US20140329102A1 - Water-Based Adhesives - Google Patents

Water-Based Adhesives Download PDF

Info

Publication number
US20140329102A1
US20140329102A1 US14/363,230 US201214363230A US2014329102A1 US 20140329102 A1 US20140329102 A1 US 20140329102A1 US 201214363230 A US201214363230 A US 201214363230A US 2014329102 A1 US2014329102 A1 US 2014329102A1
Authority
US
United States
Prior art keywords
adhesive
rubber
combinations
reinforcing filler
phr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/363,230
Other languages
English (en)
Inventor
Amy M. Randall
William L. Hergenrother
Sheel Agarwal
Ashley S. Hilton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to US14/363,230 priority Critical patent/US20140329102A1/en
Assigned to BRIDGESTONE CORPORATION reassignment BRIDGESTONE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: HERGENROTHER, WILLIAM L., AGARWAL, SHEEL, RANDALL, AMY M., HILTON, ASHLEY S.
Publication of US20140329102A1 publication Critical patent/US20140329102A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J111/00Adhesives based on homopolymers or copolymers of chloroprene
    • C09J111/02Latex
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/042Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/01Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J107/00Adhesives based on natural rubber
    • C09J107/02Latex
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J121/00Adhesives based on unspecified rubbers
    • C09J121/02Latex
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/52Unvulcanised treads, e.g. on used tyres; Retreading
    • B29D30/54Retreading
    • B29D2030/544Applying an intermediate adhesive layer, e.g. cement or cushioning element between carcass and tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • B32B2250/248All polymers belonging to those covered by group B32B25/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2270/00Resin or rubber layer containing a blend of at least two different polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31826Of natural rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31826Of natural rubber
    • Y10T428/3183Next to second layer of natural rubber

Definitions

  • This disclosure relates to adhesives, particularly water-based adhesives for rubber compositions in the tire and air spring industry.
  • Rubber air springs and tires include separate rubber components that are joined with adhesives.
  • Retread tires also may employ adhesive to join the new tread to the carcass, or to adhere an intermediate cushion layer to a carcass and/or a tread.
  • Rubber adhesives may be used to provide tack to a rubber component while a rubber article is cured or stored.
  • an adhesive includes a polymeric latex, a penetrant selected from the group consisting of: terpenes, polylimonene, limonene, carvone, ⁇ -pinene, citral, dipentene, 1,8-cineole, eucalyptol, citronellol, geraniol, citronellene, terpinen-4-ol, borneol, camphor, guayule resin, and combinations thereof; and a reinforcing filler.
  • the adhesive has a solids content of about 35 to about 65% and a pH of about 9 to 12.
  • an article of manufacture includes an elastomeric rubber component comprising an elastomer selected from the group consisting of: polychloroprene, butyl rubber, hevea and non-hevea derived natural rubber, polyisoprene, polybutadiene, nitrile rubber, poly(styrene-butadiene), and combinations thereof.
  • the elastomeric rubber component is joined at an interface with a second rubber component or another portion of the elastomeric rubber component.
  • the interface includes a layer of adhesive, which comprises: a polymeric latex; a penetrant selected from the group consisting of: terpenes, polylimonene, limonene, carvone, ⁇ -pinene, citral, dipentene, 1,8-cineole, eucalyptol, citronellol, geraniol, citronellene, terpinen-4-ol, borneol, camphor, guayule resin, and combinations thereof; and a reinforcing filler.
  • a layer of adhesive which comprises: a polymeric latex; a penetrant selected from the group consisting of: terpenes, polylimonene, limonene, carvone, ⁇ -pinene, citral, dipentene, 1,8-cineole, eucalyptol, citronellol, geraniol, citronellene, terpinen-4-ol, borneol
  • a method includes the steps of: mixing together an adhesive composition comprising: a polymeric latex; a penetrant selected from the group consisting of: terpenes, polylimonene, limonene, carvone, ⁇ -pinene, citral, dipentene, 1,8-cineole, eucalyptol, citronellol, geraniol, citronellene, terpinen-4-ol, borneol, camphor, guayule resin, and combinations thereof; and a reinforcing filler.
  • a penetrant selected from the group consisting of: terpenes, polylimonene, limonene, carvone, ⁇ -pinene, citral, dipentene, 1,8-cineole, eucalyptol, citronellol, geraniol, citronellene, terpinen-4-ol, borneol, camphor, guayule resin
  • FIG. 1 is a partial cross-sectional view of an embodiment of an air spring.
  • FIG. 2 is a cross-sectional view of a portion of an embodiment of a tire.
  • FIG. 3 is a cross-sectional view of a portion of an embodiment of a retreaded tire.
  • a water-based, low VOC, latex adhesive for joining rubber interfaces.
  • the adhesive may be useful in a variety of applications. Particular examples of applications include those that require strong rubber-to-rubber joints and that are utilized to provide an air barrier, such as air springs and tire components. Application of new tread to retreaded tires is another application where the composition described herein may have particular utility.
  • the adhesive includes the following components: an aqueous polymeric latex, a penetrant, a reinforcing filler, a tackifier, and a stabilizer.
  • an aqueous polymeric latex e.g., polyethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl methacrylate, polymethyl
  • the polymeric latex of the adhesive may be an aqueous emulsion of elastomers such as hevea and non-hevea (including guayule) natural rubber, polyisoprene, poly(styrene-butadiene), poly(isoprene-styrene), poly(isoprene-butadiene), polybutadiene, polychloroprene, nitrile rubber, butyl rubber, and combinations thereof.
  • elastomers such as hevea and non-hevea (including guayule) natural rubber, polyisoprene, poly(styrene-butadiene), poly(isoprene-styrene), poly(isoprene-butadiene), polybutadiene, polychloroprene, nitrile rubber, butyl rubber, and combinations thereof.
  • the polymeric portion of the latex may have a weight average molecular weight (Mw) of about 100,000 to about 30,000,000 g/mol, such as about 100,000 to about 10,000,000 g/mol or about 100,000 to about 5,000,000 g/mol and a number average molecular weight (Mn) of about 100,000 to about 30,000,000 g/mol, such as about 100,000 to about 10,000,000 g/mol or about 100,000 to about 5,000,000 g/mol.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the polymer portion may have a Tg of about ⁇ 110° C. to about 10° C., such as about ⁇ 110° C. to about ⁇ 10° C. or about ⁇ 110° C. to about ⁇ 25° C.
  • the polymeric latex may have a solids content of about 10% to about 90%, such as about 20% to about 80%, or about 30% to about 70%.
  • the pH of the polymeric latex may be about 7 to about 14, such as about 8 to about 13 or about 9 to about 12.
  • the penetrant component when the adhesive is applied to an elastomer substrate, the penetrant component operates to open up the interstices of the polymeric matrix of the elastomer it is applied to. This allows the adhesive composition to have better penetration and intermingling with the substrate elastomer. The surface area of the interface between the adhesive and the elastomer substrate is also increased.
  • the penetrant is selected from terpenes, such as polylimonene, limonene, ⁇ -pinene, dipentene, citronellene; or from the group consisting of carvone, citral, 1,8-cineole, eucalyptol, citronellol, geraniol, terpinen-4-ol, borneol, camphor, and combinations thereof.
  • the penentrant is substantially or completely free of VOCs.
  • the penetrant is guayule resin.
  • guayule resin means the naturally occurring non-rubber chemical entities present in guayule shrub matter. These chemical entities include, but are not limited to, resins (such as terpenes), fatty acids, proteins, and inorganic materials, and include both polar and non-polar moieties. Guayule resin can result from the isolation of rubber from guayule shrub using organic solvent based processes. The resin represents the dried fraction (i.e., solvent removed) of material isolated in the polar organic solvent phase from such a process.
  • the guayule resin can be added as guayule rubber latex, such latex including both the guayule rubber and the guayule resin for use as the penetrant.
  • two components of the adhesive may be fulfilled by one source material.
  • purified guayule latex comprising 5% or less, alternatively 3% or less, or 1% or less guayule resin may be used in the adhesive composition.
  • the penetrant is added separately, and may include guayule resin.
  • the reinforcing filler component provides improved strength and durability to the adhesive composition. This is in contrast to many adhesives that use no or very little reinforcing filler. For example, some adhesive manufacturers may use carbon black in very small amounts to tint the adhesive, but not in reinforcing amounts.
  • the reinforcing filler is carbon black, such as reinforcing grade carbon black.
  • examples include carbon black in the N100, N200, and N300 series.
  • a higher surface area carbon black may provide improved performance.
  • the carbon black may have an N 2 SA surface area of about 10 to about 150 m 2 /g, such as about 20 to about 140 m 2 /g or about 30 to about 130 m 2 /g.
  • an aqueous carbon black dispersion may be used.
  • the dispersion contains carbon black in an amount from about 20% to about 50% by weight of the dispersion and the dispersion has a pH from about 7 to about 12.
  • Aqueous carbon black dispersions which may be employed include, for example, AQUABLAK 5101, which is available from Solution Dispersions, and includes a N100 series carbon black with 40% solids and pH of 10-1, and is stabilized with anionic and non-ionic surfactants.
  • the reinforcing fillers may be present in the adhesive in an amount of about 10 to about 80 phr (“per hundred rubber” is a by weight measure, and is based on the weight of the polymer in the polymeric latex set to 100), for example, about 15 to about 60 phr, or about 20 to about 40 phr.
  • Tackifiers that may be employed include, for example, TACOLYN 5003, TACOLYN 5070, or AQUATAC 6025.
  • TACOLYN 5003 and 5070 are from EASTMAN CHEMICAL COMPANY, and they are aliphatic hydrocarbon resin tackifiers with a softening point of 70-130° C. and a solids content of 45-50%.
  • AQUATAC 6025 is from ARIZONA CHEMICAL, Co., and has a softening point of 26° C. and a solids content of 59-63%.
  • the tackifier may be present in an amount of about 5 to about 40 phr, such as about 10 to about 35 phr, or about 15 to about 30 phr.
  • the tackifier has a pH of about 2 to about 13, such as about 3 to about 12, or about 4 to about 11 and a solids content of about 30 to about 80%, such as about 35 to about 75%, or about 40 to about 70%.
  • the tackifier has a softening point of about 5 to about 170° C., such as about 15 to about 150° C., or about 25 to about 130° C.
  • the stabilizer component aids in keeping the composition in a latex emulsion state.
  • An example class of stabilizers is non-ionic surfactants, such as IGEPAL CO-887, which is a non-ionic surfactant from Rhodia Group.
  • IGEPAL CO-887 is a nonylphenoxy poly(ethyleneoxy)ethanol surfactant stabilizer with a 70% solids content.
  • Other examples of stabilizers that may be used in embodiments of the adhesive composition include: PLURONIC F-68 from BASF, probenecid (4-(dipropylsulfamoyl)benzoic acid), tetraethyl orthosilicate, TWEEN 80 , and acryloamido-2-methyl-1-propanesulfonic acid.
  • the stabilizer may also be present in the polymeric latex component, rather than as a separately added component.
  • the stabilizer may be present in an amount of about 0 to about 10 phr, such as about 1 to about 6 phr, or about 2 to about 4 phr.
  • the stabilizer has a pH of about 5 to about 13, such as about 6 to about 12, or about 7 to about 11 and a solids content of about 35 to about 85%, such as about 40 to about 80%, or about 45 to about 75%.
  • the composition is substantially or completely free of cure agents, such as, for example, sulfur or peroxide.
  • substantially free in this context means that no cure agents are added for the purpose of curing the composition, and are only present for another purpose in the composition or as accidental contaminants, for example, less than 1 phr or less than 0.1 phr.
  • cure agents may also be used in conventional quantities. Without being bound by theory, it is believed that the cure agents and accelerators that leach out of the elastomer substrate that the adhesive is applied to are sufficient to impart a cure to the adhesive under curing conditions. The penetrant is believed to aid in leaching sufficient quantities of the cure agent and accelerators from the elastomer substrate.
  • the entire adhesive composition will have a pH of about 7 to about 14, such as about 8 to about 13, or about 9 to about 12, and a solids content of about 25 to about 75%, such as, about 30% to about 70%, or about 35 to about 65%.
  • the adhesive will be substantially or completely free of VOCs.
  • a volatile organic compound (VOC) is any carbon-based compound that will vaporize at standard room temperatures. There are many organic compounds that fall into this category, with methane, formaldehyde and acetone among the most prevalent and well-known VOCs. These compounds are produced through natural biological processes as well as through chemical reactions in manufacturing and industry. Whether a composition is free or substantially free of VOCs is based upon its vapor pressure.
  • the components listed above are mixed together at ambient temperature. Namely, the polymeric latex, the penetrant, the reinforcing filler, the tackifier, and the stabilizer are mixed together. In another embodiment, either the penetrant or the stabilizer or both may be omitted.
  • the components may be added sequentially or simultaneously, in the order they are listed above or in a different order.
  • the components may be sequentially added and allowed to slowly rotate in a closed vessel long enough to ensure mixing and good dispersion, such as at least 24 hours.
  • the adhesive composition thus formed may be applied to a substrate such as a cured or an uncured rubber composition by, for example, rolling, spraying, or extruding it onto the substrate. After application to an uncured rubber substrate the adhesive and the uncured composition may be then cured under conditions necessary for the substrate to cure. Without being bound by theory, the cure agent and accelerators in the substrate are believed to leach into the adhesive in a sufficient quantity to cause the adhesive to cure also.
  • the substrates that the adhesive may be utilized to join include elastomeric rubber substrates such as rubber compositions that have as the polymeric component polychloroprene, butyl rubber, hevea and non-hevea natural rubber, polyisoprene, polybutadiene, nitrile rubber, poly(isoprene-styrene), poly(isoprene-butadiene), poly(styrene-butadiene), and combinations thereof.
  • the adhesive may also have some utility for bonding metals, wood, and other types of substrates.
  • FIG. 1 shows an embodiment of a reversible sleeve air spring 10
  • the air spring assembly 10 includes flexible airsleeve 12 .
  • Bead plate 14 is crimped to airsleeve 12 to form an airtight seal between the bead plate 14 and airsleeve 12 .
  • end closure 16 is molded to the flexible airsleeve 12 to form an airtight seal between end closure 16 and airsleeve 12 .
  • End closure 16 of airsleeve 12 is affixed to piston 18 by mechanical means well known in the art, including, for example, a piston bolt (not shown). Piston 18 provides a surface for the flexible airsleeve 12 to roll on during compressive travel.
  • the reversible air spring assembly 10 may optionally include a bumper 20 to support the vehicle when there is no air in the air springs or during extreme road disturbances. Enclosed within airsleeve 12 is a volume of gas 22 . Studs 24 and hole 26 are used to secure the reversible air spring assembly 10 to the mounting surface of an automobile (not shown).
  • the application adhesive is applied between rubber layers for air-springs to securely join them at an interface.
  • rubber layers for air-springs to securely join them at an interface.
  • Air springs are widely used in large vehicles, such as buses and trucks, because they allow fixedly holding a vehicle's posture against a load change from curb weight to payload weight by controlling the supply of air and the discharge of air to the exterior.
  • the spring constant can be set to a low level to improve the ride comfort and prevent the damage of freight.
  • Typical air spring rubber compositions include one or more diene polymers, such as polychloroprene; a reinforcing filler, such as carbon black, in an amount such as 20-100 phr; a cure agent, accelerators, wax, plasticizing oil, antioxidants, and other additives.
  • diene polymers such as polychloroprene
  • a reinforcing filler such as carbon black
  • a cure agent such as accelerators, wax, plasticizing oil, antioxidants, and other additives.
  • FIG. 2 shows a cross-section of a tire 100 .
  • the adhesive is applied to various rubber components of the tire 100 including, but not limited to, new tire construction or existing tire retreading.
  • the adhesive may be applied to join a spliced tread 110 , a spliced inner liner 120 , or a spliced bead 130 , or to join a sidewall 140 or a carcass layer 150 to the tread 110 .
  • the cured tread and the cured tire carcass are joined together by combining a cushion layer.
  • the retreaded tire is then heated in a standard set of conditions to allow for curing to occur.
  • the adhesive may be applied to join a cushion layer 302 to a retreaded carcass 306 or a cushion layer to a new tread 304 , as shown in FIG. 3 .
  • An example of a retread tire and a method for retreading is disclosed in U.S. Pat. No. 5,603,366, which is incorporated herein by reference.
  • Typical tire rubber compositions include one or more diene polymers, reinforcing filler, such as carbon black, in an amount such as 40-100 phr, sulfur (cure agent), accelerators, plasticizing oil, antioxidants, and other additives.
  • New tires are constructed by assembling the individual components in an uncured (green) state, and then, once assembled, the green tire is cured as a whole.
  • An example tire manufacturing method is disclosed in U.S. Pat. No. 4,824,501, which is incorporated herein by reference.
  • the adhesive described herein is well-suited for use in the manufacture of rubber articles such as tires and air springs.
  • the example adhesives were prepared by sequentially mixing the components listed in Table 1 and allowing them to slowly rotate in a closed vessel for at least 24 hours to ensure mixing and good dispersion.
  • the final example adhesives had solids contents in the range of 35-65% and a pH in the range of 9-12.
  • Examples 3-10 were performed to test the tackiness and the strength/durability of the Example 1 and 2 adhesives in comparison to other adhesives and against a stock to stock control when applied to a neoprene rubber composition.
  • Neoprene rubber is commonly used in air springs.
  • Examples 3-6 were prepared to measure the uncured (green) peel strength. This measurement primarily shows the tackiness of the joint. This indicates an initial adhesiveness to hold a joint together temporarily until it can be cured.
  • Examples 7-10 were prepared to measure the cured peel strength, which shows the strength and durability of the final cured joint.
  • the application of the adhesive onto the green rubber stock was done with a foam/sponge brush, in order to get a thin uniform layer of application.
  • the adhesive was allowed to dry at room temperature for one hour before the uncured samples were tested, and before the cured samples were cured by heating at 171° C. for 11.5 min.
  • Example 3 no adhesive was applied.
  • Example 3 two uncured neoprene stocks were applied together in an uncured state.
  • Example 7 the neoprene stocks were applied together uncured and then later cured. This provides a very strong bond, because the same material is being contacted and cured together.
  • the joint is only slightly weaker than an unjointed piece of rubber, partly because some contaminants may bloom to the surface of the joint and contaminate the curing at the joint. Accordingly, these Examples are considered control examples, not comparative Examples.
  • Examples 4 and 8 were neoprene rubber strips joined with a hexane solvent-based adhesive made from natural rubber and styrene-butadiene rubber.
  • Examples 5, 6, 9, and 10 employed the adhesives made in Examples 1 and 2.
  • Examples 11-18 are analogs to Examples 3-10, only differing in that a different Neoprene rubber was used.
  • the Neoprene rubbers 1 and 2 were copolymers of chloroprene and 2,3-dichloro-1,3-butadiene.
  • Neoprene rubber 1 had a Mooney viscosity of about 100-120, and neoprene rubber 2 had a Mooney viscosity of about 41-51.
  • Neoprene rubber Solvent 0.0435 (Compar- 1 Cured Adhesive ative)
  • Neoprene rubber Stock-to- 0.0530 Control) 2 no cure (green) Stock (none)
  • Neoprene rubber Solvent 0.0400 Compar- 2 no cure (green) Adhesive ative
  • Neoprene rubber Example 1 0.710 2 no cure (green)
  • Neoprene rubber Example 2 0.0550 2 no cure (green)
  • Neoprene rubber Stock-to- 0.3231 Control) 2 cured Stock
  • Neoprene rubber Solvent 0.0184 Compar- 2 cured Adhesive ative
  • Example 17 Neoprene rubber Example 1 0.2367 2 cured
  • Example 18 Neoprene rubber Example 2 0.3520 2 cured
  • the backing pad was secured to the green rubber neoprene stock using superglue (cyanoacrylate).
  • superglue cyanoacrylate
  • the backing pad was cured onto the rubber stock without superglue.
  • Examples 3-10 the green rubber stock and the backing pad were weighed before any adhesive was applied.
  • a foam/sponge brush was used to apply the adhesive in a thin, uniform layer onto each face of the adhesion pad. It was observed that all of the adhesives coated and wetted the rubber well.
  • the pads were weighed again after the adhesive had been applied and dried at room temperature for at least an hour in order to get the weight of the adhesive. The weights of adhesive in each Example were approximately the same.
  • Examples 7-10 after the pads were assembled, the samples were cured at 171° C. for 11.5-min.
  • Examples 3-10 A standard procedure for 180° peel testing on an Instron 4501 was used for all of the Examples 3-10. These Examples were peel tested at a rate of 2 in/min and the gap distance was 127 mm. The cured Examples 15-18 were aged for 5 days before testing. This same test was performed for both uncured (Examples 3-6, 11-14) and cured adhesion (Examples 7-10, 15-18).
  • Table 2 and 3 show the uncured tack comparison and the cured adhesive strength comparison.
  • the Example 1 and 2 adhesive formulations demonstrate versatility on different types of air spring rubber, and in either the uncured or cured state.
  • the water-based adhesives of Examples 1 and 2 reduce the VOC emissions released upon drying in comparison to a traditional solvent-based adhesive.
  • the Example 19 adhesive was prepared by sequentially mixing the components listed in Table 4 and allowing them to slowly rotate in a closed vessel for at least 24 hours to ensure mixing and good dispersion.
  • the final adhesive had a solids content in the range of 35-65% and a pH in the range of 9-12.
  • Examples 20-25 were performed to test the tackiness and the strength/durability of the Example 19 adhesive in comparison to other adhesives and against a stock to stock control when applied to a typical styrene-butadiene and natural rubber blend tire compound that also included carbon and silica, sulfur, and accelerators.
  • Examples 20-22 were prepared to measure the uncured (green) peel strength, which primarily shows the tackiness of the joint. This indicates an initial adhesiveness to hold a joint together temporarily until it can cure.
  • Examples 23-25 were prepared to measure the cured peel strength, which shows the strength and durability of the final cured joint.
  • the application of the adhesive onto the green SBR/NR stock was done with a foam/sponge brush, in order to get a thin uniform layer of application.
  • the adhesive was allowed to dry at room temperature for one hour before the uncured samples were tested, and before the cured samples were cured by heating at 171° C. for 15 min. The amount of adhesive was approximately equal in all Examples.
  • Example 20 no adhesive was applied.
  • Example 20 two uncured SBR/NR stocks were applied together in an uncured state, in Example 23 the stocks were applied together uncured and then cured.
  • Examples 21 and 24 were SBR/NR strips joined with a hexane solvent-based adhesive made from natural rubber and styrene-butadiene rubber.
  • Examples 22 and 25 employed the adhesive made in Example 19.
  • Table 5 also shows the uncured tack comparison of Examples 20-22 and the cured adhesive strength comparison of Examples 23-25.
  • the Example 19 adhesive formulation tested in Examples 22 and 25 demonstrates excellent performance on SBR/NR in either the cured or uncured state.
  • the water-based adhesive of Example 19 reduces the VOC emissions released upon drying in comparison to the traditional solvent-based adhesive.
  • Prospective example adhesives incorporating guayule resin may be prepared by sequentially mixing the components listed in Table 6 and allowing them to slowly rotate in a closed vessel to ensure mixing and good dispersion.
  • guayule resin may be incorporated as the penetrant.
  • guayule rubber latex may be used as the latex component of the adhesive.
  • guayule latex may be used that includes both the guayule rubber and guayule resin.
  • the final products in each of Prospective Examples 26-28 would be expected to have a solids content in the range of 35-65% and a pH in the range of 9-12.
  • the adhesives in Examples 29 and 30 were prepared by sequentially mixing the components listed in Table 7 and allowing them to slowly rotate in a closed vessel to ensure mixing and good dispersion.
  • the final adhesives had a solids content in the range of 50-60% and a pH in the range of 9.5-11.5.
  • the guayule latex used in Example 30 was in a purified form that included only guayule rubber with little or no guayule resin present.
  • Example 31 is a comparative example of a solvent based adhesive.
  • a comparison of cured and uncured peel strengths is provided below in Table 8. The peel tests were conducted by applying the adhesives onto uncured (green) and cured styrene-butadiene rubber stock at approximately equal thicknesses. The adhesive was allowed to dry at room temperature for one hour before the uncured samples were tested. The cured samples were prepared by heating the green stocks with the adhesive applied on them at 171° C. for 15 min

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
US14/363,230 2011-12-07 2012-12-07 Water-Based Adhesives Abandoned US20140329102A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/363,230 US20140329102A1 (en) 2011-12-07 2012-12-07 Water-Based Adhesives

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161567701P 2011-12-07 2011-12-07
US201261606161P 2012-03-02 2012-03-02
US14/363,230 US20140329102A1 (en) 2011-12-07 2012-12-07 Water-Based Adhesives
PCT/US2012/068562 WO2013086407A1 (en) 2011-12-07 2012-12-07 Water-based adhesives

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/068562 A-371-Of-International WO2013086407A1 (en) 2011-12-07 2012-12-07 Water-based adhesives

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/858,194 Division US11407926B2 (en) 2011-12-07 2020-04-24 Water-based adhesives

Publications (1)

Publication Number Publication Date
US20140329102A1 true US20140329102A1 (en) 2014-11-06

Family

ID=48574937

Family Applications (2)

Application Number Title Priority Date Filing Date
US14/363,230 Abandoned US20140329102A1 (en) 2011-12-07 2012-12-07 Water-Based Adhesives
US16/858,194 Active 2032-12-08 US11407926B2 (en) 2011-12-07 2020-04-24 Water-based adhesives

Family Applications After (1)

Application Number Title Priority Date Filing Date
US16/858,194 Active 2032-12-08 US11407926B2 (en) 2011-12-07 2020-04-24 Water-based adhesives

Country Status (6)

Country Link
US (2) US20140329102A1 (enExample)
EP (1) EP2788444B1 (enExample)
JP (1) JP6126120B2 (enExample)
CN (1) CN104080876B (enExample)
BR (1) BR112014013579B1 (enExample)
WO (1) WO2013086407A1 (enExample)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10717838B2 (en) 2013-03-14 2020-07-21 Bridgestone Americas Tire Operations, Llc Refresh agent
US11207919B2 (en) 2016-06-21 2021-12-28 Bridgestone Americas Tire Operations, Llc Methods for treating inner liner surface, inner liners resulting therefrom and tires containing such inner liners
US11407926B2 (en) 2011-12-07 2022-08-09 Bridgestone Corporation Water-based adhesives
US11697260B2 (en) 2016-06-30 2023-07-11 Bridgestone Americas Tire Operations, Llc Methods for treating inner liners, inner liners resulting therefrom and tires containing such inner liners
US11697306B2 (en) 2016-12-15 2023-07-11 Bridgestone Americas Tire Operations, Llc Sealant-containing tire and related processes
US11794430B2 (en) 2016-12-15 2023-10-24 Bridgestone Americas Tire Operations, Llc Methods for producing polymer-containing coatings upon cured inner liners, methods for producing tires containing such inner liners, and tires containing such inner liners
US20230382007A1 (en) * 2020-10-16 2023-11-30 Arizona Board Of Regents On Behalf Of The University Of Arizona Particleboards including modified guayule resins/soy protein resin blends and associated methods for forming same
US12103338B2 (en) 2016-12-15 2024-10-01 Bridgestone Americas Tire Operations, Llc Sealant layer with barrier, tire containing same, and related processes

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3072673B1 (en) * 2015-03-24 2018-02-07 Bridgestone Corporation Pre-vulcanized tread strip assembly useful for the cold retreading of a tyre
EP3307555A4 (en) * 2015-06-15 2019-09-11 Bridgestone Americas Tire Operations, LLC CONDUCTIVE SPRAYING CEMENT
WO2017069992A1 (en) * 2015-10-22 2017-04-27 Bridgestone Americas Tire Operations, Llc Reduced voc tire cement
CN106084299A (zh) * 2016-04-26 2016-11-09 成国良 一种叶质材料及其制备方法
WO2018053828A1 (zh) * 2016-09-26 2018-03-29 于晶晶 一种粘合剂及其制备方法
CN107139540B (zh) * 2017-04-25 2019-06-25 福建合信包装有限公司 一种瓦楞纸板的生产工艺
EP4379008A1 (en) 2022-12-02 2024-06-05 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Bio based natural rubber solutions

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB836250A (en) * 1956-10-12 1960-06-01 Goodyear Tire & Rubber Latex treatment
US4179415A (en) * 1977-08-08 1979-12-18 Johnson & Johnson Pressure sensitive adhesive and process
US4542191A (en) * 1980-05-14 1985-09-17 The Firestone Tire & Rubber Company Rubber additives derived from guayule resins and compositions containing them
US20020111418A1 (en) * 2000-12-12 2002-08-15 Jsr Corporation Methods for producing diene-based rubber/inorganic compound complexes and rubber compositions containing the same
US20040147663A1 (en) * 2001-04-10 2004-07-29 Ford Silvers Water based adhesive
US20040158003A1 (en) * 2003-02-06 2004-08-12 Arizona Chemical Company Terpene resin-and hydrocarbon resin-based surfactants and aqueous dispersion of tackifier resins
US20070224395A1 (en) * 2006-03-24 2007-09-27 Rowitsch Robert W Sprayable water-based adhesive
US20110118404A1 (en) * 2009-11-18 2011-05-19 Hyun-Dae Jung Blend Partner with Natural Rubber for Elastomeric Compounds
US20120312454A1 (en) * 2009-12-30 2012-12-13 Marcus Seferin Adhesive composition for tyres, method for producing this composition and method for glueing tyres using this composition

Family Cites Families (92)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB191411175A (en) 1914-05-06 1915-07-22 Carl Reichstein Improvements in the Steering Mechanism of Motor Road Vehicles.
US2776190A (en) 1950-07-14 1957-01-01 Kellogg M W Co Manufacture of hydrazine
CH307987A (de) 1951-05-02 1955-06-30 Ici Ltd Verfahren zum Verbinden von Flächen aus Kautschuk.
DE927714C (de) 1952-03-15 1955-05-16 Phoenix Gummiwerke Ag Verfahren zum Herstellen von Klebemitteln und kautschukhaltigen Lacken
BE563719A (enExample) 1957-01-04 1900-01-01
NL127872C (enExample) 1965-03-19
US3963850A (en) 1970-09-29 1976-06-15 Phillips Petroleum Company Adhesive formulation improved with solid fillers
FR2164095A5 (enExample) 1971-12-09 1973-07-27 Distugil
AU548978B2 (en) * 1980-05-14 1986-01-09 Firestone Tire And Rubber Co., The Process for extracting rubber from guayule shrubs
US4324710A (en) 1980-10-02 1982-04-13 The Firestone Tire & Rubber Company Naturally occurring thermoplastic resins as a substitute for various petroleum-derived materials in rubber stocks
FR2529564A1 (fr) 1982-06-30 1984-01-06 Perrot Paul Henri Peintures et vernis au polychloroprene et procede pour leur fabrication
US4411954A (en) 1982-08-16 1983-10-25 National Starch And Chemical Corporation Hot melt pressure sensitive adhesive and diaper tape closures coated therewith
US4601892A (en) 1983-03-30 1986-07-22 Phillips Petroleum Company Process for producing carbon black
US4477613A (en) * 1983-08-01 1984-10-16 Sylvachem Corporation Stabilization of tackifying resin dispersions
JPS60238376A (ja) * 1984-05-10 1985-11-27 Sumitomo Naugatuck Co Ltd 防虫効果を有する接着剤組成物
US4704225A (en) 1986-05-01 1987-11-03 Stoufer Wilmer B Cleaning composition of terpene hydrocarbon and a coconut oil fatty acid alkanolamide having water dispersed therein
JPS62290524A (ja) 1986-06-11 1987-12-17 Bridgestone Corp ラジアルタイヤの製造方法
US4737577A (en) 1986-12-31 1988-04-12 Minnesota Mining And Manufacturing Company Method for removing monomer from an acrylate adhesive by reaction with a scavenger monomer
JP2619045B2 (ja) 1988-03-29 1997-06-11 株式会社ブリヂストン タイヤ用プレキュアトレッドおよびこれを用いたタイヤ
US4973485A (en) 1989-02-24 1990-11-27 The Procter & Gamble Company Orange stripper essence and stripper oil having high ratios of more desirable to less desirable flavor compounds
DE4028601A1 (de) * 1990-09-08 1992-03-12 Continental Ag Verfahren zur herstellung eines elastomeren verbundwerkstoffes, verbundwerkstoff und daraus hergestellter luftfederbalg
US5228938A (en) 1991-06-12 1993-07-20 The Goodyear Tire & Rubber Company Rubber surface treatment and products derived therefrom
US5783551A (en) 1992-04-29 1998-07-21 Mirsky; Jeffrey Paraffinic cleaning solutions
DE4214507A1 (de) 1992-05-01 1993-11-04 Minnesota Mining & Mfg Haftklebstoff mit fuellstoff
EP0653931B1 (en) * 1992-07-28 1999-09-22 Bio Polymers Pty. Ltd. Industrial, pharmaceutical and cosmetic applications for cultured plant cell gums
WO1994009984A1 (en) 1992-10-27 1994-05-11 Adhesive Coatings Co. Novel single package ionic emulsion polymers and their preparation
US5330832A (en) 1993-03-22 1994-07-19 Amoco Corporation Pressure-sensitive adhesives of polyvinyl methyl ether
US5387524A (en) 1993-06-23 1995-02-07 Mitsubishi Materials Corporation Method for quantitative flow injection analysis of metals in body fluids
US5362714A (en) 1993-06-29 1994-11-08 The Coca-Cola Company Process for dewaxing citrus oils
EP0658597B1 (en) 1993-12-17 1998-03-04 Henkel Kommanditgesellschaft auf Aktien Sealant and adhesive with damping properties
CA2175604A1 (en) 1994-01-13 1995-07-20 Robert J. Murray Water-based adhesive
US5395879A (en) 1994-01-13 1995-03-07 Akron Paint & Varnish, Inc. Water-based adhesive
US5565511A (en) * 1994-03-23 1996-10-15 Xl Corporation High-solids adhesives and method of producing same
CZ6930U1 (cs) 1994-05-11 1997-12-29 Jiří Ing. Šulc Kompozitní, na tlak citlivé hydrofilní lepidlo
US5691408A (en) * 1994-09-13 1997-11-25 Akron Paint & Varnish Process for manufacturing water based adhesive
WO1996030220A1 (en) 1995-03-24 1996-10-03 The Yokohama Rubber Co., Ltd. Pneumatic tire
JP3320420B2 (ja) 1995-05-02 2002-09-03 横浜ゴム株式会社 空気入りタイヤの製造方法
US5728759A (en) 1995-08-15 1998-03-17 Pike; Charles O. Waterbase pressure sensitive adhesives and methods of preparation
US5807918A (en) 1996-03-26 1998-09-15 Patch Rubber Company Color changeable aqueous adhesive systems
US5910528A (en) 1996-03-27 1999-06-08 Falicoff; Waqidi Table tennis rubber solvent and adhesive systems
WO1997043136A1 (en) 1996-05-14 1997-11-20 The Yokohama Rubber Co., Ltd. Pneumatic tyre
AU3071097A (en) 1996-05-16 1997-12-05 Columbian Chemicals Company Automotive carbon black and rubber compositions thereof
CA2264821A1 (en) 1996-09-04 1998-03-12 The Dow Chemical Company Floor, wall or ceiling covering
US6439550B1 (en) * 1997-02-18 2002-08-27 Bfs Diversified Products, Llc Adhesive laminate and method of securing a rubber air spring to a fixturing sleeve
US5951797A (en) 1997-03-19 1999-09-14 The Goodyear Tire & Rubber Company Curable filled tread adhesive for tires as discrete portions on a release backing
US5962564A (en) * 1997-04-09 1999-10-05 Xl Corporation Water based high solids adhesives and adhesive application system including pressurized canister
JPH10306266A (ja) 1997-05-07 1998-11-17 Sekisui Chem Co Ltd 接着剤組成物
US6127476A (en) 1999-01-25 2000-10-03 Omnova Solutions Inc. Aqueous rubber composition
CA2402845A1 (en) 1999-03-16 2000-09-21 Peter H. Fairchild High solids bentonite slurries and method for preparing same
EP1167446B1 (en) * 1999-05-27 2005-03-02 Denki Kagaku Kogyo Kabushiki Kaisha Chloroprene latex composition, process for producing the same, and adhesive composition comprising the same
JP2001026756A (ja) 1999-07-14 2001-01-30 Denki Kagaku Kogyo Kk 水系接着剤
US6281298B1 (en) 1999-08-20 2001-08-28 H. B. Fuller Licensing & Financing Inc. Water-based pressure sensitive adhesives having enhanced characteristics
JP4567123B2 (ja) 1999-08-25 2010-10-20 電気化学工業株式会社 水系接着剤
JP2001323237A (ja) * 2000-05-11 2001-11-22 Sekisui Chem Co Ltd 接着剤組成物
US6590017B1 (en) 2000-05-15 2003-07-08 Bridgestone Corporation Processability of silica-reinforced rubber containing an amide compound
JP4578643B2 (ja) 2000-08-09 2010-11-10 電気化学工業株式会社 ラテックス組成物及び水系接着剤
JP5177921B2 (ja) 2000-08-23 2013-04-10 電気化学工業株式会社 水系接着剤及びそれを用いた接着方法及び接着構造体
DE10046545A1 (de) 2000-09-19 2002-03-28 Bayer Ag Klebstoffzusammensetzung auf Basis von Polychloropren-Dispersionen
JP3962684B2 (ja) 2000-11-06 2007-08-22 サムヤン コーポレイション 改善された水分吸収能および接着性を有する経皮投与剤
US7091170B2 (en) 2001-02-14 2006-08-15 Kaneko Chemical Co., Ltd. Solvent composition for washing
US6528122B2 (en) 2001-08-02 2003-03-04 Mattel, Inc. Terpene/co-solvent adhesive or paint coating composition for toy articles
KR100880136B1 (ko) 2001-11-02 2009-01-23 덴끼 가가꾸 고교 가부시키가이샤 폴리클로로프렌계 라텍스 조성물, 수계 프라이머 및접착방법
JP3775783B2 (ja) 2001-11-15 2006-05-17 電気化学工業株式会社 ポリクロロプレン系ラテックス組成物、水系接着剤、それらを用いた接着方法及び積層体
EP1498452B1 (en) 2002-04-19 2011-08-31 Denki Kagaku Kogyo Kabushiki Kaisha Latex composition
US6719279B1 (en) * 2002-08-21 2004-04-13 Bfs Diversified Products, Llc Air spring sleeve
US7175897B2 (en) 2002-12-17 2007-02-13 Avery Dennison Corporation Adhesive articles which contain at least one hydrophilic or hydrophobic layer, method for making and uses for same
DE10261106A1 (de) 2002-12-20 2004-07-22 Tesa Ag Haftklebemasse für ein- oder beiseitig haftklebrige Klebfolienstreifen und Verfahren zur Herstellung hierzu
JP4395883B2 (ja) 2003-01-23 2010-01-13 荒川化学工業株式会社 床材用水系接着剤組成物
JP2004244506A (ja) * 2003-02-13 2004-09-02 Tatsuhiko Oe 水系接着剤/塗料組成物
WO2004103416A2 (en) 2003-05-20 2004-12-02 Avery Dennison Corporation Fluid absorbing adhesive paste
US7803865B2 (en) 2003-08-25 2010-09-28 Dow Global Technologies Inc. Aqueous dispersion, its production method, and its use
JP4433744B2 (ja) 2003-09-26 2010-03-17 横浜ゴム株式会社 積層体及びそれを用いた空気入りタイヤ
JP2005105218A (ja) * 2003-10-01 2005-04-21 Toppan Forms Co Ltd 臭気低減感圧接着剤組成物およびそれを用いたシート
KR20050044993A (ko) * 2003-11-10 2005-05-16 주식회사 오공 인테리어 pvc 시트용 수성접착제 조성물
TWI412570B (zh) 2004-04-27 2013-10-21 Showa Denko Kk Adhesive for patch and method for producing the same
JP4643181B2 (ja) 2004-06-21 2011-03-02 電気化学工業株式会社 エマルジョン型粘着剤及び粘着テープ
JP2006077038A (ja) 2004-09-07 2006-03-23 Denki Kagaku Kogyo Kk ポリクロロプレンラテックス組成物および接着剤組成物
JP2006299256A (ja) * 2005-03-23 2006-11-02 Sanyo Chem Ind Ltd 感圧接着剤組成物
US8287949B2 (en) 2005-07-07 2012-10-16 Dow Global Technologies Inc. Aqueous dispersions
AU2005335100A1 (en) 2005-08-01 2007-02-08 Empresa De Base & Distribuidora Ltda. Equipment for seedlings plantation with simultaneous application of moisturizing products based on water, soil improvers and/or fertilizers and the corresponding system of planting seedlings
JP2007070464A (ja) 2005-09-07 2007-03-22 Denki Kagaku Kogyo Kk 2液型水系接着剤及びその用途
US20070249759A1 (en) 2006-04-21 2007-10-25 Peter James Miller Tackifier dispersions with improved humid age performance
US20080300526A1 (en) * 2007-06-01 2008-12-04 Yulex Corporation Guayule rubber and resin wet-stick bioadhesives
WO2008024488A2 (en) 2007-08-24 2008-02-28 Synchem Technologies, Llc Composition and method for the removal or control of paraffin wax and/or asphaltine deposits
US20090099309A1 (en) * 2007-10-16 2009-04-16 Yulex Corporation Guayule resin multipolymer
JP4793381B2 (ja) 2007-12-07 2011-10-12 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
CA2739232A1 (en) 2008-08-14 2010-02-18 Firestone Diversified Products, Llc Rubber articles subjected to repeated deformation and compositions for making the same
JP2010126570A (ja) * 2008-11-26 2010-06-10 Sunstar Engineering Inc 壁紙用接着剤組成物、内装用仕上げ材および壁構造
WO2012040561A1 (en) 2010-09-24 2012-03-29 Invista Technologies S.A R.L. Composition for surface treatment and process
US8454778B2 (en) 2010-11-15 2013-06-04 Ramendra Nath Majumdar Pneumatic tire with barrier layer and method of making the same
JP6126120B2 (ja) 2011-12-07 2017-05-10 株式会社ブリヂストン 水性接着剤
BR112015021467A2 (pt) 2013-03-14 2017-07-18 Bridgestone Americas Tire Operations Llc agente de renovação

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB836250A (en) * 1956-10-12 1960-06-01 Goodyear Tire & Rubber Latex treatment
US4179415A (en) * 1977-08-08 1979-12-18 Johnson & Johnson Pressure sensitive adhesive and process
US4542191A (en) * 1980-05-14 1985-09-17 The Firestone Tire & Rubber Company Rubber additives derived from guayule resins and compositions containing them
US20020111418A1 (en) * 2000-12-12 2002-08-15 Jsr Corporation Methods for producing diene-based rubber/inorganic compound complexes and rubber compositions containing the same
US20040147663A1 (en) * 2001-04-10 2004-07-29 Ford Silvers Water based adhesive
US20040158003A1 (en) * 2003-02-06 2004-08-12 Arizona Chemical Company Terpene resin-and hydrocarbon resin-based surfactants and aqueous dispersion of tackifier resins
US20070224395A1 (en) * 2006-03-24 2007-09-27 Rowitsch Robert W Sprayable water-based adhesive
US20110118404A1 (en) * 2009-11-18 2011-05-19 Hyun-Dae Jung Blend Partner with Natural Rubber for Elastomeric Compounds
US20120312454A1 (en) * 2009-12-30 2012-12-13 Marcus Seferin Adhesive composition for tyres, method for producing this composition and method for glueing tyres using this composition

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Butch US 4,411,954 *
Doss US 3,963,850 *
Goodyear GB 836,250, assigned to Goodyear Tire and Rubber company *
Hart US 4,601,892 *
Rowitsch US 2007/0224395 *
Silvers US 2004/0147663 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11407926B2 (en) 2011-12-07 2022-08-09 Bridgestone Corporation Water-based adhesives
US10717838B2 (en) 2013-03-14 2020-07-21 Bridgestone Americas Tire Operations, Llc Refresh agent
US11773230B2 (en) 2013-03-14 2023-10-03 Bridgestone Americas Tire Operations, Llc Refresh agent
US11207919B2 (en) 2016-06-21 2021-12-28 Bridgestone Americas Tire Operations, Llc Methods for treating inner liner surface, inner liners resulting therefrom and tires containing such inner liners
US12030350B2 (en) 2016-06-21 2024-07-09 Bridgestone Americas Tire Operations, Llc Methods for treating inner liner surface, inner liners resulting therefrom and tires containing such inner liners
US11697260B2 (en) 2016-06-30 2023-07-11 Bridgestone Americas Tire Operations, Llc Methods for treating inner liners, inner liners resulting therefrom and tires containing such inner liners
US11697306B2 (en) 2016-12-15 2023-07-11 Bridgestone Americas Tire Operations, Llc Sealant-containing tire and related processes
US11794430B2 (en) 2016-12-15 2023-10-24 Bridgestone Americas Tire Operations, Llc Methods for producing polymer-containing coatings upon cured inner liners, methods for producing tires containing such inner liners, and tires containing such inner liners
US12103338B2 (en) 2016-12-15 2024-10-01 Bridgestone Americas Tire Operations, Llc Sealant layer with barrier, tire containing same, and related processes
US12285923B2 (en) 2016-12-15 2025-04-29 Bridgestone Americas Tire Operations, Llc Methods for producing polymer-containing coatings upon cured inner liners, methods for producing tires containing such inner liners, and tires containing such inner liners
US12337625B2 (en) 2016-12-15 2025-06-24 Bridgestone Americas Tire Operations, Llc Sealant-containing tire and related processes
US20230382007A1 (en) * 2020-10-16 2023-11-30 Arizona Board Of Regents On Behalf Of The University Of Arizona Particleboards including modified guayule resins/soy protein resin blends and associated methods for forming same

Also Published As

Publication number Publication date
BR112014013579A2 (pt) 2017-06-13
BR112014013579B1 (pt) 2021-04-20
BR112014013579A8 (pt) 2017-06-13
US11407926B2 (en) 2022-08-09
JP6126120B2 (ja) 2017-05-10
CN104080876A (zh) 2014-10-01
CN104080876B (zh) 2016-09-21
EP2788444A1 (en) 2014-10-15
US20200248045A1 (en) 2020-08-06
EP2788444B1 (en) 2016-09-28
WO2013086407A1 (en) 2013-06-13
JP2015507030A (ja) 2015-03-05
EP2788444A4 (en) 2015-08-05

Similar Documents

Publication Publication Date Title
US11407926B2 (en) Water-based adhesives
EP2158083B1 (en) Tire repair with cured patch
US6837287B2 (en) Self-sealing pneumatic tire and preparation thereof
JP5687338B2 (ja) ゴム混合物
US20130109800A1 (en) Rubber Blend
JPH09240217A (ja) シリカ強化無溶媒エラストマー系接着剤組成物
JP6800330B2 (ja) シーラント層及び空気バリア層を有する空気入りタイヤ
KR20110051188A (ko) 공기입 물품을 위한 자가-봉합 조성물
US5951797A (en) Curable filled tread adhesive for tires as discrete portions on a release backing
US11773230B2 (en) Refresh agent
US4808657A (en) Rubbery adhesive cements
CN102361922A (zh) 芳基二腈氧化物在粘合剂组合物中的用途
EP1584492B1 (en) A tire bead, tire bead rubber composition and method of making a tire bead
CN103613794A (zh) 一种含间-甲胶粘体系的航空轮胎缓冲胶
EP2457741B1 (en) Promoting uncured tack and cured adhesion for tire component rubber compositions including a tread strip
US20040127652A1 (en) Rubber composition which contains a tack retention additive and tire with component thereof
KR101431904B1 (ko) 타이어 트레드 조인트부 접합용 조성물
CA1257941A (en) Rubbery adhesive cements
CN111117089A (zh) 一种轮胎气密层胶及其制备方法和应用

Legal Events

Date Code Title Description
AS Assignment

Owner name: BRIDGESTONE CORPORATION, JAPAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:RANDALL, AMY M.;HERGENROTHER, WILLIAM L.;AGARWAL, SHEEL;AND OTHERS;SIGNING DATES FROM 20140520 TO 20140602;REEL/FRAME:033056/0475

STCV Information on status: appeal procedure

Free format text: EXAMINER'S ANSWER TO APPEAL BRIEF MAILED

STCV Information on status: appeal procedure

Free format text: ON APPEAL -- AWAITING DECISION BY THE BOARD OF APPEALS

STCV Information on status: appeal procedure

Free format text: BOARD OF APPEALS DECISION RENDERED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION