  • the nopolak resin as the solid-phase thin film it can be applied to various organic and inorganic resist materials used in the semiconductor resist processing process such as AZ.
  • the measuring method and measuring apparatus of the present invention are particularly suitable for high-sensitivity test of antigen-antibody reaction.
  • viruses such as influenza virus are described in detail. It is clear that it can be applied to immunodiagnosis of cancer as it is. In other words, even in the case of diseases in which cancer cells such as gastric cancer do not spill in the blood, the immune defense function of the human body allows cancer cells to be specifically identified in lymph cells in the blood. It is known that changes occur and cluster around cancer cells.
  • the known cell electroperfusion method is a method for diagnosing cancer by utilizing the fact that macrophages and leukocytes are collected in cancer cells. For example, Cancer Research 'Vol.
  • the measuring method and measuring apparatus of the present invention are suitable for automating the test of antigen-antibody reaction
  • the laser-laid immunoassay method and measuring apparatus of the present invention are particularly suitable for automating the examination of antigen-antibody reaction, they are necessary for mass screening.
  • New paper It is said to be particularly effective when used for screening tests and detailed tests for various viruses and guns.
  • antigen-antibody reaction it can also be applied to the measurement of various hormones such as peptide formon to which the RIA method has been conventionally applied or various enzymes, vitamins, drugs, etc. .. In this way, the method of the present invention can be used for early diagnosis and treatment of patients, and is of great use in the medical field.
  • the measuring method and measuring apparatus of the present invention have extremely high detection sensitivity, it is possible to provide a new research method effective in the fields of immunology and molecular physiology.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

明 細 書 レーザ磁気免疫測定方法および測定装置 技 術 分 野 本発明は抗原抗体反応を利用 した レーザ免疫測定方法および 測定装置に関する。 さ ら に詳 し く は、 極めて微量の検体から特 定の抗体ま たは抗原を検出可能な レーザ免疫測定方法および測 定装置に関するものである。
, 背 景 技 術 ' エイ ズ 、 成人 T細胞白血病等の新型ウィ ルス性疾病、 な らび に各種癌の早期検査法と して、 抗原抗体反応を利用 した免疫測 定法の開発が現在世界的規模で進め ら れて いる 。 こ れは、 抗原 であるウィルス等が生体に侵入 し た場合に形成される抗体が、 上記抗原と特異的に反応する性質 ( 抗原抗体反応) を利用 し て 抗体ま た は抗原そのものを検出 し ょ う とするものである。 この た めの微量免疫測定法 と し て 、 従来から R I A ( ラジオィ ム ノ ア ツ セィ ) 、 E I A ( 酵素ィ ムノ ア ツ セィ ) 、 F I A ( 蛍光ィ ム ノ ア ツ iz ィ ) 等が実用化されてきた 。 こ れらの方法は、 アイ ソ 卜 —プ、 酵素、 蛍光体で標識された抗原ま た は抗体を用い、 こ れ と特異的に反応する抗体ま た は抗原の有無を検出 するもの である。
このうち R I Aは、 抗原抗体反応に寄与した検体の量を、 標 識化されたアイソ ト ープの放射線量を測定するこ とにより定量 するものであり 、 現在のところ、 ピコグラム程度の超微量測定 が唯一可能な方法である。 しかし、 R I Aは放射性物質を取り 扱わなければならないため、 特殊設備が必要であり、 半減期や 廃棄物処理等の点から、 使用時期、 場所等の制約があっ た。 ま た、 酵素、 蛍光体を用いる方法では、 発色や、 発光を用いて抗 原抗体反応の有無を確認するものであるため、 測定が半定量的 であり 、 検出限界もナノグラム程度であっ た。 従っ て、 R I A ' と周程度の検出感度を有し使用-上の制限のない免疫測定方法が 求められていた。 - 抗原抗体反応の有無の検出に レーザ光を用いる方法と しては 肝.驗癌の検出を目的と して、 アラスチッ クの微粒子に A F P ( アルファ ♦ フ エ 卜 ♦ プ□ティ ン) に対する抗体をつけ、 抗原 抗体反 I芯に募づく 該ブラスチッ ク同士の凝集により生じた質量 変化を、 レー 一光の散乱または透過状態の変化から調べる方 法が発表されている。 この方法では、 検出感度は 1 0 _ 1 Q gで あり 、 従来のレーザー光を用いた方法の百倍以上とされている が、 R I Aの感度の百分の一以下-である。 この方法は、 水溶液 中での抗原抗体のブラウン運動の変化を利用 しているため、 測 定に際し ては、 検体を含む水溶液の温度制御を精密に行う必要 があり 、 気温や振動等の外界の影響を受け易い欠点があった。
また、 従来の レーザ光の散乱測定は、 検体が分散している水 溶液の一部分のみを照射するため 、 本質的に検出感度向上に は 限界があ り 、 多量の検体が必要であ っ た。 この欠点を改良する 1 つの方法 と して 、 レー ザー散乱測定法におい て 、 測定時間の 短縮、 検体の使用量の小璗化を意図 して レーザー ビー ム径と同 じ毛細管を容器 と し て使 するこ とが提案さ れている ( 米 a特 許第 4、 605、 3 05号 ) が、 毛細管壁からの散乱光に よる 測定の妨害に基づく 検出感度の低下が問題とな っ ている。
ま た 、 検体の調整を容易にする試みと し て、 磁性微粒子が使 用され ている。 すなわち 、 磁性微粒子は液体サンプルから種々 の成分を除去 し た り分離 し た り するのに使用されている。' 例え ば、 米国特許第 4、 0 1 8、 8 8 6号および第 3、 9 70、 5 8号は磁性微粒子を使用 して特定の蛋白を補'集 し 、 次 Ϊ で磁 性微粒子か ら該蛋白 を切 り離 し 、 生 じた蛋白の沈殿を目視する 方法を開示 し ている。 ま た 、 米国特許第 3、 933、 9 9 7号 は磁性微粒子を使用 し て検体の上に放射性標識を讒縮する方法 を開示 し ている 。 ま た 、 検体に特異的に結合する受容体 ( リ セ プタ ー ) を担持する磁性微粒子と標識体を使用 し て未反応の標 識体 ( 酵素、 放射性物質、 蛍光色素等 ) を磁力 によ り分離する こ と が行われている ( W 08 6ノ 0 4 68 4および欧州特許公 開第 3 008 7号 〉 。 しか しながら 、 検体の分離精度は向上す るものの測定自体は従来法に よ っ てお り 、 使用 した方法の精度 に制約されているので、 全体と して は未だ不満足である。
さ ら に 、 米国第 4 、 2 1 9、 3 3 5号は上述の磁性微粒子を 体液中の特定の検体の存否を磁気的に調べるのに使用 している c すなわち、 体液サンプルを検体に対する特異的反応性を有する 受容休試薬を塗布した表面に付着さ 、 この表面に該受容体試 薬または該受容体試薬と検体との複合体に反応性を有する免疫 試薬と接触させる際に、 免疫試薬と して磁性微粒子等の リ アク タ ンス標識で標識したものを検体けん濁液の表面に適用 し、 反応の免疫試薬を該表面から除去した後、 該表面の誘電率、 電率または透磁率のような電気的リ アクタ ンスの変化を測定し ている。 この方法は直接的には標識した磁性微粒子の有無また は存在量を測定しているの—で、 レーザ光を磁性微粒子で標識し た免疫複合体を含む測定系に入射し、 その出射光を光学的に測 定する方法とは原理的に全く異なる。
本発明者らは先に磁気へッ ドを甩いて、 磁性体標識検体を高 感度で検出する方法を研究し、 特顥昭 5 2— 1 0 4 0 6 6 「磁 性体検出器」 、 特頹昭 6 2 - Ί 3 7 9 8 8 「磁気免疫測定法及 び測定装置」 と して、 特許出願している。 しかし、 発明者らが 発明 した、 これらの検出感度を向上する方法を適用 した場合で も 、 検出感度は 1 X 1 0 _ 9 台であり、 本発萌の レーザ磁気免 疫測定法よりも 3 '桁低いものであっ た。 発 明 の 開 示
本発明者らは鋭意検討した結果、 抗原または抗体を磁性微粒 子で標識し、 得られた標識体を検体と抗原抗体反応させ、 生じ た標識免疫複合体を未反応標識体から分離した後測定位置に誘 導し光学的に複合体の有無または存在量を測定することにより 半減期や廃棄物処理等の種々の制約を解決 し 、 R I A と周程度 の ピコグラムのオーダーの検出感度で免疫測定を行う こ とがで きる こ と を見い だ し 、 本発明を完成 し た 。
すなわち 、 本発明は、 一の抗原ま た は抗体に磁性微粒子を標 識 し て磁性体標識体と し 、 該磁性体標識体と検体を抗原抗体反 応させる工程と 、 該工程後の磁性体標識体と検体との複合体で ある磁性体標識体複合体から 、 未反応の前記磁性体標識体を分 離除去する工程と 、 レーザ光を入射する工程と 、 該工程による 前期磁性体標識検体複合休を含む測定系からの出射光を測定す る工程からなる レーザ磁気免疫測定法を提供する。
さ ら に本発明は、 磁性体筠粒子に よ り標識 'された検体を収容 する検体容器と 、 該検体を誘導分散させる分散手段と 、 レーザ 光を該検体容器へ導く レーザ光照射光学系と 、 該検体に よ る レ 一 ザ光の出射光を受光すべ く 設置された受光系とから成る レー ザ磁気免疫測定装置を提供する。 図面の簡単な説明
第 1 図は本発明の一実施例を一つの実施態様に従う レー ザ光 の出射光を計測する装置の概略説明図であ り 、 第 2 図ない し第 6 図 は、 それぞれ、 本発明の レー ザ磁気免疫測定に用いる検体 液体の調製方法の説明図であ り 、
第 7 図は本発明の一実施態様に従う レ ーザ磁気免疫測定装置 の概略図であ り 、
第 8 図は 、 本発明の レーザ磁気免疫測定に おいて 使用する、 磁性体微粒子を誘導 ♦ 濃縮する磁石駆動部および磁性体微粒子 の駆動機構部の概略図であり 、
第 9図は、 磁性体微粒子に周期的運動を付与しないで測定し た散乱光強度(a ) と、 本発明に従い磁性体微粒子に周期的運動 を付与して測定した散乱光強度(b ) の変化を対比して示すグラ フであり、
第 1 0図は、 本発明の別の実施例に従う、 本発明のレーザ磁 気免疫測定において使用する、 磁性体微粒子を誘導 · 濃縮する 磁石駆動部および磁性体微粒子の駆動機構部の概略図であり 、 第 1 1 図は、 本発明の好ま しい態様に従い使用される検体容 器を示し、 ―
第 1 2図は、 本発明のさらに別の実施.例に従う、 本発明のレ 一ザ磁気免疫測定におい て使用する、 磁性体微粒子を誘導 ♦ 濃 縮する磁石駆動部および磁性体微粒子の駆動機構部の概略図で- あ り 、
第 1 3 図(a ) 、 ( b ) および(c ) は、 それぞれ第 Ί 2図に示し た装置の断面図であり 、
第 Ί 4図は、 それぞれ、 第 1 2図に示した装置の電磁石の付 勢タイ ミングを示し、
第 1 5図(a ) 乃至(c ) は、 本発明に従っ て行った、 液枏検体 に対する浮遊物との分離処理を説明するための図であり、
第 1 6図は、 本発明法に従っ て測定した検体濃度と散乱光強 度との関係を示すグラフである。
第 1 7 図は、 本発明による レーザ光散乱による検体の定量的 な測定方法を説明するための模式的な図である。
第 1 8 図 (a) 乃至(h) は、 本発明に従う レ ーザ磁気免疫測定 方法に際 しての検体の調製方法を説明する図であ り 、 特に第 1
8 図(a) 並びに (a) 'は用いる検体容器の形状を示し てお り 、 第 1 9 図は、 第 Ί 8 図に示す方法に よ っ て調製された検体に 対する レ ーザ光散乱を利用 し た測定法を説明する図であ り 、 第 2 0図(a) 乃至(e) は、 本発明に従う もうひとつの レーザ 磁気免疫測定方法に際 し ての検体の調製方法を説明する図であ
Ό、
第 2 1 図 (a) は、 第 Ί 図 (a) 乃至(g) 、 第 3図 (a) 乃至(e) 並びに.第 2 図に示す操作を一括 し て実施するこ との できる、 本 発明に従 っ て構成された装置の構造を示す図であ り 、
第 2 1 図 (b-1 )' 並びに (b-2) は、 第 2 ◦ 図 (a) に示す装置に おいて 、 特に有利に用いるこ とのできる検体容器の形状を示す 図であ り 、 第 2 1 図 - 1) は平面図を、 第 2 1 図 (b-2) は断面 図をそれぞれ示 し てお り 、
第 2 2 図 (a) は、 第 2 0図に示す装置に おける電源の変調波 形を示すグラ フであ り 、
第 2 2 図 ) は、 第 2 1 図 (a) に示す波形と周期する散乱光 の変動を測定 した結果を示すグラ フであ り 、
第 2 3 図 (a) は、 本発明に従う レーザ磁気免疫測定装置の他 の態様において有利に用いるこ とのできる検体容器の構成を示 す図であ り 、
第 2 3 図 (b) は 、 第 6図 (a) に示す検体容器を用いて連続的 に検体を処理することのできる装置のレイァゥ 卜を概略的に示 す図であり、
第 2 3図(C-0) 乃至(C-5) は、 第 2 3図に示す、 装置の動作 を段階的に説明する図であり、
第 2 4図は、 本発明に従う レー 磁気免疫測定方法の検体を 収容する容器の構成を示す図であり、
第 2 4図(a) は平面図にて、 第 2 4図(b) は断面図にて描い ており 、
第 2 5図(a) 乃至(i) は、 本発明に従う検体容器を用いて行 つ た、 レーザ磁気免疫測定の fcめの検体の調製方法を手頫を追 つ て'説明する図であり、 - 第 2 6図 (a) 並びに(b) ば、'本発明に従う検体容器の他の態 様を示す図であ り、 第 2 6図(a) は全体を、 第 2 6 ή ) は容 器の 1 構成単位を取り出して描いており、
第 2 7図は、 第 2 6図(a) に示した検体容器を有利に使用す るための器具の行為を示すものであり、
第 2 8 図は本発明による レーザ磁気免疫測定装置の概咯構成 図であり、 第 2 9 図は電磁石対を励磁する電源の回路図であり、 第 3 0図(a) , (b) 、 第 3 1 図(a) , (b) は第 2 8図において 電磁石対を上方から見たときの磁極片と検体容器の平面図であ つ て、 第 3 0図 (a) , (b) は磁性体檁讜体の濃縮工程を示す説 明図であり 、 第 3 Ί 図(a) , (b) は濃縮後の磁性体標識体の駆 動工程を示す説明図であり、
第 3 2図は散乱光測定の場合の本発明の一実施倒を説明する レーザ磁気免疫測定装置の概略構成図であ り 、 第 3 3 図 (a ) 〜 ( d ) は本発明の装置の動作原理を説明する図であ っ て、 周図 (a ) は調 ^済みの検体が検体収容部に入れら れた直後の状態を示 す図 、 周図 (b ) は電磁石が直流電源と接続され、 直流励磁さ れ た状態を示す図、 周図(c ) は電磁石が藺欠パルス電源と接続さ れ、 励磁さ れた状態を示す図、 周図 ( d ) は非励磁状態における 磁性体標識検体複合体の分散状態を模式的に示す図であり 、
第 3 4 図 は反射光測定の場合の本発明の一実施例を説明する、 レーザ磁気免疫測定装置の概略図であ り 、 第 3 5 図(a ) 〜(d ) は本発明の装置の動作原理を説明する図であ っ て 、 周図 ) は 電磁石が電源に接続され、 直流励磁された状態、 同図 (c ) は電 磁石が強励磁された状態、 周図 (d ) は電磁石'が弱励磁された状 態、 における磁性体標識検体複合体の分散状態を示す模式図で あ り 、 第 3 6 図は反射光中に現れる干渉縞を示す図であ り 、
第 3 7 図は磁性体標識検体複合体の濃縮位置と非濃縮位置の 間を走行する こ と に よ り 時系列照射を行なぃ両位置からの信号 周志の差分を検出するよ う に構成 し た レーザ磁気免疫測定装置 の概略図であ り 、
第 3 8 図は レーザー ビー ムスプ リ ッ タ に よ り入射レーザ一光 線を二分割するこ と に よ り磁性体標識検体の濃縮位置と非濃縮 位置を同時に照射 し両位置からの信号の差分を検出するよう に 構成 し た レ ーザ磁気免疫測定装置の溉咯図であ り 、
第 3 9 図は磁極片の移動機構および検体容器の移動機構を具 備 し た本発明の一実施例の レーザ磁気免疫測定装置の溉格説明 図であり、
第 4 ◦図は本発明による抗原または抗体の固.相化方法を説明 する図であり 、
第 4 1 図は第 4 0図に示す方法により固相化された試験体お よび比較試験体を示す図である。 発明を実施するための最良の形態
本発明は、 磁性体微粒子を標識と して用い、 特定の、 又は未 知の抗原又は抗体、 例えば患者の血液や便から採取した種々の ウィルス抗原又はウイルス抗体にこの標識を付けて磁性体標識 体とする。 '
また、 ウィルスの他に、 癌患者の血液中の癌抗体あるいは癌 を特異的に認識する リ ンパ球やモノ ク ローナル抗体あるいは白 血病のよう に癌化したリ ンパ球そのものに、 磁性体標識体を標 識する場合にも、 本発明は適用できる。
なお、 磁性体微粒子と してはマグネタイ 卜、 r 一 フ ェ ライ 卜 等の化合物磁性体、 鉄、 コパル 卜等の金属磁性体を使用するこ とができる。 これらの他に米国特許第 4、 2 1 9、 3 3 5号第 3 攧 5 8行目〜第 4櫥 7行目に記載の磁性材料の超微粒子を使 用できる。 これらのうちマグネタイ 卜はウィルスや特異抗体と の親和性が良く ウィルス等を標識するのに適しているので好ま しい。 また、 外部磁場による分離、 除去、 並びに後述する検体 からの出射光の測定を効率的かつ効果的に行う ためには、 該マ グネタイ 卜は単磁区粒子構造が好ま し く 、 粒子径は 5 0 n m程 度が適当である。
これらの磁性体微粒子は公知の方法によ り免疫反応体 ( 抗原 ま た は抗体 〉 に結合さ せるこ とができる。 磁性体微粒子は免疫 反応体を結合するこ とができる有機重合体でカプセル化 しても よい し 、 磁性体微粒子の表面を公知の方法で シラ ン化 し次いで 有機化合物をシラン結合に結合させるこ とができる。 米国特許 第 3 、 9 5 4 、 6 6 6号は コ ア材料の重合体によるカプセル化 を開示 し 、 周第 3 、 9 8 3 、 2 9 9号はシラン結合を用いて有 機化合物を無機粒子に結合するこ と を開示 し ている。
次に 、 検体と しての抗体又は抗原を既知の固相化された抗原 又は抗体 と抗原抗体反応さ ti、 又は検体と し ての抗体又は抗原 を直接固.相化 し 、 前記磁性体標識体と抗原抗体反応を起こさせ る。
前記固相化の方法は、 シ リ コ ン等の無機材料やプラスチッ ク 樹脂等の有機材料からなる非磁性体の支持体を用いて行なわれ る。 該支持体は 、 板状のもの、 あるいは直径 1 ^ 771〜 1 咖の微 小球状のもの、 あるいは検体容器そのものを選ぶこ とができる < 該支持体上に有機溶媒に可溶な有機薄膜あるいは無機薄膜を塗 布 し 、 これらの薄膜上に前記の抗原あるいは抗体を固定する。 前記薄膜には、 光源、 抗体の種類に応じて 、 た とえば半導体の フ ォ 卜 リ ソグラ フ ィ に使われる、 メ タ ノ ール等に可溶な レジス 卜 の中から選択できる。 た とえば、 イ ンフルエンザウイルスを 該薄膜に固定 する場合、 ノ ポラ ッ ク樹脂が好ま しい。
なお、 本発明の他に 、 抗体にも周様に適用 し得る磁性支持体 への酵素の固定化技法はメ ソ ッズ ♦ イン * ェンザィモロジ一 ( Me t ho d s 〖n E nzy mo l o g y ) 第 し1 眷 3 2 4 — 3 2 6頁に 記載されている方法も適用できる。 支持体としては、 例えば寒 天、 ゼラチン等を使用する C とができる。
本発明はこれらの結合法に限定されることなく 、 免疫反応体の 免疫複合体形成能力を害さない限り他の接合法を使用 してもよ い。
本発明で、 検体と磁性体標識体を反応させる前処理には、 固 相化された既知の抗原又は抗体と検体と しての抗体又は抗原を 反応させる間接法と、 検体と しての抗体又は抗原を直接固袓化 する直接法がある。. また、 磁性体標識体を反応させる方法と し ては、 検体と磁性体標識体'を積極的に反応させる方法と、 反応 を阻害する方法 (競合阻害反応検出法) とがある。
その後未反応の前記磁性体標識休を除去する。
前記支持体に板状のもの、 あるいは検体容器の底面自体を用 いる場合と前記微小球 (ここでは非磁性体球と称することにす る ) を用いる場合では、 未反応の前記磁性体標識体を分錐、 除 去する工程が異なる。 前記板状又は検体容器の底面を支持体と して用いた場合、 除去工程は、 磁性体標識体の特性を利用 して 磁石、 例えば希土類磁石を用いて行うが、 洗浄によっ ても除去 は可能である。 磁石と洗浄の併用も有効である。 この除去工程 後、 本発明の固相化方法の場合、 有機溶媒によって、 前記支持 体から前記薄膜を溶かすこ とによっ て、 支持体と磁性体標識検 体との結合を切断して該磁性体標識検体を液相化する。 前記支持体に前記非磁性体球を用いる場合、 該非磁性体球が、 磁性体標識体よ り も大きさ及び質量が大きいため、 液体中に浮 遊 し ている非磁性体球と該未反応の磁性体標識体とを適当に調 節 し た磁力 に よる誘導に よ っ て分離する こ とができる。 分離を 確実にするために は 、 前記磁性休標識体をろ過 し 、 前記非磁性 体球をろ過 し ない フ ィ ルタ を前記磁力 と併用 し て用いるこ とが 適当である。 このよ う に し て測定にかける検体を調整する。
こ の 嬝合に前記検体が、 前記磁性体標識体と特定の抗原抗体 反応を起こ す抗原又は抗体である場合には、 検体を含む液相中 に磁性体標識体が残存 し 、 それ ら以外の場合に は、 液相中に は 磁性体標識体は存在 しない。 よ っ て 、 液相中の磁性体標識体の 有無及び存在量を知るこ と に よ り検体の特定及び定量が可能 と なる 。
磁性体標識体の有無及び存在量は 、 液相中に分散 した検体か ら成る測定系に レ ー ザ一光を照射 ( 入射 〉 し 、 該測定系から の 出射光の強度変化を測定するこ と に よ り知るこ とができる。
本明細 ¾に おいて 「出射光」 と は入射 レーザー 光の散乱光、 透過光、 反射光、 干渉光ま た は回折光をいう 。
第 1 図は本発明の一つ の実施態様に従う レーザー磁気免疫測 定装置の概略説明図である。 この場合は、 前記で説明 した 、 調 整済みの検体並びに比較対照試料を レー ザー光散乱 ♦ 透過法で 測定する装置である。 図中、 1 2 は例えば出力 5 m Wの H e N e レーザー 、 1 3 は入射光線、 1 5 a は散乱光束、 1 5 b は透 過光線、 1 6 は S i フ ォ ト ダイ オー ド、 1 7 は ロ ッ クイ ンアン プ、 1 8 は電磁石、 Ί 9 は電磁石 1 8 を驅動するための例えば 0 . 5 H Z の低周波電源、 2 0 は散乱光を集光する レンズ、 2 は偏光板である。 検体あるいは比較対照試料の入っ たガラス ル 1 1 は電磁石 1 8 の中に装瞽され、 レーザ一入射光線 1 3 の周り に磁性体標識体は誘導 ♦ 濃縮され、 レーザー Ί 2 による 検体を含む液体からの散乱光束 1 5 a又は透過光線 1 5 b はフ A 卜 ダイ オー ド 1 6で検出される。 液相中の磁性体標識体ウイ ルス抗体 4 の運動は、 電磁石 1 8 によ り制御されるため、 散乱 光束 1 5 a及び透過光線 1 5 b の強度は、 低周波電源 1 8 の周 波数'に周調するこ とになる。 し たが っ て、 ロ ッ クイ ンアンプ Ί 7 で低周波電源 1 9 の周波数に同調 した散乱光束 1 5 a あるい は、'透過光線 1 5 b のみを増幅すれば、 温度変動等の外乱の影 響を全く受けないで、 検体を含む液体からの散乱光あるいは透 過光の強度を測定する こ とが出来る。 本卖施態様の場合、 検体 を含む液体からの散乱光強度は交流磁場の周期に同期 して測定 されるが 、 比鉸対照試料中に は磁性体標 体が存在 しないため に交流磁場に同期する成分は存在せず散乱光強度は直流的であ り ロ ッ ク イ ンアンプ 1 9 を通 して測定する こ と によ りパッ クグ ラン ド レベルを知るこ とができる。
なお 、 通常の測定は散乱光で行えばよいが、 検体の種類、 濃 度によ っ ては透過光を使用する方が高 S Z N の測定が出来る場 合がある。 2 〇 は散乱光を収束させるための集光レンズであ り 辐光板 2 1 は検体からの儷光成分を分離して測定するために使 用するものである。 即ち 入射レーザー光と し て、 直線偏光に近 一 Ί 5 - いものを用 い液相中に磁性体標識体が存在 し ない ときに消光す るよ う に ク ロ スニコルに設定 し ておき、 光路中に磁性体標識体 I 誘導さ れた と きに偏光状態が変化 し て出射光が得 ら れるよ う に し てお く 。 なお、 上記低周波電源は 0 . 5 H z に限 ら れるも のではな く 、 検体を含む水溶液の粘度及び磁界強度等に応じ た 最適な周波数を決めるこ とが好ま しい。
本発明の第二の実施態様に従う と 、 一つの抗原又は抗体に磁 性体微粒子を標識 して磁性体標識体と し 、 該磁性体標識体と検 体を抗原抗体反応さ せる 工程 と 、 該工程後の磁性体標識検休'複 · 合体から 、 未反応の上記磁性体標識体を分離除去する工程と 、 上記未反応の磁性体標識体を分離除去 し た後の磁性体標 検体 複合体を液体中に分散させ て レ ーザ光を'照射する工程と 、 上記 レ 一 光の照射に よ る上記磁性体標識検体複合体からの出射光 を測定 する工程とを含む レーザ磁気免疫測定法において 、 上記 磁性休標 検休複合体を分散さ た液体を収容する検体容器を 、 その軸方向を照射 レーザ光の光軸方向にほぼ一致 し て保持 し 、 該検休容器の軸方向にそ つ て順次磁場を移動させて該出射光を 受光する光学系の光軸近傍の位置に該磁性体標識検体複合体を 誘導、 濃縮 する工程 と 、 該磁性体標識検体複合体を該出射光の 光軸近傍の位置に誘導、 濃縮 し た後に該出射光軸近傍において 該磁性体標識検体複合体に周期的に変動する磁場を与える工程 とを含み、 該周期的に変動する磁場の変動成分に同期 した出射 光のみを選択的に検出する こ と を特徴 と する レ ーザ磁気免疫測 定法が提供される。 一つの変形例に従う と上記磁性体標讜検体複合体と抗原抗体 反応させる検体としては、 該検体と該検体の特異抗体又は抗原 との抗原抗体反応後のものを使用 し、 上記磁性体微粒子によ り 標識される抗体としては、 抗免疫グロアリ ンを使用することが できる。
別の変形例に従う と、 上記検体と して未知のウィルスまたは ウィルス抗体を使用 し、 上記磁性体微粒子によ り標識される抗 原または抗体としてウィルス抗原または抗体を使用することか' でぎる。
さらに別の変形例に従う と、 上記磁性体標識体と抗原抗体反 応させる検体が抗原抗体反応を行なねず、 すなわち磁性体標識 検体と抗原抗体反応させる検体と,、 上記磁性体標識検体複合体 とはともに抗原または抗体にすることもできる。
すなわち、 検体が磁性体標識体と特定の抗原抗体反応を起こ す抗原又は抗体である場合には、 検体を含む液相中に磁性体標 讜体が残存し、 磁場とともに周期的に変動する出射光を測定す るこ とにより検体を検出することができる。
一方、 検体が磁性体標識体と特定の抗原抗体反応を生起しな い抗原又は抗体である場合には、 検体容器内の液体中には磁性 体標識体は存在しない。 この場合は液相中の磁性体標識体の有 無及び存在 fiを測定することにより検体の特定及び定量が可能 となる。 磁性体標識体の有無及び存在量は、 液相中に分散した 検体にから出射光の強度変化を測定するこ とによ り知ることが できる。 未反応の磁性体標識体を分離除去する工程は、 永久磁石ま た は電磁石に よ り実施 してもよい。
さ ら に第三の実施態様に従う と上記実施態様の測定方法を実 施するための測定装置と し て 、 磁性体微粒子に よ り標識された 検体を収容する検体容器 と 、 レ ーザ光を該検体容器へ導く レー ザ光照射光学系と 、 該検体による レーザ光の出射光を受光すベ く 設置された受光系 と を含む レ ーザ磁気免疫測定装置であ っ て、 上記検体容器の軸に沿 っ て、 上記受光系の光軸である出射光 軸に向 っ て磁場を移動さ せる磁場移動機構 と 、
上記出射光軸上の該検体容器の位置をはさんで磁場を周期的 に変動さ せる磁場駆動機構 と 、 .
該磁場駆動機構による磁場の変動成分に周期 じた出射光のみ を選択的に検出 する電子回路部 と 、
を具備する こ とを特徴 とする レーザ磁気免疫測定装置が提供さ れる。
磁場駆動機構は、 検体容器の軸に沿 っ て移動する磁石ま た は 検体容器の軸に沿 っ て複数個配列さ れ照-次励起さ れる電磁石に よ り構成できる。
さ ら に上記第三の実施態様の好ま しい変形例に従う と 、 磁場 駆動機構は、 上記検体容器をはさんで一定間隔で保持され、 か つ上記検体容器との相対距離を周期的に変化 し う る一対の磁石、 ま た は、 交互に励起される電磁石か ら構成される。
さ ら に上記第三の実施態様の別の好ま しい変形例に従う と 、 上記検体容器は 、 レ ー ザ光の入射部分に おいて大断面積の開口 を有し、.上記出射光軸上においては小断面積となる異径断面容 器からなる。
本発明の第四の実施態様に従う と、 所定の抗原あるいは抗体 に磁性休微粒子を標識と し て付加 した磁性体標識体と、 検体た る抗体あるいは抗原とを抗原抗体反応させる第 1 工程と、 該第 1 工程後の前記磁性体標識検体複合体から末反応の前記磁性体 標識体を分離除去する第 2 工程と、 磁性体標讜検体複合体を含 む抗原抗体複合体を液体中に分散さ せる第 3 工程と、 該液体に レーザ光を照射して前記磁性体標識検体複合体による出射光を 測定する第 3 工程とを少なく とも含むレーザ磁気免疫測定法に おいて、 前記第 3 工程後の液体中に分散する浮遊物を沈殿さ、せ、 該沈殿物から磁力に よ っ て前記磁性体標識検体複合体を分離す る処理を含むこ とを特徵とする レーザ磁気免疫測定法が提供さ れる。
また 、 この第四の実施態様の好ま しい変形例に従えば、 前記 溶液中の浮遊物を沈殿させる処理は、 前記検体を分散 した溶液 を収納 した容器を遠心分維処理に付すこ とによ っ て行われ、 か く し て該 器の一端に形成された浮遊 ¾の沈殿から前記磁性体 標識検体複合体を分離する処理が、 前記容器外部側方に配置 し た磁石を、 該沈殿の近傍から遠方に移動するこ と によ っ てなさ れる 0
さら に 、 本発明に従う免疫測定方法は、 上記第四の実施態様 において、 前記磁性体標瀵検体複合体を分散させた液体を収容 した容器を レーザ光軸上に保持し、 該検体容器の軸方向に沿つ て移動する磁場に よ っ て 、 該 レーザ光軸上に該磁性体標識検体 複合体を誘導 し て集中さ せる操作を含み、 ま た 、 該磁性体標識 検体複合体を該出射光の光軸近傍の位置に集中 し た後に 、 該出 射光軸近傍におい て該磁性体標識検体複合体に周期的に変動 す る磁場を与える操作 と 、 該周期的に変動する磁場の変動成分に 同期 し た出射光のみを選択的に検出する操作を含むこ とが有利 である。
上記実施態様において は 、 検体を分散 し た液体中に不可避的 に存在する固相化支持物質の破片等の各種浮遊物 と磁性体標識 検体複合体との分離を実施 し ている。 即ち 、 このよ う な液体中 の浮遊物は、 単にバ ッ クグラウ ン ド ど し て レーザ光散乱を高濃 度頜域で過剰に増大せ しめるのみな らず、 磁力 による検体の誘 導操作に おい ても検体と共に移動する等 し て 、 測定精度の向上 を阻害するもの とな っ ていた 。
そ こ で 、 本発明 に従 う 免疫測定方法で は 、 検体を分散 し た液 体を遠心分離装置等にかけるこ と に よ っ て検体を含む全ての浮 遊物を一旦沈穀させた後、 同 じ液体中 で検体のみを磁力 に よ つ て出射光の検出頜域に誘導 している。
い う ま でもな く 、 検体以外の浮遊物のみが沈殺するよ う な遠 心分離条件を設定 し て検体を抽出するこ とも可能であるが、 こ の場合は、 液相化の条件あるい は固相化支持層の材料等が変化 する毎に分離条件を再検討 しなければな らず、 実用上は極めて 不利である。
ま た 、 液相化の時点で磁力を利用 し て検体を分離 してもよい が、 実際の操作を考える と、 液相化処理から同 じ容器内で一貫 し て操作するこ とのできる本発明の方法が有利である。
また、 レーザ光の出射光測定に際しても、 例えば磁性体標識 検体複合体を交流磁場内で揺動 しつ 、 交流磁場と周期 し た散乱 光、 透過などの出射光の変化のみを選択的に測定するこ とによ り 、 外乱、 パ ッ クグラウン ドによる影響を容易に排除するこ と ができる。
これら本発明の特徴的な構成によ って、 同じ レーザ光散乱測 定を利用 しなが ら、 A F Pを利用 した方法の限界を突破するこ とができる。 また 、 このような特徴は、 単に検出感度の向上に 寄与するのみな ら ず測定の自動化をも可能とする。
さ ら に ま た、 本発明の第五の実.施態様に従う と 、 検出すべき 検体と、 抗体および抗原に対 し て充分に大きな質量ま たは寸法 を有する非磁性体粒子に固定され且つ該検体と特異的に抗原抗 体反応し て抗原抗体複合体を形成する抗体ま たは抗原と、 磁性 体微粒子によ っ て標識され且つ該抗原抗体複合体と特異的に抗 原抗体反応する磁性体標識体とを液体中に分散して、 該抗原抗 体複合体と該磁性体標識体との複合体である磁性休抗原抗体複 合体を形成し、 該磁性体抗原抗体複合体と未反応の該磁性体標 識体とを選択的に誘導分離し 、 前記選択的に誘導分離された磁 性体抗原抗体複合体のみを含む液体に対して レーザ光を照射し 、 前記磁性体抗原抗体複合体による レーザ光の出射光を検出する こ と によ っ て該検体を検出するこ と を特徴と する レーザ磁気免 疫測定法が提供される。 ま た 、 上述の第五の実施態様に従う 方法を実施 する装置 と し て 、 検出すべき検体と 、 抗体および抗原に対 し て充分に大きな 質 S ま た は寸法を有する非磁性体粒子に固定さ れ且つ該検体と 特異的に抗原抗体反応する抗体また は抗原 とを抗原抗体反応さ せ て抗原抗体複合休を形成 し 、 該抗原抗体複合体を磁性体微粒 子に よ っ て標識 し 、 磁性体抗原抗体複合体を含む液体に レーザ 照射 し て出射光を検出 し 、 該検体を検出する レー ザ磁気免疫測 定装置であ っ て 、 液体を収容 し 、 該液体中で該検体、 該非磁性 体粒子に阁定された抗体ま た は抗原および該磁性体微粒子を添 加 し て該抗原抗体複合体の形成おょぴ該抗原抗体複合体の該磁 -性休微粒子に よ る標識付けを遂行さ せる,第 1 の容器と 、 前記磁 性体抗原抗体複合体を誘導可能な第 1 の磁力 と 、 該非磁性体粒 子 と結合'し ていない該磁性体微粒子を誘導可能であるが、 前記 磁性体抗原抗体複合体を誘導不可能な第 2 の磁力 とを有する誘 導手段 と 、 該液体が移動可能なよ う に 該第 1 の容器 と上部が連 通 し 、 該第 1 の磁力の状態で該誘導手段を移動するこ と に よ つ て 、 該第 1 の容器内の液体から 誘導された 前記磁性体抗原抗体 複合体を受容可能な第 2 の容器と 、 該液体が移動可能なよ う に 該第 1 の容器と上部が連通 し 、 該第 2 の磁力の状態で該誘導手 段を移動するこ と に よ っ て 、 該第 1 の容器 ま た は第 2 の容器内 の液休から誘導された前記非磁性体粒子 と結合 し ていない該磁 性体微粒子を受容可能な第 3 の容器と 、 該第 2 の容器に レーザ 光を照射する手段 と 、 該第 2 の容器内の レ ーザ光の散乱を測定 する手段 とを備えるこ とを特徴とする レーザ磁気免疫測定装置 か'提供される。
本実施態様に従う レーザ磁気免疫測定法は、 標識物質と して 磁性体微粒子を用いる と ともに、.検体と抗原抗体反応させる抗 原または抗体に、 抗原および抗体並びにこれらによる抗原抗体 複合体よりも十分に大きな質量又は寸法を有する非磁性体粒子 を固定するこ とが主要な特徴のひとつである。
即ち、 非磁性体粒子の表面に光源または抗体を固相化する場 合、 後の液相化工程が不要になるのみならず、 検体よりも大き な非磁性体粒子と検体及び磁性体標識体が結合した複合体を検 出することになるから、 レーザ光を該複合体に照射し、 その出 射光を検出する本発明の方法は、 非 ·磁性体粒子が存在しない方 法よりも検出感度が著し く向上する利点がある。 磁性体微粒子 並びに非磁性体粒子は、 いずれもそれ自体が放射線あるいは毒 性等の問題点を有していないことはいう までもなく 、 これを利 用するこ とに格別の制約はない。
また、 磁性体微粒子には、 マグネタイ 卜や r —フ ェライ 卜等 の各種化合物磁性体あるいは鉄、 コパル 卜等の金属磁性体等種 々の材料によるものが供給されており、 検体に対して安定な標 識 ¾質を容易に選択するこ とができる。 非磁性体粒子について も、 ポリ スチレンラテッ クス等のプラスチッ クあるいはシリ カ 等の無機物質等、 多く の材料が供給されており、 測定すべき抗 原又は抗体に対して安定な非磁性体粒子を容易に入手すること ができる。 尚、 この非磁性体粒子は、 具体的には、 密度の大き な微粒子を核に して表面を抗原または抗体を固定するのに適し た物質で被覆 して形成されたものである。
本.実施態様に従う方法において は、 標識物質が磁性体である こ とを利用 し て、 これに標識された抗原ま た は抗体 ( 磁性体標 識体 ) 、 更に これら と反応 し て一休 とな っ ている磁性休抗原抗 体複合体を磁力 によ っ て牽引するこ と に よ り 、 選択的に操作す るこ と がでさる。
一方、 検体と抗原抗体反応する抗原ま た は抗体に付加 した非 磁性体粒子は磁性体微粒子よ り も大きな質量又は寸法を有 し て いる。 従っ て 、 非磁性体粒子に固定された抗原あるいは抗体と 反応 し た抗体ま た は抗原は、 未反応の抗体ま た は抗原よ り も大 きな磁力を用いなければ牽引するこ とができない。
従 っ て 、 本発明の方法に最初の操作を経た検体を含む液体の 中に は、 以下の 3 種類のものが併存するこ と になる。
① 磁力に反応しないもの ( ^磁性体粒子に 固定された未反応 の抗原ま た は抗体、 非磁性体の不純物微粒子等 ) 。
② 僅かな磁力 に牽引 さ れる もの ( 磁性体微粒子に標識された 未反応の抗原ま た は抗体 ) 。
③ 所定の強さ以上の磁力 に よ っ て初め て牽引さ れる もの ( 非 磁性体粒子を含む抗原抗体複合体 ) 。
従 っ て 、 前述の液中か ら 、 磁力の強度が異なる誘導手段を用 いるこ と に よ っ て、 既反応の抗原抗体複合体あるいは未反応の 抗原ま た は抗体を選択的に誘導するこ とができる。
尚、 この場合の操作手願に はい く つかの対応が挙げら れる。 即 ち 、 上記①、 ②、 ③の分散 し た液中から 、 ま ず弱い磁力の誘 導手段によっ て②を除去し、 続いて強い磁力の誘導手段によ つ て③を純水中に誘導するこ とによって、 のみが分散した水溶 液を得ることができる。 また、 まず^い磁力の誘導手段によ つ て②と③とを鈍水中に誘導し、 更にここから弱い磁力の誘導手 段によ つ て②のみを除去することもできる。 これら操作手頫の 組み合わせは、 任意に選択することができる。
また多孔質フィルタ 一を使用して寸法による分離を使用 して ちょい。
さて、 本発明に従う レーザ磁気免疫測定方法については、 上 述の検体調整工程に続いてレーザ光散乱を利用 した検出工程を 連続して行う ことも主な特徴の とつと している。
即ち 、 上記操作により調製された検体液体に対してレーザ光 を照射すると、 レーザ光は純水中に分散した前記磁性体抗原抗 体複合体によ っ て散 される。 従っ て、 この レーザ光の散乱を 測定すれば、 純水中の磁性体抗原抗体複合体の検出並びに定量 ができる。 この場合、 レーザ光の出射光路から逸れた位置に受 光素子を設けて、 出射光の強度を測定してもよいし、 また、 レ 一ザ光路上に受光素子を設けて、 散 SLによ っ て出射強度に対し て低下した レーザ光の強度を測定してもよい σ 尚、 本発明者等 は、 検体容器の開口方向 (実際には上方) からレーザ光を照射 し、 また、 開口方向 (実際には上方) から出射光を測定するこ とによ つ て、 容器の影饔等を受けない高感度な検出が可能であ るこ とを確認した。
また、 上述のレーザ光散乱の測定に際して、 検体を満たした 容器に 、 所定の磁界を印加するこ と に よ っ て、 磁性体抗原抗体 複合体を純水中の所定の頜域に 讒縮する こ とができる。 このよ う な操作に よ っ て 、 検出感度は更に向上 し 、 ピコグラム レベル の検出が可能である こ と が確認さ れた 。
ま た更に 、 上述のよ う な印加磁界を交流電源に よ っ て所定の 周波数で変調 し 、 この変調周波数に周期 し た レ ーザ光散乱の変 動のみを検出するこ と に よ っ て 、 外乱あるいはパ ッ ク グラン ド の影響を極め て有効 に除去する こ とができるので、 検出感度は 更に向上する。
さて 、 上述のよう な実施態様による測定方法を有利に実施 し 得る装置の構成と し て 、 本発明者等が提案'する装置は、 少な く と も、 検体を保持する容器と 、 該容器内の検体に対する各種の 操作を行う 誘導手段、 更に レー ザ光散乱に よる測定を行う 手段 を備えている こ とが必須である。
貝.休的に は後述するが、 容器 と し て は、 水面近傍で内容物が 連通するよ う に構成された低い隔壁を有する Ί つの検体容器中 で抗原抗体反応、 未反応の抗原ま た は抗体の分離、 磁性体抗原 抗体複合体の選択的分離を連続的に実施する こ とが有利である。 この手法では、 検出限界、 検出精度の向上を疎外する要因 とな つ ていた未反応の磁性体標識体あるいは抗原、 抗体等と共に 、 液体中に不可避的に存在する各種浮遊物を周 じ検体容器内で一 貫 し て行われる一連の操作に よ り極めて効率良く 分離するこ と がでぎる。
誘導手段 と して は、 所定の磁力を有する 2 種以上の永久磁石 を用いてもよいが、 磁力を任意に変化することのできる電磁石 等を用いることが有利である。 即ち、 この電磁石を用いるこ と によっ て、 前述のような、 純水中での検体の濃縮あるいは交流 磁界の印加等を容易に行う こ とができる。
更に、 これらの機能を総合して配慮すると、 装置の架台に固 定した誘導手段に対して、 検体を収容した容器が移動するよう に装置を構成し、 更に誘導手段の直下にレーザ光を照射する構 成が有利であるが、 詳細には具体例を上げて後述する。
これら本発明の特徴的な構成によっ て、 周じレーザ光散乱測 定を利用 しながらも、 本発明の方法は A F Pを利用 した方法の 限界を大き 凌駕し、 R I A法の検出感度並びに検出精度に迫 るものを達成し得た'。 更に、 本発明に従う方法は、 後述するよ う に、 検査の自動化等に対しても極めて有利な方法である。
尚、 この項での説明は、 磁性体微粒子と非磁性体粒子法をそ れぞれ付加した抗原あるいは抗体を抗原抗体反応に付して免疫 測定を行う 、 いわゆる間接法に、 本発明を適用 した場合につい て説明 した。 しかしながら、 例えば、 非磁性体粒子の表面に検 体中の未知の抗体を直接固枏化し、.磁性体標識体と抗原抗体反 応させる方法にも勿論適用できる。 この方法は、 直接法である。 なお、 間接法には更に 、 検体と磁性体標識体とを積極的に反応- させる方法と、 検体と磁性体標識体との反応を阻害する、 いわ ゆる、 競合阻害反応検出法等があり、 本発明はそのいずれに対 しても.有効に適用できる。
上記実施態様に従う と、 検体をゼラ'チン等の支持体に固定 し、 未反応の磁性体微粒子で標識 し た抗原ま た は抗体 と分離する方 法に よ らないので、 レーザ光に よる散乱測定の際に 、 支持休を 破壊 し て検体か ら除去する必要な く 、 簡便である。
前述のよ う に 、 液中 に分散 し た検体に よ る レーザ光の散乱を 利用 した測定方法では、 パ ッ ク グラン ドとなる未反応の標識体 や、 水溶液中の不純物の除去が感度向上の決め手 となる。 そこ で、 未反応並びに不純物の標識体の除去が容易且つ正確であ り 、 更に不純物の混入を極力防止する こ とのできるよ う な検体調製 方法が求め られている。
即ち 、 本発明の第六の実施態様に従う と 、 所定の高さの側壁 に よ っ て画成される収—容部と 、 該収容部内に配設された 、 該側 壁よ り も低い第 Ί の隔壁と該第 Ί の隔壁よ り も低い第 2 の隔壁 とを備え 、 該側壁の一部 と 該第 1 隔壁並びに該第 2 隔壁と に よ つ て画成さ れる第 1 収容部 と 、 該側壁の一部と該第 Ί 隔壁と に よ っ て画成さ れる第 2 収容部 と 、 該側壁の 一部 と該第 2 隔壁と に よ っ て画成される第 3 収容部とを備え て上方に開口 する容器 であ っ て 、 ^記第 1 収容部の底部に 、 測定すべき抗原あるいは 抗体と特異的に抗原抗体反応を呈する抗体ま た は抗原を固相で 固定する こ とができるよ う に構成 し fc こ と を特徴 とする レ ー ザ 磁気免疫測定のための検体容器が提供される。
ま た 、 こ の検体容器を用いて実施される側壁よ り も低い第 1 の隔壁に よ っ て分離された第 1 並びに第 2 の収容部と 、 該第 1 収容部 と 、 該第 1 隔壁よ り も低い第 2 隔壁に よ っ て分離さ れた 第 3 収容部とを備え、 各収容部の上方が開口 するよ う に一体に 構成され.た検体容器を用い、 前記第 1 収容部の底部に、 定量す べき検体と特異的に抗原抗体反応を呈する抗体または抗原を固 相で固定する第 1 操作と、 該第 1 収容部を前記第 2隔壁の高さ まで純水で篛たし、 該純水中に磁性体微粒子で標識した抗体ま たは抗原を分散させ、 前記固相の検体と抗原抗体反応させて磁 抗原抗体複合体を形成せしめる第 2操作と、 前記第 2収容部並 びに前記第 3収容部を、 前記側壁の高さまで純水で溝たし、 前 記第 1 収容部、 前記第 2収容部並びに前記第 3叹容部を 記第 1 隔壁並びに前記第 2隔壁の上で連通させる第 3操作と、 前記 第 1 収容部内の未反応の前記磁性体標識休を磁力を発生する誘 導手段によっ て前記第 2収容部に誘導した土で、 該第 2収容部 の内.容物を除去する第 4操作と、 前記第 "] 収容部内に固定され た抗原または抗体を液柜化し、 該第 1 収容部内の磁性体抗原抗 休複合体を、 磁力を発生する誘導手段によっ て前記第 3収容部 に誘導する第 5操作とを含み、 前記第 5操作後に該第 3収容部 内に得られた検体内の前記抗原抗体複合体を定量に付すこ とを 特徴とする レーザ磁気免疫測定における検体の調製方法が提供 される。
上記の装置において永久磁石を用いる機械的方法では機構が 複雑になり 、 電磁石を用いる方法では該電磁石の構造が強力な 磁場を発生させるのに適していないものであるため磁界を用い た磁性体標識体の局部濃縮に長時間を要する欠点があ っ た。
そこで本発明は、 構成が簡単で、 磁性体標識体の局部濃縮を 短時間で行う こ とのできる レーザ磁気免疫測定装置を提供する こ とを目 的と する。
すなわち 、 本発明の第七の実施態様に従う と 、 磁性体標識体 を含む液体を収容する検体容器と 、 該検体容器を挾む一対の電 磁石 と 、 直流と間欠パルスの 2 種類を発生させ、 これを前記電 磁石に供給する電源 と 、 レ ー ^光を前記検体容器へ導く レ ーザ 光照射光学系と 、 磁性体標識検体複合体による レーザ光の出射 光を受光すべ く 設置された受光系と 、 この受光系から間欠パル スに周期 し た出射光のみを選択的に検出 し 、 かつ該出射光信号 を繰 り返 し加算 ♦ 平均化処理する電子回路部とを具備 し 、 前記 電磁石対が、 磁心の中心の磁界が最大であ っ て、 該磁心の中心 に向 っ て磁界が増大する よ う に 、.残留磁化の小さな材料を用い て磁心並びに磁極片が構成されている。
上記第七の実施態様の好 ま し い変形例に従う と 、 前記検体容 器は細管であ っ て 、 該細管を前記電磁石対の間に水平に保持す る機構 と 、 前記照射 レ ーザ光を該細管の軸に洽 つ て 、 該細管の 中心部に誘導する光学系と 、 前記電磁石対中心部の前記検体か ら の出射光を該検体上方又は下方か ら取 り 出 し 、 光電子増倍管 に誘導する光学系と 、 が具備されている。
ま た、 別の好ま し い変形例に従う と 、 前記電源は定め ら れた 時間大きな直流を連続的に出力 し た後、 周期が 0 . 0 5 H Z か ら 1 0 H z の範囲内の間欠パルスであ っ て 、 その波高値が前記 連続直流値よ り も小さ く 、 かつ D C オフセ ッ ト のないパルスを 出力 するよ う に制御されている。
さ ら に 、 ま た別の好 ま しい変形例に従う と 、 前記電磁石対は 独立励磁あるいは和動励磁が選択できるよう に、 電流回路と、 磁気回路が具備されている。
本発明では、 1 対の特殊電磁石を使用 し、 直流励時と間欠パ ルス励時を切り替えることにより、 検体の濃缩と該検体の出射 光制御を効果的に行っ た。 このため、 測定時間の短糖と測定制 度の向上に極めて有利になっ た。
更に、 レーザ出射光測定の際、 上述の発明の磁場の変動周期 に周期 した出射光の検出に方法に加えて、 検体からの出射光信 号を繰り返し加算 ♦ 平均化処理を行うことにより、 測定感度と 測定の再現性を著し く向上することが出来た。
本発明の第八の実施態様に従う と、 所定の抗原あるいは抗体 に磁性体微粒子を標識と'して付加した磁性体標識体と、 検体た る抗体あるいは抗原とを抗原抗体反応させる第 1 工程と、 該第 1 工程後の磁性体標識体と検体との複合体である磁性体標識検 体複合体を含む溶液に磁界を作用させてレーザ光照射領域に該 磁性体標識検体複合体を誘導 , 濃縮さ ίる第 2の工程とを少な く とも含むレーザ磁気免疫測定方法において、 (ィ ) 閭欠パル スに周期 した出射光のみを選択的に検出するかあるいは ( 口 ) 濃縮した該磁性体標識検体を磁力と液体の表面張力によりその 運動を制御し、 該制御に周期した出射光を検出することを特徴 とする レーザ磁気免疫測定方法が提供される。
本実施態様の好ま しい変形例に従う と、 前記工程が上方に開 口を有する検体容器を用いて行われ、 前記誘導 · 讒縮工程と、 前記検出工程が、 該検体容器の下方に置かれた電磁石と該電磁 石の磁心に対向 し て該検体容器の水面真上に置かれた磁極片に よ っ てなされ 該磁極片直下の該水面か らの変動磁界周期に周 期 し た反射光量変化を検出する こ と に よ っ て行われる。
ま た 、 前記検出工程において、 検体の定量が前記磁性体標識 検体複合体の運動に起因 し て前記 レー ザ反射光中に現れる干渉 縞の数を係数するこ と に よ っ てなされる。
ま た 、 本発明の第九の实施態様に従う と 、 磁性体標識検体複 合体を収容する上方に開口を有する検休容器と レーザー光源を 該検体容器の表面へ導く 入射光学系 と 、 該検体に よる レーザ光 の反射光の受光系と 、 該検体容器の表面直下の 1 点に該磁性体 標識検体複合体を濃縮する濃縮機構と 、 該磁性体標識検体複合 体を周期的に駆動する駆動機構とを少な く とも含.むレーザ磁気 免疫測定装置に おいて 、 前記濃縮機構と 、 前記駆動機構が、 電 磁石と該電磁石の磁心に対向 し て前記検体容器を挟むよ う に設 置された磁極片と 、 該電磁石を励磁する電源と から構成され、 前記周期に同期 し た反射光のみを選択的に検出する電子回路部 を具備する こ とを特徴と する レーザ磁気免疫測定装置が提供さ れる。
本実施態様の好ま しい変形例に従う と 、 前記検体容器ま たは 前記電磁石 と前記磁極片のいずれかが、 水平面内で移動 する機 構が具痛されている。
本発明者ら は磁性体標識検体複合休からの反射光を検出する 方法を研究 し た と ころ 、 本発明の構成に特有の効果と し て 、 交 流磁場に周期 した反射光の強度変化が生 じる こ とを見いだ した 即ち、 前述のよう に、 前記磁捶片直下の水面に潑縮された磁性 体標識検体複合体は、 前記電磁石を強励磁すると該磁性体標識 検体複合体が該磁極片に強く吸引されるため該磁極片直下の水 面が極僅か隆起する現象が生じる。 磁力による該磁性体標識検 体複合体の吸引を停止すると、 隆起した水面は水の表面張力の ため自動的に水平に戻る。
この水面の微小隆起部分に レーザ光を照射すると、 反射光中 には隆起の度合に応じた干渉縞が生じる。 この干渉縞は水面上 の浮遊物によっ ても生じるため、 磁界変動に同期する干渉縞の み検出すれば外乱物の影饔を受け'ない。 なお、 前記磁性体標識 検体複合体の量がピコグラム以下になると、 干渉縞は 1 本以下 になるが磁界変動に周期し て反射'光の強度が変化するので、 強 度変化を検出すればよい。 また、 干渉縞の径の変化を検出して もよい。
本発明の第七の実施態様に従う と、 所定の抗原あるいは抗体 に磁性体微粒子を標識と して付加 した磁性体標識検体複台体と 検体たる抗体あるいは抗谅とを抗原抗体反応させる第 1 工程と 該第 1 工程後の磁性体標議検体複合体と検体との複合体である 磁性体標讜検体複合体を含む溶液に磁界を作用させて該磁性体 標識検体複合体を定められた位置に誘導 ♦ 濃縮さ る第 2 のェ 程とを少なく とも含む、 レーザ磁気免疫測定方法において、 磁性体標識検体複合体の存在する前記濃縮位置と、 該磁性体 標識検体複合体が存在しない溶液部の非濃縮位置にレーザ光を 周時あるいは時系列的に照射し、 受光した該濃縮位置からの出 射光と該非濃縮位置からの出射光 と の差分を検出するこ と を特 徴と する レーザ磁気免疫測定方法が提供される。
本実施態様の一つの変形例に従う と 、 前記第 2 工程は上方に 開口を有する検体容器を用いて行われ、 該検体容器の下方に置 かれた磁石と 該磁石に対向 し て該検体容器の水面真上に置かれ た磁石片に よ っ て誘導 · 濃縮がなされ、 前記検出工程が該磁極 片直下の水面と 、 該磁極片近傍の水面を周時あるいは時系列的 に照射するこ と に よ っ て行われる。
本実施態様の別の変形例に従う と 、 前記第 2 工程は細管状の 検体容器を用いて行われ、 該検体容器の定め られた 1 点の磁界 が最大であ っ て 、 該磁界の最大点に向か っ て磁界が増大するよ う に構成されている磁石に 'よ り 誘導 ♦ 濃縮がなされ、 磁界が最 大に なる該検体容器部と 、 その近傍の該検体容器部を同時ある いは時系列的に照射するこ と に よ っ て行われる。
m E検出 工程に おい て該検体か ら の出射光、 透過光 、 反射光、 干渉光および回折光のいずれを還んでもよい。
ま た 、 前記検出工程に おい て 、 レ ーザ光線を 2 つ に分割する こ と に よ り周時照射を行なう こ とができる。
さ ら に 、 前 検出工程に おいて 、 レ ーザ光線を前記濃縮位置 と非濃縮位置の間を走行する こ と に よ り 時系列的照射を行なう こ と ちでぎる。
こ の場合、 レーザの走行周波数に周期 した出射光を選択的に 検出する こ と に よ っ て検体の定量を行なえば検出感度を向上さ せるこ とがでぎる。 本発明の第十一の実施態様に従う と、 磁性体微粒子によ っ て 標識された検体を収容する検体容器と、 該検体容器内の 1 点に 磁性体標識検体複合体を誘導 ♦ 讒縮する機構と、 レーザ光線を 該検体容器へ導く入射光学系と、 該磁性体標識検体複合体並び に該磁性体標識検体複合体を含まない溶液からの レーザ散乱あ るいは透過あるいは反射あるいは干渉光あるいは回折光を受光 する光学系と、 を少なく とも含むレーザ磁気免疫測定装置であ つ て、 傾斜磁場発生装置と、 ビームスプリ ツ ターあるいは偏向 器を具備するこ とを特徴とする レーザ磁気免疫測定装置が提供 される。
本実施態様の好ま じい変形例に従う と傾斜磁場発生装置が、 永久磁石又は電磁石と、 該永久磁石又は電磁石に対向して前記 検体容器を挟むよう に設置された磁極片とから構成されている また、 本実施態様の別の変形例に従う と、 前記検体容器また は前記永久磁石又は電磁石と、 前記磁極片のいずれかが、 水平 面内で移動するように構成されている。
磁性体標識 体複合体を外部磁力により溶液内部で駆動する 方法を取っ た場合、 溶液の粘性抵抗のため外部磁力への追従は 自ずから限度がある。 従っ て、 S Z N比を向上させる目的で、 該磁性体標識検体複合体からの出射光あるいは透過あるいは反 射あるいは干渉光を繰り返し加算 ♦ 平均化処理する場合、 測定 時間がかかる問題があつ たが、 上記第十及び第十一の実施態様 においては磁性体標識検体複合体からの信号に妨害となる検体 以外からのパッ クグラン ド雜音を排除し得るので、 短時 曰 で高
Figure imgf000037_0001
§ ¾ ? ¾| k νςί ¾ fi N / S g ε
f6900/.8df/l3d 8lir0/88 OM 実施例
以下実施例により本発明を詳細に説明するが、 本発明はこれ らの実施例によ り何等制限されるものではない。
まず本発明の レーザ磁気免疫測定法に供する磁性体標識検体 複合体を分散し た液体の調製方法を説明する。
調製方法 I :
第 2 図は、 本発明の レーザ磁気免疫測定法に供する磁性体標 讜検体複合体を分散した液体の調製方法の Ί 例を説明する図で ある。
第 2 図 ( a ) 〜 ( d ) は供試検体液体の調製工程を、 ( e ) 〜 ( F ) は比較対照試料の調製工程を示し ている。
第 2 図 ( a ) は既知のウィルス坑体 2を寒天よ り成る支持体 に固柜化するェ程、 ( b ) は固枏化したウィルス抗体 2 に患 + 者の血液中の未知のウィルス抗原 3 を注入 し 、 抗原坑体反応を さ る工程、 ( c ) はウィルス抗原 3 に磁性体標識ウィルス抗 体 4 を反応させる工程、 ( d ) は支持体 1 を溶解、 除去後、 磁 性体標識検体複合体をガラスセル 1 1 に入れ、 水溶液中に分散 させる液相化工程を図示する。
一方、 第 2 図 ( e ) は、 ウィルス抗原 3 が存在しなかっ たた め に検体と抗原坑体反応を しなか っ た磁性体標識ウィルス抗体 4 を希土類磁石 5 によ り 、 該固相化坑体から分錐 · 除去するェ 程を示す。 第 2 図 ( f ) は—、 支持体 1 を溶解、 除去後、 検体 2 をガラスセル 1 1 に入れ、 水溶液中に分散させる比較対照試料 の液相化工程である。 第 2図 ( e ) と周様の工程を第 2図 ( c ) に施すこ と に よ り 、 すなわち未反応の磁性体標識ウィルス抗体 4を希土類磁石 5 に よ り 除去する こ と に よ り 未反応の過剰な磁性体標識ウィルス抗 体 4を磁性体標識検体複合体から除去するこ とができる。
第 2図 ( e ) の除去工程を磁石の使用 と洗净を併用 し てもよ い。 磁性体標識ウィルス抗体 4 と して 、 ウィルスや特異坑体と の親和性が良 く ウ ィルス等を標識するのに適 し 、 且つ ウィルス 抗原 3 と特異的に結合する坑体をマグネタ イ 卜微粒子の表面に 被覆 し たものを使用 し た 。 磁性微粒子の粒子径は 5 0 nm程度が 適当であ っ た 。
調製方法 Π
第 3図は、 本発明の レーザ磁気免疫測定法に供する磁性体標 識検体複合体を分散 し た液体の調製方法の第 2の例を説明する 図であ っ て 、 第 3図 ( a ) 〜 ( d ) は供試検体の調製工程を、
( c ) 〜 ( f ) は比較対照試料の調製工程を示 し ている。 こ の例で は 、 第 3図 ( a 〉 で示すよ う に支持体 1 上に ウィルス抗 原 3を固相化する。 こ のウィルス抗原 3 と 、 検体である患者の 血液中のウィルス抗体 2 とを抗原 ♦ 坑体反応せ しめ ( 第 3図
( b ) ) 、 ウ ィルス抗体 2 と特異的に抗原坑体反応するマグネ タ イ 卜 の超微粒子に よ り標識された磁性体標識坑免疫グロブリ ン 4 ' と さ ら に反応さ せる ( 第 3図 ( c ) ) 。 次いで、 支持体 Ί を溶解、 除去後、 磁性体標識検体複合体をガラスセル 6に入 れ、 水溶液中に分散さ せる ( 第 3図 ( d ) ) 。
第 3図 ( e ) は 、 未反応の磁性体標識坑免疫グロブ リ ン 4 ' を希土類磁石 5 によ り 、 該固相化抗原から分離 , 除去する工程、 ( f ) は比較対照試料の液相化工程を示す。
供試検体液体をこれらの工程を通して調製した後、 本発明の レーザ光散乱法によ り検体の定量を行なう 。
調製方法 m
第 4 図は、 本発明の レーザ磁気免疫測定法に供する磁性体標 識検休複合体を分散し た液体の調製方法の第 3 の例を説明する 図である。
こ の例では、 第 4 図 ( a ) で示すよう にゼラチンより成る支 持体 1 ヒに例えば患者から採取 した未知のイ ンフルエンザウイ ルス 3 , を固相化する。 このイ ンフルエンザウイルス 3 , と、 鉄超微粒子によ り標識,された既知の磁性体標識ウィルス抗体 4 を抗原 ♦ 坑体反応せ しめ (第 4 図 ( b ) ) 、 過剰の磁性体標識 ウィルス抗体 4 を電磁石 5 によ り分離 ♦ 除去する (第 4 図 ( c ) ) 。 次いで、 支持体 1 を溶解、 除去後、 磁性休標識検体複合体 をガラ ス ル 6 に入れ、 水溶液中に分散さ せ て供試検体液体を 調製する (第 4 図 ( d ) ) 。
調 法 IV
第 5 図は、 競合阻害反応検出法において、 本発明の レーザ磁 気免疫測定法に供する磁性体標識検体複合体を分散した液体の 調製方法の 1 例を説明する図である。
この例では、 第 5 図 ( a ) で示すよう にゼラ チンよ り成る支 持体 Ί 上に既知のウィルス坑体 2 を固相化する。 この固相化さ れた坑体 2 と患者のウィルス抗原 3 とを抗原坑体反応させる ( 第 5図 ( b ) ) 。 別工程で磁性体に よ り標識 し た磁性体標識 ウィルス抗原 2 ' を工程 ( b ) での抗原坑体反応後の検体と反 応させ ( 第 5図 ( c ) ) 、 過剰、 すなわ ち未反応の磁性体標識 ウィ ルス抗原 2 ' を電磁石 5 に よ り分離 · 除去する (第 5図
( d ) ) 。 図示を省略 し たが、 次いで、 支持体 1 を溶解、 除去 後、 磁性体標識検体複合体をガラス セル 1 1 に入れ、 水溶液中 に分散さ せて供試検体液体を調製する。
第 5図 ( e ) は、 比較対照試料に磁性体標識ウィルス抗原 2 ' を反応さ せる 工程、 ( f ) は未反応の磁性体標識ウィルス抗原 2 ' を磁石 5 に よ り捕集する工程を示す。
調製方法 V
第 6図は、 競合阻害反応検'出法において 、 本発明の レーザ磁 気免疫測定法に供 する磁性体標識検体複合体を分散 し た液体の 調製方法の別の例を説明する図である。
こ の例 で は 、 第 6図 ( a ) で示 すよ う に ビ ラ チンよ り成る支 持体 1 上 に既知のウィルス抗原 3を固相化する。 この固相化さ れた抗原 3 と患者のウ ィ ルス坑体 2 とを抗原坑体反応さ せる ( 第 6図 ( b ) ) 。 別工程で磁性体によ り 標識 し た磁性体標識 ウ ィル ス抗体 4を 、 工程 ( b ) での抗原坑体反応後の検体と反 応さ せ ( 第 6図 ( c ) ) 、 過剰、 すなわち未反応の磁性体標識 ウ ィルス抗体 4を電磁石 5 に よ り分離 ♦ 除去する ( 第 6図 ( d ) ) 。 図示を省輅 したが、 次いで 、 支持休 Ί を溶解、 除去後、 磁 性体標識検体複合体をガラス セル Ί 1 に入れ 、 水溶液中に分散 させて供試検体液体を調製する。 第 6 図 ( e ) は、 比較対照試料に磁性体標識ウィルス抗体 4 を反応させる工程、 ( f ) は未反応の磁性体標識ウィルス抗体 4 を磁石 5 によ り捕集する工程を示す。
本例の場合も、 磁性休標識ウィルス抗体 4 は検体を含む液相 中ではウィルス抗体 2 によ り ウィルス抗原 3 との反応を阻害さ れるため未反応の ま ま磁石によ り 除去される。 しかし比铰対照 試料を含む液相中に はウィルス抗原 3 は存在しないため磁性体 標識ウィ ルス抗体 4 はウィルス抗体 2 と反応し検出されるこ と ' になる。 その結果検体を含む液相中から は磁性体標識検体複合 体は検出されず、 比較対照試料を含む液相中のみに磁性体標識 体複合体が検出される。
実施例 1 · .
第 1 図に示す装置を使用 して調製方法 I (第 2 図) に従っ て 調製された検体を測定 し た。 H e e レーザー出力 5 m W、 低 周波電源サイ クル◦ . 5 H z で既知の量の磁性体標識体を含む 標準溶瘐を希釈しなが ら測定 し た結果、 R I A とほば周程度の ピコ グラムの検出限界を有するこ とが明らかになっ た。
ま た 、 磁界による濃縮、 交流磁場の印加.を しない以外は上記 と同様に測定 した ところ 、 体と比較対照試料との散乱強度の差 から 、 1 0 - 1 1 3程度の検出は可能であ っ た。
実施倒 2
調製方法 I (第 3 図 ) に従っ て調製された検体を、 前記実施 例 の レーザー光散乱法に よ り定量を行っ た と ころ、 実施例 1 と同程度の ピコ グラムのゥィルス坑体の検出ができた。 実施例 3
調製方法 II ( 第 4 図 ) に従 っ て種々の型のイ ンフルエ ンザゥ ィ ルス坑体を と患者か ら採取 し た未知の検体を調製 し 、 前記実 施例 1 で使用 したの と周 じ レーザー磁気免疫測定装置を用いて 検体検査を行ない イ ン フルエ ンザウ イ ルスを特定 した 。
本実施例に よる測定法は、 検出感度が高いために従来の酵素 や螢光体を用いる方法に 比較 し て 、 ウ ィ ルス感染初期の段階で イ ンフルエ ンザウ イ ルスの特定を行う こ とが出来た。
実施例 4
検体及び比較対照試料を調製方法 IV ( 第 5 図 ) に従っ て調製 し た後、 前記実施例 1 の レーザ一光散乱法に よ り測定 し た と こ ろ 、 本実施例の場合は、 磁性体標識ウ ィルス抗原 2 ' は検体を 含む液相中ではウ ィ ルス抗原体 3 に よ り ウ ィ ルス抗体 2 と の反 応を阻害されるため未反応の ま ま磁石に よ り 除去される。 しか し 比較対照試料を含む液相中に はウ ィ ル ス抗原 3 は存在 し ない ため磁性体標識ウ ィ ルス抗原 2 ' はウ ィ ルス抗体 2 と反応 し検 出さ れる こ と になる 。 その結果検体を含む液相中から は磁性体 標識検体複合体は検出されず、 比較対照試料を含む液相中のみ に磁性体標識検体複合体が検出 さ れた 。 但 し 、 ウ ィ ルス感染初 期の患者から の検体ではウ ィ ルス抗原 3 の数が極めて少ないた め、 工程 ( b ) では一部の固相化坑休のみがウ ィ ルス抗原 3 と 反応するため、 検体を含む液相中か らも磁性体標識検体複合体 は検出されるがウ ィ ルス抗原 3 の増加につ れ検出量は減少する 。 この減少量に よ り 、 ウ ィ ルス抗原 3 の量を定量するこ とができ る。
実施例 5
調製方法 V (第 6 図 ) に従.つ て供試検体液体を調製し前記実 施例 4 と周様に し て測定 し た。
本実施例においても、 実施例 4 と周じ結果が得られた。
上記実施例に於いて、 支持体と し て寒天ま たはゼラチンを用 いているが、 これらの間には本質的な差異はな く 、 支持体は固 相化される抗原、 ま た は坑体との組合せから経験的に選択され る。
実施例 6
第 7 図は本発明の レーザー磁気免疫測定装置の Ί 例の側方溉_ 格図である。 尚.、 第 7 図中には、 本発明の レーザ磁気免疫測定 装置のう ち 、 標識磁性体微粒子を誘導 · 濃縮する磁石駆動部及 び標識磁性微粒子を外部磁場によ り周期的に運動抑制させる標 識磁性微粒子駆動機構部の図示を省咯した。
図示の如 く 、 本発明の レーザー磁気免疫測定装置は、 光学ス テ一ジ Ί 0上に設けられた レーザ光源 Ί 2 と、 この レーザー光 源 1 2 からの レーザー光線 1 3 の光路を変更する ミ ラー 1 4 、 1 4 ' 、 1 4 " とを備える。 レーザ光镍 Ί 2 はミ ラー 1 4 、 1 4 ' 、 4 " によ り光路を変更され、 その光路上に検体容器 1 Ί が配置されている。 この検体容器 Ί 1 は、 その軸方向を レー ザ光線 Ί 3 の光路と略一致し て配置され、 後述するよう に異径 断面を有する 0
このよう に して検体容器 1 1 の軸方向に レーザ光線 1 3 が入 射 し 、 検体容器 1 1 内に収容された液体中の磁性体標識検体複 合体に よ り 散乱する。 この散乱光を検体容器 1 1 の小口径部分 ^ から取 り 出 し 、 散乱光束 1 5 上にス リ ツ 卜 1 6 、 集光 レンズ 2
0 、 N D フ ィ ル ー 2 3 、 さ ら に 、 集光 レ ンズ 2 0 に よ り 散乱 光束が集光する位置に光電子倍増管 2 4 が設け られている。
本実施例で は、 検体容器 1 1 と し て 、 2 種類の内径、 8 mm、 0 . 5 mmを持つパイ レ クスガラス製の異径断面容器を使用 し た 。 レーザ光線は該異径断面容器の大口径端よ り入射 し 、 小径部分 よ り 散乱光を取 り 出 し た。
異径断面容器を検体容器 と し て用い 、 大口径側から レ ー ザビ —ムを入射 し た理由 は次の通 り である。 すなわち 、 入射レーザ ビー ム'よ り も.容器の口径が大きい場合は 、 検体の一部分 しか光 散乱に寄与 しないため 、 測定感度向上に限界があるこ と、 一方、 容器の口 径が入射 レ ーザー ビ ー 厶径 と同等の場合、 本実施例の よ う に 、 レーザビームを容器の開口部か ら入射させる と 、 検体 表面の メ ニス カ スのため入射ビ ー ムが広が り 、 測定感度向上に 好ま し く ないためである。
尚、 従来の光散乱測定装置で常用されている、 測定セルの側 面か ら の レ ーザ光線を入射する方法ももちろん適用 するこ と は 可能である。 但 し 、 測定 tルの口径が レー ザ光線の径と同程度 の数百ミ ク ロ ン程度になる と、 測定セルの内部に レーザ光を効 A 率よ く 導入する た めに は測定 セルの屈折率 と等 し いマ ッ チング オイ ルの使用が必要にな り 、 本実施例のよ う な、 マ ッ チング才 ィルを使用 し ない レーザ光導入方法の方が有利である。 第 8 図は本発明の レーザー磁気免疫測定装置の標識磁性微粒 子を誘導 ♦ 濃縮する磁石駆動部、 並びに該標讜磁性微粒子を外 部磁場によ り周期的に運動制御させる標識磁性微粒子駆動機構 部の概略図である。
これらの磁石驅動部および超微粒子駆動機構部は、 固定台 2 5 に取りつけられ、 検体容器 1 1 を垂直に支持する検体容器支 持台 2 6 と、 誘導 * 濃縮用モータ 2 7 により駆動される送りネ ジ 2 8 と嚙合して上下動するスク リ ユーべァリ ングのハウジン グ 2 9 と、 該ハウジングに取り付けられた移動ステージ 3 0 と を備える。
上述のよう に、 検体容器 Ί Ί は異径断面容器であり、 大径ロ 端部から レーザ光線 1 3 を入射され、 且つ後述するようにその 小径部分が移動ステージ 3 0を貫通している。 移勤ステージ 3 0 には、 モータ 3 1 と、 該モータ 3 1 の軸に取りつけた儒心力 ム 3 2 と、 該謳心カム 3 2 に、 ロ ッ ド 3 3を介して連結された 案内ステージ 3 4 とを備える。 案内ステージ 3 4 は一対の案内 部材 より画成される軌道上を往復方向に滑動自在である。 さ らに、 案内ステー ジ 3 4には、 一対の永久磁石 3 5が取りつけ られ、 それらの永久磁石 3 5の間に開口部 3 6を有する。 検体 容器の小径部分はこの開口部 3 6を貫通している。 開口部 3 6 の内径は検体容器の小径部分の外径よりも充分に大きく、 案内 ステージ 3 4が往復動 しても検体容器の小径部分は案内ステー ジ 3 4 と衝突しないよう に構成されている。
次に、 第 8 図に示した本発明のレーザ磁気免疫測定装置の標 識磁性微粒子を誘導 ♦ 濃縮 する磁石駆動部、 並びに該標識磁性 微粒子を外部磁場によ り周期的に運動制御させる標識磁性超微 粒子駆動機構部の動作を説明 する。
まず、 検体容器 Ί 1 を検体容器支持台に取 り付け 、 標識磁性 微粒子の誘導 ♦ 濃縮用 モー タ 2 7 を作動 し てハウ ジ ング 2 9、 すなわちハ ウジング 2 9 に取 りつけ られた移動ステージ 3 0 を 検体容器の小口径側から大口径側に 上昇さ せる。 次に 、 該モ一 タ 2 7 に よ り 、 5 mmZ分の低速度で該移動ステージ 3 0 を検体 容器の小口径側に下降さ せ て 、 第 7 図で説明 し たス リ ツ 卜 2 2、 レ ンズ 2 0、 N D フ ィルタ ー 2 3 、 光電子倍増管 2 4 から成る 光学系の散乱光検出光軸 と一致する標識磁性微粒子誘導 ♦ 濃縮 位置上で 移動ステ一.ジ 3 0 を停止させる。 この操作によ り 、 検体容器中に一様に分散 し ていた標識磁性微粒子は一対の永久 磁石 3 5 の移動 と共に磁石の周 り に集め られ、 検体容器中の一 部 、 すなわ ち 、 散乱光検出光軸上の小口径部分に濃縮される こ と になる。
続いて 、 該検体容器 1 1 を挾み、 Ί 2 mmの距離に固定 した一 対の永久磁石 3 5 を搭載 し た案内ステ ー ジ 3 4 を運動制御用モ ー タ 3 1 、 偏心カ ム 3 2 、 ロ ッ ド 3 3 に よ り ス ト ロ ー ク 5 mm、 移動速度 3 0 0 mm/分で往復させる。 この操作に よ り 、 濃縮さ れた標識磁性微粒子は検体容器の小口径部分内を永久磁石 3 5 の往復動作に周期 し て運動する こ と になる。
第 9 図は第 7 図に示 し た光電子倍増管 2 4 によ り 測定 し た該 超微粒子から の光散乱強度変勤を示す。 第 9図中に永久磁石 3 5 をを静止して測定した場合を ( a ) で示す。 この場合は、 該超徽粒子のブラウン運動に基づく不規 則な'強度変動のみが観察される。
—方、 永久磁石 3 5 を往復運動させて測定した場合を第 9 図 中に ( b > で示す。 図示の如く 、 永久磁石 3 5を往復運動させ ると、 往復運動の周期に周期した散乱光の強度変動が観察され た。 往復運動に周期した散乱光をロ ッ クインアンプを甩ぃ検出 したところ、 約 2桁の測定感度の向上が得られ、 ピコグラム才 一ダの超微量測定が可能になっ た。
実施例 1
第 1 0面は本発明の第 2の実施例に基づく 、 標識磁性微粒子 を誘導 ♦ 濃縮する磁石駆動部、 並びに該標識磁性微粒子を.外部 磁場により周期的に運動制御させる標識磁性微粒子駆動機構部 を示す溉略図である。 第 1 0図中、 第 8 図に示した部材と周一 または対応する部材は周一の参照番号で示す。
本実施 Mでは、 標識磁性微粒子を誘導 * 濃縮する磁石駆動部 においては、 固定台 2 5 に取りつけられた誘導 ♦ 濃縮用モータ 2 7を備え、 これにより駆動される送りネジ 2 8 と直接嚙合し て移動ステージ 3 0が取りつけられる。 移動ステージ 3 0上の 検体容器 1 1 の小口径部分が貫通する開口部 3 6の両側には一 対の電磁石 3 7が配置され、 標識磁性微粒子駆動機構部を構成 している。
第 8 図に示した第 Ί の実施例では永久磁石を使用 しているの に対して、 第 1 0図の本実施例では電磁石 3 7 を使用 している ため標識磁性微粒子駆動機構部に は可動部が無く 、 超微粒子駆 動を電気的に行う点が異な っ ている。 本実施例では該微粒子の 誘導 ♦ 濃縮及び運道制御を一対の電磁石を交互に付勢するこ と に よ り行な っ た 。
すなわ ち 、 誘導 ♦ 濃縮の際は、 該電磁石を 3 7 を同時に励起 し た状態で 、 実施例 と周様に移動ステー ジ 3 0 を昇降 し て該微 粒子を検体容器 Ί Ί の小口径部分の所定位置に誘導 , 濃縮する。 続い て 、 濃縮位置におい て 、 電磁石 3 7 の励起を交互に行なう 。 濃縮された標識磁性微粒子は小口径部分の検体容器中 1 Ί 内を 励起周期に周期 し て運動するこ と になる。 励起周期は電磁石の 磁界、 検体容器電磁石間の距離、 検体容器の外形等によ り異な るが、 本実施例では 1 H z 程度が適当であ っ た'。 なお、 光学系 は第 1 の実施例 と周一である。
第 1 1 図は本発明 に従う検体容器を示す。 図示の如 く 検体容 器は円筒形の外形をな し 、 内径が一部分で細く な つ ている。 こ の小径部分に標識磁性微粒子を誘導 ♦ 濃縮する 。
実施例 8
第 1 2 図は本発明のさ ら に別の実施例による標識磁性微粒子 を誘導 ♦ 濃縮する磁石駆動部、 並びに該標識磁性微粒子を外部 磁場に よ り周期的に運動制御させる標識磁性微粒子を示す概略 図である。
本実施例の装置は、 珪素鋼板を積層 して成る標識磁性微粒子 の誘導 ♦ 濃縮用鉄心 4 2 と非磁性体の アルミ よ り なるスぺーサ 4 4 とを交互に積層 し た鉄心部分を備える。 これらの鉄心 4 2 およびスぺ一サ 4 4 とは全体と して C字形をな し、 その間隙部 分に検体容器 4 1 が配置されている。 鉄心 4 2 - 1 、 4 2 — 2、 ♦ · 4 2— 8 のそれぞれにはコィル 4 3 が巻かれ、 電磁石を形 成し ている。 さ ら に鉄心 4 2 の積層体の略中央位置の鉄心 4 5 は検体容器 4 1 をはさむ両側の部分にコイル 4 6、 4 7 が巻か れている σ
本実施例では検体容器 4 1 は、 内径 2 . 0 mm、 外径 2 . 8 mm のガラス管を使用 した 。 又、 標識磁性微粒子の誘導 ♦ 濃縮用鉄 心 4 2 は 4 2— Ί から 4 2— 8 まで 8 層あ り 、 中心位置には標 識磁性微粒子の運動制御用鉄心 4 5 を 1 層設けた。
第 1 3 図 ( a ) は標識磁性微粒子の誘導 ♦ 濃縮用鉄心 4 2、 第 1 3 図 ( b ) はスぺー サ 4 4 、 第 1 3 図 ( c ) は標識磁性微 粒子の'運動制御甩鉄心 4 5 の断面をそれぞれ示す。 誘導 ♦ 濃縮 用鉄心 4 2 にはコ イ ル 4 3 が一ヶ所、 運動制御用鉄心 4 5 に は コ イ ル 4 6、 4 7 が巻かれている。
第 1 2 図に示し た装置は第 7 図に示し た本発明の レーザ磁気 免疫測定装置の散乱光測定部分、 すなわち 、 レーザ光入射光軸 4 8 上に検体容器 4 1 の軸が重なるよう に配置される。 ま たは 、 第 1 2 図に示した装置に用い られる検体容器 4 1 は、 周一内径 のガラス ゼルであるが 、 第 1 Ί 図に示し た形状も好ま しい。 第 1 2 図中では散乱光検出軸は参照番号 4 9で示す。
第 Ί 4 図は、 第 1 2 図に示した電磁石の励起のタ イ ミ ング図 である。 誘導 ♦ 濃縮用鉄心 4 2— Ί〜 4 2 _ 8 に巻かれた コィ ルをそれぞれ 4 3 — 1 〜 4 3 — 8 とする と 、 図に示 したよう に 外側の電磁石から頫次励起 し て 、 検体容器 4 1 中の標識磁性微 粒子を運動制御用鉄心 4 5 の位置に誘導 ♦ 摩縮する。 次いで、 鉄心 4 5 の一対の電磁石 4 6及び 4 7 を交互に励起 し て標識磁 性微粒子に周期的な運動を付与する。
第 1 2 図に示 し た装置を第 7 図の本発明の レ ー ザ磁気免疫測 定装置に組み込んで、 検出感度を測定 し た結果、 第 8 図に示し た永久磁石を使用 し た装置と周等の ピコグラ ム オーダの検出が 出来た 。
第 8 図に示 し た永久磁石を用いる装置と比較する と、 本実施 例の装置は機械的部分がないため 、 装置の小型化、 長寿命化に 有利である。 一方、 第 8 図に示 し た永久磁石を用いる装置では、 希土類 C o 磁石のよ う に エネル ギー積の大きい磁石を使用する こ とが出来るのに対 し て 、 本実施例の装置では磁界の強さが小 さ い ため、 本発明の特徴を発揮する に は、 断面積の小さ な検体 容器を使用 する方が望ま しい。
なお 、 本実施例で は標 ¾磁性微粒子の運動制卸用鉄心 4 5 は、 中心部に置いたが、 必ず しもその必要はな く 、 任意の位置でよ い。 ま た 、 標識磁性微粒子の誘導 ♦ 濃縮用鉄心 4 2 は、 本実施 例では、 検体容器を挾み、 対向するよ う に配列 し たが、 検体容 器 4 1 の片側の側面のみに配列 するこ と も可能である。 但 し 、 運動制御用鉄心 4 5 に付いて は、 検体容器を挾み対向させるこ と が望 ま しい。 その理由 は標識磁性体微粒子の変位量を大き く する方が散乱光の強度変動の制御に有利であるためである。
実施例 9 第 1 5 図 ) 乃至 ( c ) は、 調製方法 ί のよう に し て調製 した各液相磁性体標識体検体複合体に対して実施した、 本発明 の方法に従う免疫測定方法の前処理を説明するための図である。
第 1 5図 ( a ) に示すのは、 前述の如く して調製した各磁性 体標識検体複合体を水に分散して、 液相化した直後の試料を、 内径 2關、 外径 2 , 8 mmのガラスセル 1 1 に収容したものであ る。 図中で秦印 6 は磁性体標識検体複合体検体複合体を示し、 Δ印 7 は微細化した固相化支持層の破片を主とする不要な浮遊 物である。
このような試料を、 各々 4 , 0 0 0 r pm の回転数で 3分閭遠 心分離に付したところ 、 第 1 5図 ( b ) に示すように、 磁性体 標識検体複合体を含む浮遊物は全てガラスセル 1 1 の底部に沈 殿した。 .
次いで、 ガラスセル 1 1 を挾むよう に 1 対の希土類永久磁石 1 8 を位置付けし、 ガラスセル 1 1 の下方から上方へ磁石 1 8 内を移動 し、 磁性体標識検体複合体を含む検体 6をガラスセル 1 Ί の高さの中央付近まで誘導した ところ、 略完全に磁性体標 識検体複合体 6のみが誘導されて上昇した。
第 1 6図は、 予め、 濃度を規則的に変更した複数の試料に対 して、 後述のような手頗で免疫測定を施した結果を示すグラフ である。 又、 このタラフには比較対照のために、 上述の浮遊物 の沈殿操作並びに検体の誘導操作を省いて周じ測定を行っ た結 果を併せて示した。
第 1 6図に見られるように、 上述の操作を省いた場合は、 磁 性体標識検体複合体の濃度が増すにつれて散乱 し た レーザ光の 強度が過剰に増 し ている。 従 っ て 、 この方法 で は、 検体の有無 は確認できるが、 定量的な測定をするこ と はできない。
こ れに対 し て 、 本発明に従う 方法に よれば検出精度の直線性 がよ く 、 検体濃度に正確に比例 し た散乱強度の変化が検出でき た 。
ま た 、 第 1 6 図において 、 各検出結果と共に点線で示されて いるの は、 各検出限界に 相当する各々のバ ッ クグラウ ン ド量を 示 し ている。 即ち 、 本発明方法では、 バ ッ クグラウン ドも極め て低く 、 検出限界は、 比較法に対 し て約 2 倍とな っ ている。
尚、 レーザ光の散乱に よる液相検体中の磁性標識体の測定は 以下のよ う に し て実施 し た α 即ち 、 第 1 7 図は、 この方法を模 式的に示す図である。
調製 し た供試検体液体を収めたガラス tル Ί Ί の側方に は、 このガ ラ ス tル 1 1 を挾ん だ 1 対の電磁石 Ί 8 が配置さ れる。 この電磁石 1 8 はガラスセル 1 Ί 内で沈殿 し た他の浮遊物 7 と 分離 し た磁性休標識検体複合体 6 を、 ガ ラ ス セル 1 1 の高さの 中程に保持する機能を果す。 なお、 この電磁石 1 8 を、 前記 し た浮遊物 7 と磁性体標識検体複合体 6 との分離操作に利用 し て もよい。 ま た 、 こ の電磁石 1 8 は 、 0 . 5 H z という低周波数 の交流雷源 1 9 に よ っ て駆動さ れてお り 、 その生成する磁場は 電源周波数に応じて変化 し ている。
—方、 こ の '爾磁石 1 8 に よ っ て ガラスセル Ί Ί の中程に保持 されている磁性体標識検体複合体 6 に対 し て は、 ガラスセル 1 1 の側方から、 H e - N e レーザ管 Ί 2によっ て 5 mwの レーザ 光を照射する。
このレーザ光に対して、 ガラスセル Ί Ί を介した レーザ光軸 の延長線上には、 偏光板 2 1 を介して第 1 のフ ォ トダイオー ド Ί 6 aが配置されている。 また、 レーザ光の光軸から逸れた位 置に、 磁性体標識検体複合体 6 との間に沈殿物 7が介在しない よう に、 又、 ガラスセル 1 1 との間に集光レンズ 2 0を挾むよ う に 、 第 2 のフ ォ トダイオー ド 1 6 bが配置されている。 これ らのフ ォ トダイォー ド 1 6 a及び 1 6 bは、 前述の電磁石 1 8 の交流電源 1 9 と周期 して動作するロッ クイ ンアンプ 1 7 によ つ て、 入射光に対応する電気信号を出力する。
このような装置において、 ガラスセル 1 1 内,では、 電磁石 1 8 によ つ て形成された磁場に、 磁性体標識検体複合体 6が集中 して局部的に検体濃度を高めている。 従っ て、 この磁性体標識 検休複合体 6の群に照射された レー 光は、 磁性体標識檢体複 合体の濃度に応じ て散乱する。
第 Ί のフ ォ 卜ダイオー ド Ί 6 aは、 この磁性体標識検体複合 体 6の群を透過した レーザ光の強度を測定し、 また第 2 のフ ォ 卜ダイオー ド 1 6 b は、 この磁性体標識検体複合体 6の群によ る散乱光の強度を測定するこ とになる。 尚、 通常の測定は散乱 光のみで充分に行う ことが出来るが、 検体の種類 * 濃度によつ ては透過光の方が S Z N比の高い検出が可能であ っ た。
このとき、 前述のよう に、 電磁石 1 8が交流電源によ っ て駆 動されているので、 電磁石 1 8 が形成する磁場もそれに応じて 変動 し 、 さ ら に 、 こ の磁場に捕捉されている磁性体標識検休複 合体 6 の群も揺動する。 一方、 書 く フ ォ 卜 ダイ オー ドの動作も 、 ロ ッ ク イ ン ア ンプ Ί 7 に よ っ て 、 磁場の変動 に周期 し ているの で、 各フ ォ ト ダイ オー ドは、 磁場に捕捉されている磁性体標識 検体複合休 6 に よ る レ ー ザ光強度の変動のみを選択的に検出 す る。 このよう な操作によ り 、 温度変化あるいは、 外乱等に よる 影響を排除 する こ とが でき、 検出精度は さ ら に高ま る。
尚、 前述の操作に よ っ て作製された磁性体標識検体複合体の 存在 しない比較対照試料をこの測定に付 し て 、 ロ ッ ク イ ン アン プ 1 7 か ら検体容器のバ ッ クグラウン ド レベルを測定 した と こ ろ 、 R i A 法 と略周じ ピコ グラム レベルの検出限界を達成 し て いるこ とが判明 し た。 又、 この交流磁場を利用 しないで、 単純 な測定を行 っ ても、 マイ ク ロ グラ ム程度までの検出は有効に実 · 施する こ とができた 。
実施冽 1 0
第 1 8 図 ( a ) 乃至 ( h ) は、 本発明に従う レーザ磁気免疫 測定方法に おける、 供試検体液体の調製操作を手頫を追 っ て示 す図である。 尚、 こ こで述べる操作は、 既知の坑体を非磁性体 粒子表面に固定 し未知の抗原と抗原坑体反応を させた後に 、 磁 性体超微粒子によ っ て標識 し た特異坑体とさ ら に抗原坑体反応 ti しめるちのである。
第 1 8 図 ( a ) 並びに ( a ) ' は、 検体を収容する と ともに 調製操作を行う ための検体容器の断面図並びに続いて 、 第 1 8 図 ( c ) に示すよ う に 、 マイ ク ロ シ リ ンジ 8 a を用いて、 ゥ ェ ル A に患者の体液から採取した検体を注入した。 即ち、 ここで 注入した液体には、 未知のウィルス抗原 5 3 が含まれており 、 これは坑体 5 2 と抗原坑体反応によって抗原坑体複合物を生成 する。
更に、 第 1 8 図 ( d ) に示すように、 マイクロシリ ンジ 8 b を用い て、 ゥ ヱル Aに磁性体超微粒子 5 5 で標識した特異坑体 5 4を注入する。 特異坑体としては坑免疫グロブリ ンを用いた。 こう して注入され fc特異坑体 5 4 は前述の抗原坑体複合体と抗 原坑体反応する。
かく して、 ゥエル A内には以下の物質が混在することになる。
① [非磁性体粒子 5 1 —抗原 5 2 —坑体 5 3 —特異坑体 5 4 一磁性体微粒子 5 5 ] の複合物 -
② 未反応の [特異坑体 5 4 —磁性体微粒子 5 5 J
③ 未反応の [非磁性体粒子 5 1 —抗体 5 2 ]
④ 不可避な不純物粒子
そこで、 第 Ί 図 ( e ) I に示すよう に、 ゥエル B及び Gに、 分注器 6 によ つ て純水を注入し、 検体容器 1 内の水位を . より も高く する。
この状態で、 第 1 8図 ( f ) に示すように、 磁力の小さな磁 石 5 Lをゥエル Aの上方に接近させる と、 上述の②のみが磁石 5 L に吸い寄せられる。 そこで、 磁石 5 Lをゥエル Bの方へ水 平に移動することによ っ て、 ゥエル A内の②はゥエル Bへ誘導 される。 このとき、 ①は、 特に非磁性体粒子 5 1 によっ て質量 が増加 しているので、 磁石 5 Lの磁力では牽引されない σ 従つ て 、 ゥ エル A 内 に は、 ①、 ③ 、 ④が残留する。 ( この場合、 ゥ エル A と ゥエル B との境界壁の上端に接 し て液面よ り高く なる よ う に多孔質フ ィ ルタ ー を配設 し て②は通すが①と③は通さな いよ う に して分離を完全にするこ ともできる。 ま た 、 磁.石 5 L をゥエル B の領域の液面下に 浸清 し て②の撺集を効果的に行な う こ ともできる (第 Ί 8 図 (f ) ' ) 。
続い て 、 第 1 8 図 ( g ) に示すよ う に 、 磁力の充分に大きな 磁石 5 H をゥエル A に接近させる。 今度は、 磁石 5 Hの磁力が 充分に大きいので 、 ①が磁石に吸い寄せ ら れる。 従 っ て 、 磁石 5 H をゥエル Cの方へ移動する と 、 前述の①のみがゥエル C内 へ誘導さ れる。
こ.う して 、 検体容器 Ί 1 のゥエル C内に 、 抗原坑体反応によ つ て生成 し た 、 [ 非磁性体粒子 5 1 · -抗原 5 2 —坑体 5 3 —特 異坑体 5 4 — 磁性体微粒子 5 5 ] の複合物のみが分散 し た純水 が得ら れる 。 そ こで 、 こ れを第 1 8 図 ( h ) に示すよ う に 、 マ イ ク 口 シ リ ンジ 8 c 等に よ っ て取出 し 、 レーザ光散乱測定 に供 し し て抗原坑体複合体の検出を行う 。
又、 後述するよ う に 、 この調製された検体を検体容器 " 1 に収 容 し た ま ま 、 レ ーザ散乱光測定 に付す こ と も可能である。
尚、 第 1 8 図 ( e ) に示す操作では、 純水の注入はゥエル B およびゥエル Cの側から行う こ と が好ま し い。 何故な らば、 ゥ エル A 内の未反応の磁性体標識検体や未反応の微小球、 さ ら に 液中 に不可避的に存在する各種浮遊物が 、 ゥ エル B あるいは C に流入する と 、 検出限界あるいは検出精度の向上が阻害される からである。 又、 同じ理由によって、 磁力による磁性体微粒子 を含む粒子の誘導は、 各ゥエルの水面近傍においてのみ行う こ とが好ま しい。 .
又、 第 1 8図 ( g ) に示す操作では第 Ί 8図 ( f ) に示す操 作におい てゥエル Bに誘導された未反応の磁性体微粒子を、 他 の磁石によってゥエル Bの底部に誘導して遠ざけておくことも 好ま しい。
さて、 前述のよう に調製された検体に対するレーザ光散乱測 定は、 以下のよう にし て実施される。 すなわち、 第 1 9図は、 この操作を説明する図である。
第 Ί 9図に示す検体は、 第 1 8図 ( g ) と周じ状態にある、 従っ て、 検体容器 Ί 内の純水中には、 ゥエル Aでは未反応の 坑体 5 2とそれの固定された非磁性体粒子 5 1 、 ゥエル Bでは 磁性体微粒子 5 5に標識された未反応の坑体 5 4、 そして、 ゥ エル Gでは既反応の抗原坑体複台体 ( 5 1 一 5 2 - 53 - 5 4 一 5 5 ) が分散している。 又、 ゥエル G内の抗原坑体複合体 ( 5 1 - 5 2 - 53 - 5 4 - 5 5 ) は、 磁石 4によっ て水面付 近に密集している。
このょゔな状態を維持したまま、 抗原坑体複合体 ( 5 1 — 5 2 - 53 - 5 4 - 5 5 ) が密集している領域に、 上方から H e - C d レーザ管 Ί 2によ って、 レーザ光 Ί 3を照射する。 照射 した レーザ光 1 3は、 純水中の抗原坑体複合体 ( 5 1 — 5 2— 53 - 54 - 5 5 ) によっ て一部が散乱されながら、 大半はゥ エル C内の純水を透過して検体容器の下側に出射する。 こ こで、 レーザ光 1 3 の散乱を測定する方法は大別 し て 2 つ ある。 即ち 、 一つ は、 レーザ光軸から逸れた位置で散乱光 1 5 a の強度を測定する方法である。 もう 一つ は、 照射 し た レ ーザ 光軸上に 、 レーザ光の散乱がない状態で消光するよ う に偏光板 2 1 を配置 し、 この偏光板 2 1 を透過 し た散乱光の強度を測定 する方法である。 いずれの方法も適切な位置に受光素子等を配 置するが、 第 1 9 図では両方の方法を併せて示 し ている。
第 1 9 図に示される受光素子 2 4 が、 散乱光の強度を測定す る受光素子であ り 、 こ こ では光電子倍増管を使用 する。 又、 散 乱光は比較的微弱なので、 磁性体標識検体複合休と受光素子 2 4 との間に 、 ス リ ツ 卜 2 2 を設けて測定範囲を規定する と共に 集光 レ'ンズ 2 0 をも設けて受光'感度並.びに測定精度の向上を計 つ た 。
一方、 第 Ί 9 図に示す受光素子 1 6 は、 磁性体標識検体複合 休を透過 し た レーザ光の光軸上で散乱を測定 する ための受光素 子であ り 、 こ こでは フ ォ 卜 ダイ オー ドが適切である。 更に 、 レ 一ザ光 1 3 と検体との間に は、 磁性体標識検体複合体に照射す る レ ーザ光の光量を調節するための N D フ ィ ルタ 2 3 を設ける こ と が好ま しい。
尚 、 ゥエル Cの水面における レーザ光の反射の影響を極力排 除するよ う に 、 レーザ光の照射角度を選択する必要がある。 ひ とつの典型的な値と し て 、 照射する レーザビーム 1 3 が、 ゥェ ル A 内の水面に対 し て 6 0度の角度で入射するよ う に 、 ま た 、 散乱光 1 5 を受光する受光素子 2 4 が、 ゥエル A 内の水面に対 して 4 5度の方向に放射される散乱光の強度を測定するように 設定するこ とが挙げられる。
なお、 本実施例では検体の調整に純粋を使用 しているが、 純 粋に限られるものでなく 、 正常な液体であれば何でもよい。 従 来の E I A法の場合、 酵素活性が損なわれないよう に、 使用す る液体は P H等を慎重に選択する必要があつ たが、 本発明の場 合、 抗原抗体反応後に用いる液体は、 そのような考慮は全く不 要である。 む し ろ、 従来法では使用 できなかっ た有機溶媒ゃ不 揮性のたとえばパラフ ィ ン油等が、 液の蒸発を防ぐために好ま しい。
実施例 1 1 .
第 2 0図 ( a ' ) 乃至 ( e ) は.、 本発明に'従う他のレーザ磁気 免疫測定方法における、 検体の調製操作を手頫を追っ て示す図 である。 尚、 ここで述べる操作は、 既知の坑体を非磁性体粒子 表面に固定 し、 磁性体微粒子によ つ て標識した未知の抗原と抗 原坑体反応をさせた後に分離する操作である。
この方法において用いる検体容器 1 1 は、 第 1 8図 ( a ) 及 ぴ ( a ) ' に示したものと全く周じものである σ 即ち、 検体容 器 1 Ί は、 側壁の高さ Lよりも低い高さ の 2枚の隔壁 a 、 b によ っ て、 3 つのゥエル A、 B、 Gにその収容部を分割された 容器である。
上述のような検体容器 1 のゥエル Aに、 第 2 0図 ( a ) に示 すよう に 、 非磁性体粒子 5 に固定した既知の坑体 5 2 を分散 した液体を、 高さ -以下に溝たす。 非磁性体粒子は、 平均粒径 3 〃 m のポ リ スチ レ ンラテ ッ クスを用いた。
続いて 、 第 2 〇 図 ( b ) に示すよ う に 、 マイ ク ロ シ リ ンジ 8 a を用いて 、 ゥエル A に患者の体液から採取 した検体を注入 し た 。 但 し 、 こ こで注入 し た未知のウ ィ ルス抗原 5 3 は、 予め磁 性体微粒子 5 5 を付加されている。 従 っ て 、 ゥエル A内で、 前 述の既知の坑体 5 2 と抗原坑体反応を呈 し 、 〔 非磁性体粒子一 坑体ー抗原一磁性体微粒子 ] 5 1 — 5 2 — 5 3 — 5 5 — を形成 する。
従 っ て 、 この状態では 、 ゥエル A内に は以下の物質が混在 し ている こ と になる。
① [ 非磁性体粒子 5 1 一抗原 5 2 -坑体 5 3 —磁性体超微粒 子 5 5 ] の複合物 ·
② 未反応の [ 非磁性体粒子 5 1 —坑体 5 2 ]
③ 不可避な不純物粒子
そ こ で 、 第 2 0 図 ( c ) に示すよ う に 、 ゥエル B および C に 、 分注器 6 に よ っ て純水を注入 し 、 検休容器 Ί 内の水位を - よ り も高 く する。
この状態で 、 第 2 0 図 ( d ) に示すよ う に 、 磁力の小さな磁 石 3 をゥエル Aの 上方に接近さ せる と 、 上述の②のみが磁石 5 L に吸い寄せ られる。 そ こで、 磁石 5 L をゥエル B の方へ水平 に移動 する こ と に よ っ て 、 ゥエル A 内の②はゥエル B へ ^導さ れる。 この とき、 ①は、 特に非磁性体粒子 5 1 に よ っ て質量が 増加 し ているので、 磁 5 し の磁力では牽引 されない。 従 っ て 、 ゥエル A内に は、 ①、 ③、 ④が残留する。 - 続いて、 第 2 0図 ( e ) に示すよう に、 磁力の充分に大きな 磁石 5 Hをゥエル Aに接近さ る。 今度は、 磁石 5 Hの磁力が 充分に大きいので、 ①が磁石に吸寄せられ。 従っ て、 磁石 5 H をゥエル Cの方へ移動すると、 前述の①のみがゥエル C内へ誘 導される。
こう して、 検体容器 1 Ί のゥエル C内に、 抗原坑体反応によ つ て生成した、 [非磁性体粒子 5 1 —抗原 5 2 —坑体 5 3 —磁 性体超微粒子 5 5 〗 の複合体のみが分散した鈍水が得られる。 分離操作をより確実に するためには、 ( d ) のェ程で第 1 8 図 ( f ' ) と周様に多孔質フィルターを磁力による誘導と併用する こ とも好ま しい。 後述するよう に、 こう して調製された供試検 体液体.は、 検体容器 1 に収容したまま レーザ散乱光測定に付す こ とが可能である。
レーザ光散乱測定は、 第 2 0図 ( e ) に示す磁性体標識検体 複合体を用いて、 第 1 9 図において説明した方法と全く周じ方 法によっ て実施することができる。
実施例 Ί 2
第 2 1 図 ( a ) は、 実施例 9並びに実施例 0に示したよう な操作を一括して行う こ とのできる レーザ磁気免疫測定装置の 構成を示す図である。
案内部材 1 0 1 と一体に構成された架台 1 0 0上にテーブル 0 2 が載置されており 、 このテーブル 1 0 2 はモータ 1 0 3 に駆動されるスク リ ュー 1 0 4 によっ て移動するよう に構成さ れている。 又、 このテープル 1 0 2上には、 一対の支柱 1 0 5 a 、 1 0 5 と支持部材 Ί 0 6に よ っ て支持される、 電磁石 1 0 7を備えている。 この電磁石 1 0 7は 、 出力可変の電源 1 0 8 に よ っ て駆動されてお り 、 任意の磁力 を発生する こ とができ る。
更に 、 支持手段は図示を省略 し ているが、 この装置は、 交換 可能な N D フ ィルタ 1 0 9 を備え、 前述の 磁石 1 0 7の直下 にある検体に対 して レ ーザ光を照射する H e - C d レーザ管 1
1 0 と 、 後述するテーブル 1 0 2上の検体に よ っ て散乱さ れた レーザ光を検出する受光素子 1 1 Ί を備えている。 尚、 受光素 子 1 1 Ί と検体との間 に は、 ス リ ツ 卜板 1 1 2 と集光 レ ンズ 1 3 とが配置されている。
テ—プル 1 0 2上に載置さ れている検体容器 1 Ί 4は、 第' 2
Ί 図 ( b - 1 ) 並びに ( b — 2 ) に示すよう に 、 各々が低い隔 壁 ρ , q に よ っ て隔て ら れた ゥエル X、 Y、 Zを Ί 耝と し て構 成さ れている。 即ち 、 この検体容器の各ゥエル X、 Y、 Zは 、 第 Ί 8図 ( a ) に示 し た検体容器 1 の各ゥエル A、 B、 Cに相 当 し てお り 、 第 1 8図に示す操作を、 周じ手頗で行う こ とがで きる よ う に配慮 し ている。 ま た 、 この検体容器は、 1 枚の板状 の部材上に ゥエルの耝を 3耝形成 している 。 こ こで、 ゥエル X、 Y、 Zは部材の長手方向に配列 し 、 更に この ゥ エルの配列方向 の延長上に他のゥエルの耝を同 じ向きで配列 している。
続い て 、 第 2 1 図 ( a ) に示す レーザ磁気免疫測定装置の動 作を説明する。
まず、 検体容器 1 1 4 において 、 第 1 8図 ( !) ) 乃至 ( e ) に示す操作を行い、 検体を分散した純水を篛たした状態とする。 そのまま、 検体容器 1 4 をテーアル 1 0 2上に搭載して固 定する。 このとき、 検体容器 Ί 1 4 は、 そのゥエル並びに涸々 の検体容寧の配列方向が、 テープル 1 0 2 の移動方向と一致す るよう に固定する。 又、 いずれかのゥエル Xが、 電磁石 Ί 0 7 の直下に位置するよう に、 モータ 1 ◦ 3 を駆動 してテーブル Ί 0 2 を移動する。
続いて、 電源 1 0 8 により電磁石 1 0 7を弱励磁し、 質量の 小さな未反応の磁性体標識体をゥエル X内の水面付近に誘導し た状態で、 移動テーブル 1 ひ 2を図上の右方を移動する。 即ち、 検体容器 Ί Ί 4に対して、 電磁石 Ί 0 7が相対的にゥエル Yの 方へ移動 したことになり 、 未反-応の磁性体標識体はゥエル Y
の水面へ誘導される。 従って、 ゥエル Xからは、 未反応の磁性 体標識体が取り除かれたことになる。 尚、 この操作は、 第 Ί 8 図 ( f ) に示す操作に相当する。
次に、.電源 1 0 8を遮断して移動テーブルを最初の位置に戻 し、 今度は電磁石 Ί 0 7を強励磁する。 すると、 磁性体抗原坑 体複合体が、 ゥエル Xの水面付近に誘導され、 更に、 テーブル 1 0 2を図上の左方に移動すると、 磁性体抗原坑体複合体はゥ エル Z内の水面に誘導される。 即ち、 この操作は、 第 Ί 8図
( g ) に示す操作に相当する。
最後に、 この状態を保ったまま、 即ちゥエル Z内の水面付近 に誘導された磁性体抗原坑体複合体が濃縮されている状態を維 持したまま、 第 1 9図に示したように、 レー.ザ光の散乱による 検体の検出並びに検出を行う。 こうして、 1 耝のゥエルについ ての測定が完了する。
更に、 第 2 1 図 ( b— Ί ) 並びに ( b— Ί ) に示したように、 検体容器 Ί 1 4は、 3耝のゥエルを備えているので、 他の組の ゥエルについて同様の操作を繰返せば、 連続して複数の検体に 対する測定を行うことができる。
尚、 上述のような操作によるレーザ磁気免疫測定の検出感度 は、 約 5ピコグラムであった。
続いて、 同じ検体に対して、 異なる方法でレーザ光散乱によ る測定を行った。 即ち、 レーザ光散乱の測定に際して、 磁性体 抗原坑体複合体をゥエルの水面付近に誘導 ♦ 濃縮している電磁 石 1 0 7を、 第 2 2図 ( a ) に示すような + 3 A〜一 3 Aまで の振幅を有する所定の周波数の矩形波で変調した電源によつて 駆動した。 また、 受光素子 1 1 Ί による散乱光の検出も、 電源 の変調に同期したロックインアンプ 1 1 5によって行った。
即ち、 電磁石 1 0 7によって発生する磁界を交流磁界とする と、 この磁界に捕足されている磁性休も磁界の極性の変化に周 期して回転する。 従って、 電源電流の変調に同期した散乱光の 変動を検出すれば、 検体中に分散する不可避旳不純物粒子等の パックグラウンドの影響を排除することができる。
上述のような操作によるレーザ光散乱の変動を測定した結果 を示すグラフが第 2 2図 ( b ) である。 尚、 第 2 2図 ( b ) は、 第 2 2図 ( a ) と横軸のスケールを銃一している。
このような操作を実施しながら行つ fc測定では、 2ピコグラ 厶以 1、—と、 静的測定に比較して約 3倍の検出感度が達成された。 実施例 Ί 3
第 2 3図 ( a— 1 ) 乃至 ( a — 3 ) 並びに ( c ) は、 本発明 に従う方法を、 連続的に行うことのできる装置の構成を概略的 に示すもの.である。
この装置において使用する検体容器は、 第 Ί 8図 ( a ) 並び に ( a ) ' に示す検体容器と周様に、 抗原坑体反応を行うため のゥエル Aと、 このゥエル Aから分離した未反応の抗原または 坑体を収容するゥエル Bと、 更に検出すべき檢体を含んだ抗原 坑体複合物を収容するゥエル Cとから構成されているが、 前に 示した容器とは、 各ゥエルの配列傾序が異なっており、 第 2 3 図 ( a ) に示すように、 A— C— Bの煩序で並んでいる。 また、 各ゥエルを分離する隔壁 X、 Yは、 やはり第 23図 ( a ) に示 すように、 ゥエル Aとゥエル Cを分離する隔壁 Xが、 ゥエル C とゥエル Bを分離する隔壁 Yよりも低くなつている。
第 23図 ( b ) は、 このような容器に収容した検体を連続し て処理することのできる装置の構成を概略的に示すものである。 この装置は、 第 23図 ( b ) に示すような検体容器をゥ丄ル の配列方向に複数接続したものを、 図上の右から左へ所定の速 度で移動するように構成している。 この検体容器 1 1に対して、 検体容器の上方には、 検体容器に対する注水手段 66と磁力の 強い磁石 5 H、 検体容器に対する注水手段 67と磁力の弱い磁 石 5し、 更にレーザ光散乱による検体測定.手段.68が、 この順 序で Sfi置されている。
即ち、 この容器を用いた供試検体液体調製操作は、 以下のよ うに行われる。
まず、 第 23図 ( c— 0 ) に示すように、 ゥエル A内にのみ 篛たした純水中で、 非磁性体粒子 41を付加した坑休 42と検 体である抗原 43とを抗原坑体反応させ、 更に、 坑免疫グロプ リ ン 44に磁性体微粒子を付加したものを反応させる。 従って、 ゥエル A内には、
①抗原坑体複合体 〔 61— 62— 63— 64— 65〕
②磁性体微粒子を付加した坑免疫グロプリン 〔 64— 65〕 ③ 非磁性体粒子を付加した坑体 〔 61— 62〕
が浮遊していることになる。
続いて、 第 23図 ( c一 1 ) に示すように、 検体容器 1 Ί は、 注水手段 6 6によって、 ゥエル C側から隔壁)(の高さまで純水 を満たす。
次に、 第 2 3図 ( c— 2 > に示すように、 検体容器 1 Ί は、 強い磁力を発生する電磁石 5 Hの下方を通過する。 このとき、 磁性体微粒子を伴うもの、 即ち前述の①と②とは、 磁石 5 Hに 誘導されて、 ゥエル Cに誘導される。 検体容器 Ί 1 が更に移動 すると、 ①と②とは隔壁 Yに衝突するので、 これらはすべてゥ エル C内に残留する。
続いて、 第 2 3図 ( c— 3 ) に示すように、 検体容器 1 1 は 注水手段 6 7の下方に到達し、 ゥエル B側から更に純水の注入 をうける。 従って、 各ゥエルはすべて水面衬近で連通する。
この検体容器 1 1 は更に移動し、 第 2 3図 ( c— 4 ) に示す ' ように、 磁石 5 Lの下方に到達する。 磁石 5 Lは、 軽い②は誘 導することができるが、 Sぃ①は誘導できない程度の磁力を発 生しており、 この操作によって、 ②のみがゥエル Bへ誘導され る。
こうし 、 検体を含む抗原抗体複合体 〔 6 1— 6 2— 6 3 - 6 4 - 6 5 ) のみがゥエル G内に収容される。 従って、 第 2 3 図 ( G— 5 ) に示すように、 装置の更に下流に設けられたレー ザ光散乱による測定手段 6 8により、 ゥエル C内の抗原抗体複 合体 〔 6 Ί— 6 2— 6 3— 6 4— 6 5〕 を測定することができ る。 尚、 ここで、 第 2 7図 ( b ) に示すように、 レーザ光の照 射手段 1 2並びに受光素子 1 6と共に、 交流電流 Ί 9によって 駆動される電磁石 Ί 8を設け、 ロックインアンプ 1 7によって 交流電流 Ί 9と周期したレーザー光散乱を検出することによつ て、 更に感度を高めることができる。
このような一連の操作において注目すべきことは、 各操作に おける磁石 5 Η並びに 5 Lと検体容器 1 1 との相対的な移動方 向が常に一定なことである。 従って、 検体容器 1 Ί を常に一定 の速度で移動すると共に、 各設備を- 定のスケジュールに従つ て動作させれば、 供試検体液体の調製並びに測定を連続的に効 率良く行うことができる。
実施例 1 4
第 2 4図 ( a ) 並びに ( b〉 は、 本発明に従う検体容器の形 状を示す図であり、 第 2 4図 ( a ) は上方から見た平面図を第 2 4図 ( b ) は側方から見た断面図である。
即ち、 本発明に従う検体容器は、 ゥエル Xが中央に位置する ように 1 直線上に配列した 3つのゥエル X、 Y、 Ζを支持体 7 —1 上に設けて構成されている。 ゥエル Xと Υ並びにゥエル Xと Ζは、 それぞれ隔壁 a、 bによって分離されているが、 第 2 4 ( b ) に示すように、 隔壁 aの髙さは、 検体容器の共通の側 壁よりも低い J? a である。 また隔壁 bの髙さは、 J a よりも更 に低い b である。 また、 側壁よりも低く a よりも高い、 高 さ Lの位置に、 検体容器全体の注水指標として、 段差 7 4が設 けられている。
尚、 ゥエルの支持体 7 1 はポリスチ レン製であり、 各ゥエル の寸法は以下のように設定した。
直径 容積 ウェル 1 0隱. 0 . 6 δώ
ゥエル Y 5 IBM 0 . 2 πέ ゥエル ζ Ί Ό臓 0 . 6 i また、 隔壁 aの上端は、 注水指標了 4よりも 1 細低く、 隔壁 b の上端は、 隔壁 aよりも更に 1 腿低くなるように設定した。 ここで、 各ゥエルの容積とは、 検体容器を注水指標まで満た した後に、 各ゥエルから独立して取り出し得る液体の量である < 従って、 ゥエル Xの容量は、 高さ J b 以下の容量であり、 ゥェ ル Yの容量とは注水指標から高さ J a までの全ゥエルの共通収 容部の容積と、 高さ J a 以下のゥエル Y独自の容積とを併せた ものであり、 更に、 ゥェル Zの容量とは、 高さ i b 以下のゥェ ル Xとゥエル Zとの共通収容部の容積と高さ b 以下のゥエル Zの独自の収容部の容積とを併せたものである。 '
また、 後述する供試検体溶液調製操作において、力エル Xの 内容物をゥエル Yあるいはゥエル Zに移動するので、 隔壁 a並 びに bの頂面に、 それぞれゥエル Yおよび Zに向かって降下す るような傾斜を持たせることが望ましい。 また、 ゥエル Y並び にゥエル Zからは、 マイクロシリンジ等によってその内容物の 全てを取り出す操作があるので、 ゥ 1ル Y並びにゥエル Zの底 面 7 2、 7 3は、 それぞれ中心に向かって降下—するような傾斜 を有している。
上述のように構成された検体容器 1 Ί に、 いずれかのゥエル から注水指標 7 4まで液体を注入すると、 隔壁 a並びに bの頂 面で収容部が連通して全てのゥエルに篛たされる。 一方、 満水状態から、 例えばゥエル Yの中の液体をシリンジ 等で排水した場合、 ゥエル Yの内容はすべて油出されるが、 ゥ 1ル X並びに Z内の内容物はそのままに残留すると共に、 ゥェ ル Xとゥエル Zとの水面付近での連通は維持される。 また、 ゥ エル Zの内容物を抽出した場合も、 ゥエル X内の内容物は略そ のままに残留する。 更に、 ゥエルから液体を採集する場合は、 各ゥエルの容量に相当する規定の体積の液体が得られる。
第 25図 ( a ) 乃至 ( i ) は、 第 24図に示す検体容器を用 いた供試検体液体の調製方法を、 操作手順を追って説明する図 である。 尚、 以下の操作では、 既知の抗原を用いて、 患者から 抽出した坑体の定量を行う操作である。 また、 標識は、 磁性体 微粒子を付加した抗体を抗原坑体反応によ.つて検体に付加する ことによって行う。
まず、 第 25図 ( a ) に示すように、 ゥエル Xの底部に、 支 持休 81 によって固相化した既知の抗原を固定する。 支持体 8 1 は、 後記実施例 21の方法に従って形成されたノポラック樹 脂薄膜である。 すなわちゥエル Xの底部にノポラック樹脂を 2 0%含有したエタノール溶液を塗布乾燥し、 その表面に既知の ウィルス抗原 80、 例えば不活化インフルエンザウイルスを含 有する PBS溶液と一夜接触させてウィルスを該ノポラック薄 膜上に固相化した。
続いて、 第 25図 ( b ) に示すように、 患者の髄液から採取 した坑体 82を分散し fc液体を、 マイクロシリ ンジ 8 aによつ てゥエル X内に注入したところ、 坑体 82と抗原 80とが抗原 坑体反応し、 抗原坑体複合体を形成した。
更に、 第 2 5図 ( c ) に示すように、 磁性体微粒子 8 4を付 加した抗免疫グロブリン 8 3を分散した液体を、 マイクロシリ ンジ 8 bによってゥエル X内に注入した。 '抗免疫グ口プリン 8 3は、 第 2 5図 ( b ) に示した操作において形成された抗原坑 体複合休 8 0— 8 2と抗原坑体反応をおこし、 かくして磁性体 微粒子によって標識された磁性体抗原坑体複合体 8 0— 8 2— 8 3— 8 4が形成される。 また、 このとき反応に寄与しなかつ た残余の抗免疫グロプリン 8 3は、 そのままゥエル X内に浮遊 している。
尚、 これらの操作は、 全てゥエル X内で行われる。 従って、 ゥエル Xに液体を注入する際に、 内容物が高さ b を越えない ように留意する必要がある。
続いて、 第 2 5図 ( b ) に示すように、 マイクロシリンジ 8 c を用いて、 ゥエル Z側から注水指標まで純水を注入する。 即 ち、 ゥエル Zに注入した純水は、 やがて隔壁 b並びに aを越え て溢れ、 ゥエル X、 Υ、 Ζは全て純水で満たされると周時に、 ゥエル X内に浮遊する反応に寄与しなかつ fc抗免疫グロプリン
8 3は、 ゥエル Yに向かって洗い流される。
次に、 第 2 5図 ( e ) に示すように、 磁石 5をゥエル Zの水 面に近づけ、 続いて、 純水の表面に沿ってゥエル Yの方へ移動 する。 この操作に伴って、 ゥエル Xに残留していた磁性体微粒 子 8 4を付加された未反応の抗免疫グロプリン 8 3は、 完全に ゥエル Yに誘導される。 そこで、 第 2図 〈 f ) に示すように、 ゥエル Y内の液休をマ イク口シリンジ 8 dによって吸い上げることにより、 磁性体微 粒子を伴つ fc余分な坑体を排除することができる。 尚、 第 25 図 ( c ) に示す操作で、 注入する抗免疫グロブリン 83の量を 予め定 βしておけば、 この操作で排除した余分な抗免疫グロプ リン 83を定量することによって、 抗原坑体反応に寄与した抗 免疫グロブリン 83の蠆を知ることもできる。
続いて、 第 25図 ( g ) に示すように、 ゥエル Xをにマイク 口シリンジ 8 e又はピぺッ 卜によってメタノール, エタノール などのアルコールを添加して該ノポラック樹脂薄膜を溶解して 検体を液相とする。 アルコール添加は、 先ずゥエル X内の液を マイクロシリンジによって大部分除去してからアルコールを添 加し、 次いで水を加えるのが好ましい。 、 図中で'は、 分解した 支持体を疑似的に 〔厶〕 81 a として示す。 また、 実際にも支 持休 81の一部は、 固体として分散し ている。 こうして、 磁性 体微粒子 84を含む抗原坑体複合体 80— 82— 83— 84は ゥエル X内に浮遊する。 なお、 図中にヒータ 85が示されてい るが、 この場合には使用しない (不要である) 。
次に、 第 25図 ( h ) に示すように、 磁石 5をゥエル Xの水 面に近づけ、 水面に沿ってゥエル Xからゥエル Zの方に移動す る。 これに伴って、 磁性体微粒子 84を含む抗原坑休複合休 8 0— 82— 83— 84はゥエル Z内に誘導される。 このとき、 磁性体を含まない粒子、 即ち、 支持体 81の破片、 あるいは液 体中に不可避的に浮遊する不純物等はゥエル X内に残留する。 こうしてゥエル Z内の純水には、 検体を含んだ抗原坑体複合 休 80— 8.2— 83— 84のみが分散されている。 従って、 第 25図 ( i ) に示すように、 マイクロシリンジ 2 f によって、 ゥエル Z内の液体のみを採取することにより、 所望の検体を得 ることができる。
なお、 検体容器底にノポラック樹脂薄膜を形成して抗原を固 相化したが、 後記実施例 21に従って作成されるウィルスを固 相化したシリコンチップをそのままゥエル Xの底部に配置して 以後周様に操作してもよい。
比較のために公知のゼラチン支持体による固柜化も行なった。 この場合は、 第 25図 ( a) に示すように、 6Q°Gに加熟し たゼラチン 5重量%水溶液 20 W Jをゥ;ル に注入し、 ゥェ ル Xの底部にゲル化して、 その表面に既知のウィルス抗原 80 を定着した。
続いて、 第 25図 ( b ) 〜 ( ΐ ) に示す操作は上記の場合と Μ様であるが、 第 25¾ ( g ) に示す工程では、 ラチン支持 体を用いた場合はゥエル Xを下方からヒータ 85によって 60 °Cで約 2分間加熱し、 抗原 80を固定じていた支持体 81を溶 薛して検体を液相とする。 この場合はマイクロシリンジ 8 eは 使用しない。 尚、 図中では、 分解した支持体を疑似的に 〔Δ〕 8 a として示す。 また、 実際にも支持体 81の一部は、 固体 として分散している。 こうして、 磁性体微粒子 84を含む抗原 坑体複合体 80-82-83-84はゥエル X内に浮遊する。
以後の操作は!:記のアルコール溶解の場合と同様である。 ゼラチンを使用する固相化方法も本発明で使用可能であるが、 本実施例の固相化方法は単にアルコールを添加し水を加えるだ けでほぼ瞬時に液相化が行われ、 6 0 °C以上の加熟を要しない ので非常に簡便であり有利である。
実施例 1 5
第 2 6図 ( a〉 は、 本発明に従う検体容器の他の実施例の構 成を示すものである。
同図に示すように、 この実施例では、 実施例 Ί 4に示したも のと実質的に周じ構成の検体容器 9 1 を、 ひとつのゥエル支持 体 9 0上に複数配列している。 各検体容器 9 1 は、 第 2 6図 ( b ) に,示すように、 互いに高さの異なる隔壁 9 2、 9 3によ つて隔てられたゥエル A、 B\ Cを 1 組として構成されている。 即ち、 この検体容器では、 隔壁 9 2が隔壁 9 3よりも低く形成 されており、 各ゥエル A、 B、 Cは、 第 2 4図に示した検体容 器の各ゥエル X、 Υ、 Ζに相当している。 従って、 使用の際の 操作手順は実施例 1 4 (第 2 5図) に示した操作と同じ手順で 行うことができる。 固相化はノポラック樹脂薄膜を用いるのが 有利である。
また、 検体容器の配列は、 単独の検体容器のゥエルの配列方 向 (第 2 6図 ( a ) に示すように、 以下この方向を Y方向と記 す〉 で Ί 直線上に配列されると共に、 該方向と直角な方向 (第 2 6図 ( a ) に示すように、 以下この方向を X方向と記す) に も、 位置を揃えて複数の検体容器が配列されている。 更に、 ひ とつのゥエル支持休 9 0上に配列された検体容器は、 全て、 そ のゥエルの配列頫序が統一されている。
このように、 複数の検体容器を一体とした検体容器は、 後述 するように多くの検体を一括して処理する際に極めて有利であ る。 即ち、 第 2 7図は、 上述のような検体容器を有利に使用す る際に用いることのできる、 検体調製用の器具の構成を示すも のである。
即ち、 第 2 7図に示すように、 この装置は、 架台 2 0 0上に 設けられた、 長手方向に移動可能な長方形のテーブル 2 0 1 と、 このテーブル 2 0 1の移動を妨げないように、 2本の支柱 2 0 3 a 、 2 0 3 と支持部材 2 0 4によって、 テーブル 2 0 1上 に支持された永久磁石 2 0 2を備えている。 テープル 2 0 Ί は、 . 自身の基部を貫通する捻子を切つ' fc棒 2 0 6を介して、 ータ 2 0 7に驅動される。 また、 支柱 2 0 3 a 、 2 0 3 にも捻子 が切られており、 これを回転して永久磁石 2 0 2を上下に移動 し、 テーブル 2 0 Ί上の物体に対する磁力を調節することがで きる。 尚、 磁石 Ί 0 2は、 詳細には後述するが、 テーアル 2 0 の全幅に略等しい幅を有している。 続いて、 第 2 7図に示す 器具の動作を説明する。
まず第 2 6図 ( a ) に示す検体容器の、 各々の中央のゥエル において、 第 2 5図 ( a》 乃至 ( d ) に示した操作を行う。 次 に、 第 2 7図に示すように、 検体容器の Y方向がテーブルの移 動方向に一致するように検体容器をテーブル 2 0 1上に載置し、 X方向に並ぶある列の検体容器のゥエル C上に磁石 2 0 2が位 置するように位置決めする。 続'いて、 モータ 2 0 7を駆動して、 磁石 2 0 2がゥエル Cからゥエル Bの方へ相対的に移動するよ うに、 テーブル 2 0 1 を移動する。 即ち、 ここでは第 2 5図
( e ) に示した操作を行う。 更に、 その列の各ゥエル Bから、 収容物を排除した後、 各ゥエル Bの収容物を液相化する。 しか る後に、 テーブル 2 0 1 を、 前述の移動方向とは逆の方向に移 動し、 第 2 4図 ( h ) に示した操作を行い、 検体をゥエル Cに 誘導する。 こうして、 X方向に配列され fc複数の検体容器の各 ゥエル Cには、 検体と磁性体微粒子とを含む抗原坑体複合体の みが収容されることになる。
なお、 前述の実施例では抗原又は坑体を抗原坑体反応用ゥェ ルにノポラック樹脂を用いて固定した例を示したが、 本発明の 検体容器は必ずしもこれらの実施例に限られるものではない。 例えば、 抗原乂は坑体をポリスチレンラテツクス等の非磁性体 粒子の表面に固定し、 該粒子を本発明の抗原坑体反応用ゥエル 中に浮遊した状態で、抗原坑体反応を含む操作を行い、 非磁性体 粒子を含む抗原坑体複合体とこれを含まない抗原または坑体と の質量.差によって、 未反応の標識体を弁別する方法にも利用す ることができる。
以上詳述のよ に、 上記の実施態様に従う検体容器並びに検 体調製方法によれば、 極めて夾雑物の少ない、 磁性体微粒子に よって標識された検体を抽出することができる。
実施例 1 6
第 2 8図は本発明の Ί 実施例を説明するレーザ磁気免疫測定 装置の概略図であっ て、 2 1 1 は検体容器、 2 1 2は電磁石、 21 2— 1、 21 2- 2は電磁石コイル、 213— !、 2 3 一 2は該電磁石の磁心、 2 Ί 4— Ί、 2;! 4— 2は該電磁石の 磁極片、 215— 1、 2 5 - 2は該電磁石の継鉄、 21 6は 該電磁石が作る磁束を制御するための磁束制御片、 2 Ί 7は台、 220はレーザ光源 (レーザ光照射光学系) 、 221は照射レ 一ザ光線、 222は検体からのレーザ散乱光束、 223はスリ ッ卜、 224は該レーザ散乱光束を集光するためのレンズ、 2 25は該レーザ散乱光を受光するための光電子増倍管、 226 は光電子増倍管の出力を処理する電子回路部である。 前記検体 容器 21 Ίは内径 2. 5 の細管であり、 該細管は前記電磁石 対の中心に、 水平に取り付けられている。 前記レーザ光源 2·2 0は、 レーザ光源 221が前記細管の軸に平行に、 該細管の中 心部を通るように、 設置されている。 スリツ 卜 223、 レンズ 224、 光電子増倍管 225 (これらの部材はレーザ散乱光束 を受光する受光系を構成している) は、 前記電磁石対中心部の 前記検体容器 221中の磁性体標識体からの散乱光を真上に受 光するように設置されている。 前記電磁石対は ィル、 並びに 純鉄製の磁心、 磁極片およぴ继鉄から構成されていて、 コイル 21 2 - 1と 21 2— 2は周じ方向に各 5000回巻かれてい る。 前記継鉄 215-1 , 21 5- 2は非磁性材料で造られた 台 7上に搭載され、 前記電磁石対の磁気空隙長を調整できるよ うに台 21 7上をスライド出来るようになつている。 前記磁束 制御片 2 Ί 6はくさび状の形状であり、 前記継鉄 2 Ί 5— Ίと 21 5— 2の間に着脱出来るようになつている。 前記電磁石 2 2のつくる磁束は磁束制御片 21 6で制御され、 該磁束制御 片 21 6を継鉄 21 5— Ί、 2 Ί 5— 2の間に挿入すると、 前 記検体が挿入された磁気空隙部の磁束密度は増大する。 一方、 磁束制御片 21 6を継鉄 2 Ί 5— 1、 21 5— 2の間から脱離 すると、 前記電磁石対は 2つの独立した電磁石として作用する 磁束制御片 21 6は上述のようにくさび状になっているから、 該磁束制御片を前記継鉄の間に出し入れすることにより、 前記 電磁石対間の磁気空隙部の磁束密度は一定範囲内で任意に調節 出来る。 前記磁極片 2 Ί 4— 1 、 21 4— 2は円錐上の形状が 好ましく、 該磁極片 21 4— 1、 2 4 - 2は前記磁心 21 3 一 1、 21 3— 2上にボル卜で止められている。
第 29図は 記電磁石対を励磁する電源及び電源回路 示し たものであって、 本電源は、 前記磁性体標識体の漉縮と、 濂縮 後の該磁性体標識体の駆動に用いられる。 前記電磁石コイル 2 1 2 - 1 , 21 2— 2はスィッチ SW1により接続または分離 することが出来、 該スィッチ SW1 は周時に直流電源 227の 投入スィッチと連動している。 一方、 前記電磁石コイル 21 2 一 2はスィッチ SW2を通して、 間欠パスル電源 228に接続 されている。 該スィッチ SW2は前記スィッチ SW1 と開閉方 向が逆であっ て、 スィッチ SW1を閉じた場合、 スィッチ SW 2は開かれる。
第 30図、 第 3 Ί図は第 28図において、 前記電磁石対を上 方から見たときの磁極片 21 4— 1、 21 4— 2と検体容器 1 の平面図であって、 2 Ί 8は検体封止用のワセリン、 21 9は 磁性体標識体である。 第 30図は上述の磁性体標識体の濂縮ェ 程を、 第 3 Ί図は濃縮後の該磁性体標識体の駆動工程を説明す るものである。
次に、 磁性体標識体の濃縮工程を説明する。 まず、 第 29図 のスィッチ S W 1閉じ、 前記コイル 2 Ί 2— Ίと 2 Ί 2— 2に 直裨電源 227を接続する。 この際、 第 1図の磁束制御片 21 6は继鉄 21 5— 1と 21 5— 2の間に掙人される。 前記電磁 石対は前記磁極片が円錐上の形状をしているから、 該電磁石を 直 励磁するど該電磁石対中心部の磁気空隙部の磁束密度が最 大になる。 本実施例では該磁気空隙長 5卿であり、 Ί Aを通電 すると、 該電磁石対中心部で最大 Ί 2000Gが得られた。 第 30図 ( a) は濃縮前.、 ( b ) は濃縮後の検体容器! ¾部の 磁性体標識体の分布を模式的に示したものである。 ( a) 図に おいて、 前記電磁石対を励磁する前では、 検体容器内部の磁性 体標識体は溶液中に一様に分布しているが、 該電磁石対を直流 励磁した後は、 ( b ) 図に示すように、 該磁性体標識体は該磁 極片の頂点部の検体容器壁内面に集められる。
次に、 濃縮後の該磁性体標識体の駆動工程を説明する。 第 2 9図のスィッチ SW Ίを開き、 スィッチ SW 2を閉じ、 閭欠パ ルス電源 228を前記電磁石 2— 2に接続する。 この際、 第 2 8図の磁束制卸片 6は継鉄 2 Ί 5— Ίと 2 Ί 5— 2の間から除 去し、 該電磁石コイル 21 2— 1と 2 Ί 2— 2を切り放す。 第 31図 ( a ) は濃縮後の該磁性体標識体の駆動工程におい て、 前記電磁石コイル 212- 1をパルス波高値 0. 2A、 周 期 0 . 2 H z の囿欠パルスで励磁中の磁性体標識体の分布を、 ( b ) は該電磁石コイルを非励磁中の磁性体標識体の分布を、 模式的に示したものである。 すなわち、 ( a ) においては、 該 磁性体標識体は該磁極片の頂点部の検体容器壁内面に集中分布 しているが、 ( b ) においては、 前記磁心 2 Ί 3— 1 、 2 1 3 一 2及び該磁極片の残留磁化が小さいため、 電磁石対中心部の 磁界はほとんど存在しない状況になり、 該磁性体標識体は溶液 中をブラウン運動により該検体容器壁面から周囲に拡散するか ら、 時間と共に該磁極片頂点部を中心として、 検体容器内部に 一様に分布することになる。 従っ て、 前記細管の軸に沿って、 該細管の中心部に誘導された前記レーザ光線は、 該電磁石対中 心部の検体により散乱され、 前.記パルス電源の周期に対応して 散乱光強度は変化する。 検体からの散乱光は該検体容器上方又 は下方から取り出すことが出来る。
前記検体容器 2 "1 1 は、 好ましくはレーザ光線径よりも口径 の大きな細管であって、 該細管は抗原坑体反応後の検体をマイ クロシリンジに取り付られた該細管の内部に吸引した後、 その 一方の口をワセリン等で封止すれば、 その後の検体の取扱に便 利である。 該細管は前記電磁石対の中心部に水平に取り付けら れることが好ましい。 その理由は、 該細管を垂直に保持した場 合、 該電磁石コイルを非励磁にすると前記磁極片の中心部に濃 縮された該磁性体標識体が、 自らの重力で該磁極片の中心部か ら落下するため、 散乱中心部が前記パルス励磁毎に上下する欠 点があるためである。 前記パルス励磁は周期が Q . 0 5 H z から Ί 0 H z の範囲が 好ましい。 0 . 0 5 H z 以下では測定に長時間を要すること、
0 H z 以上では磁性体標識体が磁界変化に追従出来ないため である。 また、 該パルスは波高値が直流励磁電流値より小であ つて、 D Gオフセットがないことが好ましい。 D Cオフセッ ト が存在すると、 該磁性体標識体が常に前記磁極片中心部の細管 の内壁に卜ラップされたままになり、 散乱光強度変動が生じな くなるからである。
また、 前記電磁石対は濂縮と磁界駆動を効率的に行うため、 2つの電磁石コイルは独立励磁と和動励磁が選択できるように、 例えば、 本実施例のような電流回路と、 磁気回路が具備されて いるこ'とが好ましい。 ' 前記検体からの散乱光は光電子増倍管 2 2 5によって受光さ れる。 光電?増倍管 2 2 5の出力は電子回路部 2 2 6に供給さ れ、 電子回路部 2 2 6は、 間欠パルスに同期した散乱光のみを 選択的に検出し、 かつ該散乱光信号を繰り返し加算♦平均化処 理する σ これにより、 ビコグラム台の極微量の磁性体標識体を 検出することができる。
実施例 Ί 7
第 3 2図は本発明の一実施例を説明する、 レーザ磁気免疫測 定装置の溉咯図である。
3 0 1 は検体容器、 3 0 2は該検体容器中の検体収容部、 3 0 3は電磁石、 3 0 4は該電磁石の磁心、 3 0 5は磁極片、 3 0 6はレーザ光源、 3 0 7はレーザ入射光軸、 3 0 8は散乱光 検出軸、 309はスリ ツ 卜、 3 1 0は集光レンズ、 3 Ί Ί は光 電子増倍管、 3 1 2は該磁極片保持部品、 3 1 3は該検体容器 の移動用案内溝、 3 1 4は該電磁石支持台、 350は電子回路 部である。
前記検体容器 301 の検体収容部 302は上方に開 Uしてお り、 この検体収容部 302には、 例えば抗原抗体反応後の磁性 体標識検体が収容されている。 検体容器 301並びに検体の調 整方法は上記実施例 1 5に記載の検体容器並びに検体の調整方 法が好ましい。 検体容器 301 は案内溝 3 1 3に沿って水平面 内で、一方向に移動できるから、 複数の検体の測定が周一容器で 連続できるから、 複数の検体の測定が同一容器で連続して行う ことが出来る。
前記電磁石磁心 304及び磁極片 305は残留磁化の少ない 高透磁率材料が好ましく 、 例えば純度の高い純鉄またはパーマ ロイ合金が推奨される。 該電磁石磁心 304の径は検体容器 3 〇 1 の検体収容部 302の口径よりも充分大きく、 かつ、 磁極 片 305の径は検体容器 30 Ί の検体収容部 302の口径より も充分小さいことが必須である。 例えば、 検体収容部 302の 口径が 1 0顧の場合、 磁心 304及び磁極片 305の直径はそ れぞれ、 50m, 5雌である。 さらに、 磁極片 305は磁心 3 04に対向する側の先端が鋭利であることが好ましい。 磁極片 305は磁極片保持部品 3 1 2にネジ止めされ、 磁極片 305 と検体容器 30 Ί との間隙が調整可能である。 散乱光測定の場 合には、 レーザ入射光軸 30 7は検体容器 301 の水面に対し て 3 0度、 散乱光検出軸 3 0 8は該水面に対して 4 5度の角度 に設定されている。 スリッ ト 3 0 9及び集光レンズ 3 1 0は磁 極片 3 0 5の直下に濃縮された検体からの散乱光のみを光電子 増倍管 3 Ί 1 に導く fcめに使用されている。 これらのスリッ ト 3 0 9、 レンズ 3 1 0、 光電子増倍管 3 1はレーザ光の散乱 光を受光する受光系を構成している。 散乱光検出軸 3 0 8は妨 害となるレーザ照射ビームの水面からの反射光を避けるように 設定され、 好ましくはレーザ入射光軸 3 0 7が散乱光検出軸 3 0 8よりも低角度である。 電子回路部 3 5 0は光電子増倍管 3 1 の出力を処理するものである。
第 3 3図は本実施例の装置の散乱光測定の場合の動作原理を 説明する図であって、 3 1 5は直流電源、 3 1 6は間欠パルス 電源、 3 2 0は磁性体標識検体である。 (a) は調整済みの検体 が検体収容部 3 0 2に入れられた直後の状態、 (b) は電磁石 3 0 3が直流電源 3 1 5と接続され、 直流励磁された状態、 (c) は電磁石 3 0 3が間欠パルス電源と接続され励磁された状態、 (d ) は非励磁状態における前記磁性体標識検体の分散状態を模 式的に示している。
工程(a) では電磁石 3 0 3は非励磁であるから、 検体は容器 中で一様に分布している。 工程 ) では検体容器 3 0 1の直上 に置かれた磁極片 3 0 5に電磁石 3 0 3の磁界が集中するため、 磁性体標識検体 3 2 0は磁極片 3 0 5の直下の水面に濃縮され る。 従って、 磁極片 3 0 5の先端が鋭利であるほど濃縮は局部 的になる。 工程(c) 、 工程(d) は磁極片 3 0 5の直下に濃縮さ れた検体を間欠パルス励磁し、 該検体からのレーザ散乱光を検 出する工程である。 関係パルス電源 3 1 6を非励磁状態にする と、 濃縮されていた検体は溶液中をブラウン運動のため拡散す る。 従って、 周期的に電磁石 3 0 3を間欠励磁すると該検体は 励磁周期と同期して濃縮と拡散を繰り返すことになる。 なお、 非励磁状態の際に、 速やかな検体の拡散を生じさせるためには 電磁石 3 0 3の磁心 3 0 4並びに磁極片 3 0 5に残留磁化がな いことが肝要である。 検体の拡散は重力が作用するため、 主と して、 下方に向かうから、 前述のように、 レーザ入射光軸 3 0 7は低角度に設定し、 検体収容部 3 0 2の水面近傍のみを照射 する方が該検体からの散乱光強度変化は大きくなる。
この装置では、 上記のように濃縮後の磁性体標識検体を'周期 的に駆勁する。 そして、 ΚΓ記検体からの散乱光は光電子増倍管 3 1 1 によって受光される。 光電子増倍管 3 1 1 の出力は電子 回路部 3 5〇に供給され、 電子回路部 3 5 0は、 間欠パルスに 同期した散乱光のみを選択的に検出し、 かつ該散乱光信号を繰 り返し加算 ♦ 平均化処理する。 検体からの散乱光の検出は、 間 欠パルス周波数に同期した変動分のみを繰り返し蓄積し平均化 処理を行う方法を取れば、 外乱あるいはパックグラウンドの影 響を含めて有利に除去できる。 圜欠パルス周波数は 0. 05HZ か ら 2 0 H Zの範囲が適当である。 0. 05H Z 以下では測定に長時間 を要すること、 2 0 Hz以上では検体が追従しないためである。 また、 該パルスは波高値が直流励磁電流値より小であって、 D C才フセッ 卜がないことが好ましい。 しかして、 この装置によ れば、 ピコグラム台の極微量の磁性体標識検体を検出すること ができる。
なお、 上記の実施例においては検体容器 3 0 1を水平面内で 移動できるように構成したが、 この構成に代えて検体容器に対 して電磁石と磁極片を水平面内で移動させるように構成しても よい。
本発明によるレーザ磁気免疫測定装置は、 電磁石とこれに対 向する磁極片を甩いる構成であるから、 構成が簡単で、 局部的 に高勾配磁界を発生させることができる。 したがって、 抗原抗 休反応後の調整済みの検体を極めて短時間に局部的に濂縮する ことができる。 また、 磁極片直下に濂縮された検体は、 間欠パ ルス磁界により、 上下に移動するため、 低角度でレーザを検体 に入射することにより、 検体からの散乱光強度変化を大きくす ることが出来る。
また、 レーザ散乱光測定の際、 間欠パルス周期に同期した散 乱光の検出方法に加えて、 検体からの散乱光信号を镍り返し加 算 *平均化処理を行うことにより、 測定感度と測定の再現性を 著しく向上することができる。 この間欠パルスに同期した散乱 光を選択的に測定した場合は、 外界の影響、 パックグランドの 散乱の除去等を極めて有効に行うことができるので、 さらに検 出感度の向上が図られる。
レーザ入射光軸 3 0 7と反射光検出軸 3 0 8は反射光測定の 場合は前記検体容器 3 0 1の水面に対して同じ角度で設定され ていることが必要であり、 本実施例ではそれらの角度 3は 4 5 度であった。 スリツ 卜 3 0 9は磁極片 5の直下に濃縮された磁 性体標識検体からの反射光のみを受光器 3 1 0に導くために使 用されている。
第 3 5図は本発明の装置の動作原理を説明する図であって、 3 1 4は前記電磁石 3 0 3を励磁するための電源、 3 2 0は磁 性体標識検体、 3 2 Ί は水面の隆起部である。 (a) は調整済み の検体が前記検体収容部 3 0 2に入れられた直後の状態、 (b) は前記電磁石 3 0 3が電源 3 1 4に接続され、 直流励磁の状態、 (0 は該電磁石 3 0 3が強励磁の状態、 (d) は弱励磁状態、 に おける前記磁性体標識検体の分散状態を模式的に示している。
前 ¾電源 3 1 4は好ましくは直流と交流の両方が出力される。
本実施例では、 該電源 3 1 4はファンクションジェネレータと、 . 電流増幅器とから構成されている。 前記強励磁と弱励磁は例え ば正弦波あるいは鋸歯状波あるいは矩形波を該ファンクション ジェネレータで生成することにより達成される。
工程(a) では電磁石 3 0 3は非励磁であるから、 磁性体標識 検体 3 2 0は容器中で一様に分布している。 工程ゆ) では検体 容器 3 0 Ί の直上に置かれた磁極片 3 0 5に電磁石 3 0 3から 発生した磁束が集中するため、 磁性体標識検体 3 2 0は磁極片
3 0 5の直下の水面に濃縮される。 従って、 磁極片 3 0 5の先 端が鋭利であることが望ましい。 工程(c ) 、 工程( は磁極片
3 0 5の直下に濂縮された磁性体標識検体 3 2 0を交流励磁し、 検体 3 2 0からのレーザ反射光を検出する工程である。 電源 3
1 4を強励磁状態にすると、 磁性体標識検体 3 2◦が強く磁極 片 3 0 5に吸引されるため、 磁性钵標識検体 3 2 0の回りの水 面が隆起する。 電源 3 1 4を弱励磁状態にすると水の表面張力 のため、 隆起した水面は平坦になる。 従って、 電磁石 3 0 3を 水面が隆¾するに充分に電流で交番励磁すれば、 磁極片 3 0 5 の直下の水面からの反射光は励磁周期と同期して、 該反射光強 度が変化することになる。
第 3 5図は、 第 1図において、 受光器 3 1 0の位置に白板を 垂直に置いたとき反射光中に現れる干渉縞を示す図であって、 3 2 2は反射光束、 3 2 3は干渉縞である。 水面の隆起の度合 は磁性体標識検体 3 2 0の量に比例するため、 隆起の高さが使 用するレーザ光の 1/2 波長よりも大きい場合、 反射光中に、 第 3 6図示すような、 干渉縞'が現れる。 従って、 該干渉縝の数か ら磁性体標識検体 3 2 0の量を知ることができる。
なお、 磁性体標識検体 3 2 0からの反射光の検出は交番周波 数に同期した変動分のみを検出すれば、 外乱あるいはパックグ ラウンドの影響を極めて有効に除去できる。 該周波数は 0. 05H Z から 1 0H Zの範囲が適当である。 0. 05HZ 以下では測定に長 時間を要すること、 以上では検体が追従しない fcめであ る 0
しかして、 この実施例においては、 磁性体標識検体 3 2 0か らの反射光は受光素子 3 1 0によって受光される。 受光素子 3 Ί 0の出力は電子回路部 3 5 0に供給され、 電子回路部 3 5 0 は、 1:記励磁周期に周期した反射光のみを選択的に検出する。 これにより、 極微量の磁性体標讜検体を検出することができる。 本発明のレーザ磁気免疫測定装置を用いて、 磁性超微粒子を 標識し fcインフルエンザウイルスの検出を試みた結果、 従来の 酵素免疫測定法 ( E I A ) の場合、 Ί 億個程度のウィルスが存 在しなければ検出できなかったのに対して、 本発明の方法では 1 〇個程度のウィルスでも検出できることが明らかになった。 なお、 上記の実施例においては検体容器 3◦ 1 を水平面内で 移動できるように構成したが、 この構成に代えて検体容器に対 して電磁石と磁極片を水平面内で移動させるように構成しても よい。
反射光測定の場合は、 磁力による磁性体標識検体の吸引に対 して、 表面張力を磁性体標識検体の運動の復元力として作用さ せているため、 本発明者らが先に発明した、 拡散現象を復元力 として利用する方法に比べ、 応答速度が Ί 0倍以上改善された。 従って、 極めて効率的に磁性体標識検体からの反射光の制御が 出来るから、 R I A法に匹敵する超高感度な抗原抗体反応検査 を高速に実現出来る。 更に、 標識体として用いる磁性超微粒子 は、 放射線あるいは毒性の点では問題なく、 検体に対して安定 なものを容易に入手できる。
実施例 1 8
第 3 7図は本発明の一実施例を説明するレーザ磁気免疫測定 装置の概略説明図である。
上方に開口を有する検体容器 4 0 1 は電磁石または永久磁石 4 0 3の上に直接または台を介して水平に載置されており、 検 体容器 4 0 Ί の真上には磁性体標識検体を誘導♦ 濃縮するため の磁極片 4 0 3が載置されている。 検知容器 4 0 1内に前記調 整法 I〜Vのいずれか一つに従って調製された磁性体標識検体 4 0 4が収容されている。 レーザ光源 4 0 5と該光源 4 0 5か ら出射されるレーザ光源 4 0 6の方向を変える僱光器 4 0 7と が磁極片に関し一方の側に適当な入射角度を成すように設置さ れており、 他方の側には反射光、 干渉光、 または回折光を検知 するためのフォ卜ダイオード 4 0 8が配置されている。 又、 別 の位置には散乱光に対する受光系が配置されており、 この受光 系はスリツ卜 4 0 9と集光レンズ 4 Ί 0と光電子倍増管 4 1 とから成る。 散乱光受光系は入射系に対して好ましくは直角の 出射光を受光できるように配設されている。
レーザ光源 4 0 5からのレーザ光源 4 0 6は儷向器 4 0 7を 経て検体容器 4 0 1の液面に対して 3 Ο β の角度で磁極片 4 0 3の真下-またはその近傍の水面に入射し磁極片 4 0 3により吸 い寄せられて水面近傍に集合した磁性体標識検体の存在する頜 域で散乱光、 反射光、 干渉光または回折光として出射した光を フォ 卜ダイオード 4 0 8または光電子倍増管 4 1 1で検知する。 この場合、 レーザ光線 4 0 6は偏向器 4 0 7により疆向されて 液面上を走引され磁性体標識検体の密に集合した濂縮位置と磁 性体標識検体が存在しない非濃縮位置との間を経時的に照射す る。 該濃縮位置域と非濃縮位置からの出射光信号はそれぞれフ オ トダイオード 4 0 8または光電子倍増管 4 Ί Ί により検知さ れ該濃縮位置からの信号と該非濃縮位置からの信号との差分が 公知の手段により検出される。 本実施例では、 瀧縮位置と該非濃縮位置の信号が検体容器 4 0 1 内に収容された液中での磁性体標識検体の運動を伴わない ため粘性抵抗の影罾を受けることなく得られるので、 追従性に 優れており測定時間の短縮が可能となった。
実施例 Ί 9
第 3 8図は本発明の別の実施例を説明する概略図である。 垂直に配設されたガラス性のシリンダ状検体容器 5 0 Ί を挟 んで一対の電磁石または永久磁石 5 0 2からなる傾斜磁界発生 装置 5 0 3が配置されている。 傾斜磁界発生装置としては例え ば第 2 8図に示す構成のものを使用することが出来る。 検体容 器 5 0 Ί には前記調整法 I〜Vのいずれか一つに従って調製さ れた磁性体標識検体 5 0 4が収容さ.れており、 傾斜磁界発生裝 置により磁性体標識検体が誘導 ♦ 灑縮される。 レーザ光源 5 0 5と該光源 5 0 5から出射されるレーザ光線 5 0 6を二つに分 剖するビームスプリ ッタ 5 0 7 とが検体容器に関し一方の側に 適当な入射角度を成すように設置されており、 他方の側にはそ れぞれの分割レーザ光線 5 0 8 a , 5 0 8 bに対応する透過光 または回折光を検知するためのフォ 卜ダイオード 5 0 9 a , 5 0 9 bが配置されている。 又、 別の位置にはスリ ツ 卜 5 1 0 a , 5 Ί 0 bと集光レンズ 5 Ί Ί a , 5 1 1 bと光電子倍増管 5 Ί 2 a , 5 Ί 2 bとから成る散乱光に対する二つの受光系がそれ それの分割ビームに対応して配置されている。 散乱光受光系は 好ましくは人射系に対して直角の散乱光を受光できるように配 設されている。 二つのフォ トダイオードまたは光電子倍増管は 得られた出射信号の処理をするための電子回路 5 Ί 3に接続さ れている。
レーザ光源 5 0 5からのレーザ光線 5 0 6はビームスプリツ タ 5 0 7を経て二つに分割されそれぞれ検体容器 5 0 の管壁 を通して磁性体標識検体を含有する液体に入射する。 入射光は シリンダ状検体容器 5 0 1の軸方向に直角に入射するのがこの ましい。 一方の分割ビーム 5 0 8 aは傾斜磁界発生装置により 吸い寄せられて検体容器内の最大磁界点の近傍に集合した磁性 体標識検体の存在する濃縮位置を通過して透過光または回折光 として出射する。 また、 他の分割ビーム 5 0 8 bは磁性体標識 検体の存在しない非濃縮位置を通過して透過光または回折光と して出射'する。 これらの出射光をフォ 卜ダイオード 5 0' 9 a , 5 0 9 bで検知する。 さらに、 散乱光測定の場合は、 一方の分 割ビーム 5 0 8 aは濃縮位置で散乱され、 他方の分割ビーム 5 0 8 bは非鸛縮位置で散乱されてそれぞれ散乱光として出射す る。 これらの散乱光を光電子倍増管 5 1 2 a , 5 1 2 bで検知 する。
この場合、 同時照射により得られた濃縮位置からの信号と該 非濃縮位置からの信号との差分が電子回路により検出される。 本実施例では、 濃縮位置と該非濃縮位置の信号が同時に得ら れるので外乱やパックグラウンドの影響を有効に除去すること ができただけでなく、 測定時圜の大幅な短縮が可能となった。 実施例 2 0
第 3 9図は本発明の一実施例に従う、 磁極片の移動機構及び 検体容器の移動機構を具備したレーザ磁気免疫測定装置の概略 図である。
50 Ίは検体容器、 502は該検体容器中の検体収容部、 5 03は永久磁石、 504は磁極片、 505はレーザ光源、 50 6は N Dフィルタ、 507はレーザ入射光軸、 508は散乱光 検出軸、 509はスリ ツ 卜、 570は集光レンズ、 51 1は光 電子増倍管、 51 2は該磁極片移動機構、 51 2— Ίは支柱、 51 2— 2は支持部材、 5 Ί 2— 3は油圧型移動機構、 51 2 一 4は油圧チューブ、 513は該検体容器の移動用案内ガイ ド、 51 4は該磁石支持台、 520は電子回路部である。
前記検体容器 501の検体収容部 502は上方に開口して.お り、 この検体収容部 502には、 例えば抗原抗体反応後の磁性 ― 体標識検体が収容されている。 検体容器 501並びに検体の調 整方法は上記実施例 1 5に記載の検体容器並びに検体の調整方 法が好ましい。 検体容器 501は案内ガイ ド 513上モータ 5 1 5と送りネジ 51 6により驅動されて摺動し、 水平面内で一 方向に移動できる箱型の磁石支持台 514の上面に載置されて いるから、 複数の検体の測定が同一容器で連続でき、 複数の検 体の測定が周一容器で連続して行うことが出来る。
前記永久磁石 503及び磁極片 504は実施例 1 7の場合と 周様である。 磁極片 504は磁極片移動装置 5 Ί 2の油圧移動 機構 51 2— 1にネジ止めされ、 磁極片 504と検体 501 と の間隙が調整可能である.。 該移動機構 51 2— Ίは支持部材 5 2— 2を介して支柱 51' 2— 3に支持され油圧チューブ 51 •2 4により伝えられる油圧により駆動されて検体容器 5 0 1 の移動方向と直角の方向に磁極片を移動することができる。 散 乱光測定の場合には、 レーザ入射光軸 5 0 7は検体 5 0 1の水 面に対して 3 0度、 散乱光検出軸 5 0 8は該水面に対して 4 5 度の角度に設定されている。 スリッ 卜 5 0 9及び集光レンズ 5 1 0は磁極片 5 0 4の直下に濂縮され fc検体からの散乱光のみ を光電子増倍管 5 Ί に導くために使甩されている。 これらの スリッ ト 5 0 9、 レンズ 5 1 0、 .光電子増倍管 5 1 1 はレーザ 光の散乱光を受光する受光系を構成している。 散乱光検出軸 5 0 8は妨害となるレーザ照射ビームの水面からの反射光を避け るように設定され、 好ましくはレーザ入射光軸 5 0 7が散乱光 検出軸 5 0 8よりも低角度である。 電子回路部 5 2 0は光電子 増倍管 5 1 の出力を処理するものである。
この装置では一定不変の磁界に置かれた磁性体標識検体複合 体をレー i 光線の入射光軸の方向を固定したまま、 磁極片の方 を移動させることにより、 それに追従する磁性体標識検体複合 体の検体収容部 5 0 2内での移動により入射レーザ光軸と磁性 体標識検体複合体との間の相対運動が生じ、 入射レーザ光せん はある瞬間には磁性体標識検体複合体が局部濃縮され 濃縮位 置を照射するが、 次の瞬間には磁性体標識検体複合体が存在し ない非濃縮位置を照射し時系列的に濃縮位置の出射光と非濃縮 位置の出射光を上記受光系により受光し電子回路部 5 2 0によ り両出射光の差分が求められる。 - 本実施例では磁極片の移動機構に重点を置いて説明したが、 他の部材については前記の実施例中で説明したものを適宜採用 できることは勿 である。
本実施例に従えば、 さらに測定感度が向上した。
実施例 2 1
第 4 0図は本発明の一つの実施例を説明する。 抗原又は抗体 の固相化の方法を説明する図である。
6 0 1 はシリコンウェハ、 6 0 Ί ' はシリコンチップ、 6 0 2はノポラック樹脂薄膜、 6 0 3は容器、 6 0 4は不活化した インフルエンザウイルスを含有する P B S溶液、 6 0 5は不活 化したインフルエンザウイルスである。 直径 3インチ、 厚さ 0 . 3麟のシシリコンウェハ 6 0 1 の表面に、 前記ノポラ ク樹脂 を 2 0 %含有したエタ ·卜ル溶液を、 回転数 3 0 0 0 rpm 、 Ί ·分 間スピンコーティングしてノポラック樹脂薄膜 2を形成した。 塗布乾燥後、 ダイシングソ一によつ て一片が 5顧のチップに ¾ 断し、 このチップを不活化したインフルエンザウイルスを含有 する P B S溶液に一夜浸漬して、 インフルエンザウイルスを該 ノボラック樹脂薄膜上に固相化した。 また別の薄膜としてレジ ン M膜上にもインフルエンザウイルスを上記方法で固相化した。 第 4 1 図は本発明の固相化方法の有効性を確かめるための試 験体を示し、 第 1 表は実験結果である。
6 0 6は前記固相化したインフルエンザウイルスの抗ウィル ス抗体、 6 0 7は酵素抗体である。 前記固相化したインフルェ ンザウィルスに該抗ウィルス抗体を抗原抗体反応させ、 洗浄し た後、 未反応の該抗ウィルス抗体を分離 ♦ 除去し、 さらに、 公 知の E I Aに用いられている酵素抗体を該抗ウィルス抗体ち抗 原抗体反応させる。 こののち未反応の該酵素抗体を洗浄し、 さ らに基質を加えて第 2回の試験体 ( a ) を得た。 また、 比较対 照のため、 前記インフルエンザウイルスを固相化しない、 第 1 図 ( c) の工程後チップを用いて、 同様な酵素抗体を標識して、 抗体対照 ( b ) 、 ウィルス対照 ( G ) を得た。
抗体対照 ( b ) では前記固相化薄膜上にウィルスが存在しな いため、 洗浄によって除去される。 またウィルス対照 ( c ) で は前記固相化薄膜には短時間の間にはインフルエンザウイルス は付着しないため、 洗浄によって容易に除去される。
第 Ί表は公知の E I A法による前記試験休 ( a) 、 抗体対照 ( b ) 、'ウイ ス対照 ( c ) の測定値である。 - 第 Ί 表
E Γ A値
ノポラック樹脂 レジン M 本実施例による試験体(a) 0. 34 0. 1 7 抗体対照(b) 0. 09 0. 13 ウィルス対照(c) . 0. 08 0. 07 ノポラック樹脂を固相化薄膜に用いた方が、 レジン Mの場合 よりも、 試験体の E I A値は高く、 また対体対照、 ウィルス対 照は試験体よりも E I A値は低いことが明らかである。 したが つて、 インフルエンザウイルスの場合、 ノポラック樹脂を用い た本実施例の有効性が確かめられた。
なお、 本発明の固相化方法は、 上記実施例に陧られるもので なく、 支持体としてシリコンウェハの他、 上述した磁性体微粒 子プラスチック樹脂、 ガラスにも適用できる。 また、 固相化薄 膜としてノポラック樹脂の他、 A Z丁等の半導体のフォ 卜レジ ス卜工程に用いられる有機系及び無機系の各種レジス卜材料に も適用できる。
Figure imgf000097_0001
産業上の利用可能性 本発明の測定方法および測定装置は特に抗原抗体反応の高感 度検査に適した方法である本発明の実施倒ではイ ンフルエンザ ウィルス等のウィルスについて詳述しているが、 癌の免疫診断 にも、 そのま ま適甩できるこ とは明らかである。 すなねち 、 胃 癌等の癌細胞が血中に遊錐し ていない疾患の場合にも、 人体の 免疫防御機能のため、 血中の リ ンパ球には癌細胞を特異的に識 別 するための-変化が現われ、 癌細胞の回り に密集するこ 'とが知 られている。 公知の細胞電気渌動法は、 癌細胞にマク ロ フ ァ ー ジゃ白血球が集ま っ て く るこ とを利用 して、 癌の診断を行なう 方法である。 た とえば、 キャ ンサ リ サーチ ( Cancer Reserch) '第 3 0巻 2 2 6 5 — 2 2 7 0頁や本発明者らが執筆し たァメ リ- カン レビュ ー オプ レスピラ ト リ デイ ジ イ ーズ ( Amerca n Review ο Γ Res i ratory Disease 〉 第 1 1 1 巻、 5 6 6 - 5 6 9頁に記載されている σ これらのことを総合して配慮する と、 本発明の実施例において述べた抗体の代り に、 患者の り んば球 に本発明の磁性体微粒子を標識する方法を用いれば、 ウィルス の場合と周様に癌の免疫診断を早期に実施するこ とが可能とな る。
また 、 本発明の測定方法および測定装置は、 抗原抗体反応の 検査の自動化にも適し た方法であるから、
本発明の レーザ敷免疫測定法および測定装置は特に抗原抗体 反応の検査の自動化に適した方法であるから 、 集団検診で必要
新た な用紙 と される、' 各種のウィルス 、 ガ ン等のス ク リ ーニ ン グ検査及び 精密検査に用いれば特に効果が発揮される。 ま た 、 抗原抗体反 応の他に 、 従来 R I A法が適用されているペプチ ドホルモ ン等 の種々 のホルモンあるいは種々の酵素、 ビタ ミ ン、 薬剤などの 測定に も応用するこ とが可能である。 このよ う に 、 本発明の方 法は患者の早期診断、 治療に役立てるこ とが出来、 医療界につ く す と ころ大である。
ま た 、 本発明の測定方法及び測定装置は検出感度が極めて高 いため 、 免疫学や分子生理学の分野で 効な新 しい研究手法を 提供するこ とができる。
( 以下余白 )

Claims

' 請 求 の 範 囲
1 . 一の抗原または抗体に磁性体微粒子を標識して磁性体標識 体と し、 該磁性体標識体と検体を抗原抗体反応させる工程と、 該工程後の磁性体標識体と検体との複合体である磁性体標識検 体複合体から、 未反応の前記磁性体標識体を分離除去する工程 と 、 レーザ光を入射する工程と、 該工程による前記磁性体標識 検体複合体を含む測定系からの出射光を測定する工程からなる レーザ磁気免疫測定法。
2. 液体中に分散された検体が磁場中に置かれ、 該磁場により レーザ光照射部分に誘導、 濃縮されているこ とを特徴とする請
' 求の範囲第 1 項に記載の レーザ磁.気免疫測定方法。
3. 測定する磁性体標識検体複合体か の出射光が散乱光、 透 過光、 反射光、 干渉光または回折光であることを特徴とする請 求の範囲第 1 項記載の レー ザ磁気免疫測定方法。
4. レーザ光が照射される検体が磁場中におかれ、 該磁場によ り駆動され、 該駆動に周期した出射光を検出するこ とを特徴と する請求の範囲第 1 項ないし 3項のいすれか 1 項に記載のレー ザ磁気免疫測定方法。 '
5. 前記磁性体標識検体複合体を分散させた液体を収容した容 器をレーザ光軸上に保持し、 該検体容器の軸方向に沿っ て移動 する磁場によっ て、 該レーザ光軸上に該磁性体標識体複合体を 誘導して集中させる操作を含むことを特徴とする請求の範囲第 2項に記載の レーザ磁気免疫測定方法。
新た な用紙
6. 未反応の磁性体標識体を分離除去する工程が、 磁石に よる 分離除去である こ と を特徴と する請求の範囲第 1 乃至第 5 項の いずれか 1 項に記載の レーザ磁気免疫測定方法。
7 . 前記分散工程後の液体中に分散する浮遊物を沈殿させ、 該 沈殺物から磁力 に よ っ て前記磁性体標識検体複合体を分離する 処理を含むこ とを特徴 と する請求の範囲第 6項に記載の レー ザ 磁気免疫測定方法。
8 . 前記溶液中の浮遊物を沈殿させる処理が、 前記磁性体標識 検体複合体を分散 し た溶液を収納 し た容器を遠心分離処理に付 すこ と に よ っ て行われ、 か く し て該容器の一端に形成された浮 遊物の沈殿か ら前記磁性体標識体複合体を分離する処理が、 前 記容器外部側方に配置 し た磁石を、 該沈殿の近傍から遠方に移 勁する こ と に よ っ てなされるこ と を特徴と する請求の範囲第 7 項に記載の レーザ磁気免疫測定方法。
9 . 磁性休標識体と抗原抗体反応さ せる検体が、 該検体と 、 該 検体の特異抗体又は抗原との抗原抗体反応後に得られる抗原抗 休複合体である こ と を特徴と する請求の範囲第 1 乃至第 8 項の いずれか 1 項に記載の レーザ磁気免疫測定方法。
1 0 . 磁性体微粒子に よ り標識される抗体が抗免疫グロ ア リ ンで あるこ とを特徴とする請求の範囲第 1 乃至第 9 項のいずれか 1 項に記載の レー ザ磁気免疫測定方法。
1 1 . 上記検体が未知のウィルス ま た はウィルス抗体であ り 、 上 記磁性体微粒子に よ り標識される抗原ま た は抗体がウィルス光 源ま たは抗体であるこ とを特徴と する請求の範囲第 1 乃至第 1
新た な 用紙 0項のいザれか Ί 項に記載の レーザ磁気免疫測定方法。
12. 上記磁性体標識体と抗原抗体反応さ 1ίる検体が、 該検体と、 該検体の特異抗体又は抗原との抗原抗体反応後に得られる抗原 抗体複合体であり、 上記磁性体標識体が磁性体微粒子を標識と して付された上記特異抗体又は抗原であり、 抗原'抗体反応が阻 害されるこ とを特徴とする請求の範囲第 1 乃至第 1 0項のいず れか 1 項に記載のレーザ磁気免疫測定方法。
1 3. 検出すべき検体と、 抗体および抗原に対して充分に大きな 質量または寸法を有する非磁性体粒子に固定され且つ該検体と 特異的に抗原抗体反応して抗原抗体複合体を形成する抗体また は抗原と、 該抗原抗体複合体と特異的に抗原抗体反応する磁性 体標識体とを液体中に分散して該抗原抗体複合休と該磁性体標 識体との複合体である磁性体抗原抗体複合体を形成し、 該磁性 体標識体とを磁力によ っ て選択的に誘導分離し、
前記選択的に誘導分離された磁性体抗原抗体複合体のみを含 む液体に対して レーザ光を照射し、 該磁性体抗原抗体複合休に よつ て標識された抗原抗体複合体によるレーザ光の出射光を検 出するこ とによ-つ て該検体を検出するこ とを特徴とする レーザ 磁気免疫測定方法。
14. 前記磁性体抗原抗体複合体と、 未反応の前記磁性体標識体 との選択的分離が、 磁力による誘導と併わ て、 該磁性体標識 体のみを透過し得るフ ィルタ によっ て行なわれることを特徴と する請求の範囲第 1 2項に記載の レーザ磁気免疫測定方法。
1 5 . 液体を収容し、 該液体が移動可能に上部が互いに連通する
新たな甩紙 3 つ の容器を使用 し 、 第 1 の容器に収容された液体内に 、 上記 検体、 非磁性体粒子に固定された抗体ま た は抗原および磁性体 標識体を分散 して抗原抗体反応を遂行するこ とを特徴とする請 求の範囲第 1 3 又は第 1 4 項に記載の レーザ磁気免疫測定方法。
1 6. 磁性体微粒子に よ っ て標識された検出すべき検体と 、 抗体 および抗原に対 し て充分に大きな質量ま た は寸法を有する非磁 性体粒子に固定され且つ該検体と特異的に抗原抗体反応して抗 原抗体複合体を形成する抗体ま た は抗原とを液体中に分散 して、 磁性体微粒子によ っ て標識された磁性体抗原抗体複合体を形成 し 、
該磁性体抗原抗体複合体と未反応の前記磁性体微粒子に よ つ て標識された検体とを選 的に誘導分離 し'、 '
前記選択的に誘導分離された該磁性体抗原抗体複合体のみを 含む液体に対 し て レーザ光を照射 し 、 該磁性体抗原抗体複合体 に よる レーザ光の出射光を検出するこ と に よ っ て該検体を検出 する こ と を特徴と する レー ザ磁気免疫測定方法。
1 7. 前記磁性体抗原抗体複合体 と、 未反応の前記磁性体微粒子 に よ っ て標識された検体との選択的分離が、 磁力 による誘導と 併わせて 、 該磁性体微粒子に よ っ て標識された検体のみを透過 し得る フ ィ ルタ に よ っ て行なわれるこ とを特徴と する請求の範 囲第 1 6項に記載の レーザ磁気免疫測定方法。
1 8 . 液体を収容 し 、 該液体が移動可能に上部が互いに連通する 3 つの容器を使用 し 、 第 Ί の容器に収容された液体内に、 上記 磁性体微粒子に よ っ て標識された検体および非磁性体粒子に固
新た な 用紙 定された抗体または抗原を分散するこ とを特徴とする讃求の範 囲第 1 6又は第 1 7項に記載のレーザ磁気免疫測定方法。
1 9. 前記レーザー光の照射に際して、 磁性体抗原抗体複合体を 磁力によっ て該液体中の所定の頜域に濃縮させることを特徴と する請求の範囲第 1 3項又は 1 4項に記載の レーザ磁気免疫測 定法。
20. 前記レーザー光の照射に際して、 前記所定の頜域に讒縮さ れた前記磁性体抗原抗体複合体を、 磁力によって、 所定の周波 数の周期的な運動を付与させ、 該周波数と同期した前記レーザ 光散乱のみを検出するこ とを特徴とする請求の範囲第 1 9項に 記載の レーザ磁気免疫測定法。
21 . 前記磁性体微粒子により標識される抗体が抗免疫グロァリ ンであることを特徴とする請求の範囲第 1 3乃至第 2 0項のい ずれか Ί 項に記載の レーザ磁気免疫測定法。
22. 側壁よりも低い第 1 の隔壁によって分離された第 Ί 並びに 第 2 の収容部と、 該第 1 収容部と、 該第 隔壁よりも低い第 2 の隔壁によって分離された第 3 の収容部とを備え、 各収容部の 上方が開口するよう に一体に構成された検体容器を用い、
前記第 1 収容部の底部に、 定量すべき抗原または抗体と特異 的に抗原抗体反応を呈する抗体または抗原を固相で固定する第 Ί 操作と、
第 1 収容部を前記第 2 隔壁の高さまで液体で満た し、 該液体 中に磁性体超微粒子で標識した抗体または抗原を分散させ、 前 記固相の抗原または抗体と抗原抗体反応せしめる第 2操作と、
新たな用紙 前記第 2 の収容部並びに前記第 3 の収容部を、 前記側壁の髙 さ ま で液体で溝た し 、 前記第 1 収容部、 前記第 2 収容部並びに 前記第 3 の収容部を前記第 1 隔壁並びに前記第 2 隔壁の上で連 通さ せる第 3 操作と 、
前記第 Ί 収容部内の前記磁性体超微粒子に よ っ て標識された 未反応の抗体ま た は抗原を磁力 を発生する誘導手段に よ っ て前 記第 2 収容部に誘導 し た上で、 該第 2 収容部の内容物を除去す る第 4 操作と 、
前記第 Ί 収容部内に固定された抗原または抗体を液相化し 、 該第 1 収容部内の磁性体微粒子で標識された抗原抗体複合休を、 磁力を発生する誘導手段に よ っ て前記第 3 の収容部に誘導する 第 5 ·操作とを含み、 前記第 5 操作後に該第 3 の収容部内に得ら れた検体内の前記抗原抗体複合体'を定量に付するこ とを特徴と する レ ーザ磁気免疫測定における検体調製方法。
23 . 前記第 2 操作において前記第 Ί 収容部に注入する前記抗体 ま た は抗原と特異的に反応する抗原ま た は抗体を介 し た抗原抗 体反応に よ っ て前記磁性体微粒子を付加されているこ とを特徴 と する請求の範囲第 2 2 項に記載の検体調製方法。
24. 前記磁力を発生する誘導手段が固定されてお り 、 前記検体 容器を該誘導手段に対 し て相対的に移動するこ と に よ っ て 、 前 記第 4 操作並びに第 5 操作を実施するこ とを特徴 とする請求の 範囲第 7 項ま た は第 2 3 項に記載の検体調製方法。
25 . 所定の抗原あるい は抗体に磁性体微粒子を標識と し て付加 し た磁性体標識体と 、 検体たる抗体あるいは抗原 と を抗原抗体
新た な用紙 反応させる第 1 工程と、 該第 1 工程後の磁性体標識体と検体と の複合体である磁性体標識検体複合体を含む溶液に磁界を作用 させて レーザ光照射頜域に該磁性体標識検体複合体を誘導 · 濃 縮させる第 2の工程を少なく とも含む、 レーザ磁気免疫測定方 法において、 濃縮した該磁性体標識検体複合体を磁力による吸 引と液体の表面張力あるいは拡散による復元によりその運動を 制御し、 該制御に周期 した出射光を検出することを特徴とする レーザ磁気免疫測定方法。
26 . 前記ェ程が上方に開口を有する検体容器を用いて行われ、 前記誘導 · 濃縮工程が、 該検体容器の下方に置かれた電磁石と 該電磁石の磁心に対向 して該検体容器の水面真上に置かれた磁 極片によ ってなされることを特徴とする ·請求の範囲第 2 5項記 載の レーザ磁気免疫測定方法。
2 7 . 前記検出工程において、 検体の定量が前記磁性体標識検体 の前記磁極片への吸引に起因 して前記レーザ反射光中に現れる 干渉縞を計数することによ っ てなされることを特徴とする請求 の範囲第 2 5項記載の レーザ磁気免疫測定方法。
28 - 磁性体微粒子により標識された検体を収容する検体容器と、 該検体を誘導し、 局部濃縮させる濃縮手段と、 レーザー光を該 検体容器へ導く レーザー光照射:光学系と、 該検体によるレーザ 一光の出射光を受光すべく 設置された受光系とから成る レーザ 磁気免疫測定装置。
2 9 . 上記検体容器の軸に沿っ て、 上記受光系の光軸である出射 光検出光軸に向っ て磁場を移動さ る磁場移動機構と、
新たな兩紙 上記出射光検出光軸上の該検体容器の位置を挟んで磁場を周 期的に変動させる磁場駆動機構と 、
該磁場駆動機構に よる磁場の変動成分に周期 し た出射光のみ を選択的.に検出する電子回路部と、 を具備するこ とを特徴とす る請求の範囲第 2 8 項に記載の レーザ磁気免疫測定装置。
30 . 上記磁場移動機構が検体容器の軸に沿っ て移動する磁石で あるこ と を特徴とする請求の範囲第 2 9 項に記載の レ ーザ磁気 免疫測定装置。
3 1 . 上記磁場移動機構が検体容器の軸に沿っ て複数個配列さ れ 願次励起される電磁石である こ と を特徴と する請求の範囲第 2 9 項に記載の レーザ磁気免疫測定装置。
32 . 上記磁場移動機構が、 上記検体容器をはさんで一定間隔で 保持され、 かつ上記検体容器との相対距離を周期的に変化 し う る一対の磁石であるこ と を特徴 とする請求の範囲第 2 9 項に記 載の レ ーザ磁気免疫測定装置。
3 3 . 上記磁場移動機構が、 検体容器を挟ん で一定間隔で保持さ れ、 かつ交互に励起される電磁石であるこ とを特徴とする請求 の範囲第 2 9 項に記載の レーザ磁気免疫測定装置。
34 . 上記検体容器が レーザ光の入射部分において大断面積の開 口を有 し 、 上記散乱光軸上において は小断面積となる異径断面 容器であるあるこ とを特徴 とする請求の範囲第 2 9 乃至第 3 3 項のいずれか 1 項に記載の レーザ磁気免疫測定装置。
35 . 検出すべき検体と 、 抗体および抗原に対 して充分に大きな 質量あるいは寸法を有する非磁性体粒子に 固定さ れ且つ該検体
新た な泪紙 と特異的に抗原抗体反応させて抗原抗体複合体を形成し、 該抗 原抗体複合体を磁性体微粒子によっ て標識し、 該磁性体微粒子 によっ て標識された磁性体抗原抗体複合体を含む液体に レーザ 照射して出射光を検出 し、 該検体を検出するレーザ磁気免疫測 定装置であっ て、
液体を収容し、 該液体中で該検体、 該非磁性体粒子に固定さ れた抗体ま たは抗原および該磁性体微粒子を添加して該抗原抗 体複合体の形成および該抗原抗体複合体の該磁性体超徼粒子に よる標識付けを遂行させる第 Ί の容器と、
前記磁性体抗原抗体複合体と未反応の磁性体標識体とを選択 的に分離する磁力による誘導手段と、
該第 Ί の容器内の液体から誘導さ'れた前記磁性体抗原抗体複 合体を受容可能な第 2 の容器と、
該液体が移動可能なように該第 Ί の容器と上部が連通し、 該 該誘導手段を前記と異なっ た磁力状態で移動することによ っ て、 該第 Ί の容器または第 2の容器内の液体から誘導された前記非 磁性体粒子と結合していない該磁性体微粒子を受容可能な第 3 の容器と、
該第 2の容器にレーザ光を照射する手段と、
該第 2 の容器内の レーザ出射光を測定する手段と
を備えることを特徴とする レーザ磁気免疫測定装置。
36. 前記磁性体抗原抗体複合 ど 反応の磁性体標識体との選 択的分離が、 該磁性体標識体のみを透過し得るフィルタを備え ているこ とを特徴とする、 請求の範囲第 3 5項に記載の レーザ
新た な用紙 磁気免疫測定装置。
37. 前記第 1 、 第 2 および第 3 の容器が、 周囲を所定の高さの 壁に包囲された収容部を有 し 、 且つ 、 該壁よ り も僅かに低い隔 壁に よ っ て収容部を少な く と も 3 つの領域に分割された上方に 開口を有する容器の、 互いに異なる収容部である こ と を特徴と する請求の範囲第 3 5 又は 3 6項に記載の レーザ磁気免疫測定 装置。 '
38. 前記誘導手段が固定されてお り 、 前記第 1 乃至第 3 の容器 が、 その配列方向に移動する こ とを特徴 と する請求の範囲第 3 5 乃至第 3 7 項のいずれか Ί 項に記載の レーザ磁気免疫測定装 置。
39. 前記第 1 乃至第 3 の容器が、 複数 1 体に構成されているこ と を'特徴 と する請求の範囲第 3 5 乃至第 3 7 項のいずれか 1 項 に記載の レーザ磁気免疫測定装置。
40 . 前記 レ ー ザ光源が、 前記誘導手段の直下にある前記既反応 抗原抗体複合体を含む液体を照射するよう に構成されているこ とを特徴と する請求の範囲第 3 5 乃至第 3 9 項のいずれか 1 項 に記載の レーザ磁気免疫測定装置。
4 1 . 前記誘導手段が、 所定の周波数に よ っ て変調さ れた交流磁 界を発生する こ とを特徴 と する請求の範囲第 3 5 乃至第 4 0項 のいずれか Ί 項に記載の レーザ磁気免疫測定装置。
42 . 所定の高さの側壁に よ っ て画成される収容部と、 該収容部 内に配設された 、 該側壁よ り も低い第 1 の隔壁と 該第 1 の隔壁 よ り も低い第 2 の隔壁とを備え、 該側壁の一部と該第 1 の隔壁
新た な用紙 並びに該第 2隔壁とによっ て画成される第 1 収容部と、 該側壁 の一部と該第 1 隔壁とによっ て画成される第 2収容部と、 該側 壁の一部と該第 2隔壁とによっ て画成される第 3収容部とを慮 えて、 上方に開口する容器であっ て、
前記第 1 収容部の底部に、 測定すべき抗原あるいは抗体と特 異的に抗原抗体反応を呈する抗体または抗原を固祖で固定する こ とができるよう に構成したことを特徴とする検体容器。
43. 少なく とも前記第 2収容部並ぴに前記第 3収容部の底^が、 所定の一点に向かっ て降下するよう に傾斜して形成されている こ とを特徴とする請求の範囲第 4 2項に記載の検体容器。
44. 前記第 1 の隔壁並びに前記第 2隔壁の頂面が、 それぞれ前 記第 2収容部並びに前記第 3収容部に向かっ て降下するよう に 傾斜していることを特徴とする請求の範'囲第 4 2 または第 4 3 項に記載の検体容器。
45 . 前記第 2容器、 · 前記第 Ί 容器並びに前記第 3収容部が、 Ί 直镍上にこの頫序で配列されているこ とを特徴とする請求の範 囲第 4 2乃至第 4 4項のいずれか Ί 項に記載の検体容器。
46. 前記第 1 収容部、 前記第 2収'容部並びに前記第 3収納部の 組み合わせを、 規則的な配列で複数一体に構成したことを特徴 とする請求の範囲第 4 2乃至第 4 5項のいずれか/! 項に記載の 検体容器。
47. 磁性体標識検体を含む液体を収容する検体容器と、 該検体 容器を挾む一対の電磁石と、 直流と間欠パルスの 2種類を発生 させ、 これを前記電磁石に供給する電源と、 レーザ光を前記検
新たな用紙 体容器へ導く レーザ光照射光学系と、 磁性休標識検体による レ 一ザ光の出射光を受光すべ く 設置された受光系 と 、 この受光系 か ら間欠パルスに周期 した出射光のみを選択的に検出する電子 回路部 とを具備 し てな り 、 前記電磁石対は磁心の中心の磁界が 最大であ っ て 、 該磁心の中心に向 っ て磁界が増大するよう に 、 残留磁化の小さな材料を用いて 、 該磁心並びに磁極片が構成さ れているこ とを特徴と する レーザ磁気免疫測定装置。
48 . 前記検体容器は細管であ っ て、 該細管を前記磁石対の間に 水平に保持する機構と 、 前記照射レーザ光を該細管の軸に沿 つ て 、 該細管の中心部に誘導する光学系と 、 前記電磁石対中心部 の前記検体からの出射光を該検体上方又は下方から取り出 し 、 光電子増倍'管に誘導する光学系 と 、 を具備するこ とを特徴と す る請求の範囲第 4 7 項記載の レーザ磁気免疫測定装置。
49 . 磁性微粒子に よ り標識さ れた検体を収容 する上方に開口 を 有する検体容器と 、 レーザ光を前記検体容器の表面へ導く レー 光源 と 、 前記検体に よ る レーザ光の出射光を受光する受光系 と 、 こ の受光系の出力を処理する電子回路部と 、 前記検体容器 の表面直下に磁性体標識検体'を局部濃縮する濃縮機構と 、 灑縮 後の磁性体標識検体を駆動する駆動機構とを具備 してな り 、 前 記濃縮機構と駆動機構とが 、 電磁石と該電磁石の磁心に対向 し て前記検体容器を挟むよ う に設置された磁極片と、 前記電磁石 を励磁する電源とか ら構成され、 前記電子回路部が、 前記駆動 に周期 し た出射光のみを選択的に検出するよう に構成さ れてい る こ と を特徴と する レーザ磁気免疫測定装置。
新た な用紙
50. 前記 ¾磁石の磁心並びに前記磁極片は残留磁化の小さな高 透磁率材料で構成され、 前記検体容器の開口液面直上に針状の 先端部を有する該磁極片が設置され、 前記 レーザ光源が該磁極 片直下の該検体容器の液面を照射するよう に取り付けられてい るこ とを特徴と する請求の範囲第 4 9 項記載の レーザ磁気免疫 測定装置 0
51 . 前記駆動機構が前記磁極片の移動機構により構成されてい るこ とを特徴と する請求の範囲第 4 9項記載の レーザ磁気免疫 測定装置。
52. 前記検体容器または前記電磁石と前記磁極片のいずれかが、 水平面内で移動 するこ とを特徴とする請求の範囲第 4 9 項に記 載の レーザ磁気免疫測定装置。 ' '
53. 所定の抗原あるいは抗体に磁性体微粒子を標識と して付加 した磁性体標識体と 、 検体たる抗体あるいは抗原とを抗原抗体 反応さ tiる第 1 工程と、 該第 1 工程後の磁性体標識体と検体と の複合体である磁性体標識検体を含む溶液に磁界を作用させて 該磁性体標識検体を定め られた位置に誘導 ♦ 濃縮させる第 2 の 工程とを少な く とも含む、 レーザ磁気免疫測定方法において、 磁性体標識検体の存在する前記濃縮位置と、 該磁性体標 ¾検 体が存在 しない溶液部の非濃縮位置に レーザ光を周時あるいは 時系列的に照射し、 受光し た該濃縮位置からの出射光と該非濃 縮位置からの出射光との差分を検出することを特徴とする レー ザ磁気免疫測定方法。
54. 前 ffi第 2 工程が上方に開口を有する検体容器を用いて行わ
新たな用紙 れ、 該検体容器の下方に置かれた磁石と該磁石に対向 して該検 体容器の水面真上に置かれた磁石片に よ っ て誘導 · 濃縮がなさ れ、 前記検出工程が該磁極片直下の液面と 、 該磁極片近傍の液 面を周時あるいは時系列的に照射するこ と によ っ て行われるこ とを特徴と する請求の範囲第 5 3 項に記載の レーザ磁気免疫測 定方法。
55 . 前記第 2 工程が細管状の検体容器を用いて行われ、 該検体 容器の定め ら れた 1 点の磁界が最大であ っ て 、 該磁界の最大点 に向か っ て磁界が増大するよ う に構成されている磁石によ り 誘 濃縮がなされ、 磁界が最大になる該検体容器部と 、 その近 傍の該検体容器部を周時あるいは時系列的に照射するこ とに よ つ て行わ.れる こ と を特徴と する請求.の範囲第 5 3 項に記載の.レ 一ザ磁気免疫測定方法。
56 . 前記検出工程において、 レ ーザ光線を 2 つ に分割するこ と に よ り周時照射がなされる こ と を特徴 と する請求の範囲第 5 3 項に記載の レーザ磁気免疫測定方法。
5 7 . 前記検出工程に おい て 、 レー '光線を前記濃縮位置と非濃 縮位置の ' P を走行するこ と に よ り 時系列的照射がなされるこ と を特徴と する請求の範囲第 5 3 項に記載の レ ー ザ磁気免疫測定 方法。
58 . 前記検出工程において 、 検体の定量が レーザの走行周波数 に周期 し た信号を選択的に検出 する こ と に よ っ てなされる こ と を特徴と する請求の範囲第 5 3 項に記載の レーザ磁気免疫測定 方法。 '
新た な用紙
59. 磁性体超微粒子によっ て標識された検体を収容する検体容 器と、 該検体容器内の Ί 点に磁性体標識体を誘導 ♦ 濃縮する機 構と、 レーザ光線を該検体容器へ導く入射光学系と、 該検体並 びに該検体を含まない溶液からの出射光を受光する光学系と、 を少なく とも含むレーザ磁気免疫測定装置であっ て、
傾斜磁場発生装置と、 ビームスプリ ツ ターあるいは偏向器を 具備することを特徴とする レ一ザ磁気免疫測定装置。
60 . 傾斜磁場発生装置が、 永久磁石又は電磁石と、 該永久磁石 又は電磁石に対向して前記検体容器を挟むよう に設置された磁 極片とから構成されていることを特徴とする請求の-範囲第 5 9 項に記載の レーザ磁気免疫測定装置。
61 . 前記検体容器まは前記永久磁石又は電磁石と、 前記磁極片 のいずれかが、 水平面内で移動することを特徴とする請求の範 囲第 5 9項に記載の レーザ磁気免疫測定装置。
62 . 磁性体標識検体を固定支持体上で形成し、 未反応の前記磁 性体標識体を分維除去する工程後、 非磁性体から成る固定支持 hの磁性体標識検体を有機溶媒を用いて該固定支持体から溶出 させるこ とにより液体中に分散させる工程を含むことを特徴と
' する請求の範囲第 1 項に記載の レーザ磁気免疫測定方法。
63. 非磁性体から成る支持上に有機溶媒に可溶な有機系あるい は無機系の薄膜を塗布する工程と抗原あるいは抗体を該薄膜上 に吸着させる工程からなる抗原あるいは抗体の固相化方法。
新た な用紙
PCT/JP1987/000694 1986-09-22 1987-09-22 Laser magnetic immunoassay method and apparatus therefor WO1988002118A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE3751865T DE3751865T2 (de) 1986-09-22 1987-09-22 Lasermagnetisches immuntestverfahren und vorrichtung dazu
EP87906109A EP0287665B1 (en) 1986-09-22 1987-09-22 Laser magnetic immunoassay method and apparatus therefor

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
JP61/224567 1986-09-22
JP22456786A JPH07111429B2 (ja) 1986-09-22 1986-09-22 レ−ザ−磁気免疫測定法
JP61/252427 1986-10-23
JP25242786A JPS63106559A (ja) 1986-10-23 1986-10-23 レ−ザ磁気免疫測定方法及び装置
JP61254164A JP2502546B2 (ja) 1986-10-25 1986-10-25 レ−ザ磁気免疫測定方法
JP61/254164 1986-10-25
JP2206387A JPS63188764A (ja) 1987-02-02 1987-02-02 レ−ザ磁気免疫測定方法のための検体容器並びに該検体容器を用いた検体の調製方法
JP62/22062 1987-02-02
JP62/22063 1987-02-02
JP2206287A JPS63188766A (ja) 1987-02-02 1987-02-02 レ−ザ磁気免疫測定法および測定装置
JP62/152792 1987-06-19
JP62/152791 1987-06-19
JP15279287A JP2509227B2 (ja) 1987-06-19 1987-06-19 レ−ザ磁気免疫測定装置
JP15279187A JPH07122636B2 (ja) 1987-06-19 1987-06-19 レ−ザ磁気免疫測定装置
JP62/184902 1987-07-24
JP62184902A JPH0820450B2 (ja) 1987-07-24 1987-07-24 レ−ザ磁気免疫測定方法及び装置

Publications (1)

Publication Number Publication Date
WO1988002118A1 true WO1988002118A1 (en) 1988-03-24

Family

ID=27571927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1987/000694 WO1988002118A1 (en) 1986-09-22 1987-09-22 Laser magnetic immunoassay method and apparatus therefor

Country Status (4)

Country Link
US (1) US5252493A (ja)
EP (1) EP0287665B1 (ja)
DE (1) DE3751865T2 (ja)
WO (1) WO1988002118A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236824A (en) * 1988-04-26 1993-08-17 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and method by a magnetophoresis apparatus therefor
WO1993019370A1 (en) * 1992-03-20 1993-09-30 Abbott Laboratories Magnetically assisted binding assays using magnetically-labeled binding members
WO1993019371A1 (en) * 1992-03-20 1993-09-30 Abbott Laboratories Determination of binding affinity using magneticaly-labeled binding members
US5340749A (en) * 1988-04-26 1994-08-23 Nippon Telegraph And Telephone Corporation Method for collecting and preparing specimens for immune reactions
US5413939A (en) * 1993-06-29 1995-05-09 First Medical, Inc. Solid-phase binding assay system for interferometrically measuring analytes bound to an active receptor
US5445971A (en) * 1992-03-20 1995-08-29 Abbott Laboratories Magnetically assisted binding assays using magnetically labeled binding members
WO2000022440A1 (fr) * 1998-10-13 2000-04-20 Precision System Science Co., Ltd. Separateur/extracteur automatique et procede de commande associe
WO2021192555A1 (ja) * 2020-03-26 2021-09-30 国立研究開発法人産業技術総合研究所 磁場と重力を用いる標的物質検出装置及び標的物質検出方法

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE68911359T2 (de) * 1988-04-26 1994-05-11 Nippon Telegraph & Telephone Lasermagnetisches Immuntestverfahren und Gerät dazu.
EP0479448A3 (en) * 1990-10-02 1992-12-23 Beckman Instruments, Inc. Magnetic separation device
US5445970A (en) * 1992-03-20 1995-08-29 Abbott Laboratories Magnetically assisted binding assays using magnetically labeled binding members
TW239881B (ja) * 1992-12-22 1995-02-01 Sienna Biotech Inc
US6200820B1 (en) 1992-12-22 2001-03-13 Sienna Biotech, Inc. Light scatter-based immunoassay
JP3115501B2 (ja) * 1994-06-15 2000-12-11 プレシジョン・システム・サイエンス株式会社 分注機を利用した磁性体の脱着制御方法及びこの方法によって処理される各種装置
WO1996007101A1 (en) * 1994-08-31 1996-03-07 First Medical, Inc. Quantitative assays employing magnetizable particles for rate enhancement
US6437563B1 (en) 1997-11-21 2002-08-20 Quantum Design, Inc. Method and apparatus for making measurements of accumulations of magnetically susceptible particles combined with analytes
GB9726888D0 (en) * 1997-12-20 1998-02-18 Eev Ltd Detection
CA2358069A1 (en) * 1999-01-06 2000-07-13 University Of Medicine And Dentistry Of New Jersey Method and apparatus for separating biological materials and other substances
CN1185492C (zh) 1999-03-15 2005-01-19 清华大学 可单点选通式微电磁单元阵列芯片、电磁生物芯片及应用
TW496775B (en) 1999-03-15 2002-08-01 Aviva Bioscience Corp Individually addressable micro-electromagnetic unit array chips
AU2002211363A1 (en) * 2000-10-10 2002-04-22 Aviva Biosciences Corporation Individually addressable micro-electromagnetic unit array chips in horizontal configurations
EP1239284A1 (en) * 2001-03-08 2002-09-11 The Technology Partnership Public Limited Company Non-separation assay method and system using opaque particles
DE10130727C2 (de) * 2001-06-21 2003-09-18 Mediquant Gmbh Verfahren und Vorrichtung zur Messung von Mikroviskositätsveränderungen als Immuntest
JP4089808B2 (ja) * 2001-12-25 2008-05-28 ケミテック株式会社 上消し可能なマイクロカプセル磁気泳動表示シート
US7018849B2 (en) * 2002-01-15 2006-03-28 Piasio Roger N Process for (A) separating biological/ligands from dilute solutions and (B) conducting an immunochromatographic assay thereof employing superparamagnetic particles throughtout
US8697029B2 (en) * 2002-04-18 2014-04-15 The Regents Of The University Of Michigan Modulated physical and chemical sensors
ITBO20040420A1 (it) 2004-07-07 2004-10-07 Type S R L Macchina per taglio e formatura di piattine metalliche
ITBO20050481A1 (it) 2005-07-19 2007-01-20 Silicon Biosystems S R L Metodo ed apparato per la manipolazione e/o l'individuazione di particelle
ITBO20050646A1 (it) 2005-10-26 2007-04-27 Silicon Biosystem S R L Metodo ed apparato per la caratterizzazione ed il conteggio di particelle
ITTO20060226A1 (it) * 2006-03-27 2007-09-28 Silicon Biosystem S P A Metodo ed apparato per il processamento e o l'analisi e o la selezione di particelle, in particolare particelle biologiche
US9068977B2 (en) * 2007-03-09 2015-06-30 The Regents Of The University Of Michigan Non-linear rotation rates of remotely driven particles and uses thereof
US8283912B2 (en) * 2007-04-03 2012-10-09 Koninklijke Philips Electronics N.V. Sensor device with magnetic washing means
ITTO20070771A1 (it) 2007-10-29 2009-04-30 Silicon Biosystems Spa Metodo e apparato per la identificazione e manipolazione di particelle
SE532617C2 (sv) * 2007-11-13 2010-03-02 Lifeassays Ab Publ Spolmekanism för magnetisk detektor
US7927561B2 (en) 2008-01-10 2011-04-19 Becton, Dickinson And Company Rapid particle detection assay
IT1391619B1 (it) 2008-11-04 2012-01-11 Silicon Biosystems Spa Metodo per l'individuazione, selezione e analisi di cellule tumorali
US10895575B2 (en) 2008-11-04 2021-01-19 Menarini Silicon Biosystems S.P.A. Method for identification, selection and analysis of tumour cells
CA3013992A1 (en) 2008-12-30 2010-07-08 Children's Medical Center Corporation Method of predicting acute appendicitis
US9192943B2 (en) 2009-03-17 2015-11-24 Silicon Biosystems S.P.A. Microfluidic device for isolation of cells
WO2012012596A2 (en) * 2010-07-22 2012-01-26 University Of Houston System Force-induced magnetization contrast for diagnosis and imaging
US8638435B2 (en) * 2010-07-27 2014-01-28 Radiation Monitoring Devices, Inc. Magnetic particle-based bioassays
WO2012027747A2 (en) 2010-08-27 2012-03-01 The Regents Of The University Of Michigan Asynchronous magnetic bead rotation sensing systems and methods
DE102010041621B4 (de) 2010-09-29 2016-11-03 Hahn-Schickard-Gesellschaft für angewandte Forschung e.V. Verfahren zum Transport magnetischer Partikel
IT1403518B1 (it) 2010-12-22 2013-10-31 Silicon Biosystems Spa Dispositivo microfluidico per la manipolazione di particelle
WO2012142179A2 (en) 2011-04-11 2012-10-18 The Regents Of The University Of Michigan Magnetically induced microspinning for super-detection and super-characterization of biomarkers and live cells
DE102011050550A1 (de) * 2011-05-20 2012-11-22 Wolfgang Göhde Verfahren und Anordnung zur Quantifizierung von Untergruppen aus einer Mischpopulation von Zellen
EP2541230A1 (en) * 2011-06-30 2013-01-02 Koninklijke Philips Electronics N.V. Detection of clusters of magnetic particles
ITTO20110990A1 (it) 2011-10-28 2013-04-29 Silicon Biosystems Spa Metodo ed apparato per l'analisi ottica di particelle a basse temperature
ITBO20110766A1 (it) 2011-12-28 2013-06-29 Silicon Biosystems Spa Dispositivi, apparato, kit e metodo per il trattamento di un campione biologico
US9797817B2 (en) 2012-05-03 2017-10-24 The Regents Of The University Of Michigan Multi-mode separation for target detection
US20160053216A1 (en) * 2013-04-03 2016-02-25 Sanko Ozel Egitim Hizmetleri A.S. A machine enabling separation of the blood by magnetism and autonomous radioactive substance marking of the white blood cells
JP6387091B2 (ja) * 2013-06-28 2018-09-05 デンマークス・テクニスク・ユニベルシタツトDanmarks Tekniske Universitet 磁性粒子のクラスタリング動態の測定に基づくバイオセンサ
US9983110B2 (en) 2013-11-04 2018-05-29 The Regents Of The University Of Michigan Asynchronous magnetic bead rotation (AMBR) microviscometer for analysis of analytes
CN107532991A (zh) * 2015-03-10 2018-01-02 迈克必斯生物系统公司 用于分选和处理分析物的方法、系统和装置
CN108051348A (zh) * 2017-12-05 2018-05-18 西人马(厦门)科技有限公司 一种流体非金属颗粒浓度的检测系统及方法
US10161856B1 (en) * 2018-01-19 2018-12-25 Ping-Chieh Wu Magneto-optical bio-detection devices having high sensitivity
WO2024102837A1 (en) * 2022-11-08 2024-05-16 Zhong Li Methods for detecting target compounds and uses thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121422A (ja) * 1974-02-27 1975-09-23
US4115535A (en) * 1977-06-22 1978-09-19 General Electric Company Diagnostic method employing a mixture of normally separable protein-coated particles
JPS57175957A (en) * 1981-04-24 1982-10-29 Chugai Pharmaceut Co Ltd Measuring method and device for antigen- antibody reaction
JPS59147266A (ja) * 1983-02-03 1984-08-23 バ−ジル ビ−.エリングス 空間パタンを用いた高感度免疫分析装置
JPS60177265A (ja) * 1984-02-24 1985-09-11 Japan Synthetic Rubber Co Ltd 抗体の免疫グロブリンのクラス別検出法
JPS6141966A (ja) * 1984-07-26 1986-02-28 ラブシステムズ オイ 免疫学的測定法
JPS6165144A (ja) * 1984-09-07 1986-04-03 Olympus Optical Co Ltd 光強度ゆらぎを用いる免疫反応測定装置
JPS61128168A (ja) * 1984-11-27 1986-06-16 Mitsubishi Chem Ind Ltd 免疫分析方法
JPS62118255A (ja) * 1985-11-19 1987-05-29 Toshimitsu Musha 磁界を用いた免疫反応の検出法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US849165A (en) * 1906-12-11 1907-04-02 Annie C Schneider Drip-pan.
US4152210A (en) * 1971-08-27 1979-05-01 Beecham Group Limited Biologically active materials attached to a ferromagnetic support
US3933997A (en) * 1974-03-01 1976-01-20 Corning Glass Works Solid phase radioimmunoassay of digoxin
US4001583A (en) * 1974-10-04 1977-01-04 Barrett M James Covalently bound biological substances to plastic materials and use in radioassay
US3970518A (en) * 1975-07-01 1976-07-20 General Electric Company Magnetic separation of biological particles
US4018886A (en) * 1975-07-01 1977-04-19 General Electric Company Diagnostic method and device employing protein-coated magnetic particles
US4272510A (en) * 1976-04-26 1981-06-09 Smith Kendall O Magnetic attraction transfer process for use in solid phase radioimmunoassays and in other assay methods
US4171956A (en) * 1977-06-13 1979-10-23 General Electric Company Laser immunoassay
US4219335A (en) * 1978-09-18 1980-08-26 E. I. Du Pont De Nemours And Company Immunochemical testing using tagged reagents
NL7807532A (nl) * 1978-07-13 1980-01-15 Akzo Nv Metaal-immunotest.
EP0030087A1 (en) * 1979-11-13 1981-06-10 Technicon Instruments Company Limited Immunoassay method and apparatus and kit for carrying out the method
US4452773A (en) * 1982-04-05 1984-06-05 Canadian Patents And Development Limited Magnetic iron-dextran microspheres
FR2530029A1 (fr) * 1982-07-06 1984-01-13 Centre Nat Rech Scient Nephelometre a laser perfectionne pour la detection des antigenes et des anticorps
DE3321238C2 (de) * 1983-06-11 1985-05-02 Kernforschungsanlage Jülich GmbH, 5170 Jülich Verfahren und Vorrichtung zur Fusion von Zellen
US4762413A (en) * 1984-09-07 1988-08-09 Olympus Optical Co., Ltd. Method and apparatus for measuring immunological reaction with the aid of fluctuation in intensity of scattered light
NL8403091A (nl) * 1984-10-11 1986-05-01 Gen Electric Thermoplastisch mengsel met polyfunctionele verbinding.
FI850481A0 (fi) * 1985-02-06 1985-02-06 Labsystems Oy Foerfarande foer bestaemning av motmedel eller antigener.
JPS6270764A (ja) * 1985-03-08 1987-04-01 Sanko Junyaku Kk 血清中の免疫抗体測定方法
JPS62104066A (ja) * 1985-10-31 1987-05-14 Toshiba Corp 半導体保護装置
JPS62137988A (ja) * 1985-12-12 1987-06-20 Mitsubishi Electric Corp 2値化画像処理方法
US4741619A (en) * 1987-05-05 1988-05-03 Molecular Devices Corporation Hydrophilic microplates for vertical beam photometry
US4859612A (en) * 1987-10-07 1989-08-22 Hygeia Sciences, Inc. Metal sol capture immunoassay procedure, kit for use therewith and captured metal containing composite
US4990075A (en) * 1988-04-11 1991-02-05 Miles Inc. Reaction vessel for performing sequential analytical assays
JP2813275B2 (ja) * 1992-10-30 1998-10-22 株式会社クボタ 炊飯装置
JP3532222B2 (ja) * 1992-11-25 2004-05-31 ソニー株式会社 高能率符号化方法とその装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50121422A (ja) * 1974-02-27 1975-09-23
US4115535A (en) * 1977-06-22 1978-09-19 General Electric Company Diagnostic method employing a mixture of normally separable protein-coated particles
JPS57175957A (en) * 1981-04-24 1982-10-29 Chugai Pharmaceut Co Ltd Measuring method and device for antigen- antibody reaction
JPS59147266A (ja) * 1983-02-03 1984-08-23 バ−ジル ビ−.エリングス 空間パタンを用いた高感度免疫分析装置
JPS60177265A (ja) * 1984-02-24 1985-09-11 Japan Synthetic Rubber Co Ltd 抗体の免疫グロブリンのクラス別検出法
JPS6141966A (ja) * 1984-07-26 1986-02-28 ラブシステムズ オイ 免疫学的測定法
JPS6165144A (ja) * 1984-09-07 1986-04-03 Olympus Optical Co Ltd 光強度ゆらぎを用いる免疫反応測定装置
JPS61128168A (ja) * 1984-11-27 1986-06-16 Mitsubishi Chem Ind Ltd 免疫分析方法
JPS62118255A (ja) * 1985-11-19 1987-05-29 Toshimitsu Musha 磁界を用いた免疫反応の検出法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0287665A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236824A (en) * 1988-04-26 1993-08-17 Nippon Telegraph And Telephone Corporation Laser magnetic immunoassay method and method by a magnetophoresis apparatus therefor
US5340749A (en) * 1988-04-26 1994-08-23 Nippon Telegraph And Telephone Corporation Method for collecting and preparing specimens for immune reactions
US5498550A (en) * 1988-04-26 1996-03-12 Nippon Telegraph & Telephone Corporation Device for collecting or preparing specimens using magnetic micro-particles
WO1993019370A1 (en) * 1992-03-20 1993-09-30 Abbott Laboratories Magnetically assisted binding assays using magnetically-labeled binding members
WO1993019371A1 (en) * 1992-03-20 1993-09-30 Abbott Laboratories Determination of binding affinity using magneticaly-labeled binding members
US5445971A (en) * 1992-03-20 1995-08-29 Abbott Laboratories Magnetically assisted binding assays using magnetically labeled binding members
US5413939A (en) * 1993-06-29 1995-05-09 First Medical, Inc. Solid-phase binding assay system for interferometrically measuring analytes bound to an active receptor
WO2000022440A1 (fr) * 1998-10-13 2000-04-20 Precision System Science Co., Ltd. Separateur/extracteur automatique et procede de commande associe
WO2021192555A1 (ja) * 2020-03-26 2021-09-30 国立研究開発法人産業技術総合研究所 磁場と重力を用いる標的物質検出装置及び標的物質検出方法
JP2021156679A (ja) * 2020-03-26 2021-10-07 国立研究開発法人産業技術総合研究所 磁場と重力を用いる標的物質検出装置及び標的物質検出方法

Also Published As

Publication number Publication date
EP0287665A4 (en) 1990-10-03
DE3751865D1 (de) 1996-09-05
US5252493A (en) 1993-10-12
EP0287665B1 (en) 1996-07-31
DE3751865T2 (de) 1997-01-16
EP0287665A1 (en) 1988-10-26

Similar Documents

Publication Publication Date Title
WO1988002118A1 (en) Laser magnetic immunoassay method and apparatus therefor
US5238810A (en) Laser magnetic immunoassay method and apparatus thereof
US5498550A (en) Device for collecting or preparing specimens using magnetic micro-particles
US4537861A (en) Apparatus and method for homogeneous immunoassay
RU2460058C2 (ru) Измерение параметров агглютинации
US5238811A (en) Laser magnetic immunoassay method and apparatus therefor and superparamagnetic material-labeled body and method for the manufacture of same
US5565365A (en) Assay flow apparatus and method
US5236824A (en) Laser magnetic immunoassay method and method by a magnetophoresis apparatus therefor
EP0339623B1 (en) Laser magnetic immunoassay method and apparatus therefor
JP2502546B2 (ja) レ−ザ磁気免疫測定方法
CN101627297A (zh) 测量凝集参数
JP2599175B2 (ja) レーザ磁気免疫測定方法及び測定装置並びにレーザ磁気免疫測定に用いる超常磁性体標識体及びその製造方法
JPH01109263A (ja) レーザ磁気免疫測定方法及び測定装置
JPH02151766A (ja) レーザ磁気免疫測定法
JPS63106559A (ja) レ−ザ磁気免疫測定方法及び装置
JP2551627B2 (ja) レーザ磁気免疫測定装置
JPS63188766A (ja) レ−ザ磁気免疫測定法および測定装置
JPH07111429B2 (ja) レ−ザ−磁気免疫測定法
JPH0820450B2 (ja) レ−ザ磁気免疫測定方法及び装置
JP2502148B2 (ja) 非分離型レ―ザ磁気免疫測定方法及び測定装置
JPH01107151A (ja) レーザ磁気免疫測定方法及び測定装置
JP2509227B2 (ja) レ−ザ磁気免疫測定装置
JPS63315951A (ja) レ−ザ磁気免疫測定装置
JPH05249114A (ja) 免疫測定法及びその装置
JPH0750112B2 (ja) レーザ磁気免疫測定方法を実施するための検体調整方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1987906109

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1987906109

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1987906109

Country of ref document: EP