US20190185683A1 - Structure for preventing adhesion of microorganisms and method of manufacturing the same - Google Patents

Structure for preventing adhesion of microorganisms and method of manufacturing the same Download PDF

Info

Publication number
US20190185683A1
US20190185683A1 US15/848,206 US201715848206A US2019185683A1 US 20190185683 A1 US20190185683 A1 US 20190185683A1 US 201715848206 A US201715848206 A US 201715848206A US 2019185683 A1 US2019185683 A1 US 2019185683A1
Authority
US
United States
Prior art keywords
nano
microorganisms
metal particles
preventing
liquid resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US15/848,206
Inventor
Shinill Kang
Taekyung Kim
Myungki JUNG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Industry Academic Cooperation Foundation of Yonsei University
Original Assignee
Industry Academic Cooperation Foundation of Yonsei University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Industry Academic Cooperation Foundation of Yonsei University filed Critical Industry Academic Cooperation Foundation of Yonsei University
Priority to US15/848,206 priority Critical patent/US20190185683A1/en
Assigned to INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSEI UNIVERSITY reassignment INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSEI UNIVERSITY ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: JUNG, MYUNG KI, KANG, SHIN ILL, KIM, TAE KYUNG
Publication of US20190185683A1 publication Critical patent/US20190185683A1/en
Priority to US16/735,922 priority patent/US11104810B2/en
Priority to US17/389,278 priority patent/US20210355330A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1681Antifouling coatings characterised by surface structure, e.g. for roughness effect giving superhydrophobic coatings or Lotus effect
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • B08B17/065Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement the surface having a microscopic surface pattern to achieve the same effect as a lotus flower
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/56Compression moulding under special conditions, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/026Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing of layered or coated substantially flat surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/021Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface
    • B29C2043/026Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles characterised by the shape of the surface having functional projections, e.g. fasteners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/56Compression moulding under special conditions, e.g. vacuum
    • B29C2043/568Compression moulding under special conditions, e.g. vacuum in a magnetic or electric field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C2059/023Microembossing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2505/00Use of metals, their alloys or their compounds, as filler
    • B29K2505/08Transition metals

Definitions

  • the present invention relates generally to a structure for preventing the adhesion of microorganisms and a method of manufacturing the same, and more specifically to a structure for preventing the adhesion of microorganisms, which is capable of preventing microorganisms from adhering to and growing on a surface of an object by means of a micro- or nano-pattern and nano-metal particles, and a method of manufacturing the same.
  • microorganisms form three-dimensional (3D) structures by means of polymer materials produced by them. Such a 3D structure is called a biofilm.
  • a biofilm formed by microorganisms may be formed on almost all types of solid surfaces or the tissues of living creatures.
  • FIG. 1 shows a process in which microorganisms adhere to a surface of a solid object and form a biofilm.
  • the microorganisms secrete a polymer material, form a biofilm, and grow in the state in which the biofilm has been formed. Furthermore, when the microorganisms continue to grow, the biofilm grows also. At some point, part of the microorganisms is separated from the biofilm, and floats in the air.
  • pathogens may form biofilms on medical instruments, such as catheters, various types of implants, artificial organs, etc., and may also form biofilms on all types of artificial structures, such as water service pipes, sewer pipes, water purifiers, air purification facilities, etc, which are accessible to microorganisms. Accordingly, preventing a biofilm from being formed has long been a concern for various technical fields, such as the civil engineering field, the architectural field, the urban engineering field, and the environmental engineering field, etc., as well as the medical field.
  • FIG. 2 is a sectional view showing a micro- or nano-pattern disclosed in EP 2 979 844 published on Feb. 3, 2016.
  • a synthetic polymer film 34 A is formed on a base film 42 A, and a plurality of raised portions 34 Ap is formed on the synthetic polymer film 34 A.
  • the raised portions 34 Ap of the above-described structure are formed in sharp protruding shapes.
  • the raised portions 34 Ap destruct the cell walls of microorganisms or bacteria, thereby preventing microorganisms from adhering to and growing on a surface of the structure.
  • a technology of coating a surface of a solid object with nano-particles of a metal, such as copper or silver, is known as another microorganism growth prevention technology. It is known that when nano-particles of copper or silver penetrate into microorganisms, the microbial metabolism of the microorganisms is disrupted and thus a sterilization effect is achieved.
  • a deposition technology such as sputtering or ion plating, is chiefly used to form or apply such nano-metal particles on a surface of a solid object.
  • a sputtering process is used, or a technology of generating a nano-metal particle colloid by reacting a porous carrier with a metal precursor and fixing metal nano-particles onto a surface of a processing target object in the metal nano-particles colloid is used.
  • these conventional nano-metal particle coating technologies require a high cost or a complex process, which is a cause of an increase in manufacturing cost.
  • the present invention has been conceived to overcome the above-described problems of the prior art, and an object of the present invention is to provide a structure for preventing the adhesion of microorganisms, which can provide a microorganism adhesion prevention effect considerably improved over the effect of the conventional structures for preventing the adhesion of microorganisms, and to also provide a method of manufacturing the structure for preventing the adhesion of microorganisms, which can economically and conveniently manufacture the structure for preventing the adhesion of microorganisms.
  • a structure for preventing the adhesion of microorganisms which is capable of preventing microorganisms from adhering to and growing on a surface of an object
  • the structure including: a nano-structure configured to include a plurality of protruding structures for preventing the adhesion of microorganisms, and made of a resin composition; and a plurality of nano-metal particles configured to be distributed in the nano-structure; wherein the distribution of the nano-metal particles is controlled by means of an electric field so that the nano-metal particles are distributed in larger quantities in a direction toward a surface of the nano-structure.
  • the protruding structures may be a plurality of tip-shaped structures each having a sharp end.
  • the protruding structures may be one of sinusoidal structures, column-shaped structures, and inverted U-shaped structures.
  • the plurality of nano-metal particles may be made of one or more metals selected from the group consisting of copper Cu, silver Ag, platinum Pt, gold Au, zinc Zn, and palladium Pd.
  • the plurality of nano-metal particles may be distributed on the surface of the nano-structure.
  • the plurality of nano-metal particles may be distributed inside the nano-structure, and the density of the distribution of the nano-metal particles may decrease in a direction inward from the surface of the nano-structure.
  • a method of manufacturing a structure for preventing adhesion of microorganisms which is capable of preventing microorganisms from adhering to and growing on a surface of an object, the method including: preparing a liquid resin; mixing the liquid resin with nano-metal particles; depositing the liquid resin on a substrate; pressing the liquid resin with a master template on which a pattern corresponding to a plurality of protruding structures is formed; controlling the distribution of the nano-metal particles by applying an electric field to the master template; and setting or curing the liquid resin.
  • the method may further include, after setting or curing the liquid resin, performing a post process so that the nano-metal particles are exposed out of a surface of the set or cured resin.
  • FIG. 1 is a conceptual diagram showing a process in which microorganisms adhere to a surface of a structure and form a biofilm;
  • FIG. 2 shows a conventional structure for preventing the adhesion of microorganisms
  • FIG. 3 is a perspective view of a structure for preventing the adhesion of microorganisms according to a first embodiment of the present invention
  • FIG. 4 is a side sectional view of the structure for preventing the adhesion of microorganisms according to the first embodiment of the present invention
  • FIG. 5 is a side sectional view of a structure for preventing the adhesion of microorganisms according to a second embodiment of the present invention.
  • FIG. 6 is a flowchart showing a process of manufacturing a structure for preventing the adhesion of microorganisms according to the present invention.
  • FIG. 7 shows a state in which nano-metal particles have been mixed with a liquid resin
  • FIG. 8 shows a state in which the liquid resin has been deposited onto a substrate
  • FIG. 9 shows a state in which a pattern has been formed on the liquid resin by pressing the liquid resin deposited on the substrate with a master template
  • FIG. 10 shows a state in which the distribution of the metal nano-particles mixed with the liquid resin has been controlled by applying an electric field to the master template
  • FIG. 11 shows a state in which a solidified nano-structure has been formed by setting or curing the liquid resin
  • FIG. 12 shows a state in which the metal nano-particles have been exposed out of the nano-structure by eliminating a resin material from a surface of the solidified structure of FIG. 11 .
  • FIG. 3 is a perspective view of a structure 100 for preventing the adhesion of microorganisms according to a first embodiment of the present invention.
  • the structure for preventing the adhesion of microorganisms includes a set of tip-shaped structures each having a sharp end.
  • the tip-shaped structures are generally fabricated in pyramid or cone shapes.
  • the structure for preventing the adhesion of microorganisms is configured to include the set of tip-shaped structures each having a sharp end in order to maximize a sterilization effect in the embodiment shown in FIG. 3
  • the structure for preventing the adhesion of microorganisms is not limited to the tip-shaped structures as long as protruding structures capable of preventing microorganisms from adhering to a surface of an object are used.
  • a plurality of sinusoidal structures, column-shaped structures, and inverted U-shaped structures protruding from a plane can also prevent microorganisms from adhering to a surface of an object.
  • tip-shaped structures capable of providing a maximized effect
  • protruding structures sinusoidal structures, column-shaped structures, inverted U-shaped structures, etc.
  • FIG. 4 is a sectional view of the structure 100 for preventing the adhesion of microorganisms according to the first embodiment of the present invention.
  • the structure 100 for preventing the adhesion of microorganisms is formed on a substrate 200 .
  • the structure 100 for preventing the adhesion of microorganisms includes: a nano-structure 130 made of a polymer resin; and nano-metal particles 120 formed on a surface of the nano-structure 130 .
  • the substrate 200 may be a surface of a device which requires that a structure for preventing the adhesion of microorganisms is formed thereon.
  • the nano-structure 130 includes a plurality of tip-shaped structures each having a sharp end.
  • the tip-shaped structures may be generally pyramid-shaped structures or cone-shaped structures, they are not limited to a specific shape as long as they are shaped to have sharp ends and can thus influence the cell membranes of microorganism.
  • the nano-structure 130 is made of a resin composition for the sake of ease of manufacture.
  • the nano-structure 130 is made of an ultraviolet curable resin composition which remains in a liquid phase before curing and is solidified when ultraviolet rays are radiated thereonto.
  • the ultraviolet curable resin composition includes acryl- or epoxy-based ultraviolet curable resin compositions, the ultraviolet curable resin composition is not limited thereto as long as an ultraviolet curable resin composition which is in a liquid phase before curing and is transformed into a solid phase after curing is employed.
  • the nano-structure 130 according to the present invention may be also made of a thermosetting resin composition, such as a phenol resin, an epoxy resin, or the like.
  • the dimensions of the tip-shaped structures constituting part of the nano-structure 130 may vary depending on a sterilization target. Generally, it was found that a desirable effect was achieved when the distance (pitch; D) between the tips of the tip-shaped structures ranged from 200 to 300 nm and the vertical distance (height; H) from the bottoms of the tip-shaped structures to the tips thereof ranged from 300 to 500 nm.
  • the height H of the tip-shaped structures may be determined at a appropriate level (which is two or more times the width of the tip-shapes structures) by taking into account the limitations of technology for manufacturing a nano-structure, manufacturing cost, etc.
  • the pitch of the tip-shaped structures may be designed to be 1 ⁇ 2 to 1 ⁇ 3 of the size of microorganisms (bacteria).
  • the nano-metal particles 120 are not limited to a specific type of metal as long as the metal of the nano-metal particles 120 is effective in sterilization. It is generally known that nano-particles of copper Cu, silver Ag, platinum Pt, gold Au, zinc Zn, and palladium Pd have desirable effects. The optimum size of the nano-metal particles 120 may vary depending on a sterilization target.
  • the nano-metal particles 120 present on the surface of the structure 100 for preventing the adhesion of microorganisms penetrate into the microorganisms and then disrupt the microbial metabolism of the microorganisms.
  • the tips of the nano-structure 130 destruct the cell membranes of the microorganisms, a sterilization effect is amplified. Accordingly, this can achieve an improved effect compared to a case where only a nano-structure or nano-metal particles are present.
  • FIG. 5 is a sectional view of a structure 100 for preventing the adhesion of microorganisms according to a second embodiment of the present invention.
  • the structure 100 for preventing the adhesion of microorganisms according to the second embodiment of the present invention is different in the distribution of nano-metal particles 120 from the structure 100 for preventing the adhesion of microorganisms according to the first embodiment of the present invention.
  • the nano-metal particles 120 are concentrated on the surface of the nano-structure 130 in the first embodiment, whereas nano-metal particles 120 are additionally distributed inside a nano-structure 130 in the second embodiment.
  • nano-metal particles 120 are concentrated on the surface of the nano-structure.
  • the structure 100 for preventing the adhesion of microorganisms is used in an environment where it is difficult to replace the structure 100 , nano-metal particles present on the surface of the nano-structure 130 may be lost due to abrasion or the like attributable to long-term use.
  • metal nano-particles 120 present inside the surface continue to perform a sterilization function in place of the lost nano-metal particles.
  • the metal nano-particles 120 may be uniformly distributed throughout the inside of the nano-structure 130 , the density of the distribution of the metal nano-particles 120 may be highest on the surface of the nano-structure 130 , and may decrease in a direction inward from the surface of the nano-structure 130 .
  • FIG. 6 is a flowchart showing a process of manufacturing a structure for preventing the adhesion of microorganisms according to the present invention
  • FIGS. 7 to 12 show the individual steps of the above process shown in the flowchart.
  • step S 100 of preparing a liquid resin and step S 200 of mixing the prepared liquid resin with nano-metal particles are performed.
  • the liquid resin may be an ultraviolet curable resin
  • a thermosetting resin may be used as the liquid resin.
  • it may be helpful to a post process to uniformly distribute the nano-metal particles inside the liquid resin the nano-metal particles are re-distributed inside the liquid resin due to an electric field, and thus the uniformity of the nano-metal particles is of no particular importance.
  • FIG. 8 shows step S 300 of depositing the prepared liquid resin 300 , mixed with the nano-metal particles at step S 200 , on a substrate 400 .
  • the substrate 400 is a manufacturing tool temporarily used for the process of manufacturing a structure for preventing the adhesion of microorganisms, and is distinct from the above-described substrate 200 .
  • FIG. 9 shows step 400 of placing a master template 500 on the liquid resin 300 deposited on the substrate 400 and pressing the liquid resin 300 with the master template 500 .
  • a pattern having a shape corresponding to the shape of a nano-structure 130 including tip-shaped structures is formed on a surface of the master template 500 , and a surface of the liquid resin 300 is formed in a shape corresponding to the shape of the pattern.
  • FIG. 10 shows step S 500 of applying an electric field to the master template 500 .
  • a positive electric field is applied as an example, the nano-metal particles 120 distributed inside the liquid resin 300 are moved within the resin, i.e., a liquid, by the force of the electric field, with the result that the nano-metal particles 120 are moved toward a portion where the master template 500 and the liquid resin 300 come into contact with each other. Therefore, the shape of the distribution of the nano-metal particles 120 inside the liquid resin 300 can be controlling by adjusting the strength of the electric field and the time for which the electric field is applied.
  • FIG. 11 shows step S 600 of thermally setting or optically curing the liquid resin.
  • the resin having flowability loses flowability and is solidified, and thus the nano-structure 120 is formed.
  • FIG. 12 shows step S 700 of performing a post process on the patterned surface of the set or cured resin. This step is performed to eliminate a thin resin film covering the nano-metal particles 120 so that nano-metal particles 120 present near the surface of the nano-structure 120 can be exposed out of the nano-structure 120 .
  • this step may be performed through blasting, the step is not limited to a specific method as long as a method for performing this step can eliminate the thin resin film.
  • the structure for preventing the adhesion of microorganisms manufactured using the above-described method may be used to prevent biofilms to be formed on medical instruments, such as catheters, various types of implants, artificial organs, etc., and may be applied to all types of artificial structures, such as water service pipes, sewer pipes, water purifiers, air purification facilities, etc, which are accessible to microorganisms.
  • the structure for preventing the adhesion of microorganisms according to the present invention is made of a polymer resin which is relatively inexpensive and is easy to handle, has protruding shapes capable of preventing microorganisms from adhering to the surface of the structure, and includes distributed nano-metal particles, so that the adhesion of microorganisms to the surface can be delayed and the nano-metal particles can penetrate into the cells of the microorganisms, thereby providing sterilization capability.
  • the protruding nano-structures are a plurality of tip-shaped structures each having a sharp end, the cell membranes of microorganisms are destructed by tips, and the nano-metal particles can easily penetrate into the cells of the microorganism, thereby maximizing sterilization capability.
  • the nano-metal particles are disposed using a method of distributing nano-metal particles toward the surface of the structure by inducing the nano-metal particles floating inside the polymer resin before setting or curing to move in an electrical manner, rather than a method such as sputtering or the like, and thus a manufacturing process is simplified and manufacturing cost can be significantly reduced.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Mechanical Engineering (AREA)
  • Zoology (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

The present invention relates to a structure for preventing the adhesion of microorganisms, which is capable of preventing microorganisms from adhering to and growing on a surface of an object, and a method of manufacturing the same. The structure for preventing the adhesion of microorganisms includes: a nano-structure configured to include a plurality of protruding structures each having a sharp end, and made of a resin composition; and a plurality of nano-metal particles configured to be distributed inside the nano-structure. A method of manufacturing a structure for preventing adhesion of microorganisms includes preparing a liquid resin; mixing the liquid resin with nano-metal particles; depositing the liquid resin on a substrate; pressing the liquid resin with a master template on which a pattern corresponding to a plurality of protruding structures is formed; and setting or curing the liquid resin.

Description

    BACKGROUND 1. Technical Field
  • The present invention relates generally to a structure for preventing the adhesion of microorganisms and a method of manufacturing the same, and more specifically to a structure for preventing the adhesion of microorganisms, which is capable of preventing microorganisms from adhering to and growing on a surface of an object by means of a micro- or nano-pattern and nano-metal particles, and a method of manufacturing the same.
  • 2. Description of the Related Art
  • Generally, cases where microorganisms float and survive individually are few. In most cases, microorganisms form three-dimensional (3D) structures by means of polymer materials produced by them. Such a 3D structure is called a biofilm. A biofilm formed by microorganisms may be formed on almost all types of solid surfaces or the tissues of living creatures.
  • FIG. 1 shows a process in which microorganisms adhere to a surface of a solid object and form a biofilm. When microorganisms floating in the air adhere to a surface of a solid object, the microorganisms secrete a polymer material, form a biofilm, and grow in the state in which the biofilm has been formed. Furthermore, when the microorganisms continue to grow, the biofilm grows also. At some point, part of the microorganisms is separated from the biofilm, and floats in the air.
  • In particular, in an infection process, pathogens may form biofilms on medical instruments, such as catheters, various types of implants, artificial organs, etc., and may also form biofilms on all types of artificial structures, such as water service pipes, sewer pipes, water purifiers, air purification facilities, etc, which are accessible to microorganisms. Accordingly, preventing a biofilm from being formed has long been a concern for various technical fields, such as the civil engineering field, the architectural field, the urban engineering field, and the environmental engineering field, etc., as well as the medical field.
  • Therefore, in order to prevent microorganisms from growing, it is necessary to prevent microorganisms from adhering to and forming a biofilm on a surface of a solid object. For this purpose, a technology of forming a micro- or nano-pattern on a surface is known. FIG. 2 is a sectional view showing a micro- or nano-pattern disclosed in EP 2 979 844 published on Feb. 3, 2016. In this patent, a synthetic polymer film 34A is formed on a base film 42A, and a plurality of raised portions 34Ap is formed on the synthetic polymer film 34A. The raised portions 34Ap of the above-described structure are formed in sharp protruding shapes. The raised portions 34Ap destruct the cell walls of microorganisms or bacteria, thereby preventing microorganisms from adhering to and growing on a surface of the structure.
  • A technology of coating a surface of a solid object with nano-particles of a metal, such as copper or silver, is known as another microorganism growth prevention technology. It is known that when nano-particles of copper or silver penetrate into microorganisms, the microbial metabolism of the microorganisms is disrupted and thus a sterilization effect is achieved. Generally, a deposition technology, such as sputtering or ion plating, is chiefly used to form or apply such nano-metal particles on a surface of a solid object.
  • Although various technologies for preventing microorganisms from adhering to and growing on a surface are known, as described above, the use of only the nano-metal particle coating or micro-structures having tips has limitations on achieving sufficient sterilization capability.
  • Furthermore, according to Japanese Unexamined Patent Application Publication No. 2009-174031, in order to coat a surface of an object with nano-metal particles, a sputtering process is used, or a technology of generating a nano-metal particle colloid by reacting a porous carrier with a metal precursor and fixing metal nano-particles onto a surface of a processing target object in the metal nano-particles colloid is used. However, these conventional nano-metal particle coating technologies require a high cost or a complex process, which is a cause of an increase in manufacturing cost.
  • SUMMARY
  • The present invention has been conceived to overcome the above-described problems of the prior art, and an object of the present invention is to provide a structure for preventing the adhesion of microorganisms, which can provide a microorganism adhesion prevention effect considerably improved over the effect of the conventional structures for preventing the adhesion of microorganisms, and to also provide a method of manufacturing the structure for preventing the adhesion of microorganisms, which can economically and conveniently manufacture the structure for preventing the adhesion of microorganisms.
  • According to an aspect of the present invention, there is provided a structure for preventing the adhesion of microorganisms, which is capable of preventing microorganisms from adhering to and growing on a surface of an object, the structure including: a nano-structure configured to include a plurality of protruding structures for preventing the adhesion of microorganisms, and made of a resin composition; and a plurality of nano-metal particles configured to be distributed in the nano-structure; wherein the distribution of the nano-metal particles is controlled by means of an electric field so that the nano-metal particles are distributed in larger quantities in a direction toward a surface of the nano-structure.
  • The protruding structures may be a plurality of tip-shaped structures each having a sharp end.
  • The protruding structures may be one of sinusoidal structures, column-shaped structures, and inverted U-shaped structures.
  • The plurality of nano-metal particles may be made of one or more metals selected from the group consisting of copper Cu, silver Ag, platinum Pt, gold Au, zinc Zn, and palladium Pd.
  • The plurality of nano-metal particles may be distributed on the surface of the nano-structure.
  • The plurality of nano-metal particles may be distributed inside the nano-structure, and the density of the distribution of the nano-metal particles may decrease in a direction inward from the surface of the nano-structure.
  • According to another aspect of the present invention, there is provided a method of manufacturing a structure for preventing adhesion of microorganisms, which is capable of preventing microorganisms from adhering to and growing on a surface of an object, the method including: preparing a liquid resin; mixing the liquid resin with nano-metal particles; depositing the liquid resin on a substrate; pressing the liquid resin with a master template on which a pattern corresponding to a plurality of protruding structures is formed; controlling the distribution of the nano-metal particles by applying an electric field to the master template; and setting or curing the liquid resin.
  • The method may further include, after setting or curing the liquid resin, performing a post process so that the nano-metal particles are exposed out of a surface of the set or cured resin.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • The above and other objects, features and advantages of the present invention will be more clearly understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
  • FIG. 1 is a conceptual diagram showing a process in which microorganisms adhere to a surface of a structure and form a biofilm;
  • FIG. 2 shows a conventional structure for preventing the adhesion of microorganisms;
  • FIG. 3 is a perspective view of a structure for preventing the adhesion of microorganisms according to a first embodiment of the present invention;
  • FIG. 4 is a side sectional view of the structure for preventing the adhesion of microorganisms according to the first embodiment of the present invention;
  • FIG. 5 is a side sectional view of a structure for preventing the adhesion of microorganisms according to a second embodiment of the present invention;
  • FIG. 6 is a flowchart showing a process of manufacturing a structure for preventing the adhesion of microorganisms according to the present invention;
  • FIG. 7 shows a state in which nano-metal particles have been mixed with a liquid resin;
  • FIG. 8 shows a state in which the liquid resin has been deposited onto a substrate;
  • FIG. 9 shows a state in which a pattern has been formed on the liquid resin by pressing the liquid resin deposited on the substrate with a master template;
  • FIG. 10 shows a state in which the distribution of the metal nano-particles mixed with the liquid resin has been controlled by applying an electric field to the master template;
  • FIG. 11 shows a state in which a solidified nano-structure has been formed by setting or curing the liquid resin; and
  • FIG. 12 shows a state in which the metal nano-particles have been exposed out of the nano-structure by eliminating a resin material from a surface of the solidified structure of FIG. 11.
  • DETAILED DESCRIPTION
  • FIG. 3 is a perspective view of a structure 100 for preventing the adhesion of microorganisms according to a first embodiment of the present invention. The structure for preventing the adhesion of microorganisms includes a set of tip-shaped structures each having a sharp end. The tip-shaped structures are generally fabricated in pyramid or cone shapes.
  • Although the structure for preventing the adhesion of microorganisms is configured to include the set of tip-shaped structures each having a sharp end in order to maximize a sterilization effect in the embodiment shown in FIG. 3, the structure for preventing the adhesion of microorganisms is not limited to the tip-shaped structures as long as protruding structures capable of preventing microorganisms from adhering to a surface of an object are used. For example, a plurality of sinusoidal structures, column-shaped structures, and inverted U-shaped structures protruding from a plane can also prevent microorganisms from adhering to a surface of an object.
  • Although the present invention will be described below with a focus on tip-shaped structures capable of providing a maximized effect, it will be apparent to a person skilled in the art that the following description can be also applied to protruding structures (sinusoidal structures, column-shaped structures, inverted U-shaped structures, etc.), other than the tip-shaped structures.
  • FIG. 4 is a sectional view of the structure 100 for preventing the adhesion of microorganisms according to the first embodiment of the present invention. The structure 100 for preventing the adhesion of microorganisms is formed on a substrate 200. The structure 100 for preventing the adhesion of microorganisms includes: a nano-structure 130 made of a polymer resin; and nano-metal particles 120 formed on a surface of the nano-structure 130. In this case, the substrate 200 may be a surface of a device which requires that a structure for preventing the adhesion of microorganisms is formed thereon.
  • Furthermore, the nano-structure 130 includes a plurality of tip-shaped structures each having a sharp end. Although the tip-shaped structures may be generally pyramid-shaped structures or cone-shaped structures, they are not limited to a specific shape as long as they are shaped to have sharp ends and can thus influence the cell membranes of microorganism.
  • The nano-structure 130 is made of a resin composition for the sake of ease of manufacture. For example, the nano-structure 130 is made of an ultraviolet curable resin composition which remains in a liquid phase before curing and is solidified when ultraviolet rays are radiated thereonto. Although the ultraviolet curable resin composition includes acryl- or epoxy-based ultraviolet curable resin compositions, the ultraviolet curable resin composition is not limited thereto as long as an ultraviolet curable resin composition which is in a liquid phase before curing and is transformed into a solid phase after curing is employed. Moreover, the nano-structure 130 according to the present invention may be also made of a thermosetting resin composition, such as a phenol resin, an epoxy resin, or the like.
  • The dimensions of the tip-shaped structures constituting part of the nano-structure 130 may vary depending on a sterilization target. Generally, it was found that a desirable effect was achieved when the distance (pitch; D) between the tips of the tip-shaped structures ranged from 200 to 300 nm and the vertical distance (height; H) from the bottoms of the tip-shaped structures to the tips thereof ranged from 300 to 500 nm.
  • For reference, although the effect will increase as the height H of the tip-shaped structures increases, the height H of the tip-shaped structures may be determined at a appropriate level (which is two or more times the width of the tip-shapes structures) by taking into account the limitations of technology for manufacturing a nano-structure, manufacturing cost, etc. Furthermore, the pitch of the tip-shaped structures may be designed to be ½ to ⅓ of the size of microorganisms (bacteria).
  • The nano-metal particles 120 are not limited to a specific type of metal as long as the metal of the nano-metal particles 120 is effective in sterilization. It is generally known that nano-particles of copper Cu, silver Ag, platinum Pt, gold Au, zinc Zn, and palladium Pd have desirable effects. The optimum size of the nano-metal particles 120 may vary depending on a sterilization target.
  • According to the first embodiment of the present invention, when microorganisms approach the structure 100 for preventing the adhesion of microorganisms, the nano-metal particles 120 present on the surface of the structure 100 for preventing the adhesion of microorganisms penetrate into the microorganisms and then disrupt the microbial metabolism of the microorganisms. In this case, when the tips of the nano-structure 130 destruct the cell membranes of the microorganisms, a sterilization effect is amplified. Accordingly, this can achieve an improved effect compared to a case where only a nano-structure or nano-metal particles are present.
  • FIG. 5 is a sectional view of a structure 100 for preventing the adhesion of microorganisms according to a second embodiment of the present invention. The structure 100 for preventing the adhesion of microorganisms according to the second embodiment of the present invention is different in the distribution of nano-metal particles 120 from the structure 100 for preventing the adhesion of microorganisms according to the first embodiment of the present invention. The nano-metal particles 120 are concentrated on the surface of the nano-structure 130 in the first embodiment, whereas nano-metal particles 120 are additionally distributed inside a nano-structure 130 in the second embodiment.
  • Generally, it is advantageous in a cost-effectiveness aspect that all the nano-metal particles 120 are concentrated on the surface of the nano-structure. Meanwhile, when the structure 100 for preventing the adhesion of microorganisms is used in an environment where it is difficult to replace the structure 100, nano-metal particles present on the surface of the nano-structure 130 may be lost due to abrasion or the like attributable to long-term use. In contrast, when a structure for preventing the adhesion of microorganisms, such as that according to the second embodiment, is utilized, metal nano-particles 120 present inside the surface continue to perform a sterilization function in place of the lost nano-metal particles. In this case, although the metal nano-particles 120 may be uniformly distributed throughout the inside of the nano-structure 130, the density of the distribution of the metal nano-particles 120 may be highest on the surface of the nano-structure 130, and may decrease in a direction inward from the surface of the nano-structure 130.
  • FIG. 6 is a flowchart showing a process of manufacturing a structure for preventing the adhesion of microorganisms according to the present invention, and FIGS. 7 to 12 show the individual steps of the above process shown in the flowchart.
  • Referring to FIG. 7, step S100 of preparing a liquid resin and step S200 of mixing the prepared liquid resin with nano-metal particles are performed. Although the liquid resin may be an ultraviolet curable resin, a thermosetting resin may be used as the liquid resin. Although it may be helpful to a post process to uniformly distribute the nano-metal particles inside the liquid resin, the nano-metal particles are re-distributed inside the liquid resin due to an electric field, and thus the uniformity of the nano-metal particles is of no particular importance.
  • FIG. 8 shows step S300 of depositing the prepared liquid resin 300, mixed with the nano-metal particles at step S200, on a substrate 400. In this case, the substrate 400 is a manufacturing tool temporarily used for the process of manufacturing a structure for preventing the adhesion of microorganisms, and is distinct from the above-described substrate 200.
  • FIG. 9 shows step 400 of placing a master template 500 on the liquid resin 300 deposited on the substrate 400 and pressing the liquid resin 300 with the master template 500. A pattern having a shape corresponding to the shape of a nano-structure 130 including tip-shaped structures is formed on a surface of the master template 500, and a surface of the liquid resin 300 is formed in a shape corresponding to the shape of the pattern.
  • FIG. 10 shows step S500 of applying an electric field to the master template 500. When a positive electric field is applied as an example, the nano-metal particles 120 distributed inside the liquid resin 300 are moved within the resin, i.e., a liquid, by the force of the electric field, with the result that the nano-metal particles 120 are moved toward a portion where the master template 500 and the liquid resin 300 come into contact with each other. Therefore, the shape of the distribution of the nano-metal particles 120 inside the liquid resin 300 can be controlling by adjusting the strength of the electric field and the time for which the electric field is applied.
  • FIG. 11 shows step S600 of thermally setting or optically curing the liquid resin. Through the setting or curing process, the resin having flowability loses flowability and is solidified, and thus the nano-structure 120 is formed.
  • FIG. 12 shows step S700 of performing a post process on the patterned surface of the set or cured resin. This step is performed to eliminate a thin resin film covering the nano-metal particles 120 so that nano-metal particles 120 present near the surface of the nano-structure 120 can be exposed out of the nano-structure 120. Although this step may be performed through blasting, the step is not limited to a specific method as long as a method for performing this step can eliminate the thin resin film.
  • The structure for preventing the adhesion of microorganisms manufactured using the above-described method may be used to prevent biofilms to be formed on medical instruments, such as catheters, various types of implants, artificial organs, etc., and may be applied to all types of artificial structures, such as water service pipes, sewer pipes, water purifiers, air purification facilities, etc, which are accessible to microorganisms.
  • The structure for preventing the adhesion of microorganisms according to the present invention is made of a polymer resin which is relatively inexpensive and is easy to handle, has protruding shapes capable of preventing microorganisms from adhering to the surface of the structure, and includes distributed nano-metal particles, so that the adhesion of microorganisms to the surface can be delayed and the nano-metal particles can penetrate into the cells of the microorganisms, thereby providing sterilization capability.
  • Furthermore, when the protruding nano-structures are a plurality of tip-shaped structures each having a sharp end, the cell membranes of microorganisms are destructed by tips, and the nano-metal particles can easily penetrate into the cells of the microorganism, thereby maximizing sterilization capability.
  • Moreover, according to the present invention, the nano-metal particles are disposed using a method of distributing nano-metal particles toward the surface of the structure by inducing the nano-metal particles floating inside the polymer resin before setting or curing to move in an electrical manner, rather than a method such as sputtering or the like, and thus a manufacturing process is simplified and manufacturing cost can be significantly reduced.
  • Although the specific embodiments of the present invention have been disclosed for illustrative purposes, those skilled in the art will appreciate that various modifications, additions and substitutions are possible without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

Claims (8)

1. A structure for preventing adhesion of microorganisms, which is capable of preventing microorganisms from adhering to and growing on a surface of an object, the structure comprising:
a nano-structure layer including a plurality of patterned protrusions, wherein the patterned protrusions form a top surface of the nano-structure layer and prevent adhesion of microorganisms, and the nano-structure layer is made of a resin composition; and
a plurality of nano-metal particles distributed in the nano-structure layer;
wherein the distribution of the nano-metal particles is controlled by means of an electric field so that density of the nano-metal particles is highest at the top surface of the nano-structure layer and decreases in a direction inward from the top surface of the nano-structure layer.
2. The structure of claim 1, wherein the patterned protrusions are a plurality of tip-shaped structures each having a sharp end.
3. The structure of claim 1, wherein the patterned protrusions are one of sinusoidal structures, column-shaped structures, and inverted U-shaped structures.
4. The structure of claim 1, wherein the plurality of nano-metal particles is made of one or more metals selected from the group consisting of copper Cu, silver Ag, platinum Pt, gold Au, zinc Zn, and palladium Pd.
5. A structure for preventing adhesion of microorganisms, which is capable of preventing microorganisms from adhering to and growing on a surface of an object, the structure comprising:
a nano-structure layer including a plurality of patterned protrusions, wherein the patterned protrusions form a top surface of the nano-structure layer and prevent adhesion of microorganisms, and the nano-structure layer is made of a resin composition; and
a plurality of nano-metal particles distributed in the nano-structure layer,
wherein the plurality of nano-metal particles is distributed on the top surface of the nano-structure layer.
6. (canceled)
7. A method of manufacturing a structure for preventing adhesion of microorganisms, which is capable of preventing microorganisms from adhering to and growing on a surface of an object, the method comprising:
preparing a liquid resin;
mixing the liquid resin with nano-metal particles;
depositing the liquid resin on a substrate;
pressing the liquid resin with a master template on which a pattern corresponding to a plurality of protruding structures is formed;
controlling distribution of the nano-metal particles by applying an electric field to the master template; and
setting or curing the liquid resin.
8. The method of claim 7, further comprising, after setting or curing the liquid resin, performing a post process so that the nano-metal particles are exposed out of a surface of the set or cured resin.
US15/848,206 2017-12-20 2017-12-20 Structure for preventing adhesion of microorganisms and method of manufacturing the same Abandoned US20190185683A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/848,206 US20190185683A1 (en) 2017-12-20 2017-12-20 Structure for preventing adhesion of microorganisms and method of manufacturing the same
US16/735,922 US11104810B2 (en) 2017-12-20 2020-01-07 Structure for preventing adhesion of microorganisms and method of manufacturing the same
US17/389,278 US20210355330A1 (en) 2017-12-20 2021-07-29 Structure for preventing adhesion of microorganisms

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15/848,206 US20190185683A1 (en) 2017-12-20 2017-12-20 Structure for preventing adhesion of microorganisms and method of manufacturing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/735,922 Division US11104810B2 (en) 2017-12-20 2020-01-07 Structure for preventing adhesion of microorganisms and method of manufacturing the same

Publications (1)

Publication Number Publication Date
US20190185683A1 true US20190185683A1 (en) 2019-06-20

Family

ID=66815658

Family Applications (3)

Application Number Title Priority Date Filing Date
US15/848,206 Abandoned US20190185683A1 (en) 2017-12-20 2017-12-20 Structure for preventing adhesion of microorganisms and method of manufacturing the same
US16/735,922 Active US11104810B2 (en) 2017-12-20 2020-01-07 Structure for preventing adhesion of microorganisms and method of manufacturing the same
US17/389,278 Pending US20210355330A1 (en) 2017-12-20 2021-07-29 Structure for preventing adhesion of microorganisms

Family Applications After (2)

Application Number Title Priority Date Filing Date
US16/735,922 Active US11104810B2 (en) 2017-12-20 2020-01-07 Structure for preventing adhesion of microorganisms and method of manufacturing the same
US17/389,278 Pending US20210355330A1 (en) 2017-12-20 2021-07-29 Structure for preventing adhesion of microorganisms

Country Status (1)

Country Link
US (3) US20190185683A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2565511B (en) 2016-05-26 2022-04-13 Kimberly Clark Co Anti-adherent compositions and methods of inhibiting the adherence of microbes to a surface

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050074589A1 (en) * 2003-09-18 2005-04-07 Pan Alfred I-Tsung Printable compositions having anisometric nanostructures for use in printed electronics
US20090214851A1 (en) * 2006-05-26 2009-08-27 General Electric Company Nanostructure arrays
US20110160374A1 (en) * 2008-06-12 2011-06-30 Ren-Hua Jin Structual object coated with superhydrophbic nanostructure composite and process for producing the same
US20110270221A1 (en) * 2010-04-28 2011-11-03 Kimberly-Clark Worldwide, Inc. Nanopatterned Medical Device with Enhanced Cellular Interaction
US20130108702A1 (en) * 2011-11-01 2013-05-02 Swadeshmukul Santra Copper/silica nanoparticles, methods of making, and methods of use
US20130216784A1 (en) * 2010-10-28 2013-08-22 3M Innovative Properties Company Superhydrophobic films
US20130251948A1 (en) * 2011-02-28 2013-09-26 Research Foundation Of The City University Of New York Polymer having superhydrophobic surface
US20140265013A1 (en) * 2013-03-15 2014-09-18 The Trustees Of Princeton University Methods for creating large-area complex nanopatterns for nanoimprint molds
US20160050916A1 (en) * 2013-04-01 2016-02-25 Gencoa Ltd. Bio control activity surface
US20160201183A1 (en) * 2015-01-14 2016-07-14 Lockheed Martin Corporation Articles having an exposed surface coating formed from copper nanoparticles

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130251942A1 (en) * 2012-03-23 2013-09-26 Gisele Azimi Hydrophobic Materials Incorporating Rare Earth Elements and Methods of Manufacture
EP3436233B1 (en) * 2016-03-31 2020-02-19 Fundación Imdea Nanociencia Polymeric composites with functional surfaces

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050074589A1 (en) * 2003-09-18 2005-04-07 Pan Alfred I-Tsung Printable compositions having anisometric nanostructures for use in printed electronics
US20090214851A1 (en) * 2006-05-26 2009-08-27 General Electric Company Nanostructure arrays
US20110160374A1 (en) * 2008-06-12 2011-06-30 Ren-Hua Jin Structual object coated with superhydrophbic nanostructure composite and process for producing the same
US20110270221A1 (en) * 2010-04-28 2011-11-03 Kimberly-Clark Worldwide, Inc. Nanopatterned Medical Device with Enhanced Cellular Interaction
US20130216784A1 (en) * 2010-10-28 2013-08-22 3M Innovative Properties Company Superhydrophobic films
US20130251948A1 (en) * 2011-02-28 2013-09-26 Research Foundation Of The City University Of New York Polymer having superhydrophobic surface
US20130108702A1 (en) * 2011-11-01 2013-05-02 Swadeshmukul Santra Copper/silica nanoparticles, methods of making, and methods of use
US20140265013A1 (en) * 2013-03-15 2014-09-18 The Trustees Of Princeton University Methods for creating large-area complex nanopatterns for nanoimprint molds
US20160050916A1 (en) * 2013-04-01 2016-02-25 Gencoa Ltd. Bio control activity surface
US20160201183A1 (en) * 2015-01-14 2016-07-14 Lockheed Martin Corporation Articles having an exposed surface coating formed from copper nanoparticles

Also Published As

Publication number Publication date
US11104810B2 (en) 2021-08-31
US20210355330A1 (en) 2021-11-18
US20200148897A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
CN110482481B (en) Preparation method of bionic adhesion material with expanded-end microstructure array
CN101823685B (en) Bionic micro/nano structure preparing method
US20210355330A1 (en) Structure for preventing adhesion of microorganisms
CN101014421B (en) Surface-structured substrate and production thereof
ATE324127T1 (en) METHOD FOR PRODUCING MEDICAL DEVICES WITH ANTIMICROBIAL COATINGS
EP2165682A3 (en) Medical implant
RU2007120614A (en) ARTIFICIAL MARBLE CONTAINING THREE-DIMENSIONAL LIGHT-PERMEABLE MARBLE BABY, AND METHOD FOR PRODUCING IT
TWI763785B (en) Selective termination of superhydrophobic surfaces
KR101805450B1 (en) Structure for preventing microorganism attachment and manufacturing method thereof
CN109078218B (en) Biomedical coating based on graphene and titanium dioxide and preparation method thereof
CN108299827A (en) A kind of preparation method of durable PDMS bionic super-hydrophobics film
CN104148266A (en) Self-cleaning high polymer film or coating and preparation method thereof
KR100857613B1 (en) Electro-formed master and manufacturing thereof
Carvalho et al. New strategies to fight bacterial adhesion
CN111051492A (en) Cell sheet forming member, method for producing cell sheet forming member, and method for producing cell sheet
TW201313941A (en) Method
Jegal et al. Surface engineering of titanium with simvastatin-releasing polymer nanoparticles for enhanced osteogenic differentiation
Jeong et al. Generation of uniform agarose microwells for cell patterning by micromolding in capillaries
EP1398296A3 (en) A method for making three-dimensional structures having nanometric and micrometric dimensions
Gupta et al. Simpler Mass Production of Polymeric Visual Decoys for the Male Emerald Ash Borer (AgriAgrilus planipennis)
CN107584111B (en) Liquid metal composite and flexible nanotube preparation and its as nano-motor application
US20190117845A1 (en) Layer having variable strength
CN113401863B (en) Magnetic micro-nano robot and preparation method and application thereof
Poinern et al. Can anodic aluminium oxide nanomembranes treated with nanometre scale hydroxyapatite be used as a cell culture substrate
DE102014201898B4 (en) Method of making micro objects and micro object

Legal Events

Date Code Title Description
AS Assignment

Owner name: INDUSTRY-ACADEMIC COOPERATION FOUNDATION, YONSEI U

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:KANG, SHIN ILL;KIM, TAE KYUNG;JUNG, MYUNG KI;REEL/FRAME:044445/0847

Effective date: 20171218

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: FINAL REJECTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION