US20200129485A1 - Treating sickle cell disease with a pyruvate kinase r activating compound - Google Patents

Treating sickle cell disease with a pyruvate kinase r activating compound Download PDF

Info

Publication number
US20200129485A1
US20200129485A1 US16/576,720 US201916576720A US2020129485A1 US 20200129485 A1 US20200129485 A1 US 20200129485A1 US 201916576720 A US201916576720 A US 201916576720A US 2020129485 A1 US2020129485 A1 US 2020129485A1
Authority
US
United States
Prior art keywords
compound
pkr
dose
dpg
day
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/576,720
Other languages
English (en)
Inventor
Anna Ericsson
Neal Green
Gary Gustafson
David R. Lancia, Jr.
Gary Marshall
Lorna Mitchell
David Richard
Zhongguo Wang
Forsyth Sanjeev
Kelly J. Patrick
Madhu Mondal
Maria Ribadeneira
Schroeder Patricia
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forma Therapeutics Inc
Original Assignee
Forma Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forma Therapeutics Inc filed Critical Forma Therapeutics Inc
Priority to US16/576,720 priority Critical patent/US20200129485A1/en
Assigned to FORMA THERAPEUTICS, INC reassignment FORMA THERAPEUTICS, INC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: GREEN, NEAL, WANG, ZHONGGUO, MARSHALL, GARY, ERICSSON, ANNA, GUSTAFSON, GARY, RICHARD, DAVID, FORSYTH, SANJEEV, KELLY, PATRICK F., MITCHELL, Lorna, MONDAL, MADHU, RIBADENEIRA, Maria, SCHROEDER, Patricia, LANCIA, DAVID R., JR.
Publication of US20200129485A1 publication Critical patent/US20200129485A1/en
Priority to US17/008,787 priority patent/US20200405699A1/en
Priority to AU2020349555A priority patent/AU2020349555A1/en
Priority to CN202080066237.3A priority patent/CN114615977A/zh
Priority to BR112022004715A priority patent/BR112022004715A2/pt
Priority to CN202080066236.9A priority patent/CN114650817A/zh
Priority to KR1020227008771A priority patent/KR20220066272A/ko
Priority to PCT/US2020/051645 priority patent/WO2021055863A1/en
Priority to KR1020227008754A priority patent/KR20220066058A/ko
Priority to EP20865925.0A priority patent/EP4031133A4/de
Priority to MX2022003254A priority patent/MX2022003254A/es
Priority to MX2022003025A priority patent/MX2022003025A/es
Priority to EP20864351.0A priority patent/EP4031132A4/de
Priority to CA3151610A priority patent/CA3151610A1/en
Priority to BR112022004376A priority patent/BR112022004376A2/pt
Priority to AU2020350763A priority patent/AU2020350763A1/en
Priority to PCT/US2020/051579 priority patent/WO2021055807A1/en
Priority to CA3151612A priority patent/CA3151612A1/en
Priority to US18/087,774 priority patent/US11980611B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/436Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/04Ortho-condensed systems
    • C07D491/056Ortho-condensed systems with two or more oxygen atoms as ring hetero atoms in the oxygen-containing ring

Definitions

  • This disclosure relates to the treatment of sickle cell disease (SCD), including the treatment of patients diagnosed with SCD by the administration of a compound that activates pyruvate kinase R (PKR).
  • SCD sickle cell disease
  • PKA pyruvate kinase R
  • Sickle cell disease is a chronic hemolytic anemia caused by inheritance of a mutated form of hemoglobin (Hgb), sickle Hgb (HgbS). It is the most common inherited hemolytic anemia, affecting 70,000 to 80,000 patients in the United States (US). SCD is characterized by polymerization of HgbS in red blood cells (RBCs) when HgbS is in the deoxygenated state (deoxy-HgbS), resulting in a sickle-shaped deformation. Sickled cells aggregate in capillaries precipitating vaso-occlusive events that generally present as acute and painful crises resulting in tissue ischemia, infarction, and long-term tissue damage.
  • Hgb red blood cells
  • deoxy-HgbS deoxygenated state
  • RBCs in patients with SCD tend to be fragile due to sickling and other factors, and the mechanical trauma of circulation causes hemolysis and chronic anemia.
  • damaged RBCs have abnormal surfaces that adhere to and damage vascular endothelium, provoking a proliferative/inflammatory response that underlies large-vessel stroke and potentially pulmonary-artery hypertension. Collectively, these contribute to the significant morbidity and increased mortality associated with this disease.
  • HU is in wide use as a backbone therapy for SCD, it remains only partially effective, and is associated with toxicity, such as myelosuppression and teratogenicity. Patients receiving HU still experience hemolysis, anemia, and vaso-occlusive crises, suggesting a need for more effective therapies, either as a replacement or in combination with HU. Beyond HU, therapeutic intervention is largely supportive care, aimed at managing the symptoms of SCD. For instance, blood transfusions help with the anemia and other SCD complications by increasing the number of normal RBCs. However, repeated transfusions lead to iron overload and the need for chelation therapies to avoid consequent tissue damage. In addition to these approaches, analgesic medications are used to manage pain.
  • One aspect of the disclosure relates to methods of treating SCD comprising the administration of a therapeutically effective amount of a pyruvate kinase R (PKR) activator to a patient in need thereof diagnosed with SCD.
  • PPKR pyruvate kinase R
  • PLR pyruvate kinase R
  • the invention is based in part on the discovery that the activation of PKR can target both sickling, by reducing deoxy-HgbS, and hemolysis. Targeting hemolysis may be achieved by improving RBC membrane integrity.
  • One aspect of the disclosure is the recognition that activation of PKR can reduce 2,3-diphosphoglycerate (2,3-DPG), which leads to decreased deoxy-HgbS (and, therefore, sickling), as well as can increase ATP, which promotes membrane health and reduces hemolysis.
  • Another aspect of the disclosure is the recognition that activation of PKR can reduce 2,3-diphosphoglycerate (2,3-DPG), which inhibits Hgb deoxygenation/increases oxygen affinity of HgbS and leads to decreased deoxy-HgbS (and, therefore, sickling), as well as can increase ATP, which promotes membrane health and reduces hemolysis.
  • PKR activation reduces RBC sickling via a reduction in levels of 2,3-diphosphoglycerate (2,3-DPG), which in turn reduces the polymerization of sickle Hgb (HgbS) into rigid aggregates that deform the cell.
  • PKR activation may contribute to overall RBC membrane integrity via increasing levels of adenosine triphosphate (ATP), which is predicted to reduce vaso-occlusive and hemolytic events which cause acute pain crises and anemia in SCD patients.
  • ATP adenosine triphosphate
  • the PKR Activating Compound can be the compound (S)-1-(5-((2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-7-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-hydroxy-2-phenylpropan-1-one (Compound 1):
  • Compound 1 is a selective, orally bioavailable PKR Activating Compound that decreases 2,3-DPG, increases ATP, and has anti-sickling effects in disease models with a wide therapeutic margin relative to preclinical toxicity.
  • the PKR Activating Compound can be any of the compounds listed in FIG. 1 , or a pharmaceutically acceptable salt thereof.
  • PKR Activating Compounds such as 1-(5-((2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-7-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-hydroxy-2-phenylpropan-1-one, or a pharmaceutically acceptable salt thereof, are useful in pharmaceutical compositions for the treatment of patients diagnosed with SCD.
  • PKR Activating Compounds such as any of the compounds listed in FIG. 1 , or a pharmaceutically acceptable salt thereof, are useful in pharmaceutical compositions for the treatment of patients diagnosed with SCD.
  • compositions comprising a compound of Formula I e.g., Compound 1
  • a pharmaceutically acceptable salt thereof can be obtained by certain processes also provided herein.
  • compositions comprising any of the compounds listed in FIG. 1 , or a pharmaceutically acceptable salt thereof, can be obtained by certain processes also provided herein.
  • a PKR Activating Compound such as Compound 1
  • HU hydroxyurea
  • use of a PKR Activating Compound, such as any of the compounds listed in FIG. 1 provides a novel and improved therapeutic approach either alone or in combination with drugs that act through alternative mechanisms, such as hydroxyurea (HU).
  • FIG. 1 is a table of PKR Activating Compounds.
  • FIG. 2 is a schematic showing the relationship of PKR activation to the reduction of the clinical consequences of sickle cell disease (SCD).
  • SCD sickle cell disease
  • FIG. 3 is a graph showing the oxyhemoglobin dissociation curve and modulating factors by plotting the relationship between hemoglobin saturation (percent) vs. partial pressure of oxygen (mmHg).
  • FIG. 4A is a chemical synthesis scheme for compounds of Formula I, including a synthesis of Compound 1 (separately provided in FIG. 4B ).
  • FIG. 4B is a chemical synthesis scheme for Compound 1.
  • FIG. 4C is a general chemical synthesis of the compounds listed in FIG. 1 .
  • FIG. 6 is a graph of data showing activation of recombinant PKR-R510Q by Compound 1 in the enzyme assay of Example 3.
  • FIG. 7 is a graph of data showing PKR activation in human red blood cells treated with Compound 1 (Example 4).
  • FIG. 8A (Study 1) and FIG. 8B (Study 2) are each graphs showing the observed changes in 2,3-DPG levels in blood from mice following 7 days of once daily (QD) oral treatment with Compound 1 (Example 5).
  • FIG. 9 is a graph showing observed changes in 2,3-DPG levels in blood from mice following 7 days of once daily (QD) oral treatment with Compound 1 (Example 5, Study 2).
  • FIG. 10A (Study 1) and FIG. 10B (Study 2) are graphs of data measuring ATP concentrations in red blood cells of mice following 7 days of once daily (QD) oral treatment with Compound 1 (Example 5).
  • FIG. 11 is a graph of the blood 2,3-DPG levels measured over time in healthy volunteers who received a single dose of Compound 1 or placebo.
  • FIG. 12 is a graph of the blood 2,3-DPG levels measured 24 hours post-dose in healthy volunteers who received a single dose of Compound 1 or placebo.
  • FIG. 13 is a graph of the blood 2,3-DPG levels measured over time in healthy volunteers who received daily doses of Compound 1 or placebo for 14 days.
  • FIG. 14 is a graph of the blood 2,3-DPG levels measured on day 14 in healthy volunteers who received daily doses of Compound 1 or placebo for 14 days.
  • FIG. 15 is a graph of the blood ATP levels measured on day 14 in healthy volunteers who received daily doses of Compound 1 or placebo for 14 days.
  • FIG. 16 is a graph plotting the blood concentration of Compound 1 (ng/mL) measured in healthy volunteer (HV) patients on a first (left) axis and the concentration of 2,3-DPG (micrograms/mL) measured in these HV patients on a second (right) axis after administration of a single dose of Compound 1 (400 mg).
  • Methods of treating SCD preferably include administration of a therapeutically effective amount of a compound (e.g., Compound 1) that reduces HgbS polymerization, for example by increasing HgbS affinity for oxygen.
  • Methods of treating SCD also preferably include administration of a therapeutically effective amount of a compound (e.g., any of the compounds listed in FIG. 1 ) that reduces HgbS polymerization, for example by increasing HgbS affinity for oxygen.
  • Methods of lowering 2,3-DPG and/or increasing ATP levels in human RBCs comprise administering a PKR Activating Compound, such as Compound 1.
  • Methods of lowering 2,3-DPG and/or increasing ATP levels in human RBCs also comprise administering a PKR Activating Compound, such as any of the compounds listed in FIG. 1 .
  • PKR Activating Compound such as any of the compounds listed in FIG. 1 .
  • PKR Activating Compounds are also useful to increase Hgb oxygen affinity in RBC.
  • the disclosure is based in part on the discovery that PKR activation is a therapeutic modality for SCD, whereby HgbS polymerization and RBC sickling are reduced via decreased 2,3-DPG and increased ATP levels.
  • SCD is the most common inherited blood disorder and clinically manifests with potentially severe pathological conditions associated with substantial physical, emotional, and economic burden. For instance, acute vaso-occlusive pain crises can be debilitating and necessitate rapid medical response. Chronic hemolytic anemia causes fatigue and often necessitates blood transfusions and supportive care. Over time, impaired oxygen transport through microvasculature precipitates organ and tissue damage. While there are a number of options available for treating symptoms, overall disease management would benefit from therapies that target upstream processes to prevent vaso-occlusion and hemolysis.
  • HgbS polymerizes when it is in the deoxygenated state and ultimately causes a deformed, rigid membrane that is unable to pass through small blood vessels, thereby blocking normal blood flow through microvasculature.
  • the loss of membrane elasticity also increases hemolysis, reducing RBC longevity.
  • decreased cellular ATP and oxidative damage contribute to a sickle RBC membrane that is stiffer and weaker than that of normal RBCs.
  • the damaged membrane has a greater propensity for adhering to vasculature, leading to hemolysis, increased aggregation of sickled RBCs, and increased coagulation and inflammation associated with vaso-occlusive crises.
  • the underlying cause of sickling is the formation of rigid deoxy-HgbS aggregates that alter the cell shape and consequently impact cellular physiology and membrane elasticity.
  • These aggregates are highly structured polymers of deoxygenated HgbS; the oxygenated form does not polymerize. Polymerization is promoted by a subtle shift in conformation from the oxygen-bound relaxed (R)-state to the unbound tense (T)-state. In the latter, certain residues within the 0-chain of HgbS are able to interact in a specific and repetitive manner, facilitating polymerization.
  • the concentration of deoxy-HgbS depends on several factors, but the predominant factor is the partial pressure of oxygen (PO 2 ).
  • Oxygen reversibly binds to the heme portions of the Hgb molecule.
  • the binding of oxygen to Hgb is cooperative and the relationship to PO 2 levels fits a sigmoidal curve ( FIG. 3 ). This relationship can be impacted by temperature, pH, carbon dioxide, and the glycolytic intermediate 2,3-DPG.
  • 2,3-DPG binds within the central cavity of the Hgb tetramer, causes allosteric changes, and reduces Hgb's affinity for oxygen. Therefore, therapeutic approaches that increase oxygen affinity (i.e., reduce deoxygenation) of HgbS would presumably decrease polymer formation, changes to the cell membrane, and clinical consequences associated with SCD.
  • One aspect of this disclosure is targeting PKR activation to reduce 2,3-DPG levels, based on PKR's role in controlling the rate of glycolysis in RBCs.
  • a decrease in 2,3-DPG with PKR activation has been demonstrated in preclinical studies and in healthy volunteers and patients with pyruvate kinase deficiency. Additionally, PKR activation would be expected to increase ATP, and has been observed to do so in these same studies. Given the role of ATP in the maintenance of a healthy RBC membrane and protection from oxidative stress, elevating its levels is likely to have broad beneficial effects.
  • the disclosure relates to a method of improving the anemia and the complications associated with anemia in SCD patients (e.g., ⁇ 12 years of age) with Hgb SS or Hgb SB 0 -thalassemia.
  • Compound 1 is a selective, orally bioavailable PKR activator that has been shown to decrease 2,3-DPG, increase ATP, and have anti-sickling effects in disease models with a wide therapeutic margin relative to preclinical toxicity.
  • Methods of treatment can comprise administering to a subject in need thereof a therapeutically effective amount of (i) a PKR Activating Compound (e.g., a compound disclosed herein), or a pharmaceutically acceptable salt thereof; or (ii) a PKR Activating Composition (e.g., a pharmaceutical composition comprising a compound disclosed herein, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier).
  • a PKR Activating Composition e.g., a pharmaceutical composition comprising a compound disclosed herein, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  • the pharmaceutical composition may be orally administered in any orally acceptable dosage form.
  • a compound, composition, or pharmaceutical composition described herein is added directly to whole blood or packed cells extracorporeally or provided to the subject (e.g., the patient) directly.
  • a patient and/or subject can be selected for treatment using a compound described herein by first evaluating the patient and/or subject to determine whether the subject is in need of activation of PKR, and if the subject is determined to be in need of activation of PKR, then administering to the subject a PKR Activating Compound in a pharmaceutically acceptable composition.
  • a patient and/or subject can be selected for treatment using a compound described herein by first evaluating the patient and/or subject to determine whether the subject is diagnosed with SCD, and if the subject is diagnosed with SCD, then administering to the subject a PKR Activating Compound in a pharmaceutically acceptable composition.
  • administration of a therapeutically effective amount of a PKR Activating Compound can include administration of a total of about 25 mg-1,500 mg of Compound 1 each day, in single or divided doses.
  • Compound 1 is administered to patients diagnosed with SCD in total once daily (QD) doses of 25 mg, 50 mg, 75 mg, 100 mg, 125 mg, 150 mg, and/or higher if tolerated (e.g., 250 mg, 300 mg, 500 mg, 600 mg, 1000 mg, and/or 1500 mg).
  • a human dose of 80 to 130 mg of Compound 1 is administered once daily (QD) to a patient in need thereof (e.g., a patient diagnosed with SCD).
  • a PKR Activating Compound is administered in an amount of 400 mg per day (e.g., 400 mg QD or 200 mg BID).
  • Compound 1 or a pharmaceutically acceptable salt thereof is administered in an amount of 400 mg per day (e.g., 400 mg QD or 200 mg BID).
  • any of the compounds listed in FIG. 1 or a pharmaceutically acceptable salt thereof is administered in an amount of 400 mg per day (e.g., 400 mg QD or 200 mg BID).
  • a PKR Activating Compound is administered in an amount of 700 mg per day (e.g., 700 mg QD or 350 mg BID).
  • Compound 1 or a pharmaceutically acceptable salt thereof is administered in an amount of 700 mg per day (e.g., 700 mg QD or 350 mg BID). In some embodiments, any of the compounds listed in FIG. 1 or a pharmaceutically acceptable salt thereof is administered in an amount of 700 mg per day (e.g., 700 mg QD or 350 mg BID). In some embodiments, a PKR Activating Compound is administered in an amount of 100 mg, 200 mg, 400 mg, 600 mg, 700 mg, 1100 mg, or 1500 mg per day, in single or divided doses.
  • Compound 1 or a pharmaceutically acceptable salt thereof is administered in an amount of 100 mg, 200 mg, 400 mg, 600 mg, 700 mg, 1100 mg, or 1500 mg per day, in single or divided doses. In some embodiments, any of the compounds listed in FIG. 1 or a pharmaceutically acceptable salt thereof is administered in an amount of 100 mg, 200 mg, 400 mg, 600 mg, 700 mg, 1100 mg, or 1500 mg per day, in single or divided doses.
  • Methods of treating a patient diagnosed with SCD can include administering to the patient in need thereof a therapeutic compound targeting reduction of deoxy-HgbS, which may or may not directly improve RBC membrane integrity.
  • Compound 1 has been shown to decrease 2,3-DPG and increase ATP, and reduced cell sickling has been demonstrated in disease models. Accordingly, in some embodiments, the methods of treatment can address not only sickling, but also hemolysis and anemia.
  • Methods of treating a patient diagnosed with sickle cell disease, and PKR Activating Compounds for use in such methods can include administering to the patient the PKR Activating Compound (e.g., a composition comprising one or more compounds of Formula I, such as Compound 1 or a mixture of Compound 1 and Compound 2) in an amount sufficient to reduce 2,3-DPG levels in the patient's red blood cells.
  • the amount is sufficient to reduce 2,3-DPG levels by at least 30% after 24 hours, or greater (e.g., reducing 2,3-DPG levels in the patient's red blood cells by at least 40% after 24 hours).
  • the amount is sufficient to reduce 2,3-DPG levels by 30-50% after 24 hours.
  • the amount is sufficient to reduce 2,3-DPG levels by 40-50% after 24 hours. In some embodiments, the amount is sufficient to reduce 2,3-DPG levels by at least 25% after 12 hours. In some embodiments, the amount is sufficient to reduce 2,3-DPG levels by 25-45% after 12 hours. In some embodiments, the amount is sufficient to reduce 2,3-DPG levels by at least 15% after 6 hours. In some embodiments, the amount is sufficient to reduce 2,3-DPG levels by 15-30% after 6 hours. In some embodiments, the amount is sufficient to reduce 2,3-DPG levels by at least 40% on day 14 of treatment. In some embodiments, the amount is sufficient to reduce 2,3-DPG levels by 40-60% on day 14 of treatment. In some embodiments, the amount is sufficient to reduce 2,3-DPG levels by at least 50% on day 14 of treatment. In some embodiments, the amount is sufficient to reduce 2,3-DPG levels by 50-60% on day 14 of treatment.
  • Methods of treating a patient diagnosed with sickle cell disease, and PKR Activating Compounds for use in such methods can also include administering to the patient the PKR Activating Compound (e.g., a composition comprising one or more compounds of Formula I, such as Compound 1 or a mixture of Compound 1 and Compound 2) in a daily amount sufficient to increase the patient's ATP blood levels.
  • the amount is sufficient to increase ATP blood levels by at least 40% on day 14 of treatment, or greater (e.g., t least 50% on day 14 of treatment).
  • the amount is sufficient to increase ATP blood levels by 40-65% on day 14 of treatment.
  • the amount is sufficient to increase ATP blood levels by at least 50% on day 14 of treatment, or greater (e.g., at least 50% on day 14 of treatment). In some embodiments, the amount is sufficient to increase ATP blood levels by 50-65% on day 14 of treatment.
  • a pharmaceutical composition comprising Compound 1 can be used in a method of treating a patient diagnosed with sickle cell disease, the method comprising administering to the patient 400 mg of Compound 1 once per day (QD)
  • a pharmaceutical composition comprising Compound 1 can be used in a method of treating a patient diagnosed with sickle cell disease, the method comprising administering to the patient 200 mg of Compound 1 twice per day (BID)
  • the present disclosure provides PKR Activating Compounds of Formula I:
  • a PKR Activating Compound is 1-(5-((2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-7-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-hydroxy-2-phenylpropan-1-one.
  • the compound of Formula I is preferably Compound 1:
  • a compound of Formula I is (S)-1-(5-((2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-7-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-hydroxy-2-phenylpropan-1-one.
  • the present disclosure provides a PKR Activating Compound that is any of the compounds listed in FIG. 1 , or a pharmaceutically acceptable salt thereof.
  • compositions comprising a compound of Formula I.
  • a provided composition containing a compound of Formula I comprises a mixture of Compound 1 and Compound 2:
  • compositions comprising any of the compounds listed in FIG. 1 , or a pharmaceutically acceptable salt thereof.
  • compositions comprising a PKR Activating Composition containing a compound of Formula (I) can be formulated for oral administration (e.g., as a capsule or tablet).
  • Compound 1 can be combined with suitable compendial excipients to form an oral unit dosage form, such as a capsule or tablet, containing a target dose of Compound 1.
  • the drug product can be prepared by first manufacturing Compound 1 as an active pharmaceutical ingredient (API), followed by roller compaction/milling with intragranular excipients and blending with extra granular excipients.
  • API active pharmaceutical ingredient
  • a Drug Product can contain the Compound 1 API and excipient components in Table 1 in a tablet in a desired dosage strength of Compound 1 (e.g., a 25 mg or 100 mg tablet formed from a Pharmaceutical Composition in Table 1).
  • the blended material can be compressed to form tablets and then film coated.
  • the pharmaceutical composition preferably comprises about 30-70% by weight of (S)-1-(5-((2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-7-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-hydroxy-2-phenylpropan-1-one, and a pharmaceutically acceptable excipient in an oral dosage form.
  • a provided composition containing a compound of Formula I comprises a mixture of (S)-1-(5-((2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-7-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-hydroxy-2-phenylpropan-1-one and (R)-1-(5-((2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-7-yl)sulfonyl)-3,4,5,6-tetrahydropyrro[3,4-c]pyrrol-2(1H)-yl)-3-hydroxy-2-phenylpropan-1-one.
  • a provided composition containing a compound of Formula I is a mixture of Compound 1 and Compound 2 as part of a PKR Activating Composition.
  • a compound of Formula I is racemic.
  • a compound of Formula I consists of about 50% of Compound 1 and about 50% of Compound 2.
  • a compound of Formula I is not racemic.
  • a compound of Formula I does not consist of about 50% of Compound 1 and about 50% of Compound 2.
  • a compound of Formula I comprises about 99-95%, about 95-90%, about 90-80%, about 80-70%, or about 70-60% of Compound 1.
  • a compound of Formula I comprises about 99%, 98%, 95%, 90%, 80%, 70%, or 60% of Compound 1.
  • a PKR Activating Composition comprises a mixture of Compound 1 and Compound 2. In some embodiments, a PKR Activating Composition comprises a mixture of Compound 1 and Compound 2, wherein the PKR Activating Composition comprises a therapeutically effective amount of Compound 1.
  • compositions comprising a compound of Formula I can be prepared as shown in FIG. 4A and FIG. 4B .
  • Compounds of Formula I can be obtained by the general chemical synthesis scheme of FIG. 4A .
  • Compound 1 can be obtained by the chemical synthesis route of FIG. 4A or FIG. 4B .
  • compounds of Formula I ( FIG. 4A ) and/or Compound 1 ( FIG. 4B ) can be obtained from a series of four reaction steps from commercially available starting materials.
  • Commercially available 7-bromo-2H,3H-[1,4]dioxino[2,3-b]pyridine was treated with a mixture of n-butyl lithium and dibutylmagnesium followed by sulfuryl chloride to give sulfonyl chloride 3.
  • the compounds listed in FIG. 1 can be prepared as shown in FIG. 4C and as described in International Publication No. WO 2018/175474, published Sep. 27, 2018. Generally, the compounds listed in FIG. 1 can be prepared by acylation and sulfonylation of the secondary amine groups of hexahydropyrrolopyrrole 6. For example, sulfonylation of 6 with a suitable sulfonyl chloride 7 affords sulfonyl hexahydropyrrolopyrrole 8, which is then treated with a suitable carboxylic acid 9 in the presence of an amide coupling reagent (e.g., HATU) to afford compound 10 (Path 1).
  • an amide coupling reagent e.g., HATU
  • acylation of 6 with a suitable carboxylic acid 9 in the presence of an amide coupling reagent affords acyl hexahydropyrrolopyrrole 11, which is then treated with a suitable sulfonyl chloride 7 to afford compound 10 (Path 2).
  • a suitable sulfonyl chloride 7 to afford compound 10 (Path 2).
  • Methods of treating SCD also include administration of a therapeutically effective amount of a bioactive compound (e.g., a small molecule, nucleic acid, or antibody or other therapy) that reduces HgbS polymerization, for example by increasing HgbS affinity for oxygen.
  • a bioactive compound e.g., a small molecule, nucleic acid, or antibody or other therapy
  • composition comprising a PKR Activating Compound of Formula I, or a pharmaceutically acceptable salt thereof:
  • composition of embodiment 1, wherein the compound of Formula I is Compound 1, or a pharmaceutically acceptable salt thereof:
  • composition of embodiment 2 wherein the composition comprises a mixture of Compound 1 and Compound 2, or a pharmaceutically acceptable salt thereof:
  • composition of embodiment 1, comprising the compound: 1-(5-((2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-7-yl)sulfony)-3,4,5,6-tetrahydrpyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-hydroxy-2-phenylpropan-1-one. 5.
  • SCD sickle cell disease
  • the method comprises oral administration of the pharmaceutical composition comprising (S)-1-(5-((2,3-dihydro-[1,4]dioxino[2,3-b]pyridin-7-yl)sulfonyl)-3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)-3-hydroxy-2-phenylpropan-1-one, as the only PKR Activating Compound in the pharmaceutical composition.
  • SCD sickle cell disease
  • a composition comprising a compound of Formula I obtainable by a process comprising the step of converting compound 5 into a compound of Formula I in a reaction described as Step 4:
  • SCD sickle cell disease
  • a method for reducing 2,3-diphosphoglycerate (2,3-DPG) levels in a patient's red blood cells comprising administering to the patient a PKR Activating Compound in a therapeutically effective amount, wherein the PKR Activating Compound is a compound of Formula I:
  • PKR Activating Compound is administered in an amount of 25-1500 mg per day. 5. The method of embodiment 3, wherein the PKR Activating Compound is administered once daily in an amount of 250 mg, 300 mg, 500 mg, 600 mg, 1000 mg, or 1500 mg per day. 6. The method of embodiment 3, wherein the PKR Activating Compound is administered once daily in an amount of 100 mg per day. 7. The method of embodiment 3, wherein the PKR Activating Compound is administered once daily in an amount of 600 mg per day. 8. The method of embodiment 3, wherein the PKR Activating Compound is administered once per day. 9. The method of embodiment 3, wherein the PKR Activating Compound is orally administered to the patient. 10. The method of embodiment 3, wherein Compound 1 is the only PKR Activating Compound administered to the patient.
  • a method for reducing 2,3-diphosphoglycerate (2,3-DPG) levels in a patient's red blood cells comprising administering to the patient the PKR Activating Compound in an amount sufficient to reduce 2,3-DPG levels in the patient's red blood cells by at least 30% after 24 hours, wherein the PKR Activating Compound is a compound of Formula I:
  • PKR Activating Compound is administered in an amount of 100 mg, 200 mg, 400 mg, 600 mg, 700 mg, 1100 mg, or 1500 mg per day. 10. The method of any one of embodiments 1-5, wherein the PKR Activating Compound is administered in an amount of 200 mg per day. 11. The method of embodiment 10, wherein the PKR Activating Compound is administered in an amount of 200 mg per day once per day (QD). 12. The method of embodiment 10, wherein the PKR Activating Compound is administered in an amount of 100 mg per day twice per day (BID). 13. The method of any one of embodiments 1-5, wherein the PKR Activating Compound is administered in an amount of 400 mg per day. 14.
  • the method of embodiment 13, wherein the PKR Activating Compound is administered in an amount of 400 mg once per day (QD). 15. The method of embodiment 13, wherein the PKR Activating Compound is administered in an amount of 200 mg twice per day (BID). 16. The method of any one of embodiments 1-5, wherein the PKR Activating Compound is administered in an amount of 600 mg per day. 17. The method of embodiment 16, wherein the PKR Activating Compound is administered in an amount of 300 mg twice per day (BID). 18. The method of any one of embodiments 1-5, wherein the PKR Activating Compound is administered in an amount of 700 mg per day. 19.
  • PKR As the enzyme that catalyzes the last step of glycolysis, PKR underlies reactions that directly impact the metabolic health and primary functions of RBCs.
  • the following Examples demonstrate how PKR activation by Compound 1 impacts RBCs.
  • the primary effect of Compound 1 on RBCs is a decrease in 2,3-DPG that is proposed to reduce Hgb sickling and its consequences on RBCs and oxygen delivery to tissues.
  • Compound 1 also increases ATP, which may provide metabolic resources to support cell membrane integrity and protect against loss of deformability and increased levels of hemolysis in SCD. With the combination of effects Compound 1 has on RBCs, it is likely to reduce the clinical sequelae of sickle Hgb and provide therapeutic benefits for patients with SCD.
  • the PKR Activating Compound designated Compound 1 was prepared as described in Example 1, and tested for PKR activating activity in the biochemical assay of Example 2.
  • PKR biological enzymatic activity of PKR (i.e., formation of ATP and/or pyruvate) was evaluated in enzyme and cell assays with Compound 1, as described in Example 3 and Example 4, respectively. Results from enzyme assays show that Compound 1 is an activator of recombinant wt-PKR and mutant PKR, (e.g., R510Q), which is one of the most prevalent PKR mutations in North America. PKR exists in both a dimeric and tetrameric state, but functions most efficiently as a tetramer. Compound 1 is an allosteric activator of PKR and is shown to stabilize the tetrameric form of PKR, thereby lowering the K m (the Michaelis-Menten constant) for PEP.
  • K m the Michaelis-Menten constant
  • mice In vivo testing in mice (Examples 5) demonstrated PKR activation in wt mice, and provided an evaluation of effects on RBCs and Hgb in a murine model of SCD.
  • Compound 1 was well tolerated up to the highest dose tested, and exposures increased in a dose-proportional manner. Levels of 2,3-DPG were reduced by >30% for doses 2120 mg/kg Compound 1 (AUC from 0 to 24 hours (AUC 0-24 >5200 hr ⁇ ng/mL) and levels of ATP were increased by >40% for 260 mg/kg Compound 1 (AUC 0-24 >4000 hr ⁇ ng/mL).
  • a daily dose of between 100 mg to 1500 mg of a PKR Activating Compound is administered to humans. In some embodiments, a daily dose of between 100 mg to 1500 mg of Compound 1 is administered to humans. In some embodiments, a daily dose of between 100 mg to 1500 mg of any of the compounds listed in FIG. 1 is administered to humans. In particular, a total daily dose of 100 mg-600 mg of a PKR Activating Compound can be administered to humans (including, e.g., a dose of 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, or 600 mg, per day, in single or divided doses).
  • a total daily dose of 100 mg-600 mg of Compound 1 can be administered to humans (including, e.g., a dose of 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, or 600 mg, per day, in single or divided doses).
  • a total daily dose of 100 mg-600 mg of any of the compounds listed in FIG. 1 can be administered to humans (including, e.g., a dose of 100 mg, 200 mg, 300 mg, 400 mg, 500 mg, or 600 mg, per day, in single or divided doses).
  • a daily dose of 400 mg (e.g., 400 mg QD or 200 mg BID) of a PKR Activating Compound is administered to humans.
  • a daily dose of 400 mg (e.g., 400 mg QD or 200 mg BID) of Compound 1, or a pharmaceutically acceptable salt thereof, is administered to humans.
  • a daily dose of 400 mg (e.g., 400 mg QD or 200 mg BID) of any of the compounds listed in FIG. 1 is administered to humans.
  • the PKR Activating Compound 1 was obtained by the method described herein and the reaction scheme shown in FIG. 4A and/or FIG. 4B .
  • Compound 1 has a molecular weight of 457.50 Da.
  • the reaction mixture was diluted with 20 mL of water and was then extracted with 3 ⁇ 20 mL of dichloromethane. The organic layers were combined, dried over anhydrous sodium sulfate, filtered and concentrated under vacuum. The residue was purified by prep-TLC eluted with dichloromethane/methanol (20:1) and further purified by prep-HPLC (Column: XBridge C18 OBD Prep Column, 100 ⁇ , 5 m, 19 mm ⁇ 250 mm; Mobile Phase A: water (10 mmol/L NH 4 HCO 3 ), Mobile Phase B: MeCN; Gradient: 15% B to 45% B over 8 min; Flow rate: 20 mL/min; UV Detector: 254 nm).
  • Compound 1 can be synthesized using the procedure described here as Step 5.
  • a solution of 7-((3,4,5,6-tetrahydropyrrolo[3,4-c]pyrrol-2(1H)-yl)sulfonyl)-2,3-dihydro-[1,4]dioxino[2,3-b]pyridine (130.9 mg, 0.423 mmol) in DMF (2.5 ml) was cooled on an ice bath, then treated with (S)-3-hydroxy-2-phenylpropanoic acid (84.8 mg, 0.510 mmol), HATU (195.5 mg, 0.514 mmol), and DIEA (0.30 mL, 1.718 mmol) and stirred at ambient temperature overnight.
  • the solution was diluted with EtOAc (20 mL), washed sequentially with water (20 mL) and brine (2 ⁇ 20 mL), dried (MgSO 4 ), filtered, treated with silica gel, and evaporated under reduced pressure.
  • the material was chromatographed by Biotage MPLC (10 g silica gel column, 0 to 5% MeOH in DCM) to provide a white, slightly sticky solid.
  • PKR Activating Compounds can be identified with the biochemical Luminescence Assay of Example 2.
  • the PKR activating activity of a series of chemical compounds was evaluated using the Luminescence Assay below, including compounds designated Compound 1, Compound 2, and Compounds 6, 7, and 8 below, and the compounds listed in FIG. 1 .
  • PKR adenosine-5′-diphosphate
  • ADP adenosine-5′-diphosphate
  • FBP D-fructose-1,6-diphosphate
  • reagents are prepared in buffer containing 50 mM Tris-HCl, 100 mM KCl, 5 mM MgCl 2 , and 0.01% Triton X100, 0.03% BSA, and 1 mM DTT.
  • Enzyme and PEP phosphoenolpyruvate are added at 2 ⁇ to all wells of an assay-ready plate containing serial dilutions of test compounds or DMSO vehicle.
  • Final enzyme concentrations for PKR(wt), PKR(R510Q), and PKR(G332S) are 0.8 nM, 0.8 nM, and 10 nM respectively.
  • Final PEP concentration is 100 M.
  • the Enzyme/PEP mixture is incubated with compounds for 30 minutes at RT before the assay is initiated with the addition of 2 ⁇ ADP and KinaseGloPlus.
  • Final concentration of ADP is 100 M.
  • Final concentration of KinaseGloPlus is 12.5%.
  • that reagent is added at 30 ⁇ M upon reaction initiation. Reactions are allowed to progress for 45 minutes at RT until luminescence is recorded by the BMG PHERAstar FS Multilabel Reader.
  • the compound is tested in triplicate at concentrations ranging from 42.5 ⁇ M to 2.2 nM in 0.83% DMSO.
  • AC 50 measurements were obtained by the standard four parameter fit algorithm of ActivityBase XE Runner (max, min, slope and AC 50 ).
  • the AC 50 value for a compound is the concentration ( ⁇ M) at which the activity along the four parameter logistic curve fit is halfway between minimum and maximum activity.
  • AC 50 values are defined as follows: ⁇ 0.1 ⁇ M (+++); >0.1 ⁇ M and ⁇ 1.0 ⁇ M (++); >1.0 ⁇ M and ⁇ 40 ⁇ M (+); >40 ⁇ M (0).
  • PKR neuropeptide kinase kinase
  • PKR mutants having lower activities compared to the wild type.
  • Such mutations in PKR can affect enzyme activity (catalytic efficiency), regulatory properties, and/or thermostability of the enzyme.
  • One example of a PKR mutation is G332S.
  • Another example of a PKR mutation is R510Q.
  • V max maximum velocity
  • FBP fructose-1,6-bisphosphate
  • Assessments were made up to 60 min at RT, and V max and PEP K m were calculated.
  • the effect of Compound 1 on V max ranged from no effect to a modest increase (see FIG. 5 for a representative curve).
  • Compound 1 consistently reduced the PEP K m , typically by ⁇ 2 fold, for wt-PKR and PKR-R510Q in the presence or absence of FBP (Table 4), demonstrating that Compound 1 can enhance the rate of PKR at physiological concentrations of PEP.
  • Activation of wt-PKR and PKR-R510Q by different concentrations of Compound 1 was evaluated for PEP concentrations at or below K m .
  • Compound 1 increased the rate of ATP formation, with AC 50 values ranging from ⁇ 0.05 to ⁇ 0.10 ⁇ M and a range of ⁇ 2.0 to ⁇ 3.0 maximum-fold activation (i.e., ⁇ 200% to ⁇ 300%) (Table 5).
  • Representative data from PKR-R510Q showed that the effect was concentration dependent ( FIG. 6 ).
  • wt-PKR The activation of wt-PKR by Compound 1 in mature human erythrocytes ex vivo was evaluated in purified RBCs purchased from Research Blood Components. Cells treated with Compound 1 for 3 hr in glucose-containing media were washed, lysed, and assayed using a Biovision Pyruvate Kinase Assay (K709-100). The assay was repeated multiple times to account for donor-to-donor variability and the relatively narrow dynamic range. Mean maximum activation increase (Max-Min) was ⁇ 100% and mean 50% effective concentration (EC 50 ) was ⁇ 125 nM (Table 6). wt-PKR was activated in a concentration-dependent manner ( FIG. 7 ).
  • Mouse RBCs were isolated fresh from whole blood using a Ficoll gradient and assayed with methods similar to those used in the human RBCs assays. Maximum activation increase, and EC 50 values were comparable to the effects in human RBCs (Table 7).
  • PK/phamacodynamic (PD) studies were conducted in Balb/c mice that were administered Compound 1 once daily by oral gavage (formulated in 10% Cremophor EL/10% PG/80% DI water) for 7 days (QD ⁇ 7) at doses of 0 (vehicle), 3.75, 7.5, 15, 30, 60 mg/kg (Study 1); 0 (vehicle), 7.5, 15, 30, 60, 120, or 240 mg/kg (Study 2).
  • whole blood was collected 24 hours after dosing and snap frozen. Samples were later thawed and analyzed by LC/MS for 2,3-DPG and ATP levels.
  • Compound 1 was well tolerated. No adverse clinical signs were observed and there were no differences in body weight change compared with the vehicle group.
  • FIGS. 8A and 8B The levels of 2,3-DPG decreased with Compound 1 treatment ( FIGS. 8A and 8B (Studies 1 and 2) and FIG. 9 (Study 2)). In general, reductions were >20% at ⁇ 15 mg/kg Compound 1, and >30% for 120 and 240 mg/kg Compound 1. Together, the results from the highest doses provide in vivo evidence that 2,3-DPG decreases with PKR activation.
  • Example 6 A SAD/MAD Study to Assess the Safety, Pharmacokinetics, and Pharmacodynamics of Compound 1 in Healthy Volunteers and Sickle Cell Disease Patients
  • Compound 1 will be evaluated in a randomized, placebo-controlled, double blind, single ascending and multiple ascending dose study to assess the safety, pharmacokinetics, and pharmacodynamics of Compound 1 in healthy volunteers and sickle cell disease patients.
  • the use of Compound 1 is disclosed herein for treatment of sickle cell disease in humans.
  • Compound 1 is an oral small-molecule agonist of pyruvate kinase red blood cell isozyme (PKR) being developed for the treatment of hemolytic anemias.
  • PLR pyruvate kinase red blood cell isozyme
  • This human clinical trial study will characterize the safety, tolerability and the pharmacokinetics/pharmacodynamics (PK/PD) of a single ascending dose and multiple ascending doses of Compound 1 in the context of phase 1 studies in healthy volunteers and sickle cell disease patients. The effects of food on the absorption of Compound 1 will also be evaluated, in healthy volunteers.
  • the objectives of the study include the following:
  • the study arms and assigned interventions to be employed in the study are summarized in Table 8.
  • SAD single ascending dose
  • MAD 2-week multiple ascending dose
  • a single dose cohort is planned to understand food effects (FE) on the PK of Compound 1.
  • FE food effects
  • the safety, PK and PD of a single dose of Compound 1 that was found to be safe in healthy subjects will then be evaluated in sickle cell disease (SCD) subjects.
  • SCD sickle cell disease
  • Multiple dose studies in SCD subjects will then be initiated upon completion of MAD studies in healthy volunteers.
  • Compound 1 will be administered in 25 mg and 100 mg tablets delivered orally.
  • Drug Compound 1/Placebo in SCD subjects SCD subjects will receive Compound Sickle cell disease subject cohort 1/placebo and be monitored for side randomized 6:2 receiving a single dose of effects while undergoing Compound 1 or placebo.
  • the dose of pharmacokinetic and pharmacodynamics Compound 1/placebo administered will be studies a dose that was found to be safe in healthy subjects.
  • the dose of Compound 1/placebo administered also will be a dose that was found to be pharmacodynamically active (e.g., results in a reduction in 2,3-DPG) in healthy subjects.
  • DPG 2,3-diphosphoglycerate
  • ATP adenosine triphosphate
  • Table 11 reports the mean maximum percentage change in 2,3-DPG and ATP across all doses and timepoints in the SAD and MAD cohorts. As shown in Table 11, a mean decrease in 2,3-DPG, and a mean increase in ATP, relative to baseline, was observed in both the SAD and MAD cohorts. Within 24 hr of a single dose of Compound 1, a decrease in 2,3-DPG was observed. After 14 days of Compound 1 dosing these PD effects were maintained along with an increase in ATP over baseline. Accordingly, the mean maximum reduction in the concentration of 2,3-DPG was at least about 40% in patients receiving Compound 1 in the SAD study and at least about 50% in patients receiving Compound 1 in the MAD study.
  • the subjects' blood 2,3-DPG levels were measured periodically after dosing by a qualified LC-MS/MS method for the quantitation of 2,3-DPG in blood.
  • Decreased 2,3-DPG blood levels were observed 6 hours following a single dose of Compound 1 at all dose levels (earlier timepoints were not collected).
  • Maximum decreases in 2,3-DPG levels generally occurred ⁇ 24 hours after the first dose with the reduction sustained ⁇ 48-72 hr postdose.
  • Table 12 reports the median percentage change in 2,3-DPG blood levels, relative to baseline, measured over time in healthy volunteers after a single dose of Compound 1 (200 mg, 400 mg, 700 mg, or 1000 mg) or placebo. Accordingly, the median reduction in the concentration of 2,3-DPG, relative to baseline, was at least about 30% at all dose levels tested 24 hours after administration of the single dose.
  • FIG. 11 is a graph of the blood 2,3-DPG levels measured over time in healthy volunteers who received a single dose of Compound 1 (200 mg, 400 mg, 700 mg, or 1000 mg) or placebo. As shown in FIG. 11 , healthy volunteers who received Compound 1 experienced a decrease in blood 2,3-DPG levels, relative subjects who received the placebo.
  • FIG. 12 is a graph of the blood 2,3-DPG levels measured 24 hours post-dose in healthy volunteers who received a single dose of Compound 1 (200 mg, 400 mg, 700 mg, or 1000 mg) or placebo. As shown in FIG. 12 , healthy volunteers who received Compound 1 experienced a decrease in blood 2,3-DPG levels at 24 hours post-dose, relative to subjects who received the placebo.
  • the subjects' blood 2,3-DPG levels were measured periodically after dosing by a qualified LC-MS/MS method for the quantitation of 2,3-DPG in blood.
  • the maximum decrease in 2,3-DPG on Day 14 was 55% from baseline (median).
  • 2,3-DPG levels reached a nadir and plateaued on Day 1 and had not returned to baseline levels 72 hours after the final dose on Day 14.
  • Table 13 reports the median percentage change in 2,3-DPG blood levels, relative to baseline, measured over time after the first dose on days 1 and 14 in healthy volunteers who received daily doses of Compound 1 (100 mg BID, 200 mg BID, or 300 mg BID) or placebo for 14 days. Accordingly, the median reduction in the concentration of 2,3-DPG, relative to baseline, was at least about 25% at all dose levels tested 24 hours after administration of the first dose on day 1 and at least about 40% at all dose levels tested 24 hours after administration of the first dose on day 14.
  • FIG. 13 is a graph of the blood 2,3-DPG levels measured over time in healthy volunteers who received daily doses of Compound 1 (100 mg BID, 200 mg BID, 300 mg BID, or 400 mg QD) or placebo for 14 days. As shown in FIG. 13 , healthy volunteers who received Compound 1 experienced a decrease in blood 2,3-DPG levels, relative subjects who received the placebo.
  • FIG. 14 is a graph of the blood 2,3-DPG levels measured on day 14 in healthy volunteers who received daily doses of Compound 1 (100 mg BID, 200 mg BID, 300 mg BID, or 400 mg QD) or placebo for 14 days. As shown in FIG. 14 , healthy volunteers who received Compound 1 experienced a decrease in blood 2,3-DPG levels, relative to subjects who received the placebo.
  • the subjects' blood ATP levels were measured on day 14 by a qualified LC-MS/MS method for the quantitation of ATP in blood. ATP levels were elevated, relative to baseline, on day 14, and remained elevated 60 hours after the last dose. Table 14 reports the median percentage change in blood ATP levels, relative to baseline, measured over time after the first dose on day 14 in healthy volunteers who received daily doses of Compound 1 (100 mg BID, or 200 mg BID) or placebo for 14 days.
  • FIG. 15 is a graph of the blood ATP levels measured on day 14 in healthy volunteers who received daily doses of Compound 1 (100 mg BID, 200 mg BID, 300 mg BID, or 400 mg QD) or placebo for 14 days. As shown in FIG. 15 , healthy volunteers who received Compound 1 experienced an increase in blood ATP levels, relative to subjects who received the placebo.
  • Compound 1 100 mg BID, 200 mg BID, 300 mg BID, or 400 mg QD
  • FIG. 16 is a graph plotting the blood concentration of Compound 1 (ng/mL) measured in healthy volunteer (HV) patients on a first (left) axis and the concentration of 2,3-DPG (micrograms/mL) measured in these HV patients on a second (right) axis after administration of a single dose of Compound 1 (400 mg). Solid symbols represent geometric means and Standard errors of the observed Compound 1 plasma and 2,3 DPG concentrations.
  • the observed 2,3 DPG modulation does not track directly plasma pharmacokinetics (blood concentration of Compound 1) where the pharmacodynamic maximum (i.e., the minimum of the 2,3-DPG concentration, at time ⁇ 24 h) occurred nearly 24 h after the pharmacokinetic maximum (i.e., maximum of the PK curve, at time ⁇ 1-2 h).
  • the observed pharmacodynamic response in HVs was durable, with a calculated PD half-life of ⁇ 20 h, where 2,3-DPG depression was observed long after plasma levels were undetectable.
  • Standard and QC samples are prepared on ice and stored in plastic containers.
  • Needle Rinse 1 25:25:25:25:0.1 Add 500 mL of (NR1) (v:v:v:v:v) MeOH, 500 mL of Ambient MeOH:ACN: ACN, 500 mL of H2O:IPA:NH 4 OH H 2 O, 500 mL of Temperature IPA, and 2 mL of NH 4 OH. Mix. Needle Rings 2 90:10:0.1 (v:v:v) Add 2 mL of FA to Ambient (NR2) H 2 0:MeOH:FA 200 mL of MeOH Temperature and 1800 mL of H 2 0. Mix.
  • Calibration standards are prepared using water as the matrix according to the table presented below.
  • the indicated standard is prepared by diluting the indicated spiking volume of stock solution with the indicated matrix volume.
  • Quality control standards are prepared using water as the matrix according to the table presented below.
  • the indicated quality control standard is prepared by diluting the indicated spiking volume of stock solution with the indicated matrix volume.
  • An internal standard spiking solution is prepared with a final concentration of 12,500 ng/mL ATP and 2,3-DPG by diluting stock solutions of ATP and 2,3-DPG at concentrations of 1,000,000 ng/mL with water. 0.200 mL each of the ATP and 2,3-DPG stock solutions are diluted with 15.6 mL of water to produce a final volume of 16.0 mL at a final concentration of 12,500 ng/mL of ATP and 2,3-DPG.
  • the plate is then centrifuged at approximately 3500 RPM at approximately 4° C. for five minutes. After centrifugation, a liquid handler is used to transfer 50 L of each sample to a new 96-well plate, and 200 ⁇ L of acetonitrile is added to all samples on the plate. The newly prepared plate is covered and agitated by vortex for approximately 1 minute. The plate is then centrifuged at approximately 3500 RPM at approximately 4° C. for 2 minutes.
  • the collected MS data is analyzed and sample concentrations are quantified using peak area ratios with a linear 1/x 2 regression type.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Diabetes (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physiology (AREA)
  • Nutrition Science (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
US16/576,720 2018-09-19 2019-09-19 Treating sickle cell disease with a pyruvate kinase r activating compound Abandoned US20200129485A1 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
US16/576,720 US20200129485A1 (en) 2018-09-19 2019-09-19 Treating sickle cell disease with a pyruvate kinase r activating compound
US17/008,787 US20200405699A1 (en) 2018-09-19 2020-09-01 Treating sickle cell disease with a pyruvate kinase r activating compound
PCT/US2020/051579 WO2021055807A1 (en) 2019-09-19 2020-09-18 Activating pyruvate kinase r
CA3151612A CA3151612A1 (en) 2019-09-19 2020-09-18 Pyruvate kinase r (pkr) activating compositions
PCT/US2020/051645 WO2021055863A1 (en) 2019-09-19 2020-09-18 Pyruvate kinase r (pkr) activating compositions
MX2022003025A MX2022003025A (es) 2019-09-19 2020-09-18 Activacion de la piruvato cinasa r.
BR112022004715A BR112022004715A2 (pt) 2019-09-19 2020-09-18 Composições de ativação de piruvato quinase r (pkr)
CN202080066236.9A CN114650817A (zh) 2019-09-19 2020-09-18 激活丙酮酸激酶r
KR1020227008771A KR20220066272A (ko) 2019-09-19 2020-09-18 피루베이트 키나제 r 활성화
AU2020349555A AU2020349555A1 (en) 2019-09-19 2020-09-18 Activating Pyruvate Kinase R
KR1020227008754A KR20220066058A (ko) 2019-09-19 2020-09-18 피루베이트 키나제 r(pkr) 활성화 조성물
EP20865925.0A EP4031133A4 (de) 2019-09-19 2020-09-18 Pyruvatkinase r (pkr)-aktivierungszusammensetzungen
MX2022003254A MX2022003254A (es) 2019-09-19 2020-09-18 Composiciones activadoras de piruvato cinasa r (pkr).
CN202080066237.3A CN114615977A (zh) 2019-09-19 2020-09-18 丙酮酸激酶r(pkr)活化组合物
EP20864351.0A EP4031132A4 (de) 2019-09-19 2020-09-18 Aktivierung von pyruvatkinase r
CA3151610A CA3151610A1 (en) 2019-09-19 2020-09-18 Activating pyruvate kinase r
BR112022004376A BR112022004376A2 (pt) 2019-09-19 2020-09-18 Ativação de piruvato quinase r
AU2020350763A AU2020350763A1 (en) 2019-09-19 2020-09-18 Pyruvate kinase R (PKR) activating compositions
US18/087,774 US11980611B2 (en) 2018-09-19 2022-12-22 Treating sickle cell disease with a pyruvate kinase R activating compound

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201862733558P 2018-09-19 2018-09-19
US201862733562P 2018-09-19 2018-09-19
US201862782933P 2018-12-20 2018-12-20
US201962789641P 2019-01-08 2019-01-08
US201962811904P 2019-02-28 2019-02-28
US16/576,720 US20200129485A1 (en) 2018-09-19 2019-09-19 Treating sickle cell disease with a pyruvate kinase r activating compound

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/008,787 Continuation US20200405699A1 (en) 2018-09-19 2020-09-01 Treating sickle cell disease with a pyruvate kinase r activating compound

Publications (1)

Publication Number Publication Date
US20200129485A1 true US20200129485A1 (en) 2020-04-30

Family

ID=69774634

Family Applications (7)

Application Number Title Priority Date Filing Date
US16/576,360 Active US10675274B2 (en) 2018-09-19 2019-09-19 Activating pyruvate kinase R
US17/275,741 Pending US20220031671A1 (en) 2018-09-19 2019-09-19 Treating sickle cell disease with a pyruvate kinase r activating compound
US16/576,720 Abandoned US20200129485A1 (en) 2018-09-19 2019-09-19 Treating sickle cell disease with a pyruvate kinase r activating compound
US15/929,436 Active US11071725B2 (en) 2018-09-19 2020-05-01 Activating pyruvate kinase R
US17/008,787 Abandoned US20200405699A1 (en) 2018-09-19 2020-09-01 Treating sickle cell disease with a pyruvate kinase r activating compound
US17/351,389 Active 2040-07-23 US11844787B2 (en) 2018-09-19 2021-06-18 Activating pyruvate kinase R
US18/087,774 Active 2039-10-01 US11980611B2 (en) 2018-09-19 2022-12-22 Treating sickle cell disease with a pyruvate kinase R activating compound

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US16/576,360 Active US10675274B2 (en) 2018-09-19 2019-09-19 Activating pyruvate kinase R
US17/275,741 Pending US20220031671A1 (en) 2018-09-19 2019-09-19 Treating sickle cell disease with a pyruvate kinase r activating compound

Family Applications After (4)

Application Number Title Priority Date Filing Date
US15/929,436 Active US11071725B2 (en) 2018-09-19 2020-05-01 Activating pyruvate kinase R
US17/008,787 Abandoned US20200405699A1 (en) 2018-09-19 2020-09-01 Treating sickle cell disease with a pyruvate kinase r activating compound
US17/351,389 Active 2040-07-23 US11844787B2 (en) 2018-09-19 2021-06-18 Activating pyruvate kinase R
US18/087,774 Active 2039-10-01 US11980611B2 (en) 2018-09-19 2022-12-22 Treating sickle cell disease with a pyruvate kinase R activating compound

Country Status (6)

Country Link
US (7) US10675274B2 (de)
EP (1) EP3853206B1 (de)
CN (1) CN113166060B (de)
BR (1) BR112021005188A2 (de)
MA (1) MA53668A (de)
WO (1) WO2020061378A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11001588B2 (en) 2018-09-19 2021-05-11 Forma Therapeutics, Inc. Activating pyruvate kinase R and mutants thereof
US11014927B2 (en) 2017-03-20 2021-05-25 Forma Therapeutics, Inc. Pyrrolopyrrole compositions as pyruvate kinase (PKR) activators
US11071725B2 (en) 2018-09-19 2021-07-27 Forma Therapeutics, Inc. Activating pyruvate kinase R
US20220304987A1 (en) * 2021-03-19 2022-09-29 Forma Therapeutics, Inc. Activating pyruvate kinase r

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022501362A (ja) * 2018-09-19 2022-01-06 フォーマ セラピューティクス,インコーポレイテッド ユビキチン特異的ペプチダーゼ9xの阻害
US20220378755A1 (en) * 2019-09-19 2022-12-01 Forma Therapeutics, Inc. Pyruvate kinase r (pkr) activating compositions
US20220087983A1 (en) * 2020-09-18 2022-03-24 Forma Therapeutics, Inc. Activating pyruvate kinase r
WO2022170200A1 (en) 2021-02-08 2022-08-11 Global Blood Therapeutics, Inc. 1-(2-sulfonyl-2,6-dihydropyrrolo[3,4-c]pyrazol-5(4h)-yl]-ethanone derivatives as pyruvate kinase (pkr) and pkm2 activators for the treatment of sickle cell disease
EP4147700A1 (de) * 2021-09-08 2023-03-15 LQT Therapeutics Inc. N-(4-(azaindazol-6-yl)-phenyl)-sulfonamide zur verwendung bei der behandlung von sichelzellenkrankheit
WO2023069529A1 (en) 2021-10-19 2023-04-27 Akirabio, Inc. Compositions comprising 2'-deoxycytidine analogs and use thereof for the treatment of sickle cell disease, thalassemia, and cancers
WO2023116774A1 (zh) * 2021-12-21 2023-06-29 赛诺哈勃药业(成都)有限公司 含二氮杂亚基磺酰结构的化合物及其在医药上的用途
CN115304605B (zh) * 2022-01-21 2023-10-03 陕西国际商贸学院 具有抗肿瘤活性的氧杂环丁烷衍生物及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018175474A1 (en) * 2017-03-20 2018-09-27 Forma Therapeutics, Inc. Pyrrolopyrrole compositions as pyruvate kinase (pkr) activators
US20200087309A1 (en) * 2018-09-19 2020-03-19 Forma Therapeutics, Inc. Activating pyruvate kinase r and mutants thereof
US20200085798A1 (en) * 2018-09-19 2020-03-19 Forma Therapeutics, Inc. Activating pyruvate kinase r

Family Cites Families (356)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1118186B (it) 1978-07-13 1986-02-24 Wellcome Found Procedimento per la produzione di derivati dell'ossadiazolo quali agenti contro protozoi
EP0036711B1 (de) 1980-03-22 1985-12-04 Fbc Limited Heterocyclische pestizide Verbindungen, Verfahren zu ihrer Herstellung, sie enthaltende Zusammensetzungen und ihre Verwendung
US4602093A (en) 1984-02-08 1986-07-22 Merck & Co., Inc. Novel substituted imidazoles, their preparation and use
JPS61200544A (ja) 1985-03-04 1986-09-05 Toyo Ink Mfg Co Ltd 電子写真感光体
JPS61200544U (de) 1985-06-03 1986-12-16
DE3600390A1 (de) 1986-01-09 1987-07-16 Hoechst Ag Diarylalkyl-substituierte alkylamine, verfahren zu ihrer herstellung, ihre verwendung sowie sie enthaltende arzneimittel
EP0264883A3 (de) 1986-10-21 1990-04-04 Banyu Pharmaceutical Co., Ltd. Substituierte Pyridinderivate
JPS63165376A (ja) 1986-12-27 1988-07-08 Nippon Soda Co Ltd オキサ(チア)ジアゾ−ル誘導体その製造方法及び殺ダニ剤
JPH01108006A (ja) 1987-10-21 1989-04-25 Nagasaki Pref Gov 脆性材料の割断加工方法
JPH01110376A (ja) 1987-10-24 1989-04-27 Mizuno Corp 繊維強化プラスチックス製バットの製造方法
KR910001238B1 (ko) 1988-02-26 1991-02-26 재단법인 한국화학연구소 O-아실아미드옥심 유도체
EP0338372A3 (de) 1988-04-22 1991-10-09 American Cyanamid Company Solubilisierte Vorstufen von Medikamenten
CA1340821C (en) 1988-10-06 1999-11-16 Nobuyuki Fukazawa Heterocyclic compounds and anticancer-drug reinforcing agents containing them as effective components
US5180719A (en) 1988-10-24 1993-01-19 Norwich Eaton Pharmaceuticals, Inc. Antimicrobial quinolonyl lactam esters
GB8900382D0 (en) 1989-01-09 1989-03-08 Janssen Pharmaceutica Nv 2-aminopyrimidinone derivatives
GB8908875D0 (en) 1989-04-19 1989-06-07 Ici Plc Fungicides
DK0393607T3 (da) 1989-04-19 1996-03-18 Otsuka Pharma Co Ltd Phenylcarboxylsyrederivater med en heteroring
KR910009333B1 (ko) 1989-10-23 1991-11-11 재단법인 한국화학연구소 항균작용을 갖는 퀴놀린계 화합물과 그의 제조방법
KR910009331B1 (ko) 1989-10-23 1991-11-11 재단법인 한국화학연구소 디아자비시클로아민 화합물과 그의 제조방법
KR910009330B1 (ko) 1989-10-23 1991-11-11 재단법인 한국화학연구소 항균작용을 갖는 퀴놀린계 화합물과 그의 제조방법
US5030631A (en) 1989-11-27 1991-07-09 Schering Corporation Tricylclic arylsulfonamides
US5747502A (en) 1989-12-13 1998-05-05 Nippon Kayaku Kabushiki Kaisha Process for preparing benzo c!phenanthridinium derivatives, novel compounds prepared by said process, and antitumor agents
JP3036789B2 (ja) 1990-06-22 2000-04-24 三井化学株式会社 新規な複素環式化合物及び医薬組成物
FR2664592B1 (fr) 1990-07-10 1994-09-02 Adir Nouveaux derives de la piperidine, de la tetrahydropyridine et de la pyrrolidine, leur procede de preparation et les compositions pharmaceutiques qui les contiennent.
US5262565A (en) 1990-11-16 1993-11-16 Eisai Co., Ltd. Naphthalene derivatives
JP2859451B2 (ja) 1991-01-11 1999-02-17 太平洋セメント株式会社 N−フルオロピリジニウム塩の製造方法
DE4121214A1 (de) 1991-06-27 1993-01-14 Bayer Ag 7-azaisoindolinyl-chinolon- und -naphthyridoncarbonsaeure-derivate
JP3038065B2 (ja) 1991-11-07 2000-05-08 太平洋セメント株式会社 N−フルオロピリジニウム塩の製造方法
JPH05196976A (ja) 1991-11-18 1993-08-06 Toshiba Corp 有機非線形光学材料
UA41297C2 (uk) 1991-11-25 2001-09-17 Пфайзер, Інк. Похідні індолу, фармацевтична композиція і спосіб лікування
US5480899A (en) 1992-04-30 1996-01-02 Taiho Pharmaceutical Co., Ltd. Oxazolidine derivatives and pharmaceutically acceptable salts thereof
DE4232418A1 (de) 1992-09-28 1994-03-31 Bayer Ag Verwendung von substituierten 1,2,4-Oxadiazolderivaten zur Bekämpfung von Endoparasiten, neue substituierte 1,2,4-Oxadiazolderivate und Verfahren zu ihrer Herstellung
JP3130400B2 (ja) 1993-01-13 2001-01-31 信越化学工業株式会社 重合体スケール付着防止剤、及びそれを利用する重合体の製造方法
JPH07164400A (ja) 1993-12-15 1995-06-27 Nec Corp ガラス基板の切断装置
DE4401108A1 (de) 1994-01-17 1995-07-20 Bayer Ag 1,2,4-Oxadiazol-Derivate
US6878715B1 (en) 1994-02-18 2005-04-12 Cell Therapeutics, Inc. Therapeutic compounds for inhibiting interleukin-12 signals and method for using same
IT1274018B (it) 1994-02-23 1997-07-14 Riace Ets Derivati del 3,8-diazabiciclo(3.2.1.)ottano ad attivita' analgesica
FR2732964B1 (fr) 1995-04-14 1997-05-16 Adir Nouveaux amides tricycliques, leurs procedes de preparation et les compositions pharmaceutiques qui les contiennent
JP3830183B2 (ja) 1995-09-29 2006-10-04 東京応化工業株式会社 オキシムスルホネート化合物及びレジスト用酸発生剤
DE19608316C2 (de) 1996-02-22 2000-11-09 Ivoclar Ag Schaan Funktionalisierte bicyclische (Meth)acrylate, Verfahren zu deren Herstellung und deren Verwendung ####
WO1998038239A1 (en) 1997-02-28 1998-09-03 Candescent Technologies Corporation Polycarbonate-containing liquid chemical formulation and method for making polycarbonate film
US6500885B1 (en) 1997-02-28 2002-12-31 Candescent Technologies Corporation Polycarbonate-containing liquid chemical formulation and methods for making and using polycarbonate film
PL336628A1 (en) 1997-05-03 2000-07-03 Smithkline Beecham Plc Derivatives of tetrahydroisoquinoline as modulators of d3 dopamine receptors
JPH1110376A (ja) 1997-06-25 1999-01-19 Souei Tsusho Kk 割断加工方法
WO1999001442A1 (en) 1997-07-02 1999-01-14 Zeneca Limited Triazine derivatives and their use as antibacterial agents
GB9714383D0 (en) 1997-07-08 1997-09-10 Pfizer Ltd Improved process
JPH11110376A (ja) 1997-10-08 1999-04-23 Hitachi Ltd レビジョン管理システム
US6100291A (en) 1998-03-16 2000-08-08 Allelix Biopharmaceuticals Inc. Pyrrolidine-indole compounds having 5-HT6 affinity
US6020525A (en) 1998-03-19 2000-02-01 Hoffmann-La Roche Inc. (2S,2'R,3'R)-2-(2,3-dicarboxyl-cyclopropyl)-glycine (DCG-1/4) and 3 H-DCG-1/4 and to process for the preparation thereof
US6214879B1 (en) 1998-03-24 2001-04-10 Virginia Commonwealth University Allosteric inhibitors of pyruvate kinase
GB2333454B (en) 1998-03-26 2000-08-09 Us Army Substituted aromatic compounds for treatment of antibiotic resistant infections
DE19826671A1 (de) 1998-06-16 1999-12-23 Hoechst Schering Agrevo Gmbh 1,3-Oxazolin- und 1,3-Thiazolin-Derivate, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel
FR2780057B1 (fr) 1998-06-18 2002-09-13 Sanofi Sa Phenoxypropanolamines, procede pour leur preparation et compositions pharmaceutiques les contenant
AUPP466598A0 (en) 1998-07-14 1998-08-06 University Of Newcastle Research Associates Limited, The Product and process
TWI250152B (en) 1998-07-21 2006-03-01 Eisai Co Ltd N,N-substituted cyclic amine compounds used as calcium antagonizer
EA200100428A1 (ru) 1998-10-08 2001-10-22 Смитклайн Бичам Плс Производные тетрагидробензазепина, полезные в качестве модуляторов допаминовых d3 рецепторов (антипсихотические агенты)
WO2000053591A1 (de) 1999-03-08 2000-09-14 Bayer Aktiengesellschaft Thiazolylharnstoff-derivate und ihre verwendung als antivirale mittel
BR0012984A (pt) 1999-08-04 2002-07-16 Millennium Pharm Inc Método para tratar um estado associado com o mc4-r em um mamìfero, composto de ligação ao mc4-r, e, composição farmacêutica
EP1096310B1 (de) 1999-10-26 2004-06-02 Fuji Photo Film Co., Ltd. Photothermographisches Material
DE19955824A1 (de) 1999-11-20 2001-06-13 Schott Spezialglas Gmbh Verfahren und Vorrichtung zum Schneiden eines Werkstückes aus sprödbrüchigem Werkstoff
ES2311479T3 (es) 1999-11-26 2009-02-16 SHIONOGI & CO., LTD. Antagonistas de npy-y5.
US6867220B2 (en) 1999-12-17 2005-03-15 Sanofi-Synthelabo Phenoxypropanolamines, method for producing them and pharmaceutical compositions containing them
AU779442B2 (en) 2000-01-20 2005-01-27 Eisai Co. Ltd. Novel piperidine compounds and drugs containing the same
ATE309999T1 (de) 2000-02-04 2005-12-15 Portola Pharm Inc Blutplättchen-adp-rezeptor-inhibitoren
GB0004886D0 (en) 2000-03-01 2000-04-19 Astrazeneca Uk Ltd Chemical compounds
JP2001261653A (ja) 2000-03-17 2001-09-26 Sankio Chemical Co Ltd ピリジン誘導体の合成法
WO2001085728A2 (en) 2000-05-08 2001-11-15 Wockhardt Limited Antibacterial chiral 8-(substituted piperidino)-benzo [i, j] quinolizines, processes, compositions and methods of treatment
AU2002213467A8 (en) 2000-10-11 2009-07-30 Chemocentryx Inc Modulation of ccr4 function
DE60127434T2 (de) 2000-10-26 2007-11-29 Smithkline Beecham P.L.C., Brentford Benzoxazinonderivative, deren herstellung und verwendung
CN1501928A (zh) 2000-11-02 2004-06-02 斯隆-凯特林癌症研究所 结合hsp90的小分子组合物
SE0100326D0 (sv) 2001-02-02 2001-02-02 Astrazeneca Ab New compounds
AUPR392301A0 (en) 2001-03-23 2001-04-26 University Of Newcastle Research Associates Limited, The Protein phosphatase inhibitors
WO2002095063A1 (en) 2001-05-23 2002-11-28 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Pyruvate-kinase as a novel target molecule
DE10139416A1 (de) 2001-08-17 2003-03-06 Aventis Pharma Gmbh Aminoalkyl substituierte aromatische Bicyclen, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
US7173032B2 (en) 2001-09-21 2007-02-06 Reddy Us Therapeutics, Inc. Methods and compositions of novel triazine compounds
AU2002343604C1 (en) 2001-10-30 2009-09-17 Conforma Therapeutics Corporation Purine analogs having HSP90-inhibiting activity
TWI329105B (en) 2002-02-01 2010-08-21 Rigel Pharmaceuticals Inc 2,4-pyrimidinediamine compounds and their uses
WO2003067332A2 (en) 2002-02-06 2003-08-14 Ciba Specialty Chemicals Holding Inc. Sulfonate derivatives and the use therof as latent acids
US6995144B2 (en) 2002-03-14 2006-02-07 Eisai Co., Ltd. Nitrogen containing heterocyclic compounds and medicines containing the same
AR040336A1 (es) 2002-06-26 2005-03-30 Glaxo Group Ltd Compuesto de piperidina, uso del mismo para la fabricacion de un medicamento, composicion farmaceutica que lo comprende y procedimiento para preparar dicho compuesto
US20060105333A1 (en) 2002-07-10 2006-05-18 Oncotherapy Science, Inc. Method for diagnosis of intestinal-type gastric tumors
TW200403243A (en) 2002-07-18 2004-03-01 Wyeth Corp 1-Heterocyclylalkyl-3-sulfonylazaindole or-azaindazole derivatives as 5-hydroxytryptamine-6 ligands
JP2005536526A (ja) 2002-07-25 2005-12-02 ファルマシア・イタリア・エス・ピー・エー キナーゼ阻害剤として活性なビシクロ−ピラゾール類、その製造方法、およびそれを含有する薬学的組成物
CA2493637A1 (en) 2002-07-25 2004-02-12 Manuela Villa Bicyclo-pyrazoles active as kinase inhibitors, process for their preparation and pharmaceutical compositions comprising them
MXPA05001096A (es) 2002-07-29 2005-11-23 Rigel Pharmaceuticals Inc Metodos para tratamiento o prevencion de enfermedades autoinmunes con compuestos de 2,4-diamino-pirimidina.
CA2498045A1 (en) 2002-09-06 2004-03-25 Schebo Biotech Ag Compounds for modulating the glycolosis enzyme complex and/or transaminase complex
JP2004175674A (ja) 2002-11-25 2004-06-24 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子材料およびそれを使用した有機エレクトロルミネッセンス素子
EP1437145A1 (de) 2003-01-07 2004-07-14 Schering AG Verbesserte szintigraphische bildgebende Mittel zur Darstellung von Infektionen und Entzündungen
WO2004072081A1 (en) 2003-02-10 2004-08-26 Cellular Genomics, Inc. Certain 8-heteroaryl-6-phenyl-imidazo[1,2-a]pyrazines as modulators of kinase activity
EP1608364A1 (de) 2003-03-11 2005-12-28 Pharmacia Italia S.p.A. Bicyclische pyrazolderivate als kinasehemmer, verfahren zu ihrer herstellung und pharmazeutische zusammensetzungen damit
US7449464B2 (en) 2003-03-12 2008-11-11 Kudos Pharmaceuticals Limited Phthalazinone derivatives
DE10316081A1 (de) 2003-04-08 2004-10-21 Morphochem AG Aktiengesellschaft für kombinatorische Chemie Neue Verbindungen mit antibakterieller Aktivität
DE602004027171D1 (de) 2003-04-11 2010-06-24 High Point Pharmaceuticals Llc Verbindungen mit Aktivität an der 11Beta-Hydroxasteroiddehydrogenase
WO2004104000A1 (ja) 2003-05-23 2004-12-02 Japan Tobacco Inc. トリサイクリック縮合環化合物およびその医薬用途
EP2327796A1 (de) 2003-06-10 2011-06-01 The Trustees Of Boston University Nachweismethoden für Lungenerkrankungen
JP4490421B2 (ja) 2003-07-03 2010-06-23 エフ.ホフマン−ラ ロシュ アーゲー 統合失調症を処置するデュアルnk1/nk3アンタゴニスト
GB0317484D0 (en) 2003-07-25 2003-08-27 Pfizer Ltd Nicotinamide derivatives useful as pde4 inhibitors
CN101712653A (zh) 2003-07-30 2010-05-26 泽农医药公司 哒嗪衍生物和它们作为治疗剂的用途
WO2005011656A2 (en) 2003-07-30 2005-02-10 Xenon Pharmaceuticals Inc. Pyridyl derivatives and their use as therapeutic agents
GB0319150D0 (en) 2003-08-14 2003-09-17 Glaxo Group Ltd Novel compounds
AU2004270733B2 (en) 2003-09-11 2011-05-19 Itherx Pharma, Inc. Cytokine inhibitors
NZ546611A (en) 2003-09-18 2010-02-26 Conforma Therapeutics Corp Novel heterocyclic compounds as HSP90-inhibitors
DE10353910A1 (de) 2003-11-18 2005-06-09 Studiengesellschaft Kohle Mbh Verfahren zur Synthese optisch aktiver Piperidine
ATE499361T1 (de) 2003-12-18 2011-03-15 Tibotec Pharm Ltd 5- oder 6-substituierte benzimidazolderivate als inhibitoren der replikation des respiratory syncytial virus
PL1711485T3 (pl) 2003-12-18 2009-11-30 Tibotec Pharm Ltd Pochodne aminobenzoimidazoli jako inhibitory replikacji wirusa zespólni układu oddechowego
DE602004031776D1 (de) 2003-12-18 2011-04-21 Tibotec Pharm Ltd Piperidinamino-benzimidazol-derivate al respiratorisches syncytialvirus replikation inhibitoren
AR046959A1 (es) 2003-12-18 2006-01-04 Tibotec Pharm Ltd Morfolinilo que contiene bencimidazoles como inhibidores de la replicacion del virus sincitial respiratorio
WO2005058869A1 (en) 2003-12-18 2005-06-30 Tibotec Pharmaceuticals Ltd. Aminobenzimidazoles and benzimidazoles as inhibitors of respiratory syncytial virus replication
US7422837B2 (en) 2004-02-16 2008-09-09 Fujifilm Corporation Photosensitive composition
AU2005219438B2 (en) 2004-03-03 2011-02-17 Chemocentryx, Inc. Bicyclic and bridged nitrogen heterocycles
US7435831B2 (en) 2004-03-03 2008-10-14 Chemocentryx, Inc. Bicyclic and bridged nitrogen heterocycles
EP1725240A4 (de) 2004-03-17 2009-03-25 Glaxo Group Ltd Antagonisten des muskarinen acetylcholinrezeptors
EP1725238A4 (de) 2004-03-17 2009-04-01 Glaxo Group Ltd M 3 muscarinacetylcholin-rezeptor-antagonisten
US7335770B2 (en) 2004-03-24 2008-02-26 Reddy U5 Therapeutics, Inc. Triazine compounds and their analogs, compositions, and methods
TWI391387B (zh) 2004-05-12 2013-04-01 Eisai R&D Man Co Ltd 具有哌啶環之吲哚衍生物
US7842460B2 (en) 2004-06-21 2010-11-30 Progenra Inc. Method for assessing proteolytic enzyme activity using ubiquitin fusion substrate
CN101014598B (zh) 2004-06-21 2012-06-13 默沙东公司 作为用于治疗或预防糖尿病的二肽基肽酶-ⅳ抑制剂的氨基环己烷化合物
DE102004039789A1 (de) 2004-08-16 2006-03-02 Sanofi-Aventis Deutschland Gmbh Arylsubstituierte polycyclische Amine, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel
CA2576915A1 (en) 2004-08-18 2006-03-02 Elixir Pharmaceuticals, Inc. Growth-hormone secretagogues
DE102004041163A1 (de) 2004-08-25 2006-03-02 Morphochem Aktiengesellschaft für kombinatorische Chemie Neue Verbindungen mit antibakterieller Aktivität
CA2580787A1 (en) 2004-09-20 2006-03-30 Xenon Pharmaceuticals Inc. Heterocyclic derivatives for the treatment of diseases mediated by stearoyl-coa desaturase enzymes
EP2269610A3 (de) 2004-09-20 2011-03-09 Xenon Pharmaceuticals Inc. Heterozyklische Derivate und ihre Verwendung als Stearoyl-Coa-Desaturase-Inhibitoren
WO2006038172A1 (en) 2004-10-05 2006-04-13 Actelion Pharmaceuticals Ltd New piperidine antibiotics
US20080255134A1 (en) 2004-11-30 2008-10-16 Artesian Therapeutics, Inc. Cardiotonic Compounds With Inhibitory Activity Against Beta-Adrenergic Receptors And Phosphodiesterase
US7968574B2 (en) 2004-12-28 2011-06-28 Kinex Pharmaceuticals, Llc Biaryl compositions and methods for modulating a kinase cascade
WO2006084030A2 (en) 2005-02-01 2006-08-10 Sloan-Kettering Institute For Cancer Research Small-molecule hsp90 inhibitors
GT200600046A (es) 2005-02-09 2006-09-25 Terapia de combinacion
TWI382015B (zh) 2005-02-25 2013-01-11 Serenex Inc 苯、吡啶及噠嗪衍生物
WO2006099884A1 (en) 2005-03-24 2006-09-28 Actelion Percurex Ag Beta-aminoalcohol antibiotics
WO2006110390A1 (en) 2005-04-07 2006-10-19 Merck & Co., Inc. Mitotic kinesin inhibitors
GB0510204D0 (en) 2005-05-19 2005-06-22 Chroma Therapeutics Ltd Enzyme inhibitors
WO2006130469A1 (en) 2005-05-27 2006-12-07 Oregon Health & Science University Stimulation of neurite outgrowth by small molecules
WO2006137485A1 (ja) 2005-06-24 2006-12-28 Toyama Chemical Co., Ltd. 新規な含窒素複素環化合物およびその塩
GB0514018D0 (en) 2005-07-07 2005-08-17 Ionix Pharmaceuticals Ltd Chemical compounds
AU2006268531A1 (en) 2005-07-11 2007-01-18 Sanofi-Aventis Novel 2,4-dianilinopyrimidine derivatives, the preparation thereof, their use as medicaments, pharmaceutical compositions and, in particular, as IKK inhibitors
CA2617532A1 (en) 2005-08-04 2007-02-15 Sirtris Pharmaceuticals, Inc. Imidazo [2,1-b] thiazole derivatives as sirtuin modulating compounds
KR20080064953A (ko) 2005-10-13 2008-07-10 모르포켐 악티엥게셀샤프트 퓌르 콤비나토리셰 케미 항균 활성을 갖는 5-퀴놀린 유도체
GB0600967D0 (en) 2006-01-18 2006-03-01 Imp Innovations Ltd Methods
US7750034B2 (en) 2006-01-25 2010-07-06 Merck Sharp & Dohme Corp. Aminocyclohexanes as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
SI1978947T1 (sl) 2006-02-03 2014-12-31 Nicox Science Ireland Riverside One Nitrooksiderivati za uporabo pri zdravljenju mišičnih distrofij
US7910596B2 (en) 2006-02-15 2011-03-22 Merck Sharp & Dohme Corp. Aminotetrahydropyrans as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
CA2637531A1 (en) 2006-02-17 2007-08-30 Memory Pharmaceuticals Corporation Compounds having 5-ht6 receptor affinity
JP2007246885A (ja) 2006-02-20 2007-09-27 Toyo Ink Mfg Co Ltd 光機能材料
TW200806669A (en) 2006-03-28 2008-02-01 Merck & Co Inc Aminotetrahydropyrans as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
AU2007254357B2 (en) 2006-05-16 2011-07-21 Merck Sharp & Dohme Corp. Aminotetrahydropyrans as dipeptidyl peptidase-IV inhibitors for the treatment or prevention of diabetes
WO2007136714A2 (en) 2006-05-16 2007-11-29 Gilead Sciences, Inc. Integrase inhibitors
CA2651769C (en) 2006-05-18 2013-12-17 F. Hoffmann-La Roche Ag Thiazolo-pyramidine / pyridine urea derivatives as adenosine a2b receptor antagonists
WO2007139921A2 (en) 2006-05-26 2007-12-06 Cara Therapeutics, Inc. N-oxides of kappa opioid receptor peptides
GB0610680D0 (en) 2006-05-31 2006-07-12 Istituto Di Ricerche D Biolog Therapeutic compounds
JP2007328090A (ja) 2006-06-07 2007-12-20 Fujifilm Corp 感光性組成物、感光性フィルム、パターン形成方法、及びプリント基板
DK2034839T3 (en) 2006-06-30 2017-12-04 Sloan-Kettering Institute For Cancer Res TREATMENT OF NEURODEGENERATIVE DISEASES BY INHIBITION OF HSP90
JP2008031064A (ja) 2006-07-27 2008-02-14 Astellas Pharma Inc ジアシルピペラジン誘導体
WO2008094203A2 (en) 2006-08-03 2008-08-07 Microbiotix, Inc. Polar ester prodrugs of heterocyclic hybrid antibacterial compounds and salts thereof
AU2007281911B2 (en) 2006-08-04 2014-02-06 Beth Israel Deaconess Medical Center Inhibitors of pyruvate kinase and methods of treating disease
JP2008063256A (ja) 2006-09-06 2008-03-21 Astellas Pharma Inc β‐アミノ酸誘導体
WO2008032905A1 (en) 2006-09-13 2008-03-20 Hurim Biocell Co., Ltd. Genes involved in differentiation of human stem cell lines and the microarray kit containing these genes
US7875603B2 (en) 2006-09-21 2011-01-25 Nova Southeastern University Specific inhibitors for vascular endothelial growth factor receptors
TWI404532B (zh) 2006-11-02 2013-08-11 Targacept Inc 菸鹼乙醯膽鹼受體亞型選擇性之二氮雜雙環烷類醯胺
NZ577107A (en) 2006-11-10 2012-01-12 Cara Therapeutics Inc Synthetic peptide amide ligands of the kappa opiod receptor
FR2910298A1 (fr) 2006-12-20 2008-06-27 Oreal Composition tinctoriale contenant une silicone reactive, un colorant fluorescent ou azurant optique, procede de coloration utilisant la composition
BRPI0722070A2 (pt) 2006-12-28 2014-04-08 Abbott Lab Inibidores de poli(adp-ribose)polimerase
US8466150B2 (en) 2006-12-28 2013-06-18 Abbott Laboratories Inhibitors of poly(ADP-ribose)polymerase
MY148860A (en) 2007-03-20 2013-06-14 Curis Inc Fused amino pyridine as hsp90 inhibitors
WO2008120003A1 (en) 2007-04-03 2008-10-09 Astrazeneca Ab Substituted piperidines for use in the treatment of bacterial infections
DE502008001903D1 (de) 2007-04-27 2011-01-05 Sanofi Aventis 2 -heteroaryl- pyrrolo ä3, 4-cüpyrrol- derivate und deren verwendung als scd inhibitoren
WO2008139585A1 (ja) 2007-05-10 2008-11-20 Toray Engineering Co., Ltd. 初期亀裂形成機構
WO2009001126A1 (en) 2007-06-27 2008-12-31 Astrazeneca Ab Substituted piperidine derivatives and their use as antibaterial agents
FR2918061B1 (fr) 2007-06-28 2010-10-22 Sanofi Aventis Derives de 6-cycloamino-3-(pyridin-4-yl)imidazo°1,2-b!- pyridazine,leur preparation et leur application en therapeutique.
US20090023727A1 (en) 2007-07-05 2009-01-22 Muhammad Hashim Javaid Phthalazinone derivatives
FR2918986B1 (fr) 2007-07-19 2009-09-04 Sanofi Aventis Sa Derives de 6-cycloamino-3-(pyridazin-4-yl)imidazo[1,2-b]- pyridazine, leur preparation et leur application en therapeutique
EP2019318A1 (de) 2007-07-27 2009-01-28 Erasmus University Medical Center Rotterdam Proteinmarker für kardiovaskuläre Ereignisse
WO2009025781A1 (en) 2007-08-16 2009-02-26 Beth Israel Deaconess Medical Center Activators of pyruvate kinase m2 and methods of treating disease
CA2696211C (en) 2007-08-21 2015-05-26 Merck Sharp & Dohme Corp. Heterocyclic compounds as dipeptidyl peptidase-iv inhibitors for the treatment or prevention of diabetes
CN101855221B (zh) 2007-11-15 2013-10-30 P.安杰莱蒂分子生物学研究所 作为parp抑制剂的哒嗪酮衍生物
US20090291921A1 (en) 2007-11-20 2009-11-26 Gilead Sciences, Inc. Integrase inhibitors
TW200938203A (en) 2007-12-17 2009-09-16 Intervet Int Bv Anthelmintic agents and their use
JP5258280B2 (ja) 2007-12-18 2013-08-07 富士フイルム株式会社 顔料分散組成物、感光性樹脂組成物、カラーフィルタおよびその製造方法
WO2009086303A2 (en) 2007-12-21 2009-07-09 University Of Rochester Method for altering the lifespan of eukaryotic organisms
FR2926555B1 (fr) 2008-01-22 2010-02-19 Sanofi Aventis Derives bicycliques de carboxamides azabicycliques, leur preparation et leur application en therapeutique
AR070221A1 (es) 2008-01-23 2010-03-25 Astrazeneca Ab Derivados de ftalazinona inhibidores de polimerasas, composiciones farmaceuticas que los contienen y usos de los mismos para prevenir y/o tratar tumores cancerigenos,lesiones isquemicas y otras enfermedades asociadas.
DE102008010661A1 (de) 2008-02-22 2009-09-03 Dr. Felix Jäger und Dr. Stefan Drinkuth Laborgemeinschaft OHG Verfahren zur Herstellung von Pyridin-2-Boronsäure und Derivaten davon
JP2009212473A (ja) 2008-03-06 2009-09-17 Fujifilm Corp 金属用研磨液、及び化学的機械的研磨方法
CA2685716A1 (en) 2008-04-04 2009-10-08 Summit Corporation Plc Compounds for treating muscular dystrophy
CA2723233C (en) 2008-05-08 2017-06-13 Nova Southeastern University Specific inhibitors for vascular endothelial growth factor receptors
GB0811304D0 (en) 2008-06-19 2008-07-30 Ucb Pharma Sa Therapeutic agents
US20100022581A1 (en) 2008-07-02 2010-01-28 Memory Pharmaceuticals Corporation Pyrrolidine-substituted azaindole compounds having 5-ht6 receptor affinity
CA2734744A1 (en) 2008-08-20 2010-02-25 Michael Eissenstat Hcv protease inhibitors
US20100144722A1 (en) 2008-09-03 2010-06-10 Dr. Reddy's Laboratories Ltd. Novel heterocyclic compounds as gata modulators
EP2328898B1 (de) * 2008-09-09 2014-12-24 Sanofi 2-heteroaryl-pyrrolo[3,4-c]pyrrol- derivate und ihre verwendung als scd inhibitoren
CA3041868C (en) 2008-10-09 2023-03-07 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Bis sulfonamide piperazinyl and piperidinyl activators of human pyruvatekinase
JO2870B1 (en) 2008-11-13 2015-03-15 ميرك شارب اند دوهم كورب Amino Tetra Hydro Pirans as Inhibitors of Peptide Dipeptide IV for the Treatment or Prevention of Diabetes
EP2367830A1 (de) 2008-11-21 2011-09-28 Pfizer Inc. 1-oxa-8-azaspiro[4,5]decan-8-carbonsäureamidverbindungen als faah-inhibitoren
TW201038569A (en) 2009-02-16 2010-11-01 Abbott Gmbh & Co Kg Heterocyclic compounds, pharmaceutical compositions containing them, and their use in therapy
JP2010192782A (ja) 2009-02-20 2010-09-02 Toyo Ink Mfg Co Ltd 光電変換素子用材料及び光電変換素子
US8143244B2 (en) 2009-02-26 2012-03-27 Bristol-Myers Squibb Company Cyclopropyl fused indolobenzazepine HCV NS5B inhibitors
WO2010105243A1 (en) 2009-03-13 2010-09-16 Agios Pharmaceuticals, Inc. Methods and compositions for cell-proliferation-related disorders
TW201041868A (en) 2009-03-20 2010-12-01 Intervet Int Bv Anthelmintic agents and their use
WO2010108268A1 (en) 2009-03-23 2010-09-30 Merck Frosst Canada Ltd. Heterocyclic compounds as inhibitors of stearoyl-coenzyme a delta-9 desaturase
CA2758071C (en) 2009-04-06 2018-01-09 Agios Pharmaceuticals, Inc. Pyruvate kinase m2 modulators, therapeutic compositions and related methods of use
PL2427441T3 (pl) 2009-05-04 2017-06-30 Agios Pharmaceuticals, Inc. Aktywatory PKM2 do stosowania w leczeniu raka
EP2430019B1 (de) 2009-05-14 2013-09-18 Janssen Pharmaceutica, N.V. Verbindungen mit zwei bicyclischen heteroarylderivaten als modulatoren von leukotrien-a4-hydrolase
CN102459249A (zh) 2009-05-22 2012-05-16 埃克塞里艾克西斯公司 作为PI3K/mTOR抑制剂的苯并氧氮杂环庚三烯以及它们使用与制造方法
WO2010151797A2 (en) 2009-06-26 2010-12-29 University Of Massachusetts Compounds for modulating rna binding proteins and uses therefor
JP5764555B2 (ja) 2009-06-29 2015-08-19 アジオス ファーマシューティカルズ, インコーポレイテッド 治療組成物および関連する使用方法
IN2012DN00471A (de) 2009-06-29 2015-06-05 Agios Pharmaceuticals Inc
WO2012174126A1 (en) 2011-06-13 2012-12-20 Universyty Of Medicine And Dentistry Of New Jesey METHOD OF INHIBITING NONSENSE-MEDIATED mRNA DECAY
KR101906146B1 (ko) 2009-08-17 2018-10-10 메모리얼 슬로안-케터링 캔서 센터 열 충격 단백질 결합 화합물, 조성물, 및 이의 제조 방법 및 사용 방법
EP2470021B1 (de) 2009-08-27 2014-10-22 Merck Sharp & Dohme Corp. Neue aus einem pyrrolidin abgeleitete beta-3-adrenerge rezeptoragonisten
WO2011037793A1 (en) 2009-09-25 2011-03-31 Merck Sharp & Dohme Corp. Substituted aminopiperidines as dipeptidyl peptidase-iv inhibitors for the treatment of diabetes
WO2011044377A2 (en) 2009-10-09 2011-04-14 Cell Point, Llc Chelator-targeting ligand conjugates for cardiovascular imaging
EP2491145B1 (de) 2009-10-21 2016-03-09 Agios Pharmaceuticals, Inc. Verfahren und zusammensetzungen für zellproliferationsbedingte erkrankungen
EP2525790B1 (de) 2009-10-21 2020-05-27 Agios Pharmaceuticals, Inc. Verfahren und zusammensetzungen für zellproliferationsbedingte erkrankungen
US8946197B2 (en) 2009-11-16 2015-02-03 Chdi Foundation, Inc. Transglutaminase TG2 inhibitors, pharmaceutical compositions, and methods of use thereof
KR20160114184A (ko) 2009-11-18 2016-10-04 미리안트 코포레이션 화합물들의 효과적인 생산을 위한 미생물 엔지니어링
WO2011103256A1 (en) 2010-02-22 2011-08-25 Merck Sharp & Dohme Corp. Substituted aminotetrahydrothiopyrans and derivatives thereof as dipeptidyl peptidase-iv inhibitors for the treatment of diabetes
KR20110096442A (ko) 2010-02-22 2011-08-30 주식회사 이엔에프테크놀로지 칼라필터용 착색 감광성 수지 조성물
CN101812063B (zh) 2010-03-18 2012-04-25 中国医学科学院医药生物技术研究所 α-萘磺酰胺基五元杂环类化合物及其抑瘤活性
WO2011116282A2 (en) 2010-03-19 2011-09-22 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Nicotinic acetylcholine receptor agonists
EP2563761A1 (de) 2010-04-29 2013-03-06 The U.S.A. As Represented By The Secretary, Department Of Health And Human Services Aktivatoren der menschlichen pyruvatkinase
EP2571876B1 (de) 2010-05-21 2016-09-07 Merck Sharp & Dohme Corp. Substituierte siebenteilige heterozyklische verbindungen als dipeptidyl-peptidase-iv-hemmer zur behandlung von diabetes
JP2011246649A (ja) 2010-05-28 2011-12-08 Mitsubishi Chemicals Corp 顔料分散液、着色樹脂組成物、カラーフィルタ、並びに液晶表示装置及び有機elディスプレイ
ES2689103T3 (es) 2010-06-30 2018-11-08 Fujifilm Corporation Nuevo derivado de nicotinamida o sal del mismo
WO2012007877A2 (en) 2010-07-12 2012-01-19 Pfizer Limited Chemical compounds
CA2801032A1 (en) 2010-07-12 2012-01-19 Pfizer Limited N-sulfonylbenzamide derivatives useful as voltage gated sodium channel inhibitors
CA2804716A1 (en) 2010-07-12 2012-01-19 Pfizer Limited Chemical compounds
CN102372706A (zh) 2010-08-09 2012-03-14 江苏恒瑞医药股份有限公司 酞嗪酮类衍生物、其制备方法及其在医药上的应用
CN102372716A (zh) 2010-08-09 2012-03-14 江苏恒瑞医药股份有限公司 酞嗪酮类衍生物、其制备方法及其在医药上的应用
WO2012056319A1 (en) 2010-10-27 2012-05-03 Dynamix Pharmaceuticals Ltd. Sulfonamides for the modulation of pkm2
EP2640366A2 (de) 2010-11-15 2013-09-25 Exelixis, Inc. Benzoxazepine als pi3k/mtor-hemmer sowie verfahren zur ihrer verwendung und herstellung
US20120134979A1 (en) * 2010-11-22 2012-05-31 Yang Xia Methods and compositions for the treatment of sickle cell disease
EA201390766A1 (ru) 2010-11-24 2013-11-29 Экселиксис, Инк. БЕНЗОКСАЗЕПИНЫ КАК ИНГИБИТОРЫ PI3K/mTOR И СПОСОБЫ ИХ ИСПОЛЬЗОВАНИЯ И ПОЛУЧЕНИЯ
ES2590682T3 (es) 2010-12-02 2016-11-23 Shanghai De Novo Pharmatech Co Ltd. Derivados heterocíclicos, procesos de preparación y usos médicos de los mismos
DK2835131T3 (en) 2010-12-14 2017-12-04 Electrophoretics Ltd Casein kinase 1 delta inhibitors (CK1 delta)
JP5837091B2 (ja) 2010-12-17 2015-12-24 アジオス ファーマシューティカルズ, インコーポレイテッド ピルビン酸キナーゼm2(pkm2)調節剤としての新規n−(4−(アゼチジン−1−カルボニル)フェニル)−(ヘテロ−)アリールスルホンアミド誘導体
ES2569712T3 (es) 2010-12-21 2016-05-12 Agios Pharmaceuticals, Inc. Activadores de PKM2 bicíclicos
TWI549947B (zh) 2010-12-29 2016-09-21 阿吉歐斯製藥公司 治療化合物及組成物
KR20210131432A (ko) 2010-12-30 2021-11-02 파운데이션 메디신 인코포레이티드 종양 샘플의 다유전자 분석의 최적화
AU2011352036A1 (en) 2010-12-31 2013-07-18 Anthrogenesis Corporation Enhancement of placental stem cell potency using modulatory RNA molecules
JP2012188474A (ja) 2011-03-09 2012-10-04 Toyo Ink Sc Holdings Co Ltd 顔料分散剤、それを用いた顔料組成物、着色組成物およびカラーフィルタ
JP2012188475A (ja) 2011-03-09 2012-10-04 Toyo Ink Sc Holdings Co Ltd 顔料分散剤、それを用いた顔料組成物、着色組成物およびカラーフィルタ
CN102206217A (zh) 2011-03-17 2011-10-05 盛世泰科生物医药技术(苏州)有限公司 杂环化合物作为二肽基肽酶抑制剂用于治疗或预防糖尿病
US8685966B2 (en) 2011-04-08 2014-04-01 University Of Kansas GRP94 inhibitors
RU2675656C2 (ru) 2011-05-03 2018-12-21 Аджиос Фармасьютикалз, Инк. Способы применения активаторов пируваткиназы
WO2012151440A1 (en) 2011-05-03 2012-11-08 Agios Pharmaceuticals, Inc. Pyruvate kinase activators for use for increasing lifetime of the red blood cells and treating anemia
WO2012151450A1 (en) 2011-05-03 2012-11-08 Agios Pharmaceuticals, Inc. Pyruvate kinase activators for use for increasing lifetime of the red blood cells and treating anemia
US9388164B2 (en) 2011-05-03 2016-07-12 Agios Pharmaceuticals, Inc Methods of using pyruvate kinase activators
AU2012250690B2 (en) 2011-05-03 2017-06-08 Agios Pharmaceuticals, Inc Pyruvate kinase activators for use in therapy
WO2012160447A1 (en) 2011-05-25 2012-11-29 Dynamix Pharmaceuticals Ltd. 3, 5 -diphenyl- substituted pyrazolines for the treatment of cancer, proliferative, inflammatory or autoimmune diseases
RU2472794C1 (ru) 2011-05-25 2013-01-20 Федеральное государственное образовательное учреждение высшего профессионального образования Астраханский государственный технический университет (ФГОУ ВПО АГТУ) Новые бициклические производные пирролидинов, обладающие антиоксидантной активностью, и способ их получения
GB201108825D0 (en) 2011-05-25 2011-07-06 Univ Dundee Morpholino compounds, uses and methods
AU2012275637B2 (en) 2011-06-29 2016-05-12 Merck Sharp & Dohme Corp. Novel crystalline forms of a dipeptidyl peptidase-IV inhibitor
JP6054389B2 (ja) 2011-07-08 2016-12-27 スローン − ケタリング・インスティテュート・フォー・キャンサー・リサーチ 標識されたhsp90阻害剤の使用
JO3611B1 (ar) 2011-08-10 2020-08-27 Janssen Sciences Ireland Uc سايكلو بنتا (سي (بيرول 4,3 ثاني هيدرو 1 hمستبدله [8,1] نافثيريدينونات مضادة للجراثيم
CN102952139B (zh) 2011-08-30 2016-08-10 上海药明康德新药开发有限公司 反式-3a-氟吡咯烷[3,4-C]并环化合物及其制备方法
EP2755652B1 (de) 2011-09-16 2021-06-02 Novartis AG N-substituierte heterocyclische carboxamide
WO2013056153A1 (en) 2011-10-13 2013-04-18 Kung Charles Activators of pyruvate kinase m2 and methods of treating disease
JP5468056B2 (ja) 2011-12-15 2014-04-09 富士フイルム株式会社 電気泳動組成物、マイクロカプセル、及び、電気泳動表示素子
CN104135859B (zh) 2011-12-28 2017-06-27 全球血液疗法公司 取代的苯甲醛化合物及其用于增加组织氧合的方法
US9012450B2 (en) 2011-12-28 2015-04-21 Global Blood Therapeutics, Inc. Substituted heteroaryl aldehyde compounds and methods for their use in increasing tissue oxygenation
CA2860553C (en) 2012-01-04 2016-08-23 Pfizer Limited N-aminosulfonyl benzamides
JP2015083542A (ja) 2012-02-08 2015-04-30 大日本住友製薬株式会社 3位置換プロリン誘導体
JP5895583B2 (ja) 2012-02-21 2016-03-30 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、照明装置および表示装置ならびに有機エレクトロルミネッセンス素子の製造方法
US9493481B2 (en) 2012-02-23 2016-11-15 Vanderbilt University Substituted 5-aminothieno[2,3—C]pyridazine-6-carboxamide analogs as positive allosteric modulators of the muscarinic acetylcholine receptor M4
US10696692B2 (en) 2012-03-02 2020-06-30 Forma Tm, Llc Amido-benzyl sulfone and sulfoxide derivates
CN104379563B (zh) 2012-04-10 2018-12-21 加利福尼亚大学董事会 用于治疗癌症的组合物和方法
EA026393B1 (ru) 2012-05-22 2017-04-28 Дженентек, Инк. N-замещенные бензамиды и их применение в лечении боли
US20150150935A1 (en) 2012-06-05 2015-06-04 Cara Therapeutics, Inc. Peripheral kappa receptor agonists for reducing pain and inflammation
KR101663436B1 (ko) 2012-07-06 2016-10-06 제넨테크, 인크. N-치환된 벤즈아미드 및 이의 사용 방법
CN103570722A (zh) 2012-07-19 2014-02-12 中国科学院上海药物研究所 稠环哒嗪酮类化合物及其制备方法和用途
CA2881566A1 (en) 2012-07-19 2014-01-23 Yohei Ikuma 1-(cycloalkyl-carbonyl)proline derivative
WO2014018355A1 (en) 2012-07-23 2014-01-30 Merck Sharp & Dohme Corp. Treating diabetes with dipeptidyl peptidase-iv inhibitors
JP6250667B2 (ja) 2012-08-10 2017-12-20 ヤンセン・サイエンシズ・アイルランド・ユーシー 新しい抗菌化合物
AR092211A1 (es) 2012-09-24 2015-04-08 Merck Patent Ges Mit Beschränkter Haftung Derivados de hidropirrolopirrol
UA116547C2 (uk) 2012-09-25 2018-04-10 Ф. Хоффманн-Ля Рош Аг Біциклічні похідні
ES2644758T3 (es) 2012-10-16 2017-11-30 Tolero Pharmaceuticals, Inc. Moduladores de PKM2 y métodos para su uso
TWI500613B (zh) 2012-10-17 2015-09-21 Cadila Healthcare Ltd 新穎之雜環化合物
EP2917207A1 (de) 2012-11-08 2015-09-16 Agios Pharmaceuticals, Inc. Therapeutische verbindungen und zusammensetzungen und deren verwendung als pkm2-modulatoren
CA2894157A1 (en) 2012-12-21 2014-06-26 Epizyme, Inc. Prmt5 inhibitors and uses thereof
BR112015012425A2 (pt) 2012-12-31 2017-07-11 Cadila Healthcare Ltd composto, composição farmacêutica, método e medicamento para o tratamento de doenças medicadas pela proteína parp-1 e uso do composto
WO2014118634A1 (en) 2013-01-31 2014-08-07 Eustache Paramithiotis Type 2 diabetes biomarkers and uses thereof
EP2959016A4 (de) 2013-02-21 2016-10-12 Toma Biosciences Inc Verfahren, zusammensetzungen und kits zur nukleinsäureanalyse
AR095079A1 (es) 2013-03-12 2015-09-16 Hoffmann La Roche Derivados de octahidro-pirrolo[3,4-c]-pirrol y piridina-fenilo
US9802900B2 (en) 2013-03-15 2017-10-31 Global Blood Therapeutics, Inc. Bicyclic heteroaryl compounds and uses thereof for the modulation of hemoglobin
US10100043B2 (en) 2013-03-15 2018-10-16 Global Blood Therapeutics, Inc. Substituted aldehyde compounds and methods for their use in increasing tissue oxygenation
US9422279B2 (en) 2013-03-15 2016-08-23 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
EP2970121B1 (de) 2013-03-15 2017-12-13 Araxes Pharma LLC Kovalente inhibitoren von kras-g12c
US8952171B2 (en) 2013-03-15 2015-02-10 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
MY183637A (en) 2013-03-15 2021-03-04 Global Blood Therapeutics Inc Compounds and uses thereof for the modulation of hemoglobin
EP2972394A4 (de) 2013-03-15 2016-11-02 Sloan Kettering Inst Cancer Hsp90-anzielende herzbildgebung und -therapie
US20140274961A1 (en) 2013-03-15 2014-09-18 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US10266551B2 (en) 2013-03-15 2019-04-23 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9458139B2 (en) 2013-03-15 2016-10-04 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
US9604999B2 (en) 2013-03-15 2017-03-28 Global Blood Therapeutics, Inc. Compounds and uses thereof for the modulation of hemoglobin
WO2014139144A1 (en) 2013-03-15 2014-09-18 Agios Pharmaceuticals, Inc. Therapeutic compounds and compositions
WO2014172638A2 (en) 2013-04-18 2014-10-23 Brandeis University Inhibitors of deubiquitinating proteases
US9662324B2 (en) 2013-05-01 2017-05-30 Academia Sinica Methods and compositions for treating β-thalassemia and sickle cell disease
KR102084185B1 (ko) 2013-08-29 2020-03-04 주식회사 대웅제약 테트라히드로사이클로펜타피롤 유도체 및 이의 제조방법
CN105531348B (zh) 2013-09-11 2017-11-07 默克专利有限公司 杂环化合物
CN105745206B (zh) 2013-09-20 2019-08-13 生物马林药物股份有限公司 用于治疗疾病的葡萄糖神经酰胺合成酶抑制剂
WO2015048336A2 (en) 2013-09-25 2015-04-02 Institute For Systems Biology Markers for amyotrophic lateral sclerosis (als) and presymptomatic alzhimer's disease (psad)
WO2015051230A1 (en) 2013-10-04 2015-04-09 Drexel University Novel compositions useful for inhibiting hiv-1 infection and methods using same
CN105705504A (zh) 2013-10-10 2016-06-22 密歇根大学董事会 去泛素化酶抑制剂及其使用方法
EA201992707A1 (ru) 2013-11-18 2020-06-30 Глобал Блад Терапьютикс, Инк. Соединения и их применения для модуляции гемоглобина
EP3450428A1 (de) 2013-11-27 2019-03-06 Genentech, Inc. Substituierte benzamide und verfahren zur verwendung davon
US20160319367A1 (en) 2013-12-17 2016-11-03 Stichting Het Nederlands Kanker Instituut-Antoni van Leeuwenhoek Ziekenhuis Means and methods for typing a breast cancer patient and assigning therapy based on the typing
US9248199B2 (en) 2014-01-29 2016-02-02 Global Blood Therapeutics, Inc. 1:1 adducts of sickle hemoglobin
WO2015116061A1 (en) 2014-01-29 2015-08-06 Global Blood Therapeutics, Inc. 1:1 adducts of sickle hemoglobin
SG11201607135SA (en) 2014-02-28 2016-09-29 Corning Inc Diketopyrrolopyrrole semiconducting materials, processes for their preparation and uses thereof
HUE046820T2 (hu) 2014-03-26 2020-03-30 Hoffmann La Roche Biciklusos vegyületek autotaxin (ATX) és lizofoszfatidsav (LPA) termelésgátlókként
CN105037367A (zh) 2014-04-18 2015-11-11 四川海思科制药有限公司 氨基六元环类衍生物及其在医药上的应用
CN105085528A (zh) 2014-05-15 2015-11-25 成都贝斯凯瑞生物科技有限公司 作为二肽基肽酶-iv抑制剂的氨基四氢吡喃衍生物
WO2015183173A1 (en) 2014-05-28 2015-12-03 Grafström Roland In vitro toxicogenomics for toxicity prediction
ES2963299T3 (es) 2014-06-17 2024-03-26 Sichuan Haisco Pharmaceutical Co Ltd Derivado de anillo aminopiranoide y composición y uso del mismo
CN105294694B (zh) 2014-06-18 2019-01-04 四川海思科制药有限公司 氨基六元环类衍生物及其在医药上的应用
WO2016005577A1 (en) 2014-07-11 2016-01-14 Intervet International B.V. Use of anthelmintic agents against dirofilaria immitis
JP2017519802A (ja) 2014-07-11 2017-07-20 インターベット インターナショナル ベー. フェー. 犬糸状虫に対する駆虫薬の使用
US10017463B2 (en) 2014-07-21 2018-07-10 Brandeis University Inhibitors of deubiquitinating proteases
JP6574474B2 (ja) 2014-07-21 2019-09-11 メルク・シャープ・アンド・ドーム・コーポレーションMerck Sharp & Dohme Corp. キラルジペプチジルペプチダーゼ−iv阻害剤の製造方法
US20170216434A1 (en) 2014-08-05 2017-08-03 Wayne State University Compositions and methods for treatment of sickle cell disease
KR101837565B1 (ko) 2014-08-06 2018-03-12 삼성에스디아이 주식회사 유기 화합물, 유기 광전자 소자 및 표시 장치
BR112017005313A2 (pt) 2014-09-17 2017-12-05 Memorial Sloan Kettering Cancer Center formação de imagem e terapia para inflamação e infecção direcionadas por hsp90
WO2016044650A1 (en) 2014-09-17 2016-03-24 Epizyme, Inc. Carm1 inhibitors and uses thereof
JP2017530959A (ja) 2014-09-17 2017-10-19 エピザイム,インコーポレイティド Carm1阻害剤およびその使用
EP3199181B1 (de) 2014-09-22 2020-05-06 Japan Science and Technology Agency Wirkstoff gegen influenzavirus und screening-verfahren für wirkstoff gegen influenzavirus
WO2016046837A1 (en) * 2014-09-22 2016-03-31 Cadila Healthcare Limited An improved process for preparation of pyrrolo[3,4- c] pyrrole compounds and intermediates thereof
MA41841A (fr) 2015-03-30 2018-02-06 Global Blood Therapeutics Inc Composés aldéhyde pour le traitement de la fibrose pulmonaire, de l'hypoxie, et de maladies auto-immunes et des tissus conjonctifs
US20160339022A1 (en) 2015-04-17 2016-11-24 Acetylon Pharmaceuticals Inc. Treatment of neuroblastoma with histone deacetylase inhibitors
US10550150B2 (en) 2015-05-11 2020-02-04 Cadila Healthcare Limited Short-chain peptides as Kappa (κ) opioid receptors (KOR) agonist
WO2016196816A1 (en) 2015-06-03 2016-12-08 The University Of North Carolina At Chapel Hill Photoredox-catalyzed direct c-h functionalization of arenes
DK3307271T3 (da) 2015-06-11 2023-10-09 Agios Pharmaceuticals Inc Fremgangsmåder til anvendelse af pyruvatkinase-aktivatorer
WO2017006270A1 (en) 2015-07-08 2017-01-12 University Of Southern California Deoxyuridine triphosphatase inhibitors
CN105153119B (zh) 2015-09-11 2019-01-01 广州必贝特医药技术有限公司 吡啶嘧啶胺类化合物或吡啶吡啶胺类化合物及其应用
EP3353178B1 (de) 2015-09-24 2021-07-14 F. Hoffmann-La Roche AG Bicyclische verbindungen als dual atx/ca hemmer
CA2991615A1 (en) 2015-09-24 2017-03-30 F. Hoffmann-La Roche Ag Bicyclic compounds as atx inhibitors
CN105254628B (zh) 2015-11-13 2017-06-23 南京华威医药科技开发有限公司 吡唑并吡啶类抗肿瘤化合物及其制备方法和应用
CN105348286B (zh) 2015-11-25 2018-12-18 中山奕安泰医药科技有限公司 一种2-甲基磺酰基-2,4,5,6-四氢吡咯[3,4-c]吡唑苯磺酸盐的制备方法
EP3452101A2 (de) 2016-05-04 2019-03-13 CureVac AG Rna-codierung eines therapeutischen proteins
AR108435A1 (es) 2016-05-12 2018-08-22 Global Blood Therapeutics Inc Proceso para sintetizar 2-hidroxi-6-((2-(1-isopropil-1h-pirazol-5-il)-piridin-3-il)metoxi)benzaldehído
MA44037B1 (fr) 2016-06-06 2020-03-31 Arena Pharm Inc Modulateurs du récepteur adrénergique bêta 3 utile dans le traitement ou la prévention de troubles associés à ceux-ci
BR112019004185A2 (pt) 2016-09-09 2019-09-03 Lab Francais Du Fractionnement combinação de um anticorpo anti-cd20, inibidor de pi3-quinase-delta inibidor e anticorpo anti-pd-1 ou anti-pd-l1 para tratamento de cânceres hematológicos
TW202332423A (zh) 2016-10-12 2023-08-16 美商全球血液治療公司 包含2-羥基-6-((2-(1-異丙基-1h-吡唑-5-基)吡啶-3-基)甲氧基)-苯甲醛之片劑
JP7062660B2 (ja) 2016-12-14 2022-05-06 オーボ アカデミー ユニヴァーシティー 全体的な翻訳の減少に基づくパーキンソン病の診断
US9744145B1 (en) 2017-01-16 2017-08-29 Macau University Of Science And Technology Methods for treating lung cancer
CN106928222B (zh) 2017-04-25 2019-08-23 淮阴师范学院 一种3-烷基中氮茚衍生物的制备方法
CN111032046B (zh) 2017-08-15 2023-09-26 安吉奥斯医药品有限公司 丙酮酸激酶调节剂及其用途
WO2019099651A1 (en) 2017-11-16 2019-05-23 Agios Pharmaceuticals, Inc. Methods of using deuterated pyruvate kinase activators
AU2018373122B2 (en) 2017-11-22 2023-11-09 Agios Pharmaceuticals, Inc. Crystalline forms of N-(4-(4-(cyclopropylmethyl) piperazine-1-carbonyl)phenyl)quinoline-8-sulfonamide
CN111699189A (zh) 2017-12-06 2020-09-22 艾尼纳制药公司 可用于治疗或预防与其相关的心力衰竭和障碍的β-3肾上腺素能受体的调节剂
WO2020061252A1 (en) 2018-09-19 2020-03-26 Forma Therapeutics, Inc. Inhibiting ubiquitin specific peptidase 9x
JP2022501362A (ja) * 2018-09-19 2022-01-06 フォーマ セラピューティクス,インコーポレイテッド ユビキチン特異的ペプチダーゼ9xの阻害
KR20210093990A (ko) 2018-11-19 2021-07-28 글로벌 블러드 테라퓨틱스, 인크. 헤모글로빈을 조정할 수 있는 2-포르밀-3-히드록시페닐옥시메틸 화합물
EP3902533A1 (de) 2018-12-26 2021-11-03 Forma Therapeutics, Inc. Hemmung von ubiquitin-spezifischer peptidase 9x
WO2020191022A1 (en) 2019-03-18 2020-09-24 Forma Therapeutics, Inc. Inhibiting ubiquitin specific peptidase 9x
CN109912610B (zh) 2019-04-04 2020-06-23 石家庄诚志永华显示材料有限公司 有机化合物及其在制备有机电致发光元件中的应用
US20220378755A1 (en) 2019-09-19 2022-12-01 Forma Therapeutics, Inc. Pyruvate kinase r (pkr) activating compositions
US20220304987A1 (en) 2021-03-19 2022-09-29 Forma Therapeutics, Inc. Activating pyruvate kinase r

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018175474A1 (en) * 2017-03-20 2018-09-27 Forma Therapeutics, Inc. Pyrrolopyrrole compositions as pyruvate kinase (pkr) activators
US20190218221A1 (en) * 2017-03-20 2019-07-18 Forma Therapeutics, Inc. Compositions for activating pyruvate kinase
US10472371B2 (en) * 2017-03-20 2019-11-12 Forma Therapeutics, Inc. Compositions for activating pyruvate kinase
US20200031839A1 (en) * 2017-03-20 2020-01-30 Forma Therapeutics, Inc. Compositions for activating pyruvate kinase
US20200069643A1 (en) * 2017-03-20 2020-03-05 Forma Therapeutics, Inc. Pyrrolopyrrole compositions as pyruvate kinase (pkr) activators
US20200087309A1 (en) * 2018-09-19 2020-03-19 Forma Therapeutics, Inc. Activating pyruvate kinase r and mutants thereof
US20200085798A1 (en) * 2018-09-19 2020-03-19 Forma Therapeutics, Inc. Activating pyruvate kinase r

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11014927B2 (en) 2017-03-20 2021-05-25 Forma Therapeutics, Inc. Pyrrolopyrrole compositions as pyruvate kinase (PKR) activators
US11396513B2 (en) 2017-03-20 2022-07-26 Forma Therapeutics, Inc. Compositions for activating pyruvate kinase
US11649242B2 (en) 2017-03-20 2023-05-16 Forma Therapeutics, Inc. Pyrrolopyrrole compositions as pyruvate kinase (PKR) activators
US11001588B2 (en) 2018-09-19 2021-05-11 Forma Therapeutics, Inc. Activating pyruvate kinase R and mutants thereof
US11071725B2 (en) 2018-09-19 2021-07-27 Forma Therapeutics, Inc. Activating pyruvate kinase R
US11844787B2 (en) 2018-09-19 2023-12-19 Novo Nordisk Health Care Ag Activating pyruvate kinase R
US11980611B2 (en) 2018-09-19 2024-05-14 Novo Nordisk Health Care Ag Treating sickle cell disease with a pyruvate kinase R activating compound
US20220304987A1 (en) * 2021-03-19 2022-09-29 Forma Therapeutics, Inc. Activating pyruvate kinase r

Also Published As

Publication number Publication date
MA53668A (fr) 2021-09-15
US20200405699A1 (en) 2020-12-31
CN113166060A (zh) 2021-07-23
US20200253939A1 (en) 2020-08-13
BR112021005188A2 (pt) 2021-06-08
US20210308108A1 (en) 2021-10-07
EP3853206A1 (de) 2021-07-28
US11071725B2 (en) 2021-07-27
EP3853206B1 (de) 2024-04-10
US20230381151A1 (en) 2023-11-30
US11980611B2 (en) 2024-05-14
CN113166060B (zh) 2024-01-09
US20200085798A1 (en) 2020-03-19
WO2020061378A1 (en) 2020-03-26
US10675274B2 (en) 2020-06-09
US11844787B2 (en) 2023-12-19
US20220031671A1 (en) 2022-02-03
EP3853206A4 (de) 2022-07-20

Similar Documents

Publication Publication Date Title
US11980611B2 (en) Treating sickle cell disease with a pyruvate kinase R activating compound
BR112020003865A2 (pt) composições farmacêuticas compreendendo sepiapterina e seus usos
WO2018148580A1 (en) Methods for autism spectrum disorder pharmacotherapy
EP3316877B1 (de) Ado-resistente cysteamin-analoga und verwendungen davon
US11369615B2 (en) Agent for improving mitochondrial dysfunction, preventative or therapeutic agent for diseases or symptoms caused by mitochondrial dysfunction, and applications therefor
JP4836388B2 (ja) eNOS発現に起因する疾患の予防または治療薬
US20220304987A1 (en) Activating pyruvate kinase r
US7973066B2 (en) Pyrrolo[1,2-A]imidazoledione effective in the treatment of peripheral neurotoxicity induced by chemotherapeutic agents
US20220378756A1 (en) Activating pyruvate kinase r
JP2011001382A (ja) 安定化されたイミダゾール誘導体含有医薬組成物、イミダゾール誘導体の安定化方法
US20220087983A1 (en) Activating pyruvate kinase r
JP2010526102A (ja) イオンチャネル調節化合物の制御放出経口製剤および不整脈を予防するための関連する方法
US10080752B2 (en) Treatment of brain and central nervous system tumors
Liu et al. JAK2 inhibitors for the treatment of Philadelphia-negative myeloproliferative neoplasms: current status and future directions
US20050256088A1 (en) Pharmaceutical nitrones

Legal Events

Date Code Title Description
AS Assignment

Owner name: FORMA THERAPEUTICS, INC, MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ERICSSON, ANNA;GREEN, NEAL;GUSTAFSON, GARY;AND OTHERS;SIGNING DATES FROM 20191028 TO 20191226;REEL/FRAME:051464/0172

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION