US20120231264A1 - Wire wrap compositions and methods relating thereto - Google Patents

Wire wrap compositions and methods relating thereto Download PDF

Info

Publication number
US20120231264A1
US20120231264A1 US13/510,662 US201013510662A US2012231264A1 US 20120231264 A1 US20120231264 A1 US 20120231264A1 US 201013510662 A US201013510662 A US 201013510662A US 2012231264 A1 US2012231264 A1 US 2012231264A1
Authority
US
United States
Prior art keywords
polyimide
dianhydride
layer
wire wrap
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US13/510,662
Other languages
English (en)
Inventor
Brian C. Auman
Meredith L. Dunbar
Tao He
Kostantinos Kourtakis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EIDP Inc
Original Assignee
EI Du Pont de Nemours and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EI Du Pont de Nemours and Co filed Critical EI Du Pont de Nemours and Co
Priority to US13/510,662 priority Critical patent/US20120231264A1/en
Publication of US20120231264A1 publication Critical patent/US20120231264A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/482Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of lead-in layers inseparably applied to the semiconductor body (electrodes)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1046Polyimides containing oxygen in the form of ether bonds in the main chain
    • C08G73/105Polyimides containing oxygen in the form of ether bonds in the main chain with oxygen only in the diamino moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/08Oxygen-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0231Manufacturing methods of the redistribution layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0231Manufacturing methods of the redistribution layers
    • H01L2224/02319Manufacturing methods of the redistribution layers by using a preform
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0233Structure of the redistribution layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0233Structure of the redistribution layers
    • H01L2224/02335Free-standing redistribution layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/0236Shape of the insulating layers therebetween
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/023Redistribution layers [RDL] for bonding areas
    • H01L2224/024Material of the insulating layers therebetween
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/0401Bonding areas specifically adapted for bump connectors, e.g. under bump metallisation [UBM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/16227Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01021Scandium [Sc]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01322Eutectic Alloys, i.e. obtained by a liquid transforming into two solid phases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12032Schottky diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/256Heavy metal or aluminum or compound thereof
    • Y10T428/257Iron oxide or aluminum oxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material

Definitions

  • the present disclosure relates generally to wire wrap compositions comprising a polyimide layer and a bonding layer. More specifically, the polyimide layer comprises a sub-micron filler and a polyimide polymer having a hybrid backbone structure.
  • Wire wraps need to have good electrical properties (e.g., dielectric strength), as well as good mechanical properties. High dielectric strength as well as good mechanical properties are required for the vigorous conditions associated with aerospace applications.
  • a wire will be bent into various shapes or directions.
  • the wire wrap covering the wire or cable needs to have the ability to do the same.
  • modulus and elongation are important properties in addition to dielectric strength in wire wrap applications.
  • Conventional wire wrap (cable wrap) fails to provide the desired compactness, with the high mechanical strength.
  • the present disclosure is directed to a wire wrap composition
  • a polyimide layer has a first surface and a second surface
  • the polyimide layer comprises a polyimide and a sub-micron filler.
  • the polyimide is derived from
  • the mole ratio of dianhydride to diamine is 48-52:52-48 and the ratio of X:Y is 20-80:80-20 where X is the mole percent of rigid rod dianhydride and rigid rod diamine, and Y is the mole percent of non-rigid rod dianhydride and non-rigid rod diamine based upon the total dianhydride component and total diamine component of the polyimide; and
  • the sub-micron filler is less than 550 nanometers (as a numerical average) in at least one dimension, has an aspect ratio greater than 3:1, is less than the polyimide layer thickness in all dimensions, and is present in an amount from 10 to 45 volume percent of the polyimide layer.
  • the polyimide layer has a thickness from 5 to 150 microns.
  • the bonding layer has a first surface and a second surface, the bonding layer first surface being adjacent to the polyimide layer first surface, the bonding layer comprising
  • FIG. 1 illustrates a dielectric substrate in accordance with the present invention wrapped around a conductive wire or cable.
  • FIG. 1 illustrates a wrap having no overlap, although as a practical matter, the dielectric substrates of the present invention would typically be wrapped around a wire or cable in an overlapping fashion.
  • Film is intended to mean a free-standing film or a (self-supporting or non self-supporting) coating.
  • film is used interchangeably with the term “layer” and refers to covering a desired area.
  • Dianhydride as used herein is intended to include precursors or derivatives thereof, which may not technically be a dianhydride but would nevertheless functionally equivalent due to the capability of reacting with a diamine to form a polyamic acid which in turn could be converted into a polyimide.
  • Diamine as used herein is intended to include precursors or derivatives thereof, which may not technically be diamines but are nevertheless functionally equivalent due to the capability of reacting with a dianhydride to form a polyamic acid which in turn could be converted into a polyimide.
  • Polyamic acid as used herein is intended to include any polyimide precursor material derived from a combination of dianhydride and diamine monomers or functional equivalents thereof and capable of conversion to a polyimide.
  • Sub-micron is intended to describe particles having (as a numerical average) at least one dimension that is less than a micron.
  • “Chemical conversion” or “chemically converted” as used herein denotes the use of a catalyst (accelerator) or dehydrating agent (or both) to convert the polyamic acid to polyimide and is intended to include a partially chemically converted polyimide which is then dried at elevated temperatures to a solids level greater than 98%.
  • Aspect ratio is intended to mean a ratio of one dimension to another, such as a ratio of length to height.
  • the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion.
  • a method, process, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but may include other elements not expressly listed or inherent to such method, process, article, or apparatus.
  • “or” refers to an inclusive or and not to an exclusive or. For example, a condition A or B is satisfied by any one of the following: A is true (or present) and B is false (or not present), A is false (or not present) and B is true (or present), and both A and B are true (or present).
  • the wire wrap compositions of the present disclosure have a polyimide layer and a bonding layer.
  • the polyimide layer comprises a polyimide and a sub-micron filler.
  • the polyimide has a hybrid backbone structure comprising rigid rod portions and non-rigid rod portions.
  • the sub-micron filler can generally be incorporated into the polyimide layer at relatively high loadings without causing the polyimide layer to be unduly brittle while maintaining or decreasing coefficient of thermal expansion and increasing storage modulus.
  • the polyimides of the present disclosure are derived from the polymerization reaction of certain aromatic dianhydrides with certain aromatic diamines to provide a polymeric backbone structure that comprises both rigid rod portions and non-rigid rod portions.
  • the rigid rod portions arise from the polymerization of aromatic rigid rod monomers into the polyimide, and the non-rigid rod portions arise from the polymerization of non-rigid rod aromatic monomers into the polyimide.
  • Aromatic rigid rod monomers give a co-linear (about 180°) configuration to the polymer backbone, and therefore relatively little movement capability, when polymerized into a polyimide.
  • aromatic rigid rod diamine monomers examples include:
  • aromatic rigid rod dianhydride monomers examples include:
  • Non-rigid rod monomers for purposes of this disclosure are intended to mean aromatic monomers capable of polymerizing into a polyimide backbone structure having substantially greater freedom of movement compared to the rigid rod monomers described and exemplified above.
  • the non rigid rod monomers when polymerized into a polyimide, provide a backbone structure having a bend or otherwise are not co-linear along the polyimide backbone they create (e.g., are not about 180°).
  • Examples of non-rigid rod monomers in accordance with the present disclosure include any diamine and any dianhydride capable of providing a rotational or bending bridging group along the polyimide backbone.
  • rotational or bending bridging groups include —O—, —S—, —SO 2 —, —C(O)—, —C(CH 3 ) 2 —, —C(CF 3 ) 2 —, and —C(R,R′)— where R and R′ are the same or different and are any organic group capable of bonding to a carbon.
  • non-rigid rod diamines examples include: 4,4′-diaminodiphenyl ether (“ODA”), 2,2-bis-(4-aminophenyl)propane, 1,3-diaminobenzene (MPD), 4,4′-diaminobenzophenone, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl sulfide, 4,4′-diaminodiphenyl sulfone, 3,3′-diaminodiphenyl sulfone, bis-(4-(4-aminophenoxy)phenyl sulfone (BAPS), 4,4′-bis-(aminophenoxy)biphenyl (BAPB), 3,4′-diaminodiphenyl ether, 4,4′-diaminobenzophenone, 4,4′-isopropylidenedianiline, 2,2′-bis-(3-
  • non-rigid rod aromatic dianhydrides examples include 2,2′,3,3′-benzophenone tetracarboxylic dianhydride, 2,3,3′,4′-benzophenone tetracarboxylic dianhydride, 3,3′,4,4′-benzophenone tetracarboxylic dianhydride (BTDA), 2,2′,3,3′-biphenyl tetracarboxylic dianhydride, 2,3,3′,4′-biphenyl tetracarboxylic dianhydride, 4,4′-thio-diphthalic anhydride, bis(3,4-dicarboxyphenyl)sulfone dianhydride (DSDA), bis(3,4-dicarboxyphenyl)sulfoxide dianhydride, 4,4′-oxydiphthalic anhydride (ODPA), bis(3,4-dicarboxyphenyl)thio ether dianhydride, 2,2-Bis[4-(3,4-
  • the mole ratio of dianhydride to diamine is 48-52:52-48 and the ratio of X:Y is 20-80:80-20 where X is the mole percent of rigid rod dianhydride and rigid rod diamine, and Y is the mole percent of non-rigid rod dianhydride and non-rigid rod diamine based upon the total dianhydride component and diamine component of the polyimide.
  • 20-80 includes any range between and optionally including 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 and 80
  • 80-20 includes any range between and optionally including 80, 75, 70, 65, 60, 55, 45, 40, 35, 30, and 25).
  • the polyimide of the present disclosure is derived from substantially equal molar amounts of 4,4′-diaminodiphenyl ether (4,4′-ODA) non-rigid rod monomer, and pyromellitic dianhydride (PMDA), rigid rod monomer.
  • 4,4′-ODA 4,4′-diaminodiphenyl ether
  • PMDA pyromellitic dianhydride
  • at least 70 mole percent of the aromatic dianhydride component is pyromellitic dianhydride
  • at least 70 mole percent of the aromatic diamine component is 4,4′-diaminodiphenyl ether.
  • At least 70, 75, 80, 85, 90 or 95 mole percent of the aromatic dianhydride component is pyromellitic dianhydride (based upon total dianydride content of the polyimide); and at least 70, 75, 80, 85, 90 or 95 mole percent of the aromatic diamine component is 4,4′-diaminodiphenyl ether (based upon total diamine content of the polyimide).
  • pyromellitic dianhydride based upon total dianydride content of the polyimide
  • at least 70, 75, 80, 85, 90 or 95 mole percent of the aromatic diamine component is 4,4′-diaminodiphenyl ether (based upon total diamine content of the polyimide).
  • Such PMDA//4,4′ODA polyimides have been found to be particularly well suited for combination with the sub-micron fillers of the present disclosure, for improved properties at a relatively low cost.
  • the polyimide is derived from 100 mole percent pyromellitic dianhydride and 100 mole percent 4,4′-diaminodiphenyl ether.
  • the polyimide is a random copolymer derived from 4,4′-diaminodiphenyl ether and 1,4 diaminobenzene with pyromellitic dianhydride and 3,3′,4,4′-biphenyl tetracarboxylic dianhydride.
  • the polyimide is a random copolymer derived from 4,4′-diaminodiphenyl ether and 1,4 diaminobenzene with pyromellitic dianhydride.
  • At least 75 mole percent of the aromatic dianhydride component is pyromellitic dianhydride and 70 mole percent 4,4′-diaminodiphenyl ether and 30 mole percent 1,4 diaminobenzene as the aromatic diamine component.
  • the polyimide is a block copolymer.
  • a block copolymer is a polymer in which there are sequences of substantially one dianhydride/diamine combination along the polymer backbone as opposed to a completely random distribution of monomer sequences. Typically this is achieved by sequential addition of different monomers during the polyamic acid preparation.
  • the polyimide is block copolymer derived from 4,4′-diaminodiphenyl ether and 1,4-diaminobenzene with pyromellitic dianhydride.
  • the polyimide is a block copolymer is derived from 4,4′-diaminodiphenyl ether (4,4′-ODA) and 1,4-diaminobenzene (PPD) with pyromellitic dianhydride (PMDA) and 3,3′,4,4′-biphenyl tetracarboxylic dianhydride (BPDA).
  • the polyimide is a block copolymer consisting of substantially rigid blocks (PMDA reacted with PPD) and substantially more flexible blocks (PMDA reacted with ODA).
  • the block copolymer is derived from 10 to 40 mole percent blocks of pyromellitic dianhydride and 1,4-diaminobenzene and from 90 to 60 mole percent blocks of pyromellitic dianhydride and 4,4′-diaminodiphenyl ether.
  • the filler is a sub-micron (in at least one dimension) filler or a mixture of sub-micron fillers.
  • the polyimide layer of the present disclosure comprises a sub-micron filler:
  • Suitable sub-micron fillers are generally stable at temperatures above 300, 350, 400, 425 or 450° C., and in some embodiments do not significantly decrease the electrical insulation properties of the polyimide layer.
  • the sub-micron filler is selected from a group consisting of needle-like fillers (acicular), fibrous fillers, platelet fillers and mixtures thereof.
  • the sub-micron filler is substantially non-aggregated.
  • the sub-micron filler can be hollow, porous, or solid.
  • the sub-micron fillers of the present disclosure exhibit an aspect ratio of at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 to 1.
  • the sub-micron filler aspect ratio is 5:1 or greater.
  • the sub-micron filler aspect ratio is 10:1 or greater, and in another embodiment, the aspect ratio is 12:1 or greater.
  • the sub-micron filler is selected from a group consisting of oxides (e.g., oxides comprising silicon, magnesium and/or aluminum), nitrides (e.g., nitrides comprising boron and/or silicon), carbides (e.g., carbides comprising tungsten and/or silicon) and combinations thereof.
  • the sub-micron filler is acicular titanium dioxide, talc, SiC fiber, platy Al 2 O 3 or mixtures thereof. In some embodiments, the sub-micron filler is less than (as a numerical average) 50, 25, 20, 15, 12, 10, 8, 6, 5, 4, or 2 microns in all dimensions.
  • carbon fiber and graphite can be used in combination with other sub-micron fillers to increase mechanical properties.
  • the loading of graphite, carbon fiber and/or electrically conductive fillers may need to be below the percolation threshold (perhaps less than 10 volume percent), since graphite and carbon fiber fillers can diminish electrical insulation properties and in some embodiments, diminished electrical insulation properties are not desirable.
  • the sub-micron filler is coated with a coupling agent. In some embodiments, the sub-micron filler is coated with an aminosilane coupling agent. In some embodiments, the sub-micron filler is coated with a dispersant. In some embodiments, the sub-micron filler is coated with a combination of a coupling agent and a dispersant. In some embodiments, the sub-micron filer is coated with a coupling agent, a dispersant or a combination thereof. Alternatively, the coupling agent and/or dispersant can be incorporated directly into the polyimide layer and not necessarily coated onto the sub-micron filler. In some embodiments, the sub-micron filler comprises a acicular titanium dioxide, at least a portion of which is coated with an aluminum oxide.
  • the sub-micron filler is chosen so that it does not itself degrade or produce off-gasses at the desired processing temperatures. Likewise in some embodiments, the sub-micron filler is chosen so that it does not contribute to degradation of the polymer.
  • filler composites e.g. single or multiple core/shell structures
  • one oxide encapsulates another oxide in one particle.
  • polyimides can be filled with sub-micron filler of the present disclosure and thereby perform, at least in some ways, more similarly to more expensive polyimides, but at a much lower cost. More expensive monomers such as BPDA or fluorinated monomers can at least in part (or entirely) be replaced with less expensive monomers. In addition to expensive monomers, some polyimides are more difficult to process commercially, such as BPDA//PPD due to blistering. Lower production rates drive up the cost of the film. Additionally, polyimides derived from all rigid rod monomers may have low CTE and high modulus but, when filled, have low elongation.
  • submicron fillers that have an aspect ratio of 3:1 or greater can be incorporated at relatively high loading levels (10 to 45 volume percent) into less expensive, easily processable polyimides.
  • the sub-micron filler of the present disclosure tends to increase the storage modulus and decrease or approximately maintain the CTE of the polyimide layer of the present disclosure with out causing the polyimide layer to become unduly brittle.
  • the sub-micron filler of the present disclosure may not behave in the same manner in all polyimides. Surprisingly in a rigid rod polyimide (BPDA//PPD) the CTE may be greater than in unfilled rigid rod polyimide.
  • BPDA//PPD rigid rod polyimide
  • the sub-micron filler of the present disclosure when incorporated into the polyimides of the present disclosure, produce polyimide layers having better properties (or balance of properties) compared to their conventional non-high aspect ratio (less than 3:1 aspect ratio) counterparts.
  • the polyimide layer comprises a polyimide derived from 100 mole percent of pyromellitic dianhydride as the aromatic dianhydride component; and 100 mole percent 4,4′-diaminodiphenyl ether as the aromatic diamine component and the sub-micron filler is acicular titanium dioxide, talc, SiC fiber, platy Al 2 O 3 or mixture thereof.
  • the polyimide is a homopolymer of pyromellitic dianhydride and 4,4′-diaminodiphenyl ether.
  • the polyimide layer comprises a polyimide wherein the polyimide is block copolymer derived from: 10 to 40 mole percent blocks of pyromellitic dianhydride and 1,4 diaminobenzene; from 90 to 60 mole percent blocks of pyromellitic dianhydride and 4,4′-diaminodiphenyl ether and the sub-micron filler is acicular titanium dioxide, talc, SiC fiber, platy Al 2 O 3 or mixture thereof.
  • the polyimide is block copolymer derived from: 10 to 40 mole percent blocks of pyromellitic dianhydride and 1,4 diaminobenzene; from 90 to 60 mole percent blocks of pyromellitic dianhydride and 4,4′-diaminodiphenyl ether and the sub-micron filler is acicular titanium dioxide, talc, SiC fiber, platy Al 2 O 3 or mixture thereof.
  • the polyimide layers of the present disclosure are generally useful for insulating electrical conductors, particularly electrical wires and cables, and can generally be manufactured by combining a polyimide layer with at least one bonding layer.
  • the sub-micron filler will substantially maintain (within 80, 70. 60, 50, 40, 30, 20, 10, 5, 4, 3, 2, or 1 percent, plus or minus) the coefficient of thermal expansion (CTE) while improving mechanical and thermal properties.
  • CTE coefficient of thermal expansion
  • the polyimide layers of the present disclosure have an in-plane CTE in a range between (and optionally including) any two of the following: 1, 5, 10, 15, 20, 25, 30 and 35 ppm/° C., where the in-plane coefficient of thermal expansion (CTE) is measured between 60° C. (or 50° C.) and 350° C.
  • CTE in-plane coefficient of thermal expansion
  • Some unfilled block or random copolymers of the present disclosure can have a relatively low CTE.
  • sub-micron fillers of the present disclosure have little impact on a block copolymer CTE.
  • the sub-micron fillers of the present disclosure may increase the CTE of block or random copolymers having a low CTE but the CTE is still maintained in a desirable range.
  • the thickness of a polyimide layer can also impact CTE, where thinner films tend to give a lower CTE (and thicker films, a higher CTE), and therefore, polyimide layer thickness can be used to fine tune polyimide layer CTE, depending upon any particular application selected.
  • the polyimide layers of the present disclosure have a thickness in a range between (and optionally including) any of the following thicknesses (in microns): 5, 6, 8, 10, 12, 15, 20, 25, 50, 75, 100, 125 and 150 microns.
  • Monomers and sub-micron fillers within the scope of the present disclosure can also be selected or optimized to fine tune CTE within the above range. Ordinary skill and experimentation may be necessary in fine tuning any particular CTE of the polyimide layers of the present disclosure, depending upon the particular application.
  • the in-plane CTE of the polyimide layer can be obtained by thermomechanical analysis utilizing a TA Instruments TMA-2940 run at 10° C./min, up to 400° C., then cooled and reheated to 400° C., with the CTE in ppm/° C. obtained during the reheat scan between 50° C. and 350° C.
  • the in-plane CTE of the polyimide layer can be obtained by Thermal Mechanical Analysis (TA Instruments, TMA-2940, heat 10° C./min, up to 460° C., then cooled and reheat to 500° C.) was evaluated between 50-350° C. on the reheat.
  • the in-plane CTE of the polyimide layer can be obtained by Thermal Mechanical Analysis (TA Instruments, TMA-2940, heat 10° C./min, up to 380° C., then cooled and reheated to 380° C.) and evaluated between 50-350° C. on the reheat.
  • Thermal Mechanical Analysis TA Instruments, TMA-2940, heat 10° C./min, up to 380° C., then cooled and reheated to 380° C.
  • the sub-micron filler increases the storage modulus above the glass transition temperature (Tg) of the polyimide. In some embodiments, the sub-micron filler of the present disclosure increases the storage modulus at 25° C. at least 20, 22, 24, 26, 28 or 30% compared to sub-micron filler having an aspect ratio less than 3:1. In some embodiments, the sub-micron filler of the present disclosure increases the storage modulus at 480° C. to 500° C. at least 40, 42, 44 or 46% compared to sub-micron filler having an aspect ration less than 3:1. In some embodiments, the sub-micron filler of the present disclosure increases the storage modulus at 25° C. at least 38, 40, 42, 44 or 46% compared to unfilled polyimide. In some embodiments, the sub-micron filler of the present disclosure increases the storage modulus at 480° C. to 500° C. at least 52, 53, 54 or 55% compared to unfilled polyimide.
  • Tg glass transition temperature
  • the tensile elongation remains acceptable when greater than 10 volume percent of the sub-micron filler is used. In one embodiment, the tensile elongation remains acceptable when greater than 30 volume percent of the sub-micron filler is used. In yet another embodiment, the tensile elongation remains acceptable when greater than 40 volume percent of the sub-micron filler is used.
  • Polyimide layers of the present disclosure can be made by methods well known in the art.
  • the polyimide layer can be produced by combining the above monomers together with a solvent to form a polyamic acid (also called a polyamide acid solution).
  • the dianhydride and diamine components are typically combined in a molar ratio of aromatic dianhydride component to aromatic diamine component of from 0.90 to 1.10. Molecular weight can be adjusted by adjusting the molar ratio of the dianhydride and diamine components.
  • a polyamic acid casting solution is derived from the polyamic acid solution.
  • the polyamic acid casting solution comprises the polyamic acid solution combined with conversion chemicals, such as: (i) one or more dehydrating agents, such as, aliphatic acid anhydrides (acetic anhydride, etc.) and aromatic acid anhydrides; and (ii) one or more catalysts, such as, aliphatic tertiary amines (triethylamine, etc.), aromatic tertiary amines (dimethylaniline, etc) and heterocyclic tertiary amines (pyridine, picoline, isoquinoline, etc).
  • conversion chemicals such as: (i) one or more dehydrating agents, such as, aliphatic acid anhydrides (acetic anhydride, etc.) and aromatic acid anhydrides; and (ii) one or more catalysts, such as, aliphatic tertiary amines (triethylamine, etc.), aromatic tertiary
  • the anhydride dehydrating material is often used in a molar excess of the amount of amide acid groups in the copolyamic acid.
  • the amount of acetic anhydride used is typically about 2.0-3.0 moles per equivalent of amide acid.
  • a comparable amount of tertiary amine catalyst is used.
  • the polyamic acid is dissolved in an organic solvent at a concentration from about 5 weight percent up to and including 40 weight percent. In one embodiment, the polyamic acid is dissolved in an organic solvent at a concentration of about 5, 10, 15, 20, 25, 30, 35 or 40 weight percent.
  • suitable solvents include: formamide solvents (N,N-dimethylformamide, N,N-diethylformamide, etc.), acetamide solvents (N,N-dimethylacetamide, N,N-diethylacetamide, etc.), pyrrolidone solvents (N-methyl-2-pyrrolidone, N-vinyl-2-pyrrolidone, etc.), phenol solvents (phenol, o-, m- or p-cresol, xylenol, halogenated phenols, catechol, etc.), hexamethylphosphoramide and gamma-butyrolactone. It is desirable to use one of these solvents or mixtures thereof.
  • the prepolymer can be prepared and combined with the sub-micron filler (dispersion or colloid thereof) using numerous variations to form the polyimide layer of this disclosure.
  • “Prepolymer” is intended to mean a lower molecular weight polymer, typically made with a small stoichiometric excess (about 2-4%) of diamine monomer (or excess dianhydride monomer). Increasing the molecular weight (and solution viscosity) of the prepolymer can be accomplished by adding incremental amounts of additional dianhydride (or additional diamine, in the case where the dianhydride monomer is originally in excess in the prepolymer) in order to approach a 1:1 stoichiometric ratio of dianhydride to diamine.
  • the sub-micron filler (dispersion or colloid thereof) can be added at several points in the polyimide layer preparation.
  • the colloid or dispersion is incorporated into a prepolymer to yield a Brookfield solution viscosity in the range of about 50-100 poise at 25° C.
  • the colloid or dispersion can be combined with the monomers directly, and in this case, polymerization occurs with the filler present during the reaction.
  • the monomers may have an excess of either monomer (diamine or dianhydride) during this “in situ” polymerization.
  • the monomers may also be added in a 1:1 ratio.
  • the polyamic acid casting solution can then be cast or applied onto a support, such as an endless belt or rotating drum.
  • the polyamic acid contain conversion chemical reactants.
  • the solvent-containing film can be converted into a self-supporting film by baking at an appropriate temperature (thermal curing) to remove solvent or baking together with the chemical conversion reactants (chemical curing).
  • the film can then be separated from the support, oriented such as by tentering, with continued thermal curing to provide a film (polyimide layer).
  • film smoothness is desirable, since surface roughness: i. can interfere with the functionality of the layer or layers deposited on the filled polyimide layer of the present disclosure, ii. can increase the probability of electrical or mechanical defects, and iii. can diminish property uniformity along the polyimide layer.
  • the sub-micron filler (and any other discontinuous domains) are sufficiently dispersed during polyimide layer formation, such that the sub-micron filler (and any other discontinuous domains) are sufficiently between the surfaces of the polyimide layer upon polyimide layer formation to provide a final polyimide layer having an average surface roughness (Ra) of less than 1000, 750, 500 or 400 nanometers.
  • Surface roughness as provided herein can be determined by optical surface profilometry to provide Ra values, such as, by measuring on a Veeco Wyco NT 1000 Series instrument in VSI mode at 25.4 ⁇ or 51.2 ⁇ utilizing Wyco Vision 32 software.
  • the polyamic acid (and casting solution) can further comprise any one of a number of additives, such as processing aids (e.g., oligomers), antioxidants, light stabilizers, flame retardant additives, anti-static agents, heat stabilizers, ultraviolet absorbing agents, fillers or various reinforcing agents.
  • processing aids e.g., oligomers
  • antioxidants e.g., oligomers
  • light stabilizers e.g., oligomers
  • flame retardant additives e.g., anti-static agents
  • heat stabilizers e.g., ultraviolet absorbing agents
  • fillers e.g., fillers or various reinforcing agents.
  • alkoxy silane coupling agent (or any conventional, nonconventional, presently known or future discovered coupling agent) can be added during the process by pretreating the sub-micron filler prior to formulation.
  • Alkoxysilane coupling agents can also be added during the “in situ” polymerization by combining the fillers and monomers with the alkoxysilane, generally so long as the coupling agent does not interfere with the polymerization reaction.
  • the dianhydride can be contacted with the sub-micron filler. While not intending to be bound to any particular theory or hypothesis, it is believed such contact between the dianhydride and the sub-micron filler can functionalize the sub-micron filler with the dianhydride prior to further reaction with the monomers or prepolymer.
  • a filled polyamic acid composition is generally cast into a film, which is subjected to drying and curing (chemical and/or thermal curing) to form a filled polyimide film. Any conventional or non-conventional method of manufacturing filled polyimide films can be used in accordance with the present disclosure. The manufacture of filled polyimide films in general is well known and need not be further described here.
  • the polyimide used in polyimide layer of the present disclosure has a high glass transition temperature (Tg) of greater than 300, 310, 320, 330, 340, 350, 360, 370 380, 390 or 400° C.
  • Tg glass transition temperature
  • a high Tg generally helps maintain mechanical properties, such as storage modulus, at high temperatures.
  • electrically insulating fillers may be added to modify the electrical properties of the polyimide layer.
  • filtering can be done at any stage of the polyimide layer manufacture, such as, filtering solvated filler before or after it is added to one or more monomers and/or filtering the polyamic acid, particularly when the polyamic acid is at low viscosity, or otherwise, filtering at any step in the manufacturing process that allows for filtering.
  • such filtering is conducted at the minimum suitable filter pore size or at a level just above the largest dimension of the selected filler material.
  • the sub-micron filler is subjected to intense dispersion energy, such as agitation and/or high shear mixing or media milling or other dispersion techniques, including the use of dispersing agents, when incorporated into the film (or incorporated into a polyimide precursor) to inhibit unwanted agglomeration above the desired maximum filler size or to break up aggregates which may be originally present in the sub-micron filler.
  • intense dispersion energy such as agitation and/or high shear mixing or media milling or other dispersion techniques, including the use of dispersing agents
  • a single layer film can be made thicker in an attempt to decrease the effect of defects caused by unwanted (or undesirably large) discontinuous phase material within the film.
  • multiple layers of polyimide may be used to diminish the harm of any particular defect (unwanted discontinuous phase material of a size capable of harming desired properties) in any particular layer, and generally speaking, such multilayers will have fewer defects in performance compared to a single polyimide layer of the same thickness.
  • Using multiple layers of polyimide films can diminish or eliminate the occurrence of defects that may span the total thickness of the film, because the likelihood of having defects that overlap in each of the individual layers tends to be extremely small. Therefore, a defect in any one of the layers is much less likely to cause an electrical or other type failure through the entire thickness of the film.
  • the polyimide layer comprises two or more polyimide layers. In some embodiments, the polyimide layers are the same. In some embodiments, the polyimide layers are different. In some embodiments, the polyimide layers independently may comprise a thermally stable filler, reinforcing fabric, inorganic paper, sheet, scrim or combinations thereof. Optionally, 0-55 weight percent of the film also includes other ingredients to modify properties as desired or required for any particular application.
  • the polyimide layer may have its surface modified to improve adhesion of the core layer to other layers.
  • useful surface modification is, but are not limited to, corona treatment, plasma treatment under atmospheric pressure, plasma treatment under reduced pressure, treatment with coupling agents like silanes and titanates, sandblasting, alkali-treatment, and acid-treatment.
  • organic and/or inorganic metal compounds e.g. metal oxides and/or metal complexes.
  • Addition of these metal compounds is disclosed for example in U.S. Pat. No. 4,742,099 (tin compounds, titanium compounds, etc.). Commonly, these metal compounds are added to the polyamic acid or are applied to an uncured wet film. Addition of organic compounds may also be used to improve adhesion strength between the polyimide layer and any adjacent layers.
  • the bonding layer generally provides the polyimide layer with excellent resistance to mechanical degradation, especially scrape abrasion and cut-through. Improved scrape abrasion resistance (i.e. improved resistance to ultimate mechanical failure of the insulation system) generally can be particularly useful in applications where unwanted electrical arc tracking (seen when the insulation is mechanically degraded) is of great concern.
  • the bonding layer also provides improved bonding performance between any exterior layer (such as polytetrafluoroethylene) and the interior polyimide core layer.
  • the bonding layer a poly(tetrafluoroethylene-co-perfluoro[alkyl vinyl ether]) in an amount between (and optionally including) any two of the following numbers: 65 70, 75, 80, 85, 90, 95 and 100 weight percent based on the total weight of the bonding layer.
  • a polyimide adhesive may be used as the bonding layer.
  • the bonding layer is tetrafluoroethylene hexafluoropropylene copolymer or a poly(ethylene-co-tetrafluoroethylene).
  • the bonding layer is poly(tetrafluoroethylene-co-perfluoro [alkyl vinyl ether])
  • the bonding layer may optionally be blended with up to 35 weight percent (based on the total weight percent of the bonding layer) of a tetrafluoroethylene hexafluoropropylene copolymer (FEP) fluoropolymer.
  • FEP tetrafluoroethylene hexafluoropropylene copolymer
  • the bonding layer will generally have a thickness in a range between (and optionally including) any two of the following numbers: 0.25, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.25, 1.5, 1.75, 2, 3, 4, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 and 25 microns.
  • a useful thickness range is oftentimes in a range from about 0.75 microns to 2.5 microns (generally in the range of about 0.03 to about 0.10 mils). In practice, the desired thickness can depend upon the particular wire specifications, particularly for military or commercial aircraft applications.
  • the bonding layer may be applied to the polyimide layer or the optional adhesive primer layer by, but not limited to, colloidal aqueous dispersion coating or lamination.
  • the wire wrap of the present disclosure comprised a polyimide layer and a bonding layer.
  • the polyimide layer has a first surface and a second surface.
  • the bonding layer has a first and second surface. In some embodiments, the bonding layer first surface being adjacent to the polyimide layer first surface.
  • the wire wrap of the present disclosure may optionally contain additional adhesive layers to improve adhesion between different layers or surfaces or even to improve adhesion to the wire wrap itself (when the wire wrap is applied in an overlapping fashion).
  • the wire wrap composition comprises a polyimide-to-metal bonding layer in contact with the polyimide layer second surface, the polyimide-to-metal bonding layer comprising from 70 to 100 weight percent poly(tetrafluoroethylene-co-hexafluoropropylene) based on the total weight of the polyimide-to-metal bonding layer.
  • the optional polyimide-to-metal bonding layer is oftentimes used as the innermost layer, generally intended for placement substantially adjacent to an electrically conductive wire (or cable) located substantially at the center of a wrapped system.
  • the polyimide-to-metal bonding layer can be used to improve adhesion of the polyimide layer to the wire or cable.
  • the polyimide-to-metal bonding layer may comprise up to 30 weight percent, based on the total weight of the polyimide-to-metal bonding layer, additional fluoropolymers including, but not limited to, polytetrafluoroethylene, poly(tetrafluoroethylene-co-perfluoro[alkyl vinyl ether]) (for example, Teflon® PFA) or poly(ethylene-co-tetrafluoroethylene) (ETFE).
  • additional fluoropolymers including, but not limited to, polytetrafluoroethylene, poly(tetrafluoroethylene-co-perfluoro[alkyl vinyl ether]) (for example, Teflon® PFA) or poly(ethylene-co-tetrafluoroethylene) (ETFE).
  • the polyimide-to-metal bonding layer thickness is between (and optionally including) any two of the following: 0.25, 0.5, 0.7, 1, 5, 10, 15, 20 and 25.0 microns. In another embodiment the polyimide-to-metal bonding layer thickness is from 8 to 20 microns.
  • the wire wrap composition comprises adhesive primer layer in contact with and between the polyimide layer first surface and the bonding layer first surface, the adhesive primer layer comprising from 70 to 100 weight percent poly(tetrafluoroethylene-co-hexafluoropropylene) based on the total weight of the adhesive primer layer.
  • the optional adhesive primer layer can be used to improve adhesion between the bonding layer and the polyimide layer.
  • the adhesive primer layer may comprise up to 30 weight percent, based on the total weight of the adhesive primer layer, additional fluoropolymers including, but not limited to, polytetrafluoroethylene, poly(tetrafluoroethylene-co-perfluoro[alkyl vinyl ether]) or poly(ethylene-co-tetrafluoroethylene) (ETFE).
  • additional fluoropolymers including, but not limited to, polytetrafluoroethylene, poly(tetrafluoroethylene-co-perfluoro[alkyl vinyl ether]) or poly(ethylene-co-tetrafluoroethylene) (ETFE).
  • the adhesive primer layer thickness is between (and optionally including) any two of the following: 0.25, 0.5, 0.7, 1, 5, 10, 15, 20 and 25.0 microns. In another embodiment the adhesive primer layer thickness is from 8 to 20 microns.
  • the polyimide-to-metal bonding layer and the adhesive primer layer may be the same or different.
  • the wire wrap composition additionally comprises an polytetrafluoroethylene exterior layer in contact with the bonding layer second surface.
  • the exterior layer will generally provide some scrape abrasion resistance, chemical resistance, and thermal durability when the structure is wrapped about a wire or cable or the like.
  • the exterior layer thickness is generally between (and optionally including) any two of the following: 1, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180 and 200 microns. In another embodiment the exterior layer thickness is from 2 to 50 microns. In some embodiments, other fluoropolymers can optionally be blended with polytetrafluoroethylene. In some embodiments, the polytetrafluoroethylene exterior layer is partially or wholly sintered.
  • a wire wrap 14 in accordance with the present invention is sealed around a wire or cable 2 .
  • the polyimide layer 6 generally provides mechanical toughness and dielectric strength at high temperatures.
  • the optional polyimide-to-metal (PTM) layer 4 generally provides improved adhesion of the polyimide core layer to the metal wire or surface and/or wire wrap itself.
  • the optional adhesive primer layer 8 generally provides improved adhesive strength between the bonding layer 10 and the polyimide core layer 6 .
  • the bonding layer 10 generally provides for improved mechanical resistance to scrape abrasion and cut through.
  • the optional outer PTFE layer 12 generally provides improved thermal aging resistance, chemical resistance, and resistance to electrical arc tracking.
  • the optional polyimide-to-metal bonding layer and adhesive primer layer can be coated onto the polyimide layer in the form of an aqueous dispersion.
  • the optional polytetrafluoroethylene exterior layer can be applied separately as a porous, sinterable laminate tape and then partially or wholly sintered (and heat-sealed) generally under high temperature to wholly or partially densify and adhere the polytetrafluoroethylene exterior layer to the other layers of the present disclosure.
  • additives can be incorporated into one or more of the layers to improve the performance of any particular layer at elevated temperatures.
  • Films or sheets of the wire wrap compositions of the present disclosure can be slit into narrow widths to provide tapes. These tapes can then be wound around an electrical conductor in spiral fashion with or without an overlap. The amount of overlap can vary, depending upon the angle of the wrap.
  • the tension employed during the wrapping operation can also vary widely, ranging from just enough tension to prevent wrinkling, to a tension high enough to stretch and neck down the tape. Even when the tension is low, a snug wrap is possible since the tape will often shrink under the influence of heat during any ensuing heat-sealing operation. Heat-sealing of the tape can be accomplished by treating the tape-wrapped conductor at a temperature and time sufficient to fuse the bonding layer to the other layers in the composite.
  • the heat-sealing temperature required ranges generally from 240, 250, 275, 300, 325 or 350° C. to 375, 400, 425, 450, 475 or 500° C., depending upon the insulation thickness, the gauge of the metal conductor, the speed of the production line and the length of the sealing.
  • Examples 1-4 demonstrate that the sub-micron filler of the present disclosure at 10 volume percent or higher significantly increase storage modulus and lower CTE when compared to unfilled Comparative Example 1, while maintaining adequate elongation to break.
  • a 6 wt % solution of pyromellitic anhydride was prepared by combining 9.00 g of PMDA (Aldrich 412287, Allentown, Pa.) and 15 ml of DMAC.
  • the PMDA solution was slowly added to the prepolymer slurry to achieve a final viscosity of 1090 poise.
  • the formulation was stored overnight at 0° C. to allow it to degas.
  • the formulation was cast using a 25 mil doctor blade onto a surface of a glass plate to form a 3′′ ⁇ 4′′ film.
  • the cast film and the glass plate are then soaked in a solution containing 110 ml of 3-picoline (beta picoline, Aldrich, 242845) and 110 ml of acetic anhydride (Aldrich, 98%, P42053).
  • the film was subsequently lifted off of the glass surface, and mounted on a 3′′ ⁇ 4′′ pin frame.
  • the mounted film was placed in a furnace (Thermolyne, F6000 box furnace). The furnace was purged with nitrogen and heated according to the following temperature protocol:
  • thermomechanical analysis TMA
  • a TA Instrument model 2940 was used in tension mode. The instrument was purged with N 2 gas at 30-50 ml/min. A mechanical cooler was also used, which allowed temperature of the instrument to rapidly cool down between heating cycles.
  • the film was cut to a 2.0 mm width and 6-9 mm length (in MD or casting direction). The film was clamped lengthwise to a length of 7.5-9.0 mm. A preload tension was set for 5 grams of force.
  • the film was then subjected to heating from 0° C. to 400° C. at 10° C./min rate, held at 400° C. for 3 minutes, and cooled back down to 0° C. A second heating cycle to 400° C. was performed in the same way.
  • the calculations of thermal expansion coefficient in the unit of ⁇ m/m-° C. (or pp/° C.) from 60° C. to 400° C. were reported for the casting direction (MD) for the second heating cycle.
  • E′ Storage modulus
  • DMA Dynamic Mechanical Analysis
  • the static force in the length direction was 0.05 N with autotension of 125%.
  • the film was heated at frequency of 1 Hz from 0° to 500° C. at a rate of 3° C./min.
  • the storage modulus at 25° C. was measured to be 5757 MPa.
  • Tensile properties (including % elongation at break) of the films were measured on an Instron model 3345 instrument.
  • Crosshead gap (sample test length) was 1 inch (2.54 centimeters) and width was 0.5 inch (1.27 centimeters).
  • Crosshead speed was 1 inch (2.54 centimeters)/min.
  • Example 2 The same procedure as described in Example 1 was followed, with the following exceptions. 54.24 grams of the slurry containing acicular TiO 2 (FTL-110, 15 wt % in DMAC) was mixed with 136.15 grams of PMDA//ODA prepolymer (20 wt % in DMAC).
  • the material was finished with the PMDA solution to a viscosity of 899 poise.
  • Example 2 The same procedure as described in Example 1 was followed, with the following exceptions. 57.7 grams of the slurry containing acicular TiO 2 (FTL-110, 15 wt % in DMAC, high shear mixed) was combined with 63.3 grams of PMDA//ODA prepolymer (20.6 wt % in DMAC).
  • the material was finished with the PMDA solution to a viscosity of 1380 poise.
  • Example 2 The same procedure as described in Example 1 was followed, except for the following differences. 24.75 grams of SiC fibers (Silar® Silicon Carbide whiskers, beta form, Advanced Composites Materials, Greer, S.C., USA) was combined with 140.25 grams of anhydrous DMAC. The slurry was blended under high shear conditions, as described in Example 1.
  • SiC fibers Silicon Carbide whiskers, beta form, Advanced Composites Materials, Greer, S.C., USA
  • Example 2 The same procedure as described in Example 1 was followed, with the following exceptions.
  • the slurry containing the inorganic particles was not added to the PDMA//ODA prepolymer (prepolymer is 20 wt % in DMAC).
  • the material was finished with the PMDA solution to a viscosity of 890 poise.
  • Comparative Examples 2-5 demonstrate the sub-micron filler of the present disclosure present below 10 volume percent does not produce a significant increase in storage modulus (especially storage modulii at 500° C.) or decrease CTE (relatively minor improvement in storage modulus and CTE).
  • Example 2 A procedure similar to that described in Example 1 was used, except for the following differences. 24.08 grams of acicular TiO 2 (FTL-110, Ishihara Corporation, USA) was combined with 135.92 grams of anhydrous DMAC, and the slurry mixed at high shear.
  • Example 2 A procedure similar to that described in Example 1 was used, except for the following differences. 24.08 grams of acicular TiO 2 (FTL-110, Ishihara Corporation, USA) was combined with 135.92 grams of anhydrous DMAC, and the slurry mixed at high shear.
  • Example 2 A procedure similar to that described in Example 1 was used, except for the following differences. 24.08 grams of acicular TiO 2 (FTL-110, Ishihara Corporation, USA) was combined with 135.92 grams of anhydrous DMAC, and the slurry mixed at high shear.
  • Example 2 A procedure similar to that described in Example 1 was used, except for the following differences. 24.08 grams of acicular TiO 2 (FTL-110, Ishihara Corporation, USA) was combined with 135.92 grams of anhydrous DMAC, and the slurry mixed at high shear.
  • Comparative Example 6 demonstrates that filler having an aspect ratio less than 3:1 produces a film with lower storage modulus and higher CTE compared to Example 1 which has sub-micron filler with an aspect ratio of at least 3:1 at 15 volume percent. The film was brittle on the edges, and would not be viable in a commercial manufacturing process.
  • Example 2 The same procedure as described in Example 1 was followed, with the following exceptions. 33.84 grams of the slurry containing Du Pont Light Stabilized Titania, 210 (DuPont, Wilmington Del., 25 wt % in DMAC, high shear mixed) was combined with 86.2 grams of PMDA//ODA prepolymer (20.6 wt % in DMAC).
  • the material was finished with the PMDA solution to a viscosity of 1100 poise.
  • Du Pont Titania 210 is a fine white powder with a distribution of particles centered in the range of 130-140 nm on a weight basis. The particles are roughly spherical.
  • Comparative Examples 8-9 demonstrate that the sub-micron filler of the present disclosure does not behave predictably in all polyimides.
  • CTE dramatically increases (greater than a factor of 2) with approximately 15 vol % of acicular of TiO 2 is introduced.
  • BPDA//PPD prepolymer (69.3 g of a 17.5 wt % solution in anhydrous DMAC) was combined with 5.62 g of acicular TiO 2 (FTL-110, Ishihara Corporation, USA) and the resulting slurry was stirred for 24 hours.
  • FTL-110 acicular TiO 2
  • a 6 wt % solution of pyromellitic anhydride (PMDA) was prepared by combining 0.9 g of PMDA (Aldrich 412287, Allentown, Pa.) and 15 ml of DMAC.
  • the PMDA solution was slowly added to the prepolymer slurry to achieve a final viscosity of 653 poise.
  • the formulation was stored overnight at 0° C. to allow it to degas.
  • the formulation was cast using a 25 mil doctor blade onto a surface of a glass plate to form a 3′′ ⁇ 4′′ film.
  • the glass was pretreated with a release agent to facilitate removal of the film from the glass surface.
  • the film was allowed to dry on a hot plate at 80° C. for 20 minutes. The film was subsequently lifted off the surface, and mounted on a 3′′ ⁇ 4′′ pin frame.
  • the mounted film was placed in a furnace (Thermolyne, F6000 box furnace).
  • the furnace was purged with nitrogen and heated according to the following temperature protocol:
  • the elongation to break is very low.
  • the film is too brittle to be manufacturable.
  • Example 2 The same procedure as described in Example 1 was used, except for the following differences. 33.99 grams of acicular TiO 2 (FTL-110, Ishihara Corporation, USA) was combined with 191.9 grams of anhydrous DMAC. This slurry was mixed at high shear for approximately 10 to 15 minutes using Silverson Model L4RT high-shear mixer (Silverson Machines, LTD, Chesham Baucks, England) equipped with a square-hole, high-shear screen (with a blade speed of approximately 4000 rpm).
  • Silverson Model L4RT high-shear mixer Silverson Model L4RT high-shear mixer (Silverson Machines, LTD, Chesham Baucks, England) equipped with a square-hole, high-shear screen (with a blade speed of approximately 4000 rpm).
  • BPDA//PPD prepolymer (17.5 wt % solution in anhydrous DMAC) was combined with 69.335 grams of the slurry containing acicular TiO 2 . The resulting slurry was stirred for 24 hours.
  • a 6 wt % solution of pyromellitic anhydride (PMDA) was prepared by combining 0.9 g of PMDA (Aldrich 412287, Allentown, Pa.) and 15 ml of DMAC.
  • the PMDA solution was slowly added to the prepolymer slurry to achieve a final viscosity of 998 poise.
  • the film was lifted off of the glass surface, and mounted on a 3′′ ⁇ 4′′ pin frame.
  • the mounted film was placed in a furnace (Thermolyne, F6000 box furnace). The furnace was purged with nitrogen and heated according to the following temperature protocol:
  • the solution was degassed under vacuum to remove air bubbles and then this solution was cast onto a letter size sheet of clear polyester film (approximately 3 mil thick).
  • the polyamic acid coating on the polyester sheet was subsequently immersed in a bath containing a 1/1 v/v mixture of acetic anhydride and 3-picoline. After about 2 minutes, once the partially imidized coating began to separate from the polyester sheet, it was removed from the bath and pinned on a approximately 8′′ ⁇ 8′′ pin frame and allow to stand at room temperature in a lab hood for about 10-20 min. Next, the film on the pin frame was placed in a nitrogen purged oven and after purging at about 40° C.
  • this oven was ramped to 320° C. over 70 minutes, held there for 30 minutes, then ramped to 450° C. over about 16 minutes, and held there for 4 minutes, in order to cure to polyimide. After cooling, the resulting 2.4 mil (61 micron) film was removed from the oven and pin frame.
  • E′ Storage modulus (E′) by Dynamic Mechanical Analysis (TA Instruments, DMA-2980, 5° C./min) was measured by heating from room temperature to 500° C. at 5° C./min.
  • CTE Coefficient of thermal expansion
  • TMA-2940 Thermal Mechanical Analysis
  • Comparative Example 11 demonstrates talc below about 5.5 volume percent does not behave predictably.
  • Examples 5-9 demonstrate talc above about 5.5 volume percent significantly increase storage modulus and lower CTE while maintaining adequate elongation to break.
  • Example 2 The same procedure as described in Example 1 was followed, with the following exceptions. 25 grams of talc (Flextalc 610, Kish Company, Inc., Mentor, Ohio) was mixed, at high shear, with 141 grams of anhydrous DMAC.
  • talc Frextalc 610, Kish Company, Inc., Mentor, Ohio
  • the PMDA//ODA prepolymer was blended with SF310 talc to achieve about a 50 wt % loading in the PI film. Finishing, filtration, casting and curing was similar to as described in Comparative Example 10 Filler loading was approximately 50 wt % in the polyimide film. A 1.8 mil (46 micron) film was produced.
  • Examples 10-11 demonstrate sub-micron fillers of the present disclosure in polyimide copolymers above 10 volume percent significantly increases storage modulus and lowers CTE when compared to unfilled copolymer in Comparative Example 13.
  • Examples 12 and 13 demonstrate that a mixture of sub-micron fillers of the present disclosure significantly increase storage modulus and lower CTE when compared to unfilled polyimide in Comparative Example 10.
  • a 168.21 g portion of a prepolymer of PMDA and ODA (prepared in DMAC at about 20.6%, approximately 50 poise viscosity) was blended together with 4.60 g SF310 talc and 20.46 g FTL-110 TiO 2 (45% slurry as described in Example 11 to achieve 10 wt % and 20 wt % loading respectively of the sub-micron fillers in the PI film (30 wt % total). Finishing, filtration, casting and curing was similar to as described in Comparative Example 10. A 1.0 mil (25 micron) film was produced.
  • Example 12 In a similar manner to Example 12, a 173.13 portion of the PMDA//ODA prepolymer was blended together with 9.45 g SF310 talc and 10.50 g FTL-110 TiO 2 (45% slurry as described in Example 11) to achieve 20 wt % and 10 wt % loading respectively of the sub-micron fillers in the PI film (30 wt % total). Finishing, filtration, casting and curing was similar to as described in Comparative Example 10. A 2.2 mil (56 micron) film was produced.
  • Examples 14 and 15 demonstrate a TiO 2 sub-micron filler of the present disclosure does not behave in the same manner in all polyimides in regards to CTE.
  • High aspect ratio TiO 2 in the block copolymer of Example 14 significantly increases storage modulus while largely maintaining CTE compared to unfilled block copolymer of Comparative Example 13.
  • Example 1 A similar procedure as described in Example 1 was used, except for the following differences. To prepare the prepolymer, 1.36 grams of PPD was combined with 110.0 grams of anhydrous DMAC and stirred, with gentle heating at 40° C. for approximately 20 minutes. 2.71 grams of PMDA was then added to this mixture to create the first block, which was stirred with gentle heating (35-40° C.) for approximately 2.5 hours. The mixture was allowed to cool to room temperature.
  • High aspect ratio TiO 2 in the block copolymer of 15 significantly increases storage modulus while slightly decreasing CTE in the transverse direction compared to unfilled block copolymer of Comparative Example 13.
  • Example 1 A similar procedure as described in Example 1 was used, except for the following differences. To prepare the prepolymer, 1.36 grams of PPD was combined with 113.0 grams of anhydrous DMAC and stirred, with gentle heating at 40° C. for approximately 20 minutes. 2.71 grams of PMDA was then added to this mixture to create the first block, which was stirred with gentle heating (35-40° C.) for approximately 2.5 hours. The mixture was allowed to cool to room temperature.
  • Example 15 The same procedure was used as described in Example 15 was used, except that the acicular TiO 2 slurry was not added to the formulation. The final viscosity of the formulation was 1000-1200 poise.
  • Example 16 demonstrates acicular TiO 2 sub-micron filler of the present disclosure does not behave in the same manner in all polyimides in regards to CTE. CTE increases compared to unfilled block copolymer in Comparative Example 14 but still remains in a desirable range.
  • Examples 17-20 demonstrate block copolymer with talc above about 5.5 volume percent significantly increase storage modulus and maintain CTE while maintaining adequate elongation to break.
  • a 186.87 g portion of the prepolymer prepared in Comparative Example 14 was blended with 13.13 g of SF-310 talc (Lot M685, Kish Co., Mentor, Ohio) in a similar manner to Comparative Example 11.
  • This filler containing PAA solution was finished similarly as in Comparative Example 10 to yield a viscosity of ca. 2000 poise.
  • the solution was pressured filtered through a 45 micron polypropylene screen and degassed under vacuum to remove air bubbles.
  • a film was cast and cured similarly Comparative Example 10. Filler loading was approximately 30 wt % in the polyimide film. A 2.6 mil (66 micron) film was produced.
  • a block prepolymer was prepared with a 70/30 ratio of ODA to PPD. Then in a similar manner to Comparative Example 11, a 171.75 g portion of this prepolymer was blended with 28.255 g SF310 talc to achieve about a 50 wt % loading in the PI film. Finishing, filtration, casting and curing was similar to as described in Comparative Example 10. A 1.5 mil (38 micron) film was produced.
  • Comparative Example 15 demonstrates talc below about 5.5 volume percent does not significantly increase storage modulus.
  • a block prepolymer was prepared with a 70/30 ratio of ODA to PPD. Then in a similar manner to Comparative Example 11, a 187.16 g portion of this prepolymer was blended with 3.48 g SF310 talc to achieve about a 10 wt % loading in the PI film. Finishing, filtration, casting and curing was similar to as described in Comparative Example 10. A 1.7 mil (43 micron) film was produced.
  • Examples 21-24 illustrate the ability to include additional co-monomers in the compositions of the present invention and still achieve desirable properties.
  • Example 21 In a similar manner to example 21, a 172.7 g portion of the prepolymer from Example 21 was blended with a 27.3 g portion of the TiO 2 slurry as described in example 16. Finishing, filtration, casting and curing was similar to as described in Comparative Example 10. Filler loading was approximately 30 wt % in the polyimide film. A 2.2 mil (56 micron) film was produced.
  • a prepolymer was produced from 14.407 g PPD and 27.607 g PMDA in 378.1 g DMAC, followed by dilution with 401 g DMAC, then addition of 62.249 g ODA, and then 32.666 g of BPDA (which was allowed to dissolve/react), then 43.106 g of PMDA, followed by 41.0 g DMAC.
  • a 186.8 g portion of this prepolymer was blended with 13.17 g SF310 talc (Lot M685, Kish Co., Mentor, Ohio) similar to Comparative Example 11, finished, cast and cured similarly to Comparative Example 10.
  • a 1.7 mil (43 micron) film was produced.
  • Example 23 In a similar manner to Example 23, a 172.7 g portion of the prepolymer from Example 23 was blended with a 27.3 g portion of the TiO 2 slurry as described in Example 16. Finishing, filtration, casting and curing was similar to as described in Comparative Example 10. A 2.3 mil (58 micron) film was produced.
  • the following Examples demonstrate the impact on properties of a particulate (less than 3:1 aspect ratio) vs. a high aspect ratio (greater than 3:1 aspect) ratio platelet filler on the properties of a polyimide film.
  • the platelet filler results in advantageously higher modulus and lower CTE at equivalent weight loadings. (Note that although the average particle sizes of these two fillers appear significantly different (platelet is significantly larger) via particle size analysis (Horiba LA-930 particle size analyzer), it is believed that the effect on properties is largely due to the filler shape, rather than any differences in average particle size).
  • a portion of a polyamic acid prepolymer of PMDA and ODA (prepared in DMAC at about 20.6%, approximately 50 poise viscosity) was blended with particulate alumina filler (Martoxid MZS-1, Albermarle Corporation) in a Silverson (model L4RT-A) high shear mixer.
  • the amount of alumina was chosen so as to ultimately yield a final polyimide film with a 40 wt % loading of alumina in polyimide.
  • the polyamic acid was then further reacted (“finished”) to a viscosity of about 537 poise (Brookfield DV-II+ viscometer with a #LV5 spindle) by stepwise additions of a 6 wt % PMDA solution in DMAC with thorough mixing via a high torque mechanical mixer/stir blade.
  • the polymer was subsequently cast onto a glass plate and heated to about 80° C. until a tack free film was obtained.
  • the film was carefully peeled from the glass and placed on a pin frame and placed in a circulating air oven and the temperature slowly ramped to 320° C. and held there for 30 minute. Next, the film was removed from the 320° C. oven and place in a 400° C. air oven for 5 minutes.
  • the polyimide film on the pin frame was removed from the oven and allowed to cool to room temperature. The film was then separated from the pin frame.
  • E′ was measured as in Comparative Example 10.
  • CTE was measured on the same instrument and at the same rate as Comparative Example 10 except that the sample was heated to 380° C., then cooled and reheated to 380° C.) and evaluated between 50-350° C. on the reheat.
  • PMDA/ODA Talc 10 5.42 3.0 0.21 29.0 23.0 126/136 11 5 PMDA/ODA Talc 24 14.02 5.7 (25° C.) 25.4 6 PMDA/ODA Talc 30 18.08 5.8 0.78 24.0 23.0 178/181 7 PMDA/ODA Talc 30 18.08 5.4 0.86 21.0 19.0 171/148 8 PMDA/ODA Talc 50 34.00 8.9 1.20 11.0 13.0 56/73 9 PMDA/ODA Talc 60 43.60 11.1 1.96 8.0 9.0 42/56 10 PMDA//ODA/PPD Talc 30 18.08 7.1 1.17 13.0 17.0 63/41 Random (70/30) 11 PMDA//ODA/PPD acicular TiO 2, 30 12.64 6.3 0.87 18.0 25.0 27/45 Random (70/30) Comp.
  • PMDA//ODA/PPD None 0 0.00 5.2 0.70 7.0 9.0 107/124 14 70/30 17 PMDA//ODA/PPD Talc 30 18.08 6.9 1.24 9.0 9.0 84/69 70/30 18 PMDA//ODA/PPD Talc 30 18.08 7.4 1.34 8.0 13.0 62/54 70/30 19 PMDA//ODA/PPD Talc 40 25.62 9.5 1.80 10.0 9.0 58/52 70/30 20 PMDA//ODA/PPD Talc 50 34.00 11.1 2.60 8.0 7.0 31/41 70/30 Comp.
  • PMDA//ODA/PPD Talc 10 5.42 5.4 0.72 9.0 4.0 60/66 15 70/30 21 PMDA/BPDA// Talc 30 18.08 9.7 (25° C.) 1.42 (498° C.) 6.0 10.0 60/80 ODA/PPD 95/5//70/30 22 PMDA/BPDA// acicular TiO 2, 30 12.64 8.3 (25° C.) 1.26 (498° C.) 11.0 17.0 40/56 ODA/PPD 95/5//70/30 23 PMDA/BPDA// Talc 30 18.08 10.9 (25° C.) 0.88 (498° C.) 8.0 11.0 51/38 ODA/PPD 75/25//70/30 24 PMDA/BPDA/// acicular TiO 2, 30 12.64 9 (25° C.) 0.61 (498° C.) 11.0 20.0 32/68 ODA/PPD 75/25//70/30 Comp. PMDA/ODA particle Al 2 O 3 40 4.1 0.28 52.0 16 25 PMDA

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Inorganic Insulating Materials (AREA)
  • Organic Insulating Materials (AREA)
  • Insulating Bodies (AREA)
  • Thin Film Transistor (AREA)
  • Wire Bonding (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Photovoltaic Devices (AREA)
US13/510,662 2009-11-20 2010-11-19 Wire wrap compositions and methods relating thereto Abandoned US20120231264A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/510,662 US20120231264A1 (en) 2009-11-20 2010-11-19 Wire wrap compositions and methods relating thereto

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US26326609P 2009-11-20 2009-11-20
US13/510,662 US20120231264A1 (en) 2009-11-20 2010-11-19 Wire wrap compositions and methods relating thereto
PCT/US2010/057434 WO2011063238A1 (en) 2009-11-20 2010-11-19 Wire wrap compositions and methods relating thereto

Publications (1)

Publication Number Publication Date
US20120231264A1 true US20120231264A1 (en) 2012-09-13

Family

ID=43458223

Family Applications (6)

Application Number Title Priority Date Filing Date
US13/510,662 Abandoned US20120231264A1 (en) 2009-11-20 2010-11-19 Wire wrap compositions and methods relating thereto
US13/510,627 Abandoned US20120227790A1 (en) 2009-11-20 2010-11-19 Assemblies comprising a polyimide film and an electrode, and methods relating thereto
US13/510,665 Abandoned US20120292086A1 (en) 2009-11-20 2010-11-19 Interposer films useful in semiconductor packaging applications, and methods relating thereto
US13/510,659 Abandoned US20120231263A1 (en) 2009-11-20 2010-11-19 Coverlay compositions and methods relating thereto
US13/510,628 Expired - Fee Related US8653512B2 (en) 2009-11-20 2010-11-19 Thin film transistor compositions, and methods relating thereto
US13/510,626 Abandoned US20120231257A1 (en) 2009-11-20 2010-11-19 Thermally and dimensionally stable polyimide films and methods relating thereto

Family Applications After (5)

Application Number Title Priority Date Filing Date
US13/510,627 Abandoned US20120227790A1 (en) 2009-11-20 2010-11-19 Assemblies comprising a polyimide film and an electrode, and methods relating thereto
US13/510,665 Abandoned US20120292086A1 (en) 2009-11-20 2010-11-19 Interposer films useful in semiconductor packaging applications, and methods relating thereto
US13/510,659 Abandoned US20120231263A1 (en) 2009-11-20 2010-11-19 Coverlay compositions and methods relating thereto
US13/510,628 Expired - Fee Related US8653512B2 (en) 2009-11-20 2010-11-19 Thin film transistor compositions, and methods relating thereto
US13/510,626 Abandoned US20120231257A1 (en) 2009-11-20 2010-11-19 Thermally and dimensionally stable polyimide films and methods relating thereto

Country Status (6)

Country Link
US (6) US20120231264A1 (enrdf_load_stackoverflow)
EP (6) EP2501741A1 (enrdf_load_stackoverflow)
JP (6) JP2013512535A (enrdf_load_stackoverflow)
KR (6) KR20120096003A (enrdf_load_stackoverflow)
CN (6) CN102712754A (enrdf_load_stackoverflow)
WO (6) WO2011063247A2 (enrdf_load_stackoverflow)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130161065A1 (en) * 2011-12-22 2013-06-27 Hitachi Cable, Ltd. Insulated wire and coil
US20140065421A1 (en) * 2012-09-03 2014-03-06 Hitachi Metals, Ltd. Insulated wire and coil using the same
US10487239B2 (en) 2013-05-31 2019-11-26 Kaneka Corporation Insulating coating material and use of same
US10665362B2 (en) 2014-11-27 2020-05-26 Kaneka Corporation Insulating coating material having excellent wear resistance
US10703860B2 (en) 2014-11-27 2020-07-07 Kaneka Corporation Insulating coating material having excellent wear resistance

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120231264A1 (en) 2009-11-20 2012-09-13 E. I. Du Pont De Nemours And Company Wire wrap compositions and methods relating thereto
KR101125567B1 (ko) * 2009-12-24 2012-03-22 삼성모바일디스플레이주식회사 고분자 기판 및 그 제조 방법과 상기 고분자 기판을 포함하는 표시 장치 및 그 제조 방법
KR101793047B1 (ko) * 2010-08-03 2017-11-03 삼성디스플레이 주식회사 플렉서블 디스플레이 및 이의 제조 방법
JP5362752B2 (ja) * 2011-01-26 2013-12-11 Jfeケミカル株式会社 ポリアミド酸組成物、ポリイミドおよびポリイミドフィルムならびにそれらの製造方法
WO2012169591A1 (ja) * 2011-06-09 2012-12-13 住友精化株式会社 不燃フィルム、不燃フィルム用分散液、不燃フィルムの製造方法、太陽電池バックシート、フレキシブル基板、及び、太陽電池
WO2013192469A1 (en) * 2012-06-22 2013-12-27 E. I. Du Pont De Nemours And Company Polyimide metal clad laminate
CN104541585B (zh) * 2012-06-22 2018-05-08 E.I.内穆尔杜邦公司 电路板
KR20140029987A (ko) * 2012-08-31 2014-03-11 삼성디스플레이 주식회사 캐리어 기판, 이의 제조방법 및 이를 이용한 플렉서블 디스플레이 장치의 제조방법
KR101987197B1 (ko) * 2012-10-04 2019-06-11 삼성디스플레이 주식회사 플렉시블 디스플레이 장치의 제조방법
JP5761151B2 (ja) 2012-10-16 2015-08-12 日立金属株式会社 絶縁電線及びコイル
CN103897391B (zh) * 2012-12-31 2017-04-12 中原工学院 薄膜太阳能电池用光固化聚酰亚胺膜及其制备方法
CN103078010B (zh) * 2013-02-03 2016-12-28 电子科技大学 一种铜锌锡硫薄膜太阳能电池的全非真空工艺制备方法
WO2014141322A1 (ja) * 2013-03-14 2014-09-18 三井化学株式会社 車両船舶のモーター巻線用の角型電線、巻線コイル、およびモーター
JP5695283B1 (ja) * 2013-05-17 2015-04-01 株式会社カネカ 太陽電池およびその製造方法、ならびに太陽電池モジュール
CN105612189B (zh) * 2013-07-09 2017-07-28 赢创德固赛有限公司 电活性聚合物、其制造方法、电极及其用途
WO2015081487A1 (en) 2013-12-03 2015-06-11 Abb Technology Ltd Multi-layered dielectric polymer material, capacitor, use of the material and formation method thereof
KR102151077B1 (ko) 2014-01-27 2020-09-02 에스케이이노베이션 주식회사 폴리이미드 복합체 필름 구조 및 제조 공정
US20150257296A1 (en) * 2014-03-07 2015-09-10 Taiflex Scientific Co., Ltd. Cover layer with high thermal resistance and high reflectivity for a printed circuit board
KR102220012B1 (ko) 2014-04-04 2021-02-26 에스케이이노베이션 주식회사 폴리이미드 복합기판의 제조방법 및 이로 제조된 폴리이미드 복합기판
KR102401764B1 (ko) * 2014-12-31 2022-05-26 하나 마이크론(주) 전자 소자 및 이의 제조 방법
US9633883B2 (en) 2015-03-20 2017-04-25 Rohinni, LLC Apparatus for transfer of semiconductor devices
US9947895B2 (en) 2015-06-17 2018-04-17 Universal Display Corporation Flexible AMOLED display
WO2017051827A1 (ja) * 2015-09-24 2017-03-30 旭化成株式会社 ポリイミド前駆体、樹脂組成物および樹脂フィルムの製造方法
WO2017197077A1 (en) * 2016-05-12 2017-11-16 E I Du Pont De Nemours And Company Polyimide compositions and a polyimide test socket housing
CN115162221A (zh) * 2016-10-14 2022-10-11 杜邦公司 用于隧道中拦截落石的防护网
US10141215B2 (en) 2016-11-03 2018-11-27 Rohinni, LLC Compliant needle for direct transfer of semiconductor devices
US10504767B2 (en) 2016-11-23 2019-12-10 Rohinni, LLC Direct transfer apparatus for a pattern array of semiconductor device die
US10471545B2 (en) 2016-11-23 2019-11-12 Rohinni, LLC Top-side laser for direct transfer of semiconductor devices
US10062588B2 (en) 2017-01-18 2018-08-28 Rohinni, LLC Flexible support substrate for transfer of semiconductor devices
CN108300363B (zh) * 2017-09-05 2021-01-08 广州美维电子有限公司 一种应用于pcb制作的保护胶膜及其制备方法和使用方法
US11059204B2 (en) 2018-02-27 2021-07-13 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method for manufacturing flexible material having surface protecting layer
CN108342082B (zh) * 2018-02-27 2020-12-04 深圳市华星光电半导体显示技术有限公司 一种具有表面保护层的柔性材料的制备方法
US10410905B1 (en) 2018-05-12 2019-09-10 Rohinni, LLC Method and apparatus for direct transfer of multiple semiconductor devices
US11094571B2 (en) 2018-09-28 2021-08-17 Rohinni, LLC Apparatus to increase transferspeed of semiconductor devices with micro-adjustment
CN109486189A (zh) * 2018-11-09 2019-03-19 李梅 一种用于fpc行业的tpi薄膜及其制备方法
EP3813496B1 (en) * 2019-01-21 2025-08-20 Murata Manufacturing Co., Ltd. Stretchable wiring board
CN109880094B (zh) * 2019-03-12 2021-08-24 黄山金石木塑料科技有限公司 一种防静电/导电型聚酰亚胺树脂及其制备方法与应用
US11746184B2 (en) 2019-11-19 2023-09-05 Rohm And Haas Electronic Materials Llc Polyimide-polyarylene polymers
US11746254B2 (en) 2019-11-19 2023-09-05 Rohm And Haas Electronic Materials Llc Tunable refractive index polymers
KR102396418B1 (ko) * 2019-11-29 2022-05-12 피아이첨단소재 주식회사 폴리이미드 필름, 이의 제조 방법, 및 이를 포함한 연성 금속박 적층판
CN111732910B (zh) 2020-06-30 2022-05-27 晶科绿能(上海)管理有限公司 复合封装材料和用其封装的光伏组件
CN113912878A (zh) * 2020-07-08 2022-01-11 达迈科技股份有限公司 白色聚酰亚胺膜及其制造方法
KR102414419B1 (ko) * 2020-08-27 2022-06-30 피아이첨단소재 주식회사 그라파이트 시트용 폴리이미드 필름 제조방법 및 그라파이트 시트 제조방법
CN112812559A (zh) * 2021-01-28 2021-05-18 苏州泰仑电子材料有限公司 绝缘pi膜及其制备方法
CN117581386A (zh) * 2021-05-31 2024-02-20 出光兴产株式会社 光电转换元件、太阳能电池模块和帆板
KR102681148B1 (ko) 2021-09-16 2024-07-04 주식회사 에코세미텍 솔더링 환원 시스템
US20230317662A1 (en) * 2022-03-31 2023-10-05 Texas Instruments Incorporated Electronic device with sensor face stress protection
CN115367785A (zh) * 2022-08-23 2022-11-22 安徽工程大学 高效光催化剂微/纳刺球状硫化铟及其制备方法和应用、硫化铟复合膜及其制备方法和应用
KR20250047110A (ko) 2023-09-27 2025-04-03 앱솔릭스 인코포레이티드 패키징 기판 및 이의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792476A (en) * 1983-08-01 1988-12-20 Hitachi, Ltd. Low thermal expansion resin material and composite shaped article
US6589662B1 (en) * 1999-01-13 2003-07-08 Pi R&D Co., Ltd. Composite film
US20040151928A1 (en) * 2001-06-15 2004-08-05 Hisayasu Kaneshiro Semiconductive polyimide film and process for production thereof
US20050013998A1 (en) * 2003-07-14 2005-01-20 Lacourt Philip Roland Dielectric substrates comprising a polymide core layer and a high temperature fluoropolymer bonding layer, and methods relating thereto
US20050163968A1 (en) * 2004-01-20 2005-07-28 Hanket Gregory M. Microfiller-reinforced polymer film
US7018704B2 (en) * 2001-09-28 2006-03-28 Kaneka Corporation Polyimide film for flexible printed board and flexible printed board using the same

Family Cites Families (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3179634A (en) * 1962-01-26 1965-04-20 Du Pont Aromatic polyimides and the process for preparing them
US3287311A (en) 1963-01-03 1966-11-22 Du Pont Polyimide containing tio2, articles, and process of making
US4522958A (en) 1983-09-06 1985-06-11 Ppg Industries, Inc. High-solids coating composition for improved rheology control containing chemically modified inorganic microparticles
JPH0665708B2 (ja) 1985-11-29 1994-08-24 鐘淵化学工業株式会社 新規ポリイミドフィルム及びその製造法
JP2744786B2 (ja) * 1987-01-20 1998-04-28 鐘淵化学工業株式会社 熱的寸法安定性にすぐれたポリイミド及びそれに用いるポリアミド酸
JPS63312328A (ja) 1987-06-15 1988-12-20 Tokai Carbon Co Ltd SiCウイスカ−強化ポリイミド樹脂の製造方法
JPS6455120A (en) 1987-08-27 1989-03-02 Mori Sangyo Kk Cultivation of shiitake mushroom and apparatus therefor
US5166308A (en) 1990-04-30 1992-11-24 E. I. Du Pont De Nemours And Company Copolyimide film with improved properties
US5148265A (en) 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies with fan-in leads
US5148266A (en) 1990-09-24 1992-09-15 Ist Associates, Inc. Semiconductor chip assemblies having interposer and flexible lead
JPH05193065A (ja) * 1992-01-17 1993-08-03 Shin Etsu Chem Co Ltd カバーレイフィルム
JP3151219B2 (ja) 1992-07-24 2001-04-03 テツセラ,インコーポレイテッド 取り外し自在のリード支持体を備えた半導体接続構成体およびその製造方法
JPH0680874A (ja) 1992-08-31 1994-03-22 Nippon G Ii Plast Kk 熱可塑性ポリエステルエラストマー樹脂組成物
US5436204A (en) 1993-04-12 1995-07-25 Midwest Research Institute Recrystallization method to selenization of thin-film Cu(In,Ga)Se2 for semiconductor device applications
US5441897A (en) 1993-04-12 1995-08-15 Midwest Research Institute Method of fabricating high-efficiency Cu(In,Ga)(SeS)2 thin films for solar cells
US5837767A (en) 1994-10-31 1998-11-17 Ntn Corporation Stripping fingers
US5648407A (en) 1995-05-16 1997-07-15 Minnesota Mining And Manufacturing Company Curable resin sols and fiber-reinforced composites derived therefrom
US6120839A (en) 1995-07-20 2000-09-19 E Ink Corporation Electro-osmotic displays and materials for making the same
US6120588A (en) 1996-07-19 2000-09-19 E Ink Corporation Electronically addressable microencapsulated ink and display thereof
US6017584A (en) 1995-07-20 2000-01-25 E Ink Corporation Multi-color electrophoretic displays and materials for making the same
US6124851A (en) 1995-07-20 2000-09-26 E Ink Corporation Electronic book with multiple page displays
US6118426A (en) 1995-07-20 2000-09-12 E Ink Corporation Transducers and indicators having printed displays
US5821608A (en) 1995-09-08 1998-10-13 Tessera, Inc. Laterally situated stress/strain relieving lead for a semiconductor chip package
US5930026A (en) 1996-10-25 1999-07-27 Massachusetts Institute Of Technology Nonemissive displays and piezoelectric power supplies therefor
US5961804A (en) 1997-03-18 1999-10-05 Massachusetts Institute Of Technology Microencapsulated electrophoretic display
US6067185A (en) 1997-08-28 2000-05-23 E Ink Corporation Process for creating an encapsulated electrophoretic display
CN1085707C (zh) 1997-10-23 2002-05-29 上海市合成树脂研究所 钛酸钾晶须增强聚酰亚胺复合材料的制备方法
US6207739B1 (en) * 1997-11-20 2001-03-27 Kanegafuchi Kagaku Kogyo Kabushiki Polyamide acid composition containing metal, polyimide film, flexible printed wiring board and method for producing them
JP3978754B2 (ja) * 1997-12-29 2007-09-19 チッソ株式会社 ポリアミド酸組成物、液晶配向膜、及び液晶表示素子
EP1075670B1 (en) 1998-04-27 2008-12-17 E-Ink Corporation Shutter mode microencapsulated electrophoretic display
JP3518992B2 (ja) * 1998-06-05 2004-04-12 ソニーケミカル株式会社 フレキシブルプリント配線板
JP3937278B2 (ja) * 1999-09-17 2007-06-27 東レ・デュポン株式会社 太陽電池基板用ポリイミドフィルムおよびそれを用いた太陽電池基板
JP4046921B2 (ja) 2000-02-24 2008-02-13 触媒化成工業株式会社 シリカ系微粒子、該微粒子分散液の製造方法、および被膜付基材
US6372538B1 (en) 2000-03-16 2002-04-16 University Of Delaware Fabrication of thin-film, flexible photovoltaic module
JP2003531487A (ja) * 2000-04-18 2003-10-21 イー−インク コーポレイション 薄膜トランジスタを製造するためのプロセス
JP4031624B2 (ja) 2000-06-23 2008-01-09 株式会社東芝 透明被膜付基材、透明被膜形成用塗布液、および表示装置
US6528145B1 (en) 2000-06-29 2003-03-04 International Business Machines Corporation Polymer and ceramic composite electronic substrates
JP2002138152A (ja) * 2000-08-24 2002-05-14 Du Pont Toray Co Ltd ポリイミドフィルム、その製造方法およびこれを基材とした金属配線板
US6710456B1 (en) * 2000-08-31 2004-03-23 Micron Technology, Inc. Composite interposer for BGA packages
JP2002173640A (ja) 2000-11-30 2002-06-21 Three M Innovative Properties Co ポリイミド含有コーティング組成物及びそれから形成されたフィルム
CN100580014C (zh) * 2001-06-15 2010-01-13 株式会社钟化 半导电性聚酰亚胺膜及其制造方法
US7271333B2 (en) 2001-07-20 2007-09-18 Ascent Solar Technologies, Inc. Apparatus and method of production of thin film photovoltaic modules
JP2003082231A (ja) 2001-09-17 2003-03-19 Kanegafuchi Chem Ind Co Ltd ポリイミド樹脂組成物、ポリイミドフィルムおよびポリイミド管状物
US7118798B2 (en) 2001-11-01 2006-10-10 Arakawa Chemical Industries, Ltd. Polyimide-metal layered products and polyamideimide-metal layered product
JP2003192891A (ja) * 2001-12-20 2003-07-09 Thinflex Corp 耐熱性ポリイミド重合物及びその銅被覆積層板
KR20040071778A (ko) * 2002-01-15 2004-08-12 가부시키가이샤 피아이 기쥬츠겐큐쇼 용매 가용인 블록 공중합 폴리이미드 조성물 및 그 제조방법
JP2003306553A (ja) * 2002-04-15 2003-10-31 Kanegafuchi Chem Ind Co Ltd ポリイミド成形体
JP2004035825A (ja) * 2002-07-05 2004-02-05 Kanegafuchi Chem Ind Co Ltd 半導電性ポリイミドフィルムおよびその製造方法
JP4119700B2 (ja) 2002-07-26 2008-07-16 株式会社カネカ 樹脂添加用無機粉体分散液の製造方法、並びに、ポリイミドフィルムおよびポリアミドイミドフィルム
WO2004019420A1 (de) 2002-08-16 2004-03-04 Daimlerchrysler Ag Karosserieteil eines fahrzeuges mit einer dünnschichtsolarzelle und sein erstellungsverfahren
US6949296B2 (en) * 2002-12-31 2005-09-27 E. I. Du Pont De Nemours And Company Polyimide substrates having enhanced flatness, isotropy and thermal dimensional stability, and methods and compositions relating thereto
US20050056312A1 (en) * 2003-03-14 2005-03-17 Young David L. Bifacial structure for tandem solar cells
US20050072461A1 (en) 2003-05-27 2005-04-07 Frank Kuchinski Pinhole porosity free insulating films on flexible metallic substrates for thin film applications
JP3986474B2 (ja) * 2003-08-12 2007-10-03 株式会社カネカ Tab用ポリイミドフィルム、フィルムキャリアテープ及びtab用テープ
JP2005109163A (ja) * 2003-09-30 2005-04-21 Nec Electronics Corp 半導体素子
CN1320060C (zh) 2004-04-01 2007-06-06 中国科学院化学研究所 一种短纤维增强聚酰亚胺复合材料及制备方法和用途
JP2006028216A (ja) 2004-07-12 2006-02-02 Kaneka Corp ポリイミドフィルム及び該ポリイミドフィルムの製造方法
KR100591068B1 (ko) 2004-09-03 2006-06-19 주식회사 코오롱 플렉시블 동박 폴리이미드 적층판 및 그 제조방법
CN101027345B (zh) * 2004-09-24 2010-11-24 株式会社钟化 新型聚酰亚胺膜以及使用其而得到的粘接膜、柔性覆金属层压板
US20060083939A1 (en) * 2004-10-20 2006-04-20 Dunbar Meredith L Light activatable polyimide compositions for receiving selective metalization, and methods and compositions related thereto
US20060127686A1 (en) * 2004-12-15 2006-06-15 Meloni Paul A Thermally conductive polyimide film composites having high thermal conductivity useful in an electronic device
US7579134B2 (en) * 2005-03-15 2009-08-25 E. I. Dupont De Nemours And Company Polyimide composite coverlays and methods and compositions relating thereto
US8043697B2 (en) * 2005-04-19 2011-10-25 Ube Industries, Ltd. Polyimide film-laminated body
WO2007002110A2 (en) 2005-06-20 2007-01-04 Solyndra, Inc. Bifacial elonagated solar cell devices
WO2007011742A2 (en) 2005-07-14 2007-01-25 Konarka Technologies, Inc. Cigs photovoltaic cells
JP2007169494A (ja) * 2005-12-22 2007-07-05 Du Pont Toray Co Ltd 芳香族ポリイミドフィルム、カバーレイフイルムおよびフレキシブル積層板
JP2009528681A (ja) * 2006-02-23 2009-08-06 デューレン、イェルーン カー.イェー. ファン カルコゲンと金属間物質の使用による高処理能力の半導体層形成
DE102006016307B4 (de) 2006-04-06 2011-07-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., 80686 Thermisch stabile Matrixmikropartikel und Mikrokapseln für die Kunststoffadditivierung und Verfahren zu ihrer Herstellung und ihre Verwendung
US9161440B2 (en) * 2006-06-26 2015-10-13 Sabic Global Technologies B.V. Articles comprising a polyimide solvent cast film having a low coefficient of thermal expansion and method of manufacture thereof
JP2008034527A (ja) * 2006-07-27 2008-02-14 Du Pont Toray Co Ltd カバーレイ
JP2008041960A (ja) * 2006-08-07 2008-02-21 Nissan Chem Ind Ltd 電子回路部品の製造方法
US20100048861A1 (en) * 2006-12-15 2010-02-25 Hak Gee Jung Polyimide resin and liquid crystal alignment layer and polyimide film using the same
JP2008156557A (ja) * 2006-12-26 2008-07-10 Du Pont Toray Co Ltd 高接着性共重合ポリイミドフィルム
US7695882B2 (en) * 2007-02-01 2010-04-13 Lexmark International, Inc. Toner formulation for controlling mass flow
JP4680979B2 (ja) * 2007-12-25 2011-05-11 住友電気工業株式会社 ポリイミドチューブ、その製造方法、及び定着ベルト
TWI398350B (zh) * 2008-02-05 2013-06-11 Du Pont 高黏著性聚醯亞胺銅箔積層板及其製造方法
TWI513574B (zh) * 2008-05-20 2015-12-21 Ube Industries 聚醯亞胺金屬疊層體及太陽電池
US20090288699A1 (en) * 2008-05-20 2009-11-26 E.I. Du Pont De Nemours And Company Laminate structures for high temperature photovoltaic applications, and methods relating thereto
JP5346078B2 (ja) * 2008-05-20 2013-11-20 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 熱および寸法安定性ポリイミドフィルム、ならびに、これに関する方法
AU2009255657A1 (en) * 2008-06-04 2009-12-10 Solexant Corp. Thin film solar cells with monolithic integration and backside contact
CN102342188B (zh) * 2009-03-06 2014-08-27 E.I.内穆尔杜邦公司 用于电子线路应用的多层膜及其相关方法
US20120231264A1 (en) 2009-11-20 2012-09-13 E. I. Du Pont De Nemours And Company Wire wrap compositions and methods relating thereto
US20120100663A1 (en) * 2010-10-26 2012-04-26 International Business Machines Corporation Fabrication of CuZnSn(S,Se) Thin Film Solar Cell with Valve Controlled S and Se

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4792476A (en) * 1983-08-01 1988-12-20 Hitachi, Ltd. Low thermal expansion resin material and composite shaped article
US6589662B1 (en) * 1999-01-13 2003-07-08 Pi R&D Co., Ltd. Composite film
US20040151928A1 (en) * 2001-06-15 2004-08-05 Hisayasu Kaneshiro Semiconductive polyimide film and process for production thereof
US7018704B2 (en) * 2001-09-28 2006-03-28 Kaneka Corporation Polyimide film for flexible printed board and flexible printed board using the same
US20050013998A1 (en) * 2003-07-14 2005-01-20 Lacourt Philip Roland Dielectric substrates comprising a polymide core layer and a high temperature fluoropolymer bonding layer, and methods relating thereto
US20050163968A1 (en) * 2004-01-20 2005-07-28 Hanket Gregory M. Microfiller-reinforced polymer film

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Mortensen (Concise Encyclopedia of Composite Materials: Second Edition. Composite Materials: Overview: 2.1 Properties Determined by Geometry- Additive Properties. 2007. pp. xvii-xxix, particularly xxii) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130161065A1 (en) * 2011-12-22 2013-06-27 Hitachi Cable, Ltd. Insulated wire and coil
US9343197B2 (en) * 2011-12-22 2016-05-17 Hitachi Metals, Ltd. Insulated wire and coil
US20140065421A1 (en) * 2012-09-03 2014-03-06 Hitachi Metals, Ltd. Insulated wire and coil using the same
US10199137B2 (en) * 2012-09-03 2019-02-05 Hitachi Metals, Ltd. Insulated wire and coil using the same
US10487239B2 (en) 2013-05-31 2019-11-26 Kaneka Corporation Insulating coating material and use of same
US10665362B2 (en) 2014-11-27 2020-05-26 Kaneka Corporation Insulating coating material having excellent wear resistance
US10703860B2 (en) 2014-11-27 2020-07-07 Kaneka Corporation Insulating coating material having excellent wear resistance

Also Published As

Publication number Publication date
CN102712754A (zh) 2012-10-03
KR20120096000A (ko) 2012-08-29
WO2011063238A1 (en) 2011-05-26
EP2501740B1 (en) 2016-03-16
WO2011063229A1 (en) 2011-05-26
US20120292086A1 (en) 2012-11-22
CN102714192A (zh) 2012-10-03
JP2013511599A (ja) 2013-04-04
WO2011063215A1 (en) 2011-05-26
WO2011063247A3 (en) 2011-09-29
CN102791769A (zh) 2012-11-21
US20120228616A1 (en) 2012-09-13
JP2013512535A (ja) 2013-04-11
EP2501743A1 (en) 2012-09-26
KR20120117783A (ko) 2012-10-24
WO2011063247A2 (en) 2011-05-26
JP2013511412A (ja) 2013-04-04
CN102712753A (zh) 2012-10-03
CN102668108A (zh) 2012-09-12
US20120231263A1 (en) 2012-09-13
JP2013511603A (ja) 2013-04-04
JP2013511600A (ja) 2013-04-04
US8653512B2 (en) 2014-02-18
EP2501741A1 (en) 2012-09-26
CN102712753B (zh) 2015-08-26
EP2501740A1 (en) 2012-09-26
CN102803345A (zh) 2012-11-28
JP2013511601A (ja) 2013-04-04
EP2501742A1 (en) 2012-09-26
EP2502269A2 (en) 2012-09-26
US20120231257A1 (en) 2012-09-13
EP2502280A1 (en) 2012-09-26
KR20120096001A (ko) 2012-08-29
EP2501742B1 (en) 2016-03-16
KR20120096003A (ko) 2012-08-29
US20120227790A1 (en) 2012-09-13
EP2502280B1 (en) 2014-03-05
KR20120096002A (ko) 2012-08-29
KR20120101459A (ko) 2012-09-13
WO2011063204A1 (en) 2011-05-26
EP2501743B1 (en) 2016-03-16
WO2011063209A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
EP2501743B1 (en) Wire wrap compositions and methods relating thereto
CN103183961B (zh) 含互穿型网络聚合物的聚酰胺酸树脂的溶液及聚酰亚胺金属积层板
CN112955497A (zh) 具有改善的尺寸稳定性的超薄聚酰亚胺薄膜及其制备方法
WO2009142938A1 (en) Thermally and dimensionally stable polyimide films and methods relating thereto
CN113801416B (zh) 印刷配线板
CN112867753B (zh) 具有改善的表面质量的厚聚酰亚胺膜及其制造方法
CN111433027A (zh) 具有改善的与金属层的表面粘合强度的聚酰亚胺复合膜及其制备方法
CN113166451B (zh) 包括两组以上具有不同粒径的填料的聚酰亚胺膜及包括其的电子设备
US20220009143A1 (en) Polyimide composite film having improved surface adhesive strength with metal layer and method for preparing the same
US20240336801A1 (en) Electrically insulated wires and cables
US20130209769A1 (en) Corona resistant structures and methods relating thereto
US20120213988A1 (en) Corona resistant compositions and methods relating thereto
HK1176369A (en) Wire wrap compositions and methods relating thereto
HK1174936A (en) Thermally and dimensionally stable polyimide films and methods relating thereto
CN118255987A (zh) 聚酰胺酸、聚酰亚胺、树脂膜、金属包覆层叠板及电路基板
HK1174935A (en) Coverlay compositions and methods relating thereto
HK1175024A (en) Interposer films useful in semiconductor packaging applications, and methods relating thereto
HK1177216A (en) Thin film transistor compositions, and methods relating thereto

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION