CN101817495B - 微流控芯片及其制备方法和应用 - Google Patents

微流控芯片及其制备方法和应用 Download PDF

Info

Publication number
CN101817495B
CN101817495B CN2010101321393A CN201010132139A CN101817495B CN 101817495 B CN101817495 B CN 101817495B CN 2010101321393 A CN2010101321393 A CN 2010101321393A CN 201010132139 A CN201010132139 A CN 201010132139A CN 101817495 B CN101817495 B CN 101817495B
Authority
CN
China
Prior art keywords
micro
runner
fluidic chip
microballon
chip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101321393A
Other languages
English (en)
Other versions
CN101817495A (zh
Inventor
王柯敏
羊小海
于虹
王青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan University
Original Assignee
Hunan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan University filed Critical Hunan University
Priority to CN2010101321393A priority Critical patent/CN101817495B/zh
Publication of CN101817495A publication Critical patent/CN101817495A/zh
Application granted granted Critical
Publication of CN101817495B publication Critical patent/CN101817495B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

本发明属于微流控技术领域,具体公开了一种微流控芯片及其制备方法和应用,该芯片一侧设有多个进样孔,每个进样孔连通有一进样流道,各个进样流道交汇后与一主流道相连通,主流道上设有一狭窄流道,狭窄流道入口前填充有0.5~1.5mm的微珠,主流道的出口连通至芯片另一侧设置的废液池中;其制备方法主要是先制作一PDMS基片,再制作一带上凹槽的PDMS盖片,然后将基片和盖片贴合得到芯片半成品,再对芯片半成品中的各个流道进行改性处理,最后置入微珠并控制其装入量,完成制作。本发明微流控芯片的溶液混合效率高、溶液流速稳定、体积小、携带方便,其制作也相对简单容易,在检测三磷酸腺苷浓度的应用中具有不受环境湿度影响、灵敏度高、检测效果好等优点。

Description

微流控芯片及其制备方法和应用
技术领域
本发明属于微流控技术领域,尤其涉及一种以微流控技术为基础的芯片及其制备方法和在特定物质浓度检测中的应用。
背景技术
随着科学技术的不断进步,要求生化分析朝着体积更小、反应更快、灵敏度更高的方向发展。在这种要求的基础上,Manz和Widmer于20世纪90年代初首次提出微全分析系统(μ-TAS)的概念。在此后十余年中,该领域已发展为当前世界上最前沿的科技领域之一,其核心技术即是以微流控技术(Microfluidics)为基础的微流控芯片。微流控芯片技术由于具有微型化和集成化的特点,可将多步操作集中到一块芯片上,简化了操作过程,减少了样品消耗,近几年在各种生物小分子的快速灵敏分析方面得到了广泛关注。
当微流控芯片的通道尺寸小到微米级甚至是纳米级时,液体在芯片中的混合及在芯片中的驱动至关重要。要使化学反应进行得完全,其首要条件就是反应溶液的混合要完全。加速反应液在微流控芯片中混合的方式有很多种,包括可加速溶液混合的被动式混合方式,例如在通道中设计鱼骨状或锯齿状的障碍物、采用液滴式注入等;此外还包括采用外加动力(如磁场力、压力、声场力、电场力等)的主动式混合方式。然而,加速溶液在芯片中混合的现有方法存在诸多问题,例如芯片加工复杂、混合效率不高、需要外加动力、成本相对较高等。
现有可用于微流控芯片中流体驱动的驱动泵有很多种,如离心力驱动系统、压力驱动系统、气动微泵、静电微泵、热气动力微泵和压电微泵等,但绝大部分的驱动泵都是脱离微流控芯片而单独配置,然后再与微流控芯片连接,不仅加工复杂、成本高,而且与微全分析系统微型化、轻便化、集成化的趋势相悖,液体的流速也不易控制。
发明内容
本发明要解决的技术问题是克服现有技术的不足,提供一种溶液混合效率高、溶液流速稳定、体积小、结构简单、携带方便的微流控芯片以及一种低成本、易操作的微流控芯片的制备方法,还提供一种不易受环境湿度影响、灵敏度高、检测效果好、且操作方便的微流控芯片在检测三磷酸腺苷浓度中的应用。
为解决上述技术问题,本发明提出的技术方案为一种微流控芯片,包括相互贴合的盖片和基片,所述微流控芯片一侧设有两个以上的进样孔,每个进样孔连通有一进样流道,各个进样流道交汇后与一主流道相连通,其特征在于:所述主流道上设有一收缩段形成一狭窄流道,所述狭窄流道入口前的主流道上填充有微珠,微珠段的长度为0.5~1.5mm,所述微珠的粒径大于所述狭窄流道的宽度以保证微珠不会从狭窄流道中渗出,所述主流道的出口连通至所述微流控芯片另一侧设置的废液池中。在该技术方案中,由于在所述的主流道上设置有一狭窄流道,而且在该狭窄流道前的主流道中装有一段孵育好的直径大于狭窄流道宽度的微珠,这样当多种混合液体以层流的状态流经微珠段时,混合液体形成湍流,加速了不同种液体的混合,缩短了不同种液体在微流控芯片中混合所需的时间。
上述的技术方案中,所述微流控芯片包括相互贴合的盖片和基片,所述盖片下方开设有一上凹槽,所述废液池设于基片开设的下凹槽中并与上凹槽相对应,所述上凹槽上方的盖片上通过布设蒸发孔与外界相连通,所述上凹槽中填充有吸水材料。在该改进后的微流控芯片中,通过采用在微流控芯片的盖片上布设蒸发孔、填充吸水材料(例如吸水膜)的方式,将基于毛细作用和蒸发作用的“微泵”集成于上述的微流控芯片上,该“微泵”的作用机理是:随着微流控芯片中的液体从所述蒸发孔中不断蒸发,吸水膜则从所述废液池中不断吸收液体,这促使所述主流道中的液体不断向废液池中流动,从而实现了对微流控芯片中液体的驱动。
上述的微流控芯片中,所述进样孔的孔径优选为1.8~2.2mm,所述蒸发孔的孔径优选为3.8~4.2mm,所述狭窄流道的宽度优选为14~16μm,所述进样流道和主流道的宽度优选为140~180μm。所有尺寸上的改进都是根据微流控芯片的大小及液体流速的要求经过反复实验后确定出来。
上述的微流控芯片中,可以根据具体应用实践的不同而选择不同的微珠,但优选为牛血清蛋白包被聚苯乙烯材料或二氧化硅材料制作成的微珠,所述微珠的粒径优选为18~30μm。该优选的微珠具有粒径均匀、刚性较好的特点。
作为一个总的技术构思,本发明还提供一种上述微流控芯片的制备方法,包括以下步骤:
(1)基片的制作:将聚二甲基硅氧烷(简称PDMS)前聚体和固化剂混合均匀得到PDMS体系,真空脱泡后,将PDMS体系浇注在预制好的硅质阳模板上(阳模板按照上述微流控芯片的结构要求设计制作),烘干、固化后取出,自阳模板剥离得到PDMS基片;
(2)盖片的制作:另取一载玻片并在其一端铺一块垫片,所述垫片周围距离载玻片边缘留有充分的余地,然后另取PDMS体系浇注于载玻片上,固化后从载玻片上剥离,并在所述垫片成型的上凹槽底部开设多个通孔,最后用吸水膜填充所述上凹槽即得到PDMS盖片;
(3)贴合封装:将上述制得的PDMS基片和PDMS盖片进行清洗后立即不可逆贴合,得到芯片半成品;
(4)流道改性:在上述芯片半成品中设置的各个流道内依次引入NaOH溶液、聚凝胺(简称PB)水溶液和硫酸葡聚糖(简称DS)水溶液进行洗涤,每种溶液洗涤完后均用流水冲洗流道,完成流道改性;
(5)置入微珠:用缓冲液将备好的微珠洗净,然后将微珠置于牛血清蛋白(简称BSA)中孵育,孵育完成后装入芯片半成品内设置的主流道中,控制微珠的装入量使其在所述主流道上长度达到0.5~1.5mm,完成微流控芯片的制作。
作为一个总的技术构思,本发明还提供一种上述的微流控芯片在检测三磷酸腺苷(简称ATP)浓度中的应用,其特征在于,所述应用的具体方法为:在所述微流控芯片的一个进样孔中加入检测试剂,在另一进样孔中加入待测ATP溶液,然后在所述主流道的出口处进行荧光监测,并记录稳定后的相对荧光强度值F0,再根据当前操作条件下建立的相对荧光强度F与待测三磷酸腺苷溶液浓度C的关联方程,测定出待测三磷酸腺苷溶液的浓度值C0,所述应用的检测下限为20nM,线性检测范围为20~500nM。
在上述的应用中,所述应用过程中的温度优选控制为37℃,蒸发面积优选控制为188.5mm2,环境湿度可以控制在25%~85%。本发明的微流控芯片对ATP浓度的检测不受环境湿度的限制,在25%~85%的环境湿度下均可实现对ATP的检测,这就使得检测操作更为简单,微流控芯片的使用更为方便。
与现有技术相比,本发明的优点在于:本发明的微流控芯片中通过设计一段狭窄流道并引入微珠使芯片中的流体形成湍流,加速了不同种液体的混合,提高了芯片中溶液的混合效率,缩短了各种溶液混合所需时间,这也为缩短流道长度、减小芯片体积、提高溶液反应的灵敏度提供了有利条件。在改进后的微流控芯片中还将混合结构和驱动结构集成到了一块微流控芯片中,使微流控芯片的体积更小,使用更为方便,操作简单,不需要外接其他的驱动装置,且芯片中液体流速稳定,易于调节。本发明的微流控芯片的制备方法也相对简单,加工容易,能够批量化、产业化生产,成本低。此外,利用本发明的微流控芯片可以方便、快捷、准确地用于ATP的定量检测,且检测不易受环境湿度的影响,灵敏度高,检测效果好。
附图说明
图1为本发明实施例1的微流控芯片的结构示意图;
图2为图1中A处的局部放大图;
图3为图1中B-B处的剖视图;
图4为本发明实施例1中考察溶液混合效果时CCD拍摄位置的分布示意图;其中a、b、c分别示出了三处不同的拍摄位置;
图5为本发明实施例1中考察溶液混合效果时CCD在图4的a处拍摄的照片;
图6为本发明实施例1中考察溶液混合效果时CCD在图4的b处拍摄的照片;
图7为本发明实施例1中考察溶液混合效果时CCD在图4的c处拍摄的照片;
图8为本发明实施例1中相对湿度对芯片中溶液流速影响的考察结果图;
图9为本发明实施例1中蒸发面积对芯片中溶液流速影响的考察结果图;
图10为本发明实施例2中采用的NTFS方法进行ATP检测的原理图;
图11为本发明实施例2中采用的NTFS方法进行ATP检测时的流速优化结果图;
图12为本发明实施例2中采用的NTFS方法进行ATP检测时测定的相对荧光强度与ATP浓度关系的标准曲线。
图例说明:
1、盖片                    11、进样孔
12、上凹槽                 13、蒸发孔
14、吸水膜                 2、基片
21、进样流道               22、主流道
23、狭窄流道               24、微珠
25、下凹槽                 3、废液池
具体实施方式
实施例1:
一种如图1~图3所示的本发明的微流控芯片,包括相互贴合的盖片1和基片2,该微流控芯片左侧设有两个进样孔11,孔径为2mm,每个进样孔11连通有一进样流道21,各个进样流道21交汇后与一主流道22相连通,进样流道21和主流道22的宽度均为150μm,主流道22上设有一收缩段形成一狭窄流道23,狭窄流道23的宽度为15μm,该狭窄流道23入口前的主流道22上填充有1mm长的微珠24,微珠24为牛血清蛋白包被二氧化硅材料制作成的微珠,微珠24的粒径为20μm;基片2上开设有一下凹槽25作为废液池3,主流道22的出口连通至该废液池3中,废液池3上方的盖片1上对应开设有一上凹槽12,上凹槽12上方的盖片1上通过布设蒸发孔13与外界相连通,蒸发孔13的孔径为4mm,盖片1的上凹槽12中填充有吸水膜14(定量滤纸)。
本实施例的微流控芯片是按以下步骤制作:
(1)基片的制作:将PDMS前聚体和固化剂按10∶1的质量比混合均匀得到PDMS体系,真空脱除气泡后,将PDMS体系浇注在预制好的硅质阳模板上(阳模板按照上述微流控的结构和尺寸预先制作好),然后置于烘箱中75℃温度下烘干40min左右,固化后取出,自阳模板剥离得到带下凹槽25(即作为废液池3用)的PDMS基片2;
(2)盖片的制作:另取一块清洁的载玻片并在其一端铺一块垫片(垫片尺寸为15mm×25mm×0.5mm),垫片周围距离载玻片边缘留有充分的余地,然后另取PDMS体系浇注于载玻片上,烘箱中75℃温度下烘干40min左右,固化后从载玻片上剥离,并用打孔器在所述垫片成型的上凹槽12底部打3×5个直径为4mm的通孔作为蒸发孔13,最后用厚度为0.5mm的吸水膜14填充所述上凹槽12得到PDMS盖片1;
(3)贴合封装:将上述制得的PDMS基片2和PDMS盖片1置于等离子清洗器中清洗2min后立即不可逆贴合,得到芯片半成品,保存备用;
(4)流道改性:在上述芯片半成品中设置的各个流道内引入0.1mol/L的NaOH溶液洗涤5min,然后用水冲洗各流道5min;再在各流道内引入5%的PB水溶液,保持溶液流动处理2min,再用水冲洗各流道5min;最后在各流道内引入3%的DS水溶液进行洗涤2min,同样再用流水冲洗流道15min,完成流道改性;
(5)置入微珠:取10μL二氧化硅制作的微珠24于1ml Ep管中,用缓冲液洗涤三次并离心,然后将微珠置于90μL 2%的牛血清蛋白中孵育,于4℃恒温金属浴中孵育12h(转速600rpm),缓冲液洗涤三次并离心,然后装入芯片半成品内设置的主流道22中,控制微珠24的装入量使微珠段在主流道22上长度达到1mm,完成微流控芯片的制作。
微流控芯片中溶液混合效果考察:
在温度为37℃和环境湿度为40%的条件下,取20μL 10-5mol/L的荧光素钠溶液和20μL超纯水,分别置于本实施例微流控芯片的两个进样孔11中,稳定10min后对微流控芯片中的溶液进行观察,并用CCD对芯片的不同部位进行拍照,拍照位置如图4所示,照片拍摄结果如图5~图7所示。
由图4~图7可见,当混合溶液刚进入微流控芯片时处于层流状态,两种溶液仅靠分子扩散进行混和,混合效率很低;当混合溶液流经微珠段后,溶液已经达到了均匀的混合,说明微珠的存在确实加速了两种溶液的混合,缩短了混合所需的时间,提高了不同溶液的混合效率。
微流控芯片中溶液流速的考察:
微流控芯片的流速与环境的相对湿度、蒸发面积和温度有关,而本实施例的微流控芯片可用于检测ATP,ATP检测实验要求实验温度为37℃,因此在本实施例中只考虑相对湿度和蒸发面积对溶液流速的影响。
我们采用10-5mol/L的荧光素钠溶液作为示踪物质对不同条件下的流速进行考察,考察的具体操作步骤如下:
(1)相对湿度对流速的影响:在Leica DMI 4000B荧光倒置显微镜载物台上安装ThermoControl Unit温度控制板,将本实施例的微流控芯片贴于温度控制板上,用一个直径为10cm的培养皿罩住温度控制板并进行密封,使培养皿内部形成一个独立空间,实验时先向微流控芯片中引入二次水,排净通道和废液池内的空气并使吸水膜完全浸润,然后用恒湿剂控制培养皿内部的相对湿度;温度恒定为37℃,蒸发面积固定为188.5mm2的条件下,分别采用乙酸钾、氯化镁、碳酸钾、溴化钠、亚硝酸钠、氯化钠和氯化钾的饱和溶液作为相对湿度为25%、32.5%、43%、57.5%、64%、75%和85%的恒湿剂,稳定10min后,各取20L 10-5mol/L的荧光素钠溶液,分别置于两个进样孔中,开始用Imaging CCD对不含微珠的部位进行示踪物质的连续拍照,用Simple PCI 6.0图像处理软件计算示踪物质流速,结果如图8所示,由图8可见,随着相对湿度的增加,溶液的流速是逐渐减小的。
(2)蒸发面积对流速的影响:将温度控制板置于倒置荧光显微镜载物台上,并将本实施例的微流控芯片置于温控板上,在固定温度为37℃、环境相对湿度在64%(利用亚硝酸钠作为恒湿剂)的条件下,采用PDMS基片封闭蒸发孔,分别测试蒸发孔数量为3、6、9、12、15个时流道中液体的流速。实验时先向芯片中引入二次水,排净通道和废液池内的空气并使吸水膜完全浸润,稳定10min后,各取20μL 10-5mol/L的荧光素钠溶液,分别置于两个进样孔中,开始用Imaging CCD对不含微珠的部位进行示踪物质的连续拍照,用Simple PCI 6.0图像处理软件计算示踪物质流速,结果如图9所示,由图9可见,随着蒸发面积的增加,溶液的流速是逐渐增大的。
实施例2:
利用核酸片段传感技术(Nucleotide Frag-mentation Sense,简称NTFS)在本发明实施例1制作的微流控芯片中检测不同浓度的ATP。
NTFS方法的基本原理如图10所示,该方法借助了T4DNA连接酶对ATP的高度依赖性;当没有ATP存在的情况下,核酸片段A(Oligo A)和核酸片段B(Oligo B)无法完全和分子信标的环状部位结合,不能使分子信标充分的打开,没有荧光增强信号产生。在ATP存在的条件下,T4DNA连接酶腺苷化形成连接酶-AMP复合物而被激活,激活的连接酶以分子信标为模板,将两条短片段DNA进行连接,连接产物将分子信标打开,产生荧光增强信号。
利用NTFS方法检测ATP浓度的具体步骤为:
(1)溶液的配制:
检测试剂的配制:各取10μL浓度均为10μmol/L的分子信标(MB)、两条DNA片段A和B(其中片段A 5′磷酸化,并与MB环部的5′端的10个碱基互补;片段B,与MB环部的3′端的9个碱基互补)置于Ep管中,并加入70μL缓冲液。混合均匀后平均分成4管备用。实验前每管加入0.25μL T4DNA连接酶。
ATP的配制:称取0.0292g ATP置于1mL的Ep管中,加入1mL缓冲液配成浓度为50mmol/L的溶液。实验前采用逐级稀释的方法配制成一系列浓度的ATP溶液。
(2)流速的优化:在温度为37℃和蒸发面积为188.5mm2的条件下,在培养皿中放入不同的饱和盐溶液作为恒湿剂,考察该微流控芯片在相对湿度为25%~85%之间七种不同相对湿度控制的流速下,ATP与检测试剂的混合和反应情况,并用缓冲液取代ATP进行各自流速下的对照实验。通过CCD对倒置荧光显微镜上的微流控芯片流道出口末端进行实时荧光监测并拍照。由图11并结合图8可以看出,在不同流速下,检测到的荧光强度的增加值相差不大,这表明在七种不同流速下溶液的混合和反应差别不大,即使在相对湿度最小时(即该微流控芯片中溶液能达到最快流速时),溶液在该微流控芯片中也能达到充分的混合和反应,即在温度固定为37℃、蒸发面积固定为188.5mm2、环境湿度在25%~85%之间时,利用本发明的微流控芯片均能达到对ATP的检测。换言之,在本发明的微流控芯片中对ATP进行检测,不受环境湿度的限制,在25%~85%的环境湿度下均可实现对ATP的检测,这就使得检测操作更为简单,微流控芯片的使用更为方便。
(3)标准曲线的测定:在温度控制板的温度保持在37℃、蒸发面积为188.5mm2、房间内空气湿度约为40%的条件下,进行标准曲线的测定;在一个进样孔中加入上述配制的检测试剂,在另外一个进样孔中从缓冲液开始,从低浓度到高浓度依次加入ATP溶液(终浓度分别为:0nM、10nM、20nM、50nM、100nM、200nM、300nM、500nM、1000nM)。稳定一段时间后,在所述主流道的出口处监测并记录样品荧光强度的变化,根据所得的数据绘制标准曲线如图12所示。由图12可以看出,随着ATP浓度的提高,相对荧光强度不断增大,检测下限约为20nM,线性检测范围为20~500nM。
(4)检测方法的准确性:配制ATP的标准溶液,在与上述步骤(3)测定标准曲线相同的条件下,在一个进样孔中加入上述配制的检测试剂,在另外一个进样孔中从缓冲液开始,从低浓度到高浓度依次加入配制好的ATP标准溶液(终浓度分别为:40nM、80nM、140nM、180nM、250nM、350nM)稳定一段时间后,在主流道的出口处监测并记录ATP标准溶液荧光强度的变化,并对应标准曲线读出利用本方法测定的ATP浓度,与标准浓度作比较即可得出该检测方法的准确性,如下表1所示。由表1可以看出,每一种ATP标准溶液的检测相对偏差均小于5%,可见本发明的检测方法具有很高的准确性。
表1:实施例2中本发明方法检测ATP标准溶液的准确性对照表
  标准浓度(nM)   40   80   140   180   250   350
  测量浓度(nM)   38.82   83.45   146.38   172.94   244.99   335.95
  相对偏差(%)   -2.96   4.31   4.56   -3.92   -2.01   -4.01

Claims (6)

1.一种微流控芯片,其一侧设有两个以上的进样孔,每个进样孔连通有一进样流道,各个进样流道交汇后与一主流道相连通,其特征在于:所述主流道上设有一收缩段形成一狭窄流道,所述狭窄流道入口前的主流道上填充有微珠,微珠段的长度为0.5~1.5mm,所述微珠的粒径大于所述狭窄流道的宽度,所述主流道的出口连通至所述微流控芯片另一侧设置的废液池中;
所述微流控芯片包括相互贴合的盖片和基片,所述盖片下方开设有一上凹槽,所述废液池设于基片开设的下凹槽中并与上凹槽相对应,所述上凹槽上方的盖片上通过布设蒸发孔与外界相连通,所述上凹槽中填充有吸水材料。
2.根据权利要求1所述的微流控芯片,其特征在于:所述进样孔的孔径为1.8~2.2mm,所述蒸发孔的孔径为3.8~4.2mm,所述狭窄流道的宽度为14~16μm,所述进样流道和主流道的宽度为140~180μm。
3.根据权利要求1或2所述的微流控芯片,其特征在于:所述微珠为牛血清蛋白包被聚苯乙烯材料或二氧化硅材料制作成的微珠,所述微珠的粒径为18~30μm。
4.一种如权利要求1~3中任一项所述的微流控芯片的制备方法,包括以下步骤:
(1)基片的制作:将聚二甲基硅氧烷前聚体和固化剂混合均匀得到PDMS体系,真空脱泡后,将PDMS体系浇注在预制好的硅质阳模板上,烘干、固化后取出,自阳模板剥离得到PDMS基片;
(2)盖片的制作:另取一载玻片并在其一端铺一块垫片,所述垫片周围距离载玻片边缘留有余地,然后另取PDMS体系浇注于载玻片上,固化后从载玻片上剥离,并在所述垫片成型的上凹槽底部开设多个通孔,最后用吸水膜填充所述上凹槽得到PDMS盖片;
(3)贴合封装:将上述制得的PDMS基片和PDMS盖片进行清洗后立即不可逆贴合,得到芯片半成品;
(4)流道改性:在上述芯片半成品中设置的各个流道内依次引入NaOH溶液、聚凝胺水溶液和硫酸葡聚糖水溶液进行洗涤,每种溶液洗涤完后均用流水冲洗流道,完成流道改性;
(5)置入微珠:用缓冲液将备好的微珠洗净,然后将微珠置于牛血清蛋白中孵育,孵育完成后装入芯片半成品内设置的主流道中,控制微珠的装入量使其在所述主流道上长度达到0.5~1.5mm,完成微流控芯片的制作。
5.一种如权利要求1或2所述的微流控芯片在检测三磷酸腺苷浓度中的应用,其特征在于,所述应用的具体方法为:在所述微流控芯片的一个进样孔中加入检测试剂,在另一进样孔中加入待测三磷酸腺苷溶液,然后在所述主流道的出口处进行荧光监测,并记录稳定后的相对荧光强度值F0,再根据当前操作条件下建立的相对荧光强度F与待测三磷酸腺苷溶液浓度C的关联方程,测定出待测三磷酸腺苷溶液的浓度值C0,所述应用的检测下限为20nM,线性检测范围为20~500nM。
6.根据权利要求5所述的应用,其特征在于:所述应用过程中温度控制为37℃,蒸发面积控制为188.5mm2,环境湿度控制在25%~85%。
CN2010101321393A 2010-03-25 2010-03-25 微流控芯片及其制备方法和应用 Expired - Fee Related CN101817495B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010101321393A CN101817495B (zh) 2010-03-25 2010-03-25 微流控芯片及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010101321393A CN101817495B (zh) 2010-03-25 2010-03-25 微流控芯片及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN101817495A CN101817495A (zh) 2010-09-01
CN101817495B true CN101817495B (zh) 2012-03-14

Family

ID=42652802

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010101321393A Expired - Fee Related CN101817495B (zh) 2010-03-25 2010-03-25 微流控芯片及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN101817495B (zh)

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101949377A (zh) * 2010-09-17 2011-01-19 大连理工大学 一种薄膜式仿生微流控液体驱动泵
CN101936992B (zh) * 2010-09-17 2013-02-27 湖南大学 快速检测大肠杆菌的方法及所用到的微流控芯片及其制备工艺
CN102788777B (zh) * 2011-05-19 2015-08-19 北京大学 微流控表面增强拉曼散射检测器件及其制备方法与应用
CN102866147B (zh) * 2012-09-05 2015-08-26 重庆医科大学 一种基于适体的微流控化学发光芯片及其制备方法
CN105229467A (zh) * 2013-03-15 2016-01-06 普林斯顿大学理事会 快速且灵敏的分析物测量测定法
CN103611584B (zh) * 2013-10-29 2015-05-13 武汉斯坦姆赛尔生物技术有限公司 一种微流控芯片及基于微流控芯片的细胞计数方法
CN104073433A (zh) * 2014-07-23 2014-10-01 西北农林科技大学 大型微生物定量计数显微检测载玻片
CN104880562A (zh) * 2015-04-08 2015-09-02 上海盛复源生物医药有限公司 一种l-fabp快速检测试剂及其制备方法
CN107335481A (zh) * 2016-05-03 2017-11-10 宁波大学 流体通道特异的廉价的艾滋病诊断用微流控装置
CN107335478A (zh) * 2016-05-03 2017-11-10 宁波大学 依托硬改性界面降低流阻的霍乱诊断用廉价微流控装置
CN107335480A (zh) * 2016-05-03 2017-11-10 宁波大学 液流传输路线曲折的廉价的霍乱诊断用微流控装置
CN107335486A (zh) * 2016-05-03 2017-11-10 宁波大学 男性适用的典型肿瘤标志物联合检测用微流控芯片装置
CN107335483A (zh) * 2016-05-03 2017-11-10 宁波大学 同时检测多种亚型猪流感的多通道微流控芯片装置
CN107335482A (zh) * 2016-05-03 2017-11-10 宁波大学 基于刚性界面改性原理的廉价的梅毒诊断用微流控装置
CN107335479A (zh) * 2016-05-03 2017-11-10 宁波大学 以硬改性界面降低流阻的艾滋病诊断用廉价微流控装置
CN107356654A (zh) * 2016-05-10 2017-11-17 李榕生 驱动液流用构件易于卸除的艾滋病诊断用装置
CN107362841A (zh) * 2016-05-13 2017-11-21 李榕生 包含电磁辅助构件的易拆解的亚型猪流感多通道检测装置
CN107367538A (zh) * 2016-05-13 2017-11-21 李榕生 被测样品液驱动用构件易于卸除的艾滋病诊断用装置
CN107362840A (zh) * 2016-05-13 2017-11-21 李榕生 采用pdms材质基片的微流控芯片装置
CN107362838A (zh) * 2016-05-13 2017-11-21 李榕生 液流驱动用功能构件易拆除的梅毒诊断用微流控装置
CN107362837A (zh) * 2016-05-13 2017-11-21 李榕生 易于拆解的应用了廉价材料的亚型猪流感检测用装置
CN107367537A (zh) * 2016-05-13 2017-11-21 李榕生 试样驱动用功能元件可快捷移除的梅毒诊断用装置
CN107649210A (zh) * 2016-07-26 2018-02-02 洪小女 依托相间界面特性达成试样液流传输的微流控芯片装置
CN107649207A (zh) * 2016-07-26 2018-02-02 洪小女 以聚二甲基硅氧烷作为基片材质的微流控芯片装置
CN107649214A (zh) * 2016-07-26 2018-02-02 洪小女 一种采取新的流体驱动方式的微流控芯片装置
CN107649198A (zh) * 2016-07-26 2018-02-02 洪小女 驱动液流用构件易于卸除的艾滋病诊断用装置
CN107649195A (zh) * 2016-07-26 2018-02-02 洪小女 一种试样驱动用附加件可快捷移除的梅毒诊断用装置
CN107649189A (zh) * 2016-07-26 2018-02-02 洪小女 以新方式传输液流的艾滋病诊断用廉价微流控装置
CN107649219A (zh) * 2016-07-26 2018-02-02 宋岳 包含电磁辅助构件的易拆解的亚型猪流感多通道检测装置
CN107649202A (zh) * 2016-07-26 2018-02-02 洪小女 借助于界面特性进行液流驱动的易拆解的霍乱诊断用装置
CN107649193A (zh) * 2016-07-26 2018-02-02 宋岳 基片材质为pdms的霍乱诊断用多通道芯片装置
CN107649217A (zh) * 2016-07-26 2018-02-02 宋岳 一种既易于安装又易于拆解的霍乱诊断用多通道装置
CN107649196A (zh) * 2016-07-26 2018-02-02 洪小女 液流驱动用附加件易拆解的梅毒诊断用微流控装置
CN107649203A (zh) * 2016-07-26 2018-02-02 洪小女 附加的驱动液流用构件易于卸除的亚型猪流感检测装置
CN107649205A (zh) * 2016-07-26 2018-02-02 洪小女 用于驱动液流的附件能快捷移除的霍乱诊断用微流控装置
CN107649190A (zh) * 2016-07-26 2018-02-02 宋岳 被测样品液驱动用构件易于卸除的艾滋病诊断用装置
CN107649209A (zh) * 2016-07-26 2018-02-02 宋岳 微流控芯片其基片强疏水的梅毒诊断用多通道装置
CN107649218A (zh) * 2016-07-26 2018-02-02 宋岳 样品液驱动用构件能够快捷卸除的霍乱诊断用微流控装置
CN107649194A (zh) * 2016-07-26 2018-02-02 宋岳 采用pdms为基片材料的亚型猪流感检测用芯片装置
CN107649199A (zh) * 2016-07-26 2018-02-02 宋岳 液流驱动用功能构件易拆除的梅毒诊断用微流控装置
CN107649197A (zh) * 2016-07-26 2018-02-02 洪小女 试样液流驱动用构件可方便地拆除的艾滋病诊断用装置
CN107649201A (zh) * 2016-07-26 2018-02-02 宋岳 试样驱动用功能元件可快捷移除的梅毒诊断用装置
CN107649204A (zh) * 2016-07-26 2018-02-02 洪小女 依托界面特性进行液流驱动的霍乱诊断用廉价微流控装置
CN107649208A (zh) * 2016-07-26 2018-02-02 宋岳 强疏水pdms作为基片材质的亚型猪流感检测用芯片装置
CN107649200A (zh) * 2016-07-26 2018-02-02 洪小女 采用pdms材质基片的微流控芯片装置
CN107199060B (zh) * 2017-05-17 2019-07-26 清华大学深圳研究生院 一种用于固相微萃取的三维电聚焦微流控芯片及其制作方法
CN107384776A (zh) * 2017-08-04 2017-11-24 深圳市合川医疗科技有限公司 微流控芯片
CN110470610A (zh) * 2018-05-11 2019-11-19 中国石油化工股份有限公司 水质多参量检测设备和检测方法
CN110465338A (zh) * 2018-05-11 2019-11-19 中国石油化工股份有限公司 促进流体混合的芯片和促进流体混合的方法
CN110711492A (zh) * 2018-07-12 2020-01-21 天津微流科技有限公司 电渗微泵装置
CN109806921B (zh) * 2019-03-06 2021-07-23 安徽中医药高等专科学校 一种布芯片的制备方法及布芯片
CN111537708A (zh) * 2020-06-11 2020-08-14 烟台芥子生物技术有限公司 微流控检测结构及其应用
CN111763606B (zh) * 2020-06-18 2022-11-04 上海交通大学 从血液中无标记分离循环肿瘤细胞的惯性聚焦微流控芯片
CN112517092B (zh) * 2020-11-02 2021-08-24 生物岛实验室 离心式微流控芯片及外泌体的提取方法
CN114375822B (zh) * 2021-12-17 2023-05-09 江苏大学 基于微流控芯片的营养液回液消毒在线监测系统和方法
CN115254209A (zh) * 2022-05-12 2022-11-01 苏州量化细胞生物科技有限公司 一种用于单细胞测序的pdms-pda-mof微流控芯片的制备方法
CN117229917A (zh) * 2023-11-16 2023-12-15 四川迪亚生物科技集团有限公司 一种无泵驱动的类器官芯片
CN117323879B (zh) * 2023-11-30 2024-02-27 中国科学院精密测量科学与技术创新研究院 一种多级分流的微混合器及其应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000050172A1 (en) * 1999-02-23 2000-08-31 Caliper Technologies Corp. Manipulation of microparticles in microfluidic systems
DE10104323A1 (de) * 2001-01-24 2002-08-01 Siemens Ag Verfahren zum Herstellen einer Rille mit einer Engstelle in der Oberfläche eines Bauteils und Bauteil
WO2002064253A2 (en) * 2001-02-09 2002-08-22 Microchem Solutions Method and apparatus for sample injection in microfabricated devices
WO2003036298A2 (en) * 2001-10-25 2003-05-01 Exiqon A/S Closed substrate platforms suitable for analysis of biomolecules
WO2005043112A2 (en) * 2003-09-30 2005-05-12 West Virginia University Research Corporation Apparatus and method for edman degradation on a microfluidic device utilizing an electroosmotic flow pump

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6267858B1 (en) * 1996-06-28 2001-07-31 Caliper Technologies Corp. High throughput screening assay systems in microscale fluidic devices
JP4341372B2 (ja) * 2003-10-30 2009-10-07 コニカミノルタホールディングス株式会社 液体の混合方法および混合装置ならびに混合システム
US20060285999A1 (en) * 2005-06-21 2006-12-21 West Virginia University Research Corporation Apparatus and method for coupling microfluidic systems with electrospray ionization mass spectrometry utilizing a hydrodynamic flow restrictor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000050172A1 (en) * 1999-02-23 2000-08-31 Caliper Technologies Corp. Manipulation of microparticles in microfluidic systems
DE10104323A1 (de) * 2001-01-24 2002-08-01 Siemens Ag Verfahren zum Herstellen einer Rille mit einer Engstelle in der Oberfläche eines Bauteils und Bauteil
WO2002064253A2 (en) * 2001-02-09 2002-08-22 Microchem Solutions Method and apparatus for sample injection in microfabricated devices
WO2003036298A2 (en) * 2001-10-25 2003-05-01 Exiqon A/S Closed substrate platforms suitable for analysis of biomolecules
WO2005043112A2 (en) * 2003-09-30 2005-05-12 West Virginia University Research Corporation Apparatus and method for edman degradation on a microfluidic device utilizing an electroosmotic flow pump

Also Published As

Publication number Publication date
CN101817495A (zh) 2010-09-01

Similar Documents

Publication Publication Date Title
CN101817495B (zh) 微流控芯片及其制备方法和应用
US11865542B2 (en) System and method for isolating and analyzing cells
Kovarik et al. Micro total analysis systems: fundamental advances and applications in the laboratory, clinic, and field
CA2788344C (en) Centrifugal micro-fluidic device and method for detecting analytes from liquid specimen
Xie et al. In situ fabrication of 3D Ag@ ZnO nanostructures for microfluidic surface-enhanced Raman scattering systems
CN105164246B (zh) 用于分析定义的多细胞组合的方法和设备
Jalali et al. A hierarchical 3D nanostructured microfluidic device for sensitive detection of pathogenic bacteria
CN101184983A (zh) 用于传输、封闭和分析流体样品的方法和装置
Nwankire et al. At-line bioprocess monitoring by immunoassay with rotationally controlled serial siphoning and integrated supercritical angle fluorescence optics
Hu et al. Versatile microfluidic droplets array for bioanalysis
JP5636629B2 (ja) 送液チップおよび分析方法
US20060239862A1 (en) Testing chip and micro analysis system
RU2725264C2 (ru) Система для проведения анализов текучих сред
CN101498704A (zh) 无阀式微流控梯度实时反应芯片及反应控制方法
Dang et al. Microfluidic actuation via 3D-printed molds toward multiplex biosensing of cell apoptosis
JP2007263707A (ja) 試料分析装置
CN209446605U (zh) 一种基于水凝胶的液流控制及测量装置
WO2007058077A1 (ja) 遺伝子検査方法、遺伝子検査用マイクロリアクタ、および遺伝子検査システム
JP2007135504A (ja) 増幅部位にビーズを保持する核酸検査用マイクロリアクタ
Barbosa et al. Microfluidics combined with fluorescence in situ hybridization (FISH) for Candida spp. detection
US9903001B1 (en) Quantitative detection of pathogens in centrifugal microfluidic disks
Kim et al. Applications of microfluidics in the agro-food sector: A review
Shen et al. Integrated Microwell Array-Based Microfluidic Chip with a Hand-Held Smartphone-Controlled Device for Nucleic Acid Detection
KR101048858B1 (ko) 개방형 그루브 채널 칩
Fuchiwaki et al. A capillary flow immunoassay microchip utilizing inkjet printing-based antibody immobilization onto island surfaces—toward sensitive and reproducible determination of carboxyterminal propeptide of type I procollagen

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120314

Termination date: 20150325

EXPY Termination of patent right or utility model