US20110020388A1 - Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents - Google Patents

Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents Download PDF

Info

Publication number
US20110020388A1
US20110020388A1 US12/788,260 US78826010A US2011020388A1 US 20110020388 A1 US20110020388 A1 US 20110020388A1 US 78826010 A US78826010 A US 78826010A US 2011020388 A1 US2011020388 A1 US 2011020388A1
Authority
US
United States
Prior art keywords
immunomodulatory agent
composition
synthetic
synthetic nanocarrier
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/788,260
Other languages
English (en)
Inventor
Charles Zepp
Yun Gao
Mark J. Keegan
Sam Baldwin
Fen-Ni Fu
Lloyd Johnston
Grayson B. Lipford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cartesian Therapeutics Inc
Original Assignee
Selecta Biosciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Selecta Biosciences Inc filed Critical Selecta Biosciences Inc
Priority to US12/788,260 priority Critical patent/US20110020388A1/en
Assigned to SELECTA BIOSCIENCES, INC. reassignment SELECTA BIOSCIENCES, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BALDWIN, SAM, FU, FEN-NI, GAO, YUN, JOHNSTON, LLOYD, KEEGAN, MARK J., LIPFORD, GRAYSON B., ZEPP, CHARLES
Publication of US20110020388A1 publication Critical patent/US20110020388A1/en
Priority to US13/948,129 priority patent/US20140030344A1/en
Priority to US14/273,099 priority patent/US20140242173A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/26Heterocyclic compounds containing purine ring systems with an oxygen, sulphur, or nitrogen atom directly attached in position 2 or 6, but not in both
    • C07D473/32Nitrogen atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/39Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/52Purines, e.g. adenine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • A61K31/525Isoalloxazines, e.g. riboflavins, vitamin B2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0013Therapeutic immunisation against small organic molecules, e.g. cocaine, nicotine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/385Haptens or antigens, bound to carriers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/58Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. poly[meth]acrylate, polyacrylamide, polystyrene, polyvinylpyrrolidone, polyvinylalcohol or polystyrene sulfonic acid resin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/593Polyesters, e.g. PLGA or polylactide-co-glycolide
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6925Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a microcapsule, nanocapsule, microbubble or nanobubble
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/6931Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • A61K47/6935Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol
    • A61K47/6937Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer the polymer being obtained otherwise than by reactions involving carbon to carbon unsaturated bonds, e.g. polyesters, polyamides or polyglycerol the polymer being PLGA, PLA or polyglycolic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5138Organic macromolecular compounds; Dendrimers obtained by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyvinyl pyrrolidone, poly(meth)acrylates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • A61P25/34Tobacco-abuse
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D473/00Heterocyclic compounds containing purine ring systems
    • C07D473/26Heterocyclic compounds containing purine ring systems with an oxygen, sulphur, or nitrogen atom directly attached in position 2 or 6, but not in both
    • C07D473/32Nitrogen atom
    • C07D473/34Nitrogen atom attached in position 6, e.g. adenine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • C08G63/912Polymers modified by chemical after-treatment derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/42Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55544Bacterial toxins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55555Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6093Synthetic polymers, e.g. polyethyleneglycol [PEG], Polymers or copolymers of (D) glutamate and (D) lysine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/62Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/62Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier
    • A61K2039/627Medicinal preparations containing antigens or antibodies characterised by the link between antigen and carrier characterised by the linker
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones

Definitions

  • This invention relates to compositions, and related methods, of synthetic nanocarriers that target sites of action in cells, such as antigen presenting cells (APCs), and comprise immunomodulatory agents that dissociate from the synthetic nanocarriers in a pH sensitive manner.
  • the invention additionally relates to protection of labile immunomodulatory agents by means of their encapsulation in synthetic nanocarriers.
  • Immunomodulatory agents are used to produce immune responses in subjects. Stimulation of the immune system, which includes stimulation of either or both innate immunity and adaptive immunity, is a complex phenomenon that can result in either protective or adverse physiologic outcomes for the host. In recent years there has been increased interest in the mechanisms underlying innate immunity, which is believed to initiate and support adaptive immunity. This interest has been fueled in part by the recent discovery of a family of highly conserved pattern recognition receptor proteins known as Toll-like receptors (TLRs) believed to be involved in innate immunity as receptors for pathogen-associated molecular patterns (PAMPs).
  • TLRs Toll-like receptors believed to be involved in innate immunity as receptors for pathogen-associated molecular patterns (PAMPs).
  • compositions and methods useful for modulating innate immunity are therefore of great interest, as they may affect therapeutic approaches to conditions involving inflammation, allergy, asthma, infection, cancer, and immunodeficiency, etc.
  • the immunomodulatory agent is coupled to the synthetic nanocarrier via an immunomodulatory agent coupling moiety. In certain embodiments, the immunomodulatory agent is encapsulated within the synthetic nanocarrier. In some embodiments, the immunomodulatory agent comprises a labile immunomodulatory agent such as an imidazoquinoline, an adenine derivative, or an oligonucleotide that comprises 5′-CG-3′, wherein C is unmethylated and wherein the oligonucleotide comprises a backbone comprising one or more unstabilized internucleotide linkages.
  • a labile immunomodulatory agent such as an imidazoquinoline, an adenine derivative, or an oligonucleotide that comprises 5′-CG-3′, wherein C is unmethylated and wherein the oligonucleotide comprises a backbone comprising one or more unstabilized internucleotide linkages.
  • the imidazoquinoline comprises an imidazoquinoline amine, an imidazopyridine amine, a 6,7-fused cycloalkylimidazopyridine amine, an imidazoquinoline amine, imiquimod, or resiquimod.
  • the oligonucleotide's backbone comprises no stabilizing chemical modifications that function to stabilize the backbone under physiological conditions. In some embodiments, the oligonucleotide's backbone comprises a backbone that is not modified to incorporate phosphorothioate stabilizing chemical modifications.
  • the immunomodulatory agent is an adjuvant. In certain embodiments, the adjuvant comprises a Toll-like receptor (TLR) agonist such as a TLR 3 agonist, TLR 7 agonist, TLR 8 agonist, TLR 7/8 agonist, or a TLR 9 agonist.
  • TLR Toll-like receptor
  • the TLR agonist is an immunostimulatory nucleic acid such as an immunostimulatory DNA or immunostimulatory RNA.
  • the immunostimulatory nucleic acid is a CpG-containing immunostimulatory nucleic acid that comprises one or more stabilizing chemical modifications that function to stabilize the backbone under physiological conditions.
  • the adjuvant comprises a universal T-cell antigen.
  • the synthetic nanocarriers further comprise a B cell antigen and/or a T cell antigen. In certain embodiments, the synthetic nanocarriers further comprise an antigen presenting cell (APC) targeting feature. In some embodiments, the synthetic nanocarriers comprise one or more biodegradable polymers. In some embodiments, the immunomodulatory agent is coupled to the one or more biodegradable polymers via the immunomodulatory agent coupling moiety. In certain embodiments, the biodegradable polymer comprises poly(lactide), poly(glycolide), or poly(lactide-co-glycolide).
  • the biodegradable polymers have a weight average molecular weight ranging from 800 Daltons to 10,000 Daltons, as determined using gel permeation chromatography.
  • the immunomodulatory agent coupling moiety comprises an amide bond. In some embodiments, the immunomodulatory agent coupling moiety comprises an ester bond.
  • the synthetic nanocarriers comprise lipid-based nanoparticles, polymeric nanoparticles, metallic nanoparticles, surfactant-based emulsions, dendrimers, buckyballs, nanowires, virus-like particles, peptide or protein-based particles, nanoparticles that comprise a combination of nanomaterials, spheroidal nanoparticles, cubic nanoparticles, pyramidal nanoparticles, oblong nanoparticles, cylindrical nanoparticles, or toroidal nanoparticles.
  • the immunomodulatory agent comprises a labile immunomodulatory agent encapsulated within the synthetic nanocarrier.
  • the labile immunomodulatory agent comprises an imidazoquinoline, an adenine derivative, or an oligonucleotide that comprises 5′-CG-3′, wherein C is unmethylated and wherein the oligonucleotide comprises a backbone comprising one or more unstabilized internucleotide linkages.
  • the imidazoquinoline comprises an imidazoquinoline amine, an imidazopyridine amine, a 6,7-fused cycloalkylimidazopyridine amine, an imidazoquinoline amine, imiquimod, or resiquimod.
  • the oligonucleotide's backbone comprises no stabilizing chemical modifications that function to stabilize the backbone under physiological conditions. In some embodiments, the oligonucleotide's backbone comprises a backbone that is not modified to incorporate phosphorothioate stabilizing chemical modifications.
  • the immunomodulatory agent comprises a labile immunomodulatory agent encapsulated within the synthetic nanocarrier.
  • the labile immunomodulatory agent comprises an imidazoquinoline, an adenine derivative, or an oligonucleotide that comprises 5′-CG-3′, wherein C is unmethylated and wherein the oligonucleotide comprises a backbone comprising one or more unstabilized internucleotide linkages.
  • the imidazoquinoline comprises an imidazoquinoline amine, an imidazopyridine amine, a 6,7-fused cycloalkylimidazopyridine amine, a imidazoquinoline amine, imiquimod, or resiquimod.
  • the oligonucleotide's backbone comprises no stabilizing chemical modifications that function to stabilize the backbone under physiological conditions. In some embodiments, the oligonucleotide's backbone comprises a backbone that is not modified to incorporate phosphorothioate stabilizing chemical modifications.
  • the immunomodulatory agent is coupled to the synthetic nanocarrier via an immunomodulatory agent coupling moiety. In some embodiments, the immunomodulatory agent is encapsulated within the synthetic nanocarrier.
  • the immunomodulatory agent is an adjuvant.
  • the adjuvant comprises a Toll-like receptor (TLR) agonist such as a TLR 3 agonist, TLR 7 agonist, TLR 8 agonist, TLR 7/8 agonist, or a TLR 9 agonist.
  • TLR agonist is an immunostimulatory nucleic acid such as an immunostimulatory DNA or immunostimulatory RNA.
  • the immunostimulatory nucleic acid is a CpG-containing immunostimulatory nucleic acid that comprises one or more stabilizing chemical modifications that function to stabilize the backbone under physiological conditions.
  • the adjuvant comprises a universal T-cell antigen.
  • the synthetic nanocarriers further comprise a B cell antigen and/or a T cell antigen.
  • the synthetic nanocarriers further comprise an antigen presenting cell (APC) targeting feature.
  • the synthetic nanocarriers comprise one or more biodegradable polymers.
  • the immunomodulatory agent is coupled to the one or more biodegradable polymers via the immunomodulatory agent coupling moiety.
  • the biodegradable polymer comprises poly(lactide), poly(glycolide), or poly(lactide-co-glycolide).
  • the biodegradable polymers have a weight average molecular weight ranging from 800 Daltons to 10,000 Daltons, as determined using gel permeation chromatography.
  • the immunomodulatory agent coupling moiety comprises an amide bond. In some embodiments, the immunomodulatory agent coupling moiety comprises an ester bond.
  • the synthetic nanocarriers comprise lipid-based nanoparticles, polymeric nanoparticles, metallic nanoparticles, surfactant-based emulsions, dendrimers, buckyballs, nanowires, virus-like particles, peptide or protein-based particles, nanoparticles that comprise a combination of nanomaterials, spheroidal nanoparticles, cubic nanoparticles, pyramidal nanoparticles, oblong nanoparticles, cylindrical nanoparticles, or toroidal nanoparticles.
  • compositions associated with the invention further comprise a pharmaceutically acceptable excipient.
  • compositions comprising a vaccine comprising any of the compositions associated with the invention.
  • compositions associated with the invention involve methods comprising administering any of the compositions associated with the invention to a subject.
  • the composition is in an amount effective to induce or enhance an immune response.
  • the subject has cancer, an infectious disease, a non-autoimmune metabolic disease, a degenerative disease, or an addiction.
  • FIG. 1 demonstrates the release of resiquimod (R848) from synthetic nanocarrier formulations at pH 7.4, 37° C.
  • FIG. 2 demonstrates the release of R848 from synthetic nanocarrier formulations at pH 4.5, 37° C.
  • FIG. 3 demonstrates the release of R848 from synthetic nanocarrier formulations at pH 7.4 and pH 4.5 at 24 hours.
  • FIG. 4 shows the level of antibody induction by synthetic nanocarriers with a CpG-containing immunostimulatory nucleic acid (Groups 2 and 3) as compared to the level of antibody induction by synthetic nanocarriers without the CpG-containing immunostimulatory nucleic acid (Group 1).
  • FIG. 5 shows the level of antibody induction by synthetic nanocarriers that release a phosphodiester, non-thioated CpG-containing immunostimulatory nucleic acid or a thioated CpG-containing immunostimulatory nucleic acid.
  • FIG. 6 shows the level of antibody induction by synthetic nanocarriers that release R848 at different rates.
  • FIG. 7 shows the level of antibody induction by synthetic nanocarriers carrying entrapped phosphodiester (PO) CpG, designated as NC-Nic/PO-CpG.
  • PO phosphodiester
  • FIG. 8 shows the release of entrapped PO-CpG from nanocarriers at a pH of 4.5 versus pH 7.5.
  • a labile immunomodulatory agent such as PO-CpG
  • Such a labile agent can be released at a desired site of action with a pH of 4.5 (e.g., in the endosome/lysosome) with low levels of release occurring at a pH of 7.4 (e.g., generally the pH outside of the endosome/lysosome).
  • This invention is useful in that it provides a way to release immunomodulatory agents more directly at the sites of action in cells of interest, in particular antigen presenting cells, which would result in beneficial immune response and/or reduce off-target effects and toxicity, as the majority of the release of the immunomodulatory agents would be at a site of action in the cells of interest.
  • This is of particular interest for the delivery of adjuvants.
  • the controlled release properties offer for the first time a controlled way of delivering immunomodulatory agents to the immune cells of interest and allow for a more precise intervention on the immune system, including the ability to release immunomodulatory agents over an extended period. All of this leads to a very tunable system to get the optimum release of immunomodulatory agent such that it will release primarily at a site of action in the desired cells.
  • the inventors have further recognized that coupling labile immunomodulatory agents within the inventive synthetic nanocarriers through encapsulating the labile immunomodulatory agents within the inventive synthetic nanocarriers, and providing a controlled way of delivering labile immunomodulatory agents to immune cells of interest, preferably over an extended period, results in targeted delivery of the labile immunomodulatory agents while minimizing off-target effects of the immunomodulatory agents, especially off-target effects associated with systemic administration of the immunomodulatory agents. Additionally, this approach can enhance the performance of labile immunomodulatory agents having a short half-life of elimination that otherwise might not have a desirable level of pharmacological activity.
  • the invention relates to certain oligonucleotides.
  • nucleic acid molecules including CpG nucleic acids, GU rich ssRNA and double-stranded RNA.
  • TLR9 Toll-like receptor 9
  • Natural DNA oligonucleotides contain phosphodiester linkages that are rapidly cleaved by nucleases found in the extracellular environment. Yu, D., et al., Potent CpG oligonucleotides containing phosphodiester linkages: in vitro and in vivo immunostimulatory properties. Biochem Biophys Res Commun, 2002. 297(1): p. 83-90 (“Yu et al.”); Heeg, K., et al., Structural requirements for uptake and recognition of CpG oligonucleotides. Int J Med Microbiol, 2008. 298(1-2): p. 33-8 (“Heeg et al.”).
  • Such natural oligonucleotides may be considered labile immunomodulatory agents. Accordingly, methods of chemically stabilizing the linkages by replacing the phosphodiester linking group with a phosphorothioate group have been extensively reported in the literature. See U.S. Pat. No. 6,811,975—Phosphorothioate Oligonucleotides Having Modified Internucleoside Linkages.
  • Phosphorothioate CpG containing oligonucleotides have been administered systemically as vaccine adjuvants. Yu et al. However, systemic administration of stabilized CpG oligonucleotides can result in off-target immunostimulatory effects, such as general inflammation, non-specific activation of lymphocytes, and flu-like symptoms.
  • Haas, T., et al. Sequence independent interferon-alpha induction by multimerized phosphodiester DNA depends on spatial regulation of Toll-like receptor-9 activation in plasmacytoid dendritic cells. Immunology, 2009. 126(2): p. 290-8 (“Haas et al.”). Accordingly, such oligonucleotides may be usefully incorporated in the practice of the present invention, as is described in more detail below.
  • composition comprising: synthetic nanocarriers that comprise an immunomodulatory agent coupled to the synthetic nanocarrier; wherein the immunomodulatory agent, preferably a labile immunodmodulatory agent, dissociates from the synthetic nanocarrier according to the following relationship:
  • the immunomodulatory agent preferably a labile immunodmodulatory agent, dissociates from the synthetic nanocarrier according to the following relationship: IArel(4.5) t %/IArel(7.4) t % ⁇ 1.3, IArel(4.5) t %/IArel(7.4) t % ⁇ 1.4, IArel(4.5) t %/IArel(7.4) t % ⁇ 1.5, IArel(4.5) t %/IArel(7.4) t % ⁇ 1.6, IArel(4.5) t %/IArel(7.4) t % ⁇ 1.7, IArel(4.5) t %/IArel(7.4) t % ⁇ 1.8, IArel(4.5) t %/IArel(7.4) t % ⁇ 1.9, IArel(4.5) t %/IArel(7.4) t % 2, IArel(4.5)
  • the immunomodulatory agent preferably a labile immunodmodulatory agent, dissociates from the synthetic nanocarrier according to the following relationship: 2 ⁇ IArel(4.5) t %/IArel(7.4) t % ⁇ 1.2, 2.5 ⁇ IArel(4.5) t %/IArel(7.4) t % ⁇ 1.2, 3 ⁇ IArel(4.5) t %/IArel(7.4) t % ⁇ 1.2, 3.5 ⁇ IArel(4.5) t %/IArel(7.4) t % ⁇ 1.2, 4 ⁇ IArel(4.5) t %/IArel(7.4) t % ⁇ 1.2, 4.5 ⁇ IArel(4.5) t %/IArel(7.4) t % ⁇ 1.2, 5 ⁇ IArel(4.5) t %/IArel(7.4) t % 1.2, 6 ⁇ IArel(4.5) t
  • this invention relates to compositions and methods comprising synthetic nanocarriers that release immunomodulatory agents at significantly different rates at neutral and acidic pH.
  • immunomodulatory agents to have the most potent effect it is desirable to have the majority of the immunomodulatory agent released inside APCs where they can have a desired effect.
  • immunomodulatory agents are injected in free form, or when they are released from a synthetic nanoparticle outside the APCs, only a small portion of that immunomodulatory agent finds its way to the APCs, while the rest diffuses through the body, where the immune stimulation would be less and may result in deleterious effects.
  • inventive synthetic nanocarriers provided herein are preferentially taken up by APCs.
  • the synthetic nanocarriers Upon being taken up by the APC, the synthetic nanocarriers are presumed to be endocytosed into an endosomal/lysosomal compartment where the pH becomes more acidic, as opposed to the neutral pH outside the cells. Under these conditions, the immunomodulatory agent exhibits a pH sensitive dissociation from the synthetic nanocarrier (e.g., from an immunomodulatory agent coupling moiety) and is released from the synthetic nanocarrier. The immunomodulatory agent is then free to interact with receptors associated with the endosome/lysosome and stimulate a desired immune response.
  • the synthetic nanocarrier e.g., from an immunomodulatory agent coupling moiety
  • the immunomodulatory agents can be coupled to the synthetic nanocarriers by any of a number of methods. Generally, the coupling can be a result of bonding between the immunomodulatory agent and the synthetic nanocarrier. This bonding can result in the immunomodulatory agent being attached to the surface of the synthetic nanocarrier and/or contained within (encapsulated) the synthetic nanocarrier. In some embodiments, however, the immunomodulatory agent is encapsulated by the synthetic nanocarrier as a result of the structure of the synthetic nanocarrier rather than bonding to the synthetic nanocarrier.
  • an immunomodulatory agent coupling moiety can be any moiety through which an immunomodulatory agent is bonded to a synthetic nanocarrier.
  • moieties include covalent bonds, such as an amide bond or ester bond, as well as separate molecules that bond (covalently or non-covalently) the immunomodulatory agent to the synthetic nanocarrier.
  • molecules include linkers or polymers or a unit thereof.
  • the immunomodulatory agent coupling moiety can comprise a charged polymer to which an immunomodulatory agent (e.g., an immunostimulatory nucleic acid) electrostatically binds.
  • the immunomodulatory agent coupling moiety can comprise a polymer or unit thereof to which the immunomodulatory agent is covalently bonded.
  • the polymer or unit thereof comprises a polyester, polycarbonate, polyamide, or polyether, or unit thereof.
  • the polymer or unit thereof comprises poly(ethylene glycol) (PEG), poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), or a polycaprolactone, or unit thereof.
  • PEG poly(ethylene glycol)
  • the polymer is biodegradable. Therefore, in these embodiments, it is preferred that if the polymer comprises a polyether, such as poly(ethylene glycol) or unit thereof, the polymer comprises a block-co-polymer of a polyether and a biodegradable polymer such that the polymer is biodegradable.
  • the polymer does not solely comprise a polyether or unit thereof, such as poly(ethylene glycol) or unit thereof.
  • any of the polymers provided herein can have a weight average molecular weight, as determined by gel permeation chromatography, of about 800 Da to 10,000 Da (e.g., 2,000 Da).
  • the immunomodulatory agent is an adjuvant, such as an imidazoquinoline.
  • Imidazoquinolines include compounds, such as imiquimod and resiquimod (also known as R848).
  • Such adjuvants can be coupled to a polymer as provided above.
  • resiquimod was conjugated to poly-lactic acid (PLA) polymer of ⁇ 2000 Da.
  • PPA poly-lactic acid
  • Table 1 lists the compositions of the particles tested.
  • immunomodulatory agents such as R848, can be coupled to other polymers or units thereof, such as those provided above and elsewhere herein including polylactide-co-glycolide (PLGA) block co-polymer or unit thereof.
  • Immunomodulatory agents, such as R848, can be coupled to such polymers or units thereof by an amide or ester bond. Examples of methods for effecting such coupling are provided elsewhere herein and in the EXAMPLES.
  • composition comprising:
  • synthetic nanocarriers that comprise an immunomodulatory agent coupled to the synthetic nanocarrier; wherein the immunomodulatory agent, preferably a labile immunodmodulatory agent, dissociates from the synthetic nanocarrier according to the following relationship:
  • t1 is 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 or 30 hours
  • t2 is 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, or 28 hours
  • t1 is 24 hours
  • t2 is 6 hours.
  • the immunomodulatory agent preferably a labile immunodmodulatory agent, dissociates from the synthetic nanocarrier according to the following relationship: IA(4.5) t1 /IA(4.5) t2 ⁇ 1.5, IA(4.5) t1 /IA(4.5) t2 ⁇ 2, IA(4.5) t1 /IA(4.5) t2 ⁇ 2.5, IA(4.5) t1 /IA(4.5) t2 ⁇ 3, IA(4.5) t1 /IA(4.5) t2 ⁇ 3.5, IA(4.5) t1 /IA(4.5) t2 ⁇ 4, IA(4.5) t1 /IA(4.5) t2 ⁇ 4.5, IA(4.5) t1 /IA(4.5) t2 ⁇ 5, IA(4.5) t1 /IA(4.5) t2 ⁇ 6, IA(4.5) t1 /IA(4.5) t2 ⁇ 7, IA(4.5)
  • the immunomodulatory agent preferably a labile immunodmodulatory agent, dissociates from the synthetic nanocarrier according to the following relationship: 10 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 1.2, 10 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 2, 10 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 2.5, 10 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 3, 10 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 3.5, 10 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 4, 10 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 4.5, 10 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 5, 10 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 6, 10 ⁇ IA(
  • Inventive synthetic nanocarriers have also been shown to exhibit the property of augmenting a humoral immune response to a specific antigen. Such augmented humoral immune response has been found to be elevated, in some embodiments, with faster release of immunomodulatory agent.
  • the immunomodulatory agent is a CpG-containing immunostimulatory nucleic acid
  • the CpG-containing immunostimulatory nucleic acid is encapsulated within a synthetic nanocarrier.
  • optimal release of the CpG-containing immunostimulatory nucleic acids from synthetic nanocarriers produced an elevated humoral immune response to nicotine, which was also coupled to the synthetic nanocarriers. In some embodiments, such optimal release was found to better augment an antibody response to an antigen.
  • Optimal release is the dissociation of the immunomodulatory agent from the synthetic nanocarrier that produces the best levels of desired effect(s).
  • the desired effect is an immediate immune response of a desired level (i.e., one that occurs soon after the administration of the synthetic nanocarrier).
  • an immediate immune response is one measured on the order of seconds, minutes, or a few hours.
  • the desired effect is an immune response of a desired level that occurs after a few hours.
  • the desired effect is an immune response of a desired level that is sustained for an extended period of time, such as for 1, 2, 5, 10, 15 or more hours. In other embodiments, the extended period of time is for 1, 2, 5, 10, 15, 20, 25, 30 or more days.
  • the extended period of time is for 1, 2, 5, 10 or more months. In further embodiments, the extended period of time is for 1, 2, 5, 10 or more years.
  • a composition of synthetic nanocarriers that provides optimal release is one wherein the immunomodulatory agent dissociates from the synthetic nanocarrier according to one of the above relationships.
  • an immunomodulatory agent preferably a labile immunodmodulatory agent, that dissociates from the synthetic nanocarrier at an intermediate rate satisfies the following relationship: 6 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 1.2, 5 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 1.2, 4 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 1.2, 3 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 1.2, 2 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 1.2, 6 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 2, 6 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 2.5, 6 ⁇ IA(4.5) t1 /IA(4.5) t2 ⁇ 3, 6 ⁇ IA(4.5) t1 /IA(4.5) t1 /I
  • resiquimod was encapsulated within a synthetic nanocarrier.
  • resiquimod contained in the synthetic nanocarriers augmented humoral immune response against nicotine also coupled to the synthetic nanocarriers.
  • an intermediate release of the resiquimod from the synthetic nanocarriers was optimal, as it resulted in a higher level of antibody induction than fast or slow release of the resiquimod.
  • the synthetic nanocarriers provided herein can also comprise one or more antigens.
  • the antigens can be B cell antigens or T cell antigens or a combination of both.
  • Such antigens can be coupled to the synthetic nanocarriers such that they are present on the surface of the synthetic nanocarriers, encapsulated within the nanocarriers or both, in some embodiments.
  • the immunomodulatory agent augments an immune response to such an antigen.
  • the antigen can also be coupled to the synthetic nanocarriers. In other embodiments, however such as antigen is not coupled to the synthetic nanocarriers. In some of these embodiments, such an antigen can be coadministered to a subject. In still other of these embodiments, such an antigen is not coadministered to the subject.
  • adjuvant means an agent that does not constitute a specific antigen, but boosts the strength and longevity of immune response to an antigen.
  • adjuvants may include, but are not limited to stimulators of pattern recognition receptors, such as Toll-like receptors, RIG-1 and NOD-like receptors (NLR), mineral salts, such as alum, alum combined with monphosphoryl lipid (MPL) A of Enterobacteria, such as Escherichia coli, Salmonella minnesota, Salmonella typhimurium , or Shigella flexneri or specifically with MPL® (AS04), MPL A of above-mentioned bacteria separately, saponins, such as QS-21, Quil-A, ISCOMs, ISCOMATRIXTTM, emulsions such as MF59TM, Montanide® ISA 51 and ISA 720, AS02 (QS21+squalene+MPL®), liposomes and liposomal formulations such as AS01, synthe
  • adjuvants comprise agonists for pattern recognition receptors (PRR), including, but not limited to Toll-Like Receptors (TLRs), specifically TLRs 2, 3, 4, 5, 7, 8, 9 and/or combinations thereof.
  • PRR pattern recognition receptors
  • TLRs Toll-Like Receptors
  • adjuvants comprise agonists for Toll-Like Receptors 3, agonists for Toll-Like Receptors 7 and 8, or agonists for Toll-Like Receptor 9; preferably the recited adjuvants comprise imidazoquinolines; such as resiquimod (also known as R848); adenine derivatives, such as those disclosed in U.S. Pat. No. 6,329,381 (Sumitomo Pharmaceutical Company); immunostimulatory DNA; or immunostimulatory RNA.
  • synthetic nanocarriers incorporate as adjuvants compounds that are agonists for toll-like receptors (TLRs) 7 & 8 (“TLR 7/8 agonists”).
  • TLR 7/8 agonist compounds disclosed in U.S. Pat. No. 6,696,076 to Tomai et al., including but not limited to imidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, and 1,2-bridged imidazoquinoline amines.
  • Preferred adjuvants comprise imiquimod and resiquimod.
  • an adjuvant may be an agonist for the DC surface molecule CD40.
  • a synthetic nanocarrier incorporates an adjuvant that promotes DC maturation (needed for effective priming of naive T cells) and the production of cytokines, such as type I interferons, which in turn stimulate antibody and cytotoxic immune responses against desired antigen.
  • adjuvants also may comprise immunostimulatory RNA molecules, such as but not limited to dsRNA or poly I:C (a TLR3 stimulant), and/or those disclosed in F. Heil et al., “Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8” Science 303(5663), 1526-1529 (2004); J.
  • an adjuvant may be a TLR-4 agonist, such as bacterial lipopolysacccharide (LPS), VSV-G, and/or HMGB-1.
  • adjuvants may comprise TLR-5 agonists, such as flagellin, or portions or derivatives thereof, including but not limited to those disclosed in U.S. Pat. Nos.
  • synthetic nanocarriers incorporate a ligand for Toll-like receptor (TLR)-9, such as immunostimulatory oligonucleotide molecules comprising 5′-CG-3′ motifs, wherein the C is unmethylated, which induce type I interferon secretion, and stimulate T and B cell activation leading to increased antibody production and cytotoxic T cell responses (Krieg et al., CpG motifs in bacterial DNA trigger direct B cell activation. Nature. 1995. 374:546-549; Chu et al. CpG oligodeoxynucleotides act as adjuvants that switch on T helper 1 (Thi) immunity. J.
  • TLR Toll-like receptor
  • adjuvants may be proinflammatory stimuli released from necrotic cells (e.g., urate crystals).
  • adjuvants may be activated components of the complement cascade (e.g., CD21, CD35, etc.).
  • adjuvants may be activated components of immune complexes.
  • the adjuvants also include complement receptor agonists, such as a molecule that binds to CD21 or CD35.
  • the complement receptor agonist induces endogenous complement opsonization of the synthetic nanocarrier.
  • adjuvants are cytokines, which are small proteins or biological factors (in the range of 5 kD-20 kD) that are released by cells and have specific effects on cell-cell interaction, communication and behavior of other cells.
  • the cytokine receptor agonist is a small molecule, antibody, fusion protein, or aptamer.
  • administering means providing a drug to a patient in a manner that is pharmacologically useful.
  • APC targeting feature means one or more portions of which the inventive synthetic nanocarriers are comprised that target the synthetic nanocarriers to professional antigen presenting cells (“APCs”), such as but not limited to dendritic cells, SCS macrophages, follicular dendritic cells, and B cells.
  • APC targeting features may comprise immunofeature surface(s) and/or targeting moieties that bind known targets on APCs.
  • APC targeting features may comprise one or more B cell antigens present on a surface of synthetic nanocarriers.
  • APC targeting features may also comprise one or more dimensions of the synthetic nanoparticles that is selected to promote uptake by APCs.
  • targeting moieties for known targets on macrophages comprise any targeting moiety that specifically binds to any entity (e.g., protein, lipid, carbohydrate, small molecule, etc.) that is prominently expressed and/or present on macrophages (i.e., subcapsular sinus-Mph markers).
  • entity e.g., protein, lipid, carbohydrate, small molecule, etc.
  • Exemplary SCS-Mph markers include, but are not limited to, CD4 (L3T4, W3/25, T4); CD9 (p24, DRAP-1, MRP-1); CD11a (LFA-1 ⁇ , ⁇ L Integrin chain); CD11b ( ⁇ M Integrin chain, CR3, Mol, C3niR, Mac-1); CD11c ( ⁇ X Integrin, p150, 95, AXb2); CDw12 (p90-120); CD13 (APN, gp150, EC 3.4.11.2); CD14 (LPS-R); CD15 (X-Hapten, Lewis, X, SSEA-1,3-FAL); CD15s (Sialyl Lewis X); CD15u (3′ sulpho Lewis X); CD15su (6 sulpho-sialyl Lewis X); CD16a (FCRIIIA); CD16b (FcgRIIIb); CDw17 (Lactosylceramide, LacCer); CD18 (Integrin ⁇
  • targeting moieties for known targets on dendritic cells comprise any targeting moiety that specifically binds to any entity (e.g., protein, lipid, carbohydrate, small molecule, etc.) that is prominently expressed and/or present on DCs (i.e., a DC marker).
  • entity e.g., protein, lipid, carbohydrate, small molecule, etc.
  • DC markers include, but are not limited to, CD1a (R4, T6, HTA-1); CD1b (R1); CD1c (M241, R7); CD1d (R3); CD1e (R2); CD11b ( ⁇ M Integrin chain, CR3, Mol, C3niR, Mac-1); CD11c ( ⁇ X Integrin, p150, 95, AXb2); CDw117 (Lactosylceramide, LacCer); CD19 (B4); CD33 (gp67); CD 35 (CR1, C3b/C4b receptor); CD 36 (GpIIIb, GPIV, PASIV); CD39 (ATPdehydrogenase, NTPdehydrogenase-1); CD40 (Bp50); CD45 (LCA, T200, B220, Ly5); CD45RA; CD45RB; CD45RC; CD45RO (UCHL-1); CD49d (VLA-4 ⁇ , ⁇ 4 Integrin); CD49e (VLA-5 ⁇ , ⁇ 5 Integrin); CD58
  • targeting can be accomplished by any targeting moiety that specifically binds to any entity (e.g., protein, lipid, carbohydrate, small molecule, etc.) that is prominently expressed and/or present on B cells (i.e., B cell marker).
  • entity e.g., protein, lipid, carbohydrate, small molecule, etc.
  • Exemplary B cell markers include, but are not limited to, CD1c (M241, R7); CD1d (R3); CD2 (E-rosette R, T11, LFA-2); CD5 (T1, Tp67, Leu-1, Ly-1); CD6 (T12); CD9 (p24, DRAP-1, MRP-1); CD11a (LFA-1 ⁇ , ⁇ L Integrin chain); CD11b ( ⁇ M Integrin chain, CR3, Mol, C3niR, Mac-1); CD11c ( ⁇ X Integrin, P150, 95, AXb2); CDw17 (Lactosylceramide, LacCer); CD18 (Integrin ⁇ 2, CD11a, b, c ⁇ -subunit); CD19 (B4); CD20 (B1, Bp35); CD21 (CR2, EBV-R, C3dR); CD22 (BL-CAM, Lyb8, Siglec-2); CD23 (FceRII, B6, BLAST-2, Leu-20); CD24 (BBA-1
  • B cell targeting can be accomplished by any targeting moiety that specifically binds to any entity (e.g., protein, lipid, carbohydrate, small molecule, etc.) that is prominently expressed and/or present on B cells upon activation (i.e., activated B cell marker).
  • entity e.g., protein, lipid, carbohydrate, small molecule, etc.
  • Exemplary activated B cell markers include, but are not limited to, CD1a (R4, T6, HTA-1); CD1b (R1); CD15s (Sialyl Lewis X); CD15u (3′ sulpho Lewis X); CD15su (6 sulpho-sialyl Lewis X); CD30 (Ber-H2, Ki-1); CD69 (AIM, EA 1, MLR3, gp34/28, VEA); CD70 (Ki-24, CD27 ligand); CD80 (B7, B7-1, BB1); CD86 (B7-2/B70); CD97 (BLKDD/F12); CD125 (IL-5R ⁇ ); CD126 (IL-6R ⁇ ); CD138 (Syndecan-1, Heparan sulfate proteoglycan); CD152 (CTLA-4); CD252 (OX40L, TNF(ligand) superfamily, member 4); CD253 (TRAIL, TNF(ligand) superfamily, member 10); CD279 (PD1);
  • B cell antigen means any antigen that naturally is or could be engineered to be recognized by a B cell, and triggers (naturally or being engineered as known in the art) an immune response in a B cell (e.g., an antigen that is specifically recognized by a B cell receptor on a B cell).
  • an antigen that is a T cell antigen is also a B cell antigen.
  • the T cell antigen is not also a B cell antigen.
  • B cell antigens include, but are not limited to proteins, peptides, small molecules, and carbohydrates.
  • the B cell antigen is a non-protein antigen (i.e., not a protein or peptide antigen).
  • the B cell antigen is a carbohydrate associated with an infectious agent. In some embodiments, the B cell antigen is a glycoprotein or glycopeptide associated with an infectious agent.
  • the infectious agent can be a bacterium, virus, fungus, protozoan, parasite or prion.
  • the B cell antigen is a poorly immunogenic antigen. In some embodiments, the B cell antigen is an abused substance or a portion thereof. In some embodiments, the B cell antigen is an addictive substance or a portion thereof. Addictive substances include, but are not limited to, nicotine, a narcotic, a cough suppressant, a tranquilizer, and a sedative.
  • the B cell antigen is a toxin, such as a toxin from a chemical weapon or natural sources, or a pollutant.
  • the B cell antigen may also be a hazardous environmental agent.
  • the B cell antigen is an alloantigen, an allergen, a contact sensitizer, a degenerative disease antigen, a hapten, an infectious disease antigen, a cancer antigen, an atopic disease antigen, an addictive substance, a xenoantigen, or a metabolic disease enzyme or enzymatic product thereof.
  • Biodegradable polymer means a polymer that degrades over time when introduced into the body of a subject.
  • Biodegradable polymers include but are not limited to, polyesters, polycarbonates, polyketals, or polyamides. Such polymers may comprise poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), or polycaprolactone.
  • the biodegradable polymer comprises a block-co-polymer of a polyether, such as poly(ethylene glycol), and a polyester, polycarbonate, or polyamide or other biodegradable polymer.
  • the biodegradable polymer comprises a block-co-polymer of poly(ethylene glycol) and poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), or polycaprolactone.
  • the biodegradable polymer does not comprise a polyether, such as poly(ethylene glycol), or consists solely of the polyether.
  • the biodegradable polymer in embodiments, have a weight average molecular weight ranging from about 800 to about 50,000 Daltons, as determined using gel permeation chromatography.
  • the weight average molecular weight is from about 800 Daltons to about 10,000 Daltons, preferably from 800 Daltons to 10,000 Daltons, as determined using gel permeation chromatography. In other embodiments, the weight average molecular weight is from 1000 Daltons to 10,000 Daltons, as determined by gel permeation chromatography. In an embodiment, the biodegradable polymer does not comprise polyketal.
  • Coadministered means administering two or more drugs to a subject in a manner that is correlated in time. In embodiments, coadministration may occur through administration of two or more drugs in the same dosage form. In other embodiments, coadministration may encompass administration of two or more drugs in different dosage forms, but within a specified period of time, preferably within 1 month, more preferably within 1 week, still more preferably within 1 day, and even more preferably within 1 hour.
  • “Couple” or “Coupled” or “Couples” means attached to or contained within the synthetic nanocarrier.
  • the coupling is covalent.
  • the covalent coupling is mediated by one or more linkers, polymers or a unit thereof.
  • the coupling is non-covalent.
  • the non-covalent coupling is mediated by charge interactions, affinity interactions, metal coordination, physical adsorption, hostguest interactions, hydrophobic interactions, TT stacking interactions, hydrogen bonding interactions, van der Waals interactions, magnetic interactions, electrostatic interactions, dipole-dipole interactions, and/or combinations thereof.
  • the coupling may arise in the context of encapsulation within the synthetic nanocarriers, using conventional techniques. Any of the aforementioned couplings may be arranged to be on a surface or within an inventive synthetic nanocarrier.
  • “Derived” means adapted or modified from the original source.
  • a peptide antigen derived from an infectious strain may have several non-natural amino acid residues substituted for the natural amino acid residues found in the original antigen found in the infectious strain.
  • the adaptations or modifications may be for a variety of reasons, including but not limited to increased specificity, easier antigen processing, or improved safety.
  • Dosage form means a drug in a medium, carrier, vehicle, or device suitable for administration to a subject.
  • Effective amount of an inventive composition is that amount effective for a certain purpose. For example, when the effective amount is for a therapeutic purpose the amount is effective for treating, alleviating, ameliorating, relieving, delaying onset of, inhibiting progression of, reducing severity of, and/or reducing incidence of one or more symptoms or features of a disease, disorder, and/or condition provided herein.
  • Encapsulate means to enclose within a synthetic nanocarrier, preferably enclose completely within a synthetic nanocarrier. Most or all of a substance that is encapsulated is not exposed to the local environment external to the synthetic nanocarrier. Encapsulation is distinct from absorbtion, which places most or all of a substance on a surface of a synthetic nanocarrier, and leaves the substance exposed to the local environment external to the synthetic nanocarrier.
  • “Exhibits a pH sensitive dissociation” means that a coupling between two entities, such as the immunomodulatory agent and the synthetic nanocarrier or immunomodulatory agent coupling moiety, is significantly reduced or eliminated by a change in environmental pH.
  • relevant pH sensitive dissociations may satisfy any of the relationships or combinations thereof provided herein.
  • t is 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, or 30 hours.
  • t is 24 hours.
  • t is 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, or 30 hours.
  • t is 24 hours.
  • IA(4.5) t1 is defined as a weight of immunomodulatory agent released upon exposure of the synthetic nanocarrier to an in vitro aqueous environment at pH 4.5 for t1 hours taken as an average across a sample of the synthetic nanocarriers.
  • IA(4.5) t2 is defined as a weight of immunomodulatory agent released upon exposure of the synthetic nanocarrier to an in vitro aqueous environment at pH 4.5 for t2 hours taken as an average across a sample of the synthetic nanocarriers.
  • t1 is 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28 or 30 hours;
  • t2 is 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, or 28 hours; and t1>t2.
  • t1 is 24 hours
  • t2 is 6 hours.
  • Immunomodulatory agent means an agent that modulates an immune response. “Modulate”, as used herein, refers to inducing, enhancing, stimulating, or directing an immune response. Such agents include adjuvants that stimulate (or boost) an immune response to an antigen but is not an antigen or derived from an antigen.
  • the immunomodulatory agent is on the surface of the synthetic nanocarrier and/or is incorporated within the synthetic nanocarrier. In embodiments, the immunomodulatory agent is coupled to the synthetic nanocarrier via a polymer or unit thereof.
  • all of the immunomodulatory agents of a synthetic nanocarrier are identical to one another.
  • a synthetic nanocarrier comprises a number of different types of immunomodulatory agents.
  • a synthetic nanocarrier comprises multiple individual immunomodulatory agents, all of which are identical to one another.
  • a synthetic nanocarrier comprises exactly one type of immunomodulatory agent.
  • a synthetic nanocarrier comprises exactly two distinct types of immunomodulatory agents.
  • a synthetic nanocarrier comprises greater than two distinct types of immunomodulatory agents.
  • Immunomodulatory agent coupling moiety is any moiety through which an immunomodulatory agent is bonded to a synthetic nanocarrier.
  • Such moieties include covalent bonds, such as an amide bond or ester bond, as well as separate molecules that bond (covalently or non-covalently) the immunomodulatory agent to the synthetic nanocarrier.
  • Such molecules include linkers or polymers or a unit thereof.
  • the immunomodulatory agent coupling moiety can comprise a charged polymer to which an immunomodulatory agent (e.g., an immunostimulatory nucleic acid) electrostatically bonds.
  • the immunomodulatory agent coupling moiety can comprise a polymer or unit thereof to which the immunomodulatory agent covalently bonds.
  • the moiety comprises a polyester. In other embodiments, the moiety comprises poly(ethylene glycol), poly(lactic acid), poly(glycolic acid), poly(lactic-co-glycolic acid), or a polycaprolactone. The moiety may also comprise a unit of any of the foregoing polymers, such as a lactide or glycolide.
  • “Labile immunomodulatory agent(s)” means immunomodulatory agent or agents that are unstable under physiological conditions, and degrade to the point where they are no longer pharmacologically active. In embodiments, labile immunomodulatory agents are observed to have systemic half-lives of elimination of less than 24 hours, preferably less than 12 hours, more preferably less than 10 hours, even more preferably less than 8 hours, and still more preferably less than 6 hours. In embodiments, labile immunomodulatory agents comprise imidazoquinolines, adenine derivative, or oligonucleotides that comprise 5′-CG-3′, wherein C is unmethylated and wherein the oligonucleotide comprises a backbone comprising one or more unstabilized internucleotide linkages.
  • the imidazoquinolines comprise imidazoquinoline amines, imidazopyridine amines, 6,7-fused cycloalkylimidazopyridine amines, imidazoquinoline amines, imiquimod or resiquimod.
  • “Maximum dimension of a synthetic nanocarrier” means the largest dimension of a nanocarrier measured along any axis of the synthetic nanocarrier. “Minimum dimension of a synthetic nanocarrier” means the smallest dimension of a synthetic nanocarrier measured along any axis of the synthetic nanocarrier. For example, for a spheroidal synthetic nanocarrier, the maximum and minimum dimension of a synthetic nanocarrier would be substantially identical, and would be the size of its diameter. Similarly, for a cubic synthetic nanocarrier, the minimum dimension of a synthetic nanocarrier would be the smallest of its height, width or length, while the maximum dimension of a synthetic nanocarrier would be the largest of its height, width or length.
  • a minimum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is greater than 100 nm.
  • a maximum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or less than 5 ⁇ m.
  • a minimum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or greater than 110 nm, more preferably equal to or greater than 120 nm, more preferably equal to or greater than 130 nm, and more preferably still equal to or greater than 150 nm.
  • a maximum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or less than 3 ⁇ m, more preferably equal to or less than 2 ⁇ m, more preferably equal to or less than 1 ⁇ m, more preferably equal to or less than 800 nm, more preferably equal to or less than 600 nm, and more preferably still equal to or less than 500 nm.
  • a maximum dimension of at least 75%, preferably at least 80%, more preferably at least 90%, of the synthetic nanocarriers in a sample, based on the total number of synthetic nanocarriers in the sample is equal to or greater than 100 nm, more preferably equal to or greater than 120 nm, more preferably equal to or greater than 130 nm, more preferably equal to or greater than 140 nm, and more preferably still equal to or greater than 150 nm.
  • Measurement of synthetic nanocarrier sizes is obtained by suspending the synthetic nanocarriers in a liquid (usually aqueous) media and using dynamic light scattering (e.g. using a Brookhaven ZetaPALS instrument).
  • antigens obtained from a source may comprise the original amino acid residue sequence found in that source.
  • antigens obtained from a source may comprise the original molecular structure found in that source.
  • Oligonucleotide means a nucleotide molecule having from 6 to 100 nucleotides, preferably from 8 to 75 nucleotides, more preferably from 10 to 50 nucleotides, still more preferably from 15 to 25 nucleotides, even still more preferably 20 nucleotides.
  • oligonucleotides comprise less than 100 nucleotides, preferably less than 50 nucleotides, more preferably less than 25 nucleotides, and still more preferably less than 10 nucleotides.
  • any cytosine nucleotides (“C”) present in a 5′-CG-3′ sequence of which the oligonucleotide may be comprised are unmethylated, C present in parts of the oligonucleotides other than in a 5′-CG-3′ sequence of which the oligonucleotide may be comprised may be methylated, or may be unmethylated.
  • inventive oligonucleotides comprise a backbone comprising one or more unstabilized internucleotide linkages (meaning internucleotide linkages that are unstable under physiological conditions).
  • Unstabilized internucleotide linkage means a linkage between two nucleotides of which the oligonucleotide is comprised that is not chemically modified to stabilize the backbone, or is chemically modified to destabilize the backbone of the oligonucleotide under physiological conditions.
  • An example of an unstablized internucleotide linkage is a phophodiester internucleotide linkage.
  • the inventive oligonucleotides' backbone comprises no stabilizing chemical modifications that function to stabilize the backbone under physiological conditions.
  • the inventive oligonucleotides' backbone comprises a backbone that is not modified to incorporate phosphorothioate stabilizing chemical modifications.
  • “Pharmaceutically acceptable excipient” means a pharmacologically inactive substance added to an inventive composition to further facilitate administration of the composition.
  • examples, without limitation, of pharmaceutically acceptable excipients include calcium carbonate, calcium phosphate, various diluents, various sugars and types of starch, cellulose derivatives, gelatin, vegetable oils and polyethylene glycols.
  • Release Rate means the rate that an entrapped immunomodulatory agent flows from a composition, such as a synthetic nanocarrier, into a surrounding media in an in vitro release test.
  • the synthetic nanocarrier is prepared for the release testing by placing into the appropriate in vitro release media. This is generally done by exchanging the buffer after centrifugation to pellet the synthetic nanocarrier and reconstitution of the synthetic nanocarriers using a mild condition.
  • the assay is started by placing the sample at 37° C. in an appropriate temperature-controlled apparatus. A sample is removed at various time points.
  • the synthetic nanocarriers are separated from the release media by centrifugation to pellet the synthetic nanocarriers.
  • the release media is assayed for the immunomodulatory agent that has dispersed from the synthetic nanocarriers.
  • the immunomodulatory agent is measured using HPLC to determine the content and quality of the immunomodulatory agent.
  • the pellet containing the remaining entrapped immunomodulatory agent is dissolved in solvents or hydrolyzed by base to free the entrapped immunomodulatory agent from the synthetic nanocarriers.
  • the pellet-containing immunomodulatory agent is then also measured by HPLC to determine the content and quality of the immunomodulatory agent that has not been released at a given time point.
  • the mass balance is closed between immunomodulatory agent that has been released into the release media and what remains in the synthetic nanocarriers. Data are presented as the fraction released or as the net release presented as micrograms released over time.
  • Subject means an animal, including mammals such as humans and primates; avians; domestic household or farm animals such as cats, dogs, sheep, goats, cattle, horses and pigs; laboratory animals such as mice, rats and guinea pigs; fish; and the like.
  • Synthetic nanocarrier(s) means a discrete object that is not found in nature, and that possesses at least one dimension that is less than or equal to 5 microns in size. Albumin nanoparticles are expressly included as synthetic nanocarriers.
  • Synthetic nanocarriers include polymeric nanoparticles.
  • synthetic nanocarriers can comprise one or more polymeric matrices.
  • the synthetic nanocarriers can also include other nanomaterials and may be, for example, lipid-polymer nanoparticles.
  • a polymeric matrix can be surrounded by a coating layer (e.g., liposome, lipid monolayer, micelle, etc.).
  • the synthetic nanocarrier is not a micelle.
  • a synthetic nanocarrier may comprise a core comprising a polymeric matrix surrounded by a lipid layer (e.g., lipid bilayer, lipid monolayer, etc.).
  • the various elements of the synthetic nanocarriers can be coupled with the polymeric matrix.
  • the synthetic nanocarriers may comprise one or more lipids.
  • a synthetic nanocarrier may comprise a liposome.
  • a synthetic nanocarrier may comprise a lipid bilayer.
  • a synthetic nanocarrier may comprise a lipid monolayer.
  • a synthetic nanocarrier may comprise a micelle.
  • a synthetic nanocarrier may comprise a non-polymeric core (e.g., metal particle, quantum dot, ceramic particle, bone particle, viral particle, proteins, nucleic acids, carbohydrates, etc.) surrounded by a lipid layer (e.g., lipid bilayer, lipid monolayer, etc.).
  • the synthetic nanocarriers may comprise lipid-based nanoparticles, metallic nanoparticles, surfactant-based emulsions, dendrimers, buckyballs, nanowires, virus-like particles, peptide or protein-based particles (such as albumin nanoparticles).
  • Synthetic nanocarriers may be a variety of different shapes, including but not limited to spheroidal, cubic, pyramidal, oblong, cylindrical, toroidal, and the like.
  • Synthetic nanocarriers according to the invention comprise one or more surfaces.
  • Exemplary synthetic nanocarriers that can be adapted for use in the practice of the present invention comprise: (1) the biodegradable nanoparticles disclosed in U.S. Pat. No.
  • Synthetic nanocarriers according to the invention that have a minimum dimension of equal to or less than about 100 nm, preferably equal to or less than 100 nm, do not comprise a surface with hydroxyl groups that activate complement or alternatively comprise a surface that consists essentially of moieties that are not hydroxyl groups that activate complement.
  • synthetic nanocarriers according to the invention that have a minimum dimension of equal to or less than about 100 nm, preferably equal to or less than 100 nm, do not comprise a surface that substantially activates complement or alternatively comprise a surface that consists essentially of moieties that do not substantially activate complement.
  • synthetic nanocarriers according to the invention that have a minimum dimension of equal to or less than about 100 nm, preferably equal to or less than 100 nm, do not comprise a surface that activates complement or alternatively comprise a surface that consists essentially of moieties that do not activate complement.
  • synthetic nanocarriers may possess an aspect ratio greater than 1:1, 1:1.2, 1:1.5, 1:2, 1:3, 1:5, 1:7, or greater than 1:10.
  • synthetic nanocarriers are spheres or spheroids. In some embodiments, synthetic nanocarriers are flat or plate-shaped. In some embodiments, synthetic nanocarriers are cubes or cubic. In some embodiments, synthetic nanocarriers are ovals or ellipses. In some embodiments, synthetic nanocarriers are cylinders, cones, or pyramids.
  • a population of synthetic nanocarriers that is relatively uniform in terms of size, shape, and/or composition so that each synthetic nanocarrier has similar properties. For example, at least 80%, at least 90%, or at least 95% of the synthetic nanocarriers may have a minimum dimension or maximum dimension that falls within 5%, 10%, or 20% of the average diameter or average dimension. In some embodiments, a population of synthetic nanocarriers may be heterogeneous with respect to size, shape, and/or composition.
  • Synthetic nanocarriers can be solid or hollow and can comprise one or more layers. In some embodiments, each layer has a unique composition and unique properties relative to the other layer(s).
  • synthetic nanocarriers may have a core/shell structure, wherein the core is one layer (e.g., a polymeric core) and the shell is a second layer (e.g., a lipid bilayer or monolayer). Synthetic nanocarriers may comprise a plurality of different layers.
  • T cell antigen means any antigen that is recognized by and triggers an immune response in a T cell (e.g., an antigen that is specifically recognized by a T cell receptor on a T cell or an NKT cell via presentation of the antigen or portion thereof bound to a Class I or Class II major histocompatability complex molecule (MHC), or bound to a CD1 complex).
  • an antigen that is a T cell antigen is also a B cell antigen.
  • the T cell antigen is not also a B cell antigen.
  • T cell antigens generally are proteins or peptides.
  • T cell antigens may be an antigen that stimulates a CD8+ T cell response, a CD4+ T cell response, or both. The T cell antigens, therefore, in some embodiments can effectively stimulate both types of responses.
  • the T cell antigen is a T-helper antigen, which is a T cell antigen that can generate an augmented response to an unrelated B cell antigen through stimulation of T cell help.
  • a T-helper antigen may comprise one or more peptides derived from tetanus toxoid, Epstein-Barr virus, influenza virus, respiratory syncytial virus, measles virus, mumps virus, rubella virus, cytomegalovirus, adenovirus, diphtheria toxoid, or a PADRE peptide.
  • a T-helper antigen may comprise one or more lipids, or glycolipids, including but not limited to: ⁇ -galactosylceramide ( ⁇ -GalCer), ⁇ -linked glycosphingolipids (from Sphingomonas spp.), galactosyl diacylglycerols (from Borrelia burgdorferi ), lypophosphoglycan (from Leishmania donovani ), and phosphatidylinositol tetramannoside (PIM4) (from Mycobacterium leprae ).
  • ⁇ -galactosylceramide ⁇ -GalCer
  • ⁇ -linked glycosphingolipids from Sphingomonas spp.
  • galactosyl diacylglycerols from Borrelia burgdorferi
  • lypophosphoglycan from Leishmania donovani
  • PIM4 phosphatidylinositol tetramann
  • CD4+ T-cell antigens may be derivatives of a CD4+ T-cell antigen that is obtained from a source, such as a natural source.
  • CD4+ T-cell antigen sequences such as those peptides that bind to MHC II, may have at least 70%, 80%, 90%, or 95% identity to the antigen obtained from the source.
  • the T cell antigen preferably a T-helper antigen, may be coupled to, or uncoupled from, a synthetic nanocarrier.
  • Unit thereof refers to a monomeric unit of a polymer, the polymer generally being made up of a series of linked monomers.
  • Vaccine means a composition of matter that improves the immune response to a particular pathogen or disease.
  • a vaccine typically contains factors that stimulate a subject's immune system to recognize a specific antigen as foreign and eliminate it from the subject's body.
  • a vaccine also establishes an immunologic ‘memory’ so the antigen will be quickly recognized and responded to if a person is re-challenged.
  • Vaccines can be prophylactic (for example to prevent future infection by any pathogen), or therapeutic (for example a vaccine against a tumor specific antigen for the treatment of cancer).
  • Vaccines according to the invention may comprise one or more of the synthetic nanocarriers or compositions provided herein.
  • the immunomodulatory agent can be coupled to the synthetic nanocarrier in any manner such that the dissociation of the immunomodulatory agent from the synthetic nanocarrier satisfies the dissociation relationships provided herein.
  • Methods for determining whether or not immunomodulatory agents of synthetic nanocarriers satisfy the dissociation relationships provided herein are provided elsewhere above and in the EXAMPLES.
  • Oligonucleotides according to the invention may be encapsulated into synthetic nanocarriers using a variety of methods including but not limited to C. Astete et al., “Synthesis and characterization of PLGA nanoparticles” J. Biomater. Sci. Polymer Edn, Vol. 17, No. 3, pp. 247-289 (2006); K. Avgoustakis “Pegylated Poly(Lactide) and Poly(Lactide-Co-Glycolide) Nanoparticles: Preparation, Properties and Possible Applications in Drug Delivery” Current Drug Delivery 1:321-333 (2004); C. Reis et al., “Nanoencapsulation I.
  • the immunomodulatory agent is covalently coupled to the synthetic nanocarrier via an immunomodulatory agent coupling moiety (e.g., a polymer or unit thereof).
  • an immunomodulatory agent coupling moiety e.g., a polymer or unit thereof.
  • a polymer or unit thereof can be covalently coupled with an immunomodulatory agent in several ways.
  • solvents that may be suitable for use in the invention include, but are not limited to, p-cresol, toluene, xylene, mesitylene, diethyl ether, glycol, petroleum ether, hexane, cyclohexane, pentane, dichloromethane (or methylene chloride), chloroform, dioxane, tetrahydrofuran (THF), dimethyl sulfoxide (DMSO), dimethylformamide (DMF), ethyl acetate (EtOAc), triethylamine, acetonitrile, methyl-t-butyl ether (MTBE), N-methylpyrrolidone (NMP), dimethylacetamide (DMAC), isopropan
  • a reaction or any step of the methods provided may be carried out at any suitable temperature. In some cases, a reaction or any step of the methods provided is carried out at about room temperature (e.g., about 25° C., about 20° C., between about 20° C. and about 25° C., or the like).
  • room temperature e.g., about 25° C., about 20° C., between about 20° C. and about 25° C., or the like.
  • the reaction or any step of the methods provided may be carried out at a temperature below or above room temperature, for example, at about ⁇ 20° C., at about ⁇ 10° C., at about 0° C., at about 10° C., at about 30° C., about 40° C., about 50° C., about 60° C., about 70° C., about 80° C., about 90° C., about 100° C., about 120° C., about 140° C., about 150° C. or greater.
  • the reaction or any step of the methods provided is conducted at temperatures between 0° C. and 120° C.
  • reaction or any step of the methods provided may be carried out at more than one temperature (e.g., reactants added at a first temperature and the reaction mixture agitated at a second wherein the transition from a first temperature to a second temperature may be gradual or rapid).
  • the reaction or any step of the methods provided may be allowed to proceed for any suitable period of time. In some cases, the reaction or any step of the methods provided is allowed to proceed for about 10 minutes, about 20 minutes, about 30 minutes, about 40 minutes, about 50 minutes, about 1 hour, about 2 hours, about 4 hours, about 8 hours, about 12 hours, about 16 hours, about 24 hours, about 2 days, about 3 days, about 4 days, or more. In some cases, aliquots of the reaction mixture may be removed and analyzed at an intermediate time to determine the progress of the reaction or any step of the methods provided. In some embodiments, a reaction or any step of the methods provided may be carried out under an inert atmosphere in anhydrous conditions (e.g., under an atmosphere of nitrogen or argon, anhydrous solvents, etc.)
  • anhydrous conditions e.g., under an atmosphere of nitrogen or argon, anhydrous solvents, etc.
  • reaction products and/or intermediates may be isolated (e.g., via distillation, column chromatography, extraction, precipitation, etc.) and/or analyzed (e.g., gas liquid chromatography, high performance liquid chromatography, nuclear magnetic resonance spectroscopy, etc.) using commonly known techniques.
  • a synthetic nanocarrier may be analyzed to determine the loading of immunomodulatory agent, for example, using reverse phase HPLC.
  • the polymers may have any suitable molecular weight.
  • the polymers may have a low or high molecular weight.
  • Non-limiting molecular weight values include 100 Da, 200 Da, 300 Da, 500 Da, 750 Da, 1000 Da, 2000 Da, 3000 Da, 4000 Da, 5000 Da, 6000 Da, 7000 Da, 8000 Da, 9000 Da, 10,000 Da, or greater.
  • the polymers have a weight average molecular weight of about 800 Da to about 10,000 Da.
  • the molecular weight of a polymer may be determined using gel permeation chromatography. Provided below are exemplary reactions that are not intended to be limiting.
  • a polymer e.g., PLA, PLGA
  • a reactive acylating agent such as an acyl halide, acylimidazole, active ester, etc. using an activating reagent commonly used in amide synthesis.
  • the resulting activated polymer or unit thereof e.g., PLA, PLGA
  • an immunomodulatory agent e.g., R848
  • a base e.g., PLA-R848
  • Activating reagents that can be used to convert polymers or units thereof, such as PLA or PLGA, to an activated acylating form include, but are not limited to cyanuric fluoride, N,N-tetramethylfluoroformamidinium hexafluorophosphate (TFFH); Acylimidazoles, such as carbonyl diimidazole (CDI), N,N′-carbonylbis(3-methylimidazolium) triflate (CBMIT); and Active esters, such as N-hydroxylsuccinimide (NHS or HOSu) in the presence of a carbodiimide such as N,N′-dicyclohexylcarbodiimide (DCC), N-ethyl-N′-(3-(dimethylamino)propyl)carbodiimide hydrochloride (EDC) or N,N′-diisopropylcarbodiimide (DIC); N,N′-disucc
  • the activated polymer or unit thereof may be isolated (e.g., via precipitation, extraction, etc.) and/or stored under suitable conditions (e.g., at low temperature, under argon) following activation, or may be used immediately.
  • the activated polymer or unit thereof may be reacted with an immunomodulatory agent under any suitable conditions. In some cases, the reaction is carried out in the presence of a base and/or catalyst.
  • bases/catalysts include diisopropylethylamine (DIPEA) and 4-dimethylaminopyridine (DMAP).
  • a polymer or unit thereof e.g., PLA, PLGA having any suitable molecular weight
  • an immunomodulatory agent e.g., R848
  • an activating or coupling reagent which converts the polymer or unit thereof (e.g., PLA, PLGA) to a reactive acylating agent in situ, to give the desired conjugate (e.g., PLA-R848, PLGA-R848).
  • Coupling or activating agents include but are not limited to: activating agents used in the presence of an carbodiimide such as EDC or DCC or DIC, such as 1-Hydroxybenzotriazole (HOBt), 1-Hydroxy-7-azabenzotriazole (HOAt), 3,4-Dihydro-3-hydroxy-4-oxo-1,2,3-benzotriazine (HO-Dhbt), N-Hydroxysuccinimide (NHS or HOSu), Pentafluorophenol (PFP);
  • Activating agents without carbodiimide: Phosphonium salts such as O-Benzotriazol-1-yloxytris(dimethylamino)phosphonium hexafluorophosphate (BOP), O-Benzotriazol-1-yloxytris(pyrrolidino)phosphonium hexafluorophosphate (PyBOP), 7-Azabenzotriazol-1-yloxytri
  • Immunomodulatory agents can also be coupled to polymers or units thereof that are terminated in a hydroxyl group.
  • polymers or units thereof include polyethylene glycol, polylactide, polylactide-co-glycolide, polycaprolactone, and other like polyesters, or units thereof.
  • the reaction proceeds as follows where an imide of the general structure (IV) will react with the terminal hydroxyl of the aforementioned polymers or units thereof using a catalyst used in lactone ring opening polymerizations.
  • the resulting reaction product (II) links the amide of the agent to the polymer or unit thereof via an ester bond.
  • the compounds of formula (IV) and (II) are as follows:
  • R 1 ⁇ H, OH, SH, NH 2 , or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino
  • R 2 ⁇ H, alkyl, or substituted alkyl
  • Y ⁇ N or C R 3 is absent if Y ⁇ N; or is H, alkyl, substituted alkyl, or combined with R 4 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected if Y ⁇ C
  • R 4 is H, or substituted or unsubstituted alkyl, alkoxy, alkylthio, or alkylamino when not combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected; or is combined with R 3 to form a carbocycle or heterocycle with the carbon atoms of the pyridine ring to which they are connected
  • R 5 is a polymer or unit thereof
  • Catalysts include, but are not limited to, phosphazine bases, 1,8-diazabicycloundec-7-ene (DBU), 1,4,7-triazabicyclodecene (TBD), and N-methyl-1,4,7-triazabicyclodecene (MTDB).
  • DBU 1,8-diazabicycloundec-7-ene
  • TBD 1,4,7-triazabicyclodecene
  • MTDB N-methyl-1,4,7-triazabicyclodecene
  • suitable solvents include methylene chloride, chloroform, and THF.
  • R 5 —OH contains two hydroxyl groups (e.g., a diol, HO—R 5 —OH), each of which are functionalized by reaction with an imide associated with R848.
  • HO—R 5 —OH is a poly-diol such as poly(hexamethyl carbonate) diol or polycaprolactone diol.
  • one of the diol groups may be protected with a protecting group (e.g., t-butyloxycarbonyl), thus the poly-diol would be a compound of formula HO—R 5 —OP, wherein P is a protecting group.
  • the protecting group may be removed and the second diol group may be reacted with any suitable reagent (e.g., PLGA, PLA).
  • a conjugate (e.g., R848-PLA) can be formed via a one-pot ring-opening polymerization of an immunomodulatory agent (e.g., R848) with a polymer or unit thereof (e.g., D/L-lactide) in the presence of a catalyst, for example, as shown in the following scheme:
  • an immunomodulatory agent e.g., R848
  • a polymer or unit thereof e.g., D/L-lactide
  • the immunomodulatory agent and the polymer or unit thereof may be combined into a single reaction mixture comprising a catalyst.
  • the reaction may proceed at a suitable temperature (e.g., at about 150° C.) and the resulting conjugate may be isolated using commonly known techniques.
  • suitable catalysts include DMAP and tin ethylhexanoate.
  • a conjugate can be formed two-step ring opening polymerization of an immunomodulatory agent (e.g., R848) with one or more polymers or units thereof (e.g., D/L-lactide and glycolide) in the presence of a catalyst, for example, as shown in the following scheme:
  • an immunomodulatory agent e.g., R848
  • polymers or units thereof e.g., D/L-lactide and glycolide
  • the polymers or units thereof may be first combined, and in some cases, heated (e.g., to 135° C.) to form a solution.
  • the immunomodulatory agent may be added to a solution comprising the polymers or units thereof, followed by addition of a catalyst (e.g., tin ethylhexanoate).
  • a catalyst e.g., tin ethylhexanoate
  • the resulting conjugate may be isolated using commonly known techniques.
  • suitable catalysts include DMAP and tin ethylhexanoate.
  • the immunomodulatory agent, antigen, and/or targeting moiety can be covalently associated with a polymeric matrix. In some embodiments, covalent association is mediated by a linker. In some embodiments, the immunomodulatory agent, antigen, and/or targeting moiety can be noncovalently associated with a polymeric matrix. For example, in some embodiments, the immunomodulatory agent, antigen, and/or targeting moiety can be encapsulated within, surrounded by, and/or dispersed throughout a polymeric matrix. Alternatively or additionally, the immunomodulatory agent, antigen, and/or targeting moiety can be associated with a polymeric matrix by hydrophobic interactions, charge interactions, van der Waals forces, etc.
  • the immunomodulatory agents can also be encapsulated within the nanocarriers.
  • the nanocarriers therefore, can be of any material that is pH sensitive provided that the resulting inventive synthetic nanocarriers satisfy the dissociation relationships provided herein.
  • Such synthetic nanocarriers are well known in the art and include polyketal nanocarriers, pH sensitive liposomes, acid-swelling, cross-linked nanoparticles, such as those of Griset et al., J. Am. Chem. Soc.
  • the pH sensitive synthetic nanocarriers also include those that comprise polymers that dissolve at a pH below 6 or polymers that swell at an acidic pH.
  • the synthetic nanocarriers are of a non-polyketal material. In other embodiment, the synthetic nanocarriers are not micelles.
  • a polymeric matrix comprises one or more polymers.
  • Polymers may be natural or unnatural (synthetic) polymers.
  • Polymers may be homopolymers or copolymers comprising two or more monomers. In terms of sequence, copolymers may be random, block, or comprise a combination of random and block sequences.
  • polymers in accordance with the present invention are organic polymers.
  • polymers suitable for use in the present invention include, but are not limited to polyethylenes, polycarbonates (e.g., poly(1,3-dioxan-2one)), polyanhydrides (e.g., poly(sebacic anhydride)), polyhydroxyacids (e.g., poly( ⁇ -hydroxyalkanoate)), polypropylfumerates, polycaprolactones, polyamides (e.g., polycaprolactam), polyacetals, polyethers, polyesters (e.g., polylactide, polyglycolide), poly(orthoesters), polycyanoacrylates, polyvinyl alcohols, polyurethanes, polyphosphazenes, polyacrylates, polymethacrylates, polyureas, polystyrenes, polyamines, and polysaccharides (e.g., chitosan).
  • polyethylenes e.g., poly(1,3-dioxan-2one)
  • polyanhydrides
  • polymers in accordance with the present invention include polymers which have been approved for use in humans by the U.S. Food and Drug Administration (FDA) under 21 C.F.R. ⁇ 177.2600, including but not limited to polyesters (e.g., polylactic acid, poly(lactic-co-glycolic acid), polycaprolactone, polyvalerolactone, poly(1,3-dioxan-2one)); polyanhydrides (e.g., poly(sebacic anhydride)); polyethers (e.g., polyethylene glycol); polyurethanes; polymethacrylates; polyacrylates; and polycyanoacrylates.
  • FDA U.S. Food and Drug Administration
  • polymers can be hydrophilic.
  • polymers may comprise anionic groups (e.g., phosphate group, sulphate group, carboxylate group); cationic groups (e.g., quaternary amine group); or polar groups (e.g., hydroxyl group, thiol group, amine group).
  • a synthetic nanocarrier comprising a hydrophilic polymeric matrix generates a hydrophilic environment within the synthetic nanocarrier.
  • polymers can be hydrophobic.
  • a synthetic nanocarrier comprising a hydrophobic polymeric matrix generates a hydrophobic environment within the synthetic nanocarrier. Selection of the hydrophilicity or hydrophobicity of the polymer may have an impact on the nature of materials that are incorporated (e.g., coupled) within the synthetic nanocarrier.
  • polymers may be modified with one or more moieties and/or functional groups.
  • moieties or functional groups can be used in accordance with the present invention.
  • polymers may be modified with PEG, with a carbohydrate, and/or with acyclic polyacetals derived from polysaccharides (Papisov, 2001, ACS Symposium Series, 786:301).
  • polymers may be modified with a lipid or fatty acid group.
  • a fatty acid group may be one or more of butyric, caproic, caprylic, capric, lauric, myristic, palmitic, stearic, arachidic, behenic, or lignoceric acid.
  • a fatty acid group may be one or more of palmitoleic, oleic, vaccenic, linoleic, alpha-linoleic, gamma-linoleic, arachidonic, gadoleic, arachidonic, eicosapentaenoic, docosahexaenoic, or erucic acid.
  • polymers may be polyesters, including copolymers comprising lactic acid and glycolic acid units, such as poly(lactic acid-co-glycolic acid) and poly(lactide-co-glycolide), collectively referred to herein as “PLGA”; and homopolymers comprising glycolic acid units, referred to herein as “PGA,” and lactic acid units, such as poly-L-lactic acid, poly-D-lactic acid, poly-D,L-lactic acid, poly-L-lactide, poly-D-lactide, and poly-D,L-lactide, collectively referred to herein as “PLA.”
  • exemplary polyesters include, for example, polyhydroxyacids; PEG copolymers and copolymers of lactide and glycolide (e.g., PLA-PEG copolymers, PGA-PEG copolymers, PLGA-PEG copolymers, and derivatives thereof.
  • polyesters include, for example, polyanhydrides, poly(ortho ester), poly(ortho ester)-PEG copolymers, poly(caprolactone), poly(caprolactone)-PEG copolymers, polylysine, polylysine-PEG copolymers, poly(ethyleneimine), poly(ethylene imine)-PEG copolymers, poly(L-lactide-co-L-lysine), poly(serine ester), poly(4-hydroxy-L-proline ester), poly[ ⁇ -(4-aminobutyl)-L-glycolic acid], and derivatives thereof.
  • a polymer may be PLGA.
  • PLGA is a biocompatible and biodegradable co-polymer of lactic acid and glycolic acid, and various forms of PLGA are characterized by the ratio of lactic acid:glycolic acid.
  • Lactic acid can be L-lactic acid, D-lactic acid, or D,L-lactic acid.
  • the degradation rate of PLGA can be adjusted by altering the lactic acid:glycolic acid ratio.
  • PLGA to be used in accordance with the present invention is characterized by a lactic acid:glycolic acid ratio of approximately 85:15, approximately 75:25, approximately 60:40, approximately 50:50, approximately 40:60, approximately 25:75, or approximately 15:85.
  • polymers may be one or more acrylic polymers.
  • acrylic polymers include, for example, acrylic acid and methacrylic acid copolymers, methyl methacrylate copolymers, ethoxyethyl methacrylates, cyanoethyl methacrylate, aminoalkyl methacrylate copolymer, poly(acrylic acid), poly(methacrylic acid), methacrylic acid alkylamide copolymer, poly(methyl methacrylate), poly(methacrylic acid anhydride), methyl methacrylate, polymethacrylate, poly(methyl methacrylate) copolymer, polyacrylamide, aminoalkyl methacrylate copolymer, glycidyl methacrylate copolymers, polycyanoacrylates, and combinations comprising one or more of the foregoing polymers.
  • the acrylic polymer may comprise fully-polymerized copolymers of acrylic and methacrylic acid esters with a low content of quaternary ammoni
  • polymers can be cationic polymers.
  • cationic polymers are able to condense and/or protect negatively charged strands of nucleic acids (e.g., DNA, RNA, or derivatives thereof).
  • Amine-containing polymers such as poly(lysine) (Zauner et al., 1998, Adv. Drug Del. Rev., 30:97; and Kabanov et al., 1995, Bioconjugate Chem., 6:7), poly(ethylene imine) (PEI; Boussif et al., 1995, Proc. Natl. Acad.
  • polymers can be degradable polyesters bearing cationic side chains (Putnam et al., 1999, Macromolecules, 32:3658; Barrera et al., 1993, J. Am. Chem. Soc., 115:11010; Kwon et al., 1989, Macromolecules, 22:3250; Lim et al., 1999, J. Am. Chem. Soc., 121:5633; and Zhou et al., 1990, Macromolecules, 23:3399).
  • polyesters include poly(L-lactide-co-L-lysine) (Barrera et al., 1993, J. Am. Chem.
  • polymers can be linear or branched polymers. In some embodiments, polymers can be dendrimers. In some embodiments, polymers can be substantially cross-linked to one another. In some embodiments, polymers can be substantially free of cross-links. In some embodiments, polymers can be used in accordance with the present invention without undergoing a cross-linking step. It is further to be understood that inventive compounds and synthetic nanocarriers may comprise block copolymers, graft copolymers, blends, mixtures, and/or adducts of any of the foregoing and other polymers. Those skilled in the art will recognize that the polymers listed herein represent an exemplary, not comprehensive, list of polymers that can be of use in accordance with the present invention.
  • synthetic nanocarriers may comprise metal particles, quantum dots, ceramic particles, etc.
  • synthetic nanocarriers may optionally comprise one or more amphiphilic entities.
  • an amphiphilic entity can promote the production of synthetic nanocarriers with increased stability, improved uniformity, or increased viscosity.
  • amphiphilic entities can be associated with the interior surface of a lipid membrane (e.g., lipid bilayer, lipid monolayer, etc.). Many amphiphilic entities known in the art are suitable for use in making synthetic nanocarriers in accordance with the present invention.
  • amphiphilic entities include, but are not limited to, phosphoglycerides; phosphatidylcholines; dipalmitoyl phosphatidylcholine (DPPC); dioleylphosphatidyl ethanolamine (DOPE); dioleyloxypropyltriethylammonium (DOTMA); dioleoylphosphatidylcholine; cholesterol; cholesterol ester; diacylglycerol; diacylglycerolsuccinate; diphosphatidyl glycerol (DPPG); hexanedecanol; fatty alcohols such as polyethylene glycol (PEG); polyoxyethylene-9-lauryl ether; a surface active fatty acid, such as palmitic acid or oleic acid; fatty acids; fatty acid monoglycerides; fatty acid diglycerides; fatty acid amides; sorbitan trioleate (Span®85) glycocholate; sorbitan monolaurate (Span®20); polysorbate 20
  • amphiphilic entity component may be a mixture of different amphiphilic entities. Those skilled in the art will recognize that this is an exemplary, not comprehensive, list of substances with surfactant activity. Any amphiphilic entity may be used in the production of synthetic nanocarriers to be used in accordance with the present invention.
  • synthetic nanocarriers may optionally comprise one or more carbohydrates.
  • Carbohydrates may be natural or synthetic.
  • a carbohydrate may be a derivatized natural carbohydrate.
  • a carbohydrate comprises monosaccharide or disaccharide, including but not limited to glucose, fructose, galactose, ribose, lactose, sucrose, maltose, trehalose, cellbiose, mannose, xylose, arabinose, glucoronic acid, galactoronic acid, mannuronic acid, glucosamine, galatosamine, and neuramic acid.
  • a carbohydrate is a polysaccharide, including but not limited to pullulan, cellulose, microcrystalline cellulose, hydroxypropyl methylcellulose (HPMC), hydroxycellulose (HC), methylcellulose (MC), dextran, cyclodextran, glycogen, starch, hydroxyethylstarch, carageenan, glycon, amylose, chitosan, N,O-carboxylmethylchitosan, algin and alginic acid, starch, chitin, heparin, konjac, glucommannan, pustulan, heparin, hyaluronic acid, curdlan, and xanthan.
  • the carbohydrate is a sugar alcohol, including but not limited to mannitol, sorbitol, xylitol, erythritol, maltitol, and lactitol.
  • Synthetic nanocarriers may be prepared using a wide variety of methods known in the art.
  • synthetic nanocarriers can be formed by methods as nanoprecipitation, flow focusing fluidic channels, spray drying, single and double emulsion solvent evaporation, solvent extraction, phase separation, milling, microemulsion procedures, microfabrication, nanofabrication, sacrificial layers, simple and complex coacervation, and other methods well known to those of ordinary skill in the art.
  • aqueous and organic solvent syntheses for monodisperse semiconductor, conductive, magnetic, organic, and other nanomaterials have been described (Pellegrino et al., 2005, Small, 1:48; Murray et al., 2000, Ann. Rev. Mat.
  • synthetic nanocarriers are prepared by a nanoprecipitation process or spray drying. Conditions used in preparing synthetic nanocarriers may be altered to yield particles of a desired size or property (e.g., hydrophobicity, hydrophilicity, external morphology, “stickiness,” shape, etc.). The method of preparing the synthetic nanocarriers and the conditions (e.g., solvent, temperature, concentration, air flow rate, etc.) used may depend on the materials to be coupled to the synthetic nanocarriers and/or the composition of the polymer matrix.
  • Conditions used in preparing synthetic nanocarriers may be altered to yield particles of a desired size or property (e.g., hydrophobicity, hydrophilicity, external morphology, “stickiness,” shape, etc.).
  • the method of preparing the synthetic nanocarriers and the conditions (e.g., solvent, temperature, concentration, air flow rate, etc.) used may depend on the materials to be coupled to the synthetic nanocarriers and/or the composition of the polymer matrix.
  • particles prepared by any of the above methods have a size range outside of the desired range, particles can be sized, for example, using a sieve.
  • Coupling can be achieved in a variety of different ways, and can be covalent or non-covalent. Such couplings may be arranged to be on a surface or within an inventive synthetic nanocarrier. Elements of the inventive synthetic nanocarriers (such as moieties of which an immunofeature surface is comprised, targeting moieties, polymeric matrices, and the like) may be directly coupled with one another, e.g., by one or more covalent bonds, or may be coupled by means of one or more linkers.
  • Additional methods of functionalizing synthetic nanocarriers may be adapted from Published US Patent Application 2006/0002852 to Saltzman et al., Published US Patent Application 2009/0028910 to DeSimone et al., or Published International Patent Application WO/2008/127532 A1 to Murthy et al.
  • Linkers may be used to form amide linkages, ester linkages, disulfide linkages, etc.
  • Linkers may contain carbon atoms or heteroatoms (e.g., nitrogen, oxygen, sulfur, etc.).
  • a linker is an aliphatic or heteroaliphatic linker.
  • the linker is a polyalkyl linker.
  • the linker is a polyether linker.
  • the linker is a polyethylene linker.
  • the linker is a polyethylene glycol (PEG) linker.
  • the linker is a cleavable linker.
  • cleavable linkers include protease cleavable peptide linkers, nuclease sensitive nucleic acid linkers, lipase sensitive lipid linkers, glycosidase sensitive carbohydrate linkers, pH sensitive linkers, hypoxia sensitive linkers, photo-cleavable linkers, heat-labile linkers, enzyme cleavable linkers (e.g., esterase cleavable linker), ultrasound-sensitive linkers, x-ray cleavable linkers, etc.
  • the linker is not a cleavable linker.
  • a variety of methods can be used to couple a linker or other element of a synthetic nanocarrier with the synthetic nanocarrier.
  • General strategies include passive adsorption (e.g., via electrostatic interactions), multivalent chelation, high affinity non-covalent binding between members of a specific binding pair, covalent bond formation, etc. (Gao et al., 2005, Curr. Op. Biotechnol., 16:63).
  • click chemistry can be used to associate a material with a synthetic nanocarrier.
  • Non-covalent specific binding interactions can be employed.
  • a particle or a biomolecule can be functionalized with biotin with the other being functionalized with streptavidin. These two moieties specifically bind to each other noncovalently and with a high affinity, thereby associating the particle and the biomolecule.
  • Other specific binding pairs could be similarly used.
  • histidine-tagged biomolecules can be associated with particles conjugated to nickel-nitrolotriaceteic acid (Ni-NTA).
  • compositions of the invention can be made in any suitable manner, and the invention is in no way limited to compositions that can be produced using the methods described herein. Selection of an appropriate method may require attention to the properties of the particular moieties being associated.
  • compositions according to the invention comprise inventive synthetic nanocarriers in combination with pharmaceutically acceptable excipients.
  • the compositions may be made using conventional pharmaceutical manufacturing and compounding techniques to arrive at useful dosage forms.
  • inventive synthetic nanocarriers are suspended in sterile saline solution for injection together with a preservative.
  • inventive synthetic nanocarriers are manufactured under sterile conditions or are terminally sterilized. This can ensure that resulting composition are sterile and non-infectious, thus improving safety when compared to non-sterile compositions. This provides a valuable safety measure, especially when subjects receiving synthetic nanocarriers have immune defects, are suffering from infection, and/or are susceptible to infection.
  • inventive synthetic nanocarriers may be lyophilized and stored in suspension or as lyophilized powder depending on the formulation strategy for extended periods without losing activity.
  • compositions may be administered by a variety of routes of administration, including but not limited to subcutaneous, intramuscular, intradermal, oral, parenteral, intranasal, transmucosal, rectal; ophthalmic, transdermal, transcutaneous or by a combination of these routes.
  • compositions and methods described herein can be used to induce, enhance, stimulate, modulate, or direct an immune response.
  • the compositions and methods described herein can be used in the diagnosis, prophylaxis and/or treatment of conditions such as cancers, infectious diseases, metabolic diseases, degenerative diseases, inflammatory diseases, immunological diseases, or other disorders and/or conditions.
  • the compositions and methods described herein can also be used for the prophylaxis or treatment of an addiction, such as an addiction to nicotine or a narcotic.
  • the compositions and methods described herein can also be used for the prophylaxis and/or treatment of a condition resulting from the exposure to a toxin, hazardous substance, environmental toxin, or other harmful agent.
  • PLA dl-polylactide
  • Resomer R202H from Boehringer-Ingelheim, KOH equivalent acid number of 0.21 mmol/g, intrinsic viscosity (iv): 0.21 dl/g) (10 g, 2.1 mmol, 1.0 eq) was dissolved in dichloromethane (DCM) (35 mL).
  • EDC 2.0 g, 10.5 mmol, 5 eq
  • NHS 1.2 g, 10.5 mmol, 5 eq
  • the solution was concentrated to remove most of DCM and the residue was added to a solution of 250 mL of diethyl ether and 5 mL of MeOH to precipitate out the activated PLA-NHS ester.
  • the solvents were removed and the polymer was washed twice with ether (2 ⁇ 200 mL) and dried under vacuum to give PLA-NHS activated ester as a white foamy solid ( ⁇ 8 g recovered, H NMR was used to confirm the presence of NHS ester).
  • the PLA-NHS ester was stored under argon in a below ⁇ 10 C freezer before use.
  • the reaction can be performed in DMF, THF, dioxane, or CHCl3 instead of DCM.
  • DCC can be used instead of EDC (resulting DCC-urea is filtered off before precipitation of the PLA-NHS ester from ether).
  • the amount of EDC or DCC and NHS can be in the range of 2-10 eq of the PLA.
  • PLA (R202H, acid number of 0.21 mmol/g) (2.0 g, 0.42 mmol, 1.0 eq) was dissolved in 10 mL of dry acetonitrile. N,N′-disuccinimidyl carbonate (DSC) (215 mg, 1.26 mmol, 3.0 eq) and catalytic amount of 4-(N,N-dimethylamino)pyridine (DMAP) were added. The resulting mixture was stirred under argon for 1 day. The resulting solution was concentrated to almost dryness.
  • DSC N,N′-disuccinimidyl carbonate
  • DMAP 4-(N,N-dimethylamino)pyridine
  • PLA (R202H) (5.0 g, 1.05 mmol) was dissolved in 25 mL of anhydrous DCM and 2.5 mL of anhydrous DMF. DCC (650 mg, 3.15 mmol, 5.0 eq) and pentafluorophenol (PFP) (580 mg, 3.15 mmol, 5.0 eq) were added. The resulting solution was stirred at room temperature for 6 days and then concentrated to remove DCM. The resulting residue was added to 250 mL of ether to precipitate out the activated PLA polymer which was washed with ether (2 ⁇ 100 mL) and dried under vacuum to give PLA-PFP activated ester as a white foamy solid (4.0 g).
  • PLA-NHS 1.0 g
  • R848 132 mg, 0.42 mmol
  • DIPEA diisopropylethylamine
  • the resulting solution was heated at 50-60 C for 2 days.
  • the solution was cooled to rt and added to 40 mL of de-ionized (DI) water to precipitate out the polymer product.
  • R848-PLA conjugate was then washed with DI water (40 mL) and ether (2 ⁇ 40 mL) and dried at 30 C under vacuum to give R848-PLA conjugate as a white foamy solid (0.8 g, H NMR showed the conjugation of R848 to PLA via the amide bond).
  • the degree of conjugation (loading) of R848 on the polymer was confirmed by HPLC analysis as follows: a weighed amount of polymer was dissolved in THF/MeOH and treated with 15% NaOH. The resulting hydrolyzed polymer products were analyzed for the amount of R848 by HPLC in comparison with a standard curve.
  • PLA-NHS 1.0 g, 0.21 mmol, 1.0 eq
  • R848 132 mg, 0.42 mmol, 2.0 eq
  • DIPEA 0.15 mL, 0.84 mmol, 4.0 eq
  • DMAP 25 mg, 0.21 mmol, 1.0 eq
  • the polymer was then washed with DI water (40 mL) and ether (2 ⁇ 40 mL) and dried at 30 C under vacuum to give PLA-R848 conjugate as a white foamy solid (0.7 g, 20 mg of the polymer was hydrolyzed in solution of 0.2 mL of THF, 0.1 mL of MeOH and 0.1 mL of 15% NaOH.
  • the amount of R848 on the polymer was determined to be about 35 mg/g by reverse phase HPLC analysis (C18 column, mobile phase A: 0.1% TFA in water, mobile phase B: 0.1% TFA in CH3CN, gradient).
  • PLA (R202H) (2.0 g, 0.42 mmol, 1.0 eq), DCC (260 mg, 1.26 mmol, 3.0 eq), NHS (145 mg, 1.26 mmol, 3.0 eq), R848 (200 mg, 0.63 mmol, 1.5 eq), DMAP (77 mg, 0.63 mmol, 1.5 eq) and DIPEA (0.223 mL, 1.26 mmol, 3.0 eq) were dissolved in 4 mL of dry DMF. The mixture was heated at 50-55 C for 3 days. The mixture was cooled to rt and diluted with DCM. The DCC-urea was filtered off and the filtrate was concentrated to remove DCM.
  • PLA (R202H) (2.0 g, 0.42 mmol, 1.0 eq), EDC (242 mg, 1.26 mmol, 3.0 eq), HOAt (171 mg, 1.26 mmol, 3.0 eq), R848 (200 mg, 0.63 mmol, 1.5 eq), and DIPEA (0.223 mL, 1.26 mmol, 3.0 eq) were dissolved in 4 mL of dry DMF. The mixture was heated at 50-55 C for 2 days. The solution was cooled to rt and added to water (40 mL) to precipitate out the polymer product which was washed with water (40 mL), ether/MeOH (40 mL/2 mL) and ether (40 mL).
  • the orange colored polymer was dissolved in 4 mL of DCM and the resulting solution was added to 40 mL of ether to precipitate out the polymer without much of the orange color.
  • the light colored polymer was washed with ether (40 mL). After drying under vacuum at 30 C, the desired PLA-R848 conjugate was obtained as a light brown foamy solid (1.5 g).
  • PLA (R202H) (1.0 g, 0.21 mmol, 1.0 eq), EDC (161 mg, 0.84 mmol, 4.0 eq), HOBt.H2O (65 mg, 0.42 mmol, 2.0 eq), R848 (132 mg, 0.42 mmol, 2.0 eq), and DIPEA (0.150 mL, 0.84 mmol, 4.0 eq) were dissolved in 2 mL of dry DMF. The mixture was heated at 50-55° C. for 2 days. The solution was cooled to room temperature and added to water (40 mL) to precipitate out the polymer product.
  • the orange colored polymer was dissolved in 2 mL of DCM and the resulting solution was added to 40 mL of ether to precipitate out the polymer which was washed with water/acetone (40 mL/2 mL) and ether (40 mL). After drying under vacuum at 30° C., the desired PLA-R848 conjugate was obtained as an off-white foamy solid (1.0 g, loading of R848 on polymer was about 45 mg/g based on HPLC analysis and confirmed by 1 H NMR).
  • PLGA (75% Lactide)-R848 and PLGA (50% lactide)-R848 were prepared.
  • PCADK is synthesized in a 50 mL two-necked flask, connected to a short-path distilling head.
  • 5.5 mg of re-crystallized p-toluenesulfonic acid (0.029 mmol, Aldrich, St. Louis, Mo.)
  • ethyl acetate a 30 mL benzene solution (kept at 100° C.), which contains 1,4-cyclohexanedimethanol (12.98 g, 90.0 mmol, Aldrich).
  • the ethyl acetate is allowed to boil off, and distilled 2,2-dimethoxypropane (10.94 mL, 90.0 mmol, Aldrich) is added to the benzene solution, initiating the polymerization reaction. Additional doses of 2,2-dimethoxypropane (5 mL) and benzene (25 mL) are subsequently added to the reaction every hour for 6 hours via a metering funnel to compensate for 2,2-dimethoxypropane and benzene that is distilled off. After 8 hours, the reaction is stopped by addition of 500 ⁇ L of triethylamine. The polymer is isolated by precipitation in cold hexane (stored at ⁇ 20° C.) followed by vacuum filtration.
  • the molecular weight of PCADK is determined by gel permeation chromatography (GPC) (Shimadzu, Kyoto, Japan) equipped with a UV detector. THF is used as the mobile phase at a flow rate of 1 ml/min. Polystyrene standards from Polymer Laboratories (Amherst, Mass.) are used to establish a molecular weight calibration curve. This compound is used to generate the PCADK particles in all subsequent experiments.
  • R848 may be conjugated to the terminal alcohol groups of the PCADK having molecular weight 6000 via imide ring opening, according to the step 2 shown below.
  • Step 2 Conjugation of PCADK to R848
  • step 2 the polymer from step 1 (12 g, 2.0 ⁇ 10 ⁇ 3 moles) is dissolved in methylene chloride 100 mL, and the lactam of R848 (3.3 g, 8.0 ⁇ 10 ⁇ 3 moles) is added. This slurry is stirred as 1,5,7-triazabicyclo-[4,4,0]dec-5-ene (TBD, 0.835 g, 6 ⁇ 10 ⁇ 3 moles) is added in a single portion. After stiffing at room temperature overnight, a clear solution forms. The solution is diluted with methylene chloride (100 mL) and the solution is washed with 5% citric acid. This solution is dried over sodium sulfate after which it is filtered and evaporated under vacuum. After drying under high vacuum there is obtained 11.3 grams (81%) of polymer. A portion is hydrolyzed in acid and the R848 content is determined to be 9% by weight.
  • Imide ring opening is used to attach R854 to the terminal alcohol groups of poly-caprolactonediol of molecular weight 2000.
  • the polycaprolactone diol is purchased from Aldrich Chemical Company, Cat. #189421 and has the following structure:
  • the polycaprolactone diol-R854 conjugate has the following structure:
  • the polymer (5 g, 2.5 ⁇ 10 ⁇ 3 moles) is dissolved in methylene chloride 25 mL and the lactam of R854 (2.4 g, 5.0 ⁇ 10 ⁇ 3 moles) is added. This slurry is stirred as 1,5,7-triazabicyclo-[4,4,0]dec-5-ene (TBD, 0.557 g, 4 ⁇ 10 ⁇ 3 moles) is added in a single portion. After stirring at room temperature for 15 minutes, a clear pale yellow solution forms. The solution is diluted with methylene chloride (100 mL) and the solution is washed with 5% citric acid. This solution is dried over sodium sulfate after which it is filtered and evaporated under vacuum. After drying under high vacuum there is obtained 5.2 grams (70%) of polymer. A portion is hydrolyzed in acid and the R848 content is determined to be 18.5% by weight.
  • Imide ring opening is used to attach R848 to the terminal alcohol groups of poly-(hexamethylene carbonate)diol of molecular weight 2000.
  • the poly(hexamethylene carbonate) diol is purchased from Aldrich Chemical Company, Cat # 461164, and has the following structure:
  • the poly(hexamethylene carbonate) diol-R848 conjugate has the following structure:
  • the polymer (5 g, 2.5 ⁇ 10 ⁇ 3 moles) is dissolved in methylene chloride 25 mL and the lactam of R848 (2.06 g, 5.0 ⁇ 10 ⁇ 3 moles) is added. This slurry is stirred as 1,5,7-triazabicyclo-[4,4,0]dec-5-ene (TBD, 0.557 g, 4 ⁇ 10 ⁇ 3 moles) is added in a single portion. After stirring at room temperature overnight a clear pale yellow solution forms. The solution is diluted with methylene chloride (100 mL) and the solution is washed with 5% citric acid. This solution is dried over sodium sulfate after which it is filtered and evaporated under vacuum. After drying under high vacuum there is obtained 5.9 grams (84%) of polymer. NMR is used to determine the R848 content which is determined to be 21%.
  • the solution was dried over magnesium sulfate, filtered and evaporated under vacuum to give 3.59 grams of polylactic acid-R-848 conjugate.
  • a portion of the polymer was hydrolyzed in base and examined by HPLC for R-848 content. By comparison to a standard curve of R-848 concentration vs. HPLC response, it was determined that the polymer contained 4.51 mg of R-848 per gram of polymer.
  • the molecular weight of the polymer was determined by GPC to be about 19,000.
  • the imidazoquinoline (R-848), D/L lactide, and associated glassware were all dried under vacuum at 50° C. for 8 hours prior to use.
  • To a round bottom flask equipped with a stir bar and condenser was added the R-848 (33 mg, 1.05 ⁇ 10 ⁇ 4 moles), and dry toluene (5 mL). This was heated to reflux to dissolve all of the R-848.
  • the solution was stirred under nitrogen and cooled to room temperature to provide a suspension of finely divided R-848.
  • a solution of lithium diisopropyl amide 2.0 M in THF, 50 ⁇ L, 1.0 ⁇ 10 ⁇ 4 moles
  • the polymer was dissolved in methylene chloride (10 mL) and the solution was dripped into stirred hexane (200 mL). The precipitated polymer was isolated by decantation and was dried under vacuum to give 1.47 grams of the polylactic acid—R-848 conjugate as a white solid. A portion of the polymer was hydrolyzed in base and examined by HPLC for R-848 content. By comparison to a standard curve of R-848 concentration vs. HPLC response, it was determined that the polymer contained 10.96 mg of R-848 per gram of polymer.
  • PLA D/L-polylactide
  • DCM dichloromethane
  • EDC 2.0 g, 10.5 mmol, 5 eq
  • NHS 1.2 g, 10.5 mmol, 5 eq
  • the resulting solution is stirred at room temperature for 3 days.
  • the solution is concentrated to remove most of DCM and the residue is added to a solution of 250 mL of diethyl ether and 5 mL of MeOH to precipitate out the activated PLA-NHS ester.
  • PLA-NHS activated ester is stored under argon in a below ⁇ 10° C. freezer before use.
  • the reaction can be performed in DMF, THF, dioxane, or CHCl3 instead of DCM.
  • DCC can be used instead of EDC (resulting DCC-urea is filtered off before precipitation of the PLA-NHS ester from ether).
  • the amount of EDC or DCC and NHS can be in the range of 2-10 eq of the PLA.
  • low MW PLGA with 50% to 75% glycolide is converted to the corresponding PLGA-NHS activated ester and is stored under argon in a below ⁇ 10° C. freezer before use.
  • the polymer was dried under vacuum at 30° C. to give an off-white puffy solid (5.0 g). Polymeric structure was confirmed by 1 H NMR in CDCl 3 . A small sample of the polymer was treated with 2 N NaOH aq in THF/MeOH to determine the loading of R848 on the polymer by reverse phase HPLC. The loading of R848 is 3 mg per gram of polymer (0.3% loading-27.5% of theory).
  • t-butyloxycarbonyl (tBOC) protected polyglycine carboxylic acid (I) is prepared by ring opening polymerization of glycine N-carboxyanhydride (Aldrich cat #369772) using 6-aminohexanoic acid benzyl ester (Aldrich cat #S33465) by the method of Aliferis et al. ( Biomacromolecules, 5, 1653, (2004)). Protection of the end amino group as the t-BOC carbamate followed by hydrogenation over palladium on carbon to remove the benzyl ester completes the synthesis of BOC protected polyglycine carboxylic acid (I).
  • the polymer is isolated by filtration and the polymer is then washed with 2-propanol (4 ⁇ 25 mL) to remove residual reagents and dried under vacuum at 35-40° C. for 3 days.
  • the polymer is isolated as an off white solid in a yield of 5.1 g (88%).
  • the R848 loading can be determined by NMR is 10.1%.
  • the t-BOC protecting group is removed using trifluoroacetic acid and the resulting polymer is grafted to PLA with carboxyl end groups by conventional methods.
  • Step 1 A t-BOC protected polyglycine/R848 conjugate (5 g) is dissolved in trifluoroacetic acid (25 mL) and this solution is warmed at 50° C. for one hour. After cooling, the trifluoroacetic acid is removed under vacuum and the residue is triturated in ethyl acetate (25 mL). The polymer is isolated by filtration and is washed well with 2-propanol. After drying under vacuum there is obtained 4.5 grams of polymer as an off white solid.
  • Step 2 A mixture of PLGA (Lakeshores Polymers, MW ⁇ 5000, 7525DLG1A, acid number 0.7 mmol/g, 10 g, 7.0 mmol) and HBTU (5.3 g, 14 mmol) in anhydrous DMF (100 mL) is stirred at RT under argon for 50 minutes.
  • the polymer from above (1.4 g, 7 mmol) dissolved in dry DMF (20 mL) is added, followed by diisopropylethylamine (DIPEA) (5 mL, 28 mmol). The mixture is stirred at RT for 6 h and then at 50-55° C. overnight (16 h).
  • DIPEA diisopropylethylamine
  • the poly(hexamethylene carbonate) diol is purchased from Aldrich Chemical Company, Cat # 461164.
  • the polymer (5 g, 2.5 ⁇ 10 ⁇ 3 moles) is dissolved in methylene chloride 25 mL and the lactam of 2-pentyl-8-hydroxy-9-benzyladenine (2.05 g, 5.0 ⁇ 10 ⁇ 3 moles) is added. This slurry is stirred as 1,5,7-triazabicyclo-[4,4,0]dec-5-ene (TBD, 0.557 g, 4 ⁇ 10 ⁇ 3 moles) is added in a single portion. After stirring at room temperature overnight a clear pale yellow solution forms. The solution is diluted with methylene chloride (100 mL), and the solution is washed with 5% citric acid. This solution is dried over sodium sulfate after which it is filtered and evaporated under vacuum. After drying under high vacuum there is obtained 5.5 grams (78%) of polymer. NMR is used to determine the benzyladenine content which is 18%.
  • a 3-nicotine-PEG-PLA polymer was synthesized as follows:
  • the cotinine/PEG polymer (0.20 gm, 5.7 ⁇ 10 ⁇ 5 moles) was dissolved in dry tetrahydrofuran (10 mL) under nitrogen and the solution was stirred as a solution of lithium aluminum hydride in tetrahydrofuran (1.43 mL of 2.0M, 2.85 ⁇ 10 ⁇ 3 moles) was added. The addition of the lithium aluminum hydride caused the polymer to precipitate as a gelatinous mass. The reaction was heated to 80° C. under a slow stream of nitrogen and the tetrahydrofuran was allowed to evaporate. The residue was then heated at 80° C. for 2 hours. After cooling, water (0.5 mL) was cautiously added.
  • the flask was placed in an oil bath set at 120° C., and once the lactide had dissolved, tin ethylhexanoate (5.5 mg, 1.36 ⁇ 10 ⁇ 5 moles) was added. The reaction was allowed to proceed at 120° C. for 16 hours. After cooling to room temperature, water (15 mL) was added and stirring was continued for 30 minutes. Methylene chloride (200 mL) was added, and after agitation in a separatory funnel, the phases were allowed to settle. The methylene chloride layer was isolated and dried over anhydrous magnesium sulfate. After filtration to remove the drying agent, the filtrates were evaporated under vacuum to give the polymer as a colorless foam.
  • Resiquimod (aka R848) was synthesized according to the synthesis provided in Example 99 of U.S. Pat. No. 5,389,640 to Gerster et al.
  • R848 was conjugated to PLA by a method provided above, and the PLA structure was confirmed by NMR.
  • PLA-PEG-nicotine conjugate was prepared according to Example 31.
  • PLA was purchased (Boehringer Ingelheim Chemicals, Inc., 2820 North Normandy Drive, Orlando, Va. 23805).
  • Ovalbumin peptide 323-339 was obtained from Bachem Americas Inc. (3132 Kashiwa Street, Torrance Calif. 90505. Part #406-4565).
  • Solution #1 (0.25 to 0.75 mL), solution #2 (0.25 mL), solution #3 (0.25 to 0.5 mL) and solution #4 (0.1 mL) were combined in a small vial and the mixture was sonicated at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
  • solution #5 2.0 mL
  • sonication at 35% amplitude for 40 seconds using the Branson Digital Sonifier 250 forms the second emulsion.
  • This was added to a beaker containing phosphate buffer solution (30 mL) and this mixture was stirred at room temperature for 2 hours to form the nanoparticles.
  • nanoparticle dispersion a portion of the nanoparticle dispersion (7.4 mL) was transferred to a centrifuge tube and spun at 5,300 g for one hour, supernatant was removed, and the pellet was re-suspended in 7.4 mL of phosphate buffered saline. The centrifuge procedure was repeated and the pellet was re-suspended in 2.2 mL of phosphate buffered saline for a final nanoparticle dispersion of about 10 mg/mL.
  • Ovalbumin peptide 323-339 a 17 amino acid peptide known to be a T cell epitope of Ovalbumin protein, was purchased from Bachem Americas Inc. (3132 Kashiwa Street, Torrance Calif. 90505.)
  • Resiquimod (aka R848) was synthesized according to a method provided in U.S. Pat. No. 6,608,201.
  • PLA-R848, resiquimod was conjugated to PLA with a molecular weight of approximately 2,500 Da according to a method provided above.
  • PLGA-R848, resiquimod was conjugated to PLGA with a molecular weight of approximately 4,100 Da according to a method provided above.
  • PS-1826 DNA oligonucleotide with fully phosphorothioated backbone having nucleotide sequence 5′-TCC ATG ACG TTC CTG ACG TT-3′ with a sodium counter-ion was purchased from Oligos Etc (9775 SW Commerce Circle C-6, Wilsonville, Oreg. 97070.)
  • PO-1826 DNA oligonucleotide with phosphodiester backbone having nucleotide sequence 5′-TCC ATG ACG TTC CTG ACG TT-3′ with a sodium counter-ion was purchased from Oligos Etc. (9775 SW Commerce Circle C-6, Wilsonville, Oreg. 97070.) ⁇
  • PLA with an inherent viscosity of 0.21 dL/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, Ala. 35211. Product Code 100 ⁇ L 2A.)
  • PLA with an inherent viscosity of 0.71 dL/g was purchased from SurModics Pharmaceuticals (756 Tom Martin Drive, Birmingham, Ala. 35211. Product Code 100 ⁇ L 7A.)
  • PLA with an inherent viscosity of 0.19 dL/g was purchased from Boehringer Ingelheim Chemicals, Inc. (Petersburg, Va. Product Code R202H.)
  • PLA-PEG-nicotine with a molecular weight of approximately 18,500 to 22,000 Da was prepared according to a method provided above.
  • PLA-PEG-R848 with a molecular weight of approximately 15,000 Da was synthesized was prepared according to a method provided above.
  • Solution 1A Ovalbumin peptide 323-339 @ 35 mg/mL in dilute hydrochloric acid aqueous solution.
  • the solution was prepared by dissolving ovalbumin peptide in 0.13N hydrochloric acid solution at room temperature.
  • Solution 1B Ovalbumin peptide 323-339 @ 70 mg/mL in dilute hydrochloric acid aqueous solution.
  • the solution was prepared by dissolving ovalbumin peptide in 0.13N hydrochloric acid solution at room temperature.
  • Solution 2A 0.21-IV PLA @ 75 mg/mL and PLA-PEG-nicotine @ 25 mg/ml in methylene chloride.
  • the solution was prepared by first preparing two separate solutions at room temperature: 0.21-IV PLA @ 100 mg/mL in pure methylene chloride and PLA-PEG-nicotine @ 100 mg/mL in pure methylene chloride.
  • the final solution was prepared by adding 3 parts PLA solution for each part of PLA-PEG-nicotine solution.
  • Solution 2B 0.71-IV PLA @ 75 mg/mL and PLA-PEG-nicotine @ 25 mg/ml in methylene chloride.
  • the solution was prepared by first preparing two separate solutions at room temperature: 0.71-IV PLA @ 100 mg/mL in pure methylene chloride and PLA-PEG-nicotine @ 100 mg/mL in pure methylene chloride.
  • the final solution was prepared by adding 3 parts PLA solution for each part of PLA-PEG-nicotine solution.
  • Solution 2C 0.19-IV PLA @ 75 mg/mL and PLA-PEG-nicotine @ 25 mg/ml in methylene chloride.
  • the solution was prepared by first preparing two separate solutions at room temperature: 0.19-IV PLA @ 100 mg/mL in pure methylene chloride and PLA-PEG-nicotine @ 100 mg/mL in pure methylene chloride.
  • the final solution was prepared by adding 3 parts PLA solution for each part of PLA-PEG-nicotine solution.
  • Solution 3A Oligonucleotide (either PS-1826 or P0-1826) @ 200 mg/ml in purified water.
  • the solution was prepared by dissolving oligonucleotide in purified water at room temperature.
  • Solution 4A Same as Solution #2A.
  • Solution 4B Same as Solution #2B.
  • Solution 5A Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.
  • W1/O2 was prepared by combining solution 1 and solution 2 in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
  • W3/O4 was prepared by combining solution 3 and solution 4 in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
  • a third emulsion with two inner emulsion ([W1/O2,W3/O4]/W5) emulsion was prepared by combining 0.5 ml of each primary emulsion (W1/O2 and W3/O4) and solution 5 and sonicating at 30% amplitude for 40 to 60 seconds using the Branson Digital Sonifier 250.
  • the third emulsion was added to a beaker containing 70 mM phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow for the methylene chloride to evaporate and for the nanocarriers to form.
  • a portion of the nanocarriers were washed by transferring the nanocarrier suspension to a centrifuge tube and spinning at 13,823 g for one hour, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated and the pellet was re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.
  • oligonucleotide and peptide in the nanocarrier were determined by HPLC analysis.
  • Solution 1A Ovalbumin peptide 323-339 @ 69 mg/mL in de-ionized water. The solution was prepared by slowly adding ovalbumin peptide to the water while mixing at room temperature.
  • Solution 1B Ovalbumin peptide 323-339 @ 70 mg/mL in dilute hydrochloric acid aqueous solution.
  • the solution was prepared by dissolving ovalbumin peptide in 0.13N hydrochloric acid solution at room temperature.
  • Solution 1C Oligonucleotide (PS-1826) @ 50 mg/ml in purified water. The solution was prepared by dissolving oligonucleotide in purified water at room temperature.
  • Solution 1D Ovalbumin peptide 323-339 @ 17.5 mg/mL in dilute hydrochloric acid aqueous solution.
  • the solution was prepared by dissolving ovalbumin peptide @ 70 mg/ml in 0.13N hydrochloric acid solution at room temperature and then diluting the solution with 3 parts purified water per one part of starting solution.
  • Solution 2A R848 @ 10 mg/ml and 0.19-IV PLA @ 100 mg/mL in pure methylene chloride prepared at room temperature.
  • Solution 2B PLA-R848 @ 100 mg/ml in pure methylene chloride prepared at room temperature.
  • Solution 2C PLGA-R848 @ 100 mg/ml in pure methylene chloride prepared at room temperature.
  • Solution 2D PLA-PEG-R848 @ 100 mg/ml in pure methylene chloride prepared at room temperature.
  • Solution 3A PLA-PEG-nicotine @ 100 mg/ml in pure methylene chloride prepared at room temperature.
  • Solution 4A 0.19-IV PLA @ 100 mg/mL in pure methylene chloride prepared at room temperature.
  • Solution 5A Polyvinyl alcohol @ 50 mg/mL in de-ionized water.
  • Solution 5B Polyvinyl alcohol @ 50 mg/mL in 100 mM pH 8 phosphate buffer.
  • the water in oil (W/O) primary emulsion was prepared by combining solution 1 and solution 2, solution 3, and solution 4 in a small pressure tube and sonicating at 50% amplitude for 40 seconds using a Branson Digital Sonifier 250.
  • the water/oil/water (W/O/W) double emulsion was prepared by adding solution 5 to the primary emulsion and sonicating at 30% to 35% amplitude for 40 seconds using the Branson Digital Sonifier 250.
  • the double emulsion was added to a beaker containing phosphate buffer solution (30 mL) and stirred at room temperature for 2 hours to allow for the methylene chloride to evaporate and for the nanocarriers to form.
  • a portion of the nanocarriers were washed by transferring the nanocarrier suspension to a centrifuge tube and spinning at 5,000 to 9,500 RPM for one hour, removing the supernatant, and re-suspending the pellet in phosphate buffered saline. The washing procedure was repeated and the pellet was re-suspended in phosphate buffered saline for a final nanocarrier dispersion of about 10 mg/mL.
  • CpG immunological agent
  • Agilent 1100 reverse phase HPLC on Agilent 1100 system at 260 nm equipped with Waters XBridge C-18 (2.5 micron particle, 50 ⁇ 4.6 mm ID (part No. 186003090), column temp. 600 C) using mobile phase A of 2% acetonitrile in 100 mM TEA-acetic acid buffer, pH about 8.0 and mobile B as 90% acetonitrile, 10% water (column equilibrated at 5% B, increased to 55% B in 8.5 min, then ramped to 90% B to 12 minutes. Strength of B was rapidly decreased to 5% in one minute and equilibrated until stop time, 16 minutes. The flow rate was 1 mL/min until end of the method, 16 minutes).
  • Nicotine analog was measured using reverse phase HPLC on Agilent 1100 system at 254 nm equipped with Waters X-Bridge C-18 (5 micron particle, 100 ⁇ 4.6 mm ID, column temp at 400 C) using Mobile Phase A (MPA) of 95% water/5% acetonitrile/0.1% TFA and Mobile Phase B (MPB) of 90% acetonitrile/10% water/0.09% TFA (gradient: column was equilibrated at 5% B increased to 45% B in 14 minutes. Then ramped up to 95% B from 14 to 20 minutes. Mobile B strength was quickly decreased back to 5% and requilibrated until the end of the method. The flow rate of the method was maintained at 0.5 ml/min with total run time of 25 minutes.
  • the NC suspension was centrifuged @14000 rpm for about 15-30 minutes depending on particle size.
  • the collected pellets were treated with 200 uL of conc. NH 4 OH (8 M) for 2 h with agitation until the solution turns clear.
  • a 200 uL of 1% TFA was added to neutralize the mixture solution, which brought the total volume of the pellet solution to 200 uL.
  • An aliquot of 50 uL of the solution was diluted with MPA(or water) to 200 uL and analyzed on HPLC as above to determine the amount present in the pellets.
  • NC suspension from the manufacture (about 10 mg/mL suspension in PBS) was spun down at 14000 rpm for 15 to 30 minutes depending on particle size.
  • the collected pellets were re-suspended with 500 uL of water and sonicated for 30 minutes to fully disperse the particles.
  • the NC was then heated at 600° C. for 10 minutes. Additional 200 uL of 1 N NaOH was added to the mixture, heated for another 5 minutes where the mixture becomes clear.
  • the hydrolyzed NC solution was centrifuged briefly at 14000 rpm. A final 2 ⁇ dilution of the clear solution using water was then made and assayed on the reverse HPLC described above.
  • Encapsulated T Cell Antigens e.g., Ova Peptide, or Human Peptide, TT2pDT5t
  • NC suspension from the manufacture (about 10 mg/mL suspension in PBS) was spun down at 14000 rpm for 15 to 30 minutes.
  • 100 uL of acetonitrile was added to the pellets to dissolve the polymer components of the NC.
  • the mixture was vortexed and sonicated for 1 to 5 minutes.
  • 100 uL 0.2% TFA was added to the mixture to extract the peptides and sonicated for another 5 minutes to ensure the break down of the aggregates.
  • the mixture was centrifuged at 14000 rpm for 15 minutes to separate any insoluble materials (e.g., polymers).
  • a 50 uL aliquot of the supernatant diluted with 150 uL of MPA (or water) was taken and assayed on the reverse phase HPLC as described above.
  • the total amount of R848 and ova peptide present in the nanoparticles was as shown in Table 1.
  • An aqueous suspension of the tested synthetic nanocarriers was then diluted to a final stock volume of 4.4 mL with PBS.
  • a 200 ⁇ L aliquot was immediately removed from each of the NP sample and centrifuged @ 14000 rpm in a microcentrifuge tubes using a Microcentrifuge (Model: Galaxy 16). 100 ⁇ L of supernatant was removed and diluted to 200 ⁇ L in HPLC Mobile Phase A (MPA) and assayed for the amount of R848 and ova peptide released on the reverse phase HPLC.
  • MPA HPLC Mobile Phase A
  • T0 sample a 200 ⁇ L aliquot was removed from each of the samples and centrifuged @ 6000 rpm for 20 minutes and the supernatant was removed. The residue nanoparticles was resuspended in 200 uL of citrate buffer and centrifuged @ 14000 rpm for 15 minutes. 100 uL of the supernatant was removed and diluted to 200 uL with MPA and assayed for R848 and peptide as above.
  • the remaining pellets (conjugated R848 samples only) from each sample was treated with 200 uL of conc. NH4OH (8 M) for 3 h with mixing. After the mixture was settled, 200 uL of 1% TFA was added to bring total volume of the pellet to 400 uL. An aliquot of 50 uL of the solution was diluted with MPA to 200 uL and analyzed on HPLC as above to determine the amount of R848 and ova peptide that remained in the pellet after in vitro release to close the mass balance. For unconjugated samples, the sample was diluted with TFA in acetonitrile and assayed as above for R848 and peptide.
  • HPLC grade water EMD—#WX0008-1.
  • antigen e.g., ova peptide, T cell antigen
  • immunostimulatory agents e.g., R848, CpG
  • PBS phosphate buffered saline solution
  • the release of R848 from the nanocarrier composed of conjugated R848 and the ova peptide was achieved by exchanging desired amount of the aqueous suspension of the tested synthetic nanocarriers obtained from the manufacture (e.g., about 10 mg/mL in PBS) into the same volume of the appropriate release media (Citrate buffer 100 mM) via centrifugation and re-suspension.
  • desired amount of the aqueous suspension of the tested synthetic nanocarriers obtained from the manufacture e.g., about 10 mg/mL in PBS
  • the appropriate release media e.g., about 10 mg/mL in PBS
  • a 150 ⁇ L aliquot was immediately removed from NC suspension prior placing the NC suspension to 37° C. thermal chamber and centrifuged @ 14000 rpm in microcentrifuge tubes using a microcentrifuge (Model: Galaxy 16). 100 ⁇ L of the supernatant was removed and diluted to 200 ⁇ L with HPLC Mobile Phase A (MPA) or water and assayed for the amount of R848 and ova peptide released on the reverse phase HPLC.
  • MPA HPLC Mobile Phase A
  • the remaining pellets from each time point were treated with 100 uL of NH 4 OH (8 M) for 2 h (or more) with agitation until solution turn clear.
  • a 100 uL of 1% TFA was added to neutralize the mixture, which brought the total volume of the pellet solution to 200 uL.
  • the release of CpG was determined similar to the measurement of R848 and ova peptide in terms of sample preparation and monitored time points. However, the amount of the CpG in the release media was assayed by the reverse phase HPLC method described above.
  • NC-Nic was a composition of nanocarriers exhibiting nicotine on the outer surface and, for all groups of mice except for Group 1, carrying CpG-1826 (thioated) adjuvant, which was released from the nanocarriers at different rates.
  • the nanocarriers were prepared according to a method provided above. Serum anti-nicotine antibodies were then measured on days 26 and 40. EC 50 for anti-nicotine antibodies as measured in standard ELISA against polylysine-nicotine are shown in FIG. 4 .
  • the Group 1 mice were administered NC-Nic w/o CpG-1826 containing Ova peptide and polymers, 75% of which were PLA and 25% were PLA-PEG-Nic.
  • the Group 2 mice were administered NC-Nic containing ova peptide, polymers, 75% of which were PLA and 25% were PLA-PEG-Nic, and 3.2% CpG-1826; release rate at 24 hours: 4.2 ⁇ g CpG per mg of NC.
  • the Group 3 mice were administered NC-Nic containing polymers, 75% of which were PLA and 25% were PLA-PEG-Nic, and 3.1% CpG-1826; release rate at 24 hours: 15 ⁇ g CpG per mg of NC. Release was determined at a pH of 4.5.
  • results shown in FIG. 4 demonstrate that entrapment of adjuvant into nanocarriers is beneficial for the immune response against NC-associated antigen, and, furthermore, that the higher release rate of entrapped CpG adjuvant from within the nanocarriers (NC) at 24 hours produced an immune response, which was elevated compared to one induced by NC with a slower release rate of CpG adjuvant (a TLR9 agonist).
  • NC-Nic was a composition of nanocarriers exhibiting nicotine on the outer surface and carrying one of two forms of CpG-1826 adjuvant.
  • the nanocarriers were prepared according to a method provided above. EC 50 for anti-nicotine antibodies as measured in standard ELISA against polylysine-nicotine are shown in FIG. 5 .
  • the Group 1 mice were administered NC-Nic containing ova peptide, polymers, 75% of which were PLA and 25% were PLA-PEG-Nic, and 6.2% CpG-1826 (thioated); release rate at 24 hours: 16.6 ⁇ g CpG per mg of NC.
  • the Group 2 mice were administered NC-Nic containing ova peptide, polymers, 75% of which were PLA and 25% were PLA-PEG-Nic, and 7.2% CpG-1826 (thioated); release rate at 24 hours: 13.2 ⁇ g CpG per mg of NC.
  • the Group 3 mice were administered NC-Nic containing ova peptide, polymers, 75% of which were PLA and 25% were PLA-PEG-Nic, and 7.9% CpG-1826 (phosphodiester or PO, non-thioated); release rate at 24 hours: 19.6 ⁇ g CpG per mg of NC.
  • the Group 4 mice were administered NC-Nic containing ova peptide, polymers, 75% of which were PLA and 25% were PLA-PEG-Nic, and 8.5% CpG-1826 (PO, non-thioated); release rate at 24 hours: 9.3 ⁇ g CpG per mg of NC. Release was determined at a pH of 4.5.
  • mice Groups of five mice were immunized three times (subcutaneously, hind limbs) at 2-week intervals (days 0, 14 and 28) with 100 ⁇ g of NC-Nic and serum anti-nicotine antibodies were then measured on days 26, 40 and 54.
  • the nanocarriers were prepared according to a method provided above. EC 50 for anti-nicotine antibodies as measured in standard ELISA against polylysine-nicotine are shown in FIG. 6 .
  • the Group 1 mice were administered NC-Nic containing ova peptide and polymers, 75% of which were PLA and 25% were PLA-PEG-Nic, but without adjuvant.
  • the Group 2 mice were administered NC-Nic containing ova peptide, polymers, 75% of which were PLA and 25% were PLA-PEG-Nic, and 1.0% R848; of which 92% is released at 2 hours and more than 96% is released at 6 hours.
  • the Group 3 mice were administered NC-Nic containing ova peptide, polymers, 75% of which were PLA-R848 and 25% were PLA-PEG-Nic, and 1.3% R848, of which 29.4% is released at 6 hours and 67.8% is released at 24 hours.
  • mice were administered NC-Nic containing ova peptide, polymers, 75% of which were PLA-R848 and 25% were PLA-PEG-Nic, and 1.4% of R848, of which 20.4% is released at 6 hours and 41.5% is released at 24 hours.
  • the Group 5 mice were administered NC-Nic containing ova peptide, polymers, 25% of which were PLA-PEG-R848, 50% PLA, and 25% were PLA-PEG-Nic, and 0.7% of R848; of which less than 1% is released at 24 hours. Release was determined at a pH of 4.5.
  • mice Groups of five mice were immunized three times (subcutaneously, hind limbs) at 2-week intervals (days 0, 14 and 28) with 100 ⁇ g of NC-Nic (nanocarrier exhibiting nicotine on the outer surface) with entrapped PO-CpG or not containing entrapped PO-CpG admixed with free PO-CpG.
  • the synthetic nanocarriers were prepared according to methods provided above. Serum anti-nicotine antibodies were then measured in both groups on days 26 and 40. EC 50 for anti-nicotine antibodies as determined in standard ELISA against polylysine-nicotine are shown in FIG. 7 .
  • mice were immunized with a NC-Nic with 1826 PO-CpG and MHC-II helper peptide from ovalbumin (Ov-II) encapsulated (6.6% PO-CpG; 2.3% Ov-II).
  • the group 2 mice were immunized with a NC-Nic with 0.7% of entrapped Ov-II admixed with 20 ⁇ g of free 1826 PO-CpG.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Immunology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Polymers & Plastics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Optics & Photonics (AREA)
  • Physics & Mathematics (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Medical Informatics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Addiction (AREA)
  • Psychiatry (AREA)
  • Obesity (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Communicable Diseases (AREA)
  • Diabetes (AREA)
US12/788,260 2009-05-27 2010-05-26 Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents Abandoned US20110020388A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US12/788,260 US20110020388A1 (en) 2009-05-27 2010-05-26 Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents
US13/948,129 US20140030344A1 (en) 2009-05-27 2013-07-22 Targeted synthetic nanocarriers with ph sensitive release of immunostimulatory agents
US14/273,099 US20140242173A1 (en) 2009-05-27 2014-05-08 Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US21711609P 2009-05-27 2009-05-27
US21712409P 2009-05-27 2009-05-27
US21712909P 2009-05-27 2009-05-27
US21711709P 2009-05-27 2009-05-27
US12/788,260 US20110020388A1 (en) 2009-05-27 2010-05-26 Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/948,129 Continuation US20140030344A1 (en) 2009-05-27 2013-07-22 Targeted synthetic nanocarriers with ph sensitive release of immunostimulatory agents
US14/273,099 Continuation US20140242173A1 (en) 2009-05-27 2014-05-08 Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents

Publications (1)

Publication Number Publication Date
US20110020388A1 true US20110020388A1 (en) 2011-01-27

Family

ID=43012672

Family Applications (9)

Application Number Title Priority Date Filing Date
US12/788,260 Abandoned US20110020388A1 (en) 2009-05-27 2010-05-26 Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents
US12/788,261 Abandoned US20100303850A1 (en) 2009-05-27 2010-05-26 Nanocarriers possessing components with different rates of release
US12/788,266 Expired - Fee Related US8629151B2 (en) 2009-05-27 2010-05-26 Immunomodulatory agent-polymeric compounds
US13/948,129 Abandoned US20140030344A1 (en) 2009-05-27 2013-07-22 Targeted synthetic nanocarriers with ph sensitive release of immunostimulatory agents
US14/138,601 Expired - Fee Related US9006254B2 (en) 2009-05-27 2013-12-23 Immunomodulatory agent-polymeric compounds
US14/273,099 Abandoned US20140242173A1 (en) 2009-05-27 2014-05-08 Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents
US14/658,040 Expired - Fee Related US9884112B2 (en) 2009-05-27 2015-03-13 Immunomodulatory agent-polymeric compounds
US15/889,014 Abandoned US20180256709A1 (en) 2009-05-27 2018-02-05 Immunomodulatory agent-polymeric compounds
US16/773,551 Abandoned US20200390881A1 (en) 2009-05-27 2020-01-27 Nanocarriers possessing components with different rates of release

Family Applications After (8)

Application Number Title Priority Date Filing Date
US12/788,261 Abandoned US20100303850A1 (en) 2009-05-27 2010-05-26 Nanocarriers possessing components with different rates of release
US12/788,266 Expired - Fee Related US8629151B2 (en) 2009-05-27 2010-05-26 Immunomodulatory agent-polymeric compounds
US13/948,129 Abandoned US20140030344A1 (en) 2009-05-27 2013-07-22 Targeted synthetic nanocarriers with ph sensitive release of immunostimulatory agents
US14/138,601 Expired - Fee Related US9006254B2 (en) 2009-05-27 2013-12-23 Immunomodulatory agent-polymeric compounds
US14/273,099 Abandoned US20140242173A1 (en) 2009-05-27 2014-05-08 Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents
US14/658,040 Expired - Fee Related US9884112B2 (en) 2009-05-27 2015-03-13 Immunomodulatory agent-polymeric compounds
US15/889,014 Abandoned US20180256709A1 (en) 2009-05-27 2018-02-05 Immunomodulatory agent-polymeric compounds
US16/773,551 Abandoned US20200390881A1 (en) 2009-05-27 2020-01-27 Nanocarriers possessing components with different rates of release

Country Status (12)

Country Link
US (9) US20110020388A1 (enrdf_load_stackoverflow)
EP (3) EP2435094A2 (enrdf_load_stackoverflow)
JP (8) JP6282395B2 (enrdf_load_stackoverflow)
KR (6) KR101916875B1 (enrdf_load_stackoverflow)
CN (7) CN102481375B (enrdf_load_stackoverflow)
AU (6) AU2010254550B2 (enrdf_load_stackoverflow)
BR (3) BRPI1012036A2 (enrdf_load_stackoverflow)
CA (3) CA2762650A1 (enrdf_load_stackoverflow)
EA (6) EA022699B1 (enrdf_load_stackoverflow)
IL (3) IL216549A0 (enrdf_load_stackoverflow)
MX (5) MX350667B (enrdf_load_stackoverflow)
WO (3) WO2010138192A2 (enrdf_load_stackoverflow)

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110110965A1 (en) * 2009-08-26 2011-05-12 Selecta Biosciences, Inc. Compositions that induce t cell help
US20110223201A1 (en) * 2009-04-21 2011-09-15 Selecta Biosciences, Inc. Immunonanotherapeutics Providing a Th1-Biased Response
WO2012149411A1 (en) * 2011-04-29 2012-11-01 Selecta Biosciences, Inc. Controlled release of immunosuppressants from synthetic nanocarriers
WO2013019669A3 (en) * 2011-07-29 2013-07-04 Selecta Biosciences, Inc. Synthetic nanocarriers that generate humoral and cytotoxic t lymphocyte (ctl) immune responses
WO2013151736A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics In vivo production of proteins
WO2013151666A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics Modified polynucleotides for the production of biologics and proteins associated with human disease
US8629151B2 (en) 2009-05-27 2014-01-14 Selecta Biosciences, Inc. Immunomodulatory agent-polymeric compounds
WO2014152211A1 (en) 2013-03-14 2014-09-25 Moderna Therapeutics, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
WO2014152540A1 (en) 2013-03-15 2014-09-25 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
WO2014197616A1 (en) * 2013-06-04 2014-12-11 Selecta Biosciences, Inc. Repeated administration of non-immunosupressive antigen specific immunotherapeutics
WO2015006747A2 (en) 2013-07-11 2015-01-15 Moderna Therapeutics, Inc. Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use.
WO2015034925A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Circular polynucleotides
WO2015034928A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Chimeric polynucleotides
WO2015075557A2 (en) 2013-11-22 2015-05-28 Mina Alpha Limited C/ebp alpha compositions and methods of use
US9066978B2 (en) 2010-05-26 2015-06-30 Selecta Biosciences, Inc. Dose selection of adjuvanted synthetic nanocarriers
US9152988B2 (en) 2000-12-05 2015-10-06 Open Invention Network Method and device utilizing polymorphic data in E-commerce
WO2016014846A1 (en) 2014-07-23 2016-01-28 Moderna Therapeutics, Inc. Modified polynucleotides for the production of intrabodies
US9603944B2 (en) 2013-09-27 2017-03-28 Massachusetts Institute Of Technology Carrier-free biologically-active protein nanostructures
WO2017070626A2 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Respiratory virus vaccines
WO2017112943A1 (en) 2015-12-23 2017-06-29 Modernatx, Inc. Methods of using ox40 ligand encoding polynucleotides
WO2017120612A1 (en) 2016-01-10 2017-07-13 Modernatx, Inc. Therapeutic mrnas encoding anti ctla-4 antibodies
US9994443B2 (en) 2010-11-05 2018-06-12 Selecta Biosciences, Inc. Modified nicotinic compounds and related methods
US10046064B2 (en) 2014-09-07 2018-08-14 Selecta Biosciences, Inc. Methods and compositions for attenuating exon skipping anti-viral transfer vector immune responses
WO2019048631A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited SMALL HNF4A ACTIVATOR RNA COMPOSITIONS AND METHODS OF USE
WO2019048645A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited STABILIZED COMPOSITIONS OF SMALL ACTIVATOR RNA (PARNA) FROM CEBPA AND METHODS OF USE
US10335395B2 (en) 2013-05-03 2019-07-02 Selecta Biosciences, Inc. Methods of administering immunosuppressants having a specified pharmacodynamic effective life and therapeutic macromolecules for the induction of immune tolerance
WO2019197845A1 (en) 2018-04-12 2019-10-17 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
WO2020208361A1 (en) 2019-04-12 2020-10-15 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
US11034752B2 (en) 2015-08-12 2021-06-15 Massachusetts Institute Of Technology Cell surface coupling of nanoparticles
US11345932B2 (en) 2018-05-16 2022-05-31 Synthego Corporation Methods and systems for guide RNA design and use
WO2022122872A1 (en) 2020-12-09 2022-06-16 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
US11426451B2 (en) 2017-03-11 2022-08-30 Selecta Biosciences, Inc. Methods and compositions related to combined treatment with antiinflammatories and synthetic nanocarriers comprising an immunosuppressant
WO2022200810A1 (en) 2021-03-26 2022-09-29 Mina Therapeutics Limited Tmem173 sarna compositions and methods of use
US11472856B2 (en) 2016-06-13 2022-10-18 Torque Therapeutics, Inc. Methods and compositions for promoting immune cell function
EP4074834A1 (en) 2012-11-26 2022-10-19 ModernaTX, Inc. Terminally modified rna
US11524033B2 (en) 2017-09-05 2022-12-13 Torque Therapeutics, Inc. Therapeutic protein compositions and methods of making and using the same
EP4144378A1 (en) 2011-12-16 2023-03-08 ModernaTX, Inc. Modified nucleoside, nucleotide, and nucleic acid compositions
WO2023099884A1 (en) 2021-12-01 2023-06-08 Mina Therapeutics Limited Pax6 sarna compositions and methods of use
WO2023104964A1 (en) 2021-12-09 2023-06-15 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
WO2023161350A1 (en) 2022-02-24 2023-08-31 Io Biotech Aps Nucleotide delivery of cancer therapy
WO2023170435A1 (en) 2022-03-07 2023-09-14 Mina Therapeutics Limited Il10 sarna compositions and methods of use
US11884918B2 (en) 2019-01-25 2024-01-30 Synthego Corporation Systems and methods for modulating CRISPR activity
WO2024125597A1 (en) 2022-12-14 2024-06-20 Providence Therapeutics Holdings Inc. Compositions and methods for infectious diseases
WO2024134199A1 (en) 2022-12-22 2024-06-27 Mina Therapeutics Limited Chemically modified sarna compositions and methods of use
US12139707B2 (en) 2019-07-19 2024-11-12 Synthego Corporation Stabilized CRISPR complexes
EP4520345A1 (en) 2023-09-06 2025-03-12 Myneo Nv Product
US12331320B2 (en) 2018-10-10 2025-06-17 The Research Foundation For The State University Of New York Genome edited cancer cell vaccines

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030129251A1 (en) 2000-03-10 2003-07-10 Gary Van Nest Biodegradable immunomodulatory formulations and methods for use thereof
JP4817599B2 (ja) * 2003-12-25 2011-11-16 独立行政法人科学技術振興機構 免疫活性増強剤とこれを用いた免疫活性の増強方法
US8557292B2 (en) 2008-08-13 2013-10-15 California Institute Of Technology Carrier nanoparticles and related compositions, methods and systems
US11446374B2 (en) 2008-12-09 2022-09-20 Novavax, Inc. Modified RSV F proteins and methods of their use
MY172421A (en) * 2008-12-09 2019-11-25 Coley Pharm Group Inc Immunostimulatory oligonucleotides
CN102307591B (zh) 2008-12-09 2016-08-03 诺瓦瓦克斯股份有限公司 修饰的rsv f蛋白及其使用方法
US20130323319A1 (en) 2010-11-12 2013-12-05 Getts Consulting And Project Management Modified immune-modulating particles
EP2648756A4 (en) * 2010-12-10 2016-06-08 California Inst Of Techn ATTAINING THE MESANGIUM WITH NANOPARTICLES OF DEFINED DIAMETER
EP2495567A1 (en) * 2011-03-04 2012-09-05 Erasmus University Medical Center Rotterdam Methods and means for monitoring disruption of tissue homeostasis in the total body
CA2830948A1 (en) * 2011-03-25 2012-10-04 Selecta Biosciences, Inc. Osmotic mediated release synthetic nanocarriers
PT3275507T (pt) 2011-04-18 2020-05-20 Univ Georgia Método de administração de vacina
WO2013192532A2 (en) 2012-06-21 2013-12-27 Northwestern University Peptide conjugated particles
US9468681B2 (en) 2013-03-01 2016-10-18 California Institute Of Technology Targeted nanoparticles
WO2014142653A1 (en) 2013-03-11 2014-09-18 Cristal Delivery B.V. Vaccination composition
BR112015022597A2 (pt) 2013-03-13 2017-10-24 Cour Pharmaceuticals Dev Company partículas modificadoras da imunidade para o tratamento de inflamação
WO2014179771A1 (en) * 2013-05-03 2014-11-06 Selecta Biosciences, Inc. Dosing combinations for reducing undesired humoral immune responses
JP6553033B2 (ja) 2013-08-13 2019-07-31 ノースウェスタン ユニバーシティ ペプチドコンジュゲート粒子
DE102013015112B4 (de) 2013-09-13 2016-07-14 Holger Frey Spaltbare Polyethylenglykol-(PEG)-Makromoleküle zum Einschluss von (Glyko-) Proteinen/Antigenen/Allergenen in abbaubaren Polyethylenglykol-(PEG)-Nanopartikeln sowie Verfahren zu ihrer Herstellung
CA2935167C (en) 2014-01-16 2022-02-22 Musc Foundation For Research Development Targeted nanocarriers for the administration of immunosuppressive agents
WO2016010788A1 (en) 2014-07-15 2016-01-21 The United States Of America, As Represented By The Secretary, Dept. Of Health And Human Services Polyketal particles including a cpg oligodeoxynucleotide for the treatment of lung cancer
US20170348402A1 (en) * 2014-07-30 2017-12-07 The Research Foundation For The State University Of New York System and method for delivering genetic material or protein to cells
ES2882255T3 (es) 2015-07-01 2021-12-01 California Inst Of Techn Sistemas de administración basados en polímeros de ácido múcico catiónicos
BR112018004242A2 (pt) 2015-09-03 2018-09-25 Novavax Inc composições de vacina que possuem estabilidade e imunogenicidade aumentadas
EP3347047A1 (en) 2015-09-09 2018-07-18 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Expression vector delivery system and use thereof for inducing an immune response
WO2017086794A1 (en) 2015-11-20 2017-05-26 Cristal Delivery B.V. Nanoparticles with active targeting
JP2019511483A (ja) * 2016-03-02 2019-04-25 ザ ボード オブ リージェンツ オブ ザ ユニバーシティー オブ テキサス システム 免疫療法のためのsting活性化ナノワクチン
US11433123B2 (en) 2016-07-21 2022-09-06 Case Western Reserve University Sustained release cowpea mosaic virus or virus-like particle therapeutic constructs for the treatment of cancer
KR102619747B1 (ko) * 2017-01-10 2023-12-29 넥타르 테라퓨틱스 Tlr 효현제 화합물의 다중-아암 중합체 컨쥬게이트 및 관련 면역 요법적 치료 방법
US12121573B2 (en) 2019-07-14 2024-10-22 Tianxin Wang Methods and agents including STING agonist to treat tumor
CN111148509A (zh) 2017-07-24 2020-05-12 诺瓦瓦克斯股份有限公司 治疗呼吸系统疾病的方法和组合物
SG11202009206QA (en) 2018-03-19 2020-10-29 Novavax Inc Multivalent influenza nanoparticle vaccines
KR102200431B1 (ko) * 2018-05-30 2021-01-08 주식회사 지놈앤컴퍼니 Cd300e 억제제를 유효성분으로 포함하는 암 예방 또는 치료용 약학 조성물
CA3099440A1 (en) 2018-06-13 2019-12-19 California Institute Of Technology Nanoparticles for crossing the blood brain barrier and methods of treatment using the same
EP3833762A4 (en) 2018-08-09 2022-09-28 Verseau Therapeutics, Inc. Oligonucleotide compositions for targeting ccr2 and csf1r and uses thereof
AU2020205029A1 (en) * 2019-01-04 2021-06-24 Ascendis Pharma Oncology Division A/S Minimization of systemic inflammation
US20220062273A1 (en) * 2019-01-04 2022-03-03 Ascendis Pharma Oncology Division A/S Conjugates of pattern recognition receptor agonists
CN111249453B (zh) * 2020-02-26 2021-11-19 浙江大学 一种纳米疫苗及其制备方法
WO2021231702A1 (en) * 2020-05-15 2021-11-18 Rutgers, The State University Of New Jersey Compositions and methods for treating wounds
CN116322650A (zh) * 2020-07-01 2023-06-23 赛络生物医药有限公司 血小板膜包被的纳米颗粒及其用途
IL315371A (en) * 2020-08-31 2024-11-01 Rav Bariach 08 Industries Ltd Multi-bolt electromechanical locking system for remote operation
US11952492B2 (en) * 2020-11-20 2024-04-09 Encapsys, Llc Biodegradable, controlled release microcapsules
CN112494460B (zh) * 2020-12-10 2022-03-11 浙江大飞龙动物保健品股份有限公司 替米考星粉剂及其制备方法
EP4277654A1 (en) 2021-01-18 2023-11-22 Conserv Bioscience Limited Coronavirus immunogenic compositions, methods and uses thereof
WO2022221529A1 (en) 2021-04-16 2022-10-20 Asklepios Biopharmaceutical, Inc. Rational polyploid aav virions that cross the blood brain barrier and elicit reduced humoral response
MX2024001902A (es) 2021-08-27 2024-05-16 Univ Beijing Construcciones y métodos para preparar ácido ribonucleico circular.
AU2022346267A1 (en) * 2021-09-17 2024-01-18 Illumina, Inc. Reagent compositions, methods, cartridges, and systems
US12060328B2 (en) 2022-03-04 2024-08-13 Reset Pharmaceuticals, Inc. Co-crystals or salts of psilocybin and methods of treatment therewith
KR20240076105A (ko) * 2022-11-23 2024-05-30 주식회사 바임 생분해성 고분자 분산체 및 이의 제조방법
WO2024196783A1 (en) * 2023-03-21 2024-09-26 The Board Of Regents Of The University Of Texas System Bioengineered colon-specific immune niche for the treatment of ulcerative colitis
CN117224699B (zh) * 2023-09-05 2024-03-19 贵州大学 一种纳米复合物及其制备方法和用途
CN119505213A (zh) * 2024-11-25 2025-02-25 吉林大学 一种聚碳酸酯聚合物及其制备方法、纳米佐剂和疫苗

Citations (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009257A (en) * 1970-02-27 1977-02-22 Burroughs Wellcome, Inc. Preparation of immunosuppressive materials
US4021364A (en) * 1972-12-04 1977-05-03 Prof. Dr. Peter Speiser Microcapsules in the nanometric range and a method for their production
US4929624A (en) * 1989-03-23 1990-05-29 Minnesota Mining And Manufacturing Company Olefinic 1H-imidazo(4,5-c)quinolin-4-amines
US4994281A (en) * 1986-11-12 1991-02-19 Sanraku Incorporated Polylactic acid microspheres and process for producing the same
US5114703A (en) * 1989-05-30 1992-05-19 Alliance Pharmaceutical Corp. Percutaneous lymphography using particulate fluorocarbon emulsions
US5213812A (en) * 1990-08-01 1993-05-25 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) Preparation process of sustained release compositions and the compositions thus obtained
US5500161A (en) * 1993-09-21 1996-03-19 Massachusetts Institute Of Technology And Virus Research Institute Method for making hydrophobic polymeric microparticles
US5514378A (en) * 1993-02-01 1996-05-07 Massachusetts Institute Of Technology Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures
US5620708A (en) * 1993-02-22 1997-04-15 Alza Corporation Compositions and methods for the oral delivery of active agents
US5733572A (en) * 1989-12-22 1998-03-31 Imarx Pharmaceutical Corp. Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles
US5733925A (en) * 1993-01-28 1998-03-31 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5869103A (en) * 1994-06-18 1999-02-09 Danbiosyst Uk Limited Polymer microparticles for drug delivery
US5871747A (en) * 1992-09-11 1999-02-16 Institut Pasteur Antigen-carrying microparticles and their use in the indication of humoral or cellular responses
US6060082A (en) * 1997-04-18 2000-05-09 Massachusetts Institute Of Technology Polymerized liposomes targeted to M cells and useful for oral or mucosal drug delivery
US6197229B1 (en) * 1997-12-12 2001-03-06 Massachusetts Institute Of Technology Method for high supercoiled DNA content microspheres
US6225460B1 (en) * 1993-09-17 2001-05-01 Gilead Sciences, Inc. Nucleotide analogs
US6365187B2 (en) * 1992-04-24 2002-04-02 Brown University Research Foundation Bioadhesive microspheres and their use as drug delivery and imaging systems
US20020055477A1 (en) * 2000-03-10 2002-05-09 Nest Gary Van Immunomodulatory formulations and methods for use thereof
US20030009029A1 (en) * 1998-06-18 2003-01-09 Merck Patent Gmbh Catalytic titanium (IV) oxide, mediated geminal symmetric dialkylation of carboxamides
US20030035804A1 (en) * 1996-09-16 2003-02-20 Beth Israel Deaconess Medical Center Drug complex for treatment of metastatic prostate cancer
US20040022840A1 (en) * 2002-04-12 2004-02-05 Nagy Jon O. Nanoparticle vaccines
US20040038406A1 (en) * 2002-04-08 2004-02-26 Genesegues, Inc. Nanoparticle delivery systems and methods of use thereof
US20040059094A1 (en) * 2002-07-18 2004-03-25 Bachmann Martin F. Hapten-carrier conjugates and uses thereof
US20040067503A1 (en) * 2002-04-22 2004-04-08 Weihong Tan Functionalized nanoparticles and methods of use
US6723429B2 (en) * 1998-08-28 2004-04-20 Celanese Ventures Gmbh Method for preparing smooth-surface spherical microparticles completely or partially made of at least one water-insoluble linear polysaccharide and microparticles produced according to this method
US20040092470A1 (en) * 2002-06-18 2004-05-13 Leonard Sherry A. Dry powder oligonucleotide formualtion, preparation and its uses
US20050020525A1 (en) * 2002-02-20 2005-01-27 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US6849270B2 (en) * 1999-04-23 2005-02-01 Alza Corporation Releasable linkage and compositions containing same
US20050032733A1 (en) * 2001-05-18 2005-02-10 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SiNA)
US20050037075A1 (en) * 2003-06-06 2005-02-17 Farokhzad Omid C. Targeted delivery of controlled release polymer systems
US20050042298A1 (en) * 2003-08-20 2005-02-24 Pardridge William M. Immunonanoparticles
US20050048063A1 (en) * 2002-08-28 2005-03-03 Erkki Ruoslahti Collagen-binding molecules that selectively home to tumor vasculature and methods of using same
US20050074812A1 (en) * 1998-03-13 2005-04-07 The Burnham Institute Molecules that home to various selected organs or tissues
US6881421B1 (en) * 1998-02-27 2005-04-19 Bioalliance Pharma S.A. Nanoparticles comprising at least one polymer and at least one compound able to complex one or more active ingredients
US20050107322A1 (en) * 2003-04-30 2005-05-19 O'hagan Derek Compositions for inducing immune responses
US20050113697A1 (en) * 1999-08-13 2005-05-26 Point Biomedical Corporation Method of imaging lymphatic system using nanocapsule compositions
US20060002852A1 (en) * 2004-07-01 2006-01-05 Yale University Targeted and high density drug loaded polymeric materials
US20060002995A1 (en) * 2002-12-13 2006-01-05 Ian Harwigsson Pharmaceutical porous particles
US6989435B2 (en) * 1997-09-11 2006-01-24 Cambridge University Technical Services Ltd. Compounds and methods to inhibit or augment an inflammatory response
US20060017339A1 (en) * 2004-06-03 2006-01-26 Lalit Chordia Brushless canned motor
US7008411B1 (en) * 2002-09-30 2006-03-07 Advanced Cardiovascular Systems, Inc. Method and apparatus for treating vulnerable plaque
US20060051317A1 (en) * 2004-09-07 2006-03-09 Batrakova Elena V Amphiphilic polymer-protein conjugates and methods of use thereof
US20060111271A1 (en) * 2004-11-24 2006-05-25 Cerny Erich H Active and passive immunization against pharmacologically active hapten molecules using a synthetic carrier compound composed of similar elements
US20070014807A1 (en) * 2003-09-03 2007-01-18 Maida Anthony E Iii Multiplex vaccine
US20070014804A1 (en) * 2003-02-17 2007-01-18 Peter Burkhard Peptidic nanoparticles as drug delivery and antigen display systems
US20070087986A1 (en) * 2004-01-26 2007-04-19 Brett Premack Compositions and methods for enhancing immunity by chemoattractant adjuvants
US20070116768A1 (en) * 2003-12-09 2007-05-24 Michael Chorny Sustained release preparations composed of biocompatible complex microparticles
US20080014281A1 (en) * 2006-06-16 2008-01-17 Florida Atlantic University Chitin Micro-Particles As An Adjuvant
US20080031899A1 (en) * 2006-02-21 2008-02-07 Reddy Sai T Nanoparticles for immunotherapy
US20080044484A1 (en) * 2004-07-08 2008-02-21 The Regents Of The University Of California Use of polymeric nanoparticles for vaccine delivery
US20080081074A1 (en) * 2006-05-15 2008-04-03 Massachusetts Institute Of Technology Polymers for functional particles
US7375234B2 (en) * 2002-05-30 2008-05-20 The Scripps Research Institute Copper-catalysed ligation of azides and acetylenes
US20080160089A1 (en) * 2003-10-14 2008-07-03 Medivas, Llc Vaccine delivery compositions and methods of use
US20090004118A1 (en) * 2004-10-07 2009-01-01 Shuming Nie Multifunctional Nanoparticle Conjugates And Their Use
US20090028910A1 (en) * 2003-12-19 2009-01-29 University Of North Carolina At Chapel Hill Methods for Fabrication Isolated Micro-and Nano-Structures Using Soft or Imprint Lithography
US20090053293A1 (en) * 2005-09-09 2009-02-26 Beijing Diacrid Medical Technology Co., Ltd. Nano Anticancer Micelles of Vinca Alkaloids Entrapped in Polyethylene Glycolylated Phospholipids
US7501134B2 (en) * 2002-02-20 2009-03-10 Novartis Vaccines And Diagnostics, Inc. Microparticles with adsorbed polypeptide-containing molecules
US20090074828A1 (en) * 2007-04-04 2009-03-19 Massachusetts Institute Of Technology Poly(amino acid) targeting moieties
US7517520B2 (en) * 2003-03-26 2009-04-14 Cytos Biotechnology Ag Packaging of immunostimulatory oligonucleotides into virus-like particles: method of preparation and use
US20090104268A1 (en) * 2004-10-01 2009-04-23 Midatech Limited Nanoparticles Comprising Antigens and Adjuvants, and Immunogenic Structures
US20100022680A1 (en) * 2006-06-23 2010-01-28 Massachusetts Institute Of Technology Microfluidic Synthesis of Organic Nanoparticles
US20100055189A1 (en) * 2008-08-29 2010-03-04 Hubbell Jeffrey A Nanoparticles for immunotherapy
US20100062968A1 (en) * 2005-05-10 2010-03-11 Bali Pulendran Novel strategies for delivery of active agents using micelles and particles
US20100069426A1 (en) * 2008-06-16 2010-03-18 Zale Stephen E Therapeutic polymeric nanoparticles with mTor inhibitors and methods of making and using same
US20100068285A1 (en) * 2008-06-16 2010-03-18 Zale Stephen E Drug Loaded Polymeric Nanoparticles and Methods of Making and Using Same
US20100075995A1 (en) * 2008-08-11 2010-03-25 Smithkline Beecham Corporation Compounds
US20100092425A1 (en) * 2008-10-12 2010-04-15 Von Andrian Ulrich Nicotine Immunonanotherapeutics
US20100129439A1 (en) * 2008-10-12 2010-05-27 Frank Alexis Adjuvant Incorporation in Immunonanotherapeutics
US20100129392A1 (en) * 2008-10-12 2010-05-27 Jinjun Shi Targeting of Antigen Presenting Cells with Immunonanotherapeutics
US20110008435A1 (en) * 1998-11-02 2011-01-13 Elan Corporation Plc Nanoparticulate and Controlled Release Compositions Comprising Aryl-Heterocyclic Compounds
US20110027217A1 (en) * 2009-05-27 2011-02-03 Selecta Biosciences, Inc. Immunomodulatory agent-polymeric compounds
US20110052697A1 (en) * 2006-05-17 2011-03-03 Gwangju Institute Of Science & Technology Aptamer-Directed Drug Delivery
US20110110965A1 (en) * 2009-08-26 2011-05-12 Selecta Biosciences, Inc. Compositions that induce t cell help
US20120027806A1 (en) * 2010-05-26 2012-02-02 Selecta Biosciences, Inc. Dose selection of adjuvanted synthetic nanocarriers
US20120058154A1 (en) * 2010-08-20 2012-03-08 Selecta Biosciences, Inc. Synthetic nanocarrier vaccines comprising peptides obtained or derived from human influenza a virus m2e
US20120070493A1 (en) * 2010-08-23 2012-03-22 Selecta Biosciences, Inc. Targeted multi-epitope dosage forms for induction of an immune response to antigens
US20130028857A1 (en) * 2011-07-29 2013-01-31 Selecta Biosciences, Inc. Synthetic nanocarriers comprising polymers comprising multiple immunomodulatory agents
US20130058970A1 (en) * 2011-09-06 2013-03-07 Selecta Biosciences, Inc. Induced tolerogenic dendritic cells to reduce systemic inflammatory cytokines
US8652487B2 (en) * 2011-04-29 2014-02-18 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for inducing regulatory B cells

Family Cites Families (181)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR7461M (enrdf_load_stackoverflow) 1968-06-19 1970-01-05
DK143689C (da) 1975-03-20 1982-03-15 J Kreuter Fremgangsmaade til fremstilling af en adsorberet vaccine
US4756907A (en) 1978-10-17 1988-07-12 Stolle Research & Development Corp. Active/passive immunization of the internal female reproductive organs
US4946929A (en) 1983-03-22 1990-08-07 Massachusetts Institute Of Technology Bioerodible articles useful as implants and prostheses having predictable degradation rates
US6309669B1 (en) 1984-03-16 2001-10-30 The United States Of America As Represented By The Secretary Of The Army Therapeutic treatment and prevention of infections with a bioactive materials encapsulated within a biodegradable-biocompatible polymeric matrix
US4638045A (en) 1985-02-19 1987-01-20 Massachusetts Institute Of Technology Non-peptide polyamino acid bioerodible polymers
US4631211A (en) 1985-03-25 1986-12-23 Scripps Clinic & Research Foundation Means for sequential solid phase organic synthesis and methods using the same
US4806621A (en) 1986-01-21 1989-02-21 Massachusetts Institute Of Technology Biocompatible, bioerodible, hydrophobic, implantable polyimino carbonate article
CA1340581C (en) 1986-11-20 1999-06-08 Joseph P. Vacanti Chimeric neomorphogenesis of organs by controlled cellular implantation using artificial matrices
US5804178A (en) 1986-11-20 1998-09-08 Massachusetts Institute Of Technology Implantation of cell-matrix structure adjacent mesentery, omentum or peritoneum tissue
US5736372A (en) 1986-11-20 1998-04-07 Massachusetts Institute Of Technology Biodegradable synthetic polymeric fibrous matrix containing chondrocyte for in vivo production of a cartilaginous structure
FR2608988B1 (fr) 1986-12-31 1991-01-11 Centre Nat Rech Scient Procede de preparation de systemes colloidaux dispersibles d'une substance, sous forme de nanoparticules
US5912017A (en) 1987-05-01 1999-06-15 Massachusetts Institute Of Technology Multiwall polymeric microspheres
US5229490A (en) 1987-05-06 1993-07-20 The Rockefeller University Multiple antigen peptide system
US5019379A (en) 1987-07-31 1991-05-28 Massachusetts Institute Of Technology Unsaturated polyanhydrides
US6130082A (en) 1988-05-05 2000-10-10 American Cyanamid Company Recombinant flagellin vaccines
US5010167A (en) 1989-03-31 1991-04-23 Massachusetts Institute Of Technology Poly(amide-and imide-co-anhydride) for biological application
US5389640A (en) 1991-03-01 1995-02-14 Minnesota Mining And Manufacturing Company 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines
ES2108111T3 (es) 1991-04-02 1997-12-16 Biotech Australia Pty Ltd Sistemas de suministro oral de microparticulas.
AU4778893A (en) 1992-07-21 1994-02-14 General Hospital Corporation, The System of drug delivery to the lymphatic tissues
GB9216082D0 (en) 1992-07-28 1992-09-09 Univ Nottingham Lymphatic delivery composition
US6608201B2 (en) 1992-08-28 2003-08-19 3M Innovative Properties Company Process for preparing 1-substituted, 2-substituted 1H-imidazo[4,5-c]quinolin-4-amines
AU4932493A (en) 1992-09-25 1994-04-26 Dynagen, Inc. An immunobooster for delayed release of immunogen
US5399665A (en) 1992-11-05 1995-03-21 Massachusetts Institute Of Technology Biodegradable polymers for cell transplantation
WO1994015635A1 (en) 1993-01-11 1994-07-21 Dana-Farber Cancer Institute Inducing cytotoxic t lymphocyte responses
US5512600A (en) 1993-01-15 1996-04-30 Massachusetts Institute Of Technology Preparation of bonded fiber structures for cell implantation
ATE156706T1 (de) 1993-03-17 1997-08-15 Silica Gel Gmbh Superparamagnetische teilchen, verfahren zu ihrer herstellung und verwendung derselben
US5543158A (en) 1993-07-23 1996-08-06 Massachusetts Institute Of Technology Biodegradable injectable nanoparticles
US5565215A (en) 1993-07-23 1996-10-15 Massachusettes Institute Of Technology Biodegradable injectable particles for imaging
WO1995003035A1 (en) 1993-07-23 1995-02-02 Massachusetts Institute Of Technology Polymerized liposomes with enhanced stability for oral delivery
EP0740548B1 (en) 1994-02-28 2002-12-04 Nanopharm AG Drug targeting system, method for preparing same and its use
DE69535036T3 (de) 1994-07-15 2011-07-07 The University of Iowa Research Foundation, IA Immunomodulatorische oligonukleotide
US6207646B1 (en) 1994-07-15 2001-03-27 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6239116B1 (en) 1994-07-15 2001-05-29 University Of Iowa Research Foundation Immunostimulatory nucleic acid molecules
US6007845A (en) 1994-07-22 1999-12-28 Massachusetts Institute Of Technology Nanoparticles and microparticles of non-linear hydrophilic-hydrophobic multiblock copolymers
US5716404A (en) 1994-12-16 1998-02-10 Massachusetts Institute Of Technology Breast tissue engineering
WO1996020698A2 (en) 1995-01-05 1996-07-11 The Board Of Regents Acting For And On Behalf Of The University Of Michigan Surface-modified nanoparticles and method of making and using same
US6123727A (en) 1995-05-01 2000-09-26 Massachusetts Institute Of Technology Tissue engineered tendons and ligaments
WO1997004747A1 (en) 1995-07-27 1997-02-13 Dunn James M Drug delivery systems for macromolecular drugs
WO1997007788A2 (en) 1995-08-31 1997-03-06 Alkermes Controlled Therapeutics, Inc. Composition for sustained release of an agent
US6095148A (en) 1995-11-03 2000-08-01 Children's Medical Center Corporation Neuronal stimulation using electrically conducting polymers
US5902599A (en) 1996-02-20 1999-05-11 Massachusetts Institute Of Technology Biodegradable polymer networks for use in orthopedic and dental applications
US5874064A (en) 1996-05-24 1999-02-23 Massachusetts Institute Of Technology Aerodynamically light particles for pulmonary drug delivery
US5922695A (en) 1996-07-26 1999-07-13 Gilead Sciences, Inc. Antiviral phosphonomethyoxy nucleotide analogs having increased oral bioavarilability
IL129319A0 (en) 1996-10-25 2000-02-17 Minnesota Mining & Mfg Immune response modifier compounds for treatment of TH2 mediated and related diseases
US6042820A (en) 1996-12-20 2000-03-28 Connaught Laboratories Limited Biodegradable copolymer containing α-hydroxy acid and α-amino acid units
US6214806B1 (en) 1997-02-28 2001-04-10 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CPC dinucleotide in the treatment of LPS-associated disorders
DE69841122D1 (de) 1997-03-10 2009-10-15 Coley Pharm Gmbh Verwendung von nicht-methyliertem CpG Dinukleotid in Kombination mit Aluminium als Adjuvantien
US6211159B1 (en) 1997-04-11 2001-04-03 University Of Toronto Flagellin gene, FlaC of campylobacter
WO1998052581A1 (en) 1997-05-20 1998-11-26 Ottawa Civic Hospital Loeb Research Institute Vectors and methods for immunization or therapeutic protocols
US5837752A (en) 1997-07-17 1998-11-17 Massachusetts Institute Of Technology Semi-interpenetrating polymer networks
DE19745950A1 (de) 1997-10-17 1999-04-22 Dds Drug Delivery Service Ges Arzneistoffträgerpartikel für die gewebespezifische Arzneistoffapplikation
EP1035123B1 (en) 1997-11-28 2003-08-20 Sumitomo Pharmaceuticals Company, Limited Novel heterocyclic compounds
US6254890B1 (en) 1997-12-12 2001-07-03 Massachusetts Institute Of Technology Sub-100nm biodegradable polymer spheres capable of transporting and releasing nucleic acids
US6686446B2 (en) 1998-03-19 2004-02-03 The Regents Of The University Of California Methods and compositions for controlled polypeptide synthesis
US6506577B1 (en) 1998-03-19 2003-01-14 The Regents Of The University Of California Synthesis and crosslinking of catechol containing copolypeptides
US6632922B1 (en) 1998-03-19 2003-10-14 The Regents Of The University Of California Methods and compositions for controlled polypeptide synthesis
DE69935507T2 (de) 1998-04-03 2007-12-06 University Of Iowa Research Foundation Verfahren und produkte zur stimulierung des immunsystems mittels immunotherapeutischer oligonukleotide und zytokine
WO1999056755A1 (en) 1998-05-06 1999-11-11 University Of Iowa Research Foundation Methods for the prevention and treatment of parasitic infections and related diseases using cpg oligonucleotides
US6242589B1 (en) 1998-07-14 2001-06-05 Isis Pharmaceuticals, Inc. Phosphorothioate oligonucleotides having modified internucleoside linkages
AU763975B2 (en) 1998-07-29 2003-08-07 Novartis Vaccines And Diagnostics, Inc. Microparticles with adsorbent surfaces, methods of making same, and uses thereof
US6306640B1 (en) 1998-10-05 2001-10-23 Genzyme Corporation Melanoma antigenic peptides
US7521068B2 (en) 1998-11-12 2009-04-21 Elan Pharma International Ltd. Dry powder aerosols of nanoparticulate drugs
US7238711B1 (en) 1999-03-17 2007-07-03 Cambridge University Technical Services Ltd. Compounds and methods to inhibit or augment an inflammatory response
US6444192B1 (en) 1999-02-05 2002-09-03 The Regents Of The University Of California Diagnostic imaging of lymph structures
US7238368B2 (en) 1999-04-23 2007-07-03 Alza Corporation Releasable linkage and compositions containing same
US6800296B1 (en) 1999-05-19 2004-10-05 Massachusetts Institute Of Technology Modification of surfaces using biological recognition events
US6815170B1 (en) 1999-06-30 2004-11-09 John Wayne Cancer Institute Methods for lymph node identification
CA2391534A1 (en) 1999-11-15 2001-05-25 Drug Innovation & Design, Inc. Selective cellular targeting: multifunctional delivery vehicles
WO2001051665A2 (en) 2000-01-13 2001-07-19 Nanosphere Inc. Nanoparticles having oligonucleotides attached thereto and uses therefor
US8202979B2 (en) 2002-02-20 2012-06-19 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid
MXPA02008361A (es) 2000-02-28 2004-05-17 Genesegues Inc Sistema y metodo de encapsulacion de nanocapsulas.
US20030129251A1 (en) 2000-03-10 2003-07-10 Gary Van Nest Biodegradable immunomodulatory formulations and methods for use thereof
US7192725B2 (en) 2000-05-19 2007-03-20 University Of Toronto Flagellin gene, flaC of Campylobacter
AU2001297913A1 (en) 2000-10-13 2002-12-23 Ligocyte Pharmaceuticals, Inc. Polyvalent nanoparticles
GB0025414D0 (en) 2000-10-16 2000-11-29 Consejo Superior Investigacion Nanoparticles
MXPA03003390A (es) 2000-10-19 2005-06-30 Eidgenoess Tech Hochschule Copolimeros de bloques para sistemas auto-ensamblados, multi-funcionales.
US7592008B2 (en) 2000-11-20 2009-09-22 The Board Of Trustees Of The University Of Illinois, A Body Corporate And Politic Of The State Of Illinois Membrane scaffold proteins
US7097837B2 (en) 2001-02-19 2006-08-29 Pharmexa A/S Synthetic vaccine agents
US20030175950A1 (en) 2001-05-29 2003-09-18 Mcswiggen James A. RNA interference mediated inhibition of HIV gene expression using short interfering RNA
US7314624B2 (en) 2001-06-05 2008-01-01 The Regents Of The University Of Michigan Nanoemulsion vaccines
NZ530315A (en) 2001-07-10 2007-01-26 Corixa Corp Compositions and methods for delivery of proteins and adjuvants encapsulated in microspheres
CA2456328C (en) 2001-08-07 2015-05-26 Dynavax Technologies Corporation Complexes of a short cpg-containing oligonucleotide bound to the surface of a solid phase microcarrier and methods for use thereof
WO2003020797A1 (en) 2001-08-30 2003-03-13 The Regents Of The University Of California Transition metal initiators for controlled poly (beta-peptide) synthesis from beta-lactam monomers
US8088388B2 (en) 2002-02-14 2012-01-03 United Biomedical, Inc. Stabilized synthetic immunogen delivery system
US20030232013A1 (en) 2002-02-22 2003-12-18 Gary Sieckman Therapeutic and diagnostic targeting of cancers cells with tumor homing peptides
US7635463B2 (en) * 2002-02-27 2009-12-22 Pharmain Corporation Compositions for delivery of therapeutics and other materials
NZ573064A (en) 2002-04-04 2011-02-25 Coley Pharm Gmbh Immunostimulatory G,U-containing oligoribonucleotides
US20080233181A1 (en) 2002-04-12 2008-09-25 Nagy Jon O Nanoparticle adjuvants for sub-unit vaccines
AU2003269904A1 (en) 2002-07-10 2004-01-23 The Ohio State University Research Foundation Antigen-polymer compositions
AU2003302226A1 (en) 2002-09-24 2004-06-30 University Of Kentucky Research Foundation Nanoparticle-based vaccine delivery system containing adjuvant
NO20024755D0 (no) 2002-10-03 2002-10-03 Amersham Health As Metode
US20040156846A1 (en) 2003-02-06 2004-08-12 Triton Biosystems, Inc. Therapy via targeted delivery of nanoscale particles using L6 antibodies
US20040191215A1 (en) 2003-03-25 2004-09-30 Michael Froix Compositions for induction of a therapeutic response
KR20050115315A (ko) 2003-03-26 2005-12-07 가부시키가이샤 엘티티 바이오파마 약물 전달 및 서방성 약물 방출을 표적으로 하는 정맥 내 나노입자
EP1646427A1 (en) 2003-07-22 2006-04-19 Cytos Biotechnology AG Cpg-packaged liposomes
US7943179B2 (en) 2003-09-23 2011-05-17 Massachusetts Institute Of Technology pH triggerable polymeric particles
US7829119B2 (en) 2003-10-20 2010-11-09 William Marsh Rice University Method to fabricate microcapsules from polymers and charged nanoparticles
KR20060130057A (ko) 2003-11-21 2006-12-18 알자 코포레이션 절단가능한 peg 표면 변형을 갖는 리포좀-dna복합체에 의해 매개되는 유전자 송달
US20050191294A1 (en) 2003-12-31 2005-09-01 Board Of Regents, The University Of Texas System Compositions and methods of use of targeting peptides for diagnosis and therapy
AU2005230938A1 (en) 2004-02-19 2005-10-20 Coley Pharmaceutical Gmbh Immunostimulatory viral RNA oligonucleotides
CA2562283A1 (en) * 2004-04-09 2005-11-24 3M Innovative Properties Company Methods, compositions, and preparations for delivery of immune response modifiers
ES2246695B1 (es) 2004-04-29 2007-05-01 Instituto Cientifico Y Tecnologico De Navarra, S.A. Composicion estimuladora de la respuesta inmunitaria que comprende nanoparticulas a base de un copolimero de metil vinil eter y anhidrido maleico.
ES2389080T3 (es) 2004-06-11 2012-10-23 Riken Fármaco que presenta un ligando de células reguladoras contenido en el liposoma
US7713550B2 (en) 2004-06-15 2010-05-11 Andrx Corporation Controlled release sodium valproate formulation
CN1692943A (zh) 2004-09-17 2005-11-09 四川大学 CpG DNA分子抗感染免疫制剂的制备和应用
GB0421296D0 (en) 2004-09-24 2004-10-27 Angiogene Pharm Ltd Bioreductively-activated prodrugs
US9492400B2 (en) 2004-11-04 2016-11-15 Massachusetts Institute Of Technology Coated controlled release polymer particles as efficient oral delivery vehicles for biopharmaceuticals
WO2006137934A2 (en) 2004-11-05 2006-12-28 The General Hospital Corporation Purposeful movement of human migratory cells away from an agent source
EP1812056B1 (en) 2004-11-15 2013-08-07 Novartis Vaccines and Diagnostics, Inc. Immunogenic compositions containing anthrax antigen, biodegradable polymer microparticles, and polynucleotide-containing immunological adjuvant
US7361752B2 (en) 2004-12-14 2008-04-22 Alnylam Pharmaceuticals, Inc. RNAi modulation of MLL-AF4 and uses thereof
US20060257359A1 (en) 2005-02-28 2006-11-16 Cedric Francois Modifying macrophage phenotype for treatment of disease
AU2006227133A1 (en) 2005-03-22 2006-09-28 Georgetown University Delivery systems and methods for diagnosing and treating cardiovascular diseases
US20080305161A1 (en) 2005-04-13 2008-12-11 Pfizer Inc Injectable depot formulations and methods for providing sustained release of nanoparticle compositions
AU2006241149A1 (en) 2005-04-26 2006-11-02 Coley Pharmaceutical Gmbh Modified oligoribonucleotide analogs with enhanced immunostimulatory activity
US8497250B2 (en) 2005-05-04 2013-07-30 Noxxon Pharma Ag Use of spiegelmers to inhibit an intracellular target molecule
WO2006122127A1 (en) * 2005-05-10 2006-11-16 Naomi Balaban Compositions for administering rnaiii-inhibiting peptides
CA2614049C (en) 2005-07-06 2014-12-02 Molly S. Shoichet Method of biomolecule immobilization on polymers using click-type chemistry
EP1922094B1 (en) 2005-08-12 2015-09-30 Jiang Liu Devices for lymphatic targeting
ES2536103T3 (es) 2005-11-25 2015-05-20 Zoetis Belgium S.A. Oligorribonucleótidos inmunoestimuladores
WO2008051245A2 (en) 2005-12-02 2008-05-02 Novartis Ag Nanoparticles for use in immunogenic compositions
WO2007068747A1 (en) 2005-12-14 2007-06-21 Cytos Biotechnology Ag Immunostimulatory nucleic acid packaged particles for the treatment of hypersensitivity
WO2007070682A2 (en) 2005-12-15 2007-06-21 Massachusetts Institute Of Technology System for screening particles
US7842312B2 (en) 2005-12-29 2010-11-30 Cordis Corporation Polymeric compositions comprising therapeutic agents in crystalline phases, and methods of forming the same
JP2009525341A (ja) 2006-01-31 2009-07-09 メディバス エルエルシー ワクチン送達組成物および使用法
AU2007221154A1 (en) 2006-02-24 2007-09-07 Novartis Ag Microparticles containing biodegradable polymer and cationic polysaccharide for use in immunogenic compositions
WO2008105773A2 (en) 2006-03-31 2008-09-04 Massachusetts Institute Of Technology System for targeted delivery of therapeutic agents
WO2007118653A2 (de) 2006-04-11 2007-10-25 Koko Kosmetikvertrieb Gmbh & Co. Kg Nanopartikel, enthaltend nicotin und/oder cotinin, dispersionen und die verwendung derselben
RU2476595C2 (ru) 2006-06-12 2013-02-27 Цитос Биотехнологи Аг Способы упаковки олигонуклеотидов в вирусоподобные частицы рнк-содержащих бактериофагов
US20100144845A1 (en) 2006-08-04 2010-06-10 Massachusetts Institute Of Technology Oligonucleotide systems for targeted intracellular delivery
US20080171059A1 (en) 2006-08-07 2008-07-17 Shanshan Wu Howland Methods and compositions for increased priming of t-cells through cross-presentation of exogenous antigens
AR062334A1 (es) 2006-08-11 2008-10-29 Panacea Biotec Ltd Particulas para suministrar ingredientes activos, proceso para hacerlas y composiciones de las mismas
WO2008033432A2 (en) 2006-09-12 2008-03-20 Coley Pharmaceutical Group, Inc. Immune modulation by chemically modified ribonucleosides and oligoribonucleotides
US9017697B2 (en) 2006-10-12 2015-04-28 The University Of Queensland Compositions and methods for modulating immune responses
WO2008147456A2 (en) 2006-11-20 2008-12-04 Massachusetts Institute Of Technology Drug delivery systems using fc fragments
AU2007333225B2 (en) 2006-12-08 2014-06-12 Massachusetts Institute Of Technology Delivery of nanoparticles and/or agents to cells
WO2008071774A1 (en) 2006-12-14 2008-06-19 Cytos Biotechnology Ag Purification process for coat protein of rna bacteriophages
US20080149123A1 (en) 2006-12-22 2008-06-26 Mckay William D Particulate material dispensing hairbrush with combination bristles
PT2510946E (pt) 2007-02-07 2015-11-23 Univ California Conjugados de agonistas sintéticos de tlr e suas utilizações
EP2134830A2 (en) 2007-02-09 2009-12-23 Massachusetts Institute of Technology Oscillating cell culture bioreactor
US8889117B2 (en) 2007-02-15 2014-11-18 Yale University Modular nanoparticles for adaptable vaccines
WO2008118861A2 (en) 2007-03-23 2008-10-02 The University Of North Carolina At Chapel Hill Discrete size and shape specific organic nanoparticles designed to elicit an immune response
ES2542058T3 (es) 2007-03-30 2015-07-30 Particle Sciences, Inc. Formulaciones en forma de partículas y usos de las mismas
WO2008124634A1 (en) 2007-04-04 2008-10-16 Massachusetts Institute Of Technology Polymer-encapsulated reverse micelles
US20090226525A1 (en) 2007-04-09 2009-09-10 Chimeros Inc. Self-assembling nanoparticle drug delivery system
CA2684052A1 (en) * 2007-04-12 2008-10-23 Emory University Novel strategies for delivery of active agents using micelles and particles
US8394914B2 (en) 2007-08-24 2013-03-12 Board Of Trustees Of Michigan State University Functional polyglycolide nanoparticles derived from unimolecular micelles
US8563738B2 (en) 2007-09-18 2013-10-22 The Scripps Research Institute Ligands for copper-catalyzed azide-alkyne cycloaddition reactions
BRPI0817664A2 (pt) 2007-10-12 2015-03-24 Massachusetts Inst Technology Nanopartículas, método para preparar nanopartículas e método para tratar terapeuticamente ou profilaticamente um indivíduo
WO2009052837A2 (en) * 2007-10-24 2009-04-30 Tallinn University Of Technology Maldi ms-based high-throughput screening method for substances inhibiting aggregation of alzheimer's amyloid beta peptides
US8815253B2 (en) 2007-12-07 2014-08-26 Novartis Ag Compositions for inducing immune responses
WO2009109428A2 (en) 2008-02-01 2009-09-11 Alpha-O Peptides Ag Self-assembling peptide nanoparticles useful as vaccines
WO2009106999A2 (en) 2008-02-28 2009-09-03 Deutsches Krebsforschungszentrum, Stiftung Des Öffentlichen Rechts Hollow nanoparticles and uses thereof
CN102014874A (zh) 2008-03-04 2011-04-13 流体科技公司 免疫调节剂颗粒和治疗方法
US20090297621A1 (en) 2008-06-03 2009-12-03 Abbott Cardiovascular Systems Inc. Microparticles For The Treatment Of Disease
EP2303236A4 (en) * 2008-07-01 2012-09-26 Univ Emory SYNERGISTIC INDUCTION OF HUMOR AND CELLULAR IMMUNITY BY COMBINATORY ACTIVATION OF TOLL-LIKE RECEPTORS
CA2733147A1 (en) 2008-08-06 2010-02-11 Novartis Ag Microparticles for use in immunogenic compositions
WO2010018132A1 (en) 2008-08-11 2010-02-18 Smithkline Beecham Corporation Compounds
EP2324025A1 (en) 2008-08-11 2011-05-25 Smithkline Beecham Corporation Purine derivatives for use in the treatment of allergic, inflammatory and infectious diseases
JP5519670B2 (ja) 2008-08-11 2014-06-11 グラクソスミスクライン エルエルシー アレルギー性、炎症性及び感染性疾患治療用のプリン誘導体
US8889635B2 (en) 2008-09-30 2014-11-18 The Regents Of The University Of Michigan Dendrimer conjugates
US8277812B2 (en) 2008-10-12 2012-10-02 Massachusetts Institute Of Technology Immunonanotherapeutics that provide IgG humoral response without T-cell antigen
JP5661735B2 (ja) 2009-04-01 2015-01-28 ユニバーシティ オブ マイアミ ワクチン組成物及びその使用方法
AU2010239689A1 (en) * 2009-04-21 2011-11-03 Selecta Biosciences, Inc. Immunonanotherapeutics providing a Th1-biased response
EP2425019B1 (en) 2009-05-01 2014-03-19 QIAGEN Gaithersburg, Inc. A non-target amplification method for detection of rna splice-forms in a sample
EP3058953A1 (en) 2009-07-07 2016-08-24 The Research Foundation Of State University Of New York Lipidic compositions for induction of immune tolerance
EA201290499A1 (ru) 2009-12-15 2013-01-30 Байнд Байосайенсиз, Инк. Композиции терапевтических полимерных наночастиц с высокой температурой стеклования и высокомолекулярными сополимерами
WO2011085231A2 (en) 2010-01-08 2011-07-14 Selecta Biosciences, Inc. Synthetic virus-like particles conjugated to human papillomavirus capsid peptides for use as vaccines
US20110229556A1 (en) 2010-03-19 2011-09-22 Massachusetts Institute Of Technology Lipid-coated polymer particles for immune stimulation
US20110262491A1 (en) 2010-04-12 2011-10-27 Selecta Biosciences, Inc. Emulsions and methods of making nanocarriers
US20110272836A1 (en) 2010-04-12 2011-11-10 Selecta Biosciences, Inc. Eccentric vessels
WO2012061717A1 (en) 2010-11-05 2012-05-10 Selecta Biosciences, Inc. Modified nicotinic compounds and related methods
US20120171229A1 (en) 2010-12-30 2012-07-05 Selecta Biosciences, Inc. Synthetic nanocarriers with reactive groups that release biologically active agents
CA2830948A1 (en) 2011-03-25 2012-10-04 Selecta Biosciences, Inc. Osmotic mediated release synthetic nanocarriers
WO2014179762A1 (en) 2013-05-03 2014-11-06 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers and therapeutic macromolecules for reduced or enhanced pharmacodynamic effects
CN112933234A (zh) 2013-06-04 2021-06-11 西莱克塔生物科技公司 非免疫抑制性抗原特异性免疫治疗剂的重复施用
US20150359865A1 (en) 2014-06-17 2015-12-17 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for t-cell-mediated autoimmune disease
US20160220501A1 (en) 2015-02-03 2016-08-04 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers to reduce immune responses to therapeutic proteins
US20150374815A1 (en) 2014-06-25 2015-12-31 Selecta Biosciences, Inc. Methods and compositions for treatment with synthetic nanocarriers and immune checkpoint inhibitors
WO2016037161A2 (en) 2014-09-07 2016-03-10 Selecta Biosciences, Inc. Methods and compositions for attenuating gene editing anti-viral transfer vector immune responses
HUE054894T2 (hu) 2014-11-05 2021-10-28 Selecta Biosciences Inc Rapamicint stabil, túltelített állapotban tartalmazó szintetikus nanohordozókkal kapcsolatos módszerek és készítmények

Patent Citations (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4009257A (en) * 1970-02-27 1977-02-22 Burroughs Wellcome, Inc. Preparation of immunosuppressive materials
US4021364A (en) * 1972-12-04 1977-05-03 Prof. Dr. Peter Speiser Microcapsules in the nanometric range and a method for their production
US4994281A (en) * 1986-11-12 1991-02-19 Sanraku Incorporated Polylactic acid microspheres and process for producing the same
US4929624A (en) * 1989-03-23 1990-05-29 Minnesota Mining And Manufacturing Company Olefinic 1H-imidazo(4,5-c)quinolin-4-amines
US5114703A (en) * 1989-05-30 1992-05-19 Alliance Pharmaceutical Corp. Percutaneous lymphography using particulate fluorocarbon emulsions
US5733572A (en) * 1989-12-22 1998-03-31 Imarx Pharmaceutical Corp. Gas and gaseous precursor filled microspheres as topical and subcutaneous delivery vehicles
US5213812A (en) * 1990-08-01 1993-05-25 Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) Preparation process of sustained release compositions and the compositions thus obtained
US6365187B2 (en) * 1992-04-24 2002-04-02 Brown University Research Foundation Bioadhesive microspheres and their use as drug delivery and imaging systems
US5871747A (en) * 1992-09-11 1999-02-16 Institut Pasteur Antigen-carrying microparticles and their use in the indication of humoral or cellular responses
US5733925A (en) * 1993-01-28 1998-03-31 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5514378A (en) * 1993-02-01 1996-05-07 Massachusetts Institute Of Technology Biocompatible polymer membranes and methods of preparation of three dimensional membrane structures
US5620708A (en) * 1993-02-22 1997-04-15 Alza Corporation Compositions and methods for the oral delivery of active agents
US6225460B1 (en) * 1993-09-17 2001-05-01 Gilead Sciences, Inc. Nucleotide analogs
US5500161A (en) * 1993-09-21 1996-03-19 Massachusetts Institute Of Technology And Virus Research Institute Method for making hydrophobic polymeric microparticles
US5869103A (en) * 1994-06-18 1999-02-09 Danbiosyst Uk Limited Polymer microparticles for drug delivery
US20030035804A1 (en) * 1996-09-16 2003-02-20 Beth Israel Deaconess Medical Center Drug complex for treatment of metastatic prostate cancer
US6387397B1 (en) * 1997-04-18 2002-05-14 Massachusetts Institute Of Technology Polymerized liposomes targeted to M cells and useful for oral or mucosal drug delivery
US6060082A (en) * 1997-04-18 2000-05-09 Massachusetts Institute Of Technology Polymerized liposomes targeted to M cells and useful for oral or mucosal drug delivery
US6989435B2 (en) * 1997-09-11 2006-01-24 Cambridge University Technical Services Ltd. Compounds and methods to inhibit or augment an inflammatory response
US20060073114A1 (en) * 1997-09-11 2006-04-06 Cambridge University Technical Services Ltd. Compounds and methods to inhibit or augment an inflammatory response
US6197229B1 (en) * 1997-12-12 2001-03-06 Massachusetts Institute Of Technology Method for high supercoiled DNA content microspheres
US6881421B1 (en) * 1998-02-27 2005-04-19 Bioalliance Pharma S.A. Nanoparticles comprising at least one polymer and at least one compound able to complex one or more active ingredients
US20050074812A1 (en) * 1998-03-13 2005-04-07 The Burnham Institute Molecules that home to various selected organs or tissues
US20030009029A1 (en) * 1998-06-18 2003-01-09 Merck Patent Gmbh Catalytic titanium (IV) oxide, mediated geminal symmetric dialkylation of carboxamides
US6723429B2 (en) * 1998-08-28 2004-04-20 Celanese Ventures Gmbh Method for preparing smooth-surface spherical microparticles completely or partially made of at least one water-insoluble linear polysaccharide and microparticles produced according to this method
US20110008435A1 (en) * 1998-11-02 2011-01-13 Elan Corporation Plc Nanoparticulate and Controlled Release Compositions Comprising Aryl-Heterocyclic Compounds
US6849270B2 (en) * 1999-04-23 2005-02-01 Alza Corporation Releasable linkage and compositions containing same
US20050113697A1 (en) * 1999-08-13 2005-05-26 Point Biomedical Corporation Method of imaging lymphatic system using nanocapsule compositions
US20020055477A1 (en) * 2000-03-10 2002-05-09 Nest Gary Van Immunomodulatory formulations and methods for use thereof
US20050032733A1 (en) * 2001-05-18 2005-02-10 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SiNA)
US20050020525A1 (en) * 2002-02-20 2005-01-27 Sirna Therapeutics, Inc. RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (siNA)
US7501134B2 (en) * 2002-02-20 2009-03-10 Novartis Vaccines And Diagnostics, Inc. Microparticles with adsorbed polypeptide-containing molecules
US20040038406A1 (en) * 2002-04-08 2004-02-26 Genesegues, Inc. Nanoparticle delivery systems and methods of use thereof
US20070098713A1 (en) * 2002-04-08 2007-05-03 Genesegues, Inc. Nanoparticle delivery systems and methods of use thereof
US20040022840A1 (en) * 2002-04-12 2004-02-05 Nagy Jon O. Nanoparticle vaccines
US20040067503A1 (en) * 2002-04-22 2004-04-08 Weihong Tan Functionalized nanoparticles and methods of use
US7375234B2 (en) * 2002-05-30 2008-05-20 The Scripps Research Institute Copper-catalysed ligation of azides and acetylenes
US20040092470A1 (en) * 2002-06-18 2004-05-13 Leonard Sherry A. Dry powder oligonucleotide formualtion, preparation and its uses
US20040059094A1 (en) * 2002-07-18 2004-03-25 Bachmann Martin F. Hapten-carrier conjugates and uses thereof
US20050048063A1 (en) * 2002-08-28 2005-03-03 Erkki Ruoslahti Collagen-binding molecules that selectively home to tumor vasculature and methods of using same
US7008411B1 (en) * 2002-09-30 2006-03-07 Advanced Cardiovascular Systems, Inc. Method and apparatus for treating vulnerable plaque
US20060002995A1 (en) * 2002-12-13 2006-01-05 Ian Harwigsson Pharmaceutical porous particles
US20070014804A1 (en) * 2003-02-17 2007-01-18 Peter Burkhard Peptidic nanoparticles as drug delivery and antigen display systems
US7517520B2 (en) * 2003-03-26 2009-04-14 Cytos Biotechnology Ag Packaging of immunostimulatory oligonucleotides into virus-like particles: method of preparation and use
US20050107322A1 (en) * 2003-04-30 2005-05-19 O'hagan Derek Compositions for inducing immune responses
US20050037075A1 (en) * 2003-06-06 2005-02-17 Farokhzad Omid C. Targeted delivery of controlled release polymer systems
US20050042298A1 (en) * 2003-08-20 2005-02-24 Pardridge William M. Immunonanoparticles
US20070014807A1 (en) * 2003-09-03 2007-01-18 Maida Anthony E Iii Multiplex vaccine
US20080160089A1 (en) * 2003-10-14 2008-07-03 Medivas, Llc Vaccine delivery compositions and methods of use
US20070116768A1 (en) * 2003-12-09 2007-05-24 Michael Chorny Sustained release preparations composed of biocompatible complex microparticles
US20090028910A1 (en) * 2003-12-19 2009-01-29 University Of North Carolina At Chapel Hill Methods for Fabrication Isolated Micro-and Nano-Structures Using Soft or Imprint Lithography
US20070087986A1 (en) * 2004-01-26 2007-04-19 Brett Premack Compositions and methods for enhancing immunity by chemoattractant adjuvants
US20060017339A1 (en) * 2004-06-03 2006-01-26 Lalit Chordia Brushless canned motor
US20080014144A1 (en) * 2004-07-01 2008-01-17 Yale University Methods of Treatment with Drug Loaded Polymeric Materials
US20060002852A1 (en) * 2004-07-01 2006-01-05 Yale University Targeted and high density drug loaded polymeric materials
US20080044484A1 (en) * 2004-07-08 2008-02-21 The Regents Of The University Of California Use of polymeric nanoparticles for vaccine delivery
US20060051317A1 (en) * 2004-09-07 2006-03-09 Batrakova Elena V Amphiphilic polymer-protein conjugates and methods of use thereof
US20090104268A1 (en) * 2004-10-01 2009-04-23 Midatech Limited Nanoparticles Comprising Antigens and Adjuvants, and Immunogenic Structures
US20090004118A1 (en) * 2004-10-07 2009-01-01 Shuming Nie Multifunctional Nanoparticle Conjugates And Their Use
US20060111271A1 (en) * 2004-11-24 2006-05-25 Cerny Erich H Active and passive immunization against pharmacologically active hapten molecules using a synthetic carrier compound composed of similar elements
US20100062968A1 (en) * 2005-05-10 2010-03-11 Bali Pulendran Novel strategies for delivery of active agents using micelles and particles
US20090053293A1 (en) * 2005-09-09 2009-02-26 Beijing Diacrid Medical Technology Co., Ltd. Nano Anticancer Micelles of Vinca Alkaloids Entrapped in Polyethylene Glycolylated Phospholipids
US20080031899A1 (en) * 2006-02-21 2008-02-07 Reddy Sai T Nanoparticles for immunotherapy
US20080081074A1 (en) * 2006-05-15 2008-04-03 Massachusetts Institute Of Technology Polymers for functional particles
US8367113B2 (en) * 2006-05-15 2013-02-05 Massachusetts Institute Of Technology Polymers for functional particles
US20110052697A1 (en) * 2006-05-17 2011-03-03 Gwangju Institute Of Science & Technology Aptamer-Directed Drug Delivery
US20080014281A1 (en) * 2006-06-16 2008-01-17 Florida Atlantic University Chitin Micro-Particles As An Adjuvant
US20100022680A1 (en) * 2006-06-23 2010-01-28 Massachusetts Institute Of Technology Microfluidic Synthesis of Organic Nanoparticles
US20090074828A1 (en) * 2007-04-04 2009-03-19 Massachusetts Institute Of Technology Poly(amino acid) targeting moieties
US20100069426A1 (en) * 2008-06-16 2010-03-18 Zale Stephen E Therapeutic polymeric nanoparticles with mTor inhibitors and methods of making and using same
US20100068285A1 (en) * 2008-06-16 2010-03-18 Zale Stephen E Drug Loaded Polymeric Nanoparticles and Methods of Making and Using Same
US20100075995A1 (en) * 2008-08-11 2010-03-25 Smithkline Beecham Corporation Compounds
US20100055189A1 (en) * 2008-08-29 2010-03-04 Hubbell Jeffrey A Nanoparticles for immunotherapy
US20100129392A1 (en) * 2008-10-12 2010-05-27 Jinjun Shi Targeting of Antigen Presenting Cells with Immunonanotherapeutics
US20100129439A1 (en) * 2008-10-12 2010-05-27 Frank Alexis Adjuvant Incorporation in Immunonanotherapeutics
US20100092425A1 (en) * 2008-10-12 2010-04-15 Von Andrian Ulrich Nicotine Immunonanotherapeutics
US20110027217A1 (en) * 2009-05-27 2011-02-03 Selecta Biosciences, Inc. Immunomodulatory agent-polymeric compounds
US20140030344A1 (en) * 2009-05-27 2014-01-30 Selecta Biosciences, Inc. Targeted synthetic nanocarriers with ph sensitive release of immunostimulatory agents
US8629151B2 (en) * 2009-05-27 2014-01-14 Selecta Biosciences, Inc. Immunomodulatory agent-polymeric compounds
US20110110965A1 (en) * 2009-08-26 2011-05-12 Selecta Biosciences, Inc. Compositions that induce t cell help
US20120027806A1 (en) * 2010-05-26 2012-02-02 Selecta Biosciences, Inc. Dose selection of adjuvanted synthetic nanocarriers
US20120064110A1 (en) * 2010-08-20 2012-03-15 Selecta Biosciences, Inc. Synthetic nanocarrier vaccines comprising peptides obtained or derived from human influenza a virus hemagglutinin
US20120058153A1 (en) * 2010-08-20 2012-03-08 Selecta Biosciences, Inc. Synthetic nanocarrier vaccines comprising proteins obtained or derived from human influenza a virus hemagglutinin
US20120058154A1 (en) * 2010-08-20 2012-03-08 Selecta Biosciences, Inc. Synthetic nanocarrier vaccines comprising peptides obtained or derived from human influenza a virus m2e
US20120070493A1 (en) * 2010-08-23 2012-03-22 Selecta Biosciences, Inc. Targeted multi-epitope dosage forms for induction of an immune response to antigens
US8652487B2 (en) * 2011-04-29 2014-02-18 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for inducing regulatory B cells
US20130028857A1 (en) * 2011-07-29 2013-01-31 Selecta Biosciences, Inc. Synthetic nanocarriers comprising polymers comprising multiple immunomodulatory agents
US20130028941A1 (en) * 2011-07-29 2013-01-31 Selecta Biosciences, Inc. Synthetic nanocarriers that generate humoral and cytotoxic t lymphocyte (ctl) immune responses
US20130039954A1 (en) * 2011-07-29 2013-02-14 Selecta Biosciences, Inc. Control of antibody responses to synthetic nanocarriers
US20130058902A1 (en) * 2011-09-06 2013-03-07 Selecta Biosciences, Inc. Dendritic cell subsets for generating induced tolerogenic dendritic cells and related compositions and methods
US20130058974A1 (en) * 2011-09-06 2013-03-07 Selecta Biosciences, Inc. Antigen-specific induced tolerogenic dendritic cells to reduce cytotoxic t lymphocyte responses
US20130058894A1 (en) * 2011-09-06 2013-03-07 Selecta Biosciences, Inc. Therapeutic protein-specific induced tolerogenic dendritic cells and methods of use
US20130058976A1 (en) * 2011-09-06 2013-03-07 Selecta Biosciences, Inc. Allergen-specific induced tolerogenic dendritic cells for allergy therapy
US20130059009A1 (en) * 2011-09-06 2013-03-07 Selecta Biosciences, Inc. Compositions and methods for producing antigen-specific induced tolerogenic dendritic cells with synthetic nanocarriers
US20130058963A1 (en) * 2011-09-06 2013-03-07 Selecta Biosciences, Inc. Induced tolerogenic dendritic cells for generating cd8+ regulatory t cells
US20130058978A1 (en) * 2011-09-06 2013-03-07 Selecta Biosciences, Inc. Induced tolerogenic dendritic cells for inducing regulatory b cells
US20130058901A1 (en) * 2011-09-06 2013-03-07 Selecta Biosciences, Inc. Transplantable graft-specific induced tolerogenic dendritic cells and methods of use
US20130058977A1 (en) * 2011-09-06 2013-03-07 Selecta Biosciences, Inc. Compositions and methods related to induced tolerogenic dendritic cells externally loaded with mhc class i-restricted epitopes
US20130058975A1 (en) * 2011-09-06 2013-03-07 Selecta Biosciences, Inc. Antigen-specific induced tolerogenic dendritic cells to reduce antibody responses
US20130058970A1 (en) * 2011-09-06 2013-03-07 Selecta Biosciences, Inc. Induced tolerogenic dendritic cells to reduce systemic inflammatory cytokines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Diwan et al, J. Cont. Rel. 85:247-262, 2002 *

Cited By (107)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9152988B2 (en) 2000-12-05 2015-10-06 Open Invention Network Method and device utilizing polymorphic data in E-commerce
US20110223201A1 (en) * 2009-04-21 2011-09-15 Selecta Biosciences, Inc. Immunonanotherapeutics Providing a Th1-Biased Response
US9006254B2 (en) 2009-05-27 2015-04-14 Selecta Biosciences, Inc. Immunomodulatory agent-polymeric compounds
US9884112B2 (en) 2009-05-27 2018-02-06 Selecta Biosciences, Inc. Immunomodulatory agent-polymeric compounds
US8629151B2 (en) 2009-05-27 2014-01-14 Selecta Biosciences, Inc. Immunomodulatory agent-polymeric compounds
US20110110965A1 (en) * 2009-08-26 2011-05-12 Selecta Biosciences, Inc. Compositions that induce t cell help
US9764031B2 (en) 2010-05-26 2017-09-19 Selecta Biosciences, Inc. Dose selection of adjuvanted synthetic nanocarriers
US9066978B2 (en) 2010-05-26 2015-06-30 Selecta Biosciences, Inc. Dose selection of adjuvanted synthetic nanocarriers
US9994443B2 (en) 2010-11-05 2018-06-12 Selecta Biosciences, Inc. Modified nicotinic compounds and related methods
KR102112002B1 (ko) 2011-04-29 2020-05-18 셀렉타 바이오사이언시즈, 인크. 치료적 단백질에 대해 면역 반응을 감소시키는 관용원성 합성 나노운반체
CN105999295A (zh) * 2011-04-29 2016-10-12 西莱克塔生物科技公司 用于效应性t细胞的抗原特异性缺失的致耐受性合成纳米载体
WO2012149411A1 (en) * 2011-04-29 2012-11-01 Selecta Biosciences, Inc. Controlled release of immunosuppressants from synthetic nanocarriers
US10420835B2 (en) 2011-04-29 2019-09-24 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for antigen-specific deletion of T effector cells
US10441651B2 (en) 2011-04-29 2019-10-15 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for generating CD8+ regulatory T cells
US11779641B2 (en) 2011-04-29 2023-10-10 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for allergy therapy
US11717569B2 (en) 2011-04-29 2023-08-08 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers
US10039822B2 (en) * 2011-04-29 2018-08-07 Selecta Biosciences, Inc. Method for providing polymeric synthetic nanocarriers for generating antigen-specific tolerance immune responses
US10004802B2 (en) 2011-04-29 2018-06-26 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for generating CD8+ regulatory T cells
US8652487B2 (en) 2011-04-29 2014-02-18 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for inducing regulatory B cells
CN114306638A (zh) * 2011-04-29 2022-04-12 西莱克塔生物科技公司 从合成纳米载体中控制释放免疫抑制剂
CN103517707A (zh) * 2011-04-29 2014-01-15 西莱克塔生物科技公司 从合成纳米载体中控制释放免疫抑制剂
WO2012149255A3 (en) * 2011-04-29 2013-01-03 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers to reduce immune responses to therapeutic proteins
US20150320856A1 (en) * 2011-04-29 2015-11-12 Selecta Biosciences, Inc. Controlled release of immunosuppressants from synthetic nanocarriers
US11235057B2 (en) 2011-04-29 2022-02-01 Selecta Biosciences, Inc. Methods for providing polymeric synthetic nanocarriers for generating antigen-specific tolerance immune responses
US9265815B2 (en) 2011-04-29 2016-02-23 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers
US9289477B2 (en) 2011-04-29 2016-03-22 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers to reduce cytotoxic T lymphocyte responses
US9289476B2 (en) 2011-04-29 2016-03-22 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for allergy therapy
US9295718B2 (en) 2011-04-29 2016-03-29 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers to reduce immune responses to therapeutic proteins
KR20140027360A (ko) * 2011-04-29 2014-03-06 셀렉타 바이오사이언시즈, 인크. 치료적 단백질에 대해 면역 반응을 감소시키는 관용원성 합성 나노운반체
KR102344744B1 (ko) 2011-04-29 2021-12-30 셀렉타 바이오사이언시즈, 인크. 치료적 단백질에 대해 면역 반응을 감소시키는 관용원성 합성 나노운반체
US9993548B2 (en) 2011-04-29 2018-06-12 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for inducing regulatory B cells
KR20200055145A (ko) * 2011-04-29 2020-05-20 셀렉타 바이오사이언시즈, 인크. 치료적 단백질에 대해 면역 반응을 감소시키는 관용원성 합성 나노운반체
EA027103B1 (ru) * 2011-04-29 2017-06-30 Селекта Байосайенсиз, Инк. Толерогенные синтетические наноносители, уменьшающие иммунный ответ на терапевтические белки
US20190076522A1 (en) * 2011-04-29 2019-03-14 Selecta Biosciences, Inc. Methods for providing polymeric synthetic nanocarriers for generating antigen-specific tolerance immune responses
US9987354B2 (en) 2011-04-29 2018-06-05 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers for antigen-specific deletion of T effector cells
CN107320734A (zh) * 2011-04-29 2017-11-07 西莱克塔生物科技公司 从合成纳米载体中控制释放免疫抑制剂
CN107837402A (zh) * 2011-04-29 2018-03-27 西莱克塔生物科技公司 从合成纳米载体中控制释放免疫抑制剂
WO2013019669A3 (en) * 2011-07-29 2013-07-04 Selecta Biosciences, Inc. Synthetic nanocarriers that generate humoral and cytotoxic t lymphocyte (ctl) immune responses
US10933129B2 (en) 2011-07-29 2021-03-02 Selecta Biosciences, Inc. Methods for administering synthetic nanocarriers that generate humoral and cytotoxic T lymphocyte responses
CN103702687A (zh) * 2011-07-29 2014-04-02 西莱克塔生物科技公司 产生体液和细胞毒性t淋巴细胞(ctl)免疫应答的合成纳米载体
EP4144378A1 (en) 2011-12-16 2023-03-08 ModernaTX, Inc. Modified nucleoside, nucleotide, and nucleic acid compositions
WO2013151736A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics In vivo production of proteins
WO2013151666A2 (en) 2012-04-02 2013-10-10 modeRNA Therapeutics Modified polynucleotides for the production of biologics and proteins associated with human disease
EP4074834A1 (en) 2012-11-26 2022-10-19 ModernaTX, Inc. Terminally modified rna
WO2014152211A1 (en) 2013-03-14 2014-09-25 Moderna Therapeutics, Inc. Formulation and delivery of modified nucleoside, nucleotide, and nucleic acid compositions
WO2014152540A1 (en) 2013-03-15 2014-09-25 Moderna Therapeutics, Inc. Compositions and methods of altering cholesterol levels
US10357482B2 (en) 2013-05-03 2019-07-23 Selecta Biosciences, Inc. Methods providing a therapeutic macromolecule and synthetic nanocarriers comprising immunosuppressant locally and concomitantly to reduce both type I and type IV hypersensitivity
US10434088B2 (en) 2013-05-03 2019-10-08 Selecta Biosciences, Inc. Methods related to administering immunosuppressants and therapeutic macromolecules at a reduced pharmacodynamically effective dose
US11298342B2 (en) 2013-05-03 2022-04-12 Selecta Biosciences, Inc. Methods providing a therapeutic macromolecule and synthetic nanocarriers comprising immunosuppressant locally and concomitantly to reduce both type I and type IV hypersensitivity
US10668053B2 (en) 2013-05-03 2020-06-02 Selecta Biosciences, Inc. Tolerogenic synthetic nanocarriers to reduce or prevent anaphylaxis in response to a non-allergenic antigen
US10335395B2 (en) 2013-05-03 2019-07-02 Selecta Biosciences, Inc. Methods of administering immunosuppressants having a specified pharmacodynamic effective life and therapeutic macromolecules for the induction of immune tolerance
US10357483B2 (en) 2013-05-03 2019-07-23 Selecta Biosciences, Inc. Methods comprising dosing combinations for reducing undesired humoral immune responses
WO2014197616A1 (en) * 2013-06-04 2014-12-11 Selecta Biosciences, Inc. Repeated administration of non-immunosupressive antigen specific immunotherapeutics
WO2015006747A2 (en) 2013-07-11 2015-01-15 Moderna Therapeutics, Inc. Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use.
EP3971287A1 (en) 2013-07-11 2022-03-23 ModernaTX, Inc. Compositions comprising synthetic polynucleotides encoding crispr related proteins and synthetic sgrnas and methods of use
WO2015034928A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Chimeric polynucleotides
WO2015034925A1 (en) 2013-09-03 2015-03-12 Moderna Therapeutics, Inc. Circular polynucleotides
US9603944B2 (en) 2013-09-27 2017-03-28 Massachusetts Institute Of Technology Carrier-free biologically-active protein nanostructures
US10226510B2 (en) 2013-09-27 2019-03-12 Massachusetts Institute Of Technology Carrier-free biologically-active protein nanostructures
US10357544B2 (en) 2013-09-27 2019-07-23 Massachusetts Institute Of Technology Carrier-free biologically-active protein nanostructures
US11529392B2 (en) 2013-09-27 2022-12-20 Massachusetts Institute Of Technology Carrier-free biologically-active protein nanostructures
US10588942B2 (en) 2013-09-27 2020-03-17 Massachusetts Institute Of Technology Carrier-free biologically-active protein nanostructures
EP3985118A1 (en) 2013-11-22 2022-04-20 MiNA Therapeutics Limited C/ebp alpha short activating rna compositions and methods of use
WO2015075557A2 (en) 2013-11-22 2015-05-28 Mina Alpha Limited C/ebp alpha compositions and methods of use
EP3594348A1 (en) 2013-11-22 2020-01-15 Mina Therapeutics Limited C/ebp alpha short activating rna compositions and methods of use
WO2016014846A1 (en) 2014-07-23 2016-01-28 Moderna Therapeutics, Inc. Modified polynucleotides for the production of intrabodies
US10046064B2 (en) 2014-09-07 2018-08-14 Selecta Biosciences, Inc. Methods and compositions for attenuating exon skipping anti-viral transfer vector immune responses
US10071114B2 (en) 2014-09-07 2018-09-11 Selecta Biosciences, Inc. Methods and compositions for attenuating gene expression modulating anti-viral transfer vector immune responses
US11633422B2 (en) 2014-09-07 2023-04-25 Selecta Biosciences, Inc. Methods and compositions for attenuating anti-viral transfer vector immune responses
US11261226B2 (en) 2015-08-12 2022-03-01 Massachusetts Institute Of Technology (Mitn1) Cell surface coupling of nanoparticles
US11034752B2 (en) 2015-08-12 2021-06-15 Massachusetts Institute Of Technology Cell surface coupling of nanoparticles
WO2017070626A2 (en) 2015-10-22 2017-04-27 Modernatx, Inc. Respiratory virus vaccines
EP4349404A2 (en) 2015-10-22 2024-04-10 ModernaTX, Inc. Respiratory virus vaccines
EP4349405A2 (en) 2015-10-22 2024-04-10 ModernaTX, Inc. Respiratory virus vaccines
EP4011451A1 (en) 2015-10-22 2022-06-15 ModernaTX, Inc. Metapneumovirus mrna vaccines
WO2017112943A1 (en) 2015-12-23 2017-06-29 Modernatx, Inc. Methods of using ox40 ligand encoding polynucleotides
EP4039699A1 (en) 2015-12-23 2022-08-10 ModernaTX, Inc. Methods of using ox40 ligand encoding polynucleotides
WO2017120612A1 (en) 2016-01-10 2017-07-13 Modernatx, Inc. Therapeutic mrnas encoding anti ctla-4 antibodies
US11472856B2 (en) 2016-06-13 2022-10-18 Torque Therapeutics, Inc. Methods and compositions for promoting immune cell function
US11426451B2 (en) 2017-03-11 2022-08-30 Selecta Biosciences, Inc. Methods and compositions related to combined treatment with antiinflammatories and synthetic nanocarriers comprising an immunosuppressant
US12194078B2 (en) 2017-03-11 2025-01-14 Cartesian Therapeutics, Inc. Methods and compositions related to combined treatment with anti-inflammatories and synthetic nanocarriers comprising an immunosuppressant
US11524033B2 (en) 2017-09-05 2022-12-13 Torque Therapeutics, Inc. Therapeutic protein compositions and methods of making and using the same
EP4233880A2 (en) 2017-09-08 2023-08-30 MiNA Therapeutics Limited Hnf4a sarna compositions and methods of use
WO2019048631A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited SMALL HNF4A ACTIVATOR RNA COMPOSITIONS AND METHODS OF USE
WO2019048632A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited STABILIZED COMPOSITIONS OF SMALL ACTIVATORY RNA (PARNA) OF HNF4A AND METHODS OF USE
WO2019048645A1 (en) 2017-09-08 2019-03-14 Mina Therapeutics Limited STABILIZED COMPOSITIONS OF SMALL ACTIVATOR RNA (PARNA) FROM CEBPA AND METHODS OF USE
EP4183882A1 (en) 2017-09-08 2023-05-24 MiNA Therapeutics Limited Stabilized hnf4a sarna compositions and methods of use
EP4219715A2 (en) 2017-09-08 2023-08-02 MiNA Therapeutics Limited Stabilized cebpa sarna compositions and methods of use
WO2019197845A1 (en) 2018-04-12 2019-10-17 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
EP4242307A2 (en) 2018-04-12 2023-09-13 MiNA Therapeutics Limited Sirt1-sarna compositions and methods of use
US11345932B2 (en) 2018-05-16 2022-05-31 Synthego Corporation Methods and systems for guide RNA design and use
US11697827B2 (en) 2018-05-16 2023-07-11 Synthego Corporation Systems and methods for gene modification
US11802296B2 (en) 2018-05-16 2023-10-31 Synthego Corporation Methods and systems for guide RNA design and use
US12331320B2 (en) 2018-10-10 2025-06-17 The Research Foundation For The State University Of New York Genome edited cancer cell vaccines
US11884918B2 (en) 2019-01-25 2024-01-30 Synthego Corporation Systems and methods for modulating CRISPR activity
WO2020208361A1 (en) 2019-04-12 2020-10-15 Mina Therapeutics Limited Sirt1-sarna compositions and methods of use
US12139707B2 (en) 2019-07-19 2024-11-12 Synthego Corporation Stabilized CRISPR complexes
WO2022122872A1 (en) 2020-12-09 2022-06-16 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
WO2022200810A1 (en) 2021-03-26 2022-09-29 Mina Therapeutics Limited Tmem173 sarna compositions and methods of use
WO2023099884A1 (en) 2021-12-01 2023-06-08 Mina Therapeutics Limited Pax6 sarna compositions and methods of use
WO2023104964A1 (en) 2021-12-09 2023-06-15 Ucl Business Ltd Therapeutics for the treatment of neurodegenerative disorders
WO2023161350A1 (en) 2022-02-24 2023-08-31 Io Biotech Aps Nucleotide delivery of cancer therapy
WO2023170435A1 (en) 2022-03-07 2023-09-14 Mina Therapeutics Limited Il10 sarna compositions and methods of use
WO2024125597A1 (en) 2022-12-14 2024-06-20 Providence Therapeutics Holdings Inc. Compositions and methods for infectious diseases
WO2024134199A1 (en) 2022-12-22 2024-06-27 Mina Therapeutics Limited Chemically modified sarna compositions and methods of use
EP4520345A1 (en) 2023-09-06 2025-03-12 Myneo Nv Product
WO2025051915A1 (en) 2023-09-06 2025-03-13 Myneo Nv Product

Also Published As

Publication number Publication date
EA201500447A1 (ru) 2017-03-31
JP2016053048A (ja) 2016-04-14
IL216550A0 (en) 2012-02-29
US20180256709A1 (en) 2018-09-13
US20140193453A1 (en) 2014-07-10
CN102481375B (zh) 2017-06-06
CA2762653A1 (en) 2010-12-02
KR20120061040A (ko) 2012-06-12
EP2435095A2 (en) 2012-04-04
KR20120023830A (ko) 2012-03-13
US9884112B2 (en) 2018-02-06
MX2011012599A (es) 2012-04-19
EP2435094A2 (en) 2012-04-04
JP6297775B2 (ja) 2018-03-20
CN102481375A (zh) 2012-05-30
IL216550A (en) 2016-10-31
CA2762650A1 (en) 2010-12-02
AU2010254550B2 (en) 2015-10-15
JP2017200925A (ja) 2017-11-09
EA201171479A1 (ru) 2012-06-29
CN107096018A (zh) 2017-08-29
US20200390881A1 (en) 2020-12-17
CN107080848A (zh) 2017-08-22
EA201171480A1 (ru) 2012-07-30
IL216548A0 (en) 2012-02-29
BRPI1012034A2 (pt) 2016-05-17
EP2435092A2 (en) 2012-04-04
JP2012528153A (ja) 2012-11-12
WO2010138192A2 (en) 2010-12-02
JP2018065808A (ja) 2018-04-26
AU2010254549A1 (en) 2011-12-15
US20140242173A1 (en) 2014-08-28
AU2010254549B2 (en) 2016-10-20
EA201171478A1 (ru) 2012-06-29
WO2010138193A2 (en) 2010-12-02
EA201791383A1 (ru) 2018-06-29
EA028288B1 (ru) 2017-10-31
US8629151B2 (en) 2014-01-14
MX350667B (es) 2017-09-12
US20140030344A1 (en) 2014-01-30
JP6236048B2 (ja) 2017-11-22
WO2010138192A3 (en) 2011-06-03
IL216549A0 (en) 2012-02-29
MX2011012597A (es) 2012-04-19
JP2012528154A (ja) 2012-11-12
AU2010254551A1 (en) 2011-12-15
US20110027217A1 (en) 2011-02-03
AU2016200137B2 (en) 2018-02-08
JP2012528155A (ja) 2012-11-12
JP6282395B2 (ja) 2018-02-21
EA201890311A1 (ru) 2018-10-31
BRPI1010674A2 (pt) 2016-03-15
KR20180026572A (ko) 2018-03-12
JP2016094411A (ja) 2016-05-26
KR20120087807A (ko) 2012-08-07
JP6297776B2 (ja) 2018-03-20
CN102481376B (zh) 2016-12-21
CN102481376A (zh) 2012-05-30
CN107033339A (zh) 2017-08-11
BRPI1012036A2 (pt) 2017-10-10
US20100303850A1 (en) 2010-12-02
WO2010138193A3 (en) 2011-06-03
US20150328300A1 (en) 2015-11-19
WO2010138194A3 (en) 2011-06-30
AU2016200137A1 (en) 2016-02-04
KR101916875B1 (ko) 2018-11-08
MX357630B (es) 2018-07-17
WO2010138194A2 (en) 2010-12-02
AU2010254550A1 (en) 2011-12-15
KR20180122487A (ko) 2018-11-12
EA030246B1 (ru) 2018-07-31
KR20180026571A (ko) 2018-03-12
JP2016041708A (ja) 2016-03-31
AU2010254551B2 (en) 2016-10-20
AU2017200383A1 (en) 2017-02-09
CA2762647A1 (en) 2010-12-02
AU2010254551A9 (en) 2016-10-27
US9006254B2 (en) 2015-04-14
CN107252482A (zh) 2017-10-17
MX2011012598A (es) 2012-04-19
CN102481374A (zh) 2012-05-30
EA022699B1 (ru) 2016-02-29
AU2017200388A1 (en) 2017-02-09
IL216548B (en) 2018-11-29

Similar Documents

Publication Publication Date Title
AU2016200137B2 (en) Targeted synthetic nanocarriers with ph sensitive release of immunomodulatory agents

Legal Events

Date Code Title Description
AS Assignment

Owner name: SELECTA BIOSCIENCES, INC., MASSACHUSETTS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ZEPP, CHARLES;GAO, YUN;KEEGAN, MARK J.;AND OTHERS;REEL/FRAME:024722/0027

Effective date: 20100615

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION