US20160017303A1 - Alpha-amylase combinatorial variants - Google Patents
Alpha-amylase combinatorial variants Download PDFInfo
- Publication number
- US20160017303A1 US20160017303A1 US14/775,595 US201414775595A US2016017303A1 US 20160017303 A1 US20160017303 A1 US 20160017303A1 US 201414775595 A US201414775595 A US 201414775595A US 2016017303 A1 US2016017303 A1 US 2016017303A1
- Authority
- US
- United States
- Prior art keywords
- amylase
- variant
- composition
- starch
- amino acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108090000637 alpha-Amylases Proteins 0.000 title claims abstract description 217
- 102000004139 alpha-Amylases Human genes 0.000 title claims abstract description 202
- 229940024171 alpha-amylase Drugs 0.000 title claims description 170
- 239000000203 mixture Substances 0.000 claims abstract description 170
- 229920002472 Starch Polymers 0.000 claims abstract description 147
- 235000019698 starch Nutrition 0.000 claims abstract description 144
- 239000008107 starch Substances 0.000 claims abstract description 143
- 238000000034 method Methods 0.000 claims abstract description 134
- 238000004140 cleaning Methods 0.000 claims abstract description 24
- 239000004753 textile Substances 0.000 claims abstract description 23
- 238000009990 desizing Methods 0.000 claims abstract description 18
- 238000004851 dishwashing Methods 0.000 claims abstract description 12
- 108010065511 Amylases Proteins 0.000 claims description 200
- 102000013142 Amylases Human genes 0.000 claims description 199
- 235000019418 amylase Nutrition 0.000 claims description 193
- 102000004190 Enzymes Human genes 0.000 claims description 168
- 108090000790 Enzymes Proteins 0.000 claims description 168
- 239000004382 Amylase Substances 0.000 claims description 165
- 229940088598 enzyme Drugs 0.000 claims description 164
- 230000035772 mutation Effects 0.000 claims description 99
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 75
- -1 perhydrolase Proteins 0.000 claims description 73
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 71
- 229920001184 polypeptide Polymers 0.000 claims description 70
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 66
- 239000003599 detergent Substances 0.000 claims description 65
- 102100022624 Glucoamylase Human genes 0.000 claims description 61
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 claims description 53
- 125000000539 amino acid group Chemical group 0.000 claims description 51
- 238000000855 fermentation Methods 0.000 claims description 50
- 230000004151 fermentation Effects 0.000 claims description 50
- 230000000694 effects Effects 0.000 claims description 49
- 108091005804 Peptidases Proteins 0.000 claims description 34
- 238000004519 manufacturing process Methods 0.000 claims description 32
- 239000004365 Protease Substances 0.000 claims description 31
- 102000040430 polynucleotide Human genes 0.000 claims description 30
- 108091033319 polynucleotide Proteins 0.000 claims description 30
- 239000002157 polynucleotide Substances 0.000 claims description 30
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 29
- 238000012217 deletion Methods 0.000 claims description 29
- 235000013305 food Nutrition 0.000 claims description 29
- 230000037430 deletion Effects 0.000 claims description 27
- 239000008103 glucose Substances 0.000 claims description 26
- 235000020357 syrup Nutrition 0.000 claims description 22
- 239000006188 syrup Substances 0.000 claims description 22
- 108010064785 Phospholipases Proteins 0.000 claims description 17
- 102000015439 Phospholipases Human genes 0.000 claims description 17
- 239000013604 expression vector Substances 0.000 claims description 17
- 230000001965 increasing effect Effects 0.000 claims description 17
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 claims description 16
- 108010019077 beta-Amylase Proteins 0.000 claims description 16
- 101710121765 Endo-1,4-beta-xylanase Proteins 0.000 claims description 15
- 150000001720 carbohydrates Chemical class 0.000 claims description 14
- 108090001060 Lipase Proteins 0.000 claims description 13
- 102000004882 Lipase Human genes 0.000 claims description 13
- 239000004367 Lipase Substances 0.000 claims description 13
- 235000019421 lipase Nutrition 0.000 claims description 13
- 229940040461 lipase Drugs 0.000 claims description 13
- 239000004094 surface-active agent Substances 0.000 claims description 13
- 108010059892 Cellulase Proteins 0.000 claims description 12
- 239000000654 additive Substances 0.000 claims description 12
- 229940106157 cellulase Drugs 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 102220058936 rs786202921 Human genes 0.000 claims description 11
- 108010011619 6-Phytase Proteins 0.000 claims description 10
- 108090000371 Esterases Proteins 0.000 claims description 10
- 108010059820 Polygalacturonase Proteins 0.000 claims description 10
- 102000004357 Transferases Human genes 0.000 claims description 10
- 108090000992 Transferases Proteins 0.000 claims description 10
- 108700040099 Xylose isomerases Proteins 0.000 claims description 10
- 108010005400 cutinase Proteins 0.000 claims description 10
- 108010093305 exopolygalacturonase Proteins 0.000 claims description 10
- 108010002430 hemicellulase Proteins 0.000 claims description 10
- 229940085127 phytase Drugs 0.000 claims description 10
- 241000193830 Bacillus <bacterium> Species 0.000 claims description 9
- 108010028688 Isoamylase Proteins 0.000 claims description 9
- 102000004316 Oxidoreductases Human genes 0.000 claims description 9
- 108090000854 Oxidoreductases Proteins 0.000 claims description 9
- 230000000996 additive effect Effects 0.000 claims description 8
- 108010028144 alpha-Glucosidases Proteins 0.000 claims description 8
- 235000019985 fermented beverage Nutrition 0.000 claims description 8
- 229940059442 hemicellulase Drugs 0.000 claims description 8
- 230000000295 complement effect Effects 0.000 claims description 7
- 102220214744 rs63750778 Human genes 0.000 claims description 7
- 102000004195 Isomerases Human genes 0.000 claims description 6
- 108090000769 Isomerases Proteins 0.000 claims description 6
- 108010029541 Laccase Proteins 0.000 claims description 6
- 102000003992 Peroxidases Human genes 0.000 claims description 6
- 108010047754 beta-Glucosidase Proteins 0.000 claims description 6
- 102000006995 beta-Glucosidase Human genes 0.000 claims description 6
- 229940072417 peroxidase Drugs 0.000 claims description 6
- 108040007629 peroxidase activity proteins Proteins 0.000 claims description 6
- 239000002689 soil Substances 0.000 claims description 6
- 102000005741 Metalloproteases Human genes 0.000 claims description 5
- 108010006035 Metalloproteases Proteins 0.000 claims description 5
- 108010078123 amadoriase Proteins 0.000 claims description 5
- 235000014633 carbohydrates Nutrition 0.000 claims description 5
- 239000004179 indigotine Substances 0.000 claims description 5
- 108010087558 pectate lyase Proteins 0.000 claims description 5
- 101710130006 Beta-glucanase Proteins 0.000 claims description 4
- 102100032487 Beta-mannosidase Human genes 0.000 claims description 4
- 108010023736 Chondroitinases and Chondroitin Lyases Proteins 0.000 claims description 4
- 102000005548 Hexokinase Human genes 0.000 claims description 4
- 108700040460 Hexokinases Proteins 0.000 claims description 4
- 108010003272 Hyaluronate lyase Proteins 0.000 claims description 4
- 102000001974 Hyaluronidases Human genes 0.000 claims description 4
- 108090000128 Lipoxygenases Proteins 0.000 claims description 4
- 102000003820 Lipoxygenases Human genes 0.000 claims description 4
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 claims description 4
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 claims description 4
- 102000003425 Tyrosinase Human genes 0.000 claims description 4
- 108060008724 Tyrosinase Proteins 0.000 claims description 4
- 108010084650 alpha-N-arabinofuranosidase Proteins 0.000 claims description 4
- 108010055059 beta-Mannosidase Proteins 0.000 claims description 4
- YERABYSOHUZTPQ-UHFFFAOYSA-P endo-1,4-beta-Xylanase Chemical compound C=1C=CC=CC=1C[N+](CC)(CC)CCCNC(C(C=1)=O)=CC(=O)C=1NCCC[N+](CC)(CC)CC1=CC=CC=C1 YERABYSOHUZTPQ-UHFFFAOYSA-P 0.000 claims description 4
- 229960002773 hyaluronidase Drugs 0.000 claims description 4
- 108010059345 keratinase Proteins 0.000 claims description 4
- 108010062085 ligninase Proteins 0.000 claims description 4
- 230000002366 lipolytic effect Effects 0.000 claims description 4
- 108010038851 tannase Proteins 0.000 claims description 4
- 241000605056 Cytophaga Species 0.000 claims description 2
- 241000179039 Paenibacillus Species 0.000 claims description 2
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 claims 4
- 102000011413 Chondroitinases and Chondroitin Lyases Human genes 0.000 claims 2
- 102100024295 Maltase-glucoamylase Human genes 0.000 claims 2
- 241001465754 Metazoa Species 0.000 abstract description 21
- 238000012545 processing Methods 0.000 abstract description 6
- 235000019621 digestibility Nutrition 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 96
- 108090000623 proteins and genes Proteins 0.000 description 53
- 150000007523 nucleic acids Chemical class 0.000 description 44
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 43
- 235000001014 amino acid Nutrition 0.000 description 40
- 102000039446 nucleic acids Human genes 0.000 description 38
- 108020004707 nucleic acids Proteins 0.000 description 38
- 239000000047 product Substances 0.000 description 36
- 229940025131 amylases Drugs 0.000 description 35
- 235000013312 flour Nutrition 0.000 description 33
- 102000004169 proteins and genes Human genes 0.000 description 33
- 239000000243 solution Substances 0.000 description 33
- 238000001556 precipitation Methods 0.000 description 32
- 235000018102 proteins Nutrition 0.000 description 32
- 102000035195 Peptidases Human genes 0.000 description 30
- 239000000463 material Substances 0.000 description 29
- 239000000758 substrate Substances 0.000 description 29
- 239000003795 chemical substances by application Substances 0.000 description 28
- 230000014509 gene expression Effects 0.000 description 28
- 230000008569 process Effects 0.000 description 28
- 239000013598 vector Substances 0.000 description 28
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 24
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 23
- 235000019441 ethanol Nutrition 0.000 description 23
- 150000002894 organic compounds Chemical class 0.000 description 23
- 239000002245 particle Substances 0.000 description 23
- 235000019419 proteases Nutrition 0.000 description 23
- 108020004414 DNA Proteins 0.000 description 21
- 230000002538 fungal effect Effects 0.000 description 21
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 19
- 230000001580 bacterial effect Effects 0.000 description 19
- 235000013339 cereals Nutrition 0.000 description 19
- 150000002632 lipids Chemical class 0.000 description 19
- 229910001507 metal halide Inorganic materials 0.000 description 19
- 150000005309 metal halides Chemical class 0.000 description 19
- FJKROLUGYXJWQN-UHFFFAOYSA-N 4-hydroxybenzoic acid Chemical compound OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 18
- 238000011534 incubation Methods 0.000 description 18
- 239000002002 slurry Substances 0.000 description 18
- 239000007787 solid Substances 0.000 description 18
- 230000008901 benefit Effects 0.000 description 17
- 229920000642 polymer Polymers 0.000 description 17
- 238000002360 preparation method Methods 0.000 description 17
- 241000196324 Embryophyta Species 0.000 description 16
- 108010076504 Protein Sorting Signals Proteins 0.000 description 16
- 240000008042 Zea mays Species 0.000 description 16
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 16
- 229940024606 amino acid Drugs 0.000 description 16
- 150000001413 amino acids Chemical class 0.000 description 16
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 16
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 15
- 239000000872 buffer Substances 0.000 description 15
- 235000005822 corn Nutrition 0.000 description 15
- 239000004744 fabric Substances 0.000 description 15
- 235000000346 sugar Nutrition 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 240000005979 Hordeum vulgare Species 0.000 description 14
- 235000007340 Hordeum vulgare Nutrition 0.000 description 14
- 108091028043 Nucleic acid sequence Proteins 0.000 description 13
- 238000003556 assay Methods 0.000 description 13
- 235000013405 beer Nutrition 0.000 description 13
- 239000002609 medium Substances 0.000 description 13
- 244000005700 microbiome Species 0.000 description 13
- 229910001868 water Inorganic materials 0.000 description 13
- 235000021307 Triticum Nutrition 0.000 description 12
- 241000209140 Triticum Species 0.000 description 12
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- 235000002639 sodium chloride Nutrition 0.000 description 12
- 241000228245 Aspergillus niger Species 0.000 description 11
- FFEARJCKVFRZRR-SCSAIBSYSA-N D-methionine Chemical compound CSCC[C@@H](N)C(O)=O FFEARJCKVFRZRR-SCSAIBSYSA-N 0.000 description 11
- 239000002585 base Substances 0.000 description 11
- 238000006460 hydrolysis reaction Methods 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- 239000003921 oil Substances 0.000 description 11
- 235000019198 oils Nutrition 0.000 description 11
- 229920002245 Dextrose equivalent Polymers 0.000 description 10
- 108050008938 Glucoamylases Proteins 0.000 description 10
- 240000003183 Manihot esculenta Species 0.000 description 10
- 235000016735 Manihot esculenta subsp esculenta Nutrition 0.000 description 10
- GXCLVBGFBYZDAG-UHFFFAOYSA-N N-[2-(1H-indol-3-yl)ethyl]-N-methylprop-2-en-1-amine Chemical compound CN(CCC1=CNC2=C1C=CC=C2)CC=C GXCLVBGFBYZDAG-UHFFFAOYSA-N 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 10
- 235000014113 dietary fatty acids Nutrition 0.000 description 10
- 229930195729 fatty acid Natural products 0.000 description 10
- 239000000194 fatty acid Substances 0.000 description 10
- 230000007062 hydrolysis Effects 0.000 description 10
- 229920001223 polyethylene glycol Polymers 0.000 description 10
- 239000000843 powder Substances 0.000 description 10
- 239000002244 precipitate Substances 0.000 description 10
- 241000894007 species Species 0.000 description 10
- 230000009466 transformation Effects 0.000 description 10
- 229940090248 4-hydroxybenzoic acid Drugs 0.000 description 9
- 241000233866 Fungi Species 0.000 description 9
- 240000007594 Oryza sativa Species 0.000 description 9
- 235000007164 Oryza sativa Nutrition 0.000 description 9
- 235000015173 baked goods and baking mixes Nutrition 0.000 description 9
- 235000008429 bread Nutrition 0.000 description 9
- 230000002255 enzymatic effect Effects 0.000 description 9
- 150000004665 fatty acids Chemical class 0.000 description 9
- 210000001938 protoplast Anatomy 0.000 description 9
- 238000000746 purification Methods 0.000 description 9
- 235000009566 rice Nutrition 0.000 description 9
- 238000013518 transcription Methods 0.000 description 9
- 230000035897 transcription Effects 0.000 description 9
- 241000194108 Bacillus licheniformis Species 0.000 description 8
- 241000194110 Bacillus sp. (in: Bacteria) Species 0.000 description 8
- 240000006394 Sorghum bicolor Species 0.000 description 8
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 8
- 125000000217 alkyl group Chemical group 0.000 description 8
- 239000008187 granular material Substances 0.000 description 8
- 230000001976 improved effect Effects 0.000 description 8
- 239000004615 ingredient Substances 0.000 description 8
- 239000004310 lactic acid Substances 0.000 description 8
- 235000014655 lactic acid Nutrition 0.000 description 8
- 230000000813 microbial effect Effects 0.000 description 8
- 241000228212 Aspergillus Species 0.000 description 7
- 240000006439 Aspergillus oryzae Species 0.000 description 7
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 7
- 229920002261 Corn starch Polymers 0.000 description 7
- 241000209056 Secale Species 0.000 description 7
- 235000007238 Secale cereale Nutrition 0.000 description 7
- 241000499912 Trichoderma reesei Species 0.000 description 7
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 7
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 7
- 239000001110 calcium chloride Substances 0.000 description 7
- 229910001628 calcium chloride Inorganic materials 0.000 description 7
- 239000008120 corn starch Substances 0.000 description 7
- 229940099112 cornstarch Drugs 0.000 description 7
- 239000003925 fat Substances 0.000 description 7
- 235000019197 fats Nutrition 0.000 description 7
- 239000000499 gel Substances 0.000 description 7
- 235000012054 meals Nutrition 0.000 description 7
- 238000003860 storage Methods 0.000 description 7
- 229920000856 Amylose Polymers 0.000 description 6
- 235000014469 Bacillus subtilis Nutrition 0.000 description 6
- 241000894006 Bacteria Species 0.000 description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 6
- 102000005701 Calcium-Binding Proteins Human genes 0.000 description 6
- 108010045403 Calcium-Binding Proteins Proteins 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 102100033448 Lysosomal alpha-glucosidase Human genes 0.000 description 6
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 6
- 241001557886 Trichoderma sp. Species 0.000 description 6
- 239000007983 Tris buffer Substances 0.000 description 6
- 229910052791 calcium Inorganic materials 0.000 description 6
- 239000011575 calcium Substances 0.000 description 6
- 229960005069 calcium Drugs 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000001914 filtration Methods 0.000 description 6
- 239000001963 growth medium Substances 0.000 description 6
- 235000019534 high fructose corn syrup Nutrition 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 239000003381 stabilizer Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000006467 substitution reaction Methods 0.000 description 6
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 6
- 229920000945 Amylopectin Polymers 0.000 description 5
- 235000007319 Avena orientalis Nutrition 0.000 description 5
- 244000075850 Avena orientalis Species 0.000 description 5
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 5
- 108091026890 Coding region Proteins 0.000 description 5
- AGPKZVBTJJNPAG-RFZPGFLSSA-N D-Isoleucine Chemical compound CC[C@@H](C)[C@@H](N)C(O)=O AGPKZVBTJJNPAG-RFZPGFLSSA-N 0.000 description 5
- ROHFNLRQFUQHCH-RXMQYKEDSA-N D-leucine Chemical compound CC(C)C[C@@H](N)C(O)=O ROHFNLRQFUQHCH-RXMQYKEDSA-N 0.000 description 5
- KZSNJWFQEVHDMF-SCSAIBSYSA-N D-valine Chemical compound CC(C)[C@@H](N)C(O)=O KZSNJWFQEVHDMF-SCSAIBSYSA-N 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 229930091371 Fructose Natural products 0.000 description 5
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 5
- 239000005715 Fructose Substances 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 5
- 235000010469 Glycine max Nutrition 0.000 description 5
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 5
- 235000002595 Solanum tuberosum Nutrition 0.000 description 5
- 244000061456 Solanum tuberosum Species 0.000 description 5
- 239000008186 active pharmaceutical agent Substances 0.000 description 5
- 230000003625 amylolytic effect Effects 0.000 description 5
- 101150052795 cbh-1 gene Proteins 0.000 description 5
- 238000005119 centrifugation Methods 0.000 description 5
- 229960001484 edetic acid Drugs 0.000 description 5
- 230000001939 inductive effect Effects 0.000 description 5
- 235000021577 malt beverage Nutrition 0.000 description 5
- 235000013372 meat Nutrition 0.000 description 5
- 238000001471 micro-filtration Methods 0.000 description 5
- 239000002773 nucleotide Substances 0.000 description 5
- 125000003729 nucleotide group Chemical group 0.000 description 5
- 230000028327 secretion Effects 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000002864 sequence alignment Methods 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 150000003626 triacylglycerols Chemical class 0.000 description 5
- 238000000108 ultra-filtration Methods 0.000 description 5
- 238000009941 weaving Methods 0.000 description 5
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 4
- ZMZGIVVRBMFZSG-UHFFFAOYSA-N 4-hydroxybenzohydrazide Chemical compound NNC(=O)C1=CC=C(O)C=C1 ZMZGIVVRBMFZSG-UHFFFAOYSA-N 0.000 description 4
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 4
- 102100034540 Adenomatous polyposis coli protein Human genes 0.000 description 4
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 4
- 235000002247 Aspergillus oryzae Nutrition 0.000 description 4
- 108010029675 Bacillus licheniformis alpha-amylase Proteins 0.000 description 4
- 241000283690 Bos taurus Species 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229920000742 Cotton Polymers 0.000 description 4
- DCXYFEDJOCDNAF-UWTATZPHSA-N D-Asparagine Chemical compound OC(=O)[C@H](N)CC(N)=O DCXYFEDJOCDNAF-UWTATZPHSA-N 0.000 description 4
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 4
- CKLJMWTZIZZHCS-UHFFFAOYSA-N D-OH-Asp Natural products OC(=O)C(N)CC(O)=O CKLJMWTZIZZHCS-UHFFFAOYSA-N 0.000 description 4
- CKLJMWTZIZZHCS-UWTATZPHSA-N D-aspartic acid Chemical compound OC(=O)[C@H](N)CC(O)=O CKLJMWTZIZZHCS-UWTATZPHSA-N 0.000 description 4
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 4
- WHUUTDBJXJRKMK-GSVOUGTGSA-N D-glutamic acid Chemical compound OC(=O)[C@H](N)CCC(O)=O WHUUTDBJXJRKMK-GSVOUGTGSA-N 0.000 description 4
- ZDXPYRJPNDTMRX-GSVOUGTGSA-N D-glutamine Chemical compound OC(=O)[C@H](N)CCC(N)=O ZDXPYRJPNDTMRX-GSVOUGTGSA-N 0.000 description 4
- AYFVYJQAPQTCCC-STHAYSLISA-N D-threonine Chemical compound C[C@H](O)[C@@H](N)C(O)=O AYFVYJQAPQTCCC-STHAYSLISA-N 0.000 description 4
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 4
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 4
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 4
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 4
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 4
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 4
- QPCDCPDFJACHGM-UHFFFAOYSA-N N,N-bis{2-[bis(carboxymethyl)amino]ethyl}glycine Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(=O)O)CCN(CC(O)=O)CC(O)=O QPCDCPDFJACHGM-UHFFFAOYSA-N 0.000 description 4
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 4
- 241000282849 Ruminantia Species 0.000 description 4
- 241000187747 Streptomyces Species 0.000 description 4
- BGRWYDHXPHLNKA-UHFFFAOYSA-N Tetraacetylethylenediamine Chemical compound CC(=O)N(C(C)=O)CCN(C(C)=O)C(C)=O BGRWYDHXPHLNKA-UHFFFAOYSA-N 0.000 description 4
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 125000005907 alkyl ester group Chemical class 0.000 description 4
- 235000019730 animal feed additive Nutrition 0.000 description 4
- 238000004061 bleaching Methods 0.000 description 4
- 125000004432 carbon atom Chemical group C* 0.000 description 4
- 235000011089 carbon dioxide Nutrition 0.000 description 4
- 239000001768 carboxy methyl cellulose Substances 0.000 description 4
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 4
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 4
- 210000000349 chromosome Anatomy 0.000 description 4
- 235000015165 citric acid Nutrition 0.000 description 4
- 238000003776 cleavage reaction Methods 0.000 description 4
- 210000004748 cultured cell Anatomy 0.000 description 4
- 230000002068 genetic effect Effects 0.000 description 4
- 238000009396 hybridization Methods 0.000 description 4
- 239000011630 iodine Substances 0.000 description 4
- 229910052740 iodine Inorganic materials 0.000 description 4
- 238000010412 laundry washing Methods 0.000 description 4
- 239000003550 marker Substances 0.000 description 4
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 4
- 239000000123 paper Substances 0.000 description 4
- 229960003330 pentetic acid Drugs 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 229920005862 polyol Polymers 0.000 description 4
- 150000003077 polyols Chemical class 0.000 description 4
- 229920001282 polysaccharide Polymers 0.000 description 4
- 239000005017 polysaccharide Substances 0.000 description 4
- 229920002451 polyvinyl alcohol Polymers 0.000 description 4
- 229920001592 potato starch Polymers 0.000 description 4
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 4
- 230000002797 proteolythic effect Effects 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 230000007017 scission Effects 0.000 description 4
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 4
- 239000000600 sorbitol Substances 0.000 description 4
- 235000010356 sorbitol Nutrition 0.000 description 4
- 150000005846 sugar alcohols Chemical class 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 description 3
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 3
- 241001513093 Aspergillus awamori Species 0.000 description 3
- 241000193744 Bacillus amyloliquefaciens Species 0.000 description 3
- 244000063299 Bacillus subtilis Species 0.000 description 3
- 239000002028 Biomass Substances 0.000 description 3
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 3
- XUJNEKJLAYXESH-UWTATZPHSA-N D-Cysteine Chemical compound SC[C@@H](N)C(O)=O XUJNEKJLAYXESH-UWTATZPHSA-N 0.000 description 3
- 229920001353 Dextrin Polymers 0.000 description 3
- 239000004375 Dextrin Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 241000193385 Geobacillus stearothermophilus Species 0.000 description 3
- 229920001503 Glucan Polymers 0.000 description 3
- 239000004366 Glucose oxidase Substances 0.000 description 3
- 108010015776 Glucose oxidase Proteins 0.000 description 3
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 3
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 101710117655 Maltogenic alpha-amylase Proteins 0.000 description 3
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 description 3
- 102100030293 Protein spinster homolog 1 Human genes 0.000 description 3
- 241000235403 Rhizomucor miehei Species 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- 102000012479 Serine Proteases Human genes 0.000 description 3
- 108010022999 Serine Proteases Proteins 0.000 description 3
- 244000062793 Sorghum vulgare Species 0.000 description 3
- 241000223259 Trichoderma Species 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 238000013019 agitation Methods 0.000 description 3
- 235000011130 ammonium sulphate Nutrition 0.000 description 3
- 125000000129 anionic group Chemical group 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- OGBUMNBNEWYMNJ-UHFFFAOYSA-N batilol Chemical class CCCCCCCCCCCCCCCCCCOCC(O)CO OGBUMNBNEWYMNJ-UHFFFAOYSA-N 0.000 description 3
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- 235000011148 calcium chloride Nutrition 0.000 description 3
- 229910001424 calcium ion Inorganic materials 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 235000010980 cellulose Nutrition 0.000 description 3
- 239000004464 cereal grain Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- UHZZMRAGKVHANO-UHFFFAOYSA-M chlormequat chloride Chemical compound [Cl-].C[N+](C)(C)CCCl UHZZMRAGKVHANO-UHFFFAOYSA-M 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 238000009837 dry grinding Methods 0.000 description 3
- 235000013601 eggs Nutrition 0.000 description 3
- 239000003995 emulsifying agent Substances 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- 108010061330 glucan 1,4-alpha-maltohydrolase Proteins 0.000 description 3
- 229940116332 glucose oxidase Drugs 0.000 description 3
- 235000019420 glucose oxidase Nutrition 0.000 description 3
- 229930195712 glutamate Natural products 0.000 description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-L glutamate group Chemical group N[C@@H](CCC(=O)[O-])C(=O)[O-] WHUUTDBJXJRKMK-VKHMYHEASA-L 0.000 description 3
- 150000004676 glycans Chemical class 0.000 description 3
- 239000000413 hydrolysate Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 235000018977 lysine Nutrition 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 3
- 235000019713 millet Nutrition 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002736 nonionic surfactant Substances 0.000 description 3
- 229920001542 oligosaccharide Polymers 0.000 description 3
- 235000015927 pasta Nutrition 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 150000003904 phospholipids Chemical class 0.000 description 3
- 238000006116 polymerization reaction Methods 0.000 description 3
- 239000001103 potassium chloride Substances 0.000 description 3
- 235000011164 potassium chloride Nutrition 0.000 description 3
- 229960002816 potassium chloride Drugs 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 235000019833 protease Nutrition 0.000 description 3
- 239000011253 protective coating Substances 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 238000001238 wet grinding Methods 0.000 description 3
- 229940100445 wheat starch Drugs 0.000 description 3
- 235000020985 whole grains Nutrition 0.000 description 3
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 2
- 102000003925 1,4-alpha-Glucan Branching Enzyme Human genes 0.000 description 2
- 108090000344 1,4-alpha-Glucan Branching Enzyme Proteins 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- 108010043797 4-alpha-glucanotransferase Proteins 0.000 description 2
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 2
- 241000351920 Aspergillus nidulans Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000007558 Avena sp Nutrition 0.000 description 2
- 239000004156 Azodicarbonamide Substances 0.000 description 2
- 241000194107 Bacillus megaterium Species 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- 102220575973 Cellular tumor antigen p53_Q167K_mutation Human genes 0.000 description 2
- 241000282994 Cervidae Species 0.000 description 2
- 241000207199 Citrus Species 0.000 description 2
- 108020004705 Codon Proteins 0.000 description 2
- 241000195493 Cryptophyta Species 0.000 description 2
- 102220554120 Cyclic GMP-AMP synthase_K321V_mutation Human genes 0.000 description 2
- 241001148513 Cytophaga sp. Species 0.000 description 2
- AHLPHDHHMVZTML-SCSAIBSYSA-N D-Ornithine Chemical compound NCCC[C@@H](N)C(O)=O AHLPHDHHMVZTML-SCSAIBSYSA-N 0.000 description 2
- ONIBWKKTOPOVIA-SCSAIBSYSA-N D-Proline Chemical compound OC(=O)[C@H]1CCCN1 ONIBWKKTOPOVIA-SCSAIBSYSA-N 0.000 description 2
- MTCFGRXMJLQNBG-UWTATZPHSA-N D-Serine Chemical compound OC[C@@H](N)C(O)=O MTCFGRXMJLQNBG-UWTATZPHSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-UWTATZPHSA-N D-alanine Chemical compound C[C@@H](N)C(O)=O QNAYBMKLOCPYGJ-UWTATZPHSA-N 0.000 description 2
- ODKSFYDXXFIFQN-SCSAIBSYSA-N D-arginine Chemical compound OC(=O)[C@H](N)CCCNC(N)=N ODKSFYDXXFIFQN-SCSAIBSYSA-N 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N D-gluconic acid Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- HNDVDQJCIGZPNO-RXMQYKEDSA-N D-histidine Chemical compound OC(=O)[C@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-RXMQYKEDSA-N 0.000 description 2
- KDXKERNSBIXSRK-RXMQYKEDSA-N D-lysine Chemical compound NCCCC[C@@H](N)C(O)=O KDXKERNSBIXSRK-RXMQYKEDSA-N 0.000 description 2
- COLNVLDHVKWLRT-MRVPVSSYSA-N D-phenylalanine Chemical compound OC(=O)[C@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-MRVPVSSYSA-N 0.000 description 2
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 2
- 241000238557 Decapoda Species 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 2
- 108050001049 Extracellular proteins Proteins 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 108010068370 Glutens Proteins 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- 102220611343 Homeobox protein MSX-2_V40K_mutation Human genes 0.000 description 2
- 102220611347 Homeobox protein MSX-2_V40N_mutation Human genes 0.000 description 2
- 102220524218 Interferon regulatory factor 6_N88H_mutation Human genes 0.000 description 2
- 244000017020 Ipomoea batatas Species 0.000 description 2
- 235000002678 Ipomoea batatas Nutrition 0.000 description 2
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 2
- 102220481792 Kinesin-like protein KIF20A_T89E_mutation Human genes 0.000 description 2
- 241000235058 Komagataella pastoris Species 0.000 description 2
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 description 2
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- QEFRNWWLZKMPFJ-YGVKFDHGSA-N L-methionine S-oxide Chemical compound CS(=O)CC[C@H](N)C(O)=O QEFRNWWLZKMPFJ-YGVKFDHGSA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- 241000270322 Lepidosauria Species 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 229920000881 Modified starch Polymers 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- 102100031688 N-acetylgalactosamine-6-sulfatase Human genes 0.000 description 2
- 102220500443 Phospholipid-transporting ATPase ABCA1_Q167M_mutation Human genes 0.000 description 2
- 241000235648 Pichia Species 0.000 description 2
- 235000010582 Pisum sativum Nutrition 0.000 description 2
- 240000004713 Pisum sativum Species 0.000 description 2
- 102000006010 Protein Disulfide-Isomerase Human genes 0.000 description 2
- 241000205192 Pyrococcus woesei Species 0.000 description 2
- 241000235346 Schizosaccharomyces Species 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- 241000282887 Suidae Species 0.000 description 2
- 241000228341 Talaromyces Species 0.000 description 2
- 102220504181 Testis-specific XK-related protein, Y-linked 2_N93T_mutation Human genes 0.000 description 2
- 241000223257 Thermomyces Species 0.000 description 2
- 235000009430 Thespesia populnea Nutrition 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- UYXTWWCETRIEDR-UHFFFAOYSA-N Tributyrin Chemical compound CCCC(=O)OCC(OC(=O)CCC)COC(=O)CCC UYXTWWCETRIEDR-UHFFFAOYSA-N 0.000 description 2
- 102100033598 Triosephosphate isomerase Human genes 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 230000001476 alcoholic effect Effects 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000008051 alkyl sulfates Chemical class 0.000 description 2
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000004599 antimicrobial Substances 0.000 description 2
- 235000010323 ascorbic acid Nutrition 0.000 description 2
- 239000011668 ascorbic acid Substances 0.000 description 2
- 229960005070 ascorbic acid Drugs 0.000 description 2
- 229940009098 aspartate Drugs 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-L aspartate group Chemical group N[C@@H](CC(=O)[O-])C(=O)[O-] CKLJMWTZIZZHCS-REOHCLBHSA-L 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- XOZUGNYVDXMRKW-AATRIKPKSA-N azodicarbonamide Chemical compound NC(=O)\N=N\C(N)=O XOZUGNYVDXMRKW-AATRIKPKSA-N 0.000 description 2
- 235000019399 azodicarbonamide Nutrition 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 235000013361 beverage Nutrition 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 235000015895 biscuits Nutrition 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 2
- 235000012970 cakes Nutrition 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 150000001735 carboxylic acids Chemical class 0.000 description 2
- 125000002091 cationic group Chemical group 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 230000001413 cellular effect Effects 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 2
- 229960005091 chloramphenicol Drugs 0.000 description 2
- 235000020971 citrus fruits Nutrition 0.000 description 2
- 239000002299 complementary DNA Substances 0.000 description 2
- 235000014510 cooky Nutrition 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 235000011950 custard Nutrition 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 235000019425 dextrin Nutrition 0.000 description 2
- 239000008121 dextrose Substances 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- GSPKZYJPUDYKPI-UHFFFAOYSA-N diethoxy sulfate Chemical compound CCOOS(=O)(=O)OOCC GSPKZYJPUDYKPI-UHFFFAOYSA-N 0.000 description 2
- 235000021186 dishes Nutrition 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000010410 dusting Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000010011 enzymatic desizing Methods 0.000 description 2
- 150000002191 fatty alcohols Chemical class 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 235000019688 fish Nutrition 0.000 description 2
- 235000012041 food component Nutrition 0.000 description 2
- 239000005417 food ingredient Substances 0.000 description 2
- 235000010855 food raising agent Nutrition 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 2
- 235000021312 gluten Nutrition 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 230000013595 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 229940093915 gynecological organic acid Drugs 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000003834 intracellular effect Effects 0.000 description 2
- 238000004255 ion exchange chromatography Methods 0.000 description 2
- 238000006317 isomerization reaction Methods 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 239000002207 metabolite Substances 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 235000019426 modified starch Nutrition 0.000 description 2
- LPUQAYUQRXPFSQ-DFWYDOINSA-M monosodium L-glutamate Chemical compound [Na+].[O-]C(=O)[C@@H](N)CCC(O)=O LPUQAYUQRXPFSQ-DFWYDOINSA-M 0.000 description 2
- 239000004223 monosodium glutamate Substances 0.000 description 2
- 235000013923 monosodium glutamate Nutrition 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 2
- 229920000847 nonoxynol Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000006072 paste Substances 0.000 description 2
- 150000004965 peroxy acids Chemical class 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 235000013550 pizza Nutrition 0.000 description 2
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 2
- 235000020004 porter Nutrition 0.000 description 2
- IOLCXVTUBQKXJR-UHFFFAOYSA-M potassium bromide Chemical compound [K+].[Br-] IOLCXVTUBQKXJR-UHFFFAOYSA-M 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 108020003519 protein disulfide isomerase Proteins 0.000 description 2
- 230000006337 proteolytic cleavage Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 229940100486 rice starch Drugs 0.000 description 2
- 102200041211 rs104894459 Human genes 0.000 description 2
- 102220217482 rs1060504835 Human genes 0.000 description 2
- 102200009845 rs121434499 Human genes 0.000 description 2
- 102220285854 rs1319163924 Human genes 0.000 description 2
- 102220217079 rs144996870 Human genes 0.000 description 2
- 102220005134 rs35020585 Human genes 0.000 description 2
- 102200164348 rs41295282 Human genes 0.000 description 2
- 102220100995 rs577332041 Human genes 0.000 description 2
- 102200104779 rs587777388 Human genes 0.000 description 2
- 150000004760 silicates Chemical class 0.000 description 2
- 238000004513 sizing Methods 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 230000008685 targeting Effects 0.000 description 2
- 235000012184 tortilla Nutrition 0.000 description 2
- 230000002103 transcriptional effect Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 238000013519 translation Methods 0.000 description 2
- UFTFJSFQGQCHQW-UHFFFAOYSA-N triformin Chemical compound O=COCC(OC=O)COC=O UFTFJSFQGQCHQW-UHFFFAOYSA-N 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 238000003828 vacuum filtration Methods 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- DNISEZBAYYIQFB-PHDIDXHHSA-N (2r,3r)-2,3-diacetyloxybutanedioic acid Chemical class CC(=O)O[C@@H](C(O)=O)[C@H](C(O)=O)OC(C)=O DNISEZBAYYIQFB-PHDIDXHHSA-N 0.000 description 1
- SMWADGDVGCZIGK-AXDSSHIGSA-N (2s)-5-phenylpyrrolidine-2-carboxylic acid Chemical compound N1[C@H](C(=O)O)CCC1C1=CC=CC=C1 SMWADGDVGCZIGK-AXDSSHIGSA-N 0.000 description 1
- JWBYADXJYCNKIE-SYKZBELTSA-N (2s)-5-phenylpyrrolidine-2-carboxylic acid;(2s)-pyrrolidine-2-carboxylic acid Chemical compound OC(=O)[C@@H]1CCCN1.N1[C@H](C(=O)O)CCC1C1=CC=CC=C1 JWBYADXJYCNKIE-SYKZBELTSA-N 0.000 description 1
- ASWBNKHCZGQVJV-UHFFFAOYSA-N (3-hexadecanoyloxy-2-hydroxypropyl) 2-(trimethylazaniumyl)ethyl phosphate Chemical compound CCCCCCCCCCCCCCCC(=O)OCC(O)COP([O-])(=O)OCC[N+](C)(C)C ASWBNKHCZGQVJV-UHFFFAOYSA-N 0.000 description 1
- 125000004169 (C1-C6) alkyl group Chemical group 0.000 description 1
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 description 1
- AEQDJSLRWYMAQI-UHFFFAOYSA-N 2,3,9,10-tetramethoxy-6,8,13,13a-tetrahydro-5H-isoquinolino[2,1-b]isoquinoline Chemical compound C1CN2CC(C(=C(OC)C=C3)OC)=C3CC2C2=C1C=C(OC)C(OC)=C2 AEQDJSLRWYMAQI-UHFFFAOYSA-N 0.000 description 1
- IEORSVTYLWZQJQ-UHFFFAOYSA-N 2-(2-nonylphenoxy)ethanol Chemical compound CCCCCCCCCC1=CC=CC=C1OCCO IEORSVTYLWZQJQ-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- UHTQHHLSGVOGQR-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-4-ium-1-yl]ethanesulfonate Chemical compound OCCN1CCN(CCS(O)(=O)=O)CC1.OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 UHTQHHLSGVOGQR-UHFFFAOYSA-N 0.000 description 1
- LWXNQQIVUUSCSL-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol trihydrochloride Chemical compound Cl.Cl.Cl.OCC(N)(CO)CO LWXNQQIVUUSCSL-UHFFFAOYSA-N 0.000 description 1
- VBUYCZFBVCCYFD-NUNKFHFFSA-N 2-dehydro-L-idonic acid Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)C(=O)C(O)=O VBUYCZFBVCCYFD-NUNKFHFFSA-N 0.000 description 1
- PSZAEHPBBUYICS-UHFFFAOYSA-N 2-methylidenepropanedioic acid Chemical compound OC(=O)C(=C)C(O)=O PSZAEHPBBUYICS-UHFFFAOYSA-N 0.000 description 1
- LKDMKWNDBAVNQZ-WJNSRDFLSA-N 4-[[(2s)-1-[[(2s)-1-[(2s)-2-[[(2s)-1-(4-nitroanilino)-1-oxo-3-phenylpropan-2-yl]carbamoyl]pyrrolidin-1-yl]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-4-oxobutanoic acid Chemical compound OC(=O)CCC(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@H](C(=O)NC=1C=CC(=CC=1)[N+]([O-])=O)CC1=CC=CC=C1 LKDMKWNDBAVNQZ-WJNSRDFLSA-N 0.000 description 1
- XWNSFEAWWGGSKJ-UHFFFAOYSA-N 4-acetyl-4-methylheptanedinitrile Chemical compound N#CCCC(C)(C(=O)C)CCC#N XWNSFEAWWGGSKJ-UHFFFAOYSA-N 0.000 description 1
- LLLVZDVNHNWSDS-UHFFFAOYSA-N 4-methylidene-3,5-dioxabicyclo[5.2.2]undeca-1(9),7,10-triene-2,6-dione Chemical compound C1(C2=CC=C(C(=O)OC(=C)O1)C=C2)=O LLLVZDVNHNWSDS-UHFFFAOYSA-N 0.000 description 1
- TYMLOMAKGOJONV-UHFFFAOYSA-N 4-nitroaniline Chemical compound NC1=CC=C([N+]([O-])=O)C=C1 TYMLOMAKGOJONV-UHFFFAOYSA-N 0.000 description 1
- 102220561101 5'-AMP-activated protein kinase subunit gamma-1_T89S_mutation Human genes 0.000 description 1
- IZSRJDGCGRAUAR-MROZADKFSA-M 5-dehydro-D-gluconate Chemical compound OCC(=O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O IZSRJDGCGRAUAR-MROZADKFSA-M 0.000 description 1
- 238000010269 ABTS assay Methods 0.000 description 1
- 102220491094 ADP-ribosylation factor-like protein 14_T27N_mutation Human genes 0.000 description 1
- 102220491517 ADP-ribosylation factor-like protein 14_T38N_mutation Human genes 0.000 description 1
- 101150006240 AOX2 gene Proteins 0.000 description 1
- 102220566024 ATP-binding cassette sub-family D member 1_N68P_mutation Human genes 0.000 description 1
- 244000215068 Acacia senegal Species 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 241000282979 Alces alces Species 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 102000016912 Aldehyde Reductase Human genes 0.000 description 1
- 102100036826 Aldehyde oxidase Human genes 0.000 description 1
- 108010053754 Aldehyde reductase Proteins 0.000 description 1
- 102220508646 Aldo-keto reductase family 1 member A1_K80M_mutation Human genes 0.000 description 1
- 102220486157 Alkaline ceramidase 1_K80A_mutation Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 102100040894 Amylo-alpha-1,6-glucosidase Human genes 0.000 description 1
- 102220614023 Angiotensin-converting enzyme 2_T27Y_mutation Human genes 0.000 description 1
- 235000002198 Annona diversifolia Nutrition 0.000 description 1
- 102220518041 Anosmin-1_Q20Y_mutation Human genes 0.000 description 1
- 241000272517 Anseriformes Species 0.000 description 1
- 241000282815 Antilocapra americana Species 0.000 description 1
- 241000269350 Anura Species 0.000 description 1
- 235000017060 Arachis glabrata Nutrition 0.000 description 1
- 244000105624 Arachis hypogaea Species 0.000 description 1
- 235000010777 Arachis hypogaea Nutrition 0.000 description 1
- 235000018262 Arachis monticola Nutrition 0.000 description 1
- 241000726096 Aratinga Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 102000004580 Aspartic Acid Proteases Human genes 0.000 description 1
- 108010017640 Aspartic Acid Proteases Proteins 0.000 description 1
- 241001225321 Aspergillus fumigatus Species 0.000 description 1
- 241000122821 Aspergillus kawachii Species 0.000 description 1
- 101000757144 Aspergillus niger Glucoamylase Proteins 0.000 description 1
- 101000904208 Aspergillus niger Glucose oxidase Proteins 0.000 description 1
- 241000228232 Aspergillus tubingensis Species 0.000 description 1
- 241000222400 Athelia Species 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 102220617612 B-cell acute lymphoblastic leukemia-expressed protein_N93H_mutation Human genes 0.000 description 1
- 241001112741 Bacillaceae Species 0.000 description 1
- 241000304886 Bacilli Species 0.000 description 1
- 101000775727 Bacillus amyloliquefaciens Alpha-amylase Proteins 0.000 description 1
- 241000193749 Bacillus coagulans Species 0.000 description 1
- 241000193422 Bacillus lentus Species 0.000 description 1
- 241000193388 Bacillus thuringiensis Species 0.000 description 1
- 102220601304 Basic helix-loop-helix domain-containing protein USF3_N124V_mutation Human genes 0.000 description 1
- 108091005658 Basic proteases Proteins 0.000 description 1
- 241000283726 Bison Species 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 101000851056 Bos taurus Elastin Proteins 0.000 description 1
- 241000283700 Boselaphus Species 0.000 description 1
- 241000282817 Bovidae Species 0.000 description 1
- 102220522812 Brain acid soluble protein 1_S85A_mutation Human genes 0.000 description 1
- 235000014698 Brassica juncea var multisecta Nutrition 0.000 description 1
- 235000006008 Brassica napus var napus Nutrition 0.000 description 1
- 240000000385 Brassica napus var. napus Species 0.000 description 1
- 235000006618 Brassica rapa subsp oleifera Nutrition 0.000 description 1
- 235000004977 Brassica sinapistrum Nutrition 0.000 description 1
- 241000193764 Brevibacillus brevis Species 0.000 description 1
- 238000009631 Broth culture Methods 0.000 description 1
- 241000030939 Bubalus bubalis Species 0.000 description 1
- QFOHBWFCKVYLES-UHFFFAOYSA-N Butylparaben Chemical compound CCCCOC(=O)C1=CC=C(O)C=C1 QFOHBWFCKVYLES-UHFFFAOYSA-N 0.000 description 1
- 102220523639 C-C motif chemokine 2_S50Q_mutation Human genes 0.000 description 1
- 125000001433 C-terminal amino-acid group Chemical group 0.000 description 1
- 102220589387 C-terminal-binding protein 1_A52E_mutation Human genes 0.000 description 1
- 102100020720 Calcium channel flower homolog Human genes 0.000 description 1
- 241000282832 Camelidae Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- 101710128063 Carbohydrate oxidase Proteins 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 102220550490 Cellular tumor antigen p53_G226S_mutation Human genes 0.000 description 1
- 102220584282 Cellular tumor antigen p53_P58T_mutation Human genes 0.000 description 1
- 102220572769 Cellular tumor antigen p53_Q136R_mutation Human genes 0.000 description 1
- 102220583909 Cellular tumor antigen p53_V97I_mutation Human genes 0.000 description 1
- 102220575166 Cellular tumor antigen p53_Y126G_mutation Human genes 0.000 description 1
- 102220575169 Cellular tumor antigen p53_Y126S_mutation Human genes 0.000 description 1
- 108010008885 Cellulose 1,4-beta-Cellobiosidase Proteins 0.000 description 1
- 102220600243 Cerebellin-2_N23Q_mutation Human genes 0.000 description 1
- 241000700114 Chinchillidae Species 0.000 description 1
- 102100025566 Chymotrypsin-like protease CTRL-1 Human genes 0.000 description 1
- 102220579730 Claudin-1_T42V_mutation Human genes 0.000 description 1
- 241000193403 Clostridium Species 0.000 description 1
- 241001509321 Clostridium thermoamylolyticum Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 244000060011 Cocos nucifera Species 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- 102220599914 Collectrin_N93I_mutation Human genes 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- OCUCCJIRFHNWBP-IYEMJOQQSA-L Copper gluconate Chemical class [Cu+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O OCUCCJIRFHNWBP-IYEMJOQQSA-L 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241000238424 Crustacea Species 0.000 description 1
- 108010025880 Cyclomaltodextrin glucanotransferase Proteins 0.000 description 1
- 241000252210 Cyprinidae Species 0.000 description 1
- 102220572993 Cystatin-8_V40A_mutation Human genes 0.000 description 1
- 102220501386 Cytohesin-4_Y62F_mutation Human genes 0.000 description 1
- 102100028717 Cytosolic 5'-nucleotidase 3A Human genes 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 1
- VBUYCZFBVCCYFD-UHFFFAOYSA-N D-arabino-2-Hexulosonic acid Natural products OCC(O)C(O)C(O)C(=O)C(O)=O VBUYCZFBVCCYFD-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-SQOUGZDYSA-M D-gluconate Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O RGHNJXZEOKUKBD-SQOUGZDYSA-M 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N D-gluconic acid Natural products OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- PHOQVHQSTUBQQK-SQOUGZDYSA-N D-glucono-1,5-lactone Chemical compound OC[C@H]1OC(=O)[C@H](O)[C@@H](O)[C@@H]1O PHOQVHQSTUBQQK-SQOUGZDYSA-N 0.000 description 1
- 125000002353 D-glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- QIVBCDIJIAJPQS-SECBINFHSA-N D-tryptophane Chemical compound C1=CC=C2C(C[C@@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-SECBINFHSA-N 0.000 description 1
- OUYCCCASQSFEME-MRVPVSSYSA-N D-tyrosine Chemical compound OC(=O)[C@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-MRVPVSSYSA-N 0.000 description 1
- ZAQJHHRNXZUBTE-WUJLRWPWSA-N D-xylulose Chemical compound OC[C@@H](O)[C@H](O)C(=O)CO ZAQJHHRNXZUBTE-WUJLRWPWSA-N 0.000 description 1
- 108010058076 D-xylulose reductase Proteins 0.000 description 1
- 102220569345 Deoxynucleotidyltransferase terminal-interacting protein 1_Q20A_mutation Human genes 0.000 description 1
- 101100342470 Dictyostelium discoideum pkbA gene Proteins 0.000 description 1
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 1
- 102220485344 DnaJ homolog subfamily C member 24_N23D_mutation Human genes 0.000 description 1
- 102220495966 Dual specificity mitogen-activated protein kinase kinase 3_R26T_mutation Human genes 0.000 description 1
- 102220509400 E3 ubiquitin-protein ligase HUWE1_T27V_mutation Human genes 0.000 description 1
- 241000588921 Enterobacteriaceae Species 0.000 description 1
- 101100385973 Escherichia coli (strain K12) cycA gene Proteins 0.000 description 1
- 241000701959 Escherichia virus Lambda Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 102000018389 Exopeptidases Human genes 0.000 description 1
- 108010091443 Exopeptidases Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 235000019733 Fish meal Nutrition 0.000 description 1
- 102220471770 Fructose-bisphosphate aldolase A_E82Q_mutation Human genes 0.000 description 1
- 241000223221 Fusarium oxysporum Species 0.000 description 1
- 241001149959 Fusarium sp. Species 0.000 description 1
- 108010001498 Galectin 1 Proteins 0.000 description 1
- 102100021736 Galectin-1 Human genes 0.000 description 1
- 102100024637 Galectin-10 Human genes 0.000 description 1
- 101001011019 Gallus gallus Gallinacin-10 Proteins 0.000 description 1
- 101001011021 Gallus gallus Gallinacin-12 Proteins 0.000 description 1
- 241000626621 Geobacillus Species 0.000 description 1
- 101000796304 Geobacillus stearothermophilus Alpha-amylase Proteins 0.000 description 1
- 101100001650 Geobacillus stearothermophilus amyM gene Proteins 0.000 description 1
- 241000699694 Gerbillinae Species 0.000 description 1
- 241000282818 Giraffidae Species 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- 229930186217 Glycolipid Natural products 0.000 description 1
- 102000051366 Glycosyltransferases Human genes 0.000 description 1
- 108700023372 Glycosyltransferases Proteins 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 102220539793 HLA class II histocompatibility antigen, DQ beta 1 chain_Y62H_mutation Human genes 0.000 description 1
- 102220539814 HLA class II histocompatibility antigen, DQ beta 1 chain_Y62S_mutation Human genes 0.000 description 1
- 101100295959 Halobacterium salinarum (strain ATCC 700922 / JCM 11081 / NRC-1) arcB gene Proteins 0.000 description 1
- 102220512810 Heat shock factor protein 1_K80Q_mutation Human genes 0.000 description 1
- 244000020551 Helianthus annuus Species 0.000 description 1
- 235000003222 Helianthus annuus Nutrition 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 101000928314 Homo sapiens Aldehyde oxidase Proteins 0.000 description 1
- 101000856199 Homo sapiens Chymotrypsin-like protease CTRL-1 Proteins 0.000 description 1
- 101001001462 Homo sapiens Importin subunit alpha-5 Proteins 0.000 description 1
- 101001054807 Homo sapiens Importin subunit alpha-6 Proteins 0.000 description 1
- 241000223198 Humicola Species 0.000 description 1
- 241000223199 Humicola grisea Species 0.000 description 1
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 1
- 102000004157 Hydrolases Human genes 0.000 description 1
- 108090000604 Hydrolases Proteins 0.000 description 1
- 229920001479 Hydroxyethyl methyl cellulose Polymers 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102100035692 Importin subunit alpha-1 Human genes 0.000 description 1
- 102100027007 Importin subunit alpha-6 Human genes 0.000 description 1
- 102220603661 Integrin beta-1-binding protein 1_Q96A_mutation Human genes 0.000 description 1
- 102220601399 Integrin beta-1-binding protein 1_T38D_mutation Human genes 0.000 description 1
- AYRXSINWFIIFAE-SCLMCMATSA-N Isomaltose Natural products OC[C@H]1O[C@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)[C@@H](O)[C@@H](O)[C@@H]1O AYRXSINWFIIFAE-SCLMCMATSA-N 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- 108010008292 L-Amino Acid Oxidase Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 102000007070 L-amino-acid oxidase Human genes 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 1
- 239000004201 L-cysteine Substances 0.000 description 1
- 235000013878 L-cysteine Nutrition 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 125000000393 L-methionino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])C([H])([H])C(SC([H])([H])[H])([H])[H] 0.000 description 1
- 125000000174 L-prolyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])([H])[C@@]1([H])C(*)=O 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 125000000510 L-tryptophano group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C(C([H])([H])[C@@]([H])(C(O[H])=O)N([H])[*])C2=C1[H] 0.000 description 1
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 1
- 241000186604 Lactobacillus reuteri Species 0.000 description 1
- 241000186610 Lactobacillus sp. Species 0.000 description 1
- 241000178948 Lactococcus sp. Species 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 241000282838 Lama Species 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 241001627205 Leuconostoc sp. Species 0.000 description 1
- 102220566643 Lipoprotein lipase_E82A_mutation Human genes 0.000 description 1
- 241000219745 Lupinus Species 0.000 description 1
- 239000007993 MOPS buffer Substances 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 102220572430 Male-specific lethal 3 homolog_T148D_mutation Human genes 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 235000019735 Meat-and-bone meal Nutrition 0.000 description 1
- 102220585265 Melanocortin receptor 3_S362E_mutation Human genes 0.000 description 1
- 102220611249 Melanocortin-2 receptor accessory protein 2_N88Y_mutation Human genes 0.000 description 1
- 102000003939 Membrane transport proteins Human genes 0.000 description 1
- 108090000301 Membrane transport proteins Proteins 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- 102220506877 Microfibrillar-associated protein 2_Q20N_mutation Human genes 0.000 description 1
- 102220638869 Monocarboxylate transporter 1_S85G_mutation Human genes 0.000 description 1
- 241000235395 Mucor Species 0.000 description 1
- 241001558145 Mucor sp. Species 0.000 description 1
- 240000005561 Musa balbisiana Species 0.000 description 1
- 235000018290 Musa x paradisiaca Nutrition 0.000 description 1
- 102220631334 NCK-interacting protein with SH3 domain_S92G_mutation Human genes 0.000 description 1
- 102220573812 Neuroendocrine protein 7B2_T79Y_mutation Human genes 0.000 description 1
- 102220590863 Neuroligin-3_S92Y_mutation Human genes 0.000 description 1
- 102220632406 Neuronal calcium sensor 1_G147Q_mutation Human genes 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 238000000636 Northern blotting Methods 0.000 description 1
- 102220483565 Nuclear cap-binding protein subunit 1_N23T_mutation Human genes 0.000 description 1
- 108091005461 Nucleic proteins Proteins 0.000 description 1
- 102220551081 Nucleolar protein 4-like_T149D_mutation Human genes 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 101100387394 Oryza sativa subsp. japonica P58A gene Proteins 0.000 description 1
- 101100103787 Oryza sativa subsp. japonica Y14A gene Proteins 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000611789 Paenibacillus curdlanolyticus Species 0.000 description 1
- 241000194109 Paenibacillus lautus Species 0.000 description 1
- 102100026367 Pancreatic alpha-amylase Human genes 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 241000604136 Pediococcus sp. Species 0.000 description 1
- 102220535292 Peptidyl-prolyl cis-trans isomerase FKBP2_S92D_mutation Human genes 0.000 description 1
- 102220468893 Peptidyl-tRNA hydrolase ICT1, mitochondrial_A52R_mutation Human genes 0.000 description 1
- 108010081873 Persil Proteins 0.000 description 1
- 241001326562 Pezizomycotina Species 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 102220517488 Phosphate-regulating neutral endopeptidase PHEX_R26Q_mutation Human genes 0.000 description 1
- 102220500883 Phospholipid-transporting ATPase ABCA1_Y14A_mutation Human genes 0.000 description 1
- 241000235061 Pichia sp. Species 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 102220481317 Podocan_V73S_mutation Human genes 0.000 description 1
- 102220468546 Podocin_R26M_mutation Human genes 0.000 description 1
- 102220468581 Podocin_T116P_mutation Human genes 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 102220517526 Poly(A)-specific ribonuclease PARN_D28A_mutation Human genes 0.000 description 1
- 102220517330 Poly(A)-specific ribonuclease PARN_D28C_mutation Human genes 0.000 description 1
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 102220582336 Porphobilinogen deaminase_R26C_mutation Human genes 0.000 description 1
- 239000004153 Potassium bromate Substances 0.000 description 1
- HLCFGWHYROZGBI-JJKGCWMISA-M Potassium gluconate Chemical compound [K+].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C([O-])=O HLCFGWHYROZGBI-JJKGCWMISA-M 0.000 description 1
- 102220629446 Presenilin-1_T116N_mutation Human genes 0.000 description 1
- 108010009736 Protein Hydrolysates Proteins 0.000 description 1
- 102220645903 Protein pitchfork_N68L_mutation Human genes 0.000 description 1
- 241000947836 Pseudomonadaceae Species 0.000 description 1
- 241000287530 Psittaciformes Species 0.000 description 1
- 102220495657 Putative uncharacterized protein FLJ43944_Y126A_mutation Human genes 0.000 description 1
- 102220465565 Putative uncharacterized protein OBSCN-AS1_E82D_mutation Human genes 0.000 description 1
- 102220523982 Pyridine nucleotide-disulfide oxidoreductase domain-containing protein 1_R26E_mutation Human genes 0.000 description 1
- LCTONWCANYUPML-UHFFFAOYSA-M Pyruvate Chemical compound CC(=O)C([O-])=O LCTONWCANYUPML-UHFFFAOYSA-M 0.000 description 1
- 108010011939 Pyruvate Decarboxylase Proteins 0.000 description 1
- 238000010240 RT-PCR analysis Methods 0.000 description 1
- 102220494497 Ras-related protein Rab-5C_S85E_mutation Human genes 0.000 description 1
- 241000959173 Rasamsonia emersonii Species 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 101000968489 Rhizomucor miehei Lipase Proteins 0.000 description 1
- 241000135252 Rhizomucor sp. Species 0.000 description 1
- 241000235527 Rhizopus Species 0.000 description 1
- 102220603752 SLAM family member 5_Y62A_mutation Human genes 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 240000000111 Saccharum officinarum Species 0.000 description 1
- 235000007201 Saccharum officinarum Nutrition 0.000 description 1
- 241000277331 Salmonidae Species 0.000 description 1
- 206010039509 Scab Diseases 0.000 description 1
- 241001199840 Senegalia laeta Species 0.000 description 1
- 239000012506 Sephacryl® Substances 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 102220547809 Serine/threonine-protein kinase B-raf_N88T_mutation Human genes 0.000 description 1
- 102220540191 Serine/threonine-protein kinase WNK1_N88Q_mutation Human genes 0.000 description 1
- 241000287231 Serinus Species 0.000 description 1
- 241000270295 Serpentes Species 0.000 description 1
- 235000003434 Sesamum indicum Nutrition 0.000 description 1
- 244000040738 Sesamum orientale Species 0.000 description 1
- 102220471970 Single-stranded DNA cytosine deaminase_T27E_mutation Human genes 0.000 description 1
- 102220620696 Small integral membrane protein 40_G81E_mutation Human genes 0.000 description 1
- HIWPGCMGAMJNRG-ACCAVRKYSA-N Sophorose Natural products O([C@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HIWPGCMGAMJNRG-ACCAVRKYSA-N 0.000 description 1
- 102100026974 Sorbitol dehydrogenase Human genes 0.000 description 1
- 102220622777 Sphingomyelin phosphodiesterase_N88G_mutation Human genes 0.000 description 1
- 235000009337 Spinacia oleracea Nutrition 0.000 description 1
- 244000300264 Spinacia oleracea Species 0.000 description 1
- 244000057717 Streptococcus lactis Species 0.000 description 1
- 235000014897 Streptococcus lactis Nutrition 0.000 description 1
- 241000194022 Streptococcus sp. Species 0.000 description 1
- 241000187432 Streptomyces coelicolor Species 0.000 description 1
- 241000828254 Streptomyces lividans TK24 Species 0.000 description 1
- 241001468239 Streptomyces murinus Species 0.000 description 1
- 102220630035 Stress-responsive DNAJB4-interacting membrane protein 1_N68Q_mutation Human genes 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 102220522157 Sulfotransferase 1C4_N68Y_mutation Human genes 0.000 description 1
- 102220578844 Suppressor of fused homolog_I37V_mutation Human genes 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 241001484137 Talaromyces leycettanus Species 0.000 description 1
- 102220530058 Testis-expressed protein 10_K84A_mutation Human genes 0.000 description 1
- 102220532330 Testis-expressed protein 10_Y46F_mutation Human genes 0.000 description 1
- 102220504166 Testis-specific XK-related protein, Y-linked 2_N93A_mutation Human genes 0.000 description 1
- 102220504159 Testis-specific XK-related protein, Y-linked 2_N93Q_mutation Human genes 0.000 description 1
- 102220504158 Testis-specific XK-related protein, Y-linked 2_N93S_mutation Human genes 0.000 description 1
- 241000270666 Testudines Species 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 244000269722 Thea sinensis Species 0.000 description 1
- 241000193447 Thermoanaerobacter thermohydrosulfuricus Species 0.000 description 1
- 101100157012 Thermoanaerobacterium saccharolyticum (strain DSM 8691 / JW/SL-YS485) xynB gene Proteins 0.000 description 1
- 241001136490 Thermomyces dupontii Species 0.000 description 1
- 241001494489 Thielavia Species 0.000 description 1
- 241000276707 Tilapia Species 0.000 description 1
- 241000222354 Trametes Species 0.000 description 1
- 108700029229 Transcriptional Regulatory Elements Proteins 0.000 description 1
- 108060008539 Transglutaminase Proteins 0.000 description 1
- 102220586814 Translocator protein_W138F_mutation Human genes 0.000 description 1
- 102000005924 Triose-Phosphate Isomerase Human genes 0.000 description 1
- 108700015934 Triose-phosphate isomerases Proteins 0.000 description 1
- 239000007984 Tris EDTA buffer Substances 0.000 description 1
- 235000019714 Triticale Nutrition 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 102220512942 Uncharacterized protein KIAA0087_S85N_mutation Human genes 0.000 description 1
- 235000010749 Vicia faba Nutrition 0.000 description 1
- 240000006677 Vicia faba Species 0.000 description 1
- 235000002098 Vicia faba var. major Nutrition 0.000 description 1
- 241001416177 Vicugna pacos Species 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 102220532168 WW domain-binding protein 11_A52S_mutation Human genes 0.000 description 1
- 102220532005 WW domain-binding protein 11_K84N_mutation Human genes 0.000 description 1
- 102220532013 WW domain-binding protein 11_K84Y_mutation Human genes 0.000 description 1
- 235000019752 Wheat Middilings Nutrition 0.000 description 1
- 102000007544 Whey Proteins Human genes 0.000 description 1
- 108010046377 Whey Proteins Proteins 0.000 description 1
- 102220501622 YTH domain-containing protein 1_S362A_mutation Human genes 0.000 description 1
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 102220625427 Zinc finger protein SNAI1_S92E_mutation Human genes 0.000 description 1
- 241000588901 Zymomonas Species 0.000 description 1
- 238000011481 absorbance measurement Methods 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 108010048241 acetamidase Proteins 0.000 description 1
- 229940091181 aconitic acid Drugs 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 108010045649 agarase Proteins 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 235000013334 alcoholic beverage Nutrition 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 235000015107 ale Nutrition 0.000 description 1
- 229910001513 alkali metal bromide Inorganic materials 0.000 description 1
- 229910001514 alkali metal chloride Inorganic materials 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 229920002214 alkoxylated polymer Polymers 0.000 description 1
- 125000005599 alkyl carboxylate group Chemical group 0.000 description 1
- 229920013820 alkyl cellulose Polymers 0.000 description 1
- 125000005600 alkyl phosphonate group Chemical group 0.000 description 1
- 102000016679 alpha-Glucosidases Human genes 0.000 description 1
- 101150069003 amdS gene Proteins 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 239000003674 animal food additive Substances 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 239000013011 aqueous formulation Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 1
- 101150008194 argB gene Proteins 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 229940091771 aspergillus fumigatus Drugs 0.000 description 1
- OHDRQQURAXLVGJ-HLVWOLMTSA-N azane;(2e)-3-ethyl-2-[(e)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound [NH4+].[NH4+].S/1C2=CC(S([O-])(=O)=O)=CC=C2N(CC)C\1=N/N=C1/SC2=CC(S([O-])(=O)=O)=CC=C2N1CC OHDRQQURAXLVGJ-HLVWOLMTSA-N 0.000 description 1
- 229940054340 bacillus coagulans Drugs 0.000 description 1
- 229940097012 bacillus thuringiensis Drugs 0.000 description 1
- 239000003899 bactericide agent Substances 0.000 description 1
- 235000012791 bagels Nutrition 0.000 description 1
- 238000010923 batch production Methods 0.000 description 1
- 239000003659 bee venom Substances 0.000 description 1
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 1
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- HIWPGCMGAMJNRG-UHFFFAOYSA-N beta-sophorose Natural products OC1C(O)C(CO)OC(O)C1OC1C(O)C(O)C(O)C(CO)O1 HIWPGCMGAMJNRG-UHFFFAOYSA-N 0.000 description 1
- 238000010364 biochemical engineering Methods 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 229960001561 bleomycin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 235000020008 bock Nutrition 0.000 description 1
- 230000003139 buffering effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 102220361905 c.148A>C Human genes 0.000 description 1
- 102220352372 c.148T>G Human genes 0.000 description 1
- 102220414510 c.236C>T Human genes 0.000 description 1
- 102220358480 c.239A>G Human genes 0.000 description 1
- 102220354772 c.254G>T Human genes 0.000 description 1
- 102220349282 c.275C>G Human genes 0.000 description 1
- 102220361789 c.286C>G Human genes 0.000 description 1
- 102220417854 c.293A>T Human genes 0.000 description 1
- 102220414043 c.31T>G Human genes 0.000 description 1
- 102220388297 c.406C>A Human genes 0.000 description 1
- 102220348041 c.448G>A Human genes 0.000 description 1
- 102220419539 c.509G>A Human genes 0.000 description 1
- 102220356997 c.72T>G Human genes 0.000 description 1
- 102220417841 c.958A>G Human genes 0.000 description 1
- 238000010804 cDNA synthesis Methods 0.000 description 1
- VSGNNIFQASZAOI-UHFFFAOYSA-L calcium acetate Chemical compound [Ca+2].CC([O-])=O.CC([O-])=O VSGNNIFQASZAOI-UHFFFAOYSA-L 0.000 description 1
- 235000011092 calcium acetate Nutrition 0.000 description 1
- 239000001639 calcium acetate Substances 0.000 description 1
- 229960005147 calcium acetate Drugs 0.000 description 1
- 239000004227 calcium gluconate Substances 0.000 description 1
- 235000013927 calcium gluconate Nutrition 0.000 description 1
- 229960004494 calcium gluconate Drugs 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- RKFLKNFLAJISPF-OGXRZFKVSA-L calcium;(3s,4s)-3,4,6-trihydroxy-2,5-dioxohexanoate Chemical compound [Ca+2].OCC(=O)[C@@H](O)[C@H](O)C(=O)C([O-])=O.OCC(=O)[C@@H](O)[C@H](O)C(=O)C([O-])=O RKFLKNFLAJISPF-OGXRZFKVSA-L 0.000 description 1
- NEEHYRZPVYRGPP-UHFFFAOYSA-L calcium;2,3,4,5,6-pentahydroxyhexanoate Chemical compound [Ca+2].OCC(O)C(O)C(O)C(O)C([O-])=O.OCC(O)C(O)C(O)C(O)C([O-])=O NEEHYRZPVYRGPP-UHFFFAOYSA-L 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- HJMZMZRCABDKKV-UHFFFAOYSA-N carbonocyanidic acid Chemical compound OC(=O)C#N HJMZMZRCABDKKV-UHFFFAOYSA-N 0.000 description 1
- 125000004181 carboxyalkyl group Chemical group 0.000 description 1
- 239000005018 casein Substances 0.000 description 1
- 235000021240 caseins Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 241001233037 catfish Species 0.000 description 1
- 101150114858 cbh2 gene Proteins 0.000 description 1
- 230000006727 cell loss Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 235000013351 cheese Nutrition 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 235000019219 chocolate Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000007398 colorimetric assay Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000003636 conditioned culture medium Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 235000012495 crackers Nutrition 0.000 description 1
- 235000012777 crisp bread Nutrition 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 101150005799 dagA gene Proteins 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000000593 degrading effect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- CYQFCXCEBYINGO-IAGOWNOFSA-N delta1-THC Chemical compound C1=C(C)CC[C@H]2C(C)(C)OC3=CC(CCCCC)=CC(O)=C3[C@@H]21 CYQFCXCEBYINGO-IAGOWNOFSA-N 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- 229940079919 digestives enzyme preparation Drugs 0.000 description 1
- ORXJMBXYSGGCHG-UHFFFAOYSA-N dimethyl 2-methoxypropanedioate Chemical compound COC(=O)C(OC)C(=O)OC ORXJMBXYSGGCHG-UHFFFAOYSA-N 0.000 description 1
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000001177 diphosphate Substances 0.000 description 1
- XPPKVPWEQAFLFU-UHFFFAOYSA-J diphosphate(4-) Chemical compound [O-]P([O-])(=O)OP([O-])([O-])=O XPPKVPWEQAFLFU-UHFFFAOYSA-J 0.000 description 1
- 235000011180 diphosphates Nutrition 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000035622 drinking Effects 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 210000000969 egg white Anatomy 0.000 description 1
- 235000013345 egg yolk Nutrition 0.000 description 1
- 210000002969 egg yolk Anatomy 0.000 description 1
- 101150066032 egl-1 gene Proteins 0.000 description 1
- 101150003727 egl2 gene Proteins 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 150000002168 ethanoic acid esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- NUVBSKCKDOMJSU-UHFFFAOYSA-N ethylparaben Chemical compound CCOC(=O)C1=CC=C(O)C=C1 NUVBSKCKDOMJSU-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000002979 fabric softener Substances 0.000 description 1
- 235000019387 fatty acid methyl ester Nutrition 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000007730 finishing process Methods 0.000 description 1
- 239000004467 fishmeal Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000002778 food additive Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 238000012224 gene deletion Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 229940050410 gluconate Drugs 0.000 description 1
- 239000000174 gluconic acid Substances 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 229950006191 gluconic acid Drugs 0.000 description 1
- 235000012209 glucono delta-lactone Nutrition 0.000 description 1
- 239000000182 glucono-delta-lactone Substances 0.000 description 1
- 229960003681 gluconolactone Drugs 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000002333 glycines Chemical group 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 235000013882 gravy Nutrition 0.000 description 1
- 239000004519 grease Substances 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000007901 in situ hybridization Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- ODBLHEXUDAPZAU-UHFFFAOYSA-N isocitric acid Chemical compound OC(=O)C(O)C(C(O)=O)CC(O)=O ODBLHEXUDAPZAU-UHFFFAOYSA-N 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- DLRVVLDZNNYCBX-RTPHMHGBSA-N isomaltose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)C(O)O1 DLRVVLDZNNYCBX-RTPHMHGBSA-N 0.000 description 1
- 108010032581 isopullulanase Proteins 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000003903 lactic acid esters Chemical class 0.000 description 1
- 229940001882 lactobacillus reuteri Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 235000015095 lager Nutrition 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- 235000021440 light beer Nutrition 0.000 description 1
- 235000021388 linseed oil Nutrition 0.000 description 1
- 239000000944 linseed oil Substances 0.000 description 1
- 235000019626 lipase activity Nutrition 0.000 description 1
- 238000001638 lipofection Methods 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 235000004213 low-fat Nutrition 0.000 description 1
- 101150039489 lysZ gene Proteins 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 235000009973 maize Nutrition 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000005360 mashing Methods 0.000 description 1
- 238000010907 mechanical stirring Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012092 media component Substances 0.000 description 1
- 230000009061 membrane transport Effects 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- 239000004292 methyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010270 methyl p-hydroxybenzoate Nutrition 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- HNEGQIOMVPPMNR-UHFFFAOYSA-N methylfumaric acid Natural products OC(=O)C(C)=CC(O)=O HNEGQIOMVPPMNR-UHFFFAOYSA-N 0.000 description 1
- 229960002216 methylparaben Drugs 0.000 description 1
- 108010009355 microbial metalloproteinases Proteins 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 235000021243 milk fat Nutrition 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 101150095344 niaD gene Proteins 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- SNQQPOLDUKLAAF-UHFFFAOYSA-N nonylphenol Chemical class CCCCCCCCCC1=CC=CC=C1O SNQQPOLDUKLAAF-UHFFFAOYSA-N 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 229940012843 omega-3 fatty acid Drugs 0.000 description 1
- 235000020660 omega-3 fatty acid Nutrition 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- KHPXUQMNIQBQEV-UHFFFAOYSA-N oxaloacetic acid Chemical compound OC(=O)CC(=O)C(O)=O KHPXUQMNIQBQEV-UHFFFAOYSA-N 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 235000015105 pale ale Nutrition 0.000 description 1
- 235000020007 pale lager Nutrition 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 235000012771 pancakes Nutrition 0.000 description 1
- 235000014594 pastries Nutrition 0.000 description 1
- 235000020232 peanut Nutrition 0.000 description 1
- 150000002972 pentoses Chemical class 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 210000002824 peroxisome Anatomy 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- UEZVMMHDMIWARA-UHFFFAOYSA-M phosphonate Chemical compound [O-]P(=O)=O UEZVMMHDMIWARA-UHFFFAOYSA-M 0.000 description 1
- 150000004714 phosphonium salts Chemical class 0.000 description 1
- 235000015108 pies Nutrition 0.000 description 1
- 235000012796 pita bread Nutrition 0.000 description 1
- 239000010773 plant oil Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 229920000196 poly(lauryl methacrylate) Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001748 polybutylene Polymers 0.000 description 1
- 229920005646 polycarboxylate Polymers 0.000 description 1
- 229920000223 polyglycerol Chemical class 0.000 description 1
- 210000004896 polypeptide structure Anatomy 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005996 polystyrene-poly(ethylene-butylene)-polystyrene Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 235000019396 potassium bromate Nutrition 0.000 description 1
- 229940094037 potassium bromate Drugs 0.000 description 1
- 239000004224 potassium gluconate Substances 0.000 description 1
- 235000013926 potassium gluconate Nutrition 0.000 description 1
- 229960003189 potassium gluconate Drugs 0.000 description 1
- JLKDVMWYMMLWTI-UHFFFAOYSA-M potassium iodate Chemical compound [K+].[O-]I(=O)=O JLKDVMWYMMLWTI-UHFFFAOYSA-M 0.000 description 1
- 239000001230 potassium iodate Substances 0.000 description 1
- 235000006666 potassium iodate Nutrition 0.000 description 1
- 229940093930 potassium iodate Drugs 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 235000012015 potatoes Nutrition 0.000 description 1
- 244000144977 poultry Species 0.000 description 1
- 230000002335 preservative effect Effects 0.000 description 1
- 235000012434 pretzels Nutrition 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000004405 propyl p-hydroxybenzoate Substances 0.000 description 1
- 235000010232 propyl p-hydroxybenzoate Nutrition 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 108010001816 pyranose oxidase Proteins 0.000 description 1
- 239000012429 reaction media Substances 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 229920002477 rna polymer Polymers 0.000 description 1
- 102220286810 rs1034265990 Human genes 0.000 description 1
- 102220004948 rs104893745 Human genes 0.000 description 1
- 102200006423 rs104894097 Human genes 0.000 description 1
- 102200153349 rs104894823 Human genes 0.000 description 1
- 102220196096 rs1057518583 Human genes 0.000 description 1
- 102200106185 rs1057520002 Human genes 0.000 description 1
- 102220209838 rs1057520382 Human genes 0.000 description 1
- 102220215037 rs1060500702 Human genes 0.000 description 1
- 102220218621 rs1060501106 Human genes 0.000 description 1
- 102220222806 rs1060501225 Human genes 0.000 description 1
- 102220276873 rs1060502036 Human genes 0.000 description 1
- 102220219080 rs1060503402 Human genes 0.000 description 1
- 102200010091 rs1060505038 Human genes 0.000 description 1
- 102220230165 rs1064793071 Human genes 0.000 description 1
- 102220226517 rs1064793652 Human genes 0.000 description 1
- 102220226097 rs1064793802 Human genes 0.000 description 1
- 102220226518 rs1064795694 Human genes 0.000 description 1
- 102220333986 rs112355069 Human genes 0.000 description 1
- 102220235485 rs1131691363 Human genes 0.000 description 1
- 102220111041 rs117061430 Human genes 0.000 description 1
- 102220043547 rs1208179 Human genes 0.000 description 1
- 102220333212 rs1210492203 Human genes 0.000 description 1
- 102200020154 rs121908509 Human genes 0.000 description 1
- 102200067184 rs121913655 Human genes 0.000 description 1
- 102200115778 rs121918093 Human genes 0.000 description 1
- 102200155479 rs121918460 Human genes 0.000 description 1
- 102220276872 rs1244537662 Human genes 0.000 description 1
- 102220048309 rs138317624 Human genes 0.000 description 1
- 102220223311 rs139642328 Human genes 0.000 description 1
- 102220282935 rs139642328 Human genes 0.000 description 1
- 102220242557 rs142853738 Human genes 0.000 description 1
- 102220221593 rs142919353 Human genes 0.000 description 1
- 102220265074 rs1442801795 Human genes 0.000 description 1
- 102220274636 rs144712084 Human genes 0.000 description 1
- 102200049892 rs145873635 Human genes 0.000 description 1
- 102220263212 rs1466334264 Human genes 0.000 description 1
- 102220181032 rs146698039 Human genes 0.000 description 1
- 102220053643 rs149001418 Human genes 0.000 description 1
- 102220093674 rs150648432 Human genes 0.000 description 1
- 102220336136 rs1553122943 Human genes 0.000 description 1
- 102220313433 rs1553248265 Human genes 0.000 description 1
- 102220249201 rs1553260740 Human genes 0.000 description 1
- 102220285254 rs1553361224 Human genes 0.000 description 1
- 102220258496 rs1553638805 Human genes 0.000 description 1
- 102220258027 rs1553641257 Human genes 0.000 description 1
- 102220317885 rs1554069716 Human genes 0.000 description 1
- 102220323915 rs1555015455 Human genes 0.000 description 1
- 102200104354 rs1555525007 Human genes 0.000 description 1
- 102200108969 rs1555526241 Human genes 0.000 description 1
- 102200108877 rs1555526268 Human genes 0.000 description 1
- 102200107911 rs1555526335 Human genes 0.000 description 1
- 102220272008 rs1555583743 Human genes 0.000 description 1
- 102220333684 rs1555605392 Human genes 0.000 description 1
- 102220285228 rs17224367 Human genes 0.000 description 1
- 102220032585 rs180177441 Human genes 0.000 description 1
- 102220204074 rs1803027 Human genes 0.000 description 1
- 102220008646 rs193922173 Human genes 0.000 description 1
- 102200009382 rs193922680 Human genes 0.000 description 1
- 102200084990 rs199422124 Human genes 0.000 description 1
- 102200108770 rs199473091 Human genes 0.000 description 1
- 102200003634 rs199696526 Human genes 0.000 description 1
- 102220257138 rs201059765 Human genes 0.000 description 1
- 102220064015 rs267607518 Human genes 0.000 description 1
- 102200068615 rs281865226 Human genes 0.000 description 1
- 102200085245 rs281875313 Human genes 0.000 description 1
- 102200037324 rs28371560 Human genes 0.000 description 1
- 102220005397 rs33926206 Human genes 0.000 description 1
- 102220005308 rs33960931 Human genes 0.000 description 1
- 102220005202 rs33986703 Human genes 0.000 description 1
- 102200139516 rs35960830 Human genes 0.000 description 1
- 102200101286 rs366439 Human genes 0.000 description 1
- 102220032805 rs367543153 Human genes 0.000 description 1
- 102220139813 rs372921526 Human genes 0.000 description 1
- 102220012182 rs373164247 Human genes 0.000 description 1
- 102220223362 rs375343071 Human genes 0.000 description 1
- 102220331120 rs375507194 Human genes 0.000 description 1
- 102220226118 rs377345366 Human genes 0.000 description 1
- 102200050837 rs386833811 Human genes 0.000 description 1
- 102200121085 rs387907257 Human genes 0.000 description 1
- 102200155467 rs397507501 Human genes 0.000 description 1
- 102200128614 rs397508220 Human genes 0.000 description 1
- 102220021071 rs397508904 Human genes 0.000 description 1
- 102220106372 rs397508904 Human genes 0.000 description 1
- 102200074870 rs397514473 Human genes 0.000 description 1
- 102220013120 rs397516479 Human genes 0.000 description 1
- 102220013898 rs397516801 Human genes 0.000 description 1
- 102220014681 rs397517221 Human genes 0.000 description 1
- 102220028739 rs398123203 Human genes 0.000 description 1
- 102220031990 rs431905491 Human genes 0.000 description 1
- 102220041180 rs527934999 Human genes 0.000 description 1
- 102200104357 rs56184981 Human genes 0.000 description 1
- 102220029785 rs56230601 Human genes 0.000 description 1
- 102220120665 rs565069721 Human genes 0.000 description 1
- 102220044440 rs587781303 Human genes 0.000 description 1
- 102220045102 rs587781830 Human genes 0.000 description 1
- 102220045697 rs587782318 Human genes 0.000 description 1
- 102200107847 rs587782461 Human genes 0.000 description 1
- 102220046116 rs587782659 Human genes 0.000 description 1
- 102220254686 rs60964124 Human genes 0.000 description 1
- 102200158933 rs63749797 Human genes 0.000 description 1
- 102200029469 rs63750123 Human genes 0.000 description 1
- 102220027727 rs63750318 Human genes 0.000 description 1
- 102200164318 rs63750465 Human genes 0.000 description 1
- 102200164319 rs63750465 Human genes 0.000 description 1
- 102200164314 rs63750507 Human genes 0.000 description 1
- 102220027888 rs63750640 Human genes 0.000 description 1
- 102200164349 rs63750641 Human genes 0.000 description 1
- 102200058130 rs63750730 Human genes 0.000 description 1
- 102220027379 rs63750894 Human genes 0.000 description 1
- 102220234102 rs63750894 Human genes 0.000 description 1
- 102220032033 rs72554333 Human genes 0.000 description 1
- 102220148768 rs745593101 Human genes 0.000 description 1
- 102220187291 rs746313873 Human genes 0.000 description 1
- 102220218616 rs746322193 Human genes 0.000 description 1
- 102220064271 rs749031775 Human genes 0.000 description 1
- 102220277603 rs750353040 Human genes 0.000 description 1
- 102220097976 rs753257724 Human genes 0.000 description 1
- 102220226535 rs754898711 Human genes 0.000 description 1
- 102220094457 rs755401753 Human genes 0.000 description 1
- 102220219208 rs755462552 Human genes 0.000 description 1
- 102220214817 rs757622849 Human genes 0.000 description 1
- 102200108882 rs758781593 Human genes 0.000 description 1
- 102220123717 rs759057581 Human genes 0.000 description 1
- 102220256978 rs763573151 Human genes 0.000 description 1
- 102220256523 rs766925699 Human genes 0.000 description 1
- 102220239570 rs769203968 Human genes 0.000 description 1
- 102220245078 rs771011731 Human genes 0.000 description 1
- 102220221201 rs772381832 Human genes 0.000 description 1
- 102220295916 rs774932586 Human genes 0.000 description 1
- 102220277679 rs776196400 Human genes 0.000 description 1
- 102220071002 rs794728717 Human genes 0.000 description 1
- 102220076573 rs796052533 Human genes 0.000 description 1
- 102200139295 rs80338771 Human genes 0.000 description 1
- 102220022232 rs80357198 Human genes 0.000 description 1
- 102220084968 rs863225270 Human genes 0.000 description 1
- 102220094393 rs876658430 Human genes 0.000 description 1
- 102220095349 rs876658520 Human genes 0.000 description 1
- 102220094945 rs876660259 Human genes 0.000 description 1
- 102220097833 rs876660426 Human genes 0.000 description 1
- 102220097977 rs876660497 Human genes 0.000 description 1
- 102220099820 rs878853791 Human genes 0.000 description 1
- 102220098939 rs878854573 Human genes 0.000 description 1
- 102200055991 rs886037944 Human genes 0.000 description 1
- 102200107909 rs886039483 Human genes 0.000 description 1
- 102200107910 rs886039483 Human genes 0.000 description 1
- 102220121571 rs886042868 Human genes 0.000 description 1
- 102220146158 rs886059141 Human genes 0.000 description 1
- 102220158290 rs886062405 Human genes 0.000 description 1
- 102220226511 rs965720330 Human genes 0.000 description 1
- 102200045685 rs973321068 Human genes 0.000 description 1
- 102220278876 rs977251189 Human genes 0.000 description 1
- 235000012780 rye bread Nutrition 0.000 description 1
- 230000001523 saccharolytic effect Effects 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 238000005185 salting out Methods 0.000 description 1
- 230000003248 secreting effect Effects 0.000 description 1
- 230000009919 sequestration Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 235000020374 simple syrup Nutrition 0.000 description 1
- 239000003998 snake venom Substances 0.000 description 1
- 239000000344 soap Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 239000004320 sodium erythorbate Substances 0.000 description 1
- 235000010352 sodium erythorbate Nutrition 0.000 description 1
- 235000012207 sodium gluconate Nutrition 0.000 description 1
- 239000000176 sodium gluconate Substances 0.000 description 1
- 229940005574 sodium gluconate Drugs 0.000 description 1
- RBWSWDPRDBEWCR-RKJRWTFHSA-N sodium;(2r)-2-[(2r)-3,4-dihydroxy-5-oxo-2h-furan-2-yl]-2-hydroxyethanolate Chemical compound [Na+].[O-]C[C@@H](O)[C@H]1OC(=O)C(O)=C1O RBWSWDPRDBEWCR-RKJRWTFHSA-N 0.000 description 1
- MWNQXXOSWHCCOZ-UHFFFAOYSA-L sodium;oxido carbonate Chemical compound [Na+].[O-]OC([O-])=O MWNQXXOSWHCCOZ-UHFFFAOYSA-L 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 238000010563 solid-state fermentation Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- HIWPGCMGAMJNRG-RTPHMHGBSA-N sophorose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)OC(O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HIWPGCMGAMJNRG-RTPHMHGBSA-N 0.000 description 1
- 239000004458 spent grain Substances 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- 108010082371 succinyl-alanyl-alanyl-prolyl-phenylalanine-4-nitroanilide Proteins 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 229910021653 sulphate ion Inorganic materials 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 238000013268 sustained release Methods 0.000 description 1
- 239000012730 sustained-release form Substances 0.000 description 1
- 230000005469 synchrotron radiation Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 235000013616 tea Nutrition 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 102000003601 transglutaminase Human genes 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- UNXRWKVEANCORM-UHFFFAOYSA-N triphosphoric acid Chemical compound OP(O)(=O)OP(O)(=O)OP(O)(O)=O UNXRWKVEANCORM-UHFFFAOYSA-N 0.000 description 1
- 230000001810 trypsinlike Effects 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 239000002912 waste gas Substances 0.000 description 1
- 235000015099 wheat brans Nutrition 0.000 description 1
- 235000012794 white bread Nutrition 0.000 description 1
- 235000012799 wholemeal bread Nutrition 0.000 description 1
- 235000014101 wine Nutrition 0.000 description 1
- 241000228158 x Triticosecale Species 0.000 description 1
- 101150110790 xylB gene Proteins 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 150000008496 α-D-glucosides Chemical class 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2408—Glucanases acting on alpha -1,4-glucosidic bonds
- C12N9/2411—Amylases
- C12N9/2414—Alpha-amylase (3.2.1.1.)
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
- A23L2/00—Non-alcoholic beverages; Dry compositions or concentrates therefor; Their preparation
- A23L2/38—Other non-alcoholic beverages
- A23L2/382—Other non-alcoholic beverages fermented
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/38—Products with no well-defined composition, e.g. natural products
- C11D3/386—Preparations containing enzymes, e.g. protease or amylase
- C11D3/38681—Chemically modified or immobilised enzymes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/24—Hydrolases (3) acting on glycosyl compounds (3.2)
- C12N9/2402—Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
- C12N9/2405—Glucanases
- C12N9/2408—Glucanases acting on alpha -1,4-glucosidic bonds
- C12N9/2411—Amylases
- C12N9/2414—Alpha-amylase (3.2.1.1.)
- C12N9/2417—Alpha-amylase (3.2.1.1.) from microbiological source
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/02—Monosaccharides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/14—Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- compositions and methods relating to variant ⁇ -amylases containing a plurality of combinable mutations are useful, for example, for starch liquefaction and saccharification, cleaning starchy stains, textile desizing, baking, and brewing.
- Starch consists of a mixture of amylose (15-30% w/w) and amylopectin (70-85% w/w).
- Amylose consists of linear chains of ⁇ -1,4-linked glucose units having a molecular weight (MW) from about 60,000 to about 800,000.
- MW molecular weight
- Amylopectin is a branched polymer containing ⁇ -1,6 branch points every 24-30 glucose units; its MW may be as high as 100 million.
- Sugars from starch in the form of concentrated dextrose syrups, are currently produced by an enzyme catalyzed process involving: (1) liquefaction (or viscosity reduction) of solid starch with an ⁇ -amylase into dextrins having an average degree of polymerization of about 7-10, and (2) saccharification of the resulting liquefied starch (i.e. starch hydrolysate) with amyloglucosidase (also called glucoamylase or GA).
- amyloglucosidase also called glucoamylase or GA
- the resulting syrup has a high glucose content.
- Much of the glucose syrup that is commercially produced is subsequently enzymatically isomerized to a dextrose/fructose mixture known as isosyrup.
- the resulting syrup also may be fermented with microorganisms, such as yeast, to produce commercial products including ethanol, citric acid, lactic acid, succinic acid, itaconic acid, monosodium glutamate, gluconates, lysine, other organic acids, other amino acids, and other biochemicals, for example. Fermentation and saccharification can be conducted simultaneously (i.e., an SSF process) to achieve greater economy and efficiency.
- microorganisms such as yeast
- ⁇ -amylases hydrolyze starch, glycogen, and related polysaccharides by cleaving internal ⁇ -1,4-glucosidic bonds at random.
- ⁇ -amylases particularly from Bacilli, have been used for a variety of different purposes, including starch liquefaction and saccharification, textile desizing, starch modification in the paper and pulp industry, brewing, baking, production of syrups for the food industry, production of feedstocks for fermentation processes, and in animal feed to increase digestability.
- These enzymes can also be used to remove starchy soils and stains during dishwashing and laundry washing.
- compositions and methods relate to variant amylase polypeptides, and methods of use, thereof. Aspects and embodiments of the present compositions and methods are summarized in the following separately-numbered paragraphs:
- a recombinant variant of a parent ⁇ -amylase comprising: a mutation at an amino acid residue corresponding to E187 or S241; and at least one mutation at an amino acid residue corresponding to an amino acid residue selected from the group consisting of N126, Y150, F153, L171, T180, and, I203; wherein the variant ⁇ -amylase or the parent ⁇ -amylase has at least 60% amino acid sequence identity relative to SEQ ID NO: 1, which is used for numbering; and wherein the variant has increased thermostability, detergent stability, starch liquifaction activity, and/or cleaning performance compared to the parent ⁇ -amylase or a reference ⁇ -amylase differing from the variant ⁇ -amylase only by the absence of the mutations.
- the variant ⁇ -amylase of paragraph 1 comprises at least two mutations at amino acid residues corresponding N126, Y150, F153, L171, and, I203, using SEQ ID NO: 1 for numbering.
- the variant ⁇ -amylase of any of the preceding paragraphs further comprises a deletion of at least one amino acid residue corresponding to R178, G179, T180, and G181, using SEQ ID NO: 1 for numbering.
- the variant ⁇ -amylase of any of the preceding paragraphs further comprise deletions of amino acid residues corresponding to R178 and G179, or T180 and G181.
- the variant ⁇ -amylase of any of the preceding paragraphs further comprises a mutation at an amino acid residue corresponding to G476 and/or G477, using SEQ ID NO: 1 for numbering.
- the variant ⁇ -amylase of any of the preceding paragraphs further comprises a mutation in an amino acid residue corresponding to an amino acid residue selected from the group consisting of E132, Q167, T180, and A277, using SEQ ID NO: 1 for numbering.
- the variant ⁇ -amylase of any of the preceding paragraphs further comprises a mutation in an amino acid residue corresponding to an amino acid residue selected from the group consisting of R458, T459, and D460, using SEQ ID NO: 1 for numbering.
- the variant ⁇ -amylase of any of the preceding paragraphs further comprises a mutation in an amino acid residue corresponding to T180, using SEQ ID NO: 1 for numbering.
- the variant ⁇ -amylase of any of the preceding paragraphs further comprises a mutation in an amino acid residue corresponding to N205, using SEQ ID NO: 3 for numbering.
- the variant ⁇ -amylase of any of the preceding paragraphs further comprises a mutation in an amino acid residue corresponding to an amino acid residue selected from the group consisting of T333G, A335S, and Q337E, using SEQ ID NO: 3 for numbering.
- the variant ⁇ -amylase of any of the preceding paragraphs further comprises a mutation in an amino acid residue corresponding to an amino acid residue position selected from the group consisting of 6, 7, 8, 11, 14, 15, 20, 21, 23, 26, 27, 28, 37, 38, 39, 40, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 58, 61, 62, 68, 70, 71, 72, 73, 79, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 101, 108, 111, 112, 113, 114, 115, 116, 117, 118, 120, 122, 123, 124, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 142, 143, 144, 147, 148, 149, 150, 151, 152, 153
- the variant ⁇ -amylase of any of the preceding paragraphs comprises a combinations of mutations corresponding to mutations selected from the group consisting of:
- the variant has increased thermostability, detergent stability, stability starch liquifaction activity, or cleaning performance compared to the parent; and wherein the variant or the parent has at least 60% amino acid sequence identity relative to SEQ ID NO: 1, which is used for numbering.
- the variant amylase of any of paragraphs 1-12 comprises the combinations of mutations corresponding to N126Y+F153W+T180D+I203Y+S241Q and one or more mutations corresponding to mutations selected from the group consisting of E132H, Q167E, A277F, and T400K.
- the variant amylase of paragraph 13 comprises the combinations of mutations corresponding to mutations selected from the group consisting of:
- the variant amylase of any of the preceding paragraphs is from a Cytophaga species. 16. In some embodiments, the variant amylase of any of the preceding paragraphs is from a Paenibacillus species.
- the variant amylase of any of the preceding paragraphs is not from a Bacillus species.
- the variant amylase of any of the preceding paragraphs has at least 70% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, or SEQ ID NO: 5.
- the variant amylase of any of the preceding paragraphs has at least 70% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3.
- the variant amylase of any of paragraphs 1-18 has at least 80% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, or SEQ ID NO: 5.
- the variant amylase of any of paragraphs 1-18 has at least 90% amino acid sequence identity to the amino acid sequence of SEQ ID NO: 1, SEQ ID NO: 3, or SEQ ID NO: 5.
- composition comprising the variant ⁇ -amylase of any of the preceding paragraphs is provided.
- composition of paragraph 22 is effective for removing starchy stains from laundry, dishes, or textiles.
- composition of paragraph 22 or 23 further comprises a surfactant.
- composition of any of paragraphs 22-24 is a detergent composition.
- composition of any of paragraphs 22-24 is a laundry detergent or a laundry detergent additive.
- composition of any of paragraphs 22-24 is a manual or automatic dishwashing detergent.
- composition of any of paragraphs 22-24 further comprises one or more additional enzymes selected from the group consisting of protease, hemicellulase, cellulase, peroxidase, lipolytic enzyme, metallolipolytic enzyme, xylanase, lipase, phospholipase, esterase, perhydrolase, cutinase, pectinase, pectate lyase, mannanase, keratinase, reductase, oxidase, phenoloxidase, lipoxygenase, ligninase, pullulanase, tannase, pentosanase, malanase, ⁇ -glucanase, arabinosidase, hyaluronidase, chondroitinase, laccase, metalloproteinase, amadoriase, glucoamylase,
- additional enzymes selected from
- composition of paragraph 21 is for liquifying starch.
- composition of paragraph 21 is for saccharifying a composition comprising starch, for SSF post liquefaction, or for direct SSF without prior liquefaction.
- composition of paragraph 21 is for producing a fermented beverage.
- composition of paragraph 21 is for producing a baked food product.
- composition of paragraph 21 is for textile desizing.
- a method for removing a starchy stain or soil from a surface comprising: contacting the surface in the presence of a composition comprising an effective amount of the variant amylase of any of the paragraphs 1-21, and allowing the polypeptide to hydrolyze starch components present in the starchy stain to produce smaller starch-derived molecules that dissolve in the aqueous composition, thereby removing the starchy stain from the surface.
- the aqueous composition further comprises a surfactant.
- the surface is a textile surface or a surface on dishes.
- the composition further comprises at least one additional enzymes selected from the group consisting of protease, hemicellulase, cellulase, peroxidase, lipolytic enzyme, metallolipolytic enzyme, xylanase, lipase, phospholipase, esterase, perhydrolase, cutinase, pectinase, pectate lyase, mannanase, keratinase, reductase, oxidase, phenoloxidase, lipoxygenase, ligninase, pullulanase, tannase, pentosanase, malanase, ⁇ -glucanase, arabinosidase, hyaluronidase, chondroitinase, laccase, metalloproteinase, amadoriase, glucoa
- a method for saccharifying a composition comprising starch to produce a composition comprising glucose comprises:
- composition comprising starch comprises liquefied starch, gelatinized starch, granular starch, or starch heat-treated below its gelatinization temperature.
- the fermentation is a simultaneous saccharification and fermentation (SSF) reaction.
- SSF simultaneous saccharification and fermentation
- the method further comprises contacting a mash and/or a wort with an amylase.
- the method of any one of paragraphs 38-41 further comprises adding glucoamylase, hexokinase, xylanase, glucose isomerase, xylose isomerase, phosphatase, phytase, pullulanase, ⁇ -amylase, ⁇ -amylase that is not the variant ⁇ -amylase, protease, cellulase, hemicellulase, lipase, cutinase, isoamylase, redox enzyme, esterase, transferase, pectinase, alpha-glucosidase, beta-glucosidase, or a combination thereof, to the starch solution.
- amylase is expressed and secreted by a host cell.
- composition comprising starch is contacted with the host cell.
- the host cell further expresses and secretes one or more enzymes selected from the group consisting of glucoamylase, hexokinase, xylanase, glucose isomerase, xylose isomerase, phosphatase, phytase, pullulanase, ⁇ -amylase, ⁇ -amylase that is not the variant ⁇ -amylase, protease, cellulase, hemicellulase, lipase, cutinase, isoamylase, redox enzyme, esterase, transferase, pectinase, alpha-glucosidase, and beta-glucosidase.
- one or more enzymes selected from the group consisting of glucoamylase, hexokinase, xylanase, glucose isomerase, xylose isomerase, phosphatase, phytase, pullulanase,
- the host cell further expresses and secretes a glucoamylase.
- the host cell is capable of fermenting the composition.
- composition comprising glucose produced by the method of any one of paragraphs 38-47 is provided.
- amylase of any of paragraphs 1-21 in the production of a composition comprising glucose, in the production of a liquefied starch, in the production of a fermented beverage, in cleaning starchy stains, or in textile desizing, is provided.
- a method of desizing a textile comprising contacting a desizing composition with a sized textile for a time sufficient to desize the textile, wherein the desizing composition comprises a variant ⁇ -amylase of any one of paragraphs 1-21.
- an expression vector comprising the polynucleotide of paragraph 53 is provided.
- a host cell comprising the expression vector of paragraph 54 is provided.
- polypeptide according to any one of paragraphs 1-21 encoded by a polynucleotide that hybridizes under stringent conditions to a polynucleotide complementary to the full-length of the polynucleotide of SEQ ID NO: 7, SEQ ID NO: 33, or SEQ ID NO: 38 is provided.
- FIG. 1 shows an amino acid sequence alignment of CspAmy2 ⁇ -amylase (SEQ ID NO: 1), PcuAmy1 ⁇ -amylase (SEQ ID NO: 3), and BASE ⁇ -amylase, using Clustal W with default parameters.
- FIG. 2 is a graph showing the cleaning benefit of different doses of CspAmy2-v5 and CspAmy2-v6 on CS-28 rice starch at pH 8.
- FIG. 3 is a graph showing the thermal stability of CspAmy2-v5 and CspAmy2-v6 in buffer.
- FIG. 4 is a graph showing the thermal stability of CspAmy2-v5 and CspAmy2-v6 in buffer with calcium.
- FIG. 5 is a graph showing the detergent stability of CspAmy2-v5 and CspAmy2-v6 in OMOTM Color detergent.
- FIG. 6 is a graph showing the detergent stability of CspAmy2-v5 and CspAmy2-v6 in EPSILTM Perfect detergent.
- FIG. 7 is a table showing the relative half-lives and performance indexes of the C16 variants and reference molecules CspAmy2-v1-E187P and CspAmy2-v1-S241Q.
- FIG. 8 is a graph showing the thermal stability of the C16 variants and reference molecules CspAmy2-v1-E187P and CspAmy2-v1-S241Q at pH 4.5 and 65° C.
- FIG. 9 is a graph showing the thermal stability of the C16 variants and reference molecules CspAmy2-v1-E187P and CspAmy2-v1-S241Q at pH 5.0 and 70° C.
- FIG. 10 is a graph showing the thermal stability of the C16 variants and reference molecules CspAmy2-v1-E187P and CspAmy2-v1-S241Q at pH 5.7 and 85° C.
- FIG. 11 is a graph showing the detergent stability of CspAmy2-v5, CspAmy2-v171, CspAmy2-v172, and ACE-QK.
- FIG. 12 is a graph showing the relative cleaning performance of CspAmy2-v5 and STAINZYME® in a hand dishwashing application.
- FIG. 13 includes tables showing the compositions of WfK B citrate-based detergent (A) and WfK C phospate-based detergent (B).
- FIGS. 14 and 15 show the cleaning performance of CspAmy2-v6 (squares) compared to POWERASE® (diamonds), dosed at 0, 1, 2, 4, or 8 ppm in WfK B detergent against the mixed starch stain ( FIG. 14 ) and the pasta stain ( FIG. 15 ).
- FIGS. 16 and 17 show the cleaning performance of CspAmy2-v6 (squares) compared to STAINZYME® (circles), dosed at 0, 1, 2, 4, or 8 ppm WfK B detergent against the mixed starch stain ( FIG. 16 ) and the pasta stain ( FIG. 17 ).
- FIGS. 18 and 19 show the cleaning performance of CspAmy2-v6 (squares) compared to POWERASE® (diamonds), dosed at 0, 1, 2, 4, or 8 ppm in WfK C detergent against the mixed starch stain ( FIG. 18 ) and the pasta stain ( FIG. 19 ).
- CspAmy2-v6 clearly outperformed POWERASE® against both stains.
- FIG. 20 is a graph showing examples of C18P variants demonstrating improved hydrolysis of corn starch at high temperatures.
- CspAmy2-C18P (N126Y+F153W+T180D+I203Y+S241Q) is shown as a reference.
- FIG. 21 is a graph showing examples of C18P variants demonstrating improved hydrolysis of amylopectin from corn. C18P is shown as a reference.
- FIG. 22 is a graph showing examples of variants demonstrating improved generation of reducing sugars from starch. C18P is shown as a reference.
- FIG. 23 is a graph showing examples of C18P variants demonstrating improved release of iodine staining material from starch. C18P is shown as a reference.
- FIG. 24 is a graph showing the viscosity reduction of corn flour slurry produced by three C18P variants reported as fluidity (1/viscosity) versus dose of the variants (in ⁇ g). C18P and C16F are shown as references.
- FIG. 25 is a table showing the PI values for C16F variants having different pairwise combinations of mutations at positions G476 and G477, relative to a C16F control, in a corn starch microswatch assay.
- PI values for revertants i.e., G476G and G477G are empirically determined.
- FIG. 26 is a table showing the PI values for C16F variants having different pairwise combinations of mutations at positions G476 and G477, relative to a C16F control, in a corn amylose hydrolysis assay.
- PI values for revertants i.e., G476G and G477G are empirically determined.
- FIG. 27 is a graph showing the relative liquefaction performance of CspAmy2-C25F, B, and A compared to C16F.
- FIG. 28 is a graph showing the results of cleaning assays performed at 0.015 ppm with CspAmy2-v179, v186, and v191 compared to STAINZYME® and ACE-QK.
- FIG. 29 is a graph showing the relative thermostability of CspAmy2 variants v5, v179, v186, and v191 compared to STAINZYME® and ACE-QK at temperatures ranging from 77° C. to 97° C.
- FIG. 30 is a graph showing the relative in-detergent storage stability of CspAmy2 variants v5 and v179 compared to STAINZYME® and ACE-QK in TIDE® regular HDL.
- FIG. 31 is a graph showing the relative in-detergent storage stability of CspAmy2 variants v5 and v179 compared to STAINZYME® and ACE-QK in US TIDE® PODSTM.
- FIG. 32 is a graph showing the relative in-detergent storage stability of CspAmy2 variants v5 and v179 compared to STAINZYME® and ACE-QK in European ARIELTM HDL.
- FIG. 33 is a graph showing the relative in-detergent storage stability of CspAmy2 variants v5 and v179 compared to STAINZYME® and ACE-QK in European OMOTM Color HDL.
- FIG. 34 is a graph showing the relative in-detergent storage stability of CspAmy2 variants v5 and v179 compared to STAINZYME® and ACE-QK in Chinese OMOTM Color HDL.
- FIG. 35 is a graph showing the relative in-detergent storage stability of CspAmy2 variants v5 and v179 compared to STAINZYME® and ACE-QK in Chinese LIBYTM HDL.
- FIG. 36 is a graph showing the relative cleaning performance of PcuAmy1 variants v1, v6, v8, and v16 compared to STAINZYME® and ACE-QK in buffer at pH 8.0. Enzyme doses are noted on the x-axis.
- FIG. 37 is a graph showing the relative thermal stability of PcuAmy1 variants v1, v6, v8, and v16 compared to STAINZYME® in buffer at the temperatures indicated 5 ppm of PcuAmy1 variants and 10 ppm of STAINZYME® were used.
- FIG. 38 is a graph showing the relative thermal stability of ⁇ RG BASE variants incubated for the indicated amounts of time at 95° C.
- FIG. 39 shows a portion of the three-dimensional structure of CspAmy2-v1 highlighting the potential for interaction between a glutamate at position 132 and a threonine at position 180.
- FIG. 40 shows a portion of the three-dimensional structure of CspAmy2-v1 highlighting the potential for interaction between a glutamate at position 132 and a histidine at position 180.
- FIG. 41 shows a portion of the three-dimensional structure of CspAmy2-v1 highlighting the potential for interaction between a glutamate at position 132 and an aspartate at position 180.
- FIG. 42 shows a portion of the three-dimensional structure of CspAmy2-v1 highlighting the potential for interaction between a histidine at position 132 and an aspartate at position 180.
- FIG. 43 is an image of an SDS/PAGE gel showing the cleavage of PcuAmy1-v1 in the presence of increasing amounts of GG36 protease.
- the letters on the right side of the gel indicate (A) intact full-length PcuAmy1-v1, (B) a first cleavage product of PcuAmy1-v1, (C) GG36 protease, (D) a contaminant in the GG36 protein preparation, and (E) a second cleavage product of PcuAmy1-v1.
- FIG. 44 is a graph showing the residual ⁇ -amylase activity of PcuAmy1 and several engineered variants following incubation with GG36 protease.
- FIG. 45 is an image of an SDS/PAGE gel showing the proteolytic cleavage of PcuAmy1 and several engineered variants following incubation with GG36 protease.
- FIG. 46 is a graph showing the stability of PcuAmy1-v1 and several engineered variants following incubation with GG36 protease in MIFA Total detergent for up to 14 days at 37° C.
- FIG. 47 is a graph showing the stability of PcuAmy1-v1 and several engineered variants following incubation with GG36 protease in MIFA Total detergent for 3 or 14 days at 37° C.
- FIG. 48 is a graph showing the stability of PcuAmy1-v1 and several engineered variants following incubation with GG36 protease in Unilever Omo detergent for up to 14 days at 37° C.
- FIG. 49 is a graph showing the stability of PcuAmy1-v1 and several engineered variants following incubation with GG36 protease in Unilever Omo detergent for 3 or 14 days at 37° C.
- FIG. 50 is a graph showing the dose-dependent cleaning performance of PcuAmy1-3B and PcuAmy1-3L in buffer at pH 8.0 compared to two commercial benchmarks.
- FIG. 51 is a graph showing the stability of PcuAmy1-3B and PcuAmy1-3L in Persil Universal Gel Gold detergent compared to two commercial benchmarks.
- FIG. 52 is a graph showing the stability of PcuAmy1-v1 and several engineered variants following incubation with GG36 protease in MIFA Total detergent for 3 or 14 days at 37° C.
- compositions and methods relating to variant amylase enzymes were discovered by a combination of experimental approaches, as detailed in the appended Examples.
- the approaches include the use of site evaluation libraries (SELs) and structure-based analysis.
- Exemplary applications for the variant amylase enzymes are for starch liquefaction and saccharification, for cleaning starchy stains in laundry, dishwashing, and other applications, for textile processing (e.g., desizing), in animal feed for improving digestibility, and and for baking and brewing.
- ⁇ -Amylases are hydrolases that cleave the ⁇ -D-(1 ⁇ 4) O-glycosidic linkages in starch.
- ⁇ -amylases (EC 3.2.1.1; ⁇ -D-(1 ⁇ 4)-glucan glucanohydrolase) are defined as endo-acting enzymes cleaving ⁇ -D-(1 ⁇ 4) O-glycosidic linkages within the starch molecule in a random fashion yielding polysaccharides containing three or more (1-4)- ⁇ -linked D-glucose units.
- exo-acting amylolytic enzymes such as ⁇ -amylases (EC 3.2.1.2; ⁇ -D-(1 ⁇ 4)-glucan maltohydrolase) and some product-specific amylases like maltogenic ⁇ -amylase (EC 3.2.1.133) cleave the polysaccharide molecule from the non-reducing end of the substrate.
- ⁇ -amylases ⁇ -glucosidases (EC 3.2.1.20; ⁇ -D-glucoside glucohydrolase), glucoamylase (EC 3.2.1.3; ⁇ -D-(1 ⁇ 4)-glucan glucohydrolase), and product-specific amylases like the maltotetraosidases (EC 3.2.1.60) and the maltohexaosidases (EC 3.2.1.98) can produce malto-oligosaccharides of a specific length or enriched syrups of specific maltooligosaccharides.
- Enzyme units herein refer to the amount of product formed per time under the specified conditions of the assay.
- a “glucoamylase activity unit” GAU is defined as the amount of enzyme that produces 1 g of glucose per hour from soluble starch substrate (4% DS) at 60° C., pH 4.2.
- a “soluble starch unit” SSU is the amount of enzyme that produces 1 mg of glucose per minute from soluble starch substrate (4% DS) at pH 4.5, 50° C. DS refers to “dry solids.”
- starch refers to any material comprised of the complex polysaccharide carbohydrates of plants, comprised of amylose and amylopectin with the formula (C6H10O5)x, wherein X can be any number.
- the term includes plant-based materials such as grains, cereal, grasses, tubers and roots, and more specifically materials obtained from wheat, barley, corn, rye, rice, sorghum, brans, cassava, millet, milo, potato, sweet potato, and tapioca.
- starch includes granular starch.
- granular starch refers to raw, i.e., uncooked starch, e.g., starch that has not been subject to gelatinization.
- wild-type refers to a naturally-occurring polypeptide that does not include a man-made substitution, insertion, or deletion at one or more amino acid positions.
- wild-type refers to a naturally-occurring polynucleotide that does not include a man-made nucleoside change.
- a polynucleotide encoding a wild-type, parental, or reference polypeptide is not limited to a naturally-occurring polynucleotide, and encompasses any polynucleotide encoding the wild-type, parental, or reference polypeptide.
- a “mature” polypeptide or variant, thereof, is one in which a signal sequence is absent, for example, cleaved from an immature form of the polypeptide during or following expression of the polypeptide.
- variant refers to a polypeptide that differs from a specified wild-type, parental, or reference polypeptide in that it includes one or more naturally-occurring or man-made substitutions, insertions, or deletions of an amino acid.
- variant refers to a polynucleotide that differs in nucleotide sequence from a specified wild-type, parental, or reference polynucleotide. The identity of the wild-type, parental, or reference polypeptide or polynucleotide will be apparent from context.
- activity refers to ⁇ -amylase activity, which can be measured as described, herein.
- performance benefit refers to an improvement in a desirable property of a molecule.
- exemplary performance benefits include, but are not limited to, increased hydrolysis of a starch substrate, increased grain, cereal or other starch substrate liquifaction performance, increased cleaning performance, increased thermal stability, increased detergent stability, increased storage stability, increased solubility, an altered pH profile, decreased calcium dependence, increased specific activity, modified substrate specificity, modified substrate binding, modified pH-dependent activity, modified pH-dependent stability, increased oxidative stability, and increased expression.
- the performance benefit is realized at a relatively low temperature. In some cases, the performance benefit is realized at relatively high temperature.
- protease refers to an enzyme protein that has the ability to perform “proteolysis” or “proteolytic cleavage” which refers to hydrolysis of peptide bonds that link amino acids together in a peptide or polypeptide chain forming the protein. This activity of a protease as a protein-digesting enzyme is referred to as “proteolytic activity.” Many well-known procedures exist for measuring proteolytic activity (See e.g., Kalisz, “Microbial Proteinases,” In: Fiechter (ed.), Advances in Biochemical Engineering/Biotechnology , (1988)).
- proteolytic activity may be ascertained by comparative assays which analyze the respective protease's ability to hydrolyze a commercial substrate.
- Exemplary substrates useful in the analysis of protease or proteolytic activity include, but are not limited to, di-methyl casein (Sigma C-9801), bovine collagen (Sigma C-9879), bovine elastin (Sigma E-1625), and bovine keratin (ICN Biomedical 902111). Colorimetric assays utilizing these substrates are well known in the art (See e.g., WO 99/34011 and U.S. Pat. No. 6,376,450, both of which are incorporated herein by reference).
- the pNA assay (See e.g., Del Mar et al., Anal. Biochem. 99:316-320 [1979]) also finds use in determining the active enzyme concentration for fractions collected during gradient elution.
- This assay measures the rate at which p-nitroaniline is released as the enzyme hydrolyzes a soluble synthetic peptide substrate, such as succinyl-alanine-alanine-proline-phenylalanine-p-nitroanilide (suc-AAPF-pNA), and cleavage occurs between the C-terminal amino acid (phenylalanine) and the p-NA, causing the production of yellow color from the hydrolysis reaction, which is measured at 410 nm on a spectrophotometer and is proportional to the active enzyme concentration. Measurement of the color change allows calculation of the rate of the reaction.
- absorbance measurements at 280 nanometers (nm) can be used to determine the total protein concentration.
- the active enzyme/total protein ratio gives
- Serine protease refers to enzymes that cleave peptide bonds in proteins, in which enzymes serine serves as the nucleophilic amino acid at the enzyme active site. Serine proteases fall into two broad categories based on their structure: chymotrypsin-like (trypsin-like) or subtilisin-like. Most commonly used in laundry and dishwashing detergents are serine protease, particularly subtlisins.
- TIM barrel refers to a three dimensional polypeptide structure that include eight ⁇ -helices and eight parallel ⁇ -strands that alternate along the peptide backbone.
- surface-exposed with respect to an amino acid residue in a polypeptide refers to a residue that is on the exterior surface of a polypeptide when the polypeptide is intact and properly folded, i.e., not denatured or fragmented.
- the structure is referred to as a TIM barrel.
- non-canonical with reference to an amino acid residue in a polypeptide refers to a residue that is not normally found at a given position based on amino acid sequence alignments of similar molecules using Clustal W with default parameter. In some cases, the particular residue is found at a given position in only 1 in 10, 1 in 20, 1 in 30, 1 in 50, or even 1 in 100 similar molecules.
- “Combinatorial variants” are variants comprising two or more mutations, e.g., 2, 3, 4, 5, 6, 7, 8, 9, 10, or more, substitutions, deletions, and/or insertions.
- “Combinable mutations” are mutations at any amino acid position that can be used to make combinatorial variants. Combinable mutations improve at least one desired property of the molecule (in this case, an amylase), while not significantly decreasing either expression, activity, or stability.
- a remaining non-G residue in the calcium-binding loop refers to an amino acid residue in the calcium-binding loop of a variant ⁇ -amylase, which remains in the variant following a deletion of at least one amino acid residue in the calcium-binding loop of a parent ⁇ -amylases, and which is not a glycine residue.
- the non-G residue may be a member of an “XG” pair, of which there are two in most ⁇ -amylases, and may be the remaining non-G residue following a pair-wise deletion of one of the two XG residue pairs in the calcium binding loop of a parent ⁇ -amylase.
- a “stabilizing interaction” between the residue at position 132 (using SEQ ID NO: 1 for numbering) and the remaining non-G residue in the X 1 G/S 1 X 2 G 2 motif (corresponding to residues at positions 178-181 of SEQ ID NO: 1) refers to a hydrogen bond or a salt bridge formed between the side chains of the subject amino acid residues.
- the stabilization can result from charge balancing the interacting residues, such that if one residue is positively charged at a preselected pH, the other is negatively charged, and the overall charge is zero.
- recombinant when used in reference to a subject cell, nucleic acid, protein or vector, indicates that the subject has been modified from its native state.
- recombinant cells express genes that are not found within the native (non-recombinant) form of the cell, or express native genes at different levels or under different conditions than found in nature.
- Recombinant nucleic acids differ from a native sequence by one or more nucleotides and/or are operably linked to heterologous sequences, e.g., a heterologous promoter in an expression vector.
- Recombinant proteins may differ from a native sequence by one or more amino acids and/or are fused with heterologous sequences.
- a vector comprising a nucleic acid encoding an amylase is a recombinant vector.
- isolated refers to a compound, protein (polypeptides), cell, nucleic acid, amino acid, or other specified material or component that is removed from at least one other material or component with which it is naturally associated as found in nature.
- isolated polypeptides includes, but is not limited to, a culture broth containing secreted polypeptide expressed in a heterologous host cell.
- purified refers to material (e.g., an isolated polypeptide or polynucleotide) that is in a relatively pure state, e.g., at least about 90% pure, at least about 95% pure, at least about 98% pure, or even at least about 99% pure.
- enriched refers to material (e.g., an isolated polypeptide or polynucleotide) that is in about 50% pure, at least about 60% pure, at least about 70% pure, or even at least about 70% pure.
- thermostability refers to the ability of the enzyme to retain activity after exposure to an elevated temperature.
- the thermostability of an enzyme is measured by its half-life (t1 ⁇ 2) given in minutes, hours, or days, during which half the enzyme activity is lost under defined conditions.
- the half-life may be calculated by measuring residual ⁇ -amylase activity following exposure to (i.e., challenge by) an elevated temperature.
- pH range refers to the range of pH values under which the enzyme exhibits catalytic activity.
- pH stable and “pH stability,” with reference to an enzyme, relate to the ability of the enzyme to retain activity over a wide range of pH values for a predetermined period of time (e.g., 15 min., 30 min., 1 hour).
- amino acid sequence is synonymous with the terms “polypeptide,” “protein,” and “peptide,” and are used interchangeably. Where such amino acid sequences exhibit activity, they may be referred to as an “enzyme.”
- the conventional one-letter or three-letter codes for amino acid residues are used, with amino acid sequences being presented in the standard amino-to-carboxy terminal orientation (i.e., N ⁇ C).
- nucleic acid encompasses DNA, RNA, heteroduplexes, and synthetic molecules capable of encoding a polypeptide. Nucleic acids may be single stranded or double stranded, and may be chemical modifications. The terms “nucleic acid” and “polynucleotide” are used interchangeably. Because the genetic code is degenerate, more than one codon may be used to encode a particular amino acid, and the present compositions and methods encompass nucleotide sequences that encode a particular amino acid sequence. Unless otherwise indicated, nucleic acid sequences are presented in 5′-to-3′ orientation.
- Hybridization refers to the process by which one strand of nucleic acid forms a duplex with, i.e., base pairs with, a complementary strand, as occurs during blot hybridization techniques and PCR techniques.
- Hybridized, duplex nucleic acids are characterized by a melting temperature (Tm), where one half of the hybridized nucleic acids are unpaired with the complementary strand. Mismatched nucleotides within the duplex lower the Tm.
- a nucleic acid encoding a variant ⁇ -amylase may have a Tm reduced by 1° C.-3° C. or more compared to a duplex formed between the nucleotide of SEQ ID NO: 2 and its identical complement.
- a “synthetic” molecule is produced by in vitro chemical or enzymatic synthesis rather than by an organism.
- transformed means that the cell contains a non-native (e.g., heterologous) nucleic acid sequence integrated into its genome or carried as an episome that is maintained through multiple generations.
- a “host strain” or “host cell” is an organism into which an expression vector, phage, virus, or other DNA construct, including a polynucleotide encoding a polypeptide of interest (e.g., an amylase) has been introduced.
- exemplary host strains are microorganism cells (e.g., bacteria, filamentous fungi, and yeast) capable of expressing the polypeptide of interest and/or fermenting saccharides.
- the term “host cell” includes protoplasts created from cells.
- heterologous with reference to a polynucleotide or protein refers to a polynucleotide or protein that does not naturally occur in a host cell.
- endogenous with reference to a polynucleotide or protein refers to a polynucleotide or protein that occurs naturally in the host cell.
- expression refers to the process by which a polypeptide is produced based on a nucleic acid sequence.
- the process includes both transcription and translation.
- a “selective marker” or “selectable marker” refers to a gene capable of being expressed in a host to facilitate selection of host cells carrying the gene.
- selectable markers include but are not limited to antimicrobials (e.g., hygromycin, bleomycin, or chloramphenicol) and/or genes that confer a metabolic advantage, such as a nutritional advantage on the host cell.
- a “vector” refers to a polynucleotide sequence designed to introduce nucleic acids into one or more cell types.
- Vectors include cloning vectors, expression vectors, shuttle vectors, plasmids, phage particles, cassettes and the like.
- an “expression vector” refers to a DNA construct comprising a DNA sequence encoding a polypeptide of interest, which coding sequence is operably linked to a suitable control sequence capable of effecting expression of the DNA in a suitable host.
- control sequences may include a promoter to effect transcription, an optional operator sequence to control transcription, a sequence encoding suitable ribosome binding sites on the mRNA, enhancers and sequences which control termination of transcription and translation.
- operably linked means that specified components are in a relationship (including but not limited to juxtaposition) permitting them to function in an intended manner.
- a regulatory sequence is operably linked to a coding sequence such that expression of the coding sequence is under control of the regulatory sequences.
- a “signal sequence” is a sequence of amino acids attached to the N-terminal portion of a protein, which facilitates the secretion of the protein outside the cell.
- the mature form of an extracellular protein lacks the signal sequence, which is cleaved off during the secretion process.
- Bioly active refer to a sequence having a specified biological activity, such an enzymatic activity.
- specific activity refers to the number of moles of substrate that can be converted to product by an enzyme or enzyme preparation per unit time under specific conditions. Specific activity is generally expressed as units (U)/mg of protein.
- water hardness is a measure of the minerals (e.g., calcium and magnesium) present in water.
- a “swatch” is a piece of material such as a fabric that has a stain applied thereto.
- the material can be, for example, fabrics made of cotton, polyester or mixtures of natural and synthetic fibers.
- the swatch can further be paper, such as filter paper or nitrocellulose, or a piece of a hard material such as ceramic, metal, or glass.
- the stain is starch based, but can include blood, milk, ink, grass, tea, wine, spinach, gravy, chocolate, egg, cheese, clay, pigment, oil, or mixtures of these compounds.
- a “smaller swatch” is a section of the swatch that has been cut with a single hole punch device, or has been cut with a custom manufactured 96-hole punch device, where the pattern of the multi-hole punch is matched to standard 96-well microtiter plates, or the section has been otherwise removed from the swatch.
- the swatch can be of textile, paper, metal, or other suitable material.
- the smaller swatch can have the stain affixed either before or after it is placed into the well of a 24-, 48- or 96-well microtiter plate.
- the smaller swatch can also be made by applying a stain to a small piece of material.
- the smaller swatch can be a stained piece of fabric 5 ⁇ 8′′ or 0.25′′ in diameter.
- the custom manufactured punch is designed in such a manner that it delivers 96 swatches simultaneously to all wells of a 96-well plate.
- the device allows delivery of more than one swatch per well by simply loading the same 96-well plate multiple times.
- Multi-hole punch devices can be conceived of to deliver simultaneously swatches to any format plate, including but not limited to 24-well, 48-well, and 96-well plates.
- the soiled test platform can be a bead made of metal, plastic, glass, ceramic, or another suitable material that is coated with the soil substrate. The one or more coated beads are then placed into wells of 96-, 48-, or 24-well plates or larger formats, containing suitable buffer and enzyme.
- a cultured cell material comprising an amylase refers to a cell lysate or supernatant (including media) that includes an amylase as a component.
- the cell material may be from a heterologous host that is grown in culture for the purpose of producing the amylase.
- Percent sequence identity means that a particular sequence has at least a certain percentage of amino acid residues identical to those in a specified reference sequence, when aligned using the CLUSTAL W algorithm with default parameters. See Thompson et al. (1994) Nucleic Acids Res. 22:4673-4680. Default parameters for the CLUSTAL W algorithm are:
- Deletions are counted as non-identical residues, compared to a reference sequence. Deletions occurring at either termini are included. For example, a variant with five amino acid deletions of the C-terminus of the mature CspAmy2 polypeptide of SEQ ID NO: 1 would have a percent sequence identity of 99% (612/617 identical residues ⁇ 100, rounded to the nearest whole number) relative to the mature polypeptide. Such a variant would be encompassed by a variant having “at least 99% sequence identity” to a mature amylase polypeptide.
- “Fused” polypeptide sequences are connected, i.e., operably linked, via a peptide bond between two subject polypeptide sequences.
- filamentous fungi refers to all filamentous forms of the subdivision Eumycotina, particularly Pezizomycotina species.
- degree of polymerization refers to the number (n) of anhydro-glucopyranose units in a given saccharide.
- DP1 are the monosaccharides glucose and fructose.
- DP2 are the disaccharides maltose and sucrose.
- DE or “dextrose equivalent,” is defined as the percentage of reducing sugar, i.e., D-glucose, as a fraction of total carbohydrate in a syrup.
- dry solids content refers to the total solids of a slurry in a dry weight percent basis.
- slurry refers to an aqueous mixture containing insoluble solids.
- SSF saccharification and fermentation
- An “ethanologenic microorganism” refers to a microorganism with the ability to convert a sugar or oligosaccharide to ethanol.
- fermented beverage refers to any beverage produced by a method comprising a fermentation process, such as a microbial fermentation, e.g., a bacterial and/or fungal fermentation.
- a fermentation process such as a microbial fermentation, e.g., a bacterial and/or fungal fermentation.
- “Beer” is an example of such a fermented beverage, and the term “beer” is meant to comprise any fermented wort produced by fermentation/brewing of a starch-containing plant material. Often, beer is produced exclusively from malt or adjunct, or any combination of malt and adjunct.
- beers include: full malted beer, beer brewed under the “Rösgebot,” ale, India pale ale, lager, pilsner, bitter, Happoshu (second beer), third beer, dry beer, near beer, light beer, low alcohol beer, low calorie beer, porter, bock, dopplebock, stout, porter, malt liquor, non-alcoholic beer, non-alcoholic malt liquor and the like, but also alternative cereal and malt beverages such as fruit flavored malt beverages, e.g., citrus flavored, such as lemon-, orange-, lime-, or berry-flavored malt beverages, liquor flavored malt beverages, e.g., vodka-, rum-, or tequila-flavored malt liquor, or coffee flavored malt beverages, such as caffeine-flavored malt liquor, and the like.
- fruit flavored malt beverages e.g., citrus flavored, such as lemon-, orange-, lime-, or berry-flavored malt beverages
- liquor flavored malt beverages e.g.
- malt refers to any malted cereal grain, such as malted barley or wheat.
- adjunct refers to any starch and/or sugar containing plant material that is not malt, such as barley or wheat malt.
- adjuncts include common corn grits, refined corn grits, brewer's milled yeast, rice, sorghum, refined corn starch, barley, barley starch, dehusked barley, wheat, wheat starch, torrified cereal, cereal flakes, rye, oats, potato, tapioca, cassava and syrups, such as corn syrup, sugar cane syrup, inverted sugar syrup, barley and/or wheat syrups, and the like.
- biomass refers to an aqueous slurry of any starch and/or sugar containing plant material, such as grist, e.g., comprising crushed barley malt, crushed barley, and/or other adjunct or a combination thereof, mixed with water later to be separated into wort and spent grains.
- wort refers to the unfermented liquor run-off following extracting the grist during mashing.
- Iodine-positive starch or “IPS” refers to (1) amylose that is not hydrolyzed after liquefaction and saccharification, or (2) a retrograded starch polymer.
- IPS a retrograded starch polymer.
- the high DPn amylose or the retrograded starch polymer binds iodine and produces a characteristic blue color.
- the saccharide liquor is thus termed “iodine-positive saccharide,” “blue saccharide,” or “blue sac.”
- starch retrogradation refers to changes that occur spontaneously in a starch paste or gel on ageing.
- compositions and methods are variant amylase enzymes that include combinations of mutations that improve their performance in industrial applications.
- the combinatorial variants were initially discovered using an ⁇ -amylase from Cytophaga sp. (herein, “CspAmy2 amylase”), which was previously described by Jeang, C-L et al. ((2002) Applied and Environmental Microbiology, 68:3651-54).
- the amino acid sequence of the mature form of the CspAmy2 ⁇ -amylase polypeptide is shown below as SEQ ID NO: 1:
- SEQ ID NO: 2 Using SEQ ID NO: 2 as a starting point, a number of combinatorial CspAmy2 variants were initially made and tested as described in the Examples section.
- the best performing variants generally included a stabilizing mutation at an amino acid position corresponding to either E187 or S241, but not both positions, and at least one additional performance-enhancing mutation at amino acid position selected from the group consisting of N126, Y150, F153, L171, T180, and, I203 (using SEQ ID NO: 1 for numbering).
- amino acid sequence of the mature form of the PcuAmy1 ⁇ -amylase polypeptide is shown below as SEQ ID NO: 3:
- SEQ ID NO: 4 The amino acid sequence of a variant form of PcuAmy1 ⁇ -amylase having a deletion of both R177 and R178 (herein, “PcuAmy1-v1”) is shown below as SEQ ID NO: 4:
- SEQ ID NO: 5 The amino acid sequence of a variant form of BASE ⁇ -amylase having a deletion of both R180 and S181 (herein, “ACE”) is shown, below as SEQ ID NO: 6:
- CspAmy2 SEQ ID NO: 1
- PcuAmy1 SEQ ID NO: 3
- BASE SEQ ID NO: 5
- Positions N126, Y150, F153, L171, R178, G179, T180, E187, 1203, and S241 in CspAmy2 correspond to positions N125, Y149, F152, L170, R177, G178, D179, E186, L202, and D240 in PcuAmy1, respectively, and positions N128, Y152, F155, L173, R180, S181, T182, E189, L205, and S243, respectively in BASE. Numbering for other positions through out the molecules can be determined using the alignment and information, herein.
- embodiments of the present variant ⁇ -amylases include variants having a mutation at an amino acid position corresponding to E187 or S241 in combination with at least one mutation at an amino acid position corresponding to a position selected from N126, Y150, F153, L171, T180, and I203 (using SEQ ID NO: 1 for numbering), wherein the mutations provide at least one performance benefit to the resulting variant.
- exemplary mutations at amino acid position E187 include E187V and E187P.
- Exemplary mutations at amino acid position S241 include S241Q and S241A. In some embodiments, mutations are made in only one of these positions.
- Exemplary mutations at amino acid position N126 includes N126Y.
- Exemplary mutations at amino acid position Y150 include Y150F, Y150H, and Y150W.
- Exemplary mutations at amino acid position F153 include F153H, F153W, and F153Y.
- Exemplary mutations at amino acid position L171 include L171F, L171G, L171I, L171M, L171R, L171V, L171W, L171Y, L171H, L171K, L171N, L171Q, and L171S.
- Exemplary mutations at amino acid position T180 include T180D and T180H.
- Exemplary mutations at amino acid position I203 includes I203C, I203V, I203F, I203L, I203M, and I203Y.
- the variant ⁇ -amylases further include a mutation in amino acid residues corresponding to E132, Q167, A277, and/or T400, using SEQ ID NO: 1 for numbering.
- Exemplary mutations at amino acid position E132 include E132A, E132C, E132D, E132F, E132G, E132H, E132I, E132K, E132L, E132M, E132N, E132P, E132Q, E132R, E132V, and E132W.
- Exemplary mutations at amino acid position Q167 include Q167A, Q167D, Q167E, Q167G, Q167H, Q167K, Q167M, Q167N, Q167P, Q167S, Q167T, and Q167V.
- Exemplary mutations at amino acid position A277 include A277C, A277D, A277E, A277F, A277G, A277I, A277K, A277L, A277M, A277N, A277Q, A277R, A277S, A277T, A277V, A277W, and A277Y.
- Exemplary mutations at amino acid position T400 include T400A, T400C, T400D, T400F, T400G, T400I, T400K, T400L, T400M, T400N, T400Q, T400R, T400W, and T400Y.
- the variant ⁇ -amylases further include a mutation in an amino acid residue corresponding to G476, using SEQ ID NO: 1 for numbering.
- Exemplary mutations at amino acid position G476 include G476A, G476C, G476H, G476K, G476N, G476P, G476Q, G476R, G476S, G476T, G476V, and G476Y.
- the variant ⁇ -amylases are those that include, or further include, mutations in both amino acid residues corresponding to G476 and G477, using SEQ ID NO: 1 for numbering.
- SEQ ID NO: 1 for numbering.
- the variant ⁇ -amylases further include mutations in amino acid residues corresponding to R458, T459, and/or D460.
- Exemplary mutations are R458N, T459S, and D460T, respectively.
- the variant ⁇ -amylases further include a deletion in the X 1 G/S 1 X 2 G 2 motif adjacent to the calcium-binding loop corresponding to R178, G179, T180, and G181, using SEQ ID NO: 1 for numbering.
- the variant ⁇ -amylases include adjacent, pair-wise deletions of amino acid residues corresponding to R178 and G179, or T180 and G181.
- a deletion in amino acid residues corresponding to R178 and G179 may be referred to as “ ⁇ RG,” while a deletion in amino acid residues corresponding to T180 and G181 “ ⁇ TG.” This nomenclature will naturally change depending on the amino acid residues originally present in the parent molecule.
- the variant ⁇ -amylases include mutations at positions corresponding to E132 and/or T180 (using SEQ ID NO: 1 for numbering), in combination with an RG-deletion or a TG-deletion (or equivalent deletion based on the sequence of the parent ⁇ -amylases), such that a stabilizing interaction can occur between the remaining non-G residue in the X 1 G/S 1 X 2 G 2 motif and the residue at position 132.
- the residue at position 132 is negatively charged (i.e., D or E) and the remaining non-G residue is positively charged (i.e., H, R, or K).
- the residue at position 132 is positively charged (i.e., H, R, or K) and the remaining non-G residue is negatively charged (i.e., D or E).
- E187P+I203Y+G476K (i.e., CspAmy2-v5); E187P+I203Y+G476K+R458N+T459S+D460T (i.e., CspAmy2-v6); T180D+E187P+I203Y+G476K (i.e., CspAmy2 v171); N126Y+T180D+E187P+I203Y+G476K (i.e., CspAmy2 v172); N126Y+T180D+E187P+I203Y+Y303D+G476T+G477E, (i.e., CspAmy2 v179); N126Y+T180D+E187P+I203Y+Y303D+N475E+G477Q, (i.e., CspAmy2 v180); N126Y+T180D+E187P+I203Y+Y303R+N475E+
- G476K+G477E (i.e., CspAmy2 v186); N126Y+E132H+T180D+E187P+I203Y+Y303D+G476T+G477E, (i.e., CspAmy2 v191); N126Y+E187P+I203Y (i.e., CspAmy2-vC16A); N126Y+I203Y+S241Q (i.e., CspAmy2-vC16B); N126Y+T180H+E187P+I203Y (i.e., CspAmy2-vC16C); N126Y+T180H+I203Y+S241Q (i.e., CspAmy2-vC16D); N126Y+F153W+T180H+E187P+I203Y (i.e., CspAmy2-vC16E); N126Y+F153W+T180H+E187P+I203Y (
- N126Y+F153W+T180D+I203Y+S241Q (i.e., CspAmy2-v C18P);
- N126Y+E132H+F153W+T180D+I203Y+S241Q+A277F i.e., CspAmy2-C25F
- N126Y+E132H+F153W+Q167E+T180D+I203Y+S241Q+A277F+T400K i.e., CspAmy2-C25A.
- deletions are contemplated for use in conjunction with the aforementioned deletions at positions corresponding to R178, G179, T180, and/or G181.
- Such deletions may be naturally occurring, as in the case of Bacillus licheniformis ⁇ -amylase.
- the PcuAmy1 variants may further include mutations at position T333, A335, and Q337E (using SEQ ID NO: 3 numbering). These positions are in a surface-exposed loop and mutations at these positions, particularly at T333, impart protease resistance to PcuAmy1 but do not otherwise affect performance. These mutations also appear to be fully compatible with other mutations.
- a further mutation in PcuAmy1 variants is N205, which mutation changes the wild-type N residue to D. D is the residue that typically occupies this position in ⁇ -amylases.
- the present ⁇ -amylases include the all the exemplary combinations of mutations shown above in the context of CspAmy2, as well as the following exemplary combinations (using SEQ ID NO: 3 numbering) are shown, below:
- N125Y+E186P+T333G+A335S+Q337E+G472K i.e., PcuAmy1-v1A
- N125Y+F152W+E186P+T333G+A335S+Q337E+G472K i.e., PcuAmy1-v6
- N125Y+F152W+E186P+T333G+A335S+Q337E+G472R+G473R i.e., PcuAmy1-v8
- N125Y+F152W+E186P+N205D+T333G+A335S+Q337E+G472K i.e., PcuAmy1-v16
- deletions at positions corresponding to R177, G178, D179, and/or G180 are contemplated for use in conjunction with deletions at positions corresponding to R177, G178, D179, and/or G180, and such deletions may be naturally occurring, as in the case of Bacillus licheniformis ⁇ -amylase.
- N128Y+E189P+G475R i.e., BASE-V28
- F155W+E189P+G475R i.e., BASE-V29
- T134E+T182H+E189P+G475R i.e., BASE-V30
- N128Y+T134E+T182H+E189P+G475R i.e., BASE-V31
- N128Y+F155W+E189P+G475R i.e., BASE-V32
- T134E+F155W+T182H+E189P+G475R i.e., BASE-V33
- N128Y+T134E+F155W+T182H+E189P+G475R i.e., BASE-V34
- N128Y+T134H+F155W+T182D+E189P+G475R i.e., BASE-V35
- N128Y+T134E+F155W+T182G+E189P+G457R i.e., BASE-V36.
- deletions at positions corresponding to R180, S181, T182, and/or G183 are contemplated for use in conjunction with deletions at positions corresponding to R180, S181, T182, and/or G183, and such deletions may be naturally occurring, as in the case of Bacillus licheniformis ⁇ -amylase.
- ⁇ -amylases Corresponding amino acid positions in other ⁇ -amylases be identified by amino acid sequence alignment using CspAmy2 (SEQ ID NO: 1), PcuAmy1 (SEQ ID NO: 3), or BASE (SEQ ID NO: 5), using Clustal W with default parameters.
- ⁇ -amylases in which the foregoing mutations are likely to produce a performance benefit include those having a similar fold and/or having 60% or greater amino acid sequence identity to any of the well-known Bacillus amylases (e.g., from B. licheniformis (i.e., BLA and LAT), B. stearothermophilus (i.e., BSG), and B.
- amyloliquefaciens i.e., P00692, BACAM, and BAA
- Carbohydrate-Active Enzymes database (CAZy) Family 13 amylases or any amylase that has heretofore been referred to by the descriptive term, “Termamyl-like.”
- Exemplary ⁇ -amylases include but are not limited to those from Bacillus sp. SG-1, Bacillus sp. 707, Bacillus sp. DSM12368 (i.e., A7-7), Bacillus sp. DSM 12649 (i.e., AA560), Bacillus sp. SP722, Bacillus megaterium (DSM90 14), and KSM AP1378.
- the present ⁇ -amylase variants have the indicated combinations of mutations and a defined degree of amino acid sequence homology/identity to SEQ ID NO: 1, SEQ ID NO: 3, or SEQ ID NO: 5, for example, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or even at least 99% amino acid sequence homology/identity.
- the present ⁇ -amylase variants have the indicated combinations of mutations and are derived from a parental amylase having a defined degree of amino acid sequence homology/identity to SEQ ID NO: 1, SEQ ID NO: 3, or SEQ ID NO: 5, for example, at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or even at least 99% amino acid sequence homology/identity.
- the present ⁇ -amylases further include one or more mutations that provide a further performance benefit.
- Additional mutations that were experimentally determined to provide at least one performance advantage when combined with the aforementioned combinatorial variants include mutations at positions corresponding to 6, 7, 8, 11, 14, 15, 20, 21, 23, 26, 27, 28, 37, 38, 39, 40, 42, 45, 46, 48, 49, 50, 51, 52, 53, 54, 58, 61, 62, 68, 70, 71, 72, 73, 79, 80, 81, 82, 84, 85, 87, 88, 89, 92, 93, 94, 95, 96, 97, 98, 101, 108, 111, 112, 113, 114, 115, 116, 117, 118, 120, 122, 123, 124, 126, 127, 129, 130, 131, 132, 133, 134, 136, 137, 138, 140, 142
- present amylases may include any number of conservative amino acid substitutions. Exemplary conservative amino acid substitutions are listed in Table 1Table 1. Conservative amino acid substitutions
- the present amylase may be “precursor,” “immature,” or “full-length,” in which case they include a signal sequence, or “mature,” in which case they lack a signal sequence. Mature forms of the polypeptides are generally the most useful. Unless otherwise noted, the amino acid residue numbering used herein refers to the mature forms of the respective amylase polypeptides. The present amylase polypeptides may also be truncated to remove the N or C-termini, so long as the resulting polypeptides retain amylase activity.
- the present amylase may be a “chimeric” or “hybrid” polypeptide, in that it includes at least a portion of a first amylase polypeptide, and at least a portion of a second amylase polypeptide (such chimeric amylases have recently been “rediscovered” as domain-swap amylases).
- the present amylases may further include heterologous signal sequence, an epitope to allow tracking or purification, or the like.
- Exemplary heterologous signal sequences are from B. licheniformis amylase (LAT), B. subtilis (AmyE or AprE), and Streptomyces CelA.
- nucleic acids encoding a variant amylase polypeptide are provided.
- the nucleic acid may encode a particular amylase polypeptide, or an amylase having a specified degree of amino acid sequence identity to the particular amylase.
- the nucleic acid encodes an amylase having at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or even at least 99% homology/identity to SEQ ID NO: 1, SEQ ID NO: 3, or SEQ ID NO: 5 (excluding the portion of the nucleic acid that encodes the signal sequence). It will be appreciated that due to the degeneracy of the genetic code, a plurality of nucleic acids may encode the same polypeptide.
- the nucleic acid hybridizes under stringent or very stringent conditions to a nucleic acid encoding (or complementary to a nucleic acid encoding) an amylase having at least 60%, at least 65%, at least 70%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98% or even at least 99% homology/identity to SEQ ID NO: 1, SEQ ID NO: 3, or SEQ ID NO: 5 (excluding the portion of the nucleic acid that encodes the signal sequence).
- the nucleic acid hybridizes under stringent or very stringent conditions to the nucleic acid of SEQ ID NO: 7, SEQ ID NO: 33, or SEQ ID NO: 38, or to a nucleic acid complementary to these nucleic acids.
- Nucleic acids may encode a “full-length” (“fl” or “FL”) amylase, which includes a signal sequence, only the mature form of an amylase, which lacks the signal sequence, or a truncated form of an amylase, which lacks the N or C-terminus of the mature form.
- fl full-length amylase
- a nucleic acid that encodes a ⁇ -amylase can be operably linked to various promoters and regulators in a vector suitable for expressing the ⁇ -amylase in host cells.
- exemplary promoters are from B. licheniformis amylase (LAT), B. subtilis (AmyE or AprE), and Streptomyces CelA.
- Such a nucleic acid can also be linked to other coding sequences, e.g., to encode a chimeric polypeptide.
- the present variant amylases can be produced in host cells, for example, by secretion or intracellular expression.
- a cultured cell material e.g., a whole-cell broth
- the variant amylase can be isolated from the host cells, or even isolated from the cell broth, depending on the desired purity of the final variant amylase.
- a gene encoding a variant amylase can be cloned and expressed according to methods well known in the art.
- Suitable host cells include bacterial, fungal (including yeast and filamentous fungi), and plant cells (including algae).
- host cells include Aspergillus niger, Aspergillus oryzae or Trichoderma reesei .
- Other host cells include bacterial cells, e.g., Bacillus subtilis or B. licheniformis , as well as Streptomyces.
- the host cell further may express a nucleic acid encoding a homologous or heterologous glucoamylase, i.e., a glucoamylase that is not the same species as the host cell, or one or more other enzymes.
- the glucoamylase may be a variant glucoamylase, such as one of the glucoamylase variants disclosed in U.S. Pat. No. 8,058,033 (Danisco US Inc.), for example.
- the host may express one or more accessory enzymes, proteins, peptides. These may benefit liquefaction, saccharification, fermentation, SSF, etc processes.
- the host cell may produce biochemicals in addition to enzymes used to digest the various feedstock(s). Such host cells may be useful for fermentation or simultaneous saccharification and fermentation processes to reduce or eliminate the need to add enzymes.
- a DNA construct comprising a nucleic acid encoding variant amylases can be constructed to be expressed in a host cell.
- Representative nucleic acids that encode variant amylases include SEQ ID NO: 4. Because of the well-known degeneracy in the genetic code, variant polynucleotides that encode an identical amino acid sequence can be designed and made with routine skill. It is also well-known in the art to optimize codon use for a particular host cell. Nucleic acids encoding variant amylases can be incorporated into a vector. Vectors can be transferred to a host cell using well-known transformation techniques, such as those disclosed below.
- the vector may be any vector that can be transformed into and replicated within a host cell.
- a vector comprising a nucleic acid encoding a variant amylase can be transformed and replicated in a bacterial host cell as a means of propagating and amplifying the vector.
- the vector also may be transformed into an expression host, so that the encoding nucleic acids can be expressed as a functional amylase.
- Host cells that serve as expression hosts can include filamentous fungi, for example.
- the Fungal Genetics Stock Center (FGSC) Catalogue of Strains lists suitable vectors for expression in fungal host cells. See FGSC, Catalogue of Strains, University of Missouri, at www.fgsc.net (last modified Jan. 17, 2007).
- a representative vector is pJG153, a promoter less Cre expression vector that can be replicated in a bacterial host. See Harrison et al. (June 2011) Applied Environ. Microbiol. 77: 3916-22.
- pJG153 can be modified with routine skill to comprise and express a nucleic acid encoding an amylase variant.
- a nucleic acid encoding a variant amylase can be operably linked to a suitable promoter, which allows transcription in the host cell.
- the promoter may be any DNA sequence that shows transcriptional activity in the host cell of choice and may be derived from genes encoding proteins either homologous or heterologous to the host cell.
- Exemplary promoters for directing the transcription of the DNA sequence encoding a variant amylase, especially in a bacterial host, are the promoter of the lac operon of E.
- the Streptomyces coelicolor agarase gene dagA or celA promoters the promoters of the Bacillus licheniformis ⁇ -amylase gene (amyL), the promoters of the Bacillus stearothermophilus maltogenic amylase gene (amyM), the promoters of the Bacillus amyloliquefaciens ⁇ -amylase (amyQ), the promoters of the Bacillus subtilis xylA and xylB genes etc.
- examples of useful promoters are those derived from the gene encoding Aspergillus oryzae TAKA amylase, Rhizomucor miehei aspartic proteinase, Aspergillus niger neutral ⁇ -amylase, A. niger acid stable ⁇ -amylase, A. niger glucoamylase, Rhizomucor miehei lipase, A. oryzae alkaline protease, A. oryzae triose phosphate isomerase, or A. nidulans acetamidase.
- TAKA amylase Rhizomucor miehei aspartic proteinase
- Aspergillus niger neutral ⁇ -amylase A. niger acid stable ⁇ -amylase
- A. niger glucoamylase Rhizomucor miehei lipase
- A. oryzae triose phosphate isomerase or A. ni
- a suitable promoter can be selected, for example, from a bacteriophage promoter including a T7 promoter and a phage lambda promoter.
- suitable promoters for the expression in a yeast species include but are not limited to the Gal 1 and Gal 10 promoters of Saccharomyces cerevisiae and the Pichia pastoris AOX1 or AOX2 promoters.
- cbh1 is an endogenous, inducible promoter from T. reesei . See Liu et al. (2008) “Improved heterologous gene expression in Trichoderma reesei by cellobiohydrolase I gene (cbh1) promoter optimization,” Acta Biochim. Biophys. Sin ( Shanghai ) 40(2): 158-65.
- the coding sequence can be operably linked to a signal sequence.
- the DNA encoding the signal sequence may be the DNA sequence naturally associated with the amylase gene to be expressed or from a different Genus or species.
- a signal sequence and a promoter sequence comprising a DNA construct or vector can be introduced into a fungal host cell and can be derived from the same source.
- the signal sequence is the cbh1 signal sequence that is operably linked to a cbh1 promoter.
- An expression vector may also comprise a suitable transcription terminator and, in eukaryotes, polyadenylation sequences operably linked to the DNA sequence encoding a variant amylase. Termination and polyadenylation sequences may suitably be derived from the same sources as the promoter.
- the vector may further comprise a DNA sequence enabling the vector to replicate in the host cell.
- sequences are the origins of replication of plasmids pUC19, pACYC177, pUB110, pE194, pAMB1, and pIJ702.
- the vector may also comprise a selectable marker, e.g., a gene the product of which complements a defect in the isolated host cell, such as the dal genes from B. subtilis or B. licheniformis , or a gene that confers antibiotic resistance such as, e.g., ampicillin, kanamycin, chloramphenicol or tetracycline resistance.
- a selectable marker e.g., a gene the product of which complements a defect in the isolated host cell, such as the dal genes from B. subtilis or B. licheniformis , or a gene that confers antibiotic resistance such as, e.g., ampicillin, kanamycin, chloramphenicol or tetracycline resistance.
- the vector may comprise Aspergillus selection markers such as amdS, argB, niaD and xxsC, a marker giving rise to hygromycin resistance, or the selection may be accomplished by co-transformation, such as known in the
- Intracellular expression may be advantageous in some respects, e.g., when using certain bacteria or fungi as host cells to produce large amounts of amylase for subsequent enrichment or purification.
- Extracellular secretion of amylase into the culture medium can also be used to make a cultured cell material comprising the isolated amylase.
- the expression vector typically includes the components of a cloning vector, such as, for example, an element that permits autonomous replication of the vector in the selected host organism and one or more phenotypically detectable markers for selection purposes.
- the expression vector normally comprises control nucleotide sequences such as a promoter, operator, ribosome binding site, translation initiation signal and optionally, a repressor gene or one or more activator genes.
- the expression vector may comprise a sequence coding for an amino acid sequence capable of targeting the amylase to a host cell organelle such as a peroxisome, or to a particular host cell compartment.
- a targeting sequence includes but is not limited to the sequence, SKL.
- the nucleic acid sequence of the amylase is operably linked to the control sequences in proper manner with respect to expression.
- An isolated cell is advantageously used as a host cell in the recombinant production of an amylase.
- the cell may be transformed with the DNA construct encoding the enzyme, conveniently by integrating the DNA construct (in one or more copies) in the host chromosome. This integration is generally considered to be an advantage, as the DNA sequence is more likely to be stably maintained in the cell. Integration of the DNA constructs into the host chromosome may be performed according to conventional methods, e.g., by homologous or heterologous recombination. Alternatively, the cell may be transformed with an expression vector as described above in connection with the different types of host cells.
- suitable bacterial host organisms are Gram positive bacterial species such as Bacillaceae including Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Bacillus brevis, Geobacillus (formerly Bacillus ) stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus coagulans, Bacillus lautus, Bacillus megaterium , and Bacillus thuringiensis; Streptomyces species such as Streptomyces murinus ; lactic acid bacterial species including Lactococcus sp. such as Lactococcus lactis; Lactobacillus sp.
- Bacillaceae including Bacillus subtilis, Bacillus licheniformis, Bacillus lentus, Bacillus brevis, Geobacillus (formerly Bacillus ) stearothermophilus, Bacillus alkalophilus, Bacillus amyloliquefaciens, Bacillus
- strains of a Gram negative bacterial species belonging to Enterobacteriaceae including E. coli , or to Pseudomonadaceae can be selected as the host organism.
- a suitable yeast host organism can be selected from the biotechnologically relevant yeasts species such as but not limited to yeast species such as Pichia sp., Hansenula sp., or Kluyveromyces, Yarrowinia, Schizosaccharomyces species or a species of Saccharomyces , including Saccharomyces cerevisiae or a species belonging to Schizosaccharomyces such as, for example, S. pombe .
- a strain of the methylotrophic yeast species, Pichia pastoris can be used as the host organism.
- the host organism can be a Hansenula species.
- Suitable host organisms among filamentous fungi include species of Aspergillus , e.g., Aspergillus niger, Aspergillus oryzae, Aspergillus tubigensis, Aspergillus awamori , or Aspergillus nidulans.
- strains of a Fusarium sp. e.g., Fusarium oxysporum or of a Rhizomucor sp. such as Rhizomucor miehei can be used as the host organism.
- Other suitable strains include Thermomyces and Mucor sp.
- Trichoderma sp. can be used as a host.
- a suitable procedure for transformation of Aspergillus host cells includes, for example, that described in EP238023.
- An amylase expressed by a fungal host cell can be glycosylated, i.e., will comprise a glycosyl moiety.
- the glycosylation pattern can be the same or different as present in the wild-type amylase.
- the type and/or degree of glycosylation may impart changes in enzymatic and/or biochemical properties.
- Gene inactivation may be accomplished by complete or partial deletion, by insertional inactivation or by any other means that renders a gene nonfunctional for its intended purpose, such that the gene is prevented from expression of a functional protein.
- Any gene from a Trichoderma sp. or other filamentous fungal host that has been cloned can be deleted, for example, cbh1, cbh2, egl1, and egl2 genes.
- Gene deletion may be accomplished by inserting a form of the desired gene to be inactivated into a plasmid by methods known in the art.
- Introduction of a DNA construct or vector into a host cell includes techniques such as transformation; electroporation; nuclear microinjection; transduction; transfection, e.g., lipofection mediated and DEAE-Dextrin mediated transfection; incubation with calcium phosphate DNA precipitate; high velocity bombardment with DNA-coated microprojectiles; and protoplast fusion.
- General transformation techniques are known in the art. See, e.g., Sambrook et al. (2001), supra.
- the expression of heterologous protein in Trichoderma is described, for example, in U.S. Pat. No. 6,022,725. Reference is also made to Cao et al. (2000) Science 9:991-1001 for transformation of Aspergillus strains.
- Genetically stable transformants can be constructed with vector systems whereby the nucleic acid encoding an amylase is stably integrated into a host cell chromosome. Transformants are then selected and purified by known techniques.
- Trichoderma sp. for transformation may involve the preparation of protoplasts from fungal mycelia. See Campbell et al. (1989) Curr. Genet. 16: 53-56.
- the mycelia can be obtained from germinated vegetative spores.
- the mycelia are treated with an enzyme that digests the cell wall, resulting in protoplasts.
- the protoplasts are protected by the presence of an osmotic stabilizer in the suspending medium.
- These stabilizers include sorbitol, mannitol, potassium chloride, magnesium sulfate, and the like. Usually the concentration of these stabilizers varies between 0.8 M and 1.2 M, e.g., a 1.2 M solution of sorbitol can be used in the suspension medium.
- Uptake of DNA into the host Trichoderma sp. strain depends upon the calcium ion concentration. Generally, between about 10-50 mM CaCl2 is used in an uptake solution. Additional suitable compounds include a buffering system, such as TE buffer (10 mM Tris, pH 7.4; 1 mM EDTA) or 10 mM MOPS, pH 6.0 and polyethylene glycol. The polyethylene glycol is believed to fuse the cell membranes, thus permitting the contents of the medium to be delivered into the cytoplasm of the Trichoderma sp. strain. This fusion frequently leaves multiple copies of the plasmid DNA integrated into the host chromosome.
- TE buffer 10 mM Tris, pH 7.4; 1 mM EDTA
- MOPS pH 6.0
- polyethylene glycol polyethylene glycol
- Trichoderma sp. usually uses protoplasts or cells that have been subjected to a permeability treatment, typically at a density of 10 5 to 10 7 /mL, particularly 2 ⁇ 10 6 /mL.
- a volume of 100 ⁇ L of these protoplasts or cells in an appropriate solution e.g., 1.2 M sorbitol and 50 mM CaCl 2
- an appropriate solution e.g., 1.2 M sorbitol and 50 mM CaCl 2
- PEG a high concentration of PEG is added to the uptake solution. From 0.1 to 1 volume of 25% PEG 4000 can be added to the protoplast suspension; however, it is useful to add about 0.25 volumes to the protoplast suspension.
- Additives such as dimethyl sulfoxide, heparin, spermidine, potassium chloride and the like, may also be added to the uptake solution to facilitate transformation. Similar procedures are available for other fungal host cells. See, e.g., U.S. Pat. No. 6,022,725.
- a method of producing an amylase may comprise cultivating a host cell as described above under conditions conducive to the production of the enzyme and recovering the enzyme from the cells and/or culture medium.
- the medium used to cultivate the cells may be any conventional medium suitable for growing the host cell in question and obtaining expression of an amylase. Suitable media and media components are available from commercial suppliers or may be prepared according to published recipes (e.g., as described in catalogues of the American Type Culture Collection).
- An enzyme secreted from the host cells can be used in a whole broth preparation.
- the preparation of a spent whole fermentation broth of a recombinant microorganism can be achieved using any cultivation method known in the art resulting in the expression of an ⁇ -amylase. Fermentation may, therefore, be understood as comprising shake flask cultivation, small- or large-scale fermentation (including continuous, batch, fed-batch, or solid state fermentations) in laboratory or industrial fermenters performed in a suitable medium and under conditions allowing the amylase to be expressed or isolated.
- the term “spent whole fermentation broth” is defined herein as unfractionated contents of fermentation material that includes culture medium, extracellular proteins (e.g., enzymes), and cellular biomass. It is understood that the term “spent whole fermentation broth” also encompasses cellular biomass that has been lysed or permeabilized using methods well known in the art.
- An enzyme secreted from the host cells may conveniently be recovered from the culture medium by well-known procedures, including separating the cells from the medium by centrifugation or filtration, and precipitating proteinaceous components of the medium by means of a salt such as ammonium sulfate, followed by the use of chromatographic procedures such as ion exchange chromatography, affinity chromatography, or the like.
- the polynucleotide encoding an amylase in a vector can be operably linked to a control sequence that is capable of providing for the expression of the coding sequence by the host cell, i.e. the vector is an expression vector.
- the control sequences may be modified, for example by the addition of further transcriptional regulatory elements to make the level of transcription directed by the control sequences more responsive to transcriptional modulators.
- the control sequences may in particular comprise promoters.
- Host cells may be cultured under suitable conditions that allow expression of an amylase.
- Expression of the enzymes may be constitutive such that they are continually produced, or inducible, requiring a stimulus to initiate expression.
- protein production can be initiated when required by, for example, addition of an inducer substance to the culture medium, for example dexamethasone or IPTG or Sophorose.
- Polypeptides can also be produced recombinantly in an in vitro cell-free system, such as the TNTTM (Promega) rabbit reticulocyte system.
- An expression host also can be cultured in the appropriate medium for the host, under aerobic conditions. Shaking or a combination of agitation and aeration can be provided, with production occurring at the appropriate temperature for that host, e.g., from about 25° C. to about 75° C. (e.g., 30° C. to 45° C.), depending on the needs of the host and production of the desired variant amylase. Culturing can occur from about 12 to about 100 hours or greater (and any hour value there between, e.g., from 24 to 72 hours). Typically, the culture broth is at a pH of about 4.0 to about 8.0, again depending on the culture conditions needed for the host relative to production of an amylase.
- assays can measure the expressed protein, corresponding mRNA, or ⁇ -amylase activity.
- suitable assays include Northern blotting, reverse transcriptase polymerase chain reaction, and in situ hybridization, using an appropriately labeled hybridizing probe.
- Suitable assays also include measuring amylase activity in a sample, for example, by assays directly measuring reducing sugars such as glucose in the culture media. For example, glucose concentration may be determined using glucose reagent kit No. 15-UV (Sigma Chemical Co.) or an instrument, such as Technicon Autoanalyzer.
- ⁇ -amylase activity also may be measured by any known method, such as the PAHBAH or ABTS assays, described below.
- Fermentation, separation, and concentration techniques are well known in the art and conventional methods can be used in order to prepare a concentrated a variant ⁇ -amylase polypeptide-containing solution.
- a fermentation broth is obtained, the microbial cells and various suspended solids, including residual raw fermentation materials, are removed by conventional separation techniques in order to obtain an amylase solution. Filtration, centrifugation, microfiltration, rotary vacuum drum filtration, ultrafiltration, centrifugation followed by ultrafiltration, extraction, or chromatography, or the like, are generally used.
- the enzyme containing solution is concentrated using conventional concentration techniques until the desired enzyme level is obtained. Concentration of the enzyme containing solution may be achieved by any of the techniques discussed herein. Exemplary methods of enrichment and purification include but are not limited to rotary vacuum filtration and/or ultrafiltration.
- the enzyme solution is concentrated into a concentrated enzyme solution until the enzyme activity of the concentrated variant ⁇ -amylase polypeptide-containing solution is at a desired level.
- Concentration may be performed using, e.g., a precipitation agent, such as a metal halide precipitation agent.
- a precipitation agent such as a metal halide precipitation agent.
- Metal halide precipitation agents include but are not limited to alkali metal chlorides, alkali metal bromides and blends of two or more of these metal halides.
- Exemplary metal halides include sodium chloride, potassium chloride, sodium bromide, potassium bromide and blends of two or more of these metal halides.
- the metal halide precipitation agent, sodium chloride can also be used as a preservative.
- the metal halide precipitation agent is used in an amount effective to precipitate an amylase.
- the selection of at least an effective amount and an optimum amount of metal halide effective to cause precipitation of the enzyme, as well as the conditions of the precipitation for maximum recovery including incubation time, pH, temperature and concentration of enzyme, will be readily apparent to one of ordinary skill in the art, after routine testing.
- the concentration of the metal halide precipitation agent will depend, among others, on the nature of the specific variant ⁇ -amylase polypeptide and on its concentration in the concentrated enzyme solution.
- organic compound precipitating agents include: 4-hydroxybenzoic acid, alkali metal salts of 4-hydroxybenzoic acid, alkyl esters of 4-hydroxybenzoic acid, and blends of two or more of these organic compounds.
- the addition of the organic compound precipitation agents can take place prior to, simultaneously with or subsequent to the addition of the metal halide precipitation agent, and the addition of both precipitation agents, organic compound and metal halide, may be carried out sequentially or simultaneously.
- the organic precipitation agents are selected from the group consisting of alkali metal salts of 4-hydroxybenzoic acid, such as sodium or potassium salts, and linear or branched alkyl esters of 4-hydroxybenzoic acid, wherein the alkyl group contains from 1 to 12 carbon atoms, and blends of two or more of these organic compounds.
- the organic compound precipitation agents can be, for example, linear or branched alkyl esters of 4-hydroxybenzoic acid, wherein the alkyl group contains from 1 to 10 carbon atoms, and blends of two or more of these organic compounds.
- Exemplary organic compounds are linear alkyl esters of 4-hydroxybenzoic acid, wherein the alkyl group contains from 1 to 6 carbon atoms, and blends of two or more of these organic compounds.
- Methyl esters of 4-hydroxybenzoic acid, propyl esters of 4-hydroxybenzoic acid, butyl ester of 4-hydroxybenzoic acid, ethyl ester of 4-hydroxybenzoic acid and blends of two or more of these organic compounds can also be used.
- Additional organic compounds also include but are not limited to 4-hydroxybenzoic acid methyl ester (named methyl PARABEN), 4-hydroxybenzoic acid propyl ester (named propyl PARABEN), which also are both amylase preservative agents.
- methyl PARABEN 4-hydroxybenzoic acid methyl ester
- propyl PARABEN 4-hydroxybenzoic acid propyl ester
- Addition of the organic compound precipitation agent provides the advantage of high flexibility of the precipitation conditions with respect to pH, temperature, variant amylase concentration, precipitation agent concentration, and time of incubation.
- the organic compound precipitation agent is used in an amount effective to improve precipitation of the enzyme by means of the metal halide precipitation agent.
- the selection of at least an effective amount and an optimum amount of organic compound precipitation agent, as well as the conditions of the precipitation for maximum recovery including incubation time, pH, temperature and concentration of enzyme, will be readily apparent to one of ordinary skill in the art, in light of the present disclosure, after routine testing.
- organic compound precipitation agent is added to the concentrated enzyme solution and usually at least about 0.02% w/v. Generally, no more than about 0.3% w/v of organic compound precipitation agent is added to the concentrated enzyme solution and usually no more than about 0.2% w/v.
- the concentrated polypeptide solution containing the metal halide precipitation agent, and the organic compound precipitation agent, can be adjusted to a pH, which will, of necessity, depend on the enzyme to be enriched or purified.
- the pH is adjusted at a level near the isoelectric point of the amylase.
- the pH can be adjusted at a pH in a range from about 2.5 pH units below the isoelectric point (pI) up to about 2.5 pH units above the isoelectric point.
- the incubation time necessary to obtain an enriched or purified enzyme precipitate depends on the nature of the specific enzyme, the concentration of enzyme, and the specific precipitation agent(s) and its (their) concentration. Generally, the time effective to precipitate the enzyme is between about 1 to about 30 hours; usually it does not exceed about 25 hours. In the presence of the organic compound precipitation agent, the time of incubation can still be reduced to less about 10 hours and in most cases even about 6 hours.
- the temperature during incubation is between about 4° C. and about 50° C.
- the method is carried out at a temperature between about 10° C. and about 45° C. (e.g., between about 20° C. and about 40° C.).
- the optimal temperature for inducing precipitation varies according to the solution conditions and the enzyme or precipitation agent(s) used.
- the overall recovery of enriched or purified enzyme precipitate, and the efficiency with which the process is conducted, is improved by agitating the solution comprising the enzyme, the added metal halide and the added organic compound.
- the agitation step is done both during addition of the metal halide and the organic compound, and during the subsequent incubation period. Suitable agitation methods include mechanical stirring or shaking, vigorous aeration, or any similar technique.
- the enriched or purified enzyme is then separated from the dissociated pigment and other impurities and collected by conventional separation techniques, such as filtration, centrifugation, microfiltration, rotary vacuum filtration, ultrafiltration, press filtration, cross membrane microfiltration, cross flow membrane microfiltration, or the like. Further enrichment or purification of the enzyme precipitate can be obtained by washing the precipitate with water. For example, the enriched or purified enzyme precipitate is washed with water containing the metal halide precipitation agent, or with water containing the metal halide and the organic compound precipitation agents.
- a variant ⁇ -amylase polypeptide accumulates in the culture broth.
- the culture broth is centrifuged or filtered to eliminate cells, and the resulting cell-free liquid is used for enzyme enrichment or purification.
- the cell-free broth is subjected to salting out using ammonium sulfate at about 70% saturation; the 70% saturation-precipitation fraction is then dissolved in a buffer and applied to a column such as a Sephadex G-100 column, and eluted to recover the enzyme-active fraction.
- a conventional procedure such as ion exchange chromatography may be used.
- Enriched or purified enzymes are useful for laundry and cleaning applications. For example, they can be used in laundry detergents and spot removers. They can be made into a final product that is either liquid (solution, slurry) or solid (granular, powder).
- a Toyopearl HW55 column (Tosoh Bioscience, Montgomeryville, Pa.; Cat. No. 19812) was equilibrated with 20 mM Tris/HCl buffer (pH 7.0) containing 5 mM CaCl2 and 1.5 M (NH4)2SO4.
- the enzyme was eluted with a linear gradient of 1.5 to 0 M (NH 4 ) 2 SO 4 in 20 mM Tris/HCL buffer, pH 7.0 containing 5 mM CaCl 2 .
- the active fractions were collected, and the enzyme precipitated with (NH 4 ) 2 SO 4 at 80% saturation. The precipitate was recovered, re-dissolved, and dialyzed as described above.
- the dialyzed sample was then applied to a Mono Q HR5/5 column (Amersham Pharmacia; Cat. No. 17-5167-01) previously equilibrated with 20 mM Tris/HCl buffer (pH 7.0) containing 5 mM CaCl 2 , at a flow rate of 60 mL/hour.
- the active fractions are collected and added to a 1.5 M (NH 4 ) 2 SO 4 solution.
- the active enzyme fractions were re-chromatographed on a Toyopearl HW55 column, as before, to yield a homogeneous enzyme as determined by SDS-PAGE. See, e.g., Sumitani et al. (2000) Biochem. J. 350: 477-484, for general discussion of the method and variations thereon.
- variant ⁇ -amylase polypeptides can be enriched or partially purified as generally described above by removing cells via flocculation with polymers.
- the enzyme can be enriched or purified by microfiltration followed by concentration by ultrafiltration using available membranes and equipment.
- the enzyme does not need to be enriched or purified, and whole broth culture can be lysed and used without further treatment. The enzyme can then be processed, for example, into granules.
- variant amylases are useful for a variety of industrial applications.
- variant amylases are useful in a starch conversion process, particularly in a saccharification process of a starch that has undergone liquefaction.
- the desired end-product may be any product that may be produced by the enzymatic conversion of the starch substrate.
- the desired product may be a syrup rich in glucose and maltose, which can be used in other processes, such as the preparation of HFCS, or which can be converted into a number of other useful products, such as ascorbic acid intermediates (e.g., gluconate; 2-keto-L-gulonic acid; 5-keto-gluconate; and 2,5-diketogluconate); 1,3-propanediol; aromatic amino acids (e.g., tyrosine, phenylalanine and tryptophan); organic acids (e.g., lactate, pyruvate, succinate, isocitrate, and oxaloacetate); amino acids (e.g., serine and glycine); antibiotics; antimicrobials; enzymes; vitamins; and hormones.
- ascorbic acid intermediates e.g., gluconate; 2-keto-L-gulonic acid; 5-keto-gluconate; and 2,5-diketogluconate
- the starch conversion process may be a precursor to, or simultaneous with, a fermentation process designed to produce alcohol for fuel or drinking (i.e., potable alcohol).
- a fermentation process designed to produce alcohol for fuel or drinking (i.e., potable alcohol).
- One skilled in the art is aware of various fermentation conditions that may be used in the production of these end-products.
- Variant amylases are also useful in compositions and methods of food preparation. These various uses of variant amylases are described in more detail below.
- a useful starch substrate may be obtained from tubers, roots, stems, legumes, cereals or whole grain. More specifically, the granular starch may be obtained from corn, cobs, wheat, barley, rye, triticale, milo, sago, millet, cassava, tapioca, sorghum, rice, peas, bean, banana, or potatoes. Corn contains about 60-68% starch; barley contains about 55-65% starch; millet contains about 75-80% starch; wheat contains about 60-65% starch; and polished rice contains 70-72% starch.
- starch substrates are corn starch and wheat starch.
- the starch from a grain may be ground or whole and includes corn solids, such as kernels, bran and/or cobs.
- the starch may also be highly refined raw starch or feedstock from starch refinery processes.
- Various starches also are commercially available.
- corn starch is available from Cerestar, Sigma, and Katayama Chemical Industry Co. (Japan); wheat starch is available from Sigma; sweet potato starch is available from Wako Pure Chemical Industry Co. (Japan); and potato starch is available from Nakaari Chemical Pharmaceutical Co. (Japan).
- the starch substrate can be a crude starch from milled whole grain, which contains non-starch fractions, e.g., germ residues and fibers.
- Milling may comprise either wet milling or dry milling or grinding.
- wet milling whole grain is soaked in water or dilute acid to separate the grain into its component parts, e.g., starch, protein, germ, oil, kernel fibers.
- Wet milling efficiently separates the germ and meal (i.e., starch granules and protein) and is especially suitable for production of syrups.
- whole kernels are ground into a fine powder and often processed without fractionating the grain into its component parts. In some cases, oils from the kernels are recovered.
- Dry ground grain thus will comprise significant amounts of non-starch carbohydrate compounds, in addition to starch. Dry grinding of the starch substrate can be used for production of ethanol and other biochemicals.
- the starch to be processed may be a highly refined starch quality, for example, at least 90%, at least 95%, at least 97%, or at least 99.5% pure.
- the term “liquefaction” or “liquefy” means a process by which starch is converted to less viscous and shorter chain dextrins. Generally, this process involves gelatinization of starch simultaneously with or followed by the addition of an ⁇ -amylase, although additional liquefaction-inducing enzymes optionally may be added.
- the starch substrate prepared as described above is slurried with water.
- the starch slurry may contain starch as a weight percent of dry solids of about 10-55%, about 20-45%, about 30-45%, about 30-40%, or about 30-35%.
- ⁇ -amylase may be added to the slurry, with a metering pump, for example.
- the ⁇ -amylase typically used for this application is a thermally stable, bacterial ⁇ -amylase, such as a Geobacillus stearothermophilus ⁇ -amylase.
- the ⁇ -amylase is usually supplied, for example, at about 1500 units per kg dry matter of starch.
- the pH of the slurry typically is adjusted to about pH 5.5-6.5 and about 1 mM of calcium (about 40 ppm free calcium ions) can also be added.
- Bacterial ⁇ -amylase remaining in the slurry following liquefaction may be deactivated via a number of methods, including lowering the pH in a subsequent reaction step or by removing calcium from the slurry in cases where the enzyme is dependent upon calcium.
- the slurry of starch plus the ⁇ -amylase may be pumped continuously through a jet cooker, which is steam heated to 105° C. Gelatinization occurs rapidly under these conditions, and the enzymatic activity, combined with the significant shear forces, begins the hydrolysis of the starch substrate.
- the residence time in the jet cooker is brief.
- the partly gelatinized starch may be passed into a series of holding tubes maintained at 105-110° C. and held for 5-8 min. to complete the gelatinization process (“primary liquefaction”).
- Hydrolysis to the required DE is completed in holding tanks at 85-95° C. or higher temperatures for about 1 to 2 hours (“secondary liquefaction”). These tanks may contain baffles to discourage back mixing.
- minutes of secondary liquefaction refers to the time that has elapsed from the start of secondary liquefaction to the time that the Dextrose Equivalent (DE) is measured.
- the slurry is then allowed to cool to room temperature. This cooling step can be 30 minutes to 180 minutes, e.g., 90 minutes to 120 minutes.
- the liquefied starch typically is in the form of a slurry having a dry solids content (w/w) of about 10-50%; about 10-45%; about 15-40%; about 20-40%; about 25-40%; or about 25-35%.
- Liquefaction with variant amylases advantageously can be conducted at low pH, eliminating the requirement to adjust the pH to about pH 5.5-6.5.
- Variants amylases can be used for liquefaction at a pH range of 2 to 7, e.g., pH 3.0-7.5, pH 4.0-6.0, or pH 4.5-5.8.
- Variant amylases can maintain liquefying activity at a temperature range of about 85° C.-95° C., e.g., 85° C., 90° C., or 95° C.
- liquefaction can be conducted with 800 ⁇ g an amylase in a solution of 25% DS corn starch for 10 min at pH 5.8 and 85° C., or pH 4.5 and 95° C., for example.
- Liquefying activity can be assayed using any of a number of known viscosity assays in the art.
- starch liquifaction is performed at a temperature range of 90-115° C., for the purpose of producing high-purity glucose syrups, HFCS, maltodextrins, etc.
- the liquefied starch can be saccharified into a syrup rich in lower DP (e.g., DP1+DP2) saccharides, using variant amylases, optionally in the presence of another enzyme(s).
- DP e.g., DP1+DP2
- the syrup obtainable using the provided variant amylases may contain a weight percent of DP2 of the total oligosaccharides in the saccharified starch exceeding 30%, e.g., 45%-65% or 55%-65%.
- the weight percent of (DP1+DP2) in the saccharified starch may exceed about 70%, e.g., 75%-85% or 80%-85%.
- the present amylases also produce a relatively high yield of glucose, e.g., DP1>20%, in the syrup product.
- Saccharification is often conducted as a batch process. Saccharification typically is most effective at temperatures of about 60-65° C. and a pH of about 4.0-4.5, e.g., pH 4.3, necessitating cooling and adjusting the pH of the liquefied starch. Saccharification may be performed, for example, at a temperature between about 40° C., about 50° C., or about 55° C. to about 60° C. or about 65° C. Saccharification is normally conducted in stirred tanks, which may take several hours to fill or empty. Enzymes typically are added either at a fixed ratio to dried solids as the tanks are filled or added as a single dose at the commencement of the filling stage.
- a saccharification reaction to make a syrup typically is run over about 24-72 hours, for example, 24-48 hours.
- the reaction is stopped by heating to 85° C. for 5 min., for example. Further incubation will result in a lower DE, eventually to about 90 DE, as accumulated glucose re-polymerizes to isomaltose and/or other reversion products via an enzymatic reversion reaction and/or with the approach of thermodynamic equilibrium.
- saccharification optimally is conducted at a temperature range of about 30° C. to about 75° C., e.g., 45° C.-75° C. or 47° C.-74° C.
- the saccharifying may be conducted over a pH range of about pH 3 to about pH 7, e.g., pH 3.0-pH 7.5, pH 3.5-pH 5.5, pH 3.5, pH 3.8, or pH 4.5.
- An ⁇ -amylase may be added to the slurry in the form of a composition.
- An ⁇ -amylase can be added to a slurry of a granular starch substrate in an amount of about 0.6-10 ppm ds, e.g., 2 ppm ds.
- An ⁇ -amylase can be added as a whole broth, clarified, enriched, partially purified, or purified enzyme.
- the specific activity of the amylase may be about 300 U/mg of enzyme, for example, measured with the PAHBAH assay.
- the ⁇ -amylase also can be added as a whole broth product.
- An ⁇ -amylase may be added to the slurry as an isolated enzyme solution.
- an ⁇ -amylase can be added in the form of a cultured cell material produced by host cells expressing an amylase.
- An ⁇ -amylase may also be secreted by a host cell into the reaction medium during the fermentation or SSF process, such that the enzyme is provided continuously into the reaction.
- the host cell producing and secreting amylase may also express an additional enzyme, such as a glucoamylase.
- U.S. Pat. No. 5,422,267 discloses the use of a glucoamylase in yeast for production of alcoholic beverages.
- a host cell e.g., Trichoderma reesei or Aspergillus niger
- a host cell may be engineered to co-express an ⁇ -amylase and a glucoamylase, e.g., HgGA, TrGA, or a TrGA variant, during saccharification.
- the host cell can be genetically modified so as not to express its endogenous glucoamylase and/or other enzymes, proteins or other materials.
- the host cell can be engineered to express a broad spectrum of various saccharolytic enzymes.
- the recombinant yeast host cell can comprise nucleic acids encoding a glucoamylase, an alpha-glucosidase, an enzyme that utilizes pentose sugar, an ⁇ -amylase, a pullulanase, an isoamylase, and/or an isopullulanase. See, e.g., WO 2011/153516 A2.
- the soluble starch hydrolysate produced by treatment with amylase can be converted into high fructose starch-based syrup (HFSS), such as high fructose corn syrup (HFCS).
- HFSS high fructose starch-based syrup
- This conversion can be achieved using a glucose isomerase, particularly a glucose isomerase immobilized on a solid support.
- the pH is increased to about 6.0 to about 8.0, e.g., pH 7.5 (depending on the isomerase), and Ca 2+ is removed by ion exchange.
- Suitable isomerases include SWEETZYME®, IT (Novozymes A/S); G-ZYME® IMGI, and G-ZYME® G993, KETOMAX®, G-ZYME® G993, G-ZYME® G993 liquid, and GENSWEET® IGI.
- the mixture typically contains about 40-45% fructose, e.g., 42% fructose.
- the soluble starch hydrolysate can be fermented by contacting the starch hydrolysate with a fermenting organism typically at a temperature around 32° C., such as from 30° C. to 35° C. for alcohol-producing yeast.
- a fermenting organism typically at a temperature around 32° C., such as from 30° C. to 35° C. for alcohol-producing yeast.
- the temperature and pH of the fermentation will depend upon the fermenting organism.
- EOF products include metabolites, such as citric acid, lactic acid, succinic acid, monosodium glutamate, gluconic acid, sodium gluconate, calcium gluconate, potassium gluconate, itaconic acid and other carboxylic acids, glucono delta-lactone, sodium erythorbate, lysine and other amino acids, omega 3 fatty acid, butanol, isoprene, 1,3-propanediol and other biomaterials.
- metabolites such as citric acid, lactic acid, succinic acid, monosodium glutamate, gluconic acid, sodium gluconate, calcium gluconate, potassium gluconate, itaconic acid and other carboxylic acids, glucono delta-lactone, sodium erythorbate, lysine and other amino acids, omega 3 fatty acid, butanol, isoprene, 1,3-propanediol and other biomaterials.
- Ethanologenic microorganisms include yeast, such as Saccharomyces cerevisiae and bacteria, e.g., Zymomonas moblis , expressing alcohol dehydrogenase and pyruvate decarboxylase.
- the ethanologenic microorganism can express xylose reductase and xylitol dehydrogenase, which convert xylose to xylulose.
- Improved strains of ethanologenic microorganisms which can withstand higher temperatures, for example, are known in the art and can be used. See Liu et al. (2011) Sheng Wu Gong Cheng Xue Bao 27(7): 1049-56.
- yeast Commercial sources of yeast include ETHANOL RED® (LeSaffre); Thermosacc® (Lallemand); RED STAR® (Red Star); FERMIOL® (DSM Specialties); and SUPERSTART® (Alltech).
- Microorganisms that produce other metabolites, such as citric acid and lactic acid, by fermentation are also known in the art. See, e.g., Papagianni (2007) “Advances in citric acid fermentation by Aspergillus niger : biochemical aspects, membrane transport and modeling,” Biotechnol. Adv. 25(3): 244-63; John et al. (2009) “Direct lactic acid fermentation: focus on simultaneous saccharification and lactic acid production,” Biotechnol. Adv. 27(2): 145-52.
- the saccharification and fermentation processes may be carried out as an SSF process. Fermentation may comprise subsequent enrichment, purification, and recovery of ethanol, for example.
- the ethanol content of the broth or “beer” may reach about 8-18% v/v, e.g., 14-15% v/v.
- the broth may be distilled to produce enriched, e.g., 96% pure, solutions of ethanol.
- CO2 generated by fermentation may be collected with a CO2 scrubber, compressed, and marketed for other uses, e.g., carbonating beverage or dry ice production.
- Solid waste from the fermentation process may be used as protein-rich products, e.g., livestock feed.
- an SSF process can be conducted with fungal cells that express and secrete amylase continuously throughout SSF.
- the fungal cells expressing amylase also can be the fermenting microorganism, e.g., an ethanologenic microorganism. Ethanol production thus can be carried out using a fungal cell that expresses sufficient amylase so that less or no enzyme has to be added exogenously.
- the fungal host cell can be from an appropriately engineered fungal strain. Fungal host cells that express and secrete other enzymes, in addition to amylase, also can be used.
- Such cells may express glucoamylase and/or a pullulanase, phytase, alpha-glucosidase, isoamylase, beta-amylase cellulase, xylanase, other hemicellulases, protease, beta-glucosidase, pectinase, esterase, redox enzymes, transferase, or other enzyme.
- a variation on this process is a “fed-batch fermentation” system, where the substrate is added in increments as the fermentation progresses.
- Fed-batch systems are useful when catabolite repression may inhibit the metabolism of the cells and where it is desirable to have limited amounts of substrate in the medium.
- the actual substrate concentration in fed-batch systems is estimated by the changes of measurable factors such as pH, dissolved oxygen and the partial pressure of waste gases, such as CO2. Batch and fed-batch fermentations are common and well known in the art.
- Continuous fermentation is an open system where a defined fermentation medium is added continuously to a bioreactor, and an equal amount of conditioned medium is removed simultaneously for processing.
- Continuous fermentation generally maintains the cultures at a constant high density where cells are primarily in log phase growth.
- Continuous fermentation permits modulation of cell growth and/or product concentration. For example, a limiting nutrient such as the carbon source or nitrogen source is maintained at a fixed rate and all other parameters are allowed to moderate. Because growth is maintained at a steady state, cell loss due to medium being drawn off should be balanced against the cell growth rate in the fermentation.
- Variant amylases may be combined with a glucoamylase (EC 3.2.1.3), e.g., a Trichoderma glucoamylase or variant thereof.
- a glucoamylase e.g., Trichoderma glucoamylase or variant thereof.
- An exemplary glucoamylase is Trichoderma reesei glucoamylase (TrGA) and variants thereof that possess superior specific activity and thermal stability. See U.S. Published Applications Nos. 2006/0094080, 2007/0004018, and 2007/0015266 (Danisco US Inc.).
- Suitable variants of TrGA include those with glucoamylase activity and at least 80%, at least 90%, or at least 95% sequence identity to wild-type TrGA.
- Variant amylases advantageously increase the yield of glucose produced in a saccharification process catalyzed by TrGA.
- the glucoamylase may be another glucoamylase derived from plants (including algae), fungi, or bacteria.
- the glucoamylases may be Aspergillus niger G1 or G2 glucoamylase or its variants (e.g., Boel et al. (1984) EMBO J. 3: 1097-1102; WO 92/00381; WO 00/04136 (Novo Nordisk A/S)); and A. awamori glucoamylase (e.g., WO 84/02921 (Cetus Corp.)).
- Aspergillus glucoamylase include variants with enhanced thermal stability, e.g., G137A and G139A (Chen et al. (1996) Prot. Eng. 9: 499-505); D257E and D293E/Q (Chen et al. (1995) Prot. Eng. 8: 575-582); N182 (Chen et al. (1994) Biochem. J. 301: 275-281); A246C (Fierobe et al. (1996) Biochemistry, 35: 8698-8704); and variants with Pro residues in positions A435 and S436 (Li et al. (1997) Protein Eng. 10: 1199-1204).
- G137A and G139A Choen et al. (1996) Prot. Eng. 9: 499-505)
- D257E and D293E/Q Choen et al. (1995) Prot. Eng. 8: 575-582
- N182 Chen et al. (1994
- glucoamylases include Talaromyces glucoamylases, in particular derived from T. emersonii (e.g., WO 99/28448 (Novo Nordisk A/S), T. leycettanus (e.g., U.S. Pat. No. RE 32,153 (CPC International, Inc.)), T. duponti , or T. thermophilus (e.g., U.S. Pat. No. 4,587,215).
- Contemplated bacterial glucoamylases include glucoamylases from the genus Clostridium , in particular C. thermoamylolyticum (e.g., EP 135,138 (CPC International, Inc.) and C.
- thermohydrosulfuricum e.g., WO 86/01831 (Michigan Biotechnology Institute)
- Suitable glucoamylases include the glucoamylases derived from Aspergillus oryzae , such as a glucoamylase shown in SEQ ID NO:2 in WO 00/04136 (Novo Nordisk A/S).
- glucoamylases such as AMG 200L; AMG 300 L; SANTM SUPER and AMGTM E (Novozymes); OPTIDEX® 300 and OPTIDEX L-400 (Danisco US Inc.); AMIGASETM and AMIGASETM PLUS (DSM); G-ZYME® G900 (Enzyme Bio-Systems); and G-ZYME® G990 ZR ( A. niger glucoamylase with a low protease content).
- glucoamylases include Aspergillus fumigatus glucoamylase, Talaromyces glucoamylase, Thielavia glucoamylase, Trametes glucoamylase, Thermomyces glucoamylase, Athelia glucoamylase, or Humicola glucoamylase (e.g., HgGA).
- Glucoamylases typically are added in an amount of about 0.1-2 glucoamylase units (GAU)/g ds, e.g., about 0.16 GAU/g ds, 0.23 GAU/g ds, or 0.33 GAU/g ds.
- GAU glucoamylase units
- amylase suitable enzymes that can be used with amylase include a phytase, protease, pullulanase, ⁇ -amylase, isoamylase, a different ⁇ -amylase, alpha-glucosidase, cellulase, xylanase, other hemicellulases, beta-glucosidase, transferase, pectinase, lipase, cutinase, esterase, redox enzymes, or a combination thereof.
- a debranching enzyme such as an isoamylase (EC 3.2.1.68), may be added in effective amounts well known to the person skilled in the art.
- a pullulanase (EC 3.2.1.41), e.g., PROMOZYME®, is also suitable. Pullulanase typically is added at 100 U/kg ds.
- Further suitable enzymes include proteases, such as fungal and bacterial proteases. Fungal proteases include those obtained from Aspergillus , such as A. niger, A. awamori, A. oryzae; Mucor (e.g., M. miehei ); Rhizopus ; and Trichoderma .
- ⁇ -Amylases (EC 3.2.1.2) are exo-acting maltogenic amylases, which catalyze the hydrolysis of 1,4- ⁇ -glucosidic linkages into amylopectin and related glucose polymers, thereby releasing maltose.
- ⁇ -Amylases have been isolated from various plants and microorganisms. See Fogarty et al. (1979) in Progress in Industrial Microbiology, Vol. 15, pp. 112-115. These 0-Amylases have optimum temperatures in the range from 40° C. to 65° C. and optimum pH in the range from about 4.5 to about 7.0.
- Contemplated ⁇ -amylases include, but are not limited to, ⁇ -amylases from barley SPEZYME® BBA 1500, SPEZYME® DBA, OPTIMALTTM ME, OPTIMALTTM BBA (Danisco US Inc.); and NOVOZYMTM WBA (Novozymes A/S).
- compositions comprising the present amylases may be aqueous or non-aqueous formulations, granules, powders, gels, slurries, pastes, etc., which may further comprise any one or more of the additional enzymes listed, herein, along with buffers, salts, preservatives, water, co-solvents, surfactants, and the like.
- Such compositions may work in combination with endogenous enzymes or other ingredients already present in a slurry, water bath, washing machine, food or drink product, etc, for example, endogenous plant (including algal) enzymes, residual enzymes from a prior processing step, and the like.
- the present invention also relates to a “food composition,” including but not limited to a food product, animal feed and/or food/feed additives, comprising an amylase, and methods for preparing such a food composition comprising mixing variant amylase with one or more food ingredients, or uses thereof.
- the present invention relates to the use of an amylase in the preparation of a food composition, wherein the food composition is baked subsequent to the addition of the polypeptide of the invention.
- baking composition means any composition and/or additive prepared in the process of providing a baked food product, including but not limited to bakers flour, a dough, a baking additive and/or a baked product.
- the food composition or additive may be liquid or solid.
- flour means milled or ground cereal grain.
- the term “flour” also may mean Sago or tuber products that have been ground or mashed.
- flour may also contain components in addition to the milled or mashed cereal or plant matter.
- Cereal grains include wheat, oat, rye, and barley.
- Tuber products include tapioca flour, cassava flour, and custard powder.
- the term “flour” also includes ground corn flour, maize-meal, rice flour, whole-meal flour, self-rising flour, tapioca flour, cassava flour, ground rice, enriched flower, and custard powder.
- ⁇ -amylase activity For the commercial and home use of flour for baking and food production, it is important to maintain an appropriate level of ⁇ -amylase activity in the flour. A level of activity that is too high may result in a product that is sticky and/or doughy and therefore unmarketable. Flour with insufficient ⁇ -amylase activity may not contain enough sugar for proper yeast function, resulting in dry, crumbly bread, or baked products. Accordingly, an amylase, by itself or in combination with another ⁇ -amylase(s), may be added to the flour to augment the level of endogenous ⁇ -amylase activity in flour.
- An amylase can further be added alone or in a combination with other amylases to prevent or retard staling, i.e., crumb firming of baked products.
- the amount of anti-staling amylase will typically be in the range of 0.01-10 mg of enzyme protein per kg of flour, e.g., 0.5 mg/kg ds.
- Additional anti-staling amylases that can be used in combination with an amylase include an endo-amylase, e.g., a bacterial endo-amylase from Bacillus .
- the additional amylase can be another maltogenic ⁇ -amylase (EC 3.2.1.133), e.g., from Bacillus .
- NOVAMYL® is an exemplary maltogenic ⁇ -amylase from B. stearothermophilus strain NCIB 11837 and is described in Christophersen et al. (1997) Starch 50: 39-45.
- Other examples of anti-staling endo-amylases include bacterial ⁇ -amylases derived from Bacillus , such as B. licheniformis or B. amyloliquefaciens .
- the anti-staling amylase may be an exo-amylase, such as ⁇ -amylase, e.g., from plant sources, such as soy bean, or from microbial sources, such as Bacillus.
- the baking composition comprising an amylase further can comprise a phospholipase or enzyme with phospholipase activity.
- An enzyme with phospholipase activity has an activity that can be measured in Lipase Units (LU).
- the phospholipase may have A1 or A2 activity to remove fatty acid from the phospholipids, forming a lysophospholipid. It may or may not have lipase activity, i.e., activity on triglyceride substrates.
- the phospholipase typically has a temperature optimum in the range of 30-90° C., e.g., 30-70° C.
- the added phospholipases can be of animal origin, for example, from pancreas, e.g., bovine or porcine pancreas, snake venom or bee venom.
- the phospholipase may be of microbial origin, e.g., from filamentous fungi, yeast or bacteria, for example.
- the phospholipase is added in an amount that improves the softness of the bread during the initial period after baking, particularly the first 24 hours.
- the amount of phospholipase will typically be in the range of 0.01-10 mg of enzyme protein per kg of flour, e.g., 0.1-5 mg/kg. That is, phospholipase activity generally will be in the range of 20-1000 LU/kg of flour, where a Lipase Unit is defined as the amount of enzyme required to release 1 ⁇ mol butyric acid per minute at 30° C., pH 7.0, with gum arabic as emulsifier and tributyrin as substrate.
- compositions of dough generally comprise wheat meal or wheat flour and/or other types of meal, flour or starch such as corn flour, cornstarch, rye meal, rye flour, oat flour, oatmeal, soy flour, sorghum meal, sorghum flour, potato meal, potato flour or potato starch.
- the dough may be fresh, frozen or par-baked.
- the dough can be a leavened dough or a dough to be subjected to leavening.
- the dough may be leavened in various ways, such as by adding chemical leavening agents, e.g., sodium bicarbonate or by adding a leaven, i.e., fermenting dough.
- Dough also may be leavened by adding a suitable yeast culture, such as a culture of Saccharomyces cerevisiae (baker's yeast), e.g., a commercially available strain of S. cerevisiae.
- the dough may also comprise other conventional dough ingredients, e.g., proteins, such as milk powder, gluten, and soy; eggs (e.g., whole eggs, egg yolks or egg whites); an oxidant, such as ascorbic acid, potassium bromate, potassium iodate, azodicarbonamide (ADA) or ammonium persulfate; an amino acid such as L-cysteine; a sugar; or a salt, such as sodium chloride, calcium acetate, sodium sulfate or calcium sulfate.
- the dough further may comprise fat, e.g., triglyceride, such as granulated fat or shortening.
- the dough further may comprise an emulsifier such as mono- or diglycerides, diacetyl tartaric acid esters of mono- or diglycerides, sugar esters of fatty acids, polyglycerol esters of fatty acids, lactic acid esters of monoglycerides, acetic acid esters of monoglycerides, polyoxyethylene stearates, or lysolecithin.
- an emulsifier such as mono- or diglycerides, diacetyl tartaric acid esters of mono- or diglycerides, sugar esters of fatty acids, polyglycerol esters of fatty acids, lactic acid esters of monoglycerides, acetic acid esters of monoglycerides, polyoxyethylene stearates, or lysolecithin.
- the dough can be made without addition of emulsifiers.
- the dough product may be any processed dough product, including fried, deep fried, roasted, baked, steamed and boiled doughs, such as steamed bread and rice cakes.
- the food product is a bakery product.
- Typical bakery (baked) products include bread—such as loaves, rolls, buns, bagels, pizza bases etc. pastry, pretzels, tortillas, cakes, cookies, biscuits, crackers etc.
- an additional enzyme may be used together with the anti-staling amylase and the phospholipase.
- the additional enzyme may be a second amylase, such as an amyloglucosidase, a ⁇ -amylase, a cyclodextrin glucanotransferase, or the additional enzyme may be a peptidase, in particular an exopeptidase, a transglutaminase, a lipase, a cellulase, a xylanase, a protease, a protein disulfide isomerase, e.g., a protein disulfide isomerase as disclosed in WO 95/00636, for example, a glycosyltransferase, a branching enzyme (1,4- ⁇ -glucan branching enzyme), a 4- ⁇ -glucanotransferase (dextrin glycosyltransferase) or an oxidoreductase,
- the xylanase is typically of microbial origin, e.g., derived from a bacterium or fungus, such as a strain of Aspergillus .
- Xylanases include PENTOPAN® and NOVOZYM 384®, for example, which are commercially available xylanase preparations produced from Trichoderma reesei .
- the amyloglucosidase may be an A. niger amyloglucosidase (such as AMG®).
- Other useful amylase products include GRINDAMYL® A 1000 or A 5000 (Grindsted Products, Denmark) and AMYLASE HTM or AMYLASE PTM (DSM).
- the glucose oxidase may be a fungal glucose oxidase, in particular an Aspergillus niger glucose oxidase (such as GLUZYME®).
- An exemplary protease is NEUTRASE®.
- the process may be used for any kind of baked product prepared from dough, either of a soft or a crisp character, either of a white, light or dark type.
- Examples are bread, particularly white, whole-meal or rye bread, typically in the form of loaves or rolls, such as, but not limited to, French baguette-type bread, pita bread, tortillas, cakes, pancakes, biscuits, cookies, pie crusts, crisp bread, steamed bread, pizza and the like.
- An amylase may be used in a pre-mix, comprising flour together with an anti-staling amylase, a phospholipase, and/or a phospholipid.
- the pre-mix may contain other dough-improving and/or bread-improving additives, e.g., any of the additives, including enzymes, mentioned above.
- An amylase can be a component of an enzyme preparation comprising an anti-staling amylase and a phospholipase, for use as a baking additive.
- the enzyme preparation is optionally in the form of a granulate or agglomerated powder.
- the preparation can have a narrow particle size distribution with more than 95% (by weight) of the particles in the range from 25 to 500 p.m.
- Granulates and agglomerated powders may be prepared by conventional methods, e.g., by spraying an amylase onto a carrier in a fluid-bed granulator.
- the carrier may consist of particulate cores having a suitable particle size.
- the carrier may be soluble or insoluble, e.g., a salt (such as NaCl or sodium sulfate), a sugar (such as sucrose or lactose), a sugar alcohol (such as sorbitol), starch, rice, corn grits, or soy.
- a salt such as NaCl or sodium sulfate
- a sugar such as sucrose or lactose
- a sugar alcohol such as sorbitol
- starch rice, corn grits, or soy.
- Enveloped particles i.e., ⁇ -amylase particles
- the enzyme is contacted with a food grade lipid in sufficient quantity to suspend all of the ⁇ -amylase particles.
- Food grade lipids may be any naturally organic compound that is insoluble in water but is soluble in non-polar organic solvents such as hydrocarbon or diethyl ether. Suitable food grade lipids include, but are not limited to, triglycerides either in the form of fats or oils that are either saturated or unsaturated.
- fatty acids and combinations thereof which make up the saturated triglycerides include, but are not limited to, butyric (derived from milk fat), palmitic (derived from animal and plant fat), and/or stearic (derived from animal and plant fat).
- fatty acids and combinations thereof which make up the unsaturated triglycerides include, but are not limited to, palmitoleic (derived from animal and plant fat), oleic (derived from animal and plant fat), linoleic (derived from plant oils), and/or linolenic (derived from linseed oil).
- Other suitable food grade lipids include, but are not limited to, monoglycerides and diglycerides derived from the triglycerides discussed above, phospholipids and glycolipids.
- each ⁇ -amylase particle is individually enveloped in a lipid.
- all or substantially all of the ⁇ -amylase particles are provided with a thin, continuous, enveloping film of lipid. This can be accomplished by first pouring a quantity of lipid into a container, and then slurrying the ⁇ -amylase particles so that the lipid thoroughly wets the surface of each ⁇ -amylase particle.
- the enveloped ⁇ -amylase particles carrying a substantial amount of the lipids on their surfaces, are recovered.
- the thickness of the coating so applied to the particles of ⁇ -amylase can be controlled by selection of the type of lipid used and by repeating the operation in order to build up a thicker film, when desired.
- the storing, handling and incorporation of the loaded delivery vehicle can be accomplished by means of a packaged mix.
- the packaged mix can comprise the enveloped ⁇ -amylase.
- the packaged mix may further contain additional ingredients as required by the manufacturer or baker. After the enveloped ⁇ -amylase has been incorporated into the dough, the baker continues through the normal production process for that product.
- the food grade lipid protects the enzyme from thermal denaturation during the baking process for those enzymes that are heat labile. Consequently, while the ⁇ -amylase is stabilized and protected during the proving and baking stages, it is released from the protective coating in the final baked good product, where it hydrolyzes the glucosidic linkages in polyglucans.
- the loaded delivery vehicle also provides a sustained release of the active enzyme into the baked good. That is, following the baking process, active ⁇ -amylase is continually released from the protective coating at a rate that counteracts, and therefore reduces the rate of, staling mechanisms.
- the amount of lipid applied to the ⁇ -amylase particles can vary from a few percent of the total weight of the ⁇ -amylase to many times that weight, depending upon the nature of the lipid, the manner in which it is applied to the ⁇ -amylase particles, the composition of the dough mixture to be treated, and the severity of the dough-mixing operation involved.
- the loaded delivery vehicle i.e., the lipid-enveloped enzyme
- the baker computes the amount of enveloped ⁇ -amylase, prepared as discussed above, that will be required to achieve the desired anti-staling effect.
- the amount of the enveloped ⁇ -amylase required is calculated based on the concentration of enzyme enveloped and on the proportion of ⁇ -amylase to flour specified. A wide range of concentrations has been found to be effective, although, as has been discussed, observable improvements in anti-staling do not correspond linearly with the ⁇ -amylase concentration, but above certain minimal levels, large increases in ⁇ -amylase concentration produce little additional improvement.
- the ⁇ -amylase concentration actually used in a particular bakery production could be much higher than the minimum necessary to provide the baker with some insurance against inadvertent under-measurement errors by the baker.
- the lower limit of enzyme concentration is determined by the minimum anti-staling effect the baker wishes to achieve.
- a method of preparing a baked good may comprise: a) preparing lipid-coated ⁇ -amylase particles, where substantially all of the ⁇ -amylase particles are coated; b) mixing a dough containing flour; c) adding the lipid-coated ⁇ -amylase to the dough before the mixing is complete and terminating the mixing before the lipid coating is removed from the ⁇ -amylase; d) proofing the dough; and e) baking the dough to provide the baked good, where the ⁇ -amylase is inactive during the mixing, proofing and baking stages and is active in the baked good.
- the enveloped ⁇ -amylase can be added to the dough during the mix cycle, e.g., near the end of the mix cycle.
- the enveloped ⁇ -amylase is added at a point in the mixing stage that allows sufficient distribution of the enveloped ⁇ -amylase throughout the dough; however, the mixing stage is terminated before the protective coating becomes stripped from the ⁇ -amylase particle(s).
- the mixing stage is terminated before the protective coating becomes stripped from the ⁇ -amylase particle(s).
- anywhere from one to six minutes or more might be required to mix the enveloped ⁇ -amylase into the dough, but two to four minutes is average. Thus, several variables may determine the precise procedure.
- the quantity of enveloped ⁇ -amylase should have a total volume sufficient to allow the enveloped ⁇ -amylase to be spread throughout the dough mix. If the preparation of enveloped ⁇ -amylase is highly concentrated, additional oil may need to be added to the pre-mix before the enveloped ⁇ -amylase is added to the dough. Recipes and production processes may require specific modifications; however, good results can generally be achieved when 25% of the oil specified in a bread dough formula is held out of the dough and is used as a carrier for a concentrated enveloped ⁇ -amylase when added near the end of the mix cycle.
- an enveloped ⁇ -amylase mixture of approximately 1% of the dry flour weight is sufficient to admix the enveloped ⁇ -amylase properly with the dough.
- the range of suitable percentages is wide and depends on the formula, finished product, and production methodology requirements of the individual baker.
- the enveloped ⁇ -amylase suspension should be added to the mix with sufficient time for complete mixture into the dough, but not for such a time that excessive mechanical action strips the protective lipid coating from the enveloped ⁇ -amylase particles.
- the food composition is an oil, meat, lard, composition comprising an amylase.
- [oil/meat/lard] composition means any composition, based on, made from and/or containing oil, meat or lard, respectively.
- Another aspect the invention relates to a method of preparing an oil or meat or lard composition and/or additive comprising an amylase, comprising mixing the polypeptide of the invention with a oil/meat/lard composition and/or additive ingredients.
- the food composition is an animal feed composition, animal feed additive and/or pet food comprising an amylase and variants thereof.
- the present invention further relates to a method for preparing such an animal feed composition, animal feed additive composition and/or pet food comprising mixing an amylase and variants thereof with one or more animal feed ingredients and/or animal feed additive ingredients and/or pet food ingredients.
- the present invention relates to the use of an amylase in the preparation of an animal feed composition and/or animal feed additive composition and/or pet food.
- animal includes all non-ruminant and ruminant animals.
- the animal is a non-ruminant animal, such as a horse and a mono-gastric animal.
- mono-gastric animals include, but are not limited to, pigs and swine, such as piglets, growing pigs, sows; poultry such as turkeys, ducks, chicken, broiler chicks, layers; fish such as salmon, trout, tilapia, catfish and carps; and crustaceans such as shrimps and prawns.
- the animal is a ruminant animal including, but not limited to, cattle, young calves, goats, sheep, giraffes, bison , moose, elk, yaks, water buffalo, deer, camels, alpacas, llamas, antelope, pronghorn and nilgai.
- pet food is understood to mean a food for a household animal such as, but not limited to dogs, cats, gerbils, hamsters, chinchillas, fancy rats, guinea pigs; avian pets, such as canaries , parakeets, and parrots; reptile pets, such as turtles, lizards and snakes; and aquatic pets, such as tropical fish and frogs.
- animal feed composition may comprise one or more feed materials selected from the group comprising a) cereals, such as small grains (e.g., wheat, barley, rye, oats and combinations thereof) and/or large grains such as maize or sorghum; b) by products from cereals, such as corn gluten meal, Distillers Dried Grain Solubles (DDGS) (particularly corn based Distillers Dried Grain Solubles (cDDGS), wheat bran, wheat middlings, wheat shorts, rice bran, rice hulls, oat hulls, palm kernel, and citrus pulp; c) protein obtained from sources such as soya, sunflower, peanut, lupin, peas, fava beans, cotton, canola, fish meal, dried plasma protein, meat and bone meal, potato protein, whey, copra, sesame; d) oils and fats obtained from vegetable and animal sources; e) minerals and vitamins
- compositions and methods of treating fabrics e.g., to desize a textile
- an amylase e.g., to desize a textile
- Fabric-treating methods are well known in the art (see, e.g., U.S. Pat. No. 6,077,316).
- the feel and appearance of a fabric can be improved by a method comprising contacting the fabric with an amylase in a solution.
- the fabric can be treated with the solution under pressure.
- An amylase can be applied during or after the weaving of a textile, or during the desizing stage, or one or more additional fabric processing steps. During the weaving of textiles, the threads are exposed to considerable mechanical strain. Prior to weaving on mechanical looms, warp yarns are often coated with sizing starch or starch derivatives to increase their tensile strength and to prevent breaking. An amylase can be applied during or after the weaving to remove these sizing starch or starch derivatives. After weaving, an amylase can be used to remove the size coating before further processing the fabric to ensure a homogeneous and wash-proof result.
- An amylase can be used alone or with other desizing chemical reagents and/or desizing enzymes to desize fabrics, including cotton-containing fabrics, as detergent additives, e.g., in aqueous compositions.
- An amylase also can be used in compositions and methods for producing a stonewashed look on indigo-dyed denim fabric and garments.
- the fabric can be cut and sewn into clothes or garments, which are afterwards finished.
- different enzymatic finishing methods have been developed.
- the finishing of denim garment normally is initiated with an enzymatic desizing step, during which garments are subjected to the action of amylolytic enzymes to provide softness to the fabric and make the cotton more accessible to the subsequent enzymatic finishing steps.
- An amylase can be used in methods of finishing denim garments (e.g., a “bio-stoning process”), enzymatic desizing and providing softness to fabrics, and/or finishing process.
- An aspect of the present compositions and methods is a cleaning composition that includes an amylase as a component.
- An amylase polypeptide can be used as a component in detergent compositions for, e.g., hand washing, laundry washing, dishwashing, and other hard-surface cleaning.
- Such compositions include heavy duty liquid (HDL), heavy duty dry (HDD), and hand (manual) laundry detergent compositions, including unit dose format laundry detergent compositions, and automatic dishwashing (ADW) and hand (manual) dishwashing compositions, including unit dose format dishwashing compositions.
- an amylase is incorporated into detergents at or near a concentration conventionally used for amylase in detergents.
- an amylase polypeptide may be added in amount corresponding to 0.00001-1 mg (calculated as pure enzyme protein) of amylase per liter of wash/dishwash liquor.
- Exemplary formulations are provided herein, as exemplified by the following:
- An amylase polypeptide may be a component of a detergent composition, as the only enzyme or with other enzymes including other amylolytic enzymes. As such, it may be included in the detergent composition in the form of a non-dusting granulate, a stabilized liquid, or a protected enzyme. Non-dusting granulates may be produced, e.g., as disclosed in U.S. Pat. Nos. 4,106,991 and 4,661,452 and may optionally be coated by methods known in the art.
- waxy coating materials are poly(ethylene oxide) products (polyethyleneglycol, PEG) with mean molar weights of 1,000 to 20,000; ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids.
- PEG poly(ethylene oxide) products
- PEG polyethyleneglycol
- Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods.
- a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid
- Other enzyme stabilizers are known in the art.
- Protected enzymes may be prepared according to the method disclosed in for example EP 238 216. Polyols have long been recognized as stabilizers of proteins, as well as improving protein solubility.
- the detergent composition may be in any useful form, e.g., as powders, granules, pastes, bars, or liquid.
- a liquid detergent may be aqueous, typically containing up to about 70% of water and 0% to about 30% of organic solvent. It may also be in the form of a compact gel type containing only about 30% water.
- the detergent composition comprises one or more surfactants, each of which may be anionic, nonionic, cationic, or zwitterionic.
- the detergent will usually contain 0% to about 50% of anionic surfactant, such as linear alkylbenzenesulfonate (LAS); ⁇ -olefinsulfonate (AOS); alkyl sulfate (fatty alcohol sulfate) (AS); alcohol ethoxysulfate (AEOS or AES); secondary alkanesulfonates (SAS); ⁇ -sulfo fatty acid methyl esters; alkyl- or alkenylsuccinic acid; or soap.
- anionic surfactant such as linear alkylbenzenesulfonate (LAS); ⁇ -olefinsulfonate (AOS); alkyl sulfate (fatty alcohol sulfate) (AS); alcohol ethoxysulfate (AEOS or AES); secondary alkanesulfonates (SAS);
- the composition may also contain 0% to about 40% of nonionic surfactant such as alcohol ethoxylate (AEO or AE), carboxylated alcohol ethoxylates, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, or polyhydroxy alkyl fatty acid amide (as described for example in WO 92/06154).
- nonionic surfactant such as alcohol ethoxylate (AEO or AE), carboxylated alcohol ethoxylates, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, or polyhydroxy alkyl fatty acid amide (as described for example in WO 92/06154).
- the detergent composition may additionally comprise one or more other enzymes, such as proteases, another amylolytic enzyme, cutinase, lipase, cellulase, pectate lyase, perhydrolase, xylanase, peroxidase, and/or laccase in any combination.
- enzymes such as proteases, another amylolytic enzyme, cutinase, lipase, cellulase, pectate lyase, perhydrolase, xylanase, peroxidase, and/or laccase in any combination.
- the detergent may contain about 1% to about 65% of a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, citrate, nitrilotriacetic acid (NTA), ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid (DTMPA), alkyl- or alkenylsuccinic acid, soluble silicates or layered silicates (e.g., SKS-6 from Hoechst).
- the detergent may also be unbuilt, i.e. essentially free of detergent builder.
- the enzymes can be used in any composition compatible with the stability of the enzyme.
- Enzymes generally can be protected against deleterious components by known forms of encapsulation, for example, by granulation or sequestration in hydro gels. Enzymes, and specifically amylases, either with or without starch binding domains, can be used in a variety of compositions including laundry and dishwashing applications, surface cleaners, as well as in compositions for ethanol production from starch or biomass.
- the detergent may comprise one or more polymers.
- examples include carboxymethylcellulose (CMC), poly(vinylpyrrolidone) (PVP), polyethyleneglycol (PEG), poly(vinyl alcohol) (PVA), polycarboxylates such as polyacrylates, maleic/acrylic acid copolymers and lauryl methacrylate/acrylic acid copolymers.
- the enzymes of the detergent composition may be stabilized using conventional stabilizing agents, e.g., a polyol such as propylene glycol or glycerol; a sugar or sugar alcohol; lactic acid; boric acid or a boric acid derivative such as, e.g., an aromatic borate ester; and the composition may be formulated as described in, e.g., WO 92/19709 and WO 92/19708.
- stabilizing agents e.g., a polyol such as propylene glycol or glycerol
- a sugar or sugar alcohol lactic acid
- boric acid or a boric acid derivative such as, e.g., an aromatic borate ester
- the composition may be formulated as described in, e.g., WO 92/19709 and WO 92/19708.
- the detergent may also contain other conventional detergent ingredients such as e.g., fabric conditioners including clays, foam boosters, suds suppressors, anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, dyes, bactericides, tarnish inhibitors, optical brighteners, or perfumes.
- fabric conditioners including clays, foam boosters, suds suppressors, anti-corrosion agents, soil-suspending agents, anti-soil redeposition agents, dyes, bactericides, tarnish inhibitors, optical brighteners, or perfumes.
- the pH (measured in aqueous solution at use concentration) is usually neutral or alkaline, e.g., pH about 7.0 to about 11.0.
- detergent compositions for inclusion of the present ⁇ -amylase are described, below. Many of these composition can be provided in unit dose format for ease of use. Unit dose formulations and packaging are described in, for example, US20090209445A1, US20100081598A1, U.S. Pat. No.
- Exemplary HDL laundry detergent compositions includes a detersive surfactant (10%-40% wt/wt), including an anionic detersive surfactant (selected from a group of linear or branched or random chain, substituted or unsubstituted alkyl sulphates, alkyl sulphonates, alkyl alkoxylated sulphate, alkyl phosphates, alkyl phosphonates, alkyl carboxylates, and/or mixtures thereof), and optionally non-ionic surfactant (selected from a group of linear or branched or random chain, substituted or unsubstituted alkyl alkoxylated alcohol, for example a C8-C18 alkyl ethoxylated alcohol and/or C6-C12 alkyl phenol alkoxylates), wherein the weight ratio of anionic detersive surfactant (with a hydrophilic index (HIc) of from 6.0 to 9) to non-ionic detersive surfactant is
- Suitable detersive surfactants also include cationic detersive surfactants (selected from a group of alkyl pyridinium compounds, alkyl quarternary ammonium compounds, alkyl quarternary phosphonium compounds, alkyl ternary sulphonium compounds, and/or mixtures thereof); zwitterionic and/or amphoteric detersive surfactants (selected from a group of alkanolamine sulpho-betaines); ampholytic surfactants; semi-polar non-ionic surfactants and mixtures thereof.
- the composition may optionally include, a surfactancy boosting polymer consisting of amphiphilic alkoxylated grease cleaning polymers (selected from a group of alkoxylated polymers having branched hydrophilic and hydrophobic properties, such as alkoxylated polyalkylenimines in the range of 0.05 wt %-10 wt %) and/or random graft polymers (typically comprising of hydrophilic backbone comprising monomers selected from the group consisting of: unsaturated C1-C6 carboxylic acids, ethers, alcohols, aldehydes, ketones, esters, sugar units, alkoxy units, maleic anhydride, saturated polyalcohols such as glycerol, and mixtures thereof; and hydrophobic side chain(s) selected from the group consisting of: C4-C25 alkyl group, polypropylene, polybutylene, vinyl ester of a saturated C1-C6 mono-carboxylic acid, C1-C6 alkyl ester
- the composition may include additional polymers such as soil release polymers (include anionically end-capped polyesters, for example SRP1, polymers comprising at least one monomer unit selected from saccharide, dicarboxylic acid, polyol and combinations thereof, in random or block configuration, ethylene terephthalate-based polymers and co-polymers thereof in random or block configuration, for example Repel-o-tex SF, SF-2 and SRP6, Texcare SRA100, SRA300, SRN100, SRN170, SRN240, SRN300 and SRN325, Marloquest SL), anti-redeposition polymers (0.1 wt % to 10 wt %, include carboxylate polymers, such as polymers comprising at least one monomer selected from acrylic acid, maleic acid (or maleic anhydride), fumaric acid, itaconic acid, aconitic acid, mesaconic acid, citraconic acid, methylenemalonic acid, and any mixture thereof, vinylpyrrolidone homopoly
- the composition may further include saturated or unsaturated fatty acid, preferably saturated or unsaturated C12-C24 fatty acid (0 wt % to 10 wt %); deposition aids (examples for which include polysaccharides, preferably cellulosic polymers, poly diallyl dimethyl ammonium halides (DADMAC), and co-polymers of DAD MAC with vinyl pyrrolidone, acrylamides, imidazoles, imidazolinium halides, and mixtures thereof, in random or block configuration, cationic guar gum, cationic cellulose such as cationic hydoxyethyl cellulose, cationic starch, cationic polyacylamides, and mixtures thereof.
- deposition aids include polysaccharides, preferably cellulosic polymers, poly diallyl dimethyl ammonium halides (DADMAC), and co-polymers of DAD MAC with vinyl pyrrolidone, acrylamides, imi
- the composition may further include dye transfer inhibiting agents, examples of which include manganese phthalocyanine, peroxidases, polyvinylpyrrolidone polymers, polyamine N-oxide polymers, copolymers of N-vinylpyrrolidone and N-vinylimidazole, polyvinyloxazolidones and polyvinylimidazoles and/or mixtures thereof; chelating agents, examples of which include ethylene-diamine-tetraacetic acid (EDTA), diethylene triamine penta methylene phosphonic acid (DTPMP), hydroxy-ethane diphosphonic acid (HEDP), ethylenediamine N,N′-disuccinic acid (EDDS), methyl glycine diacetic acid (MGDA), diethylene triamine penta acetic acid (DTPA), propylene diamine tetracetic acid (PDT A), 2-hydroxypyridine-N-oxide (HPNO), or methyl glycine diacetic acid (MGDA), gluta
- the composition preferably included enzymes (generally about 0.01 wt % active enzyme to 0.03 wt % active enzyme) selected from proteases, amylases, lipases, cellulases, choline oxidases, peroxidases/oxidases, pectate lyases, mannanases, cutinases, laccases, phospholipases, lysophospholipases, acyltransferases, perhydrolases, arylesterases, and any mixture thereof.
- enzymes generally about 0.01 wt % active enzyme to 0.03 wt % active enzyme selected from proteases, amylases, lipases, cellulases, choline oxidases, peroxidases/oxidases, pectate lyases, mannanases, cutinases, laccases, phospholipases, lysophospholipases, acyltransferases, perhydrolases, arylesterases, and
- the composition may include an enzyme stabilizer (examples of which include polyols such as propylene glycol or glycerol, sugar or sugar alcohol, lactic acid, reversible protease inhibitor, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid).
- an enzyme stabilizer examples of which include polyols such as propylene glycol or glycerol, sugar or sugar alcohol, lactic acid, reversible protease inhibitor, boric acid, or a boric acid derivative, e.g., an aromatic borate ester, or a phenyl boronic acid derivative such as 4-formylphenyl boronic acid).
- the composition optionally include silicone or fatty-acid based suds suppressors; hueing dyes, calcium and magnesium cations, visual signaling ingredients, anti-foam (0.001 wt % to about 4.0 wt %), and/or structurant/thickener (0.01 wt % to 5 wt %, selected from the group consisting of diglycerides and triglycerides, ethylene glycol distearate, microcrystalline cellulose, cellulose based materials, microfiber cellulose, biopolymers, xanthan gum, gellan gum, and mixtures thereof).
- the composition can be any liquid form, for example a liquid or gel form, or any combination thereof.
- the composition may be in any unit dose form, for example a pouch.
- Exemplary HDD laundry detergent compositions includes a detersive surfactant, including anionic detersive surfactants (e.g., linear or branched or random chain, substituted or unsubstituted alkyl sulphates, alkyl sulphonates, alkyl alkoxylated sulphate, alkyl phosphates, alkyl phosphonates, alkyl carboxylates and/or mixtures thereof), non-ionic detersive surfactant (e.g., linear or branched or random chain, substituted or unsubstituted C8-C18 alkyl ethoxylates, and/or C6-C12 alkyl phenol alkoxylates), cationic detersive surfactants (e.g., alkyl pyridinium compounds, alkyl quaternary ammonium compounds, alkyl quaternary phosphonium compounds, alkyl ternary sulphonium compounds, and mixtures thereof), zwitterionic and/
- the composition preferably includes enzymes, e.g., proteases, amylases, lipases, cellulases, choline oxidases, peroxidases/oxidases, pectate lyases, mannanases, cutinases, laccases, phospholipases, lysophospholipases, acyltransferase, perhydrolase, arylesterase, and any mixture thereof.
- enzymes e.g., proteases, amylases, lipases, cellulases, choline oxidases, peroxidases/oxidases, pectate lyases, mannanases, cutinases, laccases, phospholipases, lysophospholipases, acyltransferase, perhydrolase, arylesterase, and any mixture thereof.
- composition may optionally include additional detergent ingredients including perfume microcapsules, starch encapsulated perfume accord, hueing agents, additional polymers, including fabric integrity and cationic polymers, dye-lock ingredients, fabric-softening agents, brighteners (for example C.I. Fluorescent brighteners), flocculating agents, chelating agents, alkoxylated polyamines, fabric deposition aids, and/or cyclodextrin.
- additional detergent ingredients including perfume microcapsules, starch encapsulated perfume accord, hueing agents, additional polymers, including fabric integrity and cationic polymers, dye-lock ingredients, fabric-softening agents, brighteners (for example C.I. Fluorescent brighteners), flocculating agents, chelating agents, alkoxylated polyamines, fabric deposition aids, and/or cyclodextrin.
- Exemplary ADW detergent composition includes non-ionic surfactants, including ethoxylated non-ionic surfactants, alcohol alkoxylated surfactants, epoxy-capped poly(oxyalkylated) alcohols, or amine oxide surfactants present in amounts from 0 to 10% by weight; builders in the range of 5-60% including phosphate builders (e.g., mono-phosphates, di-phosphates, tri-polyphosphates, other oligomeric-poylphosphates, sodium tripolyphosphate-STPP) and phosphate-free builders (e.g., amino acid-based compounds including methyl-glycine-diacetic acid (MGDA) and salts and derivatives thereof, glutamic-N,N-diacetic acid (GLDA) and salts and derivatives thereof, iminodisuccinic acid (IDS) and salts and derivatives thereof, carboxy methyl inulin and salts and derivatives thereof, nitrilotriacetic acid (NTA), di
- a detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising linear alkylbenzenesulfonate (calculated as acid) about 7% to about 12%; alcohol ethoxysulfate (e.g., C12-18 alcohol, 1-2 ethylene oxide (EO)) or alkyl sulfate (e.g., C16-18) about 1% to about 4%; alcohol ethoxylate (e.g., C14-15 alcohol, 7 EO) about 5% to about 9%; sodium carbonate (e.g., Na2CO3) about 14% to about 20%; soluble silicate (e.g., Na2O, 2SiO2) about 2 to about 6%; zeolite (e.g., NaAlSiO4) about 15% to about 22%; sodium sulfate (e.g., Na2SO4) 0% to about 6%; sodium citrate/citric acid (e.g., C6H5Na3O7
- a detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising linear alkylbenzenesulfonate (calculated as acid) about 6% to about 11%; alcohol ethoxysulfate (e.g., C12-18 alcohol, 1-2 EO) or alkyl sulfate (e.g., C16-18) about 1% to about 3%; alcohol ethoxylate (e.g., C14-15 alcohol, 7 EO) about 5% to about 9%; sodium carbonate (e.g., Na2CO3) about 15% to about 21%; soluble silicate (e.g., Na2O, 2SiO2) about 1% to about 4%; zeolite (e.g., NaAlSiO4) about 24% to about 34%; sodium sulfate (e.g., Na2SO4) about 4% to about 10%; sodium citrate/citric acid (e.g., C6H5Na3O7/C
- a detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising linear alkylbenzenesulfonate (calculated as acid) about 8% to about 12%; alcohol ethoxylate (e.g., C12-15 alcohol, 7 EO) about 10% to about 25%; sodium carbonate (as Na2CO3) about 14% to about 22%; soluble silicate (e.g., Na2O, 2SiO2) about 1% to about 5%; zeolite (e.g., NaAlSiO4) about 25% to about 35%; sodium sulfate (e.g., Na2SO4) 0% to about 10%; carboxymethylcellulose (CMC) 0% to about 2%; polymers (e.g., maleic/acrylic acid copolymer, PVP, PEG) 1-3%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients (e.g., suds suppressors, perfume) 0-5%.
- An aqueous liquid detergent composition comprising linear alkylbenzenesulfonate (calculated as acid) about 15% to about 21%; alcohol ethoxylate (e.g., C12-15 alcohol, 7 EO or C12-15 alcohol, 5 EO) about 12% to about 18%; soap as fatty acid (e.g., oleic acid) about 3% to about 13%; alkenylsuccinic acid (C12-14) 0% to about 13%; aminoethanol about 8% to about 18%; citric acid about 2% to about 8%; phosphonate 0% to about 3%; polymers (e.g., PVP, PEG) 0% to about 3%; borate (e.g., B4O7) 0% to about 2%; ethanol 0% to about 3%; propylene glycol about 8% to about 14%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients (e.g., dispersants, suds suppressors, perfume, optical
- An aqueous structured liquid detergent composition comprising linear alkylbenzenesulfonate (calculated as acid) about 15% to about 21%; alcohol ethoxylate (e.g., C12-15 alcohol, 7 EO, or C12-15 alcohol, 5 EO) 3-9%; soap as fatty acid (e.g., oleic acid) about 3% to about 10%; zeolite (as NaAlSiO4) about 14% to about 22%; potassium citrate about 9% to about 18%; borate (e.g., B4O7) 0% to about 2%; carboxymethylcellulose (CMC) 0% to about 2%; polymers (e.g., PEG, PVP) 0% to about 3%; anchoring polymers such as, e.g., lauryl methacrylate/acrylic acid copolymer; molar ratio 25:1, MW 3800) 0% to about 3%; glycerol 0% to about 5%; enzymes (calculated as pure enzyme protein
- a detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising fatty alcohol sulfate about 5% to about 10%; ethoxylated fatty acid monoethanolamide about 3% to about 9%; soap as fatty acid 0-3%; sodium carbonate (e.g., Na2CO3) about 5% to about 10%; Soluble silicate (e.g., Na2O, 2SiO2) about 1% to about 4%; zeolite (e.g., NaAlSiO4) about 20% to about 40%; Sodium sulfate (e.g., Na2SO4) about 2% to about 8%; sodium perborate (e.g., NaBO3H2O) about 12% to about 18%; TAED about 2% to about 7%; polymers (e.g., maleic/acrylic acid copolymer, PEG) about 1% to about 5%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients (
- a detergent composition formulated as a granulate comprising linear alkylbenzenesulfonate (calculated as acid) about 8% to about 14%; ethoxylated fatty acid monoethanolamide about 5% to about 11%; soap as fatty acid 0% to about 3%; sodium carbonate (e.g., Na2CO3) about 4% to about 10%; soluble silicate (Na2O, 2SiO2) about 1% to about 4%; zeolite (e.g., NaAlSiO4) about 30% to about 50%; sodium sulfate (e.g., Na2SO4) about 3% to about 11%; sodium citrate (e.g., C6H5Na3O7) about 5% to about 12%; polymers (e.g., PVP, maleic/acrylic acid copolymer, PEG) about 1% to about 5%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients (e.g., suds suppressors,
- a detergent composition formulated as a granulate comprising linear alkylbenzenesulfonate (calculated as acid) about 6% to about 12%; nonionic surfactant about 1% to about 4%; soap as fatty acid about 2% to about 6%; sodium carbonate (e.g., Na2CO3) about 14% to about 22%; zeolite (e.g., NaAlSiO4) about 18% to about 32%; sodium sulfate (e.g., Na2SO4) about 5% to about 20%; sodium citrate (e.g., C6H5Na3O7) about 3% to about 8%; sodium perborate (e.g., NaBO3H2O) about 4% to about 9%; bleach activator (e.g., NOBS or TAED) about 1% to about 5%; carboxymethylcellulose (CMC) 0% to about 2%; polymers (e.g., polycarboxylate or PEG) about 1% to about 5%; enzymes
- An aqueous liquid detergent composition comprising linear alkylbenzenesulfonate (calculated as acid) about 15% to about 23%; alcohol ethoxysulfate (e.g., C12-15 alcohol, 2-3 EO) about 8% to about 15%; alcohol ethoxylate (e.g., C12-15 alcohol, 7 EO, or C12-15 alcohol, 5 EO) about 3% to about 9%; soap as fatty acid (e.g., lauric acid) 0% to about 3%; aminoethanol about 1% to about 5%; sodium citrate about 5% to about 10%; hydrotrope (e.g., sodium toluensulfonate) about 2% to about 6%; borate (e.g., B4O7) 0% to about 2%; carboxymethylcellulose 0% to about 1%; ethanol about 1% to about 3%; propylene glycol about 2% to about 5%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients (e.
- An aqueous liquid detergent composition comprising linear alkylbenzenesulfonate (calculated as acid) about 20% to about 32%; alcohol ethoxylate (e.g., C12-15 alcohol, 7 EO, or C12-15 alcohol, 5 EO) 6-12%; aminoethanol about 2% to about 6%; citric acid about 8% to about 14%; borate (e.g., B4O7) about 1% to about 3%; polymer (e.g., maleic/acrylic acid copolymer, anchoring polymer such as, e.g., lauryl methacrylate/acrylic acid copolymer) 0% to about 3%; glycerol about 3% to about 8%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients (e.g., hydrotropes, dispersants, perfume, optical brighteners) 0-5%.
- alcohol ethoxylate e.g., C12-15 alcohol, 7 EO, or C12-15 alcohol,
- a detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising anionic surfactant (linear alkylbenzenesulfonate, alkyl sulfate, ⁇ -olefinsulfonate, ⁇ -sulfo fatty acid methyl esters, alkanesulfonates, soap) about 25% to about 40%; nonionic surfactant (e.g., alcohol ethoxylate) about 1% to about 10%; sodium carbonate (e.g., Na2CO3) about 8% to about 25%; soluble silicates (e.g., Na2O, 2SiO2) about 5% to about 15%; sodium sulfate (e.g., Na2SO4) 0% to about 5%; zeolite (NaAlSiO4) about 15% to about 28%; sodium perborate (e.g., NaBO3.4H2O) 0% to about 20%; bleach activator (TAED or NOBS) about 0% to about a
- compositions 1)-12) supra wherein all or part of the linear alkylbenzenesulfonate is replaced by (C12-C18) alkyl sulfate.
- a detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising (C12-C18) alkyl sulfate about 9% to about 15%; alcohol ethoxylate about 3% to about 6%; polyhydroxy alkyl fatty acid amide about 1% to about 5%; zeolite (e.g., NaAlSiO4) about 10% to about 20%; layered disilicate (e.g., SK56 from Hoechst) about 10% to about 20%; sodium carbonate (e.g., Na2CO3) about 3% to about 12%; soluble silicate (e.g., Na2O, 2SiO2) 0% to about 6%; sodium citrate about 4% to about 8%; sodium percarbonate about 13% to about 22%; TAED about 3% to about 8%; polymers (e.g., polycarboxylates and PVP) 0% to about 5%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and
- a detergent composition formulated as a granulate having a bulk density of at least 600 g/L comprising (C12-C18) alkyl sulfate about 4% to about 8%; alcohol ethoxylate about 11% to about 15%; soap about 1% to about 4%; zeolite MAP or zeolite A about 35% to about 45%; sodium carbonate (as Na2CO3) about 2% to about 8%; soluble silicate (e.g., Na2O, 2SiO2) 0% to about 4%; sodium percarbonate about 13% to about 22%; TAED 1-8%; carboxymethylcellulose (CMC) 0% to about 3%; polymers (e.g., polycarboxylates and PVP) 0% to about 3%; enzymes (calculated as pure enzyme protein) 0.0001-0.1%; and minor ingredients (e.g., optical brightener, phosphonate, perfume) 0-3%.
- CMC carboxymethylcellulose
- polymers e.g., poly
- the manganese catalyst for example is one of the compounds described in “Efficient manganese catalysts for low-temperature bleaching,” Nature 369: 637-639 (1994).
- Detergent composition formulated as a non-aqueous detergent liquid comprising a liquid nonionic surfactant such as, e.g., linear alkoxylated primary alcohol, a builder system (e.g., phosphate), an enzyme(s), and alkali.
- a liquid nonionic surfactant such as, e.g., linear alkoxylated primary alcohol, a builder system (e.g., phosphate), an enzyme(s), and alkali.
- the detergent may also comprise anionic surfactant and/or a bleach system.
- the present amylase polypeptide may be incorporated at a concentration conventionally employed in detergents. It is at present contemplated that, in the detergent composition, the enzyme may be added in an amount corresponding to 0.00001-1.0 mg (calculated as pure enzyme protein) of amylase polypeptide per liter of wash liquor.
- the detergent composition may also contain other conventional detergent ingredients, e.g., deflocculant material, filler material, foam depressors, anti-corrosion agents, soil-suspending agents, sequestering agents, anti-soil redeposition agents, dehydrating agents, dyes, bactericides, fluorescers, thickeners, and perfumes.
- the detergent composition may be formulated as a hand (manual) or machine (automatic) laundry detergent composition, including a laundry additive composition suitable for pre-treatment of stained fabrics and a rinse added fabric softener composition, or be formulated as a detergent composition for use in general household hard surface cleaning operations, or be formulated for manual or automatic dishwashing operations.
- any of the cleaning compositions described, herein, may include any number of additional enzymes.
- the enzyme(s) should be compatible with the selected detergent, (e.g., with respect to pH-optimum, compatibility with other enzymatic and non-enzymatic ingredients, and the like), and the enzyme(s) should be present in effective amounts.
- the following enzymes are provided as examples.
- proteases include those of animal, vegetable or microbial origin. Chemically modified or protein engineered mutants are included, as well as naturally processed proteins.
- the protease may be a serine protease or a metalloprotease, an alkaline microbial protease, a trypsin-like protease, or a chymotrypsin-like protease.
- alkaline proteases are subtilisins, especially those derived from Bacillus , e.g., subtilisin Novo, subtilisin Carlsberg, subtilisin 309, subtilisin 147, and subtilisin 168 (see, e.g., WO 89/06279).
- proteases described in U.S. Pat. Nos. RE 34,606, 5,955,340, 5,700,676, 6,312,936, and 6,482,628, all of which are incorporated herein by reference.
- trypsin-like proteases are trypsin (e.g., of porcine or bovine origin), and Fusarium proteases (see, e.g., WO 89/06270 and WO 94/25583).
- useful proteases also include but are not limited to the variants described in WO 92/19729, WO 98/20115, WO 98/20116, and WO 98/34946.
- protease enzymes include but are not limited to: Alcalase®, Savinase®, PrimaseTM, DuralaseTM, Esperase®, BLAZETM POLARZYME®, OVOZYME®, KANNASE®, LIQUANASE®, NEUTRASE®, RELASE®, and ESPERASE® (Novo Nordisk A/S and Novozymes A/S), Maxatase®, MaxacalTM MaxapemTM, Properase®, Purafect®, Purafect OxPTM, Purafect PrimeTM, FNATM FN2TM FN3TM, OPTICLEAN®, OPTIMASE®, PURAMAXTM, EXCELLASETM, and PURAFASTTM (Danisco US Inc./DuPont Industrial Biosciences, Palo Alto, Calif., USA), BLAPTM and BLAPTM variants (Henkel Karlandit GmbH auf Aktien, Duesseldorf, Germany), and KAP ( B.
- proteases from Bacillus amyloliquefaciens and ASP from Cellulomonas sp. strain 69B4 (Danisco US Inc./DuPont Industrial Biosciences, Palo Alto, Calif., USA).
- Various proteases are described in WO95/23221, WO 92/21760, WO 09/149200, WO 09/149144, WO 09/149145, WO 11/072099, WO 10/056640, WO 10/056653, WO 11/140364, WO 12/151534, U.S. Pat. Publ. No. 2008/0090747, and U.S. Pat.
- Suitable lipases include those of bacterial or fungal origin. Chemically modified, proteolytically modified, or protein engineered mutants are included. Examples of useful lipases include but are not limited to lipases from Humicola (synonym Thermomyces ), e.g., from H. lanuginosa ( T. lanuginosus ) (see e.g., EP 258068 and EP 305216), from H. insolens (see e.g., WO 96/13580); a Pseudomonas lipase (e.g., from P. alcaligenes or P. pseudoalcaligenes ; see, e.g., EP 218 272), P.
- Humicola semomyces
- H. lanuginosa T. lanuginosus
- Pseudomonas lipase e.g., from P. alcaligenes or P. pseudoalcaligenes ; see,
- cepacia see e.g., EP 331 376
- P. stutzeri see e.g., GB 1,372,034
- P. fluorescens Pseudomonas sp. strain SD 705 (see e.g., WO 95/06720 and WO 96/27002)
- P. wisconsinensis see e.g., WO 96/12012
- Bacillus lipase e.g., from B. subtilis ; see e.g., Dartois et al. Biochemica et Biophysica Acta, 1131: 253-360 (1993)
- B. subtilis see e.g., Dartois et al. Biochemica et Biophysica Acta, 1131: 253-360 (1993)
- B. subtilis see e.g., Dartois et al. Biochemica et Biophysica Acta, 1131: 253-
- lipase variants contemplated for use in the formulations include those described for example in: WO 92/05249, WO 94/01541, WO 95/35381, WO 96/00292, WO 95/30744, WO 94/25578, WO 95/14783, WO 95/22615, WO 97/04079, WO 97/07202, EP 407225, and EP 260105.
- Some commercially available lipase enzymes include Lipolase® and Lipolase UltraTM (Novo Nordisk A/S and Novozymes A/S).
- Polyesterases Suitable polyesterases can be included in the composition, such as those described in, for example, WO 01/34899, WO 01/14629, and U.S. Pat. No. 6,933,140.
- Amylases The present compositions can be combined with other amylases, including other ⁇ -amylases. Such a combination is particularly desirable when different ⁇ -amylases demonstrate different performance characteristics and the combination of a plurality of different ⁇ -amylases results in a composition that provides the benefits of the different ⁇ -amylases.
- amylases include commercially available amylases, such as but not limited to STAINZYME®, NATALASE®, DURAMYL®, TERMAMYL®, FUNGAMYL® and BANTM (Novo Nordisk A/S and Novozymes A/S); RAPIDASE®, POWERASE®, PURASTAR®, and PREFERENZTM (from DuPont Industrial Biosciences.).
- Cellulases can be added to the compositions. Suitable cellulases include those of bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Suitable cellulases include cellulases from the genera Bacillus, Pseudomonas, Humicola, Fusarium, Thielavia, Acremonium , e.g., the fungal cellulases produced from Humicola insolens, Myceliophthora thermophila and Fusarium oxysporum disclosed for example in U.S. Pat. Nos. 4,435,307; 5,648,263; 5,691,178; 5,776,757; and WO 89/09259.
- Exemplary cellulases contemplated for use are those having color care benefit for the textile.
- Examples of such cellulases are cellulases described in for example EP 0495257, EP 0531372, WO 96/11262, WO 96/29397, and WO 98/08940.
- Other examples are cellulase variants, such as those described in WO 94/07998; WO 98/12307; WO 95/24471; PCT/DK98/00299; EP 531315; U.S. Pat. Nos. 5,457,046; 5,686,593; and 5,763,254.
- cellulases include CELLUZYME® and CAREZYME® (Novo Nordisk A/S and Novozymes A/S); CLAZINASE® and PURADAX HA® (DuPont Industrial Biosciences); and KAC-500(B)TM (Kao Corporation).
- Peroxidases/Oxidases Suitable peroxidases/oxidases contemplated for use in the compositions include those of plant, bacterial or fungal origin. Chemically modified or protein engineered mutants are included. Examples of useful peroxidases include peroxidases from Coprinus , e.g., from C. cinereus , and variants thereof as those described in WO 93/24618, WO 95/10602, and WO 98/15257. Commercially available peroxidases include for example GUARDZYMETM (Novo Nordisk A/S and Novozymes A/S).
- the detergent composition can also comprise 2,6- ⁇ -D-fructan hydrolase, which is effective for removal/cleaning of biofilm present on household and/or industrial textile/laundry.
- the detergent enzyme(s) may be included in a detergent composition by adding separate additives containing one or more enzymes, or by adding a combined additive comprising all of these enzymes.
- a detergent additive i.e. a separate additive or a combined additive, can be formulated e.g., as a granulate, a liquid, a slurry, and the like.
- Exemplary detergent additive formulations include but are not limited to granulates, in particular non-dusting granulates, liquids, in particular stabilized liquids or slurries.
- Non-dusting granulates may be produced, e.g., as disclosed in U.S. Pat. Nos. 4,106,991 and 4,661,452 and may optionally be coated by methods known in the art.
- waxy coating materials are poly(ethylene oxide) products (e.g., polyethyleneglycol, PEG) with mean molar weights of 1,000 to 20,000; ethoxylated nonylphenols having from 16 to 50 ethylene oxide units; ethoxylated fatty alcohols in which the alcohol contains from 12 to 20 carbon atoms and in which there are 15 to 80 ethylene oxide units; fatty alcohols; fatty acids; and mono- and di- and triglycerides of fatty acids.
- Liquid enzyme preparations may, for instance, be stabilized by adding a polyol such as propylene glycol, a sugar or sugar alcohol, lactic acid or boric acid according to established methods.
- Protected enzymes may be prepared according to the method disclosed in EP 238,216.
- the detergent composition may be in any convenient form, e.g., a bar, a tablet, a powder, a granule, a paste, or a liquid.
- a liquid detergent may be aqueous, typically containing up to about 70% water, and 0% to about 30% organic solvent.
- Compact detergent gels containing about 30% or less water are also contemplated.
- the detergent composition can optionally comprise one or more surfactants, which may be non-ionic, including semi-polar and/or anionic and/or cationic and/or zwitterionic.
- the surfactants can be present in a wide range, from about 0.1% to about 60% by weight.
- the detergent When included therein the detergent will typically contain from about 1% to about 40% of an anionic surfactant, such as linear alkylbenzenesulfonate, ⁇ -olefinsulfonate, alkyl sulfate (fatty alcohol sulfate), alcohol ethoxysulfate, secondary alkanesulfonate, ⁇ -sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid, or soap.
- an anionic surfactant such as linear alkylbenzenesulfonate, ⁇ -olefinsulfonate, alkyl sulfate (fatty alcohol sulfate), alcohol ethoxysulfate, secondary alkanesulfonate, ⁇ -sulfo fatty acid methyl ester, alkyl- or alkenylsuccinic acid, or soap.
- the detergent When included therein, the detergent will usually contain from about 0.2% to about 40% of a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl-N-alkyl derivatives of glucosamine (“glucamides”).
- a non-ionic surfactant such as alcohol ethoxylate, nonylphenol ethoxylate, alkylpolyglycoside, alkyldimethylamineoxide, ethoxylated fatty acid monoethanolamide, fatty acid monoethanolamide, polyhydroxy alkyl fatty acid amide, or N-acyl-N-alkyl derivatives of glucosamine (“glucamides”).
- glucamides N-acyl-N-alkyl derivatives of glucosamine
- the detergent may contain 0% to about 65% of a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, carbonate, citrate, nitrilotriacetic acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid, alkyl- or alkenylsuccinic acid, soluble silicates or layered silicates (e.g., SKS-6 from Hoechst).
- a detergent builder or complexing agent such as zeolite, diphosphate, triphosphate, phosphonate, carbonate, citrate, nitrilotriacetic acid, ethylenediaminetetraacetic acid (EDTA), diethylenetriaminepentaacetic acid, alkyl- or alkenylsuccinic acid, soluble silicates or layered silicates (e.g., SKS-6 from Hoechst).
- the detergent may comprise one or more polymers.
- Exemplary polymers include carboxymethylcellulose (CMC), poly(vinylpyrrolidone) (PVP), poly(ethylene glycol) (PEG), poly(vinyl alcohol) (PVA), poly(vinylpyridine-N-oxide), poly(vinylimidazole), polycarboxylates e.g., polyacrylates, maleic/acrylic acid copolymers), and lauryl methacrylate/acrylic acid copolymers.
- the enzyme(s) of the detergent composition may be stabilized using conventional stabilizing agents, e.g., as polyol (e.g., propylene glycol or glycerol), a sugar or sugar alcohol, lactic acid, boric acid, or a boric acid derivative (e.g., an aromatic borate ester), or a phenyl boronic acid derivative (e.g., 4-formylphenyl boronic acid).
- polyol e.g., propylene glycol or glycerol
- a sugar or sugar alcohol lactic acid, boric acid, or a boric acid derivative (e.g., an aromatic borate ester)
- a phenyl boronic acid derivative e.g., 4-formylphenyl boronic acid
- the enzyme variants may be added in an amount corresponding to about 0.01 to about 100 mg of enzyme protein per liter of wash liquor (e.g., about 0.05 to about 5.0 mg of enzyme protein per liter of wash liquor or 0.1 to about 1.0 mg of enzyme protein per liter of wash liquor).
- exemplary detergent formulations to which the present amylases can be added are described in WO2013063460.
- These include commercially available unit dose detergent formulations/packages such as PUREX® UltraPacks (Henkel), FINISH® Quantum (Reckitt Benckiser), CLOROXTM 2 Packs (Clorox), OxiClean Max Force Power Paks (Church & Dwight), TIDE® Stain Release, CASCADE® ActionPacs, and TIDE® PodsTM (Procter & Gamble), PS.
- the present variant amylase may be a component of a brewing composition used in a process of brewing, i.e., making a fermented malt beverage.
- Non-fermentable carbohydrates form the majority of the dissolved solids in the final beer. This residue remains because of the inability of malt amylases to hydrolyze the alpha-1,6-linkages of the starch.
- the non-fermentable carbohydrates contribute about 50 calories per 12 ounces of beer.
- an amylase in combination with a glucoamylase and optionally a pullulanase and/or isoamylase, assist in converting the starch into dextrins and fermentable sugars, lowering the residual non-fermentable carbohydrates in the final beer.
- adjuncts such as common corn grits, refined corn grits, brewer's milled yeast, rice, sorghum, refined corn starch, barley, barley starch, dehusked barley, wheat, wheat starch, torrified cereal, cereal flakes, rye, oats, potato, tapioca, and syrups, such as corn syrup, sugar cane syrup, inverted sugar syrup, barley and/or wheat syrups, and the like may be used as a source of starch.
- adjuncts such as common corn grits, refined corn grits, brewer's milled yeast, rice, sorghum, refined corn starch, barley, barley starch, dehusked barley, wheat, wheat starch, torrified cereal, cereal flakes, rye, oats, potato, tapioca, and syrups, such as corn syrup, sugar cane syrup, inverted sugar syrup, barley and/or wheat syrups, and the like may be used as a source
- the malt which is produced principally from selected varieties of barley, has the greatest effect on the overall character and quality of the beer.
- the malt is the primary flavoring agent in beer.
- the malt provides the major portion of the fermentable sugar.
- the malt provides the proteins, which will contribute to the body and foam character of the beer.
- the malt provides the necessary enzymatic activity during mashing.
- Hops also contribute significantly to beer quality, including flavoring.
- hops or hops constituents
- the hops act as protein precipitants, establish preservative agents and aid in foam formation and stabilization.
- Grains such as barley, oats, wheat, as well as plant components, such as corn, hops, and rice, also are used for brewing, both in industry and for home brewing.
- the components used in brewing may be unmalted or may be malted, i.e., partially germinated, resulting in an increase in the levels of enzymes, including ⁇ -amylase.
- ⁇ -amylase enzymes
- an amylase by itself or in combination with another ⁇ -amylase(s), accordingly may be added to the components used for brewing.
- the term “stock” means grains and plant components that are crushed or broken.
- barley used in beer production is a grain that has been coarsely ground or crushed to yield a consistency appropriate for producing a mash for fermentation.
- the term “stock” includes any of the aforementioned types of plants and grains in crushed or coarsely ground forms. The methods described herein may be used to determine ⁇ -amylase activity levels in both flours and stock.
- Processes for making beer are well known in the art. See, e.g., Wolfgang Kunze (2004) “Technology Brewing and Malting,” Research and Teaching Institute of Brewing, Berlin (VLB), 3rd edition. Briefly, the process involves: (a) preparing a mash, (b) filtering the mash to prepare a wort, and (c) fermenting the wort to obtain a fermented beverage, such as beer. Typically, milled or crushed malt is mixed with water and held for a period of time under controlled temperatures to permit the enzymes present in the malt to convert the starch present in the malt into fermentable sugars. The mash is then transferred to a mash filter where the liquid is separated from the grain residue.
- This sweet liquid is called “wort,” and the left over grain residue is called “spent grain.”
- the mash is typically subjected to an extraction, which involves adding water to the mash in order to recover the residual soluble extract from the spent grain.
- the wort is then boiled vigorously to sterilizes the wort and help develop the color, flavor and odor. Hops are added at some point during the boiling.
- the wort is cooled and transferred to a fermentor.
- the wort is then contacted in a fermentor with yeast.
- the fermentor may be chilled to stop fermentation.
- the yeast flocculates and is removed.
- the beer is cooled and stored for a period of time, during which the beer clarifies and its flavor develops, and any material that might impair the appearance, flavor and shelf life of the beer settles out.
- the beer usually contains from about 2% to about 10% v/v alcohol, although beer with a higher alcohol content, e.g., 18% v/v, may be obtained.
- the beer Prior to packaging, the beer is carbonated and, optionally, filtered and pasteurized.
- the brewing composition comprising an amylase, in combination with a glucoamylase and optionally a pullulanase and/or isoamylase, may be added to the mash of step (a) above, i.e., during the preparation of the mash.
- the brewing composition may be added to the mash of step (b) above, i.e., during the filtration of the mash.
- the brewing composition may be added to the wort of step (c) above, i.e., during the fermenting of the wort.
- a fermented beverage such as a beer
- the fermented beverage can be a beer, such as full malted beer, beer brewed under the “Rösgebot,” ale, IPA, lager, bitter, Happoshu (second beer), third beer, dry beer, near beer, light beer, low alcohol beer, low calorie beer, porter, bock beer, stout, malt liquor, non-alcoholic beer, non-alcoholic malt liquor and the like, but also alternative cereal and malt beverages such as fruit flavored malt beverages, e.g., citrus flavored, such as lemon-, orange-, lime-, or berry-flavored malt beverages, liquor flavored malt beverages, e.g., vodka-, rum-, or tequila-flavored malt liquor, or coffee flavored malt beverages, such as caffeine-flavored malt liquor, and the like.
- fruit flavored malt beverages e.g., citrus flavored, such as lemon-, orange-, lime-, or berry-flavored malt beverages
- Variant amylases may reduce the iodine-positive starch (IPS), when used in a method of liquefaction and/or saccharification.
- IPS iodine-positive starch
- One source of IPS is from amylose that escapes hydrolysis and/or from retrograded starch polymer.
- Starch retrogradation occurs spontaneously in a starch paste, or gel on ageing, because of the tendency of starch molecules to bind to one another followed by an increase in crystallinity. Solutions of low concentration become increasingly cloudy due to the progressive association of starch molecules into larger articles. Spontaneous precipitation takes place and the precipitated starch appears to be reverting to its original condition of cold-water insolubility.
- IPS in saccharide liquor negatively affects final product quality and represents a major issue with downstream processing.
- the amount of IPS can be reduced by isolating the saccharification tank and blending the contents back. IPS nevertheless will accumulate in carbon columns and filter systems, among other things.
- the use of variant amylases is expected to improve overall process performance by reducing the amount of IPS.
- 96-well microtiter plates containing growing cultures were removed from incubators and Enzyscreen lids were replaced with disposable plastic sealers (Nunc cat. #236366; Rochester, N.Y., USA). Cells were separated from culture supernatant via centrifugation (1118 RCF, 5 minutes). 150 ⁇ L supernatant was removed from each well and transferred to filter plates (Millipore Multiscreen HTS, Billerica, Mass., USA) containing Chelex beads prepared as described below. Plates were shaken vigorously for 5 minutes and supernatant from 3 replicate growth plates were collected into a single deep-well microtiter plate (Axygen, PDW-11-C) using a vacuum manifold device. Plates containing supernatants were sealed and stored at 4° C.
- Chelex-100 beads, 200-400 mesh were washed twice with 2 bed-volumes of 1 M HCl followed by 5 bed-volumes of ultrapure water on a sintered glass filter apparatus. 2 bed-volumes of 1 M KOH were used to wash the beads followed by another 5 bed-volume wash with ultrapure water. Filtered beads were transferred to a beaker and suspended with enough ultrapure water to produce slurry capable of mixing. The pH of the slurry was adjusted to 8-8.5 using HCl. The liquid was removed and the beads were dried using a scintered glass filter.
- a slurry of beads (40% w/v) was prepared in ultra pure water and its pH was adjusted to 8.0 using KOH/HCl. A slurry having a constant consistency was maintained by vigorous mixing.
- a bubble paddle reservoir device (V&P Scientific, San Diego, Calif., USA) was used to transfer 100 ⁇ L of slurry to all wells of filter plates. Liquid was removed using a vacuum manifold device.
- Bacillus strains expressing amylase variants were grown in 2.5 L flasks in cultivation medium (enriched semi-defined media based on MOPs buffer, with urea as the major nitrogen source, glucose as the main carbon source, and supplemented with 1% soytone for robust cell growth) for 60-72 hours at 37° C. or in 14 L tanks using a fed batch fermentation process with a medium of corn steep and soy flour supplemented with mineral salts and glucose as carbon source for 100 hours at 36° C. Following incubation, the cells were separated from the fermentation medium by centrifugation and the supernatants were concentrated by ultrafiltration. Ammonium sulphate was added to the concentrate to a final concentration of 0.5M.
- the proteins were purified using hydrophobic interaction chromatography using a phenyl sepharose column on the AKTA Explorer FPLC system (GE Healthcare).
- the column was equilibrated with 50 mM HEPES, pH 8, with 2 mM CaCl 2 and 0.5 M ammonium sulfate, and the proteins were eluted with 50 mM HEPES, pH 8, with 2 mM CaCl 2 and 50% propylene glycol.
- liquid fractions associated with the peak of interest were pooled, and absorbance measurements of the pooled fractions were taken to estimate initial concentrations.
- Protein concentration of concentrated samples was determined by averaging the result from three different measurements: absorbance measurements at 280 nm, SDS-PAGE densitometry of acid-treated samples compared to a known standard, and by running the proteins on an HPLC system and taking absorbance measurements at 215 nm and 280 nm.
- Protein determination assays were performed using chelex bead-treated culture supernatant from cultures grown in 96-well micro-titer plates (MTPs) over 3 days at 37° C. with shaking at 300 rpm and 80% humidity. A fresh 96-well round-bottom MTP containing 25 ⁇ L supernatant per well was used for the High Performance Liquid Chromatography (HPLC) protein determination method. Supernatants were diluted four fold into 25 mM sodium acetate pH 5.5, and 10 ⁇ L of each diluted sample was analyzed. An Agilent 1200 (Hewlett Packard) HPLC equipped with a Poroshell 300SB-C8 (Agilent Technologies Santa Clara, Calif., USA) column was used.
- HPLC High Performance Liquid Chromatography
- the Ceralpha ⁇ -amylase assay was performed using the Ceralpha Kit (Megazyme, Wicklow, Ireland). The assay involves incubating culture supernatant with a substrate mixture under defined conditions, and the reaction is terminated (and color developed) by the addition of borate buffer (200 mM Boric acid/NaOH buffer, pH 10).
- the substrate is a mixture of the defined oligosaccharide “nonreducing-end blocked p-nitrophenyl maltoheptaoside” (BPNPG7) and excess levels of ⁇ -glucosidase (which has no action on the native substrate due to the presence of the “blocking group”).
- the equipment used for this assay included a Biomek FX Robot (Beckman Coulter Brea, Calif., USA); a SpectraMAX MTP Reader (type 340-Molecular Devices, Sunnyvale, Calif., USA) and iEMS incubator/shaker (Thermo Scientific, Rockford, Ill., USA).
- the reagent and solutions used were:
- a vial containing 54.5 mg BPNPG7 substrate was dissolved in 10 mL of MilliQ water and then diluted into 30 mL of dilution buffer to make up 40 mL of the working substrate (1.36 mg/mL).
- the amylase samples (fermentation supernatant) were diluted 40 ⁇ with dilution buffer.
- the assay was performed by adding 5 ⁇ L of diluted amylase solution into the wells of a MTP followed by the addition of 55 ⁇ L of diluted BPNPG7 working substrate solution. The solutions were mixed and the MTP was sealed with a plate seal and placed in an incubator/shaker (iEMS-Thermo Scientific) for 4 minutes at 25° C. The reaction was terminated by adding 70 ⁇ L STOP buffer and the absorbance was read at wavelength 400 nm in an MTP-Reader. A non-enzyme control was used to correct for background absorbance values.
- thermostability of CspAmy2-v1 and variants was measured by determining the amylase activity using the Ceralpha ⁇ -amylase assay.
- the equipment used for this assay included a Biomek FX Robot (Beckman Coulter); a SpectraMAX MTP Reader (type 340-Molecular Devices), a Tetrad2DNA Engine PCR machine (Biorad), and iEMS incubator/shaker (Thermo Scientific).
- the reagent solutions used were (* not in all assays):
- Starch hydrolysis of corn flour and corn starch were used to measure specific activity of CspAmy2-v1 and variants. Activity was measured as reducing ends generated by the enzymatic breakdown of corn flour or corn starch. The reducing ends generated during the incubation with either substrate were quantified using a PAHBAH (p-hydroxybenzoic acid hydrazide) assay.
- PAHBAH p-hydroxybenzoic acid hydrazide
- the equipment used for the assay included a Biomek FX Robot (Beckman Coulter); a SpectraMAX MTP Reader (type 340-Molecular Devices), a Tetrad2DNA Engine PCR machine (Biorad), and iEMS incubator/shaker (Thermo Scientific), and a Bubble Paddle Reservoir.
- Azure Farms Organic Corn Flour (Norco, Calif.) was ground to a fine powder using a consumer coffee grinder and then sifted to obtain a ⁇ 250 micron fraction.
- the sifted corn flour was washed extensively with MilliQ water by repeated suspension and centrifugation.
- Cargill Farms Organic Corn Starch material was also washed extensively with MilliQ water by repeated suspension and centrifugation.
- Both corn flour and corn starch washed fractions were suspended in MilliQ water containing 0.005% sodium azide as 20% (w/w) stock solutions.
- the stock solutions were further diluted with a 20 ⁇ stock buffer solution to 10.9% w/v corn flour and corn starch solutions (final buffer concentration: 55 mM KOAc, pH 5).
- the principle of this amylase assay is the liberation of an orange dye due to the hydrolysis of rice starch incorporated in a cotton microswatch.
- the absorbance at 488 nm of the wash liquid is measured and this relates to the level of amylase activity in the sample analyzed at the desired conditions (pH, temperature, and buffer).
- the equipment used for this assay included a Biomek FX Robot (Beckman Coulter), a SpectraMAX MTP Reader (type 340-Molecular Devices) and iEMS incubator/shaker (Thermo Scientific).
- the reagent and solutions used were:
- CS-28 microswatches of 5.5 mm circular diameter were provided by the Center for Testmaterials (CFT, Vlaardingen, The Netherlands). Two microswatches were placed in each well of a 96-well Corning 9017 flat bottomed polystyrene MTP. The culture supernatants were diluted eight fold in 50 mM MOPS pH7.15, 0.1 mM CaCl 2 , and subsequently in 10 mM NaCl, 0.1 mM CaCl 2 , 0.005% TWEEN®80 solution to approximately 1 ppm, final enzyme concentration.
- the incubator/shaker was set at the desired temperature, 25° C. (ambient temperature) or 50° C. 174 ⁇ L or 177 ⁇ L of either HEPES or CAPS buffer, respectively, was added to each well of microswatch containing MTP and subsequently 6 ⁇ L or 3 ⁇ L of diluted enzyme solution was added to each well resulting in a total volume of 180 ⁇ L/well.
- the MTP was sealed with a plate seal and placed in the iEMS incubator/shaker and incubated for 15 minutes at 1150 rpm at 25° C. for cleaning at pH 8, low conductivity (1 mS/cm), or 15 minutes at 1150 rpm at 50° C. for cleaning at pH 10, high conductivity (5 mS/cm).
- Each absorbance value was corrected by subtracting the blank (obtained after incubation of microswatches in the absence of enzyme), and the resulting absorbance provided a measure of the hydrolytic activity.
- a performance index (PI) was calculated for each sample.
- the Langmuir equation was used to fit the data based on the reference enzyme control. Using the protein concentration of the variants, the expected performance based on the curve-fit was calculated. The observed performance was divided by the calculated performance. This value was then divided by the performance of the reference enzyme.
- the stability of the reference amylase and variants thereof was determined by measuring their activity after incubation under defined conditions, in the presence of a 10% detergent mixture (commercially purchased Persil Color Gel detergent, Henkel (Düsseldorf, Germany), purchased in 2011). The detergent was heat-inactivated before use, and the initial and residual amylase activities were determined using the Ceralpha ⁇ -amylase assay as described in section C, above.
- the equipment used for this assay included a Biomek FX Robot (Beckman Coulter); a SpectraMAX MTP Reader (type 340-Molecular Devices), a Tetrad2DNA Engine PCR machine (Biorad), and iEMS incubator/shaker (Thermo Scientific).
- the reagent solutions used were:
- the performance index for detergent stability is determined by comparing the detergent stability of the variant enzyme with that of the similarly treated reference enzyme.
- the performance index (PI) compares the performance or stability of the variant and the reference enzyme at the same protein concentration.
- the theoretical values can be calculated, using the parameters of the Langmuir equation of the standard enzyme.
- CspAmy2-v1 amylase is a variant of CspAmy2 (SEQ ID NO: 1) amylase having a deletion of both R178 and G179 (i.e., ⁇ RG).
- CspAmy2 is an amylase from a Cytophaga sp., for which the nucleotide sequence was described by Chii-Ling et al. (2002) Appl. Environ. Microbiol. 68: 3651-3654.
- CspAmy2-v1 was described as having increased thermostability over the CspAmy2 by Rong-Jen et al. (2003) Appl. Environ. Microbiol. 69: 2383-85.
- a synthetic DNA fragment (SEQ ID NO: 7) encoding CspAmy2-v1 was produced by GeneArt AG (Regensburg, Germany) and served as template DNA for the construction of Bacillus subtilis strains expressing CspAmy2-v1 amylase and variants, thereof.
- the DNA fragment includes a codon-modified nucleotide sequence encoding the mature form of CspAmy2-v1 amylase adjacent to a sequence encoding the LAT signal peptide (underlined):
- the mature form of the CspAmy2-v1 polypeptide produced from the pHPLT02-CspAmy2-v1 vector is shown, below, as SEQ ID NO: 2.
- the CspAmy2-v1-encoding DNA fragment was cloned into the pHPLT02 vector, a modified version of the pHPLT vector (Solingen et al. (2001) Extremophiles 5:333-341) by GeneArt and fused in-frame to the AmyL (LAT) signal peptide using the unique NheI and XhoI restriction sites, resulting in plasmid pHPLT02-CspAmy2-v1.
- the pHPLT expression vector contains the B. licheniformis LAT promoter (Plat) and additional elements from pUB110 (McKenzie et al.
- Plasmid, 15: 93-103 including a replicase gene (reppUB), a neomycin/kanamycin resistance gene (neo) and a bleomycin resistance marker (bleo).
- Site-directed mutagenesis was used to change the nucleotides 5′′-TCA-3 ‘ of Serine 28 of the AmyL signal peptide to nucleotides 5′′-AGC-3’ in order to introduce the unique NheI restriction site.
- a suitable B. subtilis strain was transformed with pHPLT02-CspAmy2-v1 plasmid DNA using a method known in the art (WO 02/14490).
- the B. subtilis transformants were selected on agar plates containing heart infusion agar (Difco, Catalog No. 244400, Lawrence, Kans., USA and 10 mg/L neomycin sulfate (Sigma, Catalog No. N-1876; contains 732 ⁇ g neomycin per mg, St. Louis, Mo., USA).
- Selective growth of B. subtilis transformants harboring the pHPLT02-CspAmy2-v1 plasmid was performed in shake flasks at 37° C.
- MBD medium enriched semi-defined medium based on MOPs buffer, with urea as major nitrogen source, glucose as the main carbon source, and supplemented with 1% soytone for robust cell growth
- MBD medium enriched semi-defined medium based on MOPs buffer, with urea as major nitrogen source, glucose as the main carbon source, and supplemented with 1% soytone for robust cell growth
- urea major nitrogen source
- glucose as the main carbon source
- soytone for robust cell growth containing 5 mM CaCl 2 and 10 ppm neomycin.
- CspAmy2-v5 is a variant of CspAmy2 with the mutations E187P, I203Y, G476K, and lacking R178 and G179.
- CspAmy2-v6 is a variant of CspAmy2 with the mutations E187P, I203Y, G476K, R458N, T459S, D460T, and lacking R178 and G179.
- expression constructs were created by a combination of gene synthesis and fusion PCR, using standard techniques.
- the CspAmy2-v5 and CspAmy2-v6 expression constructs were ligated into vector pICatH (described in, e.g., EP2428572 and U.S. Pat. No. 7,968,691) and transformed into competent B. subtilis cells (amyE negative) as known in the art (WO 2002/014490).
- the DNA fragments encoding CspAmy2-v5 and CspAmy2-v6 are fused in-frame to a sequence encoding the B. licheniformis amylase (amyL) signal peptide which leads to secretion of the amylase variants into the growth medium.
- expression of CspAmy2-v5 and CspAmy2-v6 in these clones is driven by the B. licheniformis amylase (amyL) promoter ( FIGS. 1A and 1B ).
- B. subtilis transformants were selected on agar plates containing heart infusion agar (Difco) and 10 mg/L neomycin sulfate, 5 mg/L chloramphenicol and starch azure (Sigma). For each construct, one transformant with starch hydrolyzing activity was selected and the amylase expression constructs in pICatH were sequence verified by DNA sequencing (BaseClear, the Netherlands). The resulting plasmids, pICatH-CspAmy2-v5 and pICatH-CspAmy2-v6, were isolated from the B. subtilis clones and transformed into B.
- amino acid sequence of the mature form of CspAmy2-v5 is shown, below, as SEQ ID NO: 8:
- amino acid sequence of the mature form of CspAmy2-v6 is shown, below, as SEQ ID NO: 9:
- CFT CS-28 rice starch on cotton swatches or EMPA 161 maize starch on cotton cretonne (Center for Testmaterials, BV, Vlaardingen, Netherlands) containing an indicator dye bound to the starch were punched to form discs measuring 5.5 mm in diameter. Two discs were placed in each well of 3 flat-bottom non-binding 96-well assay plates.
- HEPES buffer 25 mM HEPES, pH 8.0, with 2 mM CaCl 2 and 0.005% Tween-80
- 100 ⁇ L of the diluted enzyme samples were then transferred from the first row into the next row, mixed well, and serial dilutions were continued until before the last row, which served as blanks.
- 100 ⁇ L of buffer were added to each well of the plate to result in final volumes of 200 ⁇ L per well, and final enzyme concentrations of 1, 0.5, 0.25, 0.125, 0.0625, and 0 ppm.
- 0.5 mg/mL stocks of purified enzymes i.e., CspAmy2-v5, CspAmy2-v6, CspAmy2
- PURASTAR® Bacillus licheniformis ⁇ -amylase
- ACE-QK variant of Bacillus sp. TS-23 ⁇ -amylase described in US20120045817 and WO2010/115028
- 50 ⁇ L of each enzyme were added to each of 9 strips of PCR tubes and sealed.
- One “unstressed” sample of each enzyme was incubated at room temperature throughout the duration of the experiment.
- Synthetic DNA encoding CspAmy2-v1 variants having various combinations of substitutions at positions N126, Y150, F153, L171, T180, E187, 1203, and S241 were constructed by GeneArt and delivered as plasmids transformed in a B. subtilis host, as described for CspAmy2-v5 and CspAmy2-v6 in Example 2. With single substitutions at each of eight sites, 256 combinations were possible. The specific substitutions N126Y, Y150H, F153W, L171N, T180H, E187P, I203Y, and S241Q, were selected, and ten of the possible combinations were made and tested.
- the names of the variants, and the amino acid residues present at each of the eight positions, is shown in Table 2.
- the full names of the variants in the Table are CspAmy2-C16A-CspAmy2-C16J.
- the names of the variants are abbreviated but always clear from the description.
- Further variants of CspAmy2-v1 additionally having the mutations E187P or S241Q were made, and designated CspAmy2-v1-E187P or CspAmy2-v1-S241Q, respectively.
- the pHPLT02-CspAmy2-v1 plasmid DNA (encoding CspAmy2-v1, see Example 2) served as template to produce the additional combinatorial libraries at pre-selected sites in the mature region.
- the pHPLT02 expression vector was derived from the pHPLT vector.
- the pHPLT expression vector contains the B. licheniformis LAT promoter (Plat) and additional elements from pUB110 (McKenzie et al. (1986) Plasmid, 15: 93-103) including a replicase gene (reppUB), a neomycin/kanamycin resistance gene (neo) and a bleomycin resistance marker (bleo).
- GeneArt AG (Regensburg, Germany) created combinatorial libraries at the positions described using their standard protocols. The corresponding codons for each site of interest were substituted with codons for at least one non-wild-type amino acid.
- the codon-mutagenized pHPLT02-CspAmy2-v1 mixes were used to transform competent B. subtilis cells as known in the art (WO 2002/014490) to generate the CspAmy2-v1 combinatorial libraries. Transformation mixes were plated on Heart Infusion (HI) agar plates containing 10 mg/L neomycin sulfate.
- HI Heart Infusion
- TSB tryptone and soy-based broth
- MBD enriched semi-defined medium based on MOPs buffer, with urea as major nitrogen source, glucose as the main carbon source, and supplemented with 1% soytone for robust cell growth.
- amino acid sequence of mature CspAmy2-16A is shown, below, as SEQ ID NO: 10:
- amino acid sequence of mature CspAmy2-16B is shown, below, as SEQ ID NO: 11:
- amino acid sequence of mature CspAmy2-16C is shown, below, as SEQ ID NO: 12:
- amino acid sequence of mature CspAmy2-16D is shown, below, as SEQ ID NO: 13:
- amino acid sequence of the mature CspAmy2-16E is shown, below, as SEQ ID NO: 14:
- amino acid sequence of mature CspAmy2-16F is shown, below, as SEQ ID NO: 15:
- amino acid sequence of mature CspAmy2-16G is shown, below, as SEQ ID NO: 16:
- amino acid sequence of mature CspAmy2-16H is shown, below, as SEQ ID NO: 17:
- amino acid sequence of mature CspAmy2-161 is shown, below, as SEQ ID NO: 18:
- amino acid sequence of mature CspAmy2-16J is shown, below, as SEQ ID NO: 19:
- amino acid sequence of mature CspAmy2-v1-E187P is shown, below, as SEQ ID NO: 20:
- amino acid sequence of mature CspAmy2-v1-S241Q is shown, below, as SEQ ID NO: 21:
- Stock solutions of each variant were prepared by diluting purified variants to a final protein concentration of 1 mg/mL in milli-Q water, then each variant was further diluted (200-fold) in each of the above buffers (final enzyme dose is 5 ⁇ g/mL).
- the diluted enzyme solutions were pre-heated to appropriate temperature for two minutes and then cooled on ice to disrupt any protein aggregates.
- 50 ⁇ L of each enzyme solution was transferred to 0.2 mL PCR strip tubes, which were heated to the appropriate temperature (based on buffer pH) and allowed to incubate over a two-hour period. The samples were then placed in an ice-water bath to end the heat-stress period.
- the performance index (PI) for each variant was defined as the ratio of the variant half-life to the half-life of a reference parent molecule.
- the reference molecule was CspAmy2-v1-E187P.
- the reference molecule was CspAmy2-v1-S241Q.
- the relative half-lives and performance indexes are shown in the Table in FIG. 7 .
- Other experiments demonstrated that the stability of C16D was similar to that of STAINZYME®, while the stability of C16F was greater than that of STAINZYME® (not shown).
- ds corn flour slurry was prepared in an RVA can as follows: 9.17 g corn flour (11.8% moisture content) was weighed out on an analytical balance and mixed with 23.83 g deionized water. Sample pH was adjusted with 0.0828 ml 1N sulfuric acid (for pH 5.8) or 0.285 ml 1N sulfuric acid (for pH 5.0). Enzyme was added at appropriate dose, and the can was placed in the viscometer. All runs were 10 minutes in length, with a temperature ramp to 85° C. over 80 seconds followed by a temperature hold at 85° C. for the remainder of the run. Each enzyme was assessed at three doses. Dose responses were calculated for two parts of the viscosity curve.
- Peak viscosity is defined as the maximum viscosity reached during the experiment, and final viscosity is defined as the viscosity reading at the end of the experiment. Because viscosity has a reciprocal relationship with enzyme dose, dose response curves were linearized by plotting 1/viscosity (also called fluidity) vs. enzyme dose. Slopes of these curves were used as a quantitative measure of the specific activity of each variant. The performance index (PI) for each variant is defined as the ratio of the variant specific activity to the specific activity of a reference parent molecule.
- CspAmy2-C16A For variants CspAmy2-C16A, CspAmy2-C16C, CspAmy2-C16E, CspAmy2-C16G, and CspAmy2-C16I, the reference is CspAmy2-v1-E187P.
- CspAmy2-C16B For variants CspAmy2-C16D, CspAmy2-C16F, CspAmy2-C16H, and CspAmy2-C16J, the reference is CspAmy2-v1-S241Q. Viscosity reduction performance is shown in Tables 3 and 4.
- the cleaning performance of combination variants CspAmy2-C16A-CspAmy2-C16J from Example 5 was analyzed in a microswatch cleaning assay using CFT CS-28 rice starch on cotton swatches.
- the assay was performed using culture supernatants. Protein concentration for the supernatants was quantified using HPLC.
- the equipment used for this assay included a Biomek FX Robot (Beckman Coulter), a SpectraMAX MTP Reader (type 340-Molecular Devices) and iEMS incubator/shaker (Thermo Scientific).
- the reagent and solutions used were:
- CS-28 microswatches of 5.5 mm circular diameter were provided by the Center for Testmaterials (CFT, Vlaardingen, The Netherlands). Two microswatches were placed in each well of a 96-well Corning 9017 flat bottomed polystyrene MTP. The culture supernatants were diluted twenty-fold in 50 mM MOPS pH7.15, 0.005% TWEEN 80.
- the incubator/shaker was set at 25° C. (ambient temperature). 178.5 ⁇ L of HEPES buffer, respectively, was added to each well of microswatch containing MTP and subsequently 1.5 ⁇ L of diluted enzyme solution was added to each well resulting in a total volume of 180 ⁇ L/well.
- the MTP was sealed with a plate seal and placed in the iEMS incubator/shaker and incubated for 15 minutes at 1150 rpm at 25° C. Following incubation under the appropriate conditions, 100 ⁇ L of solution from each well was transferred to a new MTP, and the absorbance at 488 nm was measured using a MTP-spectrophotometer. Controls containing two microswatches and buffer but no enzyme were included for subtraction of background cleaning performance.
- the detergent stability of the additional CspAmy2 variants was determined by measuring their activity after incubation under defined conditions, in the presence of a 10% detergent mixture (commercially purchased Persil Color Gel detergent, Henkel (Düsseldorf, Germany), purchased in 2011).
- the detergent was heat-inactivated before use, and the initial and residual amylase activities were determined using the Ceralpha ⁇ -amylase assay.
- the equipment used for this assay included a Biomek FX Robot (Beckman Coulter); a SpectraMAX MTP Reader (type 340-Molecular Devices), a Tetrad2DNA Engine PCR machine (Biorad), and iEMS incubator/shaker (Thermo Scientific).
- the reagent solutions used were as follows:
- the performance index (PI) was calculated.
- the performance index for detergent stability is determined by comparing the detergent stability of the variant enzyme with that of the similarly treated CspAmy2-v1 enzyme. The results are shown in Table 5.
- CspAmy2 v171 is a variant of CspAmy2 having the mutations T180D, E187P, I203Y, G476K, and lacking R178 and G179.
- CspAmy2 v172 is a variant of CspAmy2 having the mutations N126Y, T180D, E187P, I203Y, G476K, and lacking R178 and G179.
- amino acid sequence of mature CspAmy2-v171 is shown, below, as SEQ ID NO: 22:
- amino acid sequence of mature CspAmy2-v172 is shown, below, as SEQ ID NO: 23:
- CspAmy2 variant The cleaning benefit of a CspAmy2 variant was compared to that of a commercially-available ⁇ -amylase [STAINZYME® (Novozymes A/S)] in a hand dishwashing application.
- STAINZYME® Novozymes A/S
- 0.01% (wt/wt) active enzyme CspAmy2-v6, STAINZYME®, or no enzyme as a control
- DM77 starch monitor i.e., ADW melamine tiles from Center for Test Materials CFT BV in Vlaardingen, the Netherlands
- CspAmy2-v5 was far superior to STAINZYME® in cleaning performance in terms of the rate of cleaning observed and the end point reached. Importantly, the rate of cleaning achieved by CspAmy2-v5 was so rapid that benefits were observed within a period of time relevant to hand dishwashing applications (i.e., about 30 seconds). These results indicate that CspAmy2 variants have potential as additives for hand dishwashing compositions.
- the cleaning benefit of a CspAmy2 variant was compared to that of two benchmark ⁇ -amylases (i.e., STAINZYME® and POWERASE®) in an automatic dishwashing (ADW) application.
- the cleaning assays were performed in a standard Miele 6382 dishwasher using a normal cycle (50° C. and 60 minutes) with water having a hardness of 21 GH and 37.5 FH. 20 g of ADW powder detergent was used for each dishwashing cycle.
- the detergent was either WfK Type B or Type C (Testgewebe GmbH, Brüggen, Germany), which are described in Tables A and B, respectively of FIG. 13 .
- the test samples were either pasta or mixed-starch stained dishes.
- the pasta samples were prepared by mixing 150 g of strained pasta cooked in 17 GH water with 200 mL distilled water in a blender for 5 minutes to obtain a chewing gum-like suspension. About 3 g of the suspension was brushed onto the surface of each dish to be included in the cleaning assay, allowed to dry for for 24 hours, baked onto the dishes at 120° C. for 2 hours, and allowed to cool. Cleaning performance was evaluated by adding iodine to the washed dishes and using a photo scale rating of 1-10.
- the mixed starch samples were prepared by mixing 26 g each of potato, corn, rice, and wheat starch in about 4 L g 16 GH water and heating to 95° C. for 10 minutes.
- FIGS. 14 and 15 show the cleaning performance of CspAmy2-v6 (squares) compared to POWERASE® (diamonds), dosed at 0, 1, 2, 4, or 8 ppm in about 2.5 cents/kg (ct/kg) WfK B detergent against the mixed starch stain ( FIG. 14 ) and the pasta stain ( FIG. 15 ).
- CspAmy2-v6 clearly outperformed POWERASE®, particularly against the mixed starch stain.
- FIGS. 16 and 17 show the cleaning performance of CspAmy2-v6 (squares) compared to STAINZYME® (circles), dosed at 0, 1, 2, 4, or 8 ppm in about 2.5 ct/kg WfK B detergent against the mixed starch stain ( FIG.
- FIGS. 18 and 19 show the cleaning performance of CspAmy2-v6 (squares) compared to POWERASE® (diamonds), dosed at 0, 1, 2, 4, or 8 ppm in about 2.5 ct/kg WfK C detergent against the mixed starch stain ( FIG. 18 ) and the pasta stain ( FIG. 19 ).
- CspAmy2-v6 clearly outperformed POWERASE® against both stains.
- SELs Site evaluation libraries were constructed and screened at 283 of 485 positions in variant CspAmy2-C18P (i.e., CspAmy2 with the mutations N126Y, F153W, T180D, I203Y, and S241Q, and lacking R178 and G179 (referring to SEQ ID NO: 1 for numbering) to identify additional variants with enhanced activity on one or more of the following substrates: corn amylopectin, swelled corn starch, granular corn starch, and corn starch-stained microswatches. Mutations were discovered throughout the molecule that improved activity. A subset of these variants was re-tested at different dose responses to confirm enhanced activity.
- amino acid sequence of the mature CspAmy2-C18P amylase polypeptide is shown, below, as SEQ ID NO: 24 (the substitutions are underlined):
- Hydrolysis of soluble corn amylopectin was used to measure specific activity of amylase variants. Activity was measured as reducing ends generated by the enzymatic hydrolysis of amylopectin polymers as quantified using a bicinchoninic acid (BCA) assay.
- BCA bicinchoninic acid
- the equipment used for the assay included a Biomek FX Robot (Beckman Coulter), a SpectraMAX MTP Reader (type 340-Molecular Devices), and a Tetrad2DNA Engine PCR machine (Biorad).
- Purified corn amylopectin (MP Biomedicals, LLC, cat. #195048) was solubilized by boiling for 5 minutes while stirring as a 1.5% (w/w) suspension in water. The material was allowed to cool to room temperature and water and concentrated stock solutions were added to obtain a final amylopectin substrate with 1.25% (w/w) amylopectin, 6.25 ppm calcium, 62.5 ppm sodium, 62.5 mM potassium acetate (pH 5.0), and 0.005% (v/v) Tween 80.
- amylopectin substrate 40 ⁇ l of the amylopectin substrate was added to 3 PCR microtiter plates. 10 ⁇ l of culture supernatant diluted 1:2000 in water/0.005% tween 80 was added to plates followed by through mixing by up and down pipetting. The plates were sealed and placed at 70° C. for 5 minutes followed by a ramp down to 25° C. Amylopectin hydrolysis was terminated by immediate addition/mixing of 10 ⁇ L 0.5 N NaOH.
- the starch hydrolysis reaction products were analyzed by the BCA assay. Briefly, a reagent provided in a commercial kit (Pierce Chemical, cat. no. 23225) was prepared as per manufacturer's instructions. 90 ⁇ l was aliquoted to PCR plates followed by 10 ⁇ l of the terminated enzyme reaction described above. After through mixing of components the plates were sealed and placed in a thermocycler, programmed for 3 minutes at 95° C. to develop color, and then cooled to 30° C. Samples of 70 ⁇ L of the developed BCA reaction mixtures were transferred to a fresh plate and absorbance was measured at 562 nm in a spectrophotometer. Data acquired for three replicate plates were averaged.
- Cargill Corn Starch material (flour or starch) was washed extensively with MilliQ water by repeated suspension and centrifugation prior to use in the assay.
- the washed corn starch was suspended in MilliQ water containing 0.005% sodium azide to obtain 20% (w/w) stock solutions, which were further diluted with a 20 ⁇ stock buffer solution to 10.9% w/v corn flour and corn starch solutions (final buffer concentration of 55 mM KOAc, pH 5).
- the SCS assay measures alpha-amylase activity on hydrated but intact (“swelled”) starch granules.
- the overall number of enzymatic turnovers is assessed using the BCA reducing sugar assay, while the tendency of the enzyme to release large starch fragments into solution is assessed using iodine staining.
- 2% (w/w) swelled corn starch substrate was prepared by suspending 2 g of corn starch (Cargill Farms Organic Corn Starch) in 90 g of MilliQ water and heating in a submerged water bath set to 80° C. for 1 hour with regular swirling. After overnight cooling at room temperature, the volume was brought up to 100 mL with the addition of potassium acetate buffer, calcium chloride, sodium chloride and Tween-80 to give final concentrations of 50 mM KOAc (pH5.5), 0.125 mM CaCl 2 , 2 mM NaCl, and 0.005% Tween-80.
- swelled corn starch substrate was dispensed into NUNC V-bottom polystyrene microtiter plates using a bubble paddle reservoir.
- the reaction was initiated by adding 5 ⁇ L of 12 ⁇ enzyme solution to the plate to give a final enzyme concentration of ⁇ 0.03 ppm in reaction.
- the reaction plate was sealed with a Nunc seal and immediately placed in an iEMS incubator. Incubation occurred for 10 min at 25° C., or for 4 min at 60° C., while shaking at 1,150 RPM. After incubation, the reaction was terminated with the addition of 70 ⁇ L of 0.1 N NaOH. The plates were sealed and spun for 3 min at 3,000 RPM. Swelled corn starch reactions were done as a single plate, but assayed in triplicate for subsequent Iodine and BCA assays.
- the BCA assay is described above.
- 95 ⁇ L of Lugol's reagent freshly diluted by 12-fold in water; Sigma-Aldrich L6146-1L
- 5 ⁇ L of supernatant sample was added to the plates and mixed six times by pipetting up and down.
- the plates were then shaken on a table top microtiter plate mixer for 1 minute at speed 6-7.
- Absorbance was read at 530 nm using a SpectraMax M5 spectrophotometer.
- the assays were performed as described, above, except that 170 ⁇ l of potassium acetate buffer was added to each well of microswatch-containing MTP and subsequently 10 ⁇ L of diluted enzyme solution was added to each well resulting in a total volume of 180 ⁇ L/well.
- the MTP was sealed and incubated for 20 minutes at 1,150 rpm at 25° C.
- Viscosity experiments were performed using a Rapid Visco Analyser (Newport Scientific) with 38 mm ⁇ 68 mm plain washed cans (Part No. AA0384001) and a double-skirted paddle (Part no. NS101783). Data acquisition and analysis was performed with Thermocline for Windows (version 3.11). Immediately before each run, 33 g of 25% dry solids (ds) corn flour slurry was prepared in an RVA can as follows: 9.17 g corn flour (11.8% moisture content) was weighed out on an analytical balance and mixed with 23.83 g deionized water.
- the sample pH was adjusted with 0.0828 mL 1N sulfuric acid (for pH 5.7) or 0.285 mL 1N sulfuric acid (for pH 5.2). Enzyme was added at appropriate dose, and the can was placed in the viscometer. All runs were 10 minutes in length, with a temperature ramp to 85° C. or 95° C. over 80 seconds followed by a temperature hold at 85° C. or 95° C. for the remainder of the run.
- FIG. 20 shows examples of variants with improved hydrolysis of corn starch at high temperature.
- FIG. 21 shows examples of variants with improved hydrolysis of amylopectin from corn.
- FIG. 22 shows examples of variants with improved generation of reducing sugars from starch.
- FIG. 23 shows examples of variants with improved release of iodine staining material from starch.
- the legends adjacent to the graphs indicate the mutations present in addition to those present to the control variant, CspAmy2-C18P.
- FIG. 24 shows examples of variants that demonstrate improved reduction of corn slurry viscosity compared to the CspAmy2-C18P control. CspAmy2-C16F is also included for comparison.
- Site evaluation libraries were constructed and screened to determined the effect of pair-wise combinations of mutations at positions 476 and 477 in variant CspAmy2-C16F (CspAmy2 with the mutations N126Y, F153W, T180H, I203Y, and S241Q, and lacking R178 and G179).
- the matrix in FIG. 25 shows the PI values for CspAmy2-C16F position 476/477 variants compared to a CspAmy2-C16F control (with a PI value set at 1) in a CS-26 corn starch microswatch assay, as described, above.
- the amino acid residues at positions 476 and 477 are indicated on the left-side and top of the matrix, respectively.
- a “wild-type” revertant i.e., G476G/G477G had an experimentally obtained PI score of 1.01, suggesting that the assay produces very reliable results.
- the absence of a number at a position in the matrix indicates poor expression of the particular variant or that the variant was not present among those tested.
- the matrix in FIG. 26 shows the PI values for the same variants in an amylose hydrolysis assay, as described, above.
- a “wild-type” revertant i.e., G476G/G477G had an experimentally obtained PI score corresponding to that of the control.
- While binding tightly to a substrate may be desirable in nature where substrate is limiting, in industrial applications it may be more desirable for the enzyme to release from one starch molecule after hydrolyzing it and find a different starch molecules to hydrolyze, rather than remaining associated with the first starch molecule and hydrolysing it processively.
- CspAmy2-C25A, B, and F The relative performance of CspAmy2-C25A, B, and F in a liquefaction assay compared to C18F is shown in FIG. 27 . Mutations at positions 132 and 277 increase performance. Additional benefit is observed from mutations at positions 167. In further experiments, it was shown that C25B demonstrated superior liquefaction performance to C16F at pH 5.2 and 5.8, and with or without additional calcium. Variants CspAmy2-C25A, B, and F all outperformed variant CspAmy2-C18P (not shown).
- amino acid sequence of the mature CspAmy2-C25A amylase polypeptide is shown, below, as SEQ ID NO: 25 [the relevant substitutions are underlined]:
- amino acid sequence of the mature CspAmy2-C25B amylase polypeptide is shown, below, as SEQ ID NO: 26 [the relevant substitutions are underlined]:
- amino acid sequence of the mature CspAmy2-C25F amylase polypeptide is shown, below, as SEQ ID NO: 27 [the relevant substitutions are underlined]:
- CspAmy2-v5-based variants were made in an effort to further improve performance in cleaning applications.
- the variants and the mutations are shown in the Table 7.
- CspAmy2-v171 and CspAmy2-172 were previously described in Example 11. All variants included deletions at positions R178 and G179, indicated by “del (R178, G179).”
- the cleaning performance of the purified variants was analyzed in a microswatch cleaning assay performed essentially as described above.
- CFT CS-28 swatches were punched to form discs measuring 5.5 mm in diameter. Two discs were placed in each well of 3 each flat-bottom, non-binding 96-well assay plates.
- the CspAmy2 variants, STAINZYME®, and ACE-QK were each diluted to 0.5 mg/mL in dilution buffer (50 mM MOPS (pH 7.2) and 0.005% Tween), and then further diluted to 18 ppm in a microtiter plate. Several dilutions were made in the microtiter plates, down to 0.27 ppm.
- HEPES buffer 25 mM HEPES, pH 8.0 with 2 mM CaCl 2 and 0.005% Tween-80
- the final enzyme concentrations ranged from 1 ppm down to 0.015 ppm.
- the plates were incubated at 25° C. with agitation at 1150 rpm for 15 minutes. Enzyme performance was judged by the amount of color released into the wash liquor. Color release was quantified spectrophotometrically at 488 nm by the transfer of 140 ⁇ L of the final wash solution to fresh medium-binding microtiter plates, and triplicate reads were blank-subtracted and averaged.
- FIG. 28 The results of the microswatch cleaning assays performed at 0.015 ppm enzyme are shown in FIG. 28 . Variants CspAmy2-v179, v186, and v191 all demonstrated superior cleaning performance compared to CspAmy2-v5, and all CspAmy2 combinatorial variants were far superior to STAINZYME®. The results of the cleaning assays performed at all enzyme concentrations are shown in Table 8. All CspAmy2 demonstrated superior cleaning performance at lower concentrations compared to STAINZYME®.
- Thermal stability assays were performed essentially as described. Stocks of CspAmy2 variants, STAINZYME®, and ACE-QK at 0.5 mg/mL were diluted to 5 ppm, 10 ppm, or 1 ppm, respectively, in dilution buffer (50 mM MOPS (pH 7.2) and 0.005% Tween) to account for their relative specific activities on the soluble substrate. 50 ⁇ L of each enzyme were added to each of 12 wells of PCR tubes and sealed. The “unstressed” samples were incubated at room temperature throughout the duration of the experiment. The other samples were incubated in a thermocycler in a gradient from 77° C. to 97° C. for 15 minutes.
- dilution buffer 50 mM MOPS (pH 7.2) and 0.005% Tween
- thermostability assay The results of the thermostability assay are shown in FIG. 29 .
- Variants CspAmy2-v186 and v191 both demonstrated superior thermal stability compared to CspAmy2-v5.
- All the CspAmy2 variants demonstrated superior thermal stability compared to STAINZYME® and ACE-QK.
- the in-detergent storage stability of the CspAmy2 variants was tested in a several commercial detergents, i.e., TIDE® regular HDL and TIDE® PODSTM (Procter & Gamble) for the USA market, ARIELTM HDL (Procter & Gamble) and OMO Color HDL (Unilever) for the European market, and OMOTM (Unilever) and LIBYTM HDL (Liby) for the Chinese market. All detergents were heat inactivated at 90° C. for 4 hours to eliminate existing enzyme activities. Enzyme activity in the heat inactivated detergents was measured using the Suc-AAPF-pNA and Ceralpha assays for measuring protease and amylase activity, respectively.
- CspAmy2 variants The amount of residual activity of the CspAmy2 variants compared to STAINZYME® and ACE-QK are shown in FIGS. 30-35 .
- CspAmy2-v179 was particularly stable compared to other tested variants and the controls.
- amino acid sequence of mature CspAmy2-v179 is shown, below, as SEQ ID NO: 28:
- amino acid sequence of mature CspAmy2-v180 is shown, below, as SEQ ID NO: 29:
- amino acid sequence of mature CspAmy2-v181 is shown, below, as SEQ ID NO: 30:
- amino acid sequence of mature CspAmy2-v186 is shown, below, as SEQ ID NO: 31:
- amino acid sequence of mature CspAmy2-v191 is shown, below, as SEQ ID NO: 32:
- the codon-optimized nucleotide sequence of the PcuAmy1 gene is set forth as SEQ ID NO: 33:
- amino acid sequence of the mature of PcuAmy1-v1A polypeptide is shown below as SEQ ID NO: 34:
- amino acid sequence of the mature of PcuAmy1-v6 polypeptide is shown below as SEQ ID NO: 35:
- amino acid sequence of the mature of PcuAmy1-v8 polypeptide is shown below as SEQ ID NO: 36:
- amino acid sequence of the mature of PcuAmy1-v16 polypeptide is shown below as SEQ ID NO: 37:
- the cleaning performance of PcuAmy1-v1, PcuAmy1-v6, and PcuAmy1-v16, compared to STAINZYME® and ACE-QK is shown in FIG. 36 .
- the microswatch assay was performed as described in Example 17. PcuAmy1-v6 and PcuAmy1-v16 outperformed PcuAmy1-v1 and STAINZYME® at low doses (e.g., 0.1 ppm enzyme or less).
- the thermal stability of PcuAmy1-v1, PcuAmy1-v6, and PcuAmy1-v16, compared to STAINZYME® is shown in FIG. 37 .
- the assays were performed as described in Example 17.
- PcuAmy1-v16 were more thermostable than the other tested molecules using the same detergents and enzyme doses.
- the codon-modified nucleic acid sequence encoding the mature form of BASE is set forth as SEQ ID NO: 38:
- amino acid sequence of BASE-V28 is shown below as SEQ ID NO: 39:
- amino acid sequence of BASE-V29 is shown below as SEQ ID NO: 40:
- amino acid sequence of BASE-V30 is shown below as SEQ ID NO: 41:
- amino acid sequence of BASE-V31 is shown below as SEQ ID NO: 42:
- amino acid sequence of BASE-V32 is shown below as SEQ ID NO: 43:
- amino acid sequence of BASE-V33 is shown below as SEQ ID NO: 44:
- amino acid sequence of BASE-V34 is shown below as SEQ ID NO: 45:
- amino acid sequence of BASE-V35 is shown below as SEQ ID NO: 46:
- amino acid sequence of BASE-V36 is shown below as SEQ ID NO: 47:
- a structural interaction between residues 132 and 180 explains the increased stability of some of the variants. Details of the crystal structure of CspAmy2-v1 are shown in FIGS. 39-42 . As shown in FIG. 39 , the naturally occurring glutamate side chain at position 132 is positioned towards the side chain of the naturally-occurring threonine at position 180. The distance of 5.4 Angstroms, however, is too great for the formation of any stabilizing interaction. As shown in FIG. 40 , a T180H variant (e.g., CspAmy2-vC16C) has the histidine imidazole NH group in proximity to the E132 glutamate carboxylate.
- CspAmy2-vC16C has the histidine imidazole NH group in proximity to the E132 glutamate carboxylate.
- an aspartic acid at position 180 may also be capable of hydrogen bonding with the glutamate at position 132, although hydrogen bonding may be overwhelmed by unfavorable like charge interactions.
- histidine at position 132 in combination with an aspartate at position 180, restores the possibility for a favorable interaction created by a T180D mutation ( FIG. 42 ).
- the stabilizing effect of the E132H mutation in CspAmy2-v191 and CspAmy2-C25A, B, and F, which all have a T180D mutation supports this hypothesis (e.g., Example 16 and FIG. 27 ).
- position E132 corresponds to position T134 and position T180 corresponds to position T182.
- BASE-V31 is more stable than BASE-V28 and BASE-V33 is more stable than BASE-V29 further supports this hypothesis in the context of a different ⁇ -amylase.
- the mutations T134E and T180H appear to work together to enable the formation of a stabilizing interaction, likely a salt bridge.
- V34 is more stable than V36, because of the stabilizing interaction between the glutamate and histidine in V34, which does not occur between the glutamate and glycine in V36.
- position 132 is negatively charged (i.e., D or E)
- the remaining non-G residue should be positively charged (i.e., H, R, or K).
- position 132 is positively charged (i.e., H, R, or K)
- the remaining non-G residue should be negatively charged (i.e., D or E).
- FIG. 43 is an image of an SDS/PAGE gel showing the cleavage of 20 ⁇ g of PcuAmy1-v1 in the presence of increasing amounts of GG36 protease, (from 0 to 40 ⁇ g as indicated above the gel).
- the letters on the right side of the gel indicate (A) intact full-length PcuAmy1-v1, (B) a first cleavage product of PcuAmy1-v1, (C) GG36 protease, (D) a contaminant in the GG36 protein preparation, and (E) a second cleavage product of PcuAmy1-v1.
- the main degradation products observed after incubation of PcuAmy-v1 amylase with a subtilisin protease have a molecular weight of about 38 and 16 kDa (B and E, respectively).
- the amount of proteolytic degradation is dependent on the concentration of protease used. This makes PcuAmy1 amylase suboptimal for inclusion in enzyme detergent formulations that contain commonly-used subtilisin proteases.
- PcuAmy1-v3 is a variant of PcuAmy1 with the mutations E186P, G472K and lacking R177 and G178 (using SEQ ID NO: 3 for numbering).
- the substitution E186P and the deletions at R177 and G178 increase the detergent stability of PcuAmy1.
- the substitution G472K improves cleaning performance. None of these mutations has any effect on protease sensitivity (data not shown). Therefore, including these mutations in variants made to explore the effect of other mutations on protease stability does not interfere with the results.
- PcuAmy1 protease sensitivity
- amino acid sequence of PcuAmy1 was compared to that of other CAZy Family GH-13 amylases which show protease-resistance, such as PURASTAR® ST ( B. licheniformis amylase or AmyL), SPEZYME® XTRA ( Geobacillus stearothermophilus amylase or AmyS), ACE-QK (WO2010/115021), and STAINZYME® (Novozymes).
- PcuAmy1 variants PcuAmy1-v3A to PcuAmy1-v3L (i.e., 3A-3L) were designed and tested for protease resistance.
- the mutations present in each variant are listed in Table 11. They were introduced into PcuAmy1-v3 (SEQ ID NO: 49), using standard methods, many of which are described above.
- the 12 PcuAmy1 variants were expressed in B. subtilis as described, above. 40 ⁇ L filtered supernatant from each PcuAmy1 variant culture broth was incubated with 100 ⁇ g GG36 protease for 6 hours at room temperature, and subsequently analyzed for remaining amylase activity using the Megazyme Ceralpha substrate assay (Megazyme International Ireland, Co. Wicklow, Ireland). Residual activity after protease incubation was compared to the amylase activity of each sample after incubation with buffer alone. The results are shown in FIG. 44 . A subset of the samples was also analyzed by SDS-PAGE ( FIG. 45 ), with the protein standard, SEEBLUE® Plus2 (Invitrogen). The commercially available amylases were included for comparison.
- PcuAmy1 variants 3A, 3B, 3C, 3D, and 3L maintained >70% of their enzymatic activity after incubation with GG36 protease.
- PcuAmy1 variants 3J and 3K maintained >65% of their enzymatic activity after incubation with GG36 protease.
- PcuAmy1 variants 3E, 3F, 3G, 3H, and 31 did not show an appreciable increase of stability compared to the wild-type enzyme.
- Samples of the 3B, 3C, 3D and 3L incubations were analyzed by SDS/PAGE and showed significant reduction in degradation products when incubated with GG36 protease, confirming that the increase in residual amylase activity was due to decreased proteolytic cleavage.
- Variants PcuAmy1-v10, PcuAmy1-v11, and PcuAmy1-v12 include pair-wise combination of mutations at positions T333, A335, and Q337.
- PcuAmy1-v3-v13 includes mutations at all the aforementioned positions and includes the additional mutation T351W.
- the commercial detergents Total Color (MIFA Ag Frenkendorf, Switzerland) and Omo (Unilever, London, UK) were heat inactivated at 90° C. for 4 hours to eliminate existing enzyme activities. Enzyme activity in the heat inactivated detergents was measured using the Suc-AAPF-pNA and Ceralpha assays for measuring protease and amylase activity, respectively.
- 2% w/w protease (PURAFECT® Prime 4000L, Danisco US Inc.) and 0.5% w/w amylase were added to each detergent sample and mixed. Samples were stored in a CO 2 incubator (Sanyo) at 37° C. for 14 days.
- FIGS. 46-50 show the results of the detergent stability assays performed in MIFA Total (MIFA Ag Frenkendorf, Switzerland) and Unilever OMO (Unilever, London, UK) are shown in FIGS. 46-50 .
- FIGS. 46 and 48 show the residual activity of PcuAmy1 variants over time in MIFA Total and Unilever Omo, respectively, supplemented with FNA protease.
- FIGS. 47 and 49 summarize the data for the 3 and 14 day time points.
- PcuAmy1 variants that include the T333 mutation, i.e., 3B, 3L, v10, v13, and to a lesser degree, v11 were the most stable.
- Variants that did not include the T333 mutation, i.e., V1 and v12 were the least stable.
- the presence of a mutation at Q337E further improves stability.
- Both enzymes and two commercial amylase products were diluted to 0.5 mg/mL in dilution buffer (50 mM MOPS, pH 7.2, 0.005% Tween), and then further diluted to 2 ppm in a microtiter plate. 200 ⁇ L of these samples were transferred into the first row of each of three swatch plates.
- HEPES buffer 25 mM HEPES, pH 8.0 with 2 mM CaCl 2 and 0.005% Tween-80
- serial dilutions were made to result in final enzyme concentrations of 2, 1, 0.5, 0.25, and 0.125 ppm as well as a row of blank (buffer only) wells with 200 ⁇ L in every well. Plates were incubated at 25° C. with agitation at 1150 rpm for 15 minutes. The wash liquor was transferred to fresh microtiter plates and enzyme performance was judged by the amount of color released into the wash liquor. Color release was quantified spectrophotometrically at 488 nm, and triplicate reads were blank-subtracted and averaged.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Nutrition Science (AREA)
- Food Science & Technology (AREA)
- Polymers & Plastics (AREA)
- Enzymes And Modification Thereof (AREA)
- Detergent Compositions (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/775,595 US20160017303A1 (en) | 2013-03-11 | 2014-03-11 | Alpha-amylase combinatorial variants |
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201361776699P | 2013-03-11 | 2013-03-11 | |
US201361906617P | 2013-11-20 | 2013-11-20 | |
US201361907131P | 2013-11-21 | 2013-11-21 | |
US14/775,595 US20160017303A1 (en) | 2013-03-11 | 2014-03-11 | Alpha-amylase combinatorial variants |
PCT/US2014/023458 WO2014164777A1 (fr) | 2013-03-11 | 2014-03-11 | Variantes combinatoires d'alpha-amylases |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2014/023458 A-371-Of-International WO2014164777A1 (fr) | 2013-03-11 | 2014-03-11 | Variantes combinatoires d'alpha-amylases |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/292,057 Continuation US20200087644A1 (en) | 2013-03-11 | 2019-03-04 | Alpha-amylase combinatorial variants |
Publications (1)
Publication Number | Publication Date |
---|---|
US20160017303A1 true US20160017303A1 (en) | 2016-01-21 |
Family
ID=50680117
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/775,595 Abandoned US20160017303A1 (en) | 2013-03-11 | 2014-03-11 | Alpha-amylase combinatorial variants |
US14/775,610 Abandoned US20160017305A1 (en) | 2013-03-11 | 2014-03-11 | Alpha-amylase combinatorial variants |
US14/775,603 Abandoned US20160017304A1 (en) | 2013-03-11 | 2014-03-11 | Alpha-amylase combinatorial variants |
US16/292,057 Abandoned US20200087644A1 (en) | 2013-03-11 | 2019-03-04 | Alpha-amylase combinatorial variants |
US17/901,168 Pending US20230348879A1 (en) | 2013-03-11 | 2022-09-01 | Alpha-amylase combinatorial variants |
Family Applications After (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US14/775,610 Abandoned US20160017305A1 (en) | 2013-03-11 | 2014-03-11 | Alpha-amylase combinatorial variants |
US14/775,603 Abandoned US20160017304A1 (en) | 2013-03-11 | 2014-03-11 | Alpha-amylase combinatorial variants |
US16/292,057 Abandoned US20200087644A1 (en) | 2013-03-11 | 2019-03-04 | Alpha-amylase combinatorial variants |
US17/901,168 Pending US20230348879A1 (en) | 2013-03-11 | 2022-09-01 | Alpha-amylase combinatorial variants |
Country Status (9)
Country | Link |
---|---|
US (5) | US20160017303A1 (fr) |
EP (5) | EP3978604A1 (fr) |
CN (3) | CN105229148B9 (fr) |
BR (1) | BR112015021647B1 (fr) |
CA (1) | CA2903027A1 (fr) |
DK (3) | DK2970931T3 (fr) |
ES (2) | ES2882517T3 (fr) |
HU (1) | HUE039341T2 (fr) |
WO (3) | WO2014164834A1 (fr) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160053243A1 (en) * | 2012-12-21 | 2016-02-25 | Danisco Us Inc. | Alpha-amylase variants |
WO2019036721A2 (fr) | 2017-08-18 | 2019-02-21 | Danisco Us Inc | Variants d'alpha-amylases |
US20190264139A1 (en) * | 2018-02-28 | 2019-08-29 | The Procter & Gamble Company | Cleaning compositions |
CN110713999A (zh) * | 2017-01-16 | 2020-01-21 | 广东溢多利生物科技股份有限公司 | 提高比活的α-淀粉酶突变体BasAmy-3及其编码基因和应用 |
US20210030032A1 (en) * | 2018-03-30 | 2021-02-04 | Yanmar Power Technology Co., Ltd. | Frozen food, production method therefor, and freezer burn prevention agent |
US20210030020A1 (en) * | 2018-03-14 | 2021-02-04 | Yanmar Power Technology Co., Ltd. | Ice cream, method for manufacturing same and soft ice cream mix |
US11326194B2 (en) * | 2019-12-20 | 2022-05-10 | Daesang Corporation | Method for producing dietary fiber |
US11541105B2 (en) | 2018-06-01 | 2023-01-03 | The Research Foundation For The State University Of New York | Compositions and methods for disrupting biofilm formation and maintenance |
US11920170B2 (en) | 2015-12-09 | 2024-03-05 | Danisco Us Inc. | Alpha-amylase combinatorial variants |
Families Citing this family (155)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3786269A1 (fr) * | 2013-06-06 | 2021-03-03 | Novozymes A/S | Variants d'alpha-amylase et polynucléotides les codant |
CN107835855B (zh) | 2015-05-13 | 2022-05-13 | 丹尼斯科美国公司 | AprL-进化枝蛋白酶变体及其用途 |
WO2016201044A1 (fr) | 2015-06-09 | 2016-12-15 | Danisco Us Inc | Produits encapsulés osmotiques à éclatement |
WO2016201069A1 (fr) | 2015-06-09 | 2016-12-15 | Danisco Us Inc | Particules contenant une enzyme basse densité |
WO2016201040A1 (fr) | 2015-06-09 | 2016-12-15 | Danisco Us Inc. | Suspension d'enzyme activée par l'eau |
EP4234693A3 (fr) | 2015-06-17 | 2023-11-01 | Danisco US Inc | Protéases à sérines du clade du bacillus gibsonii |
US11306319B2 (en) | 2015-10-30 | 2022-04-19 | Danisco Us Inc. | Enhanced protein expression and methods thereof |
BR112018008946A2 (pt) | 2015-11-05 | 2020-11-03 | Danisco Us Inc. | mananases de paenibacillus sp. |
WO2017079756A1 (fr) | 2015-11-05 | 2017-05-11 | Danisco Us Inc | Mannanases de paenibacillus et bacillus spp. |
BR112018012020A2 (pt) | 2015-12-18 | 2018-12-04 | Danisco Us Inc | polipeptídeos com atividade de endoglucanase e usos dos mesmos |
KR20170080537A (ko) * | 2015-12-31 | 2017-07-10 | 씨제이제일제당 (주) | 내열성 및 내산성을 가지는 Acidothermus 속 유래 탈분지 효소를 이용한 전분당으로부터 포도당의 생산 방법 및 그 포도당 |
DK179660B1 (en) | 2016-04-08 | 2019-03-13 | Novozymes A/S | Stabilized Alpha-Amylase Variants and use of the same |
US20190194636A1 (en) | 2016-05-03 | 2019-06-27 | Danisco Us Inc | Protease variants and uses thereof |
EP3452584B1 (fr) | 2016-05-05 | 2021-01-06 | Danisco US Inc. | Variants de protéase et leurs utilisations |
EP3464599A1 (fr) | 2016-05-31 | 2019-04-10 | Danisco US Inc. | Variants de protéase et leurs utilisations |
DE102016209880A1 (de) | 2016-06-06 | 2017-12-07 | Henkel Ag & Co. Kgaa | Neue Amylasen |
CA3027745A1 (fr) | 2016-06-17 | 2017-12-21 | Danisco Us Inc. | Variants de protease et leurs utilisations |
EP3275988B1 (fr) | 2016-07-26 | 2020-07-08 | The Procter and Gamble Company | Composition de détergent de lave-vaisselle automatique |
EP3275986B1 (fr) | 2016-07-26 | 2020-07-08 | The Procter and Gamble Company | Composition de détergent de lave-vaisselle automatique |
EP3275989A1 (fr) | 2016-07-26 | 2018-01-31 | The Procter and Gamble Company | Composition de détergent de lave-vaisselle automatique |
EP3275985A1 (fr) | 2016-07-26 | 2018-01-31 | The Procter and Gamble Company | Composition de détergent de lave-vaisselle automatique |
EP3275987A1 (fr) | 2016-07-26 | 2018-01-31 | The Procter and Gamble Company | Composition de détergent de lave-vaisselle automatique |
EP3275990A1 (fr) * | 2016-07-28 | 2018-01-31 | The Procter and Gamble Company | Procédé pour re-mélanger une première composition de détergent liquide dans une seconde composition de détergent liquide |
US9598680B1 (en) * | 2016-08-05 | 2017-03-21 | Fornia Biosolutions, Inc. | G16 glucoamylase compositions and methods |
US20190264138A1 (en) | 2016-11-07 | 2019-08-29 | Danisco Us Inc. | Laundry detergent composition |
JP6907318B2 (ja) | 2016-12-02 | 2021-07-21 | ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company | 酵素を含む洗浄組成物 |
JP6907317B2 (ja) | 2016-12-02 | 2021-07-21 | ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company | 酵素を含む洗浄組成物 |
CN110312794B (zh) | 2016-12-21 | 2024-04-12 | 丹尼斯科美国公司 | 吉氏芽孢杆菌进化枝丝氨酸蛋白酶 |
WO2018118917A1 (fr) | 2016-12-21 | 2018-06-28 | Danisco Us Inc. | Variants de protéases et leurs utilisations |
EP3339423A1 (fr) | 2016-12-22 | 2018-06-27 | The Procter & Gamble Company | Composition de détergent de lave-vaisselle automatique |
JP6899912B2 (ja) | 2017-02-01 | 2021-07-07 | ザ プロクター アンド ギャンブル カンパニーThe Procter & Gamble Company | アミラーゼ変異体を含む洗浄組成物 |
FI3585910T3 (fi) | 2017-02-24 | 2024-06-19 | Danisco Us Inc | Koostumukset ja menetelmät proteiinin tuotannon lisäämiseksi bacillus licheniformiksessa |
WO2018169750A1 (fr) | 2017-03-15 | 2018-09-20 | Danisco Us Inc | Sérine protéases de type trypsine et leurs utilisations |
JP2020515269A (ja) | 2017-03-31 | 2020-05-28 | ダニスコ・ユーエス・インク | α−アミラーゼ組み合わせ変異体 |
EP3601515A1 (fr) | 2017-03-31 | 2020-02-05 | Danisco US Inc. | Formulations d'enzyme à libération retardée pour détergents contenant un agent de blanchiment |
CA3067218A1 (fr) | 2017-06-16 | 2018-12-20 | Basf Enzymes Llc | Procede pour accroitre le rendement d'huile lors de la production d'ethanol |
MX2019014556A (es) | 2017-06-30 | 2020-02-07 | Danisco Us Inc | Particulas que contienen enzimas de baja aglomeracion. |
US11879127B2 (en) | 2017-08-23 | 2024-01-23 | Danisco Us Inc. | Methods and compositions for efficient genetic modifications of Bacillus licheniformis strains |
JP7218985B2 (ja) | 2017-09-13 | 2023-02-07 | ダニスコ・ユーエス・インク | バチルス属(Bacillus)におけるタンパク質産生の増加のための改変5’-非翻訳領域(UTR)配列 |
WO2019089898A1 (fr) | 2017-11-02 | 2019-05-09 | Danisco Us Inc | Compositions de matrices solides à point de congélation abaissé pour la granulation à l'état fondu d'enzymes |
EP3717643A1 (fr) | 2017-11-29 | 2020-10-07 | Danisco US Inc. | Variants de subtilisine à stabilité améliorée |
EP3502227B1 (fr) | 2017-12-19 | 2024-09-04 | The Procter & Gamble Company | Composition de détergent de lave-vaisselle automatique |
EP3502244A1 (fr) | 2017-12-19 | 2019-06-26 | The Procter & Gamble Company | Composition de détergent de lave-vaisselle automatique |
EP3502246A1 (fr) | 2017-12-19 | 2019-06-26 | The Procter & Gamble Company | Composition de détergent de lave-vaisselle automatique |
EP3502245A1 (fr) | 2017-12-19 | 2019-06-26 | The Procter & Gamble Company | Composition de détergent de lave-vaisselle automatique |
BR112020012584A2 (pt) | 2017-12-21 | 2020-11-24 | Danisco Us Inc. | grânulos fundidos a quente contendo enzima que compreendem um dessecante termotolerante |
FI3735478T3 (fi) | 2018-01-03 | 2023-10-26 | Danisco Us Inc | Mutantit ja geneettisesti modifioidut bacillus-solut ja niihin liittyvät menetelmät proteiinituotannon lisäämiseksi |
MX2020008302A (es) | 2018-02-08 | 2020-10-14 | Danisco Us Inc | Partículas de matriz de cera térmicamente resistentes para encapsulación de enzimas. |
CA3089284A1 (fr) | 2018-02-28 | 2019-09-06 | The Procter & Gamble Company | Methodes de nettoyage a l'aide d'un enzyme debranchant de glycogene |
CN108841809A (zh) * | 2018-03-21 | 2018-11-20 | 中国农业科学院饲料研究所 | 具有高比活及热稳定性的淀粉酶突变体及其基因和应用 |
WO2019213038A1 (fr) | 2018-05-04 | 2019-11-07 | Danisco Us Inc | Procédé simplifié de production de maltodextrine et de sirops spéciaux |
US20210198643A1 (en) * | 2018-05-29 | 2021-07-01 | Basf Se | Amylase enzymes |
US20210214703A1 (en) | 2018-06-19 | 2021-07-15 | Danisco Us Inc | Subtilisin variants |
US20210363470A1 (en) | 2018-06-19 | 2021-11-25 | Danisco Us Inc | Subtilisin variants |
US11220656B2 (en) | 2018-06-19 | 2022-01-11 | The Procter & Gamble Company | Automatic dishwashing detergent composition |
CN112189052A (zh) | 2018-06-19 | 2021-01-05 | 宝洁公司 | 自动盘碟洗涤剂组合物 |
CA3108284A1 (fr) | 2018-07-31 | 2020-02-06 | Danisco Us Inc | Variants d'alpha-amylases ayant des substitutions d'acides amines qui abaissent le pka de l'acide general |
WO2020047215A1 (fr) | 2018-08-30 | 2020-03-05 | Danisco Us Inc | Granulés contenant des enzymes |
CN113166682A (zh) | 2018-09-27 | 2021-07-23 | 丹尼斯科美国公司 | 用于医疗器械清洁的组合物 |
CN113166745A (zh) * | 2018-10-12 | 2021-07-23 | 丹尼斯科美国公司 | 在螯合剂存在下具有可增强稳定性的突变的α-淀粉酶 |
EP3887515A1 (fr) | 2018-11-28 | 2021-10-06 | Danisco US Inc. | Variants de subtilisine à stabilité améliorée |
WO2020186052A1 (fr) | 2019-03-14 | 2020-09-17 | The Procter & Gamble Company | Procédé de traitement du coton |
CN113439116B (zh) | 2019-03-14 | 2023-11-28 | 宝洁公司 | 包含酶的清洁组合物 |
US11248194B2 (en) | 2019-03-14 | 2022-02-15 | The Procter & Gamble Company | Cleaning compositions comprising enzymes |
EP3741283A1 (fr) | 2019-05-22 | 2020-11-25 | The Procter & Gamble Company | Procédé de lavage automatique de la vaisselle |
CN114174504A (zh) | 2019-05-24 | 2022-03-11 | 丹尼斯科美国公司 | 枯草杆菌蛋白酶变体和使用方法 |
EP3976775A1 (fr) | 2019-05-24 | 2022-04-06 | The Procter & Gamble Company | Composition détergente pour lave-vaisselle automatique |
WO2020247582A1 (fr) | 2019-06-06 | 2020-12-10 | Danisco Us Inc | Procédés et compositions de nettoyage |
CA3141660A1 (fr) | 2019-06-24 | 2020-12-30 | The Procter & Gamble Company | Compositions de nettoyage comprenant des variants d'amylase |
US20220251528A1 (en) * | 2019-06-24 | 2022-08-11 | Novozymes A/S | Alpha-Amylase Variants |
JP2022544573A (ja) | 2019-08-14 | 2022-10-19 | ダニスコ・ユーエス・インク | バチルス・リケニフォルミス(bacillus licheniformis)における増加したタンパク質産生のための組成物及び方法 |
US11492571B2 (en) | 2019-10-24 | 2022-11-08 | The Procter & Gamble Company | Automatic dishwashing detergent composition comprising a protease |
BR112022007697A2 (pt) | 2019-10-24 | 2022-07-12 | Danisco Us Inc | Alfa-amilase variante que forma maltopentaose/maltohexaose |
US20210122998A1 (en) | 2019-10-24 | 2021-04-29 | The Procter & Gamble Company | Automatic dishwashing detergent composition comprising an amylase |
WO2021096857A1 (fr) | 2019-11-11 | 2021-05-20 | Danisco Us Inc | Compositions et procédés pour une production de protéines accrue dans des cellules de bacillus |
EP3835396A1 (fr) | 2019-12-09 | 2021-06-16 | The Procter & Gamble Company | Composition de détergent comportant un polymère |
JP2023524334A (ja) | 2020-01-15 | 2023-06-12 | ダニスコ・ユーエス・インク | バチルス・リケニフォルミス(bacillus licheniformis)における強化したタンパク質産生のための組成物及び方法 |
EP3862412A1 (fr) | 2020-02-04 | 2021-08-11 | The Procter & Gamble Company | Composition de détergent |
CA3173147A1 (fr) | 2020-06-05 | 2021-12-09 | Phillip Kyle Vinson | Compositions detergentes contenant un tensioactif ramifie |
EP4183859A4 (fr) | 2020-07-15 | 2024-07-31 | Kao Corp | Composition d'agent de nettoyage incorporé à l'amylase |
CN111826368B (zh) * | 2020-07-23 | 2021-11-23 | 中国农业科学院农产品加工研究所 | I型普鲁兰酶的突变体酶及其制备方法与应用 |
WO2022031311A1 (fr) | 2020-08-04 | 2022-02-10 | The Procter & Gamble Company | Procédé de lavage automatique de la vaisselle |
JP2023537336A (ja) | 2020-08-04 | 2023-08-31 | ザ プロクター アンド ギャンブル カンパニー | 自動食器洗浄方法及びパック |
JP2023536081A (ja) | 2020-08-04 | 2023-08-23 | ザ プロクター アンド ギャンブル カンパニー | 自動食器洗浄方法 |
WO2022031309A1 (fr) | 2020-08-04 | 2022-02-10 | The Procter & Gamble Company | Procédé de lavage automatique de la vaisselle |
WO2022047149A1 (fr) | 2020-08-27 | 2022-03-03 | Danisco Us Inc | Enzymes et compositions d'enzymes pour le nettoyage |
JP7510309B2 (ja) * | 2020-08-31 | 2024-07-03 | 花王株式会社 | α-アミラーゼ変異体 |
CN116323910A (zh) | 2020-10-02 | 2023-06-23 | 花王株式会社 | α-淀粉酶突变体 |
JP2023547600A (ja) | 2020-10-29 | 2023-11-13 | ザ プロクター アンド ギャンブル カンパニー | アルギン酸リアーゼ酵素を含有する洗浄組成物 |
EP4001388A1 (fr) | 2020-11-17 | 2022-05-25 | The Procter & Gamble Company | Procédé de lavage automatique de la vaisselle avec un polymère greffé amphiphile dans le rinçage |
WO2022108611A1 (fr) | 2020-11-17 | 2022-05-27 | The Procter & Gamble Company | Procédé de lavage automatique de la vaisselle présentant un rinçage alcalin |
US20220169952A1 (en) | 2020-11-17 | 2022-06-02 | The Procter & Gamble Company | Automatic dishwashing composition comprising amphiphilic graft polymer |
EP4006131A1 (fr) | 2020-11-30 | 2022-06-01 | The Procter & Gamble Company | Méthode de lavage de tissu |
WO2023225459A2 (fr) | 2022-05-14 | 2023-11-23 | Novozymes A/S | Compositions et procédés de prévention, de traitement, de suppression et/ou d'élimination d'infestations et d'infections phytopathogènes |
MX2023006625A (es) | 2020-12-23 | 2023-07-04 | Procter & Gamble | Poliaminas alcoxiladas anfifilicas y sus usos. |
CN112662645B (zh) * | 2021-01-19 | 2022-04-22 | 华南理工大学 | 一种鞘磷脂酶d突变体及其应用 |
CN116997642A (zh) | 2021-01-29 | 2023-11-03 | 丹尼斯科美国公司 | 清洁组合物及其相关的方法 |
WO2022178432A1 (fr) | 2021-02-22 | 2022-08-25 | Danisco Us Inc. | Procédés et compositions pour produire des protéines d'intérêt dans des cellules de bacillus déficientes en pigment |
MX2023005793A (es) | 2021-03-15 | 2023-05-29 | Procter & Gamble | Composiciones de limpieza que contienen variantes de polipeptido. |
US20240218300A1 (en) | 2021-03-26 | 2024-07-04 | Novozymes A/S | Detergent composition with reduced polymer content |
EP4095223A1 (fr) | 2021-05-05 | 2022-11-30 | The Procter & Gamble Company | Procédés de fabrication de compositions de nettoyage et de détection de salissures |
EP4086330A1 (fr) | 2021-05-06 | 2022-11-09 | The Procter & Gamble Company | Traitement de surface |
WO2022251109A1 (fr) | 2021-05-24 | 2022-12-01 | Danisco Us Inc. | Compositions et procédés pour une production améliorée de protéines dans des cellules de bacillus |
EP4108767A1 (fr) | 2021-06-22 | 2022-12-28 | The Procter & Gamble Company | Compositions de nettoyage ou de traitement contenant des enzymes nucléases |
WO2023278297A1 (fr) | 2021-06-30 | 2023-01-05 | Danisco Us Inc | Variants de lipases et leurs utilisations |
EP4123006A1 (fr) | 2021-07-19 | 2023-01-25 | The Procter & Gamble Company | Composition comprenant des spores et des matériaux de pro-parfum |
EP4123007A1 (fr) | 2021-07-19 | 2023-01-25 | The Procter & Gamble Company | Traitement de tissu à l'aide de spores bactériennes |
WO2023023644A1 (fr) | 2021-08-20 | 2023-02-23 | Danisco Us Inc. | Polynucléotides codant pour de nouvelles nucléases, leurs compositions et leurs procédés d'élimination de l'adn lors de la préparations de protéines |
EP4396320A2 (fr) | 2021-09-03 | 2024-07-10 | Danisco US Inc. | Compositions de blanchisserie pour le nettoyage |
WO2023039270A2 (fr) | 2021-09-13 | 2023-03-16 | Danisco Us Inc. | Granulés contenant un agent bioactif |
WO2023064749A1 (fr) | 2021-10-14 | 2023-04-20 | The Procter & Gamble Company | Tissu et produit d'entretien domestique comprenant un polymère cationique facilitant le lavage et une enzyme lipase |
WO2023091878A1 (fr) | 2021-11-16 | 2023-05-25 | Danisco Us Inc. | Compositions et procédés pour une production améliorée de protéines dans des cellules de bacillus |
EP4433586A2 (fr) * | 2021-11-18 | 2024-09-25 | Danisco US Inc. | Alpha-amylases haute performance pour la liquéfaction de l'amidon |
CN113862233B (zh) * | 2021-12-03 | 2022-03-25 | 中国农业科学院北京畜牧兽医研究所 | 提高葡萄糖氧化酶的酸稳定性的方法及突变体q241e/r499e、基因和应用 |
EP4194537A1 (fr) | 2021-12-08 | 2023-06-14 | The Procter & Gamble Company | Cartouche de traitement du linge |
EP4194536A1 (fr) | 2021-12-08 | 2023-06-14 | The Procter & Gamble Company | Cartouche de traitement du linge |
WO2023114794A1 (fr) | 2021-12-16 | 2023-06-22 | The Procter & Gamble Company | Composition de soin textile et ménager comprenant une protéase |
WO2023114932A2 (fr) | 2021-12-16 | 2023-06-22 | Danisco Us Inc. | Variants de subtilisine et procédés d'utilisation |
CN118647716A (zh) | 2021-12-16 | 2024-09-13 | 丹尼斯科美国公司 | 成麦芽五糖/麦芽六糖变体α-淀粉酶 |
EP4448751A2 (fr) | 2021-12-16 | 2024-10-23 | Danisco US Inc. | Variants de subtilisine et procédés d'utilisation |
EP4448706A1 (fr) | 2021-12-16 | 2024-10-23 | The Procter & Gamble Company | Composition pour d'entretien ménager comprenant une amylase |
WO2023114795A1 (fr) | 2021-12-16 | 2023-06-22 | The Procter & Gamble Company | Composition pour lave-vaisselle automatique comprenant une protéase |
EP4448749A2 (fr) | 2021-12-16 | 2024-10-23 | Danisco US Inc. | Variants de subtilisine et procédés d'utilisation |
EP4448707A1 (fr) | 2021-12-16 | 2024-10-23 | The Procter & Gamble Company | Composition de soins à domicile |
JP2023095355A (ja) | 2021-12-24 | 2023-07-06 | 花王株式会社 | アミラーゼ配合洗浄剤組成物 |
CN118871456A (zh) | 2022-01-13 | 2024-10-29 | 丹尼斯科美国公司 | 用于增强革兰氏阳性细菌细胞中的蛋白质产生的组合物和方法 |
WO2023150406A1 (fr) | 2022-02-03 | 2023-08-10 | Corn Products Development, Inc. | Sirop de sucre peu sucré et à faible viscosité |
WO2023168234A1 (fr) | 2022-03-01 | 2023-09-07 | Danisco Us Inc. | Enzymes et compositions enzymatiques pour le nettoyage |
WO2023176970A1 (fr) | 2022-03-18 | 2023-09-21 | 花王株式会社 | VARIANT DE L'α-AMYLASE |
JP2023153047A (ja) * | 2022-03-31 | 2023-10-17 | 花王株式会社 | α-アミラーゼ変異体 |
EP4273210A1 (fr) | 2022-05-04 | 2023-11-08 | The Procter & Gamble Company | Compositions détergentes contenant des enzymes |
EP4273209A1 (fr) | 2022-05-04 | 2023-11-08 | The Procter & Gamble Company | Compositions pour le nettoyage des machines contenant des enzymes |
EP4279571A1 (fr) | 2022-05-19 | 2023-11-22 | The Procter & Gamble Company | Composition de lavage comprenant des spores |
WO2023250301A1 (fr) | 2022-06-21 | 2023-12-28 | Danisco Us Inc. | Procédés et compositions de nettoyage comprenant un polypeptide ayant une activité de thermolysine |
EP4321604A1 (fr) | 2022-08-08 | 2024-02-14 | The Procter & Gamble Company | Tissu et composition de soins à domicile comprenant un tensioactif et un polyester |
WO2024050339A1 (fr) | 2022-09-02 | 2024-03-07 | Danisco Us Inc. | Variants de mannanases et procédés d'utilisation |
WO2024050343A1 (fr) | 2022-09-02 | 2024-03-07 | Danisco Us Inc. | Variants de subtilisine et procédés associés |
WO2024050346A1 (fr) | 2022-09-02 | 2024-03-07 | Danisco Us Inc. | Compositions détergentes et procédés associés |
WO2024094790A1 (fr) | 2022-11-04 | 2024-05-10 | Clariant International Ltd | Polyesters |
WO2024094785A1 (fr) | 2022-11-04 | 2024-05-10 | Clariant International Ltd | Polyesters |
WO2024094778A1 (fr) | 2022-11-04 | 2024-05-10 | Clariant International Ltd | Polyesters |
WO2024102698A1 (fr) | 2022-11-09 | 2024-05-16 | Danisco Us Inc. | Variants de subtilisine et procédés d'utilisation |
WO2024119298A1 (fr) | 2022-12-05 | 2024-06-13 | The Procter & Gamble Company | Composition de soin textile et ménager comprenant un composé de carbonate de polyalkylène |
WO2024129520A1 (fr) | 2022-12-12 | 2024-06-20 | The Procter & Gamble Company | Composition de soin textile et ménager |
EP4386074A1 (fr) | 2022-12-16 | 2024-06-19 | The Procter & Gamble Company | Composition de soin pour le linge et le domicile |
WO2024137252A1 (fr) | 2022-12-19 | 2024-06-27 | Novozymes A/S | Procédé de réduction de la viscosité du sirop à la fin d'un processus de production d'un produit de fermentation |
WO2024137250A1 (fr) | 2022-12-19 | 2024-06-27 | Novozymes A/S | Polypeptides de la famille 3 de gludice estérase (ce3) présentant une activité acétyl xylane estérase et polynucléotides codant pour ceux-ci |
WO2024137248A1 (fr) | 2022-12-19 | 2024-06-27 | Novozymes A/S | Compositions contenant des arabinofuranosidases et une xylanase, et leur utilisation pour augmenter la solubilisation de fibres hémicellulosiques |
WO2024137246A1 (fr) | 2022-12-19 | 2024-06-27 | Novozymes A/S | Polypeptides de la famille 1 d'estérase de glucide (ce1) présentant une activité d'estérase d'acide férulique et/ou d'estérase d'acétyl xylane et polynucléotides codant pour ceux-ci |
EP4388967A1 (fr) | 2022-12-19 | 2024-06-26 | The Procter & Gamble Company | Procédé de lavage de vaisselle |
WO2024163584A1 (fr) | 2023-02-01 | 2024-08-08 | Danisco Us Inc. | Variants de subtilisine et procédés d'utilisation |
WO2024163695A1 (fr) | 2023-02-01 | 2024-08-08 | The Procter & Gamble Company | Compositions détergentes contenant des enzymes |
WO2024186819A1 (fr) | 2023-03-06 | 2024-09-12 | Danisco Us Inc. | Variants de subtilisine et procédés d'utilisation |
WO2024191711A1 (fr) | 2023-03-16 | 2024-09-19 | Nutrition & Biosciences USA 4, Inc. | Extraits fermentés de brevibacillus pour le nettoyage et la lutte contre les mauvaises odeurs et leur utilisation |
CN117904079A (zh) * | 2024-02-23 | 2024-04-19 | 南京大学 | 一种α-淀粉酶突变体及其基因、载体和制备方法 |
Family Cites Families (155)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US34606A (en) | 1862-03-04 | Improvement in machines for combing cotton | ||
GB1372034A (en) | 1970-12-31 | 1974-10-30 | Unilever Ltd | Detergent compositions |
GB1483591A (en) | 1973-07-23 | 1977-08-24 | Novo Industri As | Process for coating water soluble or water dispersible particles by means of the fluid bed technique |
GB1590432A (en) | 1976-07-07 | 1981-06-03 | Novo Industri As | Process for the production of an enzyme granulate and the enzyme granuate thus produced |
JPS5534046A (en) | 1978-09-01 | 1980-03-10 | Cpc International Inc | Novel glucoamyrase having excellent heat resistance and production |
DK187280A (da) | 1980-04-30 | 1981-10-31 | Novo Industri As | Ruhedsreducerende middel til et fuldvaskemiddel fuldvaskemiddel og fuldvaskemetode |
NO840200L (no) | 1983-01-28 | 1984-07-30 | Cefus Corp | Glukoamylase cdna. |
US4760025A (en) | 1984-05-29 | 1988-07-26 | Genencor, Inc. | Modified enzymes and methods for making same |
US4536477A (en) | 1983-08-17 | 1985-08-20 | Cpc International Inc. | Thermostable glucoamylase and method for its production |
US5422267A (en) | 1984-05-22 | 1995-06-06 | Robert R. Yocum | Industrial yeast comprising an integrated glucoamylase gene |
DK263584D0 (da) | 1984-05-29 | 1984-05-29 | Novo Industri As | Enzymholdige granulater anvendt som detergentadditiver |
US5801038A (en) | 1984-05-29 | 1998-09-01 | Genencor International Inc. | Modified subtilisins having amino acid alterations |
US5972682A (en) | 1984-05-29 | 1999-10-26 | Genencor International, Inc. | Enzymatically active modified subtilisins |
US4587215A (en) | 1984-06-25 | 1986-05-06 | Uop Inc. | Highly thermostable amyloglucosidase |
US4628031A (en) | 1984-09-18 | 1986-12-09 | Michigan Biotechnology Institute | Thermostable starch converting enzymes |
WO1987000859A1 (fr) | 1985-08-09 | 1987-02-12 | Gist-Brocades N.V. | Nouveaux enzymes lipolytiques et leur utilisation dans des compositions de detergents |
EG18543A (en) | 1986-02-20 | 1993-07-30 | Albright & Wilson | Protected enzyme systems |
DK122686D0 (da) | 1986-03-17 | 1986-03-17 | Novo Industri As | Fremstilling af proteiner |
ATE110768T1 (de) | 1986-08-29 | 1994-09-15 | Novo Nordisk As | Enzymhaltiger reinigungsmittelzusatz. |
NZ221627A (en) | 1986-09-09 | 1993-04-28 | Genencor Inc | Preparation of enzymes, modifications, catalytic triads to alter ratios or transesterification/hydrolysis ratios |
ES2076939T3 (es) | 1987-08-28 | 1995-11-16 | Novo Nordisk As | Lipasa recombinante de humicola y procedimiento para la produccion de lipasas recombinantes de humicola. |
JPS6474992A (en) | 1987-09-16 | 1989-03-20 | Fuji Oil Co Ltd | Dna sequence, plasmid and production of lipase |
EP0394352B1 (fr) | 1988-01-07 | 1992-03-11 | Novo Nordisk A/S | Detergent enzymatique |
DK6488D0 (da) | 1988-01-07 | 1988-01-07 | Novo Industri As | Enzymer |
JP3079276B2 (ja) | 1988-02-28 | 2000-08-21 | 天野製薬株式会社 | 組換え体dna、それを含むシュードモナス属菌及びそれを用いたリパーゼの製造法 |
US5648263A (en) | 1988-03-24 | 1997-07-15 | Novo Nordisk A/S | Methods for reducing the harshness of a cotton-containing fabric |
EP0406314B1 (fr) | 1988-03-24 | 1993-12-01 | Novo Nordisk A/S | Preparation de cellulase |
GB8915658D0 (en) | 1989-07-07 | 1989-08-23 | Unilever Plc | Enzymes,their production and use |
EP0528828B2 (fr) | 1990-04-14 | 1997-12-03 | Genencor International GmbH | Lipases bacillaires alcalines, sequences d'adn de codage pour celles-ci et bacilles produisant ces lipases |
DK115890D0 (da) | 1990-05-09 | 1990-05-09 | Novo Nordisk As | Enzym |
AU639570B2 (en) | 1990-05-09 | 1993-07-29 | Novozymes A/S | A cellulase preparation comprising an endoglucanase enzyme |
US5162210A (en) | 1990-06-29 | 1992-11-10 | Iowa State University Research Foundation | Process for enzymatic hydrolysis of starch to glucose |
AU657278B2 (en) | 1990-09-13 | 1995-03-09 | Novo Nordisk A/S | Lipase variants |
CA2092556C (fr) | 1990-09-28 | 1997-08-19 | Mark Hsiang-Kuen Mao | Surfactants d'amide d'acide gras polyhydroxyle utilise pour augmenter le rendement enzymatique |
EP1225227B1 (fr) | 1990-12-10 | 2009-02-18 | Genencor International, Inc. | Saccharification améliorée de la cellulose par clonage et amplification du gène de la beta-glucosidase de trichoderma reesei |
ATE219136T1 (de) | 1991-01-16 | 2002-06-15 | Procter & Gamble | Kompakte waschmittelzusammensetzungen mit hochaktiven cellulasen |
EP0511456A1 (fr) | 1991-04-30 | 1992-11-04 | The Procter & Gamble Company | Détergents liquides contenant un ester aromatique de l'acide borique pour inhibition d'enzyme protéolitique |
CA2108908C (fr) | 1991-04-30 | 1998-06-30 | Christiaan A. J. K. Thoen | Detergents liquides avec adjuvant fabriques avec un complexe d'acide borique-polyol pour inhiber les enzymes proteolytiques |
DK0583339T3 (da) | 1991-05-01 | 1999-04-19 | Novo Nordisk As | Stabiliserede enzymer og detergentsammensætninger |
US5340735A (en) | 1991-05-29 | 1994-08-23 | Cognis, Inc. | Bacillus lentus alkaline protease variants with increased stability |
DK72992D0 (da) | 1992-06-01 | 1992-06-01 | Novo Nordisk As | Enzym |
DK88892D0 (da) | 1992-07-06 | 1992-07-06 | Novo Nordisk As | Forbindelse |
US5792641A (en) | 1992-10-06 | 1998-08-11 | Novo Nordisk A/S | Cellulase variants and detergent compositions containing cellulase variants |
US5281526A (en) | 1992-10-20 | 1994-01-25 | Solvay Enzymes, Inc. | Method of purification of amylase by precipitation with a metal halide and 4-hydroxybenzic acid or a derivative thereof |
DK154292D0 (da) | 1992-12-23 | 1992-12-23 | Novo Nordisk As | Nyt enzym |
JP3618748B2 (ja) | 1993-04-27 | 2005-02-09 | ジェネンコー インターナショナル インコーポレイテッド | 洗剤に使用する新しいリパーゼ変異体 |
DK52393D0 (fr) | 1993-05-05 | 1993-05-05 | Novo Nordisk As | |
DK76893D0 (fr) | 1993-06-28 | 1993-06-28 | Novo Nordisk As | |
JP2859520B2 (ja) | 1993-08-30 | 1999-02-17 | ノボ ノルディスク アクティーゼルスカブ | リパーゼ及びそれを生産する微生物及びリパーゼ製造方法及びリパーゼ含有洗剤組成物 |
CN1133062A (zh) | 1993-10-13 | 1996-10-09 | 诺沃挪第克公司 | 对过氧化氢稳定的过氧化物酶变体 |
JPH07143883A (ja) | 1993-11-24 | 1995-06-06 | Showa Denko Kk | リパーゼ遺伝子及び変異体リパーゼ |
EP0746618B1 (fr) | 1994-02-22 | 2002-08-21 | Novozymes A/S | Procede pour preparer un variant d'une enzyme lipolytique |
ES2364776T3 (es) | 1994-02-24 | 2011-09-14 | HENKEL AG & CO. KGAA | Enzimas mejoradas y detergentes que las contienen. |
US5691295A (en) | 1995-01-17 | 1997-11-25 | Cognis Gesellschaft Fuer Biotechnologie Mbh | Detergent compositions |
EP1921147B1 (fr) | 1994-02-24 | 2011-06-08 | Henkel AG & Co. KGaA | Enzymes améliorées et détergents les contenant |
CA2185101A1 (fr) | 1994-03-08 | 1995-09-14 | Martin Schulein | Nouvelles cellulases alcalines |
EP0755442B1 (fr) | 1994-05-04 | 2002-10-09 | Genencor International, Inc. | Lipases a resistance aux tensioactifs amelioree |
WO1995035381A1 (fr) | 1994-06-20 | 1995-12-28 | Unilever N.V. | Lipases modifiees provenant de pseudomonas et leur utilisation |
AU2884695A (en) | 1994-06-23 | 1996-01-19 | Unilever Plc | Modified pseudomonas lipases and their use |
ATE389012T1 (de) | 1994-10-06 | 2008-03-15 | Novozymes As | Ein enzympräparat mit endoglucanase aktivität |
BE1008998A3 (fr) | 1994-10-14 | 1996-10-01 | Solvay | Lipase, microorganisme la produisant, procede de preparation de cette lipase et utilisations de celle-ci. |
WO1996013580A1 (fr) | 1994-10-26 | 1996-05-09 | Novo Nordisk A/S | Enzyme a activite lipolytique |
JPH08228778A (ja) | 1995-02-27 | 1996-09-10 | Showa Denko Kk | 新規なリパーゼ遺伝子及びそれを用いたリパーゼの製造方法 |
JP3360830B2 (ja) | 1995-03-17 | 2003-01-07 | ノボザイムス アクティーゼルスカブ | 新規なエンドグルカナーゼ |
EP0839186B1 (fr) | 1995-07-14 | 2004-11-10 | Novozymes A/S | Enzyme modifiee a activite lipolytique |
WO1997004160A1 (fr) | 1995-07-19 | 1997-02-06 | Novo Nordisk A/S | Traitement de tissus |
ATE267248T1 (de) | 1995-08-11 | 2004-06-15 | Novozymes As | Neuartige lipolytische enzyme |
CN1246455C (zh) | 1996-04-30 | 2006-03-22 | 诺沃奇梅兹有限公司 | α-淀粉酶变体 |
WO1998008940A1 (fr) | 1996-08-26 | 1998-03-05 | Novo Nordisk A/S | Nouvelle endoglucanase |
ATE324437T1 (de) | 1996-09-17 | 2006-05-15 | Novozymes As | Cellulasevarianten |
CA2265734A1 (fr) | 1996-10-08 | 1998-04-16 | Novo Nordisk A/S | Derives de l'acide diaminobenzoique en tant que precurseurs de matieres tinctoriales |
JP2001503269A (ja) | 1996-11-04 | 2001-03-13 | ノボ ノルディスク アクティーゼルスカブ | ズブチラーゼ変異体及び、組成物 |
CN1554750B (zh) | 1996-11-04 | 2011-05-18 | 诺维信公司 | 枯草酶变种及组合物 |
WO1998034946A1 (fr) | 1997-02-12 | 1998-08-13 | Massachusetts Institute Of Technology | Daxx, nouvelle proteine fixatrice de fas activant une jnk (kinase n-terminale de jun) et l'apoptose |
AR016969A1 (es) | 1997-10-23 | 2001-08-01 | Procter & Gamble | VARIANTE DE PROTEASA, ADN, VECTOR DE EXPRESIoN, MICROORGANISMO HUESPED, COMPOSICIoN DE LIMPIEZA, ALIMENTO PARA ANIMALES Y COMPOSICIoN PARA TRATAR UN TEXTIL |
WO1999023211A1 (fr) * | 1997-10-30 | 1999-05-14 | Novo Nordisk A/S | Mutants d'alpha-amylase |
ES2321043T3 (es) | 1997-11-26 | 2009-06-01 | Novozymes A/S | Glucoamilasa termoestable. |
WO1999034011A2 (fr) | 1997-12-24 | 1999-07-08 | Genencor International, Inc. | Methode amelioree pour tester une enzyme preferee et/ou une composition detergente preferee |
CA2331340A1 (fr) | 1998-07-15 | 2000-01-27 | Novozymes A/S | Variants de glucoamylase |
DE19834180A1 (de) | 1998-07-29 | 2000-02-03 | Benckiser Nv | Zusammensetzung zur Verwendung in einer Geschirrspülmaschine |
US6376450B1 (en) | 1998-10-23 | 2002-04-23 | Chanchal Kumar Ghosh | Cleaning compositions containing multiply-substituted protease variants |
ES2322426T3 (es) * | 1999-03-31 | 2009-06-22 | Novozymes A/S | Polipeptidos con actividad alfa-amilasa y acidos nucleicos que codifican a los mismos. |
US7078212B1 (en) * | 1999-06-10 | 2006-07-18 | Kao Corporation | Mutant α-amylases |
US6254645B1 (en) | 1999-08-20 | 2001-07-03 | Genencor International, Inc. | Enzymatic modification of the surface of a polyester fiber or article |
US6933140B1 (en) | 1999-11-05 | 2005-08-23 | Genencor International, Inc. | Enzymes useful for changing the properties of polyester |
EP3594334A3 (fr) * | 2000-03-08 | 2020-03-18 | Novozymes A/S | Variants possédant des propriétés modifiées |
US20030104969A1 (en) | 2000-05-11 | 2003-06-05 | Caswell Debra Sue | Laundry system having unitized dosing |
CA2418317A1 (fr) | 2000-08-11 | 2002-02-21 | Genencor International, Inc. | Transformation de bacille, transformants et bibliotheques de mutants |
WO2002031124A2 (fr) | 2000-10-13 | 2002-04-18 | Novozymes A/S | Variant de l'alpha-amylase possedant des proprietes modifiees |
ES2273912T3 (es) | 2000-11-27 | 2007-05-16 | THE PROCTER & GAMBLE COMPANY | Metodo para lavar vajillas. |
EP1790713B1 (fr) | 2000-11-27 | 2009-08-26 | The Procter & Gamble Company | Produits détergents, procédés et fabrication |
EP2159279A3 (fr) | 2001-05-15 | 2010-05-12 | Novozymes A/S | Variant de l'alpha-amylase possédant des proprietés modifiées |
EP1354939A1 (fr) | 2002-04-19 | 2003-10-22 | The Procter & Gamble Company | Compositions detergentes en sachet |
GB0305685D0 (en) * | 2003-03-12 | 2003-04-16 | Danisco | Enzyme |
DE60307105T2 (de) | 2003-09-22 | 2007-02-15 | The Procter & Gamble Company, Cincinnati | Flüssiges Einzelportionswasch- oder reinigungsmittel |
WO2005056783A1 (fr) | 2003-12-05 | 2005-06-23 | Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Domaine catalytique de beta(1,4)-galactosyltransferase i porteuse d'une specificite d'ion metal alteree |
DE102004020720A1 (de) | 2004-04-28 | 2005-12-01 | Henkel Kgaa | Verfahren zur Herstellung von Wasch- oder Reinigungsmitteln |
US7413887B2 (en) | 2004-05-27 | 2008-08-19 | Genecor International, Inc. | Trichoderma reesei glucoamylase and homologs thereof |
GB0416155D0 (en) | 2004-07-20 | 2004-08-18 | Unilever Plc | Laundry product |
DE102004047776B4 (de) * | 2004-10-01 | 2018-05-09 | Basf Se | Gegen Di- und/oder Multimerisierung stabilisierte Alpha-Amylase-Varianten, Verfahren zu deren Herstellung sowie deren Verwendung |
GB0423986D0 (en) | 2004-10-29 | 2004-12-01 | Unilever Plc | Method of preparing a laundry product |
JP5507843B2 (ja) | 2005-10-12 | 2014-05-28 | ジェネンコー・インターナショナル・インク | 保存安定的な中性金属プロテアーゼの使用及び生産 |
WO2007111899A2 (fr) | 2006-03-22 | 2007-10-04 | The Procter & Gamble Company | Composition de traitement liquide |
GB0613069D0 (en) | 2006-06-30 | 2006-08-09 | Unilever Plc | Laundry articles |
BRPI0714329B1 (pt) | 2006-07-18 | 2017-09-12 | Danisco Us Inc.,Genencor Division | A dishwashing detergent composition comprising protease variants active over a wide temperature range and dishwashing process |
US7968691B2 (en) | 2006-08-23 | 2011-06-28 | Danisco Us Inc. | Pullulanase variants with increased productivity |
GB0700931D0 (en) | 2007-01-18 | 2007-02-28 | Reckitt Benckiser Nv | Dosage element and a method of manufacturing a dosage element |
CA2680158A1 (fr) * | 2007-03-09 | 2008-09-18 | Danisco Us Inc. | Variants de l'.alpha.-amylase d'une espece de bacillus alcaliphile, compositions comprenant des variants de l'.alpha.-amylase, et procedes d'utilisation |
BRPI0812786A2 (pt) | 2007-05-30 | 2014-10-14 | Danisco Us Inc Genencor Div | Variantes melhorados da alfa-amilase de bacillus licheniformis |
KR20100029081A (ko) * | 2007-05-30 | 2010-03-15 | 다니스코 유에스 인크. | 발효 공정에서의 생산 수준이 향상된 알파-아밀라아제의 변이체 |
DK2215202T3 (da) | 2007-11-05 | 2017-11-27 | Danisco Us Inc | VARIANTER AF BACILLUS sp. TS-23 ALPHA-AMYLASE MED ÆNDREDE EGENSKABER |
RU2010122896A (ru) * | 2007-11-05 | 2011-12-20 | ДАНИСКО ЮЭс ИНК. (US) | ВАРИАНТЫ АЛЬФА-МИЛАЗЫ TS-23 Bacillus sp. С ИЗМЕНЕННЫМИ СВОЙСТВАМИ |
BRPI0819184B1 (pt) * | 2007-11-05 | 2022-05-10 | Danisco Us Inc | Variantes de alfa-amilase com propriedades alteradas, polinucleotídeo, vetor, célula hospedeira, composição, kit, bem como métodos para tratamento de um caldo de amido, para produção de um substrato fermentável, e para tratamento de um material contendo amido |
MX2010004668A (es) * | 2007-11-05 | 2010-05-20 | Danisco Us Inc | Variantes de alfa-amilasa de bacillus licheniformis con termoestabilidad incrementada y/o dependencia de calcio disminuida. |
HUE050328T2 (hu) | 2007-11-20 | 2020-11-30 | Danisco Us Inc | Glükoamiláz változatok megváltoztatott tulajdonságokkal |
US8066818B2 (en) | 2008-02-08 | 2011-11-29 | The Procter & Gamble Company | Water-soluble pouch |
ES2465228T5 (es) | 2008-02-08 | 2022-03-18 | Procter & Gamble | Proceso para fabricar una bolsa soluble en agua |
US20090233830A1 (en) | 2008-03-14 | 2009-09-17 | Penny Sue Dirr | Automatic detergent dishwashing composition |
EP2107107A1 (fr) | 2008-04-02 | 2009-10-07 | The Procter and Gamble Company | Poche hydrosoluble comprenant une composition détergente |
EP2300605A2 (fr) | 2008-06-06 | 2011-03-30 | Danisco US Inc. | Variants d'alpha-amylase (amys) de geobacillus stearothermophilus presentant des proprietes ameliorees |
WO2009149271A2 (fr) * | 2008-06-06 | 2009-12-10 | Danisco Us Inc. | Production de glucose à partir d'amidon à l'aide d'alpha-amylases provenant de bacillus subtilis |
RU2541786C2 (ru) | 2008-06-06 | 2015-02-20 | ДАНИСКО ЮЭс ИНК. | Композиции и способы, включающие варианты микробных протеаз |
PL2133410T3 (pl) | 2008-06-13 | 2012-05-31 | Procter & Gamble | Saszetka wielokomorowa |
CN102224234B (zh) | 2008-09-25 | 2014-04-16 | 丹尼斯科美国公司 | α-淀粉酶混合物和使用所述混合物的方法 |
BRPI0922084B1 (pt) | 2008-11-11 | 2020-12-29 | Danisco Us Inc. | variante de subtilisina isolada de uma subtilisina de bacillus e sua composição de limpeza |
BRPI0922083A2 (pt) | 2008-11-11 | 2017-05-30 | Danisco Us Inc | proteases compreendendo uma ou mais mutações combináveis |
US20100125046A1 (en) | 2008-11-20 | 2010-05-20 | Denome Frank William | Cleaning products |
ES2639442T3 (es) | 2009-01-28 | 2017-10-26 | The Procter And Gamble Company | Composición para lavado de ropa en bolsa multicompartimental |
EP2216393B1 (fr) | 2009-02-09 | 2024-04-24 | The Procter & Gamble Company | Composition de détergent |
WO2010104675A1 (fr) * | 2009-03-10 | 2010-09-16 | Danisco Us Inc. | Alpha-amylases associées à la souche bacillus megaterium dsm90, et leurs procédés d'utilisation |
CA2757343A1 (fr) | 2009-04-01 | 2010-10-07 | Danisco Us Inc. | Compositions et procedes comprenant des variantes alpha-amylases qui possedent des proprietes modifiees |
GB0906281D0 (en) | 2009-04-09 | 2009-05-20 | Reckitt Benckiser Nv | Detergent compositions |
RU2591120C2 (ru) | 2009-05-19 | 2016-07-10 | Дзе Проктер Энд Гэмбл Компани | Способ печатания на водорастворимой пленке |
DK2510094T3 (en) | 2009-12-09 | 2017-03-13 | Danisco Us Inc | COMPOSITIONS AND METHODS OF COMPREHENSIVE PROTEASE VARIETIES |
AU2011203460B2 (en) * | 2010-01-04 | 2014-09-18 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2011094472A1 (fr) | 2010-01-29 | 2011-08-04 | Monosol, Llc | Film hydrosoluble ayant des propriétés de dissolution et de contrainte améliorées, et paquets fabriqués à partir de celui-ci |
EP2534236B1 (fr) | 2010-02-10 | 2018-05-30 | Novozymes A/S | Variantes et compositions comprenant des variantes avec une grande stabilité en présence d'un agent chélateur |
US20110240510A1 (en) | 2010-04-06 | 2011-10-06 | Johan Maurice Theo De Poortere | Optimized release of bleaching systems in laundry detergents |
MX339810B (es) | 2010-05-06 | 2016-06-09 | The Procter & Gamble Company * | Productos de consumo con variantes de la proteasa. |
WO2011153516A2 (fr) | 2010-06-03 | 2011-12-08 | Mascoma Corporation | Levure à expression d'enzymes saccharolytiques pour la transformation biologique consolidée au moyen d'amidon et de cellulose |
PL2399979T5 (pl) | 2010-06-24 | 2022-05-30 | The Procter And Gamble Company | Rozpuszczalne produkty w dawkach jednostkowych zwierające polimer kationowy |
ES2708702T3 (es) | 2010-08-23 | 2019-04-10 | Henkel IP & Holding GmbH | Composiciones de detergente en monodosis y métodos de producción y uso de las mismas |
WO2012059336A1 (fr) | 2010-11-03 | 2012-05-10 | Henkel Ag & Co. Kgaa | Article pour le linge ayant des propriétés de nettoyage |
GB201101536D0 (en) | 2011-01-31 | 2011-03-16 | Reckitt Benckiser Nv | Cleaning article |
EP2705146B1 (fr) | 2011-05-05 | 2018-11-07 | Danisco US Inc. | Procédés et compositions comprenant des variants de la sérine protéase |
CN109097347A (zh) * | 2011-06-30 | 2018-12-28 | 诺维信公司 | α-淀粉酶变体 |
EP2540824A1 (fr) * | 2011-06-30 | 2013-01-02 | The Procter & Gamble Company | Compositions de nettoyage comprenant une référence de variantes dýamylase à une liste de séquences |
WO2013057141A2 (fr) | 2011-10-17 | 2013-04-25 | Novozymes A/S | Variants d'alpha-amylase et polynucléotides les codant |
EP3495479A1 (fr) | 2011-10-17 | 2019-06-12 | Novozymes A/S | Variants d'alpha-amylase et polynucléotides les codant |
AU2012328562A1 (en) | 2011-10-28 | 2014-03-13 | Danisco Us Inc. | Variant maltohexaose-forming alpha-amylase variants |
CN102603917B (zh) * | 2012-03-22 | 2013-08-21 | 无锡德冠生物科技有限公司 | 一种酶法提取酵母葡聚糖的方法 |
DK2825643T3 (da) * | 2012-06-08 | 2021-11-08 | Danisco Us Inc | Variant-alfa-amylaser med forbedret aktivitet over for stivelsespolymerer |
CN102824361B (zh) * | 2012-09-20 | 2014-09-10 | 王伟 | 包含葡萄糖的组合物 |
EP3786269A1 (fr) | 2013-06-06 | 2021-03-03 | Novozymes A/S | Variants d'alpha-amylase et polynucléotides les codant |
CN110312794B (zh) * | 2016-12-21 | 2024-04-12 | 丹尼斯科美国公司 | 吉氏芽孢杆菌进化枝丝氨酸蛋白酶 |
-
2014
- 2014-03-11 HU HUE14722824A patent/HUE039341T2/hu unknown
- 2014-03-11 EP EP21166776.1A patent/EP3978604A1/fr active Pending
- 2014-03-11 ES ES18151284T patent/ES2882517T3/es active Active
- 2014-03-11 EP EP14727646.3A patent/EP2970931B1/fr active Active
- 2014-03-11 CN CN201480026463.3A patent/CN105229148B9/zh active Active
- 2014-03-11 DK DK14727646.3T patent/DK2970931T3/en active
- 2014-03-11 EP EP14722824.1A patent/EP2970930B2/fr active Active
- 2014-03-11 WO PCT/US2014/023590 patent/WO2014164834A1/fr active Application Filing
- 2014-03-11 EP EP14722410.9A patent/EP2970929A1/fr not_active Withdrawn
- 2014-03-11 CN CN201910610194.XA patent/CN110777132B/zh active Active
- 2014-03-11 US US14/775,595 patent/US20160017303A1/en not_active Abandoned
- 2014-03-11 US US14/775,610 patent/US20160017305A1/en not_active Abandoned
- 2014-03-11 WO PCT/US2014/023458 patent/WO2014164777A1/fr active Application Filing
- 2014-03-11 BR BR112015021647-1A patent/BR112015021647B1/pt active IP Right Grant
- 2014-03-11 EP EP18151284.9A patent/EP3336183B1/fr active Active
- 2014-03-11 CN CN201480026423.9A patent/CN105229147B/zh active Active
- 2014-03-11 WO PCT/US2014/023515 patent/WO2014164800A1/fr active Application Filing
- 2014-03-11 CA CA2903027A patent/CA2903027A1/fr active Pending
- 2014-03-11 US US14/775,603 patent/US20160017304A1/en not_active Abandoned
- 2014-03-11 DK DK18151284.9T patent/DK3336183T3/da active
- 2014-03-11 DK DK14722824.1T patent/DK2970930T4/da active
- 2014-03-11 ES ES14722824T patent/ES2676895T5/es active Active
-
2019
- 2019-03-04 US US16/292,057 patent/US20200087644A1/en not_active Abandoned
-
2022
- 2022-09-01 US US17/901,168 patent/US20230348879A1/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160053243A1 (en) * | 2012-12-21 | 2016-02-25 | Danisco Us Inc. | Alpha-amylase variants |
US11920170B2 (en) | 2015-12-09 | 2024-03-05 | Danisco Us Inc. | Alpha-amylase combinatorial variants |
CN110713999A (zh) * | 2017-01-16 | 2020-01-21 | 广东溢多利生物科技股份有限公司 | 提高比活的α-淀粉酶突变体BasAmy-3及其编码基因和应用 |
WO2019036721A2 (fr) | 2017-08-18 | 2019-02-21 | Danisco Us Inc | Variants d'alpha-amylases |
US20190264139A1 (en) * | 2018-02-28 | 2019-08-29 | The Procter & Gamble Company | Cleaning compositions |
US20210030020A1 (en) * | 2018-03-14 | 2021-02-04 | Yanmar Power Technology Co., Ltd. | Ice cream, method for manufacturing same and soft ice cream mix |
US20210030032A1 (en) * | 2018-03-30 | 2021-02-04 | Yanmar Power Technology Co., Ltd. | Frozen food, production method therefor, and freezer burn prevention agent |
US11541105B2 (en) | 2018-06-01 | 2023-01-03 | The Research Foundation For The State University Of New York | Compositions and methods for disrupting biofilm formation and maintenance |
US11326194B2 (en) * | 2019-12-20 | 2022-05-10 | Daesang Corporation | Method for producing dietary fiber |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230348879A1 (en) | Alpha-amylase combinatorial variants | |
EP3071691B1 (fr) | Variants d'alpha-amylases ayant une sensibilité réduite au clivage protéasique, et leurs procédés d'utilisation | |
DK2935575T3 (en) | ALPHA-amylase variants | |
US11920170B2 (en) | Alpha-amylase combinatorial variants | |
EP2771458A2 (fr) | Variants d'alpha-amylase pour obtention de maltohexaose variant | |
EP3060659B1 (fr) | Alpha-amylases de exiguobacterium, methodes et utilisation | |
EP3052622B1 (fr) | Alpha-amylases faisant partie d'un sous-ensemble d'exiguobacterium, et procédés d'utilisation correspondants | |
WO2014099525A1 (fr) | Amylase de paenibacillus curdlanolyticus, et ses procédés d'utilisation | |
WO2014200656A1 (fr) | Alpha-amylase provenant de streptomyces umbrinus | |
US20160130571A1 (en) | Alpha-Amylase from Bacillaceae Family Member | |
US20180112203A1 (en) | Amylase with maltogenic properties | |
WO2014200658A1 (fr) | Alpha-amylase issue de promicromonospora vindobonensis | |
WO2014200657A1 (fr) | Alpha-amylase provenant destreptomyces xiamenensis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DANISCO US INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CASCAO-PEREIRA, LUIS G.;FINAN, DINA;WILDES, DAVID E.;AND OTHERS;SIGNING DATES FROM 20140613 TO 20140804;REEL/FRAME:033614/0319 |
|
AS | Assignment |
Owner name: DANISCO US INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CASCAO-PEREIRA, LUIS G.;FINAN, DINA;WILDES, DAVID E.;AND OTHERS;SIGNING DATES FROM 20160302 TO 20160527;REEL/FRAME:038790/0842 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |