US20140264989A1 - Methods for reducing charge effects and separation forces in nanoimprint - Google Patents

Methods for reducing charge effects and separation forces in nanoimprint Download PDF

Info

Publication number
US20140264989A1
US20140264989A1 US14/216,858 US201414216858A US2014264989A1 US 20140264989 A1 US20140264989 A1 US 20140264989A1 US 201414216858 A US201414216858 A US 201414216858A US 2014264989 A1 US2014264989 A1 US 2014264989A1
Authority
US
United States
Prior art keywords
mold
substrate
microe
nanoimprint
separation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US14/216,858
Other languages
English (en)
Inventor
Stephen Y. Chou
Yixing Liang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Princeton University
Original Assignee
Princeton University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Princeton University filed Critical Princeton University
Priority to US14/216,858 priority Critical patent/US20140264989A1/en
Assigned to THE TRUSTEES OF PRINCETON UNIVERSITY reassignment THE TRUSTEES OF PRINCETON UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: CHOU, STEPHEN Y., LIANG, YIXING
Publication of US20140264989A1 publication Critical patent/US20140264989A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/0083Electrical or fluid connection systems therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering
    • G01N21/658Raman scattering enhancement Raman, e.g. surface plasmons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C37/00Component parts, details, accessories or auxiliary operations, not covered by group B29C33/00 or B29C35/00
    • B29C37/0003Discharging moulded articles from the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/026Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing of layered or coated substantially flat surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6486Measuring fluorescence of biological material, e.g. DNA, RNA, cells
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/42Moulds or cores; Details thereof or accessories therefor characterised by the shape of the moulding surface, e.g. ribs or grooves
    • B29C33/424Moulding surfaces provided with means for marking or patterning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0003Properties of moulding materials, reinforcements, fillers, preformed parts or moulds having particular electrical or magnetic properties, e.g. piezoelectric
    • B29K2995/0005Conductive

Definitions

  • Nanoimprint needs reduction charge effects and separation forces.
  • the invention is related to the methods and apparatus to reduce charge effects and separation forces in nanoimprint, hence improve nanoimprint quality.
  • FIG. 1 Schematics of a nanoimprint mold and a substrate, each has three layers.
  • the table shows which layer should be grounded. The best approach is the ground layer as close to the contact surface as possible.
  • FIG. 2 Schematics of the possibility of grounding.
  • FIG. 3 (A) the cross section view of one type of MicroE mold that has an insulating body. (B) the cross section view of one type of MicroE mold that has a conductive body. And (C) the cross section view of MicroE substrate that carries a thin film as resist.
  • FIG. 4 is the experimental results comparing the effect in reducing the separation force between planar MicroE mold and conventional mold.
  • FIG. 5 The experimental results comparing the effect in reducing the separation force between the nanostructured MicroE mold and conventional mold, showing the advantage of the MicroE mold.
  • the invention is related to nanoparticle structures
  • an ion beam discharge when separating the mold and substrate, will be used to discharge the charge between the mold and substrate. The separation will start from edge and gradually open up.
  • the deposit metal film on the surface of the mold in thin resist with good conductivity using light after imprint to increase conductivity of the resist, if resist is photoconductive.
  • the present invention relates to the strength of electric field between mold and substrate in their separation.
  • tribo-electricity is generated after lithography mask separates from substrate.
  • the tribo-charge on the surface of mold and thin film on substrate give rise to electric field between them.
  • the electric field caused attraction between mold and substrate and enlarges the mold-substrate separation force.
  • the present invention relates to the method to reduce the strength of electric field between mold and substrate in their separation.
  • the method is to coat a thin conductive layer (thinner than 10 nm and approaching monolayer) onto insulating mold surface and onto surface of substrate carrying on insulating thin film.
  • the image charge induced in the process of mold-substrate separation reduces the strength of electric field in the gap between them.
  • conductive and insulating material may be described as follows.
  • a conductive coating or material is one whose relaxation time is shorter than the time taken to separate mold from substrate.
  • the relaxation time of material is the product of R and C, where R is the material resistance and C is the material capacitance.
  • the relaxation time equals to ⁇ 0 / ⁇ a for metallic materials and ⁇ r ⁇ 0 / ⁇ for semiconducting or dielectric materials, where ⁇ 0 and ⁇ r are vacuum permittivity and relative dielectric constant respectively, and ⁇ is conductivity of material.
  • is conductivity of material.
  • conductive materials it meant that conductivity of materials is larger than ⁇ /t
  • insulating materials means materials whose conductivity smaller than ⁇ /t. For example, if it takes 1 ms to separate mold from substrate, then materials and coating film having a conductivity larger than 10 ⁇ 6 S/m are conductive materials.
  • conductivity of insulating materials is smaller than 10 ⁇ 6 S/m.
  • FIG. 3A shows MicroE mold 1 that has insulating body 2 as defined above. Surface of MicroE mold is coated by a thin conductive layer 3 . On top of 3 deposited a layer of release layer that has non-stick functionality as US 2001/6309580 (Stephen Chou).
  • the conductive coating material can be, but not limited to, metallic, semi-metallic, metallic and semi-metallic oxides, carbides and nitrides, polymeric, semiconductors, glass, ceramic, dielectrics and composites, as long as the charge relaxation time of materials (RC time) is shorter than time t used in separation.
  • the thickness of the coating is thinner than 10 nm and approaches monolayer thickness until the conductivity of thin film significantly drop and the film transforms to insulator.
  • the insulating body 2 in FIG. 1A has a relaxation time longer than separation time t, particularly but not exclusively includes glass, ceramic, polymeric materials, oxides, carbides and nitrides dielectrics and composites.
  • FIG. 3B shows another type of MicroE mold 5 . It has a conductive body 6 , on top of which coated by anti-sticky layer 8 as disclosed in US 2005/0146079 (Stephen Chou).
  • the conductive thin layer 7 between 6 and 8 is coated only when the surface of MicroE mold body 6 does not provide sufficient bonds to anti-sticky layer 8 and performs to assist molecular bonding.
  • the materials of conductive layer coating includes but not limited to metallic, semi-metallic, metallic and semi-metallic oxides, carbides and nitrides, polymeric, semiconductors, glass, ceramic, dielectrics and composites.
  • FIG. 3C shows the MicroE substrate 9 . It consists of a substrate body 10 .
  • a thin conductive layer 11 is coated on the surface of substrate body 10 and carries the thin film 12 known as resist in lithography methods.
  • thin layer 11 are but not limited to metallic, semi-metallic, metallic and semi-metallic oxides, carbides and nitrides, polymeric, semiconductors, glass, ceramic, dielectrics and composites.
  • Thin film 12 may comprise thermally or optically curable polymer material or any other materials that may change materials property following the change of environment (e.g. heating, mechanically re-shaping, optically shinning, electron beam treating).
  • light can be used to reduce the tribo-electric charge.
  • MircroE mold body consists of silicon dioxide backed by silicon bulk.
  • the conductive layer used in one experiment is Ti.
  • a 5 nm Ti coating layer was coated onto the surface of MicroE mold body using electron beam sputtering machine.
  • a mold release layer of 1H, 1H, 2H, 2H-perfluorodocecyltrichlorosilane (commercially available as a 97% solids solution) is bonded to the surface of Ti and used as an anti-release layer.
  • the MicroE mold was then applied in nanoimprint lithography US 1998/5772905 (Stephen Y Chou).
  • the silicon substrate carries a commercially thermal-plastic resist (NX-1025) that would get intimate get with the MicroE mold and get separated afterwards.
  • FIG. 4 shows experimental results on peak separation force comparing MicroE mold with conventional mold without 5 nm conductive coating.
  • MicroE mold is planar.
  • a 8 ⁇ reduction in separation force is obtained by using MicroE mold with a bulky silicon dioxide body and nanomprinted onto thermal-plastic resist on silicon substrate.
  • FIG. 5 shows experimental results on peak separation force comparing MicroE mold with conventional mold without 5 nm conductive coating.
  • MicroE mold has 200 nm pitch 160 nm deep grating and 1 micro-meter pitch, 160 nm deep grating feature size.
  • the substrate used is silicon substrate that carries NX-1025 thermal-plastic resist.
  • a 3 ⁇ reduction in separation force is obtained for MicroE mold with 1 micron-meter pitch grating and 2 ⁇ reduction for the one with 200 nm pitch grating features.
  • Table 1 shows results on measured charge density on as-imprinted thin film on substrate as a function of thickness of SiO2 middle layer.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
US14/216,858 2013-03-15 2014-03-17 Methods for reducing charge effects and separation forces in nanoimprint Abandoned US20140264989A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/216,858 US20140264989A1 (en) 2013-03-15 2014-03-17 Methods for reducing charge effects and separation forces in nanoimprint

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201361794317P 2013-03-15 2013-03-15
US201361801424P 2013-03-15 2013-03-15
US201361802223P 2013-03-15 2013-03-15
US201361801096P 2013-03-15 2013-03-15
US201361801933P 2013-03-15 2013-03-15
US201361802020P 2013-03-15 2013-03-15
US201361800915P 2013-03-15 2013-03-15
US201361793092P 2013-03-15 2013-03-15
US14/216,858 US20140264989A1 (en) 2013-03-15 2014-03-17 Methods for reducing charge effects and separation forces in nanoimprint

Publications (1)

Publication Number Publication Date
US20140264989A1 true US20140264989A1 (en) 2014-09-18

Family

ID=51523990

Family Applications (6)

Application Number Title Priority Date Filing Date
US14/217,052 Abandoned US20140265013A1 (en) 2013-03-15 2014-03-17 Methods for creating large-area complex nanopatterns for nanoimprint molds
US14/216,858 Abandoned US20140264989A1 (en) 2013-03-15 2014-03-17 Methods for reducing charge effects and separation forces in nanoimprint
US14/775,635 Abandoned US20160025634A1 (en) 2013-03-15 2014-03-18 Composite Nanoparticle Structures for Chemical and Biological Sensing
US15/916,159 Abandoned US20190049385A1 (en) 2013-03-15 2018-03-08 Composite Nanoparticle Structures for Chemical and Biological Sensing
US16/038,963 Abandoned US20190079013A1 (en) 2013-03-15 2018-07-18 Methods for creating large-area complex nanopatterns for nanoimprint molds
US17/394,223 Abandoned US20220205920A1 (en) 2013-03-15 2021-08-04 Methods for creating large-area complex nanopatterns for nanoimprint molds

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US14/217,052 Abandoned US20140265013A1 (en) 2013-03-15 2014-03-17 Methods for creating large-area complex nanopatterns for nanoimprint molds

Family Applications After (4)

Application Number Title Priority Date Filing Date
US14/775,635 Abandoned US20160025634A1 (en) 2013-03-15 2014-03-18 Composite Nanoparticle Structures for Chemical and Biological Sensing
US15/916,159 Abandoned US20190049385A1 (en) 2013-03-15 2018-03-08 Composite Nanoparticle Structures for Chemical and Biological Sensing
US16/038,963 Abandoned US20190079013A1 (en) 2013-03-15 2018-07-18 Methods for creating large-area complex nanopatterns for nanoimprint molds
US17/394,223 Abandoned US20220205920A1 (en) 2013-03-15 2021-08-04 Methods for creating large-area complex nanopatterns for nanoimprint molds

Country Status (4)

Country Link
US (6) US20140265013A1 (fr)
EP (2) EP2972239A4 (fr)
CN (5) CN105229467A (fr)
WO (6) WO2014145036A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051865A (ja) * 2014-09-02 2016-04-11 大日本印刷株式会社 インプリント方法およびインプリント装置
US20160129612A1 (en) * 2014-11-11 2016-05-12 Canon Kabushiki Kaisha Imprint method, imprint apparatus, mold, and article manufacturing method
KR20160056278A (ko) * 2014-11-11 2016-05-19 캐논 가부시끼가이샤 임프린트 방법, 임프린트 장치, 몰드 및, 물품 제조 방법

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150053960A (ko) * 2012-09-06 2015-05-19 더 리전츠 오브 더 유니버시티 오브 콜로라도, 어 바디 코퍼레이트 나노스케일 패턴을 갖는 여과 막
US9993185B2 (en) * 2014-02-12 2018-06-12 California Institute Of Technology Plasmonics nanostructures for multiplexing implantable sensors
JP6497849B2 (ja) * 2014-04-15 2019-04-10 キヤノン株式会社 インプリント装置、および物品の製造方法
WO2016036410A1 (fr) 2014-09-05 2016-03-10 California Institute Of Technology Capteurs à effet raman exalté de surface multiplexés pour détection précoce de maladies et surveillance bactérienne in situ
WO2016036409A1 (fr) * 2014-09-05 2016-03-10 California Institute Of Technology Détection par spectroscopie de raman exaltée de surface de gaz, de particules et de liquides au moyen de structures de type nanopiliers
CN104280542B (zh) * 2014-10-21 2016-06-08 基蛋生物科技股份有限公司 基于金属增强发光及纳米粒子标记放大的双增强化学发光免疫分析法
US9512000B2 (en) 2014-12-09 2016-12-06 California Institute Of Technology Fabrication and self-aligned local functionalization of nanocups and various plasmonic nanostructures on flexible substrates for implantable and sensing applications
CN104502584A (zh) * 2014-12-18 2015-04-08 南京基蛋生物科技有限公司 基于金属纳米粒子增强荧光的干式免疫层析分析方法
CN104697936A (zh) * 2015-02-11 2015-06-10 深圳市前海安测信息技术有限公司 用于检测生物标志物浓度的生物传感系统及其检测方法
WO2017015531A1 (fr) * 2015-07-22 2017-01-26 University Of Maryland, Baltimore County Revêtements hydrophiles de métaux plasmoniques permettant une fluorescence améliorée par faible volume de métal
KR101982331B1 (ko) 2015-09-14 2019-05-24 에센릭스 코프. 샘플 특히 혈액샘플을 분석하기 위한 장치와 시스템 및 그 사용 방법
US20180356405A1 (en) * 2015-09-29 2018-12-13 Essenlix Corp. Method of Detecting an Analyte in a Sample
US10488639B2 (en) * 2015-10-08 2019-11-26 Visera Technologies Company Limited Detection device for specimens
CN108463287B (zh) * 2016-03-28 2021-01-15 亿明达股份有限公司 多平面微阵列
DE102016114440B3 (de) * 2016-08-04 2017-09-28 Karlsruher Institut für Technologie SERS-Substrat und Verfahren zum Herstellen eines SERS-Substrats
WO2018148342A1 (fr) * 2017-02-07 2018-08-16 Essenlix Corporation Dosage et utilisation d'écoulement ouvert comprimé
WO2018148461A1 (fr) * 2017-02-09 2018-08-16 Essenlix Corp. Dosage avec amplification
US11331019B2 (en) 2017-08-07 2022-05-17 The Research Foundation For The State University Of New York Nanoparticle sensor having a nanofibrous membrane scaffold
CN109470677B (zh) * 2017-09-08 2021-11-05 清华大学 分子检测装置
CN109470682A (zh) * 2017-09-08 2019-03-15 清华大学 用于分子检测的分子载体
CN109470679B (zh) * 2017-09-08 2021-04-23 清华大学 用于分子检测的分子载体
JP6959849B2 (ja) * 2017-12-07 2021-11-05 Toyo Tire株式会社 接地面観察方法
US20190185683A1 (en) * 2017-12-20 2019-06-20 Industry-Academic Cooperation Foundation, Yonsei University Structure for preventing adhesion of microorganisms and method of manufacturing the same
CN108103148A (zh) * 2017-12-22 2018-06-01 惠州清水湾生物材料有限公司 一种miRNA超敏检测用探针液体芯片的制备及应用
CN208399384U (zh) * 2018-01-30 2019-01-18 苏州天际创新纳米技术有限公司 一种sers单元、sers芯片及sers检测系统
CN108478849B (zh) * 2018-02-07 2021-04-16 广州迈普再生医学科技股份有限公司 一种可吸收可黏附止血海绵及其制备方法
CN109060725B (zh) * 2018-06-08 2020-01-21 清华大学 具有纳米孔阵的法布里-珀罗结构、制备方法和操作方法
KR102633940B1 (ko) * 2018-06-12 2024-02-05 현대자동차주식회사 차량용 액체 저장탱크의 액위 모니터링 장치 및 방법
KR102103077B1 (ko) * 2018-08-20 2020-04-22 한국표준과학연구원 고소광계수 표지자와 유전체기판을 이용한 고감도 바이오센서칩, 측정시스템 및 측정방법
CA3118007A1 (fr) * 2018-10-29 2020-05-07 Memorial University Of Newfoundland Substrat a couche magnetique pour sers, procedes de preparation et utilisations associees
CN111351938A (zh) * 2018-12-20 2020-06-30 麦德龙生物株式会社 电激发标记分子的方法和绝缘膜涂覆的电极
CN109738406B (zh) * 2019-01-03 2021-06-18 中南民族大学 一种定量测定儿茶素类物质的方法
CN109856201A (zh) * 2019-01-18 2019-06-07 深圳和而泰数据资源与云技术有限公司 唾液检测装置
CA3128271C (fr) * 2019-01-30 2023-07-11 Suzhou Astrabio Technology Co., Ltd. Programme de detection quantitative d'une unique molecule et systeme de detection associe
CN113412422A (zh) * 2019-01-31 2021-09-17 新加坡国立大学 传感器芯片及其方法
CN111693691B (zh) * 2019-03-14 2023-09-05 天津华科泰生物技术有限公司 一种基于卟啉结构的聚合物标签
US11712177B2 (en) 2019-08-12 2023-08-01 Essenlix Corporation Assay with textured surface
US20210223241A1 (en) * 2020-01-17 2021-07-22 Samsung Electronics Co., Ltd. Aluminum metasurfaces for highly sensitive and enhanced detection of analytes for smartphone diagnostics and methods for making and using the same
CN111909495B (zh) * 2020-06-08 2022-04-19 福建师范大学 一种用于sers检测的柔性膜状材料及其制备方法
CN112067595B (zh) * 2020-07-29 2023-06-20 温州大学 一种sers基底及其制备方法、检测装置
CN112768621B (zh) * 2021-01-27 2022-03-08 福州大学 集成周期微凹面镜复合光提取结构
WO2022236104A1 (fr) * 2021-05-07 2022-11-10 The Regents Of The University Of Colorado, A Body Corporate Nanocapteur pour détection de force, et procédés associés
CN113281323B (zh) * 2021-06-29 2024-01-26 集美大学 一种复杂体系中有机污染物特征信息提取方法及其快速检测方法、系统
CN114660283B (zh) * 2022-05-24 2022-09-13 佛山微奥云生物技术有限公司 一种基于电学加速的免疫检测板式芯片及其制备方法
WO2024097902A1 (fr) * 2022-11-02 2024-05-10 Board Of Regents, The University Of Texas System Dispositifs, systèmes et procédés pour la concentration et/ou la détection d'analytes
CN117937227B (zh) * 2024-03-20 2024-05-24 量晶显示(浙江)科技有限公司 发光结构、像素单元、以及显示装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2458864A (en) * 1945-01-01 1949-01-11 John D Lindsay Method of making integral molded structures
US5136973A (en) * 1989-06-07 1992-08-11 Hoechst Aktiengesellschaft Process and device for electrostatically spraying a liquid coating onto a substrate and for drying the liquid coating on the substrate
US20020185759A1 (en) * 2001-06-11 2002-12-12 Gorczyca Thomas Bert Method and apparatus for producing data storage media
US20090246309A1 (en) * 2008-03-31 2009-10-01 Ryuta Washiya Fine structure imprinting machine
US20100276290A1 (en) * 2009-04-30 2010-11-04 Masamitsu Itoh Patterning method, patterning apparatus, and method for manufacturing semiconductor device
US7901607B2 (en) * 2005-02-17 2011-03-08 Agency For Science, Technology And Research Method of low temperature imprinting process with high pattern transfer yield
WO2011155602A1 (fr) * 2010-06-11 2011-12-15 Hoya株式会社 Substrat comprenant une couche favorisant l'adhérence, procédé pour la production de moule, et procédé pour la production de moule maître

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6093558A (en) * 1991-07-25 2000-07-25 Edge Biosystems, Inc. Binding protein of biologically active compositions to an adhesive formulation on a substrate
US5329461A (en) * 1992-07-23 1994-07-12 Acrogen, Inc. Digital analyte detection system
WO2001094946A2 (fr) * 2000-06-05 2001-12-13 Chiron Corporation Microreseaux permettant de realiser des analyses proteomiques
US7211214B2 (en) * 2000-07-18 2007-05-01 Princeton University Laser assisted direct imprint lithography
CN100465619C (zh) * 2001-06-29 2009-03-04 梅索磅秤技术有限公司 发光测试检测用的检测板、读数系统和方法
US7504364B2 (en) * 2002-03-01 2009-03-17 Receptors Llc Methods of making arrays and artificial receptors
US20040065252A1 (en) * 2002-10-04 2004-04-08 Sreenivasan Sidlgata V. Method of forming a layer on a substrate to facilitate fabrication of metrology standards
US7432218B2 (en) * 2004-09-01 2008-10-07 Canon Kabushiki Kaisha Method for producing porous body
US7880876B2 (en) * 2004-10-21 2011-02-01 University Of Georgia Research Foundation, Inc. Methods of use for surface enhanced raman spectroscopy (SERS) systems for the detection of bacteria
US7583379B2 (en) * 2005-07-28 2009-09-01 University Of Georgia Research Foundation Surface enhanced raman spectroscopy (SERS) systems and methods of use thereof
WO2008060266A2 (fr) * 2005-10-03 2008-05-22 Massachusetts Institute Of Technology Lithographie par impression arbitraire de nanogabarit
US7570355B2 (en) * 2006-01-27 2009-08-04 Hewlett-Packard Development Company, L.P. Nanowire heterostructures and methods of forming the same
US20070176728A1 (en) * 2006-01-31 2007-08-02 Ranganath Tirumala R Tiled periodic metal film sensors
WO2007100849A2 (fr) * 2006-02-27 2007-09-07 Microcontinuum, Inc. Formation d'outils de reproduction de motifs
JP5306989B2 (ja) * 2006-04-03 2013-10-02 モレキュラー・インプリンツ・インコーポレーテッド 複数のフィールド及びアライメント・マークを有する基板を同時にパターニングする方法
US7851172B2 (en) * 2006-07-25 2010-12-14 University Of Kentucky Research Foundation Biomarkers of mild cognitive impairment and alzheimer's disease
WO2008047447A1 (fr) * 2006-10-20 2008-04-24 Fujitsu Limited Matrice pour le transfert d'un motif, procédé de fabrication de support d'enregistrement magnétique faisant intervenir ladite matrice, et support d'enregistrement magnétique
EP2079574B1 (fr) * 2006-10-31 2017-03-08 Modilis Holdings LLC Procédé et agencement de produits optiques manufacturés aux formes 3d complexes
WO2008063135A1 (fr) * 2006-11-24 2008-05-29 Agency For Science, Technology And Research Appareil pour traiter un échantillon dans une gouttelette de liquide et procédé d'utilisation
KR20080080841A (ko) * 2007-03-02 2008-09-05 주식회사 아이센스 전기화학적 바이오센서 및 이의 측정기
KR100874158B1 (ko) * 2007-03-14 2008-12-15 주식회사 아이센스 전기화학적 바이오센서 및 이의 측정기
EP2461163A3 (fr) * 2007-03-20 2012-09-26 Becton, Dickinson and Company Analyses utilisant des particules actives de spectroscopie Raman résonante à surface améliorée
JP5473266B2 (ja) * 2007-08-03 2014-04-16 キヤノン株式会社 インプリント方法および基板の加工方法、基板の加工方法による半導体デバイスの製造方法
JP5274128B2 (ja) * 2007-08-03 2013-08-28 キヤノン株式会社 インプリント方法および基板の加工方法
US7846642B2 (en) * 2007-08-17 2010-12-07 The University Of Massachusetts Direct incident beam lithography for patterning nanoparticles, and the articles formed thereby
US20090087860A1 (en) * 2007-08-24 2009-04-02 Todd John A Highly sensitive system and methods for analysis of prostate specific antigen (psa)
EP2210072A4 (fr) * 2007-11-02 2014-04-16 Univ California Biodosage en temps réel, à une seule étape, utilisant un résonateur nanoplasmonique avec une sensibilité ultra-élevée
US20090166317A1 (en) * 2007-12-26 2009-07-02 Canon Kabushiki Kaisha Method of processing substrate by imprinting
US20090242429A1 (en) * 2008-01-07 2009-10-01 Ravil Sitdikov Electrochemical Biosensor
US8192669B2 (en) * 2008-05-27 2012-06-05 Chou Stephen Y Methods for fabricating large area nanoimprint molds
NO2324360T3 (fr) * 2008-08-11 2018-06-30
CN101672841B (zh) * 2008-09-09 2013-05-08 北京万德高科技发展有限公司 用于生物样品的检测仪器和检测方法
KR20100033560A (ko) * 2008-09-22 2010-03-31 삼성전자주식회사 나노 임프린트용 몰드 제작방법과 나노 임프린트용 몰드를 이용한 패턴 성형방법
US8529778B2 (en) * 2008-11-13 2013-09-10 Molecular Imprints, Inc. Large area patterning of nano-sized shapes
MX366510B (es) * 2008-12-05 2019-07-11 Liquidia Tech Inc Metodo para producir materiales modelados.
KR101541814B1 (ko) * 2008-12-09 2015-08-05 삼성전자 주식회사 나노 임프린트 리소그래피 방법
JP2010239118A (ja) * 2009-03-11 2010-10-21 Canon Inc インプリント装置および方法
US7965388B2 (en) * 2009-04-01 2011-06-21 Hewlett-Packard Development Company, L.P. Structure for surface enhanced raman spectroscopy
CN102803147B (zh) * 2009-06-05 2015-11-25 尹特根埃克斯有限公司 通用样品准备系统以及在一体化分析系统中的用途
US20110166045A1 (en) * 2009-12-01 2011-07-07 Anuj Dhawan Wafer scale plasmonics-active metallic nanostructures and methods of fabricating same
US20130065777A1 (en) * 2009-12-04 2013-03-14 Trustees Of Boston University Nanostructure biosensors and systems and methods of use thereof
KR20110097389A (ko) * 2010-02-25 2011-08-31 연세대학교 산학협력단 고감도 표면 플라즈몬 공명 센서, 표면 플라즈몬 공명 센서칩, 및 표면 플라즈몬 공명 센서 소자의 제조 방법
CN101817495B (zh) * 2010-03-25 2012-03-14 湖南大学 微流控芯片及其制备方法和应用
JP2010256908A (ja) * 2010-05-07 2010-11-11 Fujifilm Corp 映画用ハロゲン化銀写真感光材料
WO2012024006A2 (fr) * 2010-05-21 2012-02-23 Princeton University Structures d'amélioration de champ électrique local, d'absorption de lumière, de rayonnement lumineux et de détection de matériaux, et procédés de fabrication et d'utilisation
JP5982386B2 (ja) * 2010-11-05 2016-08-31 モレキュラー・インプリンツ・インコーポレーテッド 非凸形ナノ構造のパターン形成
US9956743B2 (en) * 2010-12-20 2018-05-01 The Regents Of The University Of California Superhydrophobic and superoleophobic nanosurfaces
US9400427B2 (en) * 2011-06-03 2016-07-26 Panasonic Intellectual Property Management Co., Ltd. Method of manufacturing fine structure body and fine structure mold
US9321214B2 (en) * 2011-07-13 2016-04-26 University Of Utah Research Foundation Maskless nanoimprint lithography
US20130115413A1 (en) * 2011-11-08 2013-05-09 Ut-Battelle, Llc Fabrication and use of elevated optical nanoantennas
WO2013154770A1 (fr) * 2012-04-10 2013-10-17 The Trustees Of Princeton University Capteur ultra-sensible
CN102719352B (zh) * 2012-06-06 2014-01-29 西安交通大学 一种用于制备微阵列细胞芯片的细胞芯片片基及制备方法
EP2904389A4 (fr) * 2012-10-01 2016-07-06 Univ Princeton Capteurs microfluidiques à signaux optiques améliorés

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2458864A (en) * 1945-01-01 1949-01-11 John D Lindsay Method of making integral molded structures
US5136973A (en) * 1989-06-07 1992-08-11 Hoechst Aktiengesellschaft Process and device for electrostatically spraying a liquid coating onto a substrate and for drying the liquid coating on the substrate
US20020185759A1 (en) * 2001-06-11 2002-12-12 Gorczyca Thomas Bert Method and apparatus for producing data storage media
US7901607B2 (en) * 2005-02-17 2011-03-08 Agency For Science, Technology And Research Method of low temperature imprinting process with high pattern transfer yield
US20090246309A1 (en) * 2008-03-31 2009-10-01 Ryuta Washiya Fine structure imprinting machine
US20100276290A1 (en) * 2009-04-30 2010-11-04 Masamitsu Itoh Patterning method, patterning apparatus, and method for manufacturing semiconductor device
WO2011155602A1 (fr) * 2010-06-11 2011-12-15 Hoya株式会社 Substrat comprenant une couche favorisant l'adhérence, procédé pour la production de moule, et procédé pour la production de moule maître
US20130126472A1 (en) * 2010-06-11 2013-05-23 Hoya Corporation Substrate with adhesion promoting layer, method for producing mold, and method for producing master mold

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016051865A (ja) * 2014-09-02 2016-04-11 大日本印刷株式会社 インプリント方法およびインプリント装置
US20160129612A1 (en) * 2014-11-11 2016-05-12 Canon Kabushiki Kaisha Imprint method, imprint apparatus, mold, and article manufacturing method
KR20160056278A (ko) * 2014-11-11 2016-05-19 캐논 가부시끼가이샤 임프린트 방법, 임프린트 장치, 몰드 및, 물품 제조 방법
KR102022745B1 (ko) 2014-11-11 2019-09-18 캐논 가부시끼가이샤 임프린트 방법, 임프린트 장치, 몰드 및, 물품 제조 방법
US10620532B2 (en) * 2014-11-11 2020-04-14 Canon Kabushiki Kaisha Imprint method, imprint apparatus, mold, and article manufacturing method

Also Published As

Publication number Publication date
WO2014197097A3 (fr) 2015-01-22
US20140265013A1 (en) 2014-09-18
CN105358979A (zh) 2016-02-24
WO2014145798A2 (fr) 2014-09-18
CN105229467A (zh) 2016-01-06
US20160025634A1 (en) 2016-01-28
CN105209884A (zh) 2015-12-30
EP2969542A2 (fr) 2016-01-20
US20220205920A1 (en) 2022-06-30
WO2014144133A1 (fr) 2014-09-18
CN105246682A (zh) 2016-01-13
EP2972239A4 (fr) 2016-12-21
WO2014197096A2 (fr) 2014-12-11
WO2014146115A3 (fr) 2014-12-31
EP2969542A4 (fr) 2016-11-09
US20190079013A1 (en) 2019-03-14
WO2014145036A1 (fr) 2014-09-18
CN105247349A (zh) 2016-01-13
WO2014197097A2 (fr) 2014-12-11
US20190049385A1 (en) 2019-02-14
WO2014146115A2 (fr) 2014-09-18
WO2014145798A3 (fr) 2015-05-28
EP2972239A2 (fr) 2016-01-20
WO2014197096A3 (fr) 2015-01-29

Similar Documents

Publication Publication Date Title
US20140264989A1 (en) Methods for reducing charge effects and separation forces in nanoimprint
Li et al. Spontaneous charging affects the motion of sliding drops
CN105143976B (zh) 使用具有金属或氧化物涂层的可再次利用的聚合物模板的纳米压印
US20090206963A1 (en) Tunable metamaterials using microelectromechanical structures
US20140167326A1 (en) Additive building
TW562707B (en) Electrostatic powder coating of electrically non-conductive substrates
TW201343287A (zh) 生胚薄片製造用離型膜
US20090246309A1 (en) Fine structure imprinting machine
Mafinejad et al. Low insertion loss and high isolation capacitive RF MEMS switch with low pull-in voltage
US8523555B2 (en) Apparatus comprising substrate and conductive layer
Yilmaz et al. Au nanoparticles in PMMA matrix: In situ synthesis and the effect of Au nanoparticles on PMMA conductivity
Muhammad et al. Nanopatterning of PMMA on insulating surfaces with various anticharging schemes using 30 keV electron beam lithography
CN101187777A (zh) 压印光刻用模板和应用该模板的压印光刻方法
US10131134B2 (en) System and method for discharging electrostatic charge in nanoimprint lithography processes
Berendsen et al. Dielectrophoretic deformation of thin liquid films induced by surface charge patterns on dielectric substrates
Lee et al. Fabrication of a 3 dimensional dielectrophoresis electrode by a metal inkjet printing method
Eifert et al. Inscribing wettability gradients onto polymer substrates with different stiffness using corona discharge in point-to-plane geometry
KR101413233B1 (ko) 나노 임프린트 리소그래피 공정
WO2009087208A1 (fr) Rouleau de toner comportant une couche d'isolation contenant du plastique
US20190265589A1 (en) Imprint apparatus, imprint method, and method of manufacturing article
Hatono et al. Multilayer construction with various ceramic films for electronic devices fabricated by aerosol deposition
Kumar et al. Self assembled monolayer modified SU8 surface for electrowetting application
Sogard et al. Analysis of Coulomb and Johnsen-Rahbek electrostatic chuck performance for extreme ultraviolet lithography
US10303049B2 (en) Reducing electric charge in imprint lithography
EP1483448A2 (fr) Transfert de particules en poudre

Legal Events

Date Code Title Description
AS Assignment

Owner name: THE TRUSTEES OF PRINCETON UNIVERSITY, NEW JERSEY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHOU, STEPHEN Y.;LIANG, YIXING;SIGNING DATES FROM 20140324 TO 20140421;REEL/FRAME:033444/0191

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION