US20060058311A1 - Combinations for the treatment of diseases involving cell proliferation - Google Patents
Combinations for the treatment of diseases involving cell proliferation Download PDFInfo
- Publication number
- US20060058311A1 US20060058311A1 US11/189,540 US18954005A US2006058311A1 US 20060058311 A1 US20060058311 A1 US 20060058311A1 US 18954005 A US18954005 A US 18954005A US 2006058311 A1 US2006058311 A1 US 2006058311A1
- Authority
- US
- United States
- Prior art keywords
- compound
- synthetic
- amino
- inhibitor
- derivative
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- LCGLNKUTAGEVQW-UHFFFAOYSA-N COC Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 228
- OTMSDBZUPAUEDD-UHFFFAOYSA-N CC Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 151
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N CCC Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 115
- GDOPTJXRTPNYNR-UHFFFAOYSA-N CC1CCCC1 Chemical compound CC1CCCC1 GDOPTJXRTPNYNR-UHFFFAOYSA-N 0.000 description 81
- AFABGHUZZDYHJO-UHFFFAOYSA-N CCCC(C)C Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 63
- 0 *CNC(=O)C1=CC([4*])=C(NC2=NC3=C(C=N2)N(C)C(=O)C([1*])([2*])N3[3*])C=C1 Chemical compound *CNC(=O)C1=CC([4*])=C(NC2=NC3=C(C=N2)N(C)C(=O)C([1*])([2*])N3[3*])C=C1 0.000 description 54
- NNPPMTNAJDCUHE-UHFFFAOYSA-N CC(C)C Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 47
- UAEPNZWRGJTJPN-UHFFFAOYSA-N CC1CCCCC1 Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 39
- TVSMLBGFGKLKOO-UHFFFAOYSA-N CC1CCN(C)CC1 Chemical compound CC1CCN(C)CC1 TVSMLBGFGKLKOO-UHFFFAOYSA-N 0.000 description 32
- PWZKIZAHIAGUMK-UHFFFAOYSA-N CC1CCN(CC2=CC=CC=C2)CC1 Chemical compound CC1CCN(CC2=CC=CC=C2)CC1 PWZKIZAHIAGUMK-UHFFFAOYSA-N 0.000 description 18
- HNRMPXKDFBEGFZ-UHFFFAOYSA-N CCC(C)(C)C Chemical compound CCC(C)(C)C HNRMPXKDFBEGFZ-UHFFFAOYSA-N 0.000 description 17
- QKPRCVOZWUXACH-XYPYZODXSA-N C[C@H]1CC[C@H](N2CCOCC2)CC1 Chemical compound C[C@H]1CC[C@H](N2CCOCC2)CC1 QKPRCVOZWUXACH-XYPYZODXSA-N 0.000 description 16
- BRZJVISGQVQOAF-UHFFFAOYSA-N CC1CC(C)(C)N(C)C(C)(C)C1 Chemical compound CC1CC(C)(C)N(C)C(C)(C)C1 BRZJVISGQVQOAF-UHFFFAOYSA-N 0.000 description 10
- LRFDDHFLFYYTBL-UHFFFAOYSA-N CC1CC2CCC(C1)N2C Chemical compound CC1CC2CCC(C1)N2C LRFDDHFLFYYTBL-UHFFFAOYSA-N 0.000 description 10
- KJZHCGQVJFNGRJ-UHFFFAOYSA-N CCC(C)(C)CN(C)C Chemical compound CCC(C)(C)CN(C)C KJZHCGQVJFNGRJ-UHFFFAOYSA-N 0.000 description 10
- WZWRSERFKHBVBS-CTYIDZIISA-N C[C@H]1CC[C@H](N2CCN(CC3CC3)CC2)CC1 Chemical compound C[C@H]1CC[C@H](N2CCN(CC3CC3)CC2)CC1 WZWRSERFKHBVBS-CTYIDZIISA-N 0.000 description 10
- GNOUFBFWWBCKIT-UHFFFAOYSA-N CC(C)(C)CN1CCCC1 Chemical compound CC(C)(C)CN1CCCC1 GNOUFBFWWBCKIT-UHFFFAOYSA-N 0.000 description 9
- VUUHIJIAWPMTNE-UHFFFAOYSA-N CC(C)(C)CN1CCOCC1 Chemical compound CC(C)(C)CN1CCOCC1 VUUHIJIAWPMTNE-UHFFFAOYSA-N 0.000 description 9
- YXFVVABEGXRONW-UHFFFAOYSA-N CC1=CC=CC=C1 Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 9
- JUHZIHYGDUXTFJ-UHFFFAOYSA-N CCN1CCC(C)CC1 Chemical compound CCN1CCC(C)CC1 JUHZIHYGDUXTFJ-UHFFFAOYSA-N 0.000 description 8
- VOZGXUBPIRWRMB-HAQNSBGRSA-N CN1CCN([C@H]2CC[C@H](C)CC2)CC1 Chemical compound CN1CCN([C@H]2CC[C@H](C)CC2)CC1 VOZGXUBPIRWRMB-HAQNSBGRSA-N 0.000 description 8
- IGCABXIFWGCNDH-UHFFFAOYSA-N CC1CCN(C(C)C)CC1 Chemical compound CC1CCN(C(C)C)CC1 IGCABXIFWGCNDH-UHFFFAOYSA-N 0.000 description 7
- VTDIWMPYBAVEDY-UHFFFAOYSA-N CCCN1CCCCC1 Chemical compound CCCN1CCCCC1 VTDIWMPYBAVEDY-UHFFFAOYSA-N 0.000 description 7
- FUIRUFXAVIHAQB-UHFFFAOYSA-N CN(C)CC(C)(C)C Chemical compound CN(C)CC(C)(C)C FUIRUFXAVIHAQB-UHFFFAOYSA-N 0.000 description 7
- QKPRCVOZWUXACH-PHIMTYICSA-N C[C@H]1CC[C@@H](N2CCOCC2)CC1 Chemical compound C[C@H]1CC[C@@H](N2CCOCC2)CC1 QKPRCVOZWUXACH-PHIMTYICSA-N 0.000 description 7
- LVZWSLJZHVFIQJ-UHFFFAOYSA-N C1CC1 Chemical compound C1CC1 LVZWSLJZHVFIQJ-UHFFFAOYSA-N 0.000 description 6
- LMRKVKPRHROQRR-UHFFFAOYSA-N CCCCN1CCOCC1 Chemical compound CCCCN1CCOCC1 LMRKVKPRHROQRR-UHFFFAOYSA-N 0.000 description 6
- PQZTVWVYCLIIJY-UHFFFAOYSA-N CCCN(CC)CC Chemical compound CCCN(CC)CC PQZTVWVYCLIIJY-UHFFFAOYSA-N 0.000 description 6
- NYWMJHQGWZSPFT-UHFFFAOYSA-N CC1CCN(C2CCOCC2)CC1 Chemical compound CC1CCN(C2CCOCC2)CC1 NYWMJHQGWZSPFT-UHFFFAOYSA-N 0.000 description 5
- UZOFELREXGAFOI-UHFFFAOYSA-N CC1CCNCC1 Chemical compound CC1CCNCC1 UZOFELREXGAFOI-UHFFFAOYSA-N 0.000 description 5
- SQIPVPDABPOYTI-PHIMTYICSA-N C[C@H]1CC[C@@H](N2CCCC2)CC1 Chemical compound C[C@H]1CC[C@@H](N2CCCC2)CC1 SQIPVPDABPOYTI-PHIMTYICSA-N 0.000 description 5
- SQIPVPDABPOYTI-XYPYZODXSA-N C[C@H]1CC[C@H](N2CCCC2)CC1 Chemical compound C[C@H]1CC[C@H](N2CCCC2)CC1 SQIPVPDABPOYTI-XYPYZODXSA-N 0.000 description 5
- UCNSPEJUXJWFIY-HAQNSBGRSA-N C[C@H]1CC[C@H](N2CCCCC2)CC1 Chemical compound C[C@H]1CC[C@H](N2CCCCC2)CC1 UCNSPEJUXJWFIY-HAQNSBGRSA-N 0.000 description 5
- QWTDNUCVQCZILF-UHFFFAOYSA-N CCC(C)C Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 4
- NMILGIZTAZXMTM-UHFFFAOYSA-N CCCN1CCOCC1 Chemical compound CCCN1CCOCC1 NMILGIZTAZXMTM-UHFFFAOYSA-N 0.000 description 4
- PESFXKOAZLDINT-CZWJUEIWSA-N C[C@H]1CN([C@H]2CC[C@H](C)CC2)C[C@@H](C)O1 Chemical compound C[C@H]1CN([C@H]2CC[C@H](C)CC2)C[C@@H](C)O1 PESFXKOAZLDINT-CZWJUEIWSA-N 0.000 description 4
- KYLPAEZXVAIKOQ-UHFFFAOYSA-N CC(C)(C)CN1CCCCC1 Chemical compound CC(C)(C)CN1CCCCC1 KYLPAEZXVAIKOQ-UHFFFAOYSA-N 0.000 description 3
- DJEQZVQFEPKLOY-UHFFFAOYSA-N CCCCN(C)C Chemical compound CCCCN(C)C DJEQZVQFEPKLOY-UHFFFAOYSA-N 0.000 description 3
- AXWLKJWVMMAXBD-UHFFFAOYSA-N CCCCN1CCCCC1 Chemical compound CCCCN1CCCCC1 AXWLKJWVMMAXBD-UHFFFAOYSA-N 0.000 description 3
- PKDQMOKKIZEPQO-UHFFFAOYSA-N CCCCN1CCN(C)CC1 Chemical compound CCCCN1CCN(C)CC1 PKDQMOKKIZEPQO-UHFFFAOYSA-N 0.000 description 3
- XFFULTVXQDHRCE-SSDOTTSWSA-N CCN1CC[C@@H](C)C1 Chemical compound CCN1CC[C@@H](C)C1 XFFULTVXQDHRCE-SSDOTTSWSA-N 0.000 description 3
- AJGLFRJMVRQXSZ-UHFFFAOYSA-N CN1CCN(CC(C)(C)C)CC1 Chemical compound CN1CCN(CC(C)(C)C)CC1 AJGLFRJMVRQXSZ-UHFFFAOYSA-N 0.000 description 3
- UCNSPEJUXJWFIY-TXEJJXNPSA-N C[C@H]1CC[C@@H](N2CCCCC2)CC1 Chemical compound C[C@H]1CC[C@@H](N2CCCCC2)CC1 UCNSPEJUXJWFIY-TXEJJXNPSA-N 0.000 description 3
- SNUYWMYNMJAQHA-WOVMCDHWSA-N C[C@H]1CC[C@@H](N2CCN(C3=CC=CC=C3)CC2)CC1 Chemical compound C[C@H]1CC[C@@H](N2CCN(C3=CC=CC=C3)CC2)CC1 SNUYWMYNMJAQHA-WOVMCDHWSA-N 0.000 description 3
- WZWRSERFKHBVBS-OTVXOJSOSA-N C[C@H]1CC[C@@H](N2CCN(CC3CC3)CC2)CC1 Chemical compound C[C@H]1CC[C@@H](N2CCN(CC3CC3)CC2)CC1 WZWRSERFKHBVBS-OTVXOJSOSA-N 0.000 description 3
- JBZFWJJJLREXJO-UHFFFAOYSA-N CC1=CC=C(CN2CCOCC2)C=C1 Chemical compound CC1=CC=C(CN2CCOCC2)C=C1 JBZFWJJJLREXJO-UHFFFAOYSA-N 0.000 description 2
- GYBMIIMARPGPOJ-UHFFFAOYSA-N CC1=CC=C(N2CCN(C)CC2)C=C1 Chemical compound CC1=CC=C(N2CCN(C)CC2)C=C1 GYBMIIMARPGPOJ-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N CCCCC Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N CCCCCC Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- ORSUTASIQKBEFU-UHFFFAOYSA-N CCCCN(CC)CC Chemical compound CCCCN(CC)CC ORSUTASIQKBEFU-UHFFFAOYSA-N 0.000 description 2
- ZUHZZVMEUAUWHY-UHFFFAOYSA-N CCCN(C)C Chemical compound CCCN(C)C ZUHZZVMEUAUWHY-UHFFFAOYSA-N 0.000 description 2
- XOBKSJJDNFUZPF-UHFFFAOYSA-N CCOC Chemical compound CCOC XOBKSJJDNFUZPF-UHFFFAOYSA-N 0.000 description 2
- AMLPCXFISSPPBJ-MRXNPFEDSA-N CC[C@@H]1C(=O)N(C)C2=CN=C(NC3=CC=C(C(=O)O)C=C3OC)N=C2N1C1CCCC1 Chemical compound CC[C@@H]1C(=O)N(C)C2=CN=C(NC3=CC=C(C(=O)O)C=C3OC)N=C2N1C1CCCC1 AMLPCXFISSPPBJ-MRXNPFEDSA-N 0.000 description 2
- NEHMKBQYUWJMIP-UHFFFAOYSA-N CCl Chemical compound CCl NEHMKBQYUWJMIP-UHFFFAOYSA-N 0.000 description 2
- VOZGXUBPIRWRMB-TXEJJXNPSA-N CN1CCN([C@H]2CC[C@@H](C)CC2)CC1 Chemical compound CN1CCN([C@H]2CC[C@@H](C)CC2)CC1 VOZGXUBPIRWRMB-TXEJJXNPSA-N 0.000 description 2
- OSIGJGFTADMDOB-UHFFFAOYSA-N COC1=CC(C)=CC=C1 Chemical compound COC1=CC(C)=CC=C1 OSIGJGFTADMDOB-UHFFFAOYSA-N 0.000 description 2
- DTFKRVXLBCAIOZ-UHFFFAOYSA-N COC1=CC=CC=C1C Chemical compound COC1=CC=CC=C1C DTFKRVXLBCAIOZ-UHFFFAOYSA-N 0.000 description 2
- MVZVCVGDUNLLDZ-QGZVFWFLSA-N C=C(C)C1=CC=C(NC2=NC=C3C(=N2)N(C2CCCCC2)[C@H](C)C(=O)N3C)C(C)=C1 Chemical compound C=C(C)C1=CC=C(NC2=NC=C3C(=N2)N(C2CCCCC2)[C@H](C)C(=O)N3C)C(C)=C1 MVZVCVGDUNLLDZ-QGZVFWFLSA-N 0.000 description 1
- SDCCYOVPPGOLLY-AULYBMBSSA-N CC(=O)N1CCN([C@H]2CC[C@H](C)CC2)CC1 Chemical compound CC(=O)N1CCN([C@H]2CC[C@H](C)CC2)CC1 SDCCYOVPPGOLLY-AULYBMBSSA-N 0.000 description 1
- IRNAEDHJBNPCEZ-UHFFFAOYSA-N CC(C)(CN(C)C)N Chemical compound CC(C)(CN(C)C)N IRNAEDHJBNPCEZ-UHFFFAOYSA-N 0.000 description 1
- IMBNEKOMEDCTCL-UHFFFAOYSA-N CC(C)(CN1CCCCC1)N Chemical compound CC(C)(CN1CCCCC1)N IMBNEKOMEDCTCL-UHFFFAOYSA-N 0.000 description 1
- MWBKOGAZOXPSCI-UHFFFAOYSA-N CC(C)(N)CN1CCCC1 Chemical compound CC(C)(N)CN1CCCC1 MWBKOGAZOXPSCI-UHFFFAOYSA-N 0.000 description 1
- WCFQYKLFZCMJKV-UHFFFAOYSA-N CC(C)(N)CN1CCCCC1.CN(C)CC(C)(C)N Chemical compound CC(C)(N)CN1CCCCC1.CN(C)CC(C)(C)N WCFQYKLFZCMJKV-UHFFFAOYSA-N 0.000 description 1
- JCXYZQUYVNLCTG-UHFFFAOYSA-N CC(C)(N)CN1CCOCC1 Chemical compound CC(C)(N)CN1CCOCC1 JCXYZQUYVNLCTG-UHFFFAOYSA-N 0.000 description 1
- APXMRXMHWOOYMD-MRVPVSSYSA-N CC(C)N1CC[C@@H](C)C1 Chemical compound CC(C)N1CC[C@@H](C)C1 APXMRXMHWOOYMD-MRVPVSSYSA-N 0.000 description 1
- APXMRXMHWOOYMD-QMMMGPOBSA-N CC(C)N1CC[C@H](C)C1 Chemical compound CC(C)N1CC[C@H](C)C1 APXMRXMHWOOYMD-QMMMGPOBSA-N 0.000 description 1
- HGGUPNGROCLCBJ-JOCQHMNTSA-N CC1(C)CCN([C@H]2CC[C@H](C)CC2)CC1 Chemical compound CC1(C)CCN([C@H]2CC[C@H](C)CC2)CC1 HGGUPNGROCLCBJ-JOCQHMNTSA-N 0.000 description 1
- AFZGMHBYUYQHPH-UHFFFAOYSA-N CC1CC2CC13CC3N2C Chemical compound CC1CC2CC13CC3N2C AFZGMHBYUYQHPH-UHFFFAOYSA-N 0.000 description 1
- SWJCAXOOHHKUPF-UHFFFAOYSA-N CC1CCCN(C)CC1 Chemical compound CC1CCCN(C)CC1 SWJCAXOOHHKUPF-UHFFFAOYSA-N 0.000 description 1
- OVRKATYHWPCGPZ-UHFFFAOYSA-N CC1CCOCC1 Chemical compound CC1CCOCC1 OVRKATYHWPCGPZ-UHFFFAOYSA-N 0.000 description 1
- JDRHIFCXIYRAKL-UHFFFAOYSA-N CCCC1CCCN1C Chemical compound CCCC1CCCN1C JDRHIFCXIYRAKL-UHFFFAOYSA-N 0.000 description 1
- YZULHOOBWDXEOT-UHFFFAOYSA-N CCCCCN(CC)CC Chemical compound CCCCCN(CC)CC YZULHOOBWDXEOT-UHFFFAOYSA-N 0.000 description 1
- JSHASCFKOSDFHY-UHFFFAOYSA-N CCCCN1CCCC1 Chemical compound CCCCN1CCCC1 JSHASCFKOSDFHY-UHFFFAOYSA-N 0.000 description 1
- DLMICMXXVVMDNV-UHFFFAOYSA-N CCCN(C(C)C)C(C)C Chemical compound CCCN(C(C)C)C(C)C DLMICMXXVVMDNV-UHFFFAOYSA-N 0.000 description 1
- HLNRRPIYRBBHSQ-UHFFFAOYSA-N CCCN1CCCC1 Chemical compound CCCN1CCCC1 HLNRRPIYRBBHSQ-UHFFFAOYSA-N 0.000 description 1
- XFFULTVXQDHRCE-ZETCQYMHSA-N CCN1CC[C@H](C)C1 Chemical compound CCN1CC[C@H](C)C1 XFFULTVXQDHRCE-ZETCQYMHSA-N 0.000 description 1
- NXXPRTVUCJUDRU-QGZVFWFLSA-N CC[C@@H]1C(=O)N(C)C2=CN=C(NC3=CC=C(C(=O)O)C=C3OC)N=C2N1C1=CC=CC=C1 Chemical compound CC[C@@H]1C(=O)N(C)C2=CN=C(NC3=CC=C(C(=O)O)C=C3OC)N=C2N1C1=CC=CC=C1 NXXPRTVUCJUDRU-QGZVFWFLSA-N 0.000 description 1
- WIRJZYQONGLGQU-FSDPCNIWSA-N CC[C@@H]1C(=O)N(C)C2=CN=C(NC3=CC=C(C(=O)O)C=C3OC)N=C2N1CCC(C)C.COC1=CC(C(=O)O)=CC=C1NC1=NC=C2C(=N1)N(C1CCCC1)[C@H](C)C(=O)N2C.COC1=CC(C(=O)O)=CC=C1NC1=NC=C2C(=N1)N(C1CCCCC1)[C@H](C)C(=O)N2C.COC1=CC(C(=O)O)=CC=C1NC1=NC=C2C(=N1)N(CCC(C)C)[C@H](C)C(=O)N2C Chemical compound CC[C@@H]1C(=O)N(C)C2=CN=C(NC3=CC=C(C(=O)O)C=C3OC)N=C2N1CCC(C)C.COC1=CC(C(=O)O)=CC=C1NC1=NC=C2C(=N1)N(C1CCCC1)[C@H](C)C(=O)N2C.COC1=CC(C(=O)O)=CC=C1NC1=NC=C2C(=N1)N(C1CCCCC1)[C@H](C)C(=O)N2C.COC1=CC(C(=O)O)=CC=C1NC1=NC=C2C(=N1)N(CCC(C)C)[C@H](C)C(=O)N2C WIRJZYQONGLGQU-FSDPCNIWSA-N 0.000 description 1
- XIHHDIPVRCDUOT-KYZUINATSA-N CN(C)[C@H]1CC[C@H](C)CC1 Chemical compound CN(C)[C@H]1CC[C@H](C)CC1 XIHHDIPVRCDUOT-KYZUINATSA-N 0.000 description 1
- GBADJQGJTQQHGC-UHFFFAOYSA-N CN1CCN(CC(C)(C)N)CC1 Chemical compound CN1CCN(CC(C)(C)N)CC1 GBADJQGJTQQHGC-UHFFFAOYSA-N 0.000 description 1
- VKFALHOTNMVEDW-LLVKDONJSA-N COC1=CC(C(=O)O)=CC=C1NC1=NC=C2C(=N1)N(C(C)C)[C@H](C)C(=O)N2C Chemical compound COC1=CC(C(=O)O)=CC=C1NC1=NC=C2C(=N1)N(C(C)C)[C@H](C)C(=O)N2C VKFALHOTNMVEDW-LLVKDONJSA-N 0.000 description 1
- IHGRGMJLUGDXMK-UHFFFAOYSA-N COC1=CC(C(=O)O)=CC=C1NC1=NC=C2C(=N1)N(C1CCCC1)C1(CC1)C(=O)N2C Chemical compound COC1=CC(C(=O)O)=CC=C1NC1=NC=C2C(=N1)N(C1CCCC1)C1(CC1)C(=O)N2C IHGRGMJLUGDXMK-UHFFFAOYSA-N 0.000 description 1
- FFAVRVQXNSYMTD-UHFFFAOYSA-N COC1=CC(C(=O)O)=CC=C1NC1=NC=C2C(=N1)N(CCC(C)C)C(C)(C)C(=O)N2C Chemical compound COC1=CC(C(=O)O)=CC=C1NC1=NC=C2C(=N1)N(CCC(C)C)C(C)(C)C(=O)N2C FFAVRVQXNSYMTD-UHFFFAOYSA-N 0.000 description 1
- CHLICZRVGGXEOD-UHFFFAOYSA-N COC1=CC=C(C)C=C1 Chemical compound COC1=CC=C(C)C=C1 CHLICZRVGGXEOD-UHFFFAOYSA-N 0.000 description 1
- IEPBNWQIWASIJG-LLVKDONJSA-N C[C@@H]1C(=O)N(C)C2=CN=C(NC3=CC=C(C(=O)O)C=C3Cl)N=C2N1C1CCCC1 Chemical compound C[C@@H]1C(=O)N(C)C2=CN=C(NC3=CC=C(C(=O)O)C=C3Cl)N=C2N1C1CCCC1 IEPBNWQIWASIJG-LLVKDONJSA-N 0.000 description 1
- MWBULQNPGVGHKO-SSDOTTSWSA-N C[C@@H]1CN2CCC1CC2 Chemical compound C[C@@H]1CN2CCC1CC2 MWBULQNPGVGHKO-SSDOTTSWSA-N 0.000 description 1
- WNQXJSLSLKPHDL-PHIMTYICSA-N C[C@H]1CC[C@@H](N2CCS(=O)CC2)CC1 Chemical compound C[C@H]1CC[C@@H](N2CCS(=O)CC2)CC1 WNQXJSLSLKPHDL-PHIMTYICSA-N 0.000 description 1
- JSPCWYQQBFGMBJ-XYPYZODXSA-N C[C@H]1CC[C@H](N2CCNCC2)CC1 Chemical compound C[C@H]1CC[C@H](N2CCNCC2)CC1 JSPCWYQQBFGMBJ-XYPYZODXSA-N 0.000 description 1
- WNQXJSLSLKPHDL-XYPYZODXSA-N C[C@H]1CC[C@H](N2CCS(=O)CC2)CC1 Chemical compound C[C@H]1CC[C@H](N2CCS(=O)CC2)CC1 WNQXJSLSLKPHDL-XYPYZODXSA-N 0.000 description 1
- BYJIVLLKMYPPKC-XYPYZODXSA-N C[C@H]1CC[C@H](N2CCSCC2)CC1 Chemical compound C[C@H]1CC[C@H](N2CCSCC2)CC1 BYJIVLLKMYPPKC-XYPYZODXSA-N 0.000 description 1
- DDARGJFLSHPPAI-UHFFFAOYSA-N NC(CC1)CCC1(C1)[N]11CCOCC1 Chemical compound NC(CC1)CCC1(C1)[N]11CCOCC1 DDARGJFLSHPPAI-UHFFFAOYSA-N 0.000 description 1
- GIFBMRKBEQOKRN-UHFFFAOYSA-N NC(CN1CCOCC1)CN1CCOCC1 Chemical compound NC(CN1CCOCC1)CN1CCOCC1 GIFBMRKBEQOKRN-UHFFFAOYSA-N 0.000 description 1
- WNYFVEFUHMDIRQ-UHFFFAOYSA-N NC1=CC=C(CN2CCOCC2)C=C1 Chemical compound NC1=CC=C(CN2CCOCC2)C=C1 WNYFVEFUHMDIRQ-UHFFFAOYSA-N 0.000 description 1
- BFEWWTCNTUFKDX-UHFFFAOYSA-N NC1CCN(C2CCOCC2)CC1 Chemical compound NC1CCN(C2CCOCC2)CC1 BFEWWTCNTUFKDX-UHFFFAOYSA-N 0.000 description 1
- SCYPASPAUDZJIP-QTDOLBMBSA-N N[C@H]1CC[C@@H](N2CCCCC2)CC1.N[C@H]1CC[C@H](N2CCCCC2)CC1 Chemical compound N[C@H]1CC[C@@H](N2CCCCC2)CC1.N[C@H]1CC[C@H](N2CCCCC2)CC1 SCYPASPAUDZJIP-QTDOLBMBSA-N 0.000 description 1
- JDKVRXUQDKXCPA-DFNILJSPSA-N N[C@H]1CC[C@@H](N2CCN(C3=CC=CC=C3)CC2)CC1.N[C@H]1CC[C@H](N2CCN(C3=CC=CC=C3)CC2)CC1 Chemical compound N[C@H]1CC[C@@H](N2CCN(C3=CC=CC=C3)CC2)CC1.N[C@H]1CC[C@H](N2CCN(C3=CC=CC=C3)CC2)CC1 JDKVRXUQDKXCPA-DFNILJSPSA-N 0.000 description 1
- AOSDXOXQVGTUSW-WWDKWCEYSA-N N[C@H]1CC[C@@H](N2CCN(CC3CC3)CC2)CC1.N[C@H]1CC[C@H](N2CCN(CC3CC3)CC2)CC1 Chemical compound N[C@H]1CC[C@@H](N2CCN(CC3CC3)CC2)CC1.N[C@H]1CC[C@H](N2CCN(CC3CC3)CC2)CC1 AOSDXOXQVGTUSW-WWDKWCEYSA-N 0.000 description 1
- NKKGUUYHSHNWKS-UDQQHJHZSA-N N[C@H]1CC[C@@H](N2CCOCC2)CC1.N[C@H]1CC[C@H](N2CCOCC2)CC1 Chemical compound N[C@H]1CC[C@@H](N2CCOCC2)CC1.N[C@H]1CC[C@H](N2CCOCC2)CC1 NKKGUUYHSHNWKS-UDQQHJHZSA-N 0.000 description 1
- LRFDDHFLFYYTBL-AYMMMOKOSA-N [H][C@]12CC[C@]([H])(C[C@H](C)C1)N2C Chemical compound [H][C@]12CC[C@]([H])(C[C@H](C)C1)N2C LRFDDHFLFYYTBL-AYMMMOKOSA-N 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/4985—Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/435—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
- A61K31/44—Non condensed pyridines; Hydrogenated derivatives thereof
- A61K31/4409—Non condensed pyridines; Hydrogenated derivatives thereof only substituted in position 4, e.g. isoniazid, iproniazid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/519—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/06—Antipsoriatics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P27/00—Drugs for disorders of the senses
- A61P27/02—Ophthalmic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
Definitions
- the invention relates to new pharmaceutical compositions for the treatment of diseases involving cell proliferation, migration or apoptosis of cancer cells, or angiogenesis and the preparation thereof.
- the invention further relates to a method for the treatment of diseases involving cell proliferation, migration or apoptosis of cancer cells, or angiogenesis, which method comprises co-administration to a person in need of such treatment and/or co-treatment of a person in need of such treatment with effective amounts of:
- Polo-like kinases are serine/threonine kinases that play important roles in regulating processes in the cell cycle.
- PLKs There are four PLKs disclosed in the state of the art, i.e. PLK-1, PLK-2, PLK-3.and PLK-4.
- PLKs play a role in the entry into and the exit from mitosis in mammalian cells. Especially for PLK-1 a central role with respect to the regulation of mitosis was shown (Glover et al. 1998, Genes Dev. 12:3777-87; Qian et al. 2001, Mol Biol Cell. 12:1791-9).
- PLK-1 seems to be strongly associated with neoplastic cells including cancers (WO 2004/014899).
- Overexpression of PLK1 has been documented for various tumor types such as non-small cell lung cancer, squamous cell carcinomas, breast, ovary or papillary carcinomas as well as colorectal cancers (Wolf et al. 1997, Oncogene 14, pages 543-549; Knecht et al. 1999, Cancer Res. 59, pages 2794-2797; Wolf et al. 2000, Pathol Res Pract. 196, pages 753-759; Weichert et al. 2004, Br. J Cancer 90, pages 815-821; Ito et al. 2004, Br. J. Cancer 90, pages 414-418; Takahashi et al. 2003, Cancer Sci. 94, pages 148-152).
- chemotherapeutic agent means a naturally occurring, semi-synthetic or synthetic chemical compound which, alone or via further activation, for example with radiations in the case of radio-immunotherapy, inhibits or kills growing cells, and which can be used or is approved for use in the treatment of diseases of oncological nature, which are commonly also denominated as cancers.
- these agents are generally classified according to their mechanism of action. In this matter, reference can be made, for example, to the classification made in “Cancer Chemotherapeutic Agents”, American Chemical Society, 1995, W. O. Foye Ed.
- chemotherapeutic agents can be improved by using combination therapies with other chemotherapeutic, immunotherapeutic, immunomodulatory, antiangiogenic or hormonal compounds.
- Combination therapies constitute the gold standard in many settings of cancer therapy.
- chemotherapeutic agents are especially of interest, although not representing a limitation:
- the beneficial effects of the invention are mainly based on the additive and synergistic effects of the combined treatment, or to an improved tolerability of the treatment by the patient due, for example, to the administration of lower doses of the therapeutic agents involved.
- the compound I has the structure of the following general Formula (I): wherein R 1 , R 2 which may be identical or different, denote hydrogen or optionally substituted C 1 -C 6 -alkyl, or R 1 and R 2 together denote a 2- to 5-membered alkyl bridge which may contain 1 to 2 heteroatoms, R 3 denotes hydrogen or a group selected from among optionally substituted C 1 -C 12 -alkyl, C 2 -C 12 -alkenyl, C 2 -C 12 -alkynyl and C 6 -C 14 -aryl, or a group selected from among optionally substituted and/or bridged C 3 -C 12 -cycloalkyl, C 3 -C 12 -cycloalkenyl, C 7 -C 12 -polycycloalkyl, C 7 -C 12 -polycycloalkenyl, C 5 -C 12 -spirocycloalkyl, C 3 -
- Preferred compounds of Formula (I) are those wherein
- R 1 to R 4 , R 6 and R 7 are as hereinbefore defined, and
- L denotes a linker selected from among optionally substituted C 2 -C 10 -alkyl, C 2 -C 10 -alkenyl, C 6 -C 14 -aryl, —C 2 -C 4 -alkyl-C 6 -C 14 -aryl, —C 6 -C 14 -aryl-C 1 -C 4 -alkyl, optionally bridged C 3 -C 12 -cycloalkyl and heteroaryl which contains 1 or 2 nitrogen atoms
- n 1
- n 1 or 2
- R 5 denotes a group which is bound to L via a nitrogen atom, selected from among optionally substituted morpholinyl, piperidinyl, R 8 -piperazinyl, pyrrolidinyl, tropenyl, R 8 -diketomethylpiperazinyl, sulphoxomorpholinyl, sulphonylmorpholinyl, thiomorpholinyl, —NR 8 R 9 and azacycloheptyl,
- R 8 , R 9 denote unsubstituted nitrogen substituents at R 5 , which may be identical or different, hydrogen or a group selected from among C 1 -C 6 -alkyl, —C 1 -C 4 -alkyl-C 3 -C 10 -cycloalkyl, C 3 -C 10 -cycloalkyl, C 6 -C 14 -aryl, —C 1 -C 4 -alkyl-C 6 -C 14 -aryl, pyranyl, pyridinyl, pyrimidinyl, C 1 -C 4 -alkyloxycarbonyl, C 6 -C 14 -arylcarbonyl, C 1 -C 4 -alkylcarbonyl, C 6 -C 14 -arylmethyloxycarbonyl, C 6 -C 14 -arylsulphonyl, C 1 -C 4 -alkylsulphonyl and C 6 -C 14 -aryl-C 1
- R 1 to R 4 , R 6 and R 7 are as hereinbefore defined,
- L denotes a linker selected from among optionally substituted C 2 -C 10 -alkyl, C 2 -C 10 -alkenyl, C 6 -C 14 -aryl, —C 2 -C 4 -alkyl-C 6 -C 14 -aryl, -C 6 -C 14 -aryl-C 1 -C 4 -alkyl, optionally bridged C 3 -C 12 -cycloalkyl and heteroaryl which contains 1 or 2 nitrogen atoms
- n denotes 0 or 1
- n 1 or 2
- R 5 denotes a group which is bound to L via a carbon atom, selected from among R 8 -piperidinyl, R 8 R 9 -piperazinyl, R 8 -pyrrolidinyl, R 8 -piperazinylcarbonyl, R 8 -tropenyl, R 8 -morpholinyl and R 8 -azacycloheptyl, and
- R 8 , R 9 denote unsubstituted nitrogen substituents at R 5 , which may be identical or different, hydrogen or a group selected from among C 1 -C 6 -alkyl, —C 1 -C 4 -alkyl-C 3 -C 10 -cycloalkyl, C 3 -C 10 -cycloalkyl, C 6 -C 14 -aryl, —C 1 -C 4 -alkyl-C 6 -C 14 -aryl, pyranyl, pyridinyl, pyrimidinyl, C 1 -C 4 -alkyloxycarbonyl, C 6 -C 14 -arylcarbonyl, Cl-C 4 -alkylcarbonyl, C 6 -C 14 -arylmethyloxycarbonyl, C 6 -C 14 -arylsulphonyl, C 1 -C 4 -alkylsulphonyl and C 6 -C 14 -aryl-C 1 -
- L, m, n and R 3 to R 9 are as hereinbefore defined, and
- R 1 , R 2 which may be identical or different, denote a group selected from among hydrogen, Me, Et, Pr, or
- R 1 and R 2 together form a C 2 -C 4 -alkyl bridge
- R 1 , R 2 , m, n and R 5 to R 8 are as hereinbefore defined, and
- R 3 denotes a group selected from among optionally substituted C 1 -C 10 -alkyl, C 3 -C 7 -cycloalkyl, C 3 -C 6 -heterocycloalkyl and C 6 -C 14 -aryl or
- R 1 and R 3 or R 2 and R 3 together denote a saturated or unsaturated C 3 -C 4 -alkyl bridge which may contain 1 to 2 heteroatoms,
- R 4 denotes a group selected from among hydrogen, OMe, OH, Me, Et, Pr, OEt, NHMe, NH 2 , F, CL, Br, O-propargyl, O-butynyl, CN, SMe, NMe 2 , CONH 2 , ethynyl, propynyl, butynyl and allyl, and
- L denotes a linker selected from among optionally substituted phenyl, phenylmethyl, cyclohexyl and branched C 1 -C 6 -alkyl,
- the compound 1 in accordance with the present invention is selected from the group consisting of the compounds of Formula (I) shown in the following Table Config. Ex. R 1 R 2 R 1 or R 2 R 3 R 4 L n —R 5 m 27 H R 44 H R H 55 H R 58 H R 102 H R 103 H R 105 H R 110 H R 115 H R 133 H R 134 H R 234 H R 240 H R wherein the abbreviations X 1 , X 2 , X 3 , X 4 and X 5 used in the Table in each case denote a link to a position in the general Formula shown in the Table instead of the corresponding groups R 1 , R 2 , R 3 , R 4 and L-R 5 .
- Preferred compounds include small molecule tyrosin kinase or serine/threonine kinase inhibitors, compounds interacting with nucleic acids classified as alkylating agents or anthracyclines, anti-metabolites, inhibitors of DNA transcribing enzymes such as topoisomerase I or II, tubulin binding drugs, anti-mitotic agents, antibodies targeting growth factors or their receptors and antibodies binding to surface molecules of cancer cells or ligands of these surface molecules in form of the hydrates and/or solvates and optionally in the form of the individual optical isomers, mixtures of the individual enantiomers or racemates thereof.
- the instant invention is directed to a pharmaceutical combination, wherein the further chemotherapeutic or naturally occurring, semi-synthetic or synthetic therapeutic agent 2 is selected from the group consisting of a small molecule VEGF receptor antagonist such as vatalanib (PTK-787/ZK222584), SU-5416, SU-6668, SU-11248, SU-14813, AZD-6474, AZD-2171, CP-547632, CEP-7055, AG-013736, IM-842 or GW-786034, a dual EGFR/HER2 antagonist such as gefitinib, erlotinib, CI-1033 or GW-2016, an EGFR antagonist such as iressa (ZD-1839), tarceva (OSI-774), PKI-166, EKB-569, HKI-272 or herceptin, an antagonist of the mitogen-activated protein kinase such as BAY-43-9006 or BAY-57-9006,
- Preferred compounds include small molecule VEGF receptor antagonist such as vatalanib (PTK-787/ZK222584), SU-5416, SU-6668, SU-11248, SU-14813, AZD-6474, EGFR/HER2 antagonists such as CI-1033 or GW-2016, an EGFR antagonist such as iressa (gefitinib, ZD-1839), tarceva (erlotinib, OSI-774), PKI-166, EKB-569, HKI-272 or herceptin, an antagonist of the mitogen-activated protein kinase such as BAY-43-9006 or BAY-57-9006, atrasentan, rituximab, cetuximab, AvastinTM (bevacizumab), IMC-1C11, erbitux (C-225), DC-101, EMD-72000, vitaxin, imatinib, an alkylating agent or a platinum compound such as melphal
- the instant invention is directed to a pharmaceutical composition, wherein the further chemotherapeutic or naturally occurring, semi-synthetic or synthetic therapeutic agent 2 is selected from the group consisting of an anti-cancer drug from plants such as paclitaxel (taxol), docetaxel, a vinca alkaloid such as navelbine, vinblastin, vincristin, vindesine or vinorelbine, an alkylating agent or a platinum compound such as melphalan, cyclophosphamide, an oxazaphosphorine, cisplatin, carboplatin, oxaliplatin, satraplatin, tetraplatin, iproplatin, mitomycin, streptozocin, carmustine (BCNU), lomustine (CCNU), busulfan, ifosfamide, streptozocin, thiotepa, chlorambucil, a nitrogen mustard such as mechlorethamine, an immunomodulatory drug such as thalidomide,
- Preferred compounds include small molecule receptor antagonists such aus vatalanib, SU 11248 or AZD-6474, EGFR or HER2 antagonists such as gefitinib, erlotinib, CI-1033 or Herceptin, antibodies such as bevacizumab, cetuximab, rituximab, DNA alkylating drugs such as cisplatin, oxaliplatin or carboplatin, anthracyclines such as doxorubicin or epirubicin, an antimetabolite such as 5-FU, pemetrexed, gemcitabine or capecitabine, a camptothecin such as irinotecan or topotecan, an anti-cancer drug such as paclitaxel or docetaxel, an epipodophyllotoxin such as etoposide or teniposide, a proteasome inhibitor such as bortezomib or antiinflammatory drugs such as celecoxib or rofecoxi
- the instant invention is directed to a pharmaceutical composition as defined hereinbefore, wherein the further chemotherapeutic or naturally occurring, semi-synthetic or synthetic therapeutic agent 2 is the quinazoline derivative 4-[(3-chloro-4-fluorophenyl)amino]-6- ⁇ [4-(N,N-dimethylamino)-1-oxo-2-buten-1-yl]amino ⁇ -7-((S)-tetrahydrofuran-3-yloxy)-quinazoline or a pharmaceutically acceptable salt thereof.
- the instant invention is directed to a pharmaceutical composition as defined hereinbefore, wherein the further chemotherapeutic or naturally occurring, semi-synthetic or synthetic therapeutic agent 2 is the di-maleic acid salt of the compound 4-[(3-chloro-4-fluorophenyl)amino]-6- ⁇ [4-(N,N-dimethylamino)-1-oxo-2-buten-1-yl]amino ⁇ -7-((S)-tetrahydrofuran-3-yloxy)-quinazoline, or 4-[(3-chloro-4-fluoro-phenyl)amino]-6- ⁇ [4-(homomorpholin-4-yl)-1-oxo-2-buten-1-yl]amino ⁇ -7-[(S)-(tetrahydrofuran-3-yl)oxy]-quinazoline, or the tautomers, stereoisomers or a pharmaceutically acceptable salt thereof.
- the instant invention is directed to a pharmaceutical composition as defined hereinbefore, wherein the further chemotherapeutic or naturally occurring, semi-synthetic or synthetic therapeutic agent 2 is the 4-[(3-chloro-4-fluoro-phenyl)amino]-6- ⁇ [4-(homomorpholin-4-yl)-1-oxo-2-buten-1-yl]amino ⁇ -7-[(S)-(tetrahydrofuran-3-yl)oxy]-quinazoline, or a pharmaceutically acceptable salt thereof.
- the further chemotherapeutic or naturally occurring, semi-synthetic or synthetic therapeutic agent 2 is the 4-[(3-chloro-4-fluoro-phenyl)amino]-6- ⁇ [4-(homomorpholin-4-yl)-1-oxo-2-buten-1-yl]amino ⁇ -7-[(S)-(tetrahydrofuran-3-yl)oxy]-quinazoline, or a pharmaceutically acceptable salt thereof.
- the instant invention is directed to a pharmaceutical composition as defined hereinbefore, wherein the further chemotherapeutic or naturally occurring, semi-synthetic or synthetic therapeutic agent 2 is the 3-Z-[1-(4-(N-((4-methyl-piperazin-1-yl)-methylcarbonyl)-N-methyl-amino)-anilino)-1-phenyl-methylene]-6-methoxycarbonyl-2-indolinone, or a polymorph, metabolite or pharmaceutically acceptable salt thereof.
- the instant invention is directed to a pharmaceutical composition as defined hereinbefore, wherein the further chemotherapeutic or naturally occurring, semi-synthetic or synthetic therapeutic agent 2 is the monoethanesulfonate salt of 3-Z- [1 -(4-(N-((4-methyl-piperazin- 1 -yl)-methylcarbonyl)-N-methyl-amino)-anilino)-1-phenyl-methylene]-6-methoxycarbonyl-2-indolinone.
- the instant invention is directed to a pharmaceutical composition as defined hereinbefore, wherein the further chemotherapeutic or naturally occurring, semi-synthetic or synthetic therapeutic agent 2 is the 3-Z-[1-(4-dimethylaminomethylanilino)-1-(4-(2-carboxyethyl)phenyl)methylene]-6-fluoro-2-indolinone, or a polymorph, metabolite or pharmaceutically acceptable salt thereof.
- the instant invention is directed to a pharmaceutical composition, wherein the further chemotherapeutic or naturally occurring, semi-synthetic or synthetic therapeutic agent 2 is irinotecan, topotecan, oxaliplatin, docetaxel, paclitaxel, gemcitabine, pemetrexed, cisplatin, carboplatin, bevacizumab, cetuximab, gefitinib or erlotinib, particularly preferred irinotecan, docetaxel, gemcitabine, topotecan or paclitaxel.
- the further chemotherapeutic or naturally occurring, semi-synthetic or synthetic therapeutic agent 2 is irinotecan, topotecan, oxaliplatin, docetaxel, paclitaxel, gemcitabine, pemetrexed, cisplatin, carboplatin, bevacizumab, cetuximab, gefitinib or erlotinib, particularly preferred irinotecan, do
- the instant invention is directed to a pharmaceutical composition as defined hereinbefore, wherein the further naturally occurring, semi-synthetic or synthetic therapeutic agent 2 is a compound which reduces the transport of hyaluronan mediated by one or more ABC transporters, or drug transport inhibitor, such as a P-glycoprotein (P-gp) inhibitor molecule or inhibitor peptide, an MRP1 inhibitor, an antibody directed against and capable of blocking the ABC transporter, an antisense oligomer, iRNA, siRNA or aptamer directed against one or more ABC transporters.
- P-gp P-glycoprotein
- MRP1 inhibitor an antibody directed against and capable of blocking the ABC transporter
- an antisense oligomer iRNA, siRNA or aptamer directed against one or more ABC transporters.
- P-glycoprotein (P-gp) inhibitor molecules in accordance with the present invention are zosuquidar (LY 335973), its salts (especially the trichloride salt) and its polymorphs, cyclosporin A (also known as cyclosporine), verapamil or its R-isomer, tamoxifen, quinidine, d-alpha tocopheryl polyethylene glycol 1000 succinate, VX-710, PSC833, phenothiazine, GF120918 (II), SDZ PSC 833, TMBY, MS-073, S-9788, SDZ 280-446, XR(9051) and functional derivatives, analogues and isomers of these.
- zosuquidar LY 335973
- its salts especially the trichloride salt
- cyclosporin A also known as cyclosporine
- verapamil or its R-isomer tamoxifen
- quinidine quin
- suitable pharmaceutically acceptable salts thereof may include alkali metal salts (e.g. sodium or potassium salts), alkaline earth metal salts (e. g. calcium or magnesium salts) and salts formed with suitable organic ligands (e.g. quaternary ammonium salts).
- alkali metal salts e.g. sodium or potassium salts
- alkaline earth metal salts e.g. calcium or magnesium salts
- suitable organic ligands e.g. quaternary ammonium salts
- the compounds 2 may have chiral centers and may occur as racemates, racemic mixtures and as individual diastereomers, or enantiomers with all isomeric forms being included in the present invention. Hence, where a compound is chiral, the separate enantiomers, substantially free of the others, are included within the scope of the invention. Further included are all mixtures of the two enantiomers. Also included within the scope of the invention are polymorphs and hydrates of the compounds of the instant invention.
- the present invention includes within its scope prodrugs of a compound 1 of Formula (I) and of the further active ingredient 2.
- prodrugs will be functional derivatives of the compounds or active ingredients of this invention which are readily convertible in vivo into the required compound.
- the invention relates to a composition as defined hereinbefore, which inhibits the proliferation of various human tumour cell lines including but not limited to Saos-2, H4, MDA-MB-435S, MDA-MB453, MCF7, HeLa S3, HCT116, Colo 205, HT29, FaDu, HL-60, K-562, THP-1, HepG2, A549, NCI-H460, GRANTA-519, Raji, Ramos, BRO, SKOV-3, BxPC-3, Mia CaPa-2, DU145, PC-3, NCI-N87, MES-SA, SK-UT-1B and A431.
- Another embodiment of the invention relates to the use of a pharmaceutical composition as defined hereinbefore for the preparation of a medicament for the treatment of oncological diseases, such as malignant human neoplasias.
- the instant invention relates to the use of a pharmaceutical composition as defined hereinbefore, wherein the oncological disease is selected from the group consisting of solid tumours.
- the invention relates to the use of a pharmaceutical composition as defined hereinbefore, wherein the oncological disease is selected from the group consisting of urogenital cancers (such as prostate cancer, renal cell cancers, bladder cancers), gynecological cancers (such as ovarian cancers, cervical cancers, endometrial cancers), lung cancer, gastrointestinal cancers (such as colorectal cancers, pancreatic cancer, gastric cancer, oesophageal cancers, hepatocellular cancers, cholangiocellular cancers), head and neck cancer, malignant mesothelioma, breast cancer, malignant melanoma or bone and soft tissue sarcomas.
- urogenital cancers such as prostate cancer, renal cell cancers, bladder cancers
- gynecological cancers such as ovarian cancers, cervical cancers, endometrial cancers
- lung cancer such as gastrointestinal cancers (such as colorectal cancers, pancreatic cancer, gastric cancer, o
- the invention relates to the use of a pharmaceutical composition as defined hereinbefore wherein the oncological disease is selected from the group consisting of refractory or relapsed multiple myeloma, acute or chronic myelogenous leukaemia, myelodysplastic syndrome, acute lymphoblastic leukaemia, Hodgkin's or non-Hodgkin's lymphoma.
- the oncological disease is selected from the group consisting of refractory or relapsed multiple myeloma, acute or chronic myelogenous leukaemia, myelodysplastic syndrome, acute lymphoblastic leukaemia, Hodgkin's or non-Hodgkin's lymphoma.
- the disease is hormone sensitive or hormone refractory prostate cancer, ovarian carcinoma, or small cell lung cancer.
- the invention relates to the use of a composition as defined hereinbefore, wherein the oncological disease is characterized by inappropriate cellular proliferation, migration, apoptosis or angiogenesis, preferably by inappropriate cellular proliferation.
- Inappropriate cell proliferation means cellular proliferation resulting from inappropriate cell growth, from excessive cell division, from cell division at an accelerated rate and/or from inappropriate cell survival.
- the invention relates to the use according to the invention, wherein the disease is cancer selected from the group consisting of carcinomas, sarcomas, melanomas, myelomas, hematological neoplasias, lymphomas and childhood cancers.
- carcinomas within the scope of the invention include but are not limited to adenocarcinoma (AC), squamous cell carcinoma (SCC) and mixed or undifferentiated carcinomas.
- Carcinomas within the scope of the invention include but are not limited to the following histologies:
- sarcomas within the scope of the invention include but are not limited to Ewing-sarcoma, osteosarcoma or osteogenic sarcoma, chondrosarcoma, synovial sarcoma, leiomyosarcoma, rhabdomyosarcoma, mesothelial sarcoma or mesothelioma, fibrosarcoma, angiosarcoma or hemangioendothelioma, liposarcoma, glioma or astrocytoma, myxosarcoma, malignant fibrous histiocytoma, mesenchymous or mixed mesodermal tumour, neuroblastoma and clear cell sarcoma.
- Examples of skin tumors within the scope of the invention include but are not limited to basal cell carcinoma, Merkel cell carcinoma, sebaceous carcinoma, fibroxanthoma, malignant fibrous histiocytoma, and skin sarcoma.
- melanomas within the scope of the invention include but are not limited to superficial spreading melanoma, nodular and lentigo-maligna melanoma.
- myelomas within the scope of the invention include but are not limited to immunocytoma, plasmocytoma and multiple myeloma.
- childhood cancers within the scope of the invention include but are not limited to Wilms' tumor, neuroblastoma, retinoblastoma, rhabdomyosarcoma, Ewing's sarcoma and peripheral primitive neuroectodermal tumors, germ cell tumors and childhood lymphoma and leukemias.
- the invention relates to the use of a composition as defined hereinbefore, wherein the hematologic cancer is leukemia.
- hematologic neoplasias within the scope of the invention include but are not limited to acute or chronic leukemias of myeloid, erythroid or lymphatic origin, myelodysplastic syndromes (MDS) and myeloproliferative syndromes (MPS, such as chronic myelogeneous leukemia, osteomyelofibrosis, polycythemia vera or essential thrombocythemia).
- MDS myelodysplastic syndromes
- MPS myeloproliferative syndromes
- lymphomas within the scope of the invention include but are not limited to:
- the invention relates to the use according to the invention, wherein the disease is cancer selected from the group consisting of mixed tumours, undifferentiated tumours and metastases thereof.
- mixed tumours within the scope of the invention include but are not limited to adenosquamous carcinomas, mixed mesodermal tumours, carcinosarcomas and teratocarcinomas.
- undifferentiated, other tumours or metastases thereof within the scope of the invention include but are not limited to undifferentiated tumours, carcinomas of unknown primary (CUP), metastases of unknown primary (MUP) and pheochromocytoma, carcinoids.
- the invention relates to the use of a composition as defined hereinbefore, for the preparation of a medicament for the treatment of autoimmune disorders selected from the group consisting of amyloidosis, systemic lupus erythematosus, rheumatoid arthritis, Crohn's disease, multiple sclerosis, systemic sclerosis (scleroderma), mixed connective tissue disease, Sjogren's syndrome, ankylosing spondylitis, autoimmune vasculitis, Behcet's syndrome, psoriasis, autoimmune arthritis, sarcoidosis and diabetes mellitus.
- autoimmune disorders selected from the group consisting of amyloidosis, systemic lupus erythematosus, rheumatoid arthritis, Crohn's disease, multiple sclerosis, systemic sclerosis (scleroderma), mixed connective tissue disease, Sjogren's syndrome, ankylosing spondylitis, autoimmune vasculitis, Behcet'
- the invention relates to the use of a pharmaceutical composition as defined hereinbefore for the preparation of a medicament for the treatment of further non-oncological diseases, such as diabetic retinopathy and rheumatoid arthritis.
- the invention relates to the use of a composition as defined hereinbefore wherein the composition according to the invention is administered orally, enterically, transdermally, intravenously, peritoneally or by injection, preferably intravenously.
- the invention relates to a pharmaceutical combination preparation kit for the treatment of diseases involving cell proliferation, migration or apoptosis of myeloma cells, or angiogenesis, comprising a therapeutically effective amount of a compound 1 of Formula (I) in accordance with the present invention, or a polymorph, hydrate, metabolite or pharmaceutically acceptable salt thereof, and at least a further chemotherapeutic or naturally occurring, semi-synthetic or synthetic therapeutic agent 2, and optionally adapted for a co-treatment with radiotherapy or radio-immunotherapy, characterised in that the compound 1 of Formula (I) is comprised within a first compartment and the further chemotherapeutic or naturally occurring, semi-synthetic or synthetic therapeutic agent 2 is comprised within a second compartment, such that the administration to a patient in need thereof can be simultaneous, separate or sequential.
- the invention relates to a pharmaceutical combination preparation kit, wherein the formulation of the compound 1 of Formula (I) in accordance with the present invention is for oral administration or injection.
- the invention relates to the use of a pharmaceutical combination or a pharmaceutical combination preparation kit, for the manufacture of a medicament, optionally adapted for a co-treatment with radiotherapy or radio-immunotherapy, to treat diseases involving cell proliferation, migration or apoptosis of cancer cells, or angiogenesis, in a human or non-human mammalian body.
- the invention relates to the use of an effective amount of a compound 1 of Formula (I) or a polymorph, hydrate, metabolite or pharmaceutically acceptable salt thereof, in combination with at least a further chemotherapeutic or naturally occurring, semi-synthetic or synthetic therapeutic agent 2, for the manufacture of a pharmaceutical combination preparation, optionally adapted for a co-treatment with radiotherapy or radio-immunotherapy, for simultaneous, separate or sequential use in the treatment of diseases involving cell proliferation, migration or apoptosis of cancer cells, or angiogenesis, in a human or non-human mammalian body.
- the invention relates to a method for the treatment of diseases involving cell proliferation, migration or apoptosis of cancer cells, or angiogenesis, which method comprises simultaneous, separate or sequential co-administration of effective amounts of:
- the invention relates to the uses described above, characterised in that a compound 1 of Formula (I), or its polymorph, metabolite, hydrate, solvate, an individual optical isomer, mixtures of the individual enantiomers or racemates thereof, or a pharmaceutically acceptable salt thereof, is administered intermittent or in a daily dosage such that the plasma level of the active substance lies between 10 and 5000 nM for at least 12 hours of the dosing interval.
- terapéuticaally effective amount shall mean that amount of a drug or pharmaceutical agent that will elicit the biological or medical response of a tissue, system, animal or human that is being sought by a researcher or clinician.
- composition is intended to encompass a product comprising the specified ingredients in the specified amounts, as well as any product which results, directly or indirectly, from a combination of the specified ingredients in the specified amounts.
- the components 1 and 2 of the composition for a combination therapy may be administered separately (which implies that they are formulated separately) or together (which implies that they are formulated together).
- the administration of one element of the combination of the present invention may be prior to, concurrent to, or subsequent to the administration of the other element of the combination.
- the elements of the combination of 1 and 2 may be administered by oral (including buccal or sublingual), enterical, parenteral (e.g., intramuscular, intraperitoneal, intravenous, transdermal or subcutaneous injection, or implant), nasal, vaginal, rectal, or topical (e.g. ocular eyedrops) routes of administration and may be formulated, alone or together, in suitable dosage unit formulations containing conventional non-toxic pharmaceutically acceptable carriers, adjuvants and vehicles appropriate for each route of administration.
- oral including buccal or sublingual
- enterical e.g., intramuscular, intraperitoneal, intravenous, transdermal or subcutaneous injection, or implant
- nasal, vaginal, rectal e.g. ocular eyedrops
- topical e.g. ocular eyedrops
- the element 1 of the combination in accordance with the invention is administered orally, enterically, transdermally, intravenously, peritoneally or by injection, preferably intravenously.
- compositions for the administration of the components 1 and 2 of this invention may conveniently be presented in dosage unit form and may be prepared by any of the methods well known in the art of pharmacy. All methods include the step of bringing the active ingredient into association with the carrier which is constituted of one or more accessory ingredients. In general, the pharmaceutical compositions are prepared by uniformly and intimately bringing the active ingredients into association with a liquid carrier or a finely divided solid carrier or both, and then, if necessary, shaping the product into the desired dosage form. In the pharmaceutical compositions the active compounds are included in an amount sufficient to produce the desired pharmacologic effect.
- compositions containing the active ingredients 1 and 2, separately or together, that are suitable for oral administration may be in the form of discrete units such as hard or soft capsules, tablets, troches or lozenges, each containing a predetermined amount of the active ingredients, or in the form of a dispersible powder or granules, or in the form of a solution or a suspension in an aqueous liquid or non-aqueous liquid, or in the form of syrups or elixirs, or in the form of an oil-in-water emulsion or a water-in-oil emulsion.
- discrete units such as hard or soft capsules, tablets, troches or lozenges, each containing a predetermined amount of the active ingredients, or in the form of a dispersible powder or granules, or in the form of a solution or a suspension in an aqueous liquid or non-aqueous liquid, or in the form of syrups or elixirs, or in the form of an oil-in-water
- Dosage forms intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical formulations and such compositions.
- excipients used may be, for example: (a) inert diluents such as mannitol, sorbitol, calcium carbonate, pregelatinized starch, lactose, calcium phosphate or sodium phosphate; (b) granulating and disintegrating agents, such as povidone, copovidone, hydroxypropylmethylcellulose, corn starch, alginic acid, crospovidone, sodiumstarchglycolate, croscarmellose, or polacrilin potassium; (c) binding agents such as microcrystalline cellulose or acacia; and (d) lubricating agents such as magnesium stearate, stearic acid, fumaric acid or talc.
- inert diluents such as mannitol, sorbitol, calcium carbonate, pregelatinized starch, lactose, calcium phosphate or sodium phosphate
- granulating and disintegrating agents such as povidone, copovidone,
- formulations for oral use may be in the form of hard gelatin or HPMC (hydroxypropylmethylcellulose) capsules wherein the active ingredients 1 or 2, separately or together, is mixed with an inert solid diluent, for example pregelatinized starch, calcium carbonate, calcium phosphate or kaolin, or dispensed via a pellet formulation.
- HPMC hydroxypropylmethylcellulose
- formulations for oral use may be in the form of hard gelatin or HPMC (hydroxypropylmethylcellulose) capsules wherein the active ingredients 1 or 2, separately or together, is mixed with an inert solid diluent, for example pregelatinized starch, calcium carbonate, calcium phosphate or kaolin, or dispensed via a pellet formulation.
- an oil medium for example peanut oil, liquid paraffin, medium chain triglycerides or olive oil.
- the tablets, capsules or pellets may be uncoated or they may be coated by known techniques to delay disintegration and absorption in the gastrointestinal tract and thereby provide a delayed action or sustained action over a longer period.
- a time delay material such as celluloseacetate phtalate or hydroxypropylcellulose acetate succinate or sustained release material such as ethylcellulose or ammoniomethacrylate copolymer (type B) may be employed.
- Liquid dosage forms for oral administration in accordance with the present invention include pharmaceutically acceptable emulsions, solutions, suspensions, syrups, and elixirs containing inert diluents commonly used in the art, such as water. Besides such inert diluents, compositions can also include adjuvants, such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, perfuming and preserving agents.
- adjuvants such as wetting agents, emulsifying and suspending agents, and sweetening, flavoring, perfuming and preserving agents.
- Aqueous suspensions in accordance with the present invention normally contain the active materials 1 and 2, separately or together, in admixture with excipients suitable for the manufacture of aqueous suspensions.
- excipients may be (a) suspending agents such as hydroxy ethylcellulose, sodium carboxymethylcellulose, methylcellulose, hydroxypropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; (b) dispersing or wetting agents which may be (b.1) a naturally-occurring phosphatide such as lecithin, (b.2) a condensation product of an alkylene oxide with a fatty acid, for example, polyoxyethylene stearate, (b.3) a condensation product of ethylene oxide with a long chain aliphatic alcohol, for example heptadecaethyleneoxycetanol, (b.4) a condensation product of ethylene oxide with a partial ester derived from a fatty acid and a hexi
- the aqueous suspensions may also contain: one or more preservatives, for example, ethyl or n-propyl p-hydroxybenzoate; one or more coloring agents; one or more flavoring agents; and one or more sweetening agents, such as sucrose or saccharin.
- preservatives for example, ethyl or n-propyl p-hydroxybenzoate
- coloring agents for example, ethyl or n-propyl p-hydroxybenzoate
- flavoring agents for example, ethyl or n-propyl p-hydroxybenzoate
- sweetening agents such as sucrose or saccharin.
- Oily suspensions in accordance with the present invention may be formulated by suspending the active ingredients 1 and 2, separately or together, in a vegetable oil, for example arachis (peanut) oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin.
- the oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol. Sweetening agents and flavoring agents may be added to provide a palatable oral preparation.
- These compositions may be prepared by the addition of an antioxidant such as ascorbic acid.
- Dispersible powders and granules are suitable formulations for the preparation of an aqueous suspension in accordance with the present invention.
- the active ingredients 1 and 2 are present, separately or together, in admixture with a dispersing or wetting agent, a suspending agent and one or more preservatives.
- a dispersing or wetting agent e.g., talc, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, kaolin, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, sorbitol, mannitol, mannitol, mannitol, mannitol, mannitol, mannitol
- compositions of the invention may also be in the form of oil-in-water emulsions.
- the oily phase may be a vegetable oil such as olive oil or arachis (peanut) oil, or a mineral oil such as liquid paraffin or a mixture thereof.
- Suitable emulsifying agents may be (a) naturally-occurring gums such as gum acacia and gum tragacanth, (b) naturally-occurring phosphatides such as soybean and lecithin, (c) esters or partial esters derived from fatty acids and hexitol anhydrides, for example sorbitan monooleate, (d) condensation products of said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monooleate.
- the emulsions may also contain sweetening and flavouring agents.
- Syrups and elixirs in accordance with the present invention may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose. Such formulations may also contain a preservative and flavoring and coloring agents.
- sweetening agents for example glycerol, propylene glycol, sorbitol or sucrose.
- Such formulations may also contain a preservative and flavoring and coloring agents.
- compositions containing 1 and 2 may be in the form of a sterile injectable aqueous or oleagenous suspension or solution.
- the suspension may be formulated according to known methods using those suitable dispersing or wetting agents and suspending agents which have been mentioned hereinbefore.
- a suitable sterile injectable preparation may also be a sterile injectable solution or suspension in a non toxic parenterally-acceptable diluent or solvent, for example a solution in 1,3-butane-diol.
- suitable acceptable vehicles and solvents that may be employed are water, Ringer's solution and an isotonic sodium chloride solution.
- sterile, fixed oils may conventionally be employed as a solvent or suspending medium.
- any bland fixed oil may be employed, including synthetic mono-or diglycerides.
- fatty acids such as oleic acid find use in the preparation of injectables in accordance with the present invention.
- Preparations for parenteral administration according to the present invention containing 1 and 2, separately or together, include sterile aqueous or non-aqueous solutions, suspension, or emulsions.
- non-aqueous solvents or vehicles for the preparations in accordance with the present invention are propylene glycol, polyethylene glycol, vegetable oils, such as olive oil and corn oil, gelatin, and injectable organic esters such as ethyl oleate.
- Such dosage forms may also contain adjuvants such as preserving, wetting, emulsifying, and dispersing agents. They may be sterilized by, for example, by filtration through a bacteria-retaining filter, by incorporating sterilizing agents into the compositions, by irradiating the compositions, or by heating the compositions. They may also be manufactured in the form of sterile solid compositions which can be reconstituted in sterile water, or some other sterile injectable medium immediately before use.
- compositions can be prepared by mixing the active ingredient with a suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the active ingredient.
- suitable non-irritating excipient which is solid at ordinary temperatures but liquid at the rectal temperature and will therefore melt in the rectum to release the active ingredient.
- Such materials are cocoa butter, hard fat, and polyethylene glycols.
- compositions for buccal, nasal or sublingual administration in accordance with the present invention may be prepared with standard excipients well known in the art.
- the elements 1 and 2 of the combination of this invention may be formulated, separately or together, in liquid or semi-liquid preparations.
- suitable preparations are: liniments, lotions, applications; oil-in-water or water-in-oil emulsions such as creams, ointments, jellies or pastes, including tooth-pastes; solutions or suspensions such as drops.
- the dosage of the active ingredients in the compositions in accordance with the present invention may be varied, although the amount of the active ingredients 1 and 2 shall be such that a suitable dosage form is obtained.
- the selected dosage and the selected dosage form shall depend on the desired therapeutic effect, the route of administration and the duration of the treatment. Suitable dosage ranges for the combination are from the maximal tolerated dose for the single agent to lower doses, e.g. to one tenth of the maximal tolerated dose.
- the present invention is illustrated via examples of pharmaceutical compositions comprising a compound 1 of chemical structure (I) in combination with one of the aforementioned combination partners 2, and by in vivo combination studies showing the potency of the combination to inhibit the proliferationn and/or to induce the apoptosis of tumour cells.
- the compound 1 of chemical structure (I) is 4-[[(7R)-8-cyclopentyl-7-ethyl-5,6,7,8-tetrahydro-5-methyl-6-oxo-2-pteridinyl]amino]-3-methoxy-N-(1-methyl-4-piperidinyl)-benzamide, which is a compound of Formula (I) according to the invention (Exemplified compound Nr. 46 in Table 1).
- Exemplified compound Nr. 46 of Table 1 is a potent and selective inhibitor of the serine/threonine kinase PLK-1.
- irinotecan (sold under the Trade name Campto®) is a standard chemotherapeutic agent for treatment of colorectal carcinomas.
- Previous studies have shown that exemplified compound Nr. 46 of Table 1 and irinotecan are active on HCT 116 derived tumors in nude mice. The goal of the present study was to assess the anti-cancer efficacy of suboptimal doses of exemplified compound Nr. 46 of Table 1, irinotecan and the combination of exemplified compound Nr. 46 of Table 1 and irinotecan, in the human colon carcinoma model HCT 116 grown as xenograft in nude mice. Suboptimal doses of both compounds were used to facilitate the detection of additive, synergistic or antagonistic effects.
- Model Human colon carcinoma model HCT 116 grown as subcutaneous xenografts in nude mice.
- Tumor volumes and animal weights were recorded 3 times per week. Evaluation of therapy results was based on the absolute volumes of individual tumors.
- mice were female BomTac:NMRI-nu/nu.
- Exemplified compound Nr. 46 of Table 1 was dissolved in hydrochloric acid (0.1 N) diluted with 0.9% NaCl and injected intravenously into the tail vein.
- irinotecan infusion concentrate was diluted with 0.9% NaCl and injected intraperitoneally.
- the administration volume was 10 ml per kg body weight for both compounds.
- HCT 116 tumors were established from cultured HCT 116 cells. Tumor volumes were determined three times a week using a caliper. The weight of mice was determined as an indicator of tolerability on the same days. Plasma samples were taken on the last treatment day.
- FIG. 1 HCT 116 tumor responses to treatment with 30 mg/kg exemplified compound Nr. 46 of Table 1, 12.5 mg/kg irinotecan or both.
- HCT 116 tumor-bearing mice were treated intravenously with 30 mg/kg exemplified compound Nr. 46 of Table 1 once weekly ((q7d) ⁇ 10), with 12.5 mg/kg irinotecan once weekly ((q7d) ⁇ 10), with both in parallel ((q7d) ⁇ 10) or once weekly with the vehicle only, and median tumor volumes were plotted over time.
- Day 1 was the first day, day 64 the last day of treatment and day 121 the final day of the study.
- the triangles indicate the treatment days.
- FIG. 1 2 Days until HCT 116 tumors reach 1000 mm3 in volume.
- HCT 116 tumor-bearing mice were treated with 30 mg/kg exemplified compound Nr. 46 of Table 1 i.v. once weekly ((q7d) ⁇ 10), with 12.5 mg/kg irinotecan i.p. once weekly ((q7d) ⁇ 10), or a combination of both compounds ((q7d) ⁇ 10) at respective doses. Vehicle treated mice (once weekly) were used as controls.
- Individual days until HCT 116 tumors reach 1000 mm 3 in volume were plotted. Each symbol represents one individual tumor. The horizontal lines represent the mean days.
- FIG. 1 3 Change of body weight in response to treatment with 30 mg/kg exemplified compound Nr. 46 of Table 1, 12.5 mg/kg irinotecan or both.
- HCT 116 tumor-bearing mice were treated intravenously with 30 mg/kg exemplified compound Nr. 46 of Table 1 once weekly ((q7d) ⁇ 10), with 12.5 mg/kg irinotecan once weekly ((q7d) ⁇ 10), with both in parallel ((q7d) ⁇ 10) or once weekly with the vehicle only and average changes of body weight were plotted over time.
- Day 1 was the first day, day 64 the last day of treatment and day 121 the final day of the study.
- the triangles indicate the treatment days.
- the triangles indicate the treatment days.
- mice gained 10.3% body weight.
- mice treated with 30 mg/kg exemplified compound Nr. 46 of Table 1 showed 8.6% body weight increase, mice treated with 12.5 mg/kg irinotecan gained 5.9% body weight in average, and mice treated with the combination gained 5.5.% body weight.
- Treatment with the combination of suboptimal doses of exemplified compound Nr. 46 of Table 1 and irinotecan shows a significant growth delay and a higher efficacy than either of the compounds alone, without a decrease in tolerability.
- Exemplified compound Nr. 46 of Table 1 is a potent and selective inhibitor of the PLK1 serine/threonine kinase.
- Docetaxel (sold under the Trade Name Taxotere®) is a standard chemotherapeutic agent for treatment of lung cancer.
- Previous studies have shown that exemplified compound Nr. 46 of Table 1 is active on nude mice xenografts derived from the human lung cancer cell line NCI-H460. The goal of the present study was to assess the anti-cancer effects of suboptimal doses of exemplified compound Nr. 46 of Table 1 and docetaxel on NCI-H460 tumor growth when administered alone or in combination. Suboptimal doses of both compounds were used to facilitate the detection of additive, synergistic or antagonistic effects.
- Model Human non-small cell lung carcinoma model NCI-H460 grown as subcutaneous xenografts in nude mice.
- Treatment groups (intravenous administration, 10 animals per group): Controls Vehicle, once weekly for 4 weeks ((q7 d) ⁇ 4)
- Exemplified compound Nr. 46 of Table 1 50 mg/kg, once weekly for 4 weeks ((q7 d) ⁇ 4)
- Tumor volumes and animal weights were recorded 3 times per week. Evaluation of therapy results was based on the absolute volumes of individual tumors.
- mice were female BomTac:NMRI-nu/nu. Exemplified compound Nr. 46 of Table 1 was dissolved in hydrochloric acid (0.1 N) diluted with 0.9% NaCl and injected intravenously into the tail vein. Docetaxel infusion concentrate was diluted with 0.9% NaCl and injected intravenously. The administration volume was 10 ml per kg body weight.
- NCI-H460 tumors were established from cultured NCI-H460 cells. Tumor volumes were determined three times a week using a caliper. The weight of mice was determined as an indicator of tolerability on the same days. Plasma samples were taken on the last treatment day.
- FIG. 2 1 NCI-H460 tumor responses to treatment with 50 mg/kg exemplified compound Nr. 46 of Table 1, 15 mg/kg Docetaxel or both.
- NCI-H460 tumor-bearing mice were treated intravenously with 50 mg/kg exemplified compound Nr. 46 of Table 1 once weekly ((q7d) ⁇ 4), with 15 mg/kg Docetaxel once weekly ((q7d) ⁇ 4), with both in parallel or once weekly with the vehicle only, and median tumor volumes were plotted over time.
- Day 1 was the first day, day 25 the last day of treatment and day 43 the last day of the calculation of the median tumor volume.
- the triangles indicate the treatment days.
- FIG. 2 Days until NCI-H460 tumors reach 1000 mm 3 in volume.
- NCI-H460 tumor-bearing mice were treated with 50 mg/kg exemplified compound Nr. 46 of Table 1 i.v. once weekly ((q7d) ⁇ 4), with 15 mg/kg Docetaxel i.v. once weekly ((q7d) ⁇ 4), or a combination of both compounds at the same doses. Vehicle treated mice (once weekly) were used as controls.
- Individual days until NCI-H460 tumors reach 1000 mm 3 in volume were plotted. Each symbol represents one individual tumor. The horizontal lines represent the median days.
- Docetaxel significantly delays tumor growth (T/C 42%, p ⁇ 0.05).
- the difference to the single treatment with exemplified compound Nr. 46 of Table 1 is also significant (p ⁇ 0.01), indicating that the two agents might act at least additively.
- Exemplified compound Nr. 46 of Table 1 is a potent and selective inhibitor of the serine/threonine kinase PLK1.
- Gemcitabine (sold under the Trade Name Gemzar®) is a standard chemotherapeutic agent for treatment of pancreatic adenocarcinomas .
- the goal of the present study was to assess the anti-cancer efficacy of suboptimal doses of exemplified compound Nr. 46 of Table 1, gemcitabine and their combination in the human pancreas adenocarcinoma model BxPC-3 grown as xenograft in nude mice. Suboptimal doses of both compounds were used to facilitate the detection of additive, synergistic or antagonistic effects.
- Model Human adenocarcinoma model BxPC-3 grown as subcutaneous xenografts in nude mice.
- Tumor volumes and animal weights were recorded 3 times per week. Evaluation of therapy results was based on the absolute volumes of individual tumors.
- mice were female BomTac:NMRI-nu/nu.
- Exemplified compound Nr. 46 of Table 1 was dissolved in hydrochloric acid (0.1 N) diluted with 0.9% NaCl and injected intravenously into the tail vein.
- Gemcitabin infusion concentrate was diluted with 0.9% NaCl and injected intraperitoneally.
- the administration volume was 10 ml per kg body weight for both compounds.
- BxPC-3 tumours were established from cultured BxPC-3. Tumour volumes were determined three times a week using a calliper. The weight of mice was determined as an indicator of tolerability on the same days. Plasma samples were taken on the last treatment day.
- FIG. 3 1 BxPC-3 tumor responses to treatment with 50 mg/kg exemplified compound Nr. 46 of Table 1, 100 mg/kg gemcitabine or both.
- BxBC-3 tumor-bearing mice were treated intravenously with 50 mg/kg exemplified compound Nr. 46 of Table 1 once weekly ((q7d) ⁇ 6), with 100 mg/kg gemcitabine once weekly ((q7d) ⁇ 6), with both in parallel or once weekly with the vehicle only, and median tumour volumes were plotted over time.
- Day 1 was the first day, day 36 the last day of treatment and day 26 the last day of the calculation of the median tumour volume.
- FIG. 3 2 Change of body weight in response to treatment with 50 mg/kg exemplified compound Nr. 46 of Table 1, 100 mg/kg gemcitabine or both.
- BxPC-3 tumour-bearing mice were treated intravenously with 50 mg/kg exemplified compound Nr. 46 of Table 1 once weekly ((q7d) ⁇ 6), with 100 mg/kg gemcitabine once weekly ((q7d) ⁇ 6), with both in parallel or once weekly with the vehicle only and average changes of body weight were plotted over time.
- Day 1 was the first day, day 36 the last day of treatment and day 43 the last day of the calculation of the median body weights.
- the triangles indicate the treatment days.
- a combined administration of 50 mg/kg exemplified compound Nr. 46 of Table 1 and of 100 mg/kg gemcitabine delays tumour growth to the same extend as exemplified compound Nr. 46 of Table 1 alone (T/C 24%).
- mice 50 mg/kg exemplified compound Nr. 46 of Table 1, 100 mg/kg gemcitabine and their combination were well tolerated. Control mice gained 6.2% body weight. Mice treated with 50 mg/kg exemplified compound Nr. 46 of Table 1 showed 8.2% body weight increase, mice treated with 100 mg/kg gemcitabine gained 8.8% in average and mice treated with the combination gained 8.5.% body weight.
- a compound of Formula (A1) is reacted with a compound of Formula (A2) to obtain a compound of Formula (A3) (Diagram 1A).
- This reaction may be carried out according to WO 00/43369 or WO 00/43372.
- Compound (A1) is commercially obtainable, for example, from City Chemical LLC, 139 Allings Crossing Road, West Haven, Conn., 06516, USA.
- Compound (A2) may be prepared by procedures known from the literature: (a) F. Effenberger, U. Burkhart, J. Willfahrt Liebigs Ann. Chem. 1986, 314-333; (b) T. Fukuyama, C.-K. Jow, M. Cheung, Tetrahedron Lett.
- Step 1A 1 equivalent of the compound (A1) and 1 to 1.5 equivalents, preferably 1.1 equivalents of a base, preferably potassium carbonate, potassium hydrogen carbonate, sodium carbonate or sodium hydrogen carbonate, calcium carbonate, most preferably potassium carbonate, are stirred in a diluent optionally mixed with water, for example acetone, tetrahydrofuran, diethylether, cyclohexane, petroleum ether or dioxane, preferably cyclohexane or diethylether.
- a base preferably potassium carbonate, potassium hydrogen carbonate, sodium carbonate or sodium hydrogen carbonate, calcium carbonate, most preferably potassium carbonate
- Step 2A The compound obtained in Step 1A (A3) is reduced at the nitro group and cyclised to form the compound of Formula (A4) (Diagram 2A).
- Step 2A 1 equivalent of the nitro compound (A3) is dissolved in an acid, preferably glacial acetic acid, formic acid or hydrochloric acid, preferably glacial acetic acid, and heated to 50 to 70° C., preferably about 60° C. Then a reducing agent, for example zinc, tin or iron, preferably iron filings, is added to complete the exothermic reaction and the mixture is stirred for 0.2 to 2 hours, preferably 0.5 hours, at 100 to 125° C., preferably at about 117° C. After cooling to ambient temperature the iron salt is filtered off and the solvent is distilled off.
- an acid preferably glacial acetic acid, formic acid or hydrochloric acid, preferably glacial acetic acid
- a reducing agent for example zinc, tin or iron, preferably iron filings
- the residue is taken up in a solvent or mixture of solvents, for example ethyl acetate or dichloromethane/methanol 9/1 and semisaturated NaCl solution, and filtered through kieselgur, for example.
- the organic phase is dried and evaporated down.
- the residue (compound (A4)) may be purified by chromatography or by crystallisation or used as the crude product in Step 3A of the synthesis.
- Step 2A (A4) may be reacted by electrophilic substitution as shown in Diagram 3A to obtain the compound of Formula (A5).
- Step 3A 1 equivalent of the amide of Formula (A4) is dissolved in an organic solvent, for example dimethylformamide or dimethylacetamide, preferably dimethylacetamide, and cooled to about ⁇ 5 to 5° C., preferably 0° C.
- organic solvent for example dimethylformamide or dimethylacetamide, preferably dimethylacetamide
- 0.9 to 1.3 equivalents of sodium hydride and 0.9 to 1.3 equivalents of a methylating reagent, e.g. methyl iodide, are added.
- the reaction mixture is stirred for 0.1-3 hours, preferably about 1 hour, at about 0 to 10° C., preferably at about 5° C., and may optionally be left to stand for a further 12 hours at this temperature.
- the reaction mixture is poured onto ice water and the precipitate is isolated.
- the residue (compound (A5)) may be purified by chromatography, preferably over silica gel, or by crystallisation, or used as the crude product in step 4A of the synthesis.
- the amination of the compound (A5) obtained in Step 3A to yield the compound of Formula (A9) may be carried out using the methods known from the literature, for variants 4.1 A from e.g. (a) M. P. V. Boariand, J. F. W. McOmie J. Chem. Soc. 1951, 1218-1221 or (b) F. H. S. Curd, F. C. Rose J. Chem. Soc. 1946, 343-348, for variants 4.2 A from e.g. (a) Banks J. Am. Chem. Soc. 1944, 66, 1131, (b) Ghosh and Dolly J. Indian Chem. Soc. 1981, 58, 512-513 or (c) N. P. Reddy and M. Tanaka Tetrahedron Lett. 1997, 38, 4807-4810.
- 1 equivalent of the compound (A5) and 1 to 3 equivalents, preferably about 2 equivalents of the compound (A6) are heated without a solvent or in an organic solvent such as for example sulpholane, dimethylformamide, dimethylacetamide, toluene, N-methylpyrrolidone, dimethylsulphoxide or dioxane, preferably sulpholane, for 0.1 to 4 hours, preferably 1 hour, at 100 to 220° C., preferably at about 160° C.
- the product (A9) is crystallised by the addition of organic solvents or mixtures of solvents, e.g. diethylether/methanol, ethyl acetate, methylene chloride, or diethylether, preferably diethylether/methanol 9/1, or purified by chromatography.
- a solvent for example toluene or dioxane and combined with a phosphine ligand, for example 2,2′-bis-(diphenylphosphino)-1,1′-binaphthyl and a palladium catalyst, for example tris(dibenzylidene-acetone)-dipalladium(0) and a base, for example caesium carbonate, and refluxed for 1-24 h, preferably 17 h.
- the reaction mixture is purified for example over silica gel and the product (A8) is isolated from the solution or obtained by suitable crystallisation.
- the product (A8) is dissolved in a suitable solvent, for example dioxane and mixed with acid, for example semiconcentrated hydrochloric acid, for example in the ratio of solvent to acid of 3:1. Then the mixture is refluxed for 1-48 h, for example 12 h, and the precipitate formed is isolated. If desired the product (A9) is purified by crystallisation. Step 5A
- 1 equivalent of the compound (A9) is dissolved with 1 equivalent of an activating reagent, e.g. O-benzotriazolyl-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU) and a base, for example 1.5 equivalents of diisopropylethylamine (DIPEA) in an organic diluent, for example dichloromethane, tetrahydrofuran, dimethylformamide, N-methylpyrrolidone, dimethylacetamide, preferably dichloromethane or dimethylformamide.
- an activating reagent e.g. O-benzotriazolyl-N,N,N′,N′-tetramethyluronium tetrafluoroborate (TBTU)
- DIPEA diisopropylethylamine
- organic diluent for example dichloromethane, tetrahydrofuran, dimethylformamide, N-methylpyrrolidon
- the compounds of general Formula (I) may be synthesised analogously to the following examples of synthesis.
- the numbering of the Examples corresponds to the numbering used in Table 1.
- Example 188 To synthesise the compounds Example 188 and Example 203 of Table 1, first of all an intermediate compound Z2 is prepared as described below.
- 1,1-dimethyl-2-dimethylamino-1-yl-ethylamine and 1,1 -dimethyl-2-piperidin-1-yl-ethylamine may be obtained as follows.
- the compounds may be prepared according to the following references: (a) S. Schuetz et al. Arzneistoff - Anlagen 1971, 21, 739-763, (b) V. M. Belikov et al. Tetrahedron 1970, 26, 1199-1216 and (c) E. B. Butler and McMillan J. Amer. Chem. Soc. 1950, 72, 2978. Z8
- trans-dibenzyl-4-morpholino-cyclohexylamine may be prepared by the following method:
- the cis isomer may be prepared analogously.
- the cis isomer may be prepared analogously.
- the cis isomer may be prepared analogously.
- the faster eluting cis compound crystallised from ethyl acetate.
- the trans-compound is crystallised from ethanol+concentrated HCl. Yield: 8.5 g (61%) cis-isomer and 2.2 (13%) trans-isomer.
- the trans-isomer may be prepared analogously.
- Example 232 60 mg of the compound of Example 232 is dissolved in 10 mL ethyl acetate and stirred with 1 mL of acetic anhydride and 1 mL of triethylamine for 30 min. at RT. The solvent is eliminated in vacuo, the residue combined with water and ammonia, the crystals precipitated are suction filtered and washed with water and a little cold acetone. Yield: 40 mg.
Landscapes
- Health & Medical Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Veterinary Medicine (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Animal Behavior & Ethology (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Epidemiology (AREA)
- Immunology (AREA)
- Diabetes (AREA)
- Rheumatology (AREA)
- Dermatology (AREA)
- Heart & Thoracic Surgery (AREA)
- Pain & Pain Management (AREA)
- Ophthalmology & Optometry (AREA)
- Transplantation (AREA)
- Emergency Medicine (AREA)
- Endocrinology (AREA)
- Hematology (AREA)
- Obesity (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Cardiology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Physical Education & Sports Medicine (AREA)
- Oncology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/437,280 US8143247B2 (en) | 2004-08-14 | 2009-05-07 | Combinations for the treatment of diseases involving cell proliferation |
US13/342,507 US8591895B2 (en) | 2004-08-14 | 2012-01-03 | Combinations for the treatment of diseases involving cell proliferation |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04019361 | 2004-08-14 | ||
EP04019361 | 2004-08-14 | ||
EP04019448 | 2004-08-17 | ||
EP04019448 | 2004-08-17 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/437,280 Continuation US8143247B2 (en) | 2004-08-14 | 2009-05-07 | Combinations for the treatment of diseases involving cell proliferation |
Publications (1)
Publication Number | Publication Date |
---|---|
US20060058311A1 true US20060058311A1 (en) | 2006-03-16 |
Family
ID=35241347
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/189,540 Abandoned US20060058311A1 (en) | 2004-08-14 | 2005-07-26 | Combinations for the treatment of diseases involving cell proliferation |
US12/437,280 Active 2026-03-15 US8143247B2 (en) | 2004-08-14 | 2009-05-07 | Combinations for the treatment of diseases involving cell proliferation |
US13/342,507 Active US8591895B2 (en) | 2004-08-14 | 2012-01-03 | Combinations for the treatment of diseases involving cell proliferation |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US12/437,280 Active 2026-03-15 US8143247B2 (en) | 2004-08-14 | 2009-05-07 | Combinations for the treatment of diseases involving cell proliferation |
US13/342,507 Active US8591895B2 (en) | 2004-08-14 | 2012-01-03 | Combinations for the treatment of diseases involving cell proliferation |
Country Status (26)
Country | Link |
---|---|
US (3) | US20060058311A1 (el) |
EP (2) | EP1827441B1 (el) |
JP (1) | JP5043660B2 (el) |
KR (1) | KR101258426B1 (el) |
CN (1) | CN101039673B (el) |
AR (1) | AR050521A1 (el) |
AT (1) | ATE512663T1 (el) |
AU (1) | AU2005274384B2 (el) |
BR (1) | BRPI0514357A (el) |
CA (1) | CA2576269C (el) |
CY (1) | CY1112200T1 (el) |
DK (2) | DK2275107T3 (el) |
ES (1) | ES2602465T3 (el) |
HR (1) | HRP20110578T1 (el) |
HU (1) | HUE032436T2 (el) |
IL (1) | IL181305A (el) |
ME (1) | ME01209B (el) |
MX (2) | MX2007001853A (el) |
NZ (1) | NZ553729A (el) |
PL (2) | PL2275107T3 (el) |
PT (1) | PT1827441E (el) |
RS (1) | RS51807B (el) |
RU (2) | RU2407532C9 (el) |
SI (1) | SI1827441T1 (el) |
TW (2) | TWI361071B (el) |
WO (1) | WO2006018182A1 (el) |
Cited By (59)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040053882A1 (en) * | 2000-05-18 | 2004-03-18 | Smith Mark Peart | Combination chemotherapy |
US20050014761A1 (en) * | 2003-02-26 | 2005-01-20 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Intermediate compounds for making dihydropteridinones useful as pharmaceutical compositions |
US20060009457A1 (en) * | 2004-07-09 | 2006-01-12 | Boehringer Ingelheim International Gmbh | New pyridodihydropyrazinones, process for their manufacture and use thereof as medicaments |
US20060035902A1 (en) * | 2004-08-14 | 2006-02-16 | Boehringer Ingelheim International Gmbh | Hydrates and polymorphs of 4-[[(7R)-8-cyclopentyl-7-ethyl-5,6,7,8-tetrahydro-5-methyl-6-oxo-2-pteridinyl]amino]-3-methoxy-N-(1-methyl-4-piperidinyl)-benzamide, process for their manufacture and their use as medicament |
US20060046989A1 (en) * | 2004-08-25 | 2006-03-02 | Boehringer Ingelheim International Gmbh | New dihydropteridione derivatives, process for their manufacture and their use as medicament |
US20060074088A1 (en) * | 2004-08-14 | 2006-04-06 | Boehringer Ingelheim International Gmbh | Dihydropteridinones for the treatment of cancer diseases |
US20070004720A1 (en) * | 2003-10-30 | 2007-01-04 | Birgit Jung | Use of tyrosine kinase inhibitors for the treatment of inflammatory processes |
US20070027170A1 (en) * | 2003-10-17 | 2007-02-01 | Rainer Soyka | Process for preparing amino crotonyl compounds |
US20070208027A1 (en) * | 2004-12-02 | 2007-09-06 | Adil Duran | Intermediate compounds for the manufacture of fused piperazin-2-one derivatives |
US20070232819A1 (en) * | 2004-09-14 | 2007-10-04 | Ales Franc | Oral Pharmaceutical Composition for Targeted Transport of a Platinum Complex Into the Colorectal Region, Method for Producing and Use as Medicament Thereof |
US20080009482A1 (en) * | 2006-07-06 | 2008-01-10 | Astrazeneca Ab | Novel compounds |
US20080108812A1 (en) * | 2004-08-25 | 2008-05-08 | Matthias Grauert | Dihydropteridione Intermediate Compounds |
US20080177066A1 (en) * | 2004-08-14 | 2008-07-24 | Boehringer Ingelheim International Gmbh | Process for the manufacture of dihydropteridinones |
US20080254040A1 (en) * | 2003-04-29 | 2008-10-16 | Boehringer Ingelheim International Gmbh | Combinations for the treatment of diseases involving cell proliferation, migration or apoptosis of myeloma cells or angiogenesis |
US20090030004A1 (en) * | 2006-02-08 | 2009-01-29 | Guenter Linz | Specific salt, anhydrous and crystalline form of a dihydropteridione derivative |
US20090124628A1 (en) * | 2004-06-21 | 2009-05-14 | Boehringer Ingelheim International Gmbh | 2-benzylaminodihydropteridinones, process for their manufacture and use thereof as medicaments |
US20090143379A1 (en) * | 2004-08-14 | 2009-06-04 | Boehringer Ingelheim International Gmbh | Storage stable perfusion solution for dihydropteridinones |
US20090197854A1 (en) * | 2006-11-06 | 2009-08-06 | Poniard Pharmaceuticals, Inc. | Use of picoplatin to treat colorectal cancer |
US20090238828A1 (en) * | 2004-08-14 | 2009-09-24 | Boehringer Ingelheim International Gmbh | Combinations for the Treatment of Diseases involving Cell Proliferation |
US20090275549A1 (en) * | 2006-11-06 | 2009-11-05 | Poniard Pharmaceuticals, Inc. | Use of picoplatin to treat colorectal cancer |
US20090306378A1 (en) * | 2006-01-26 | 2009-12-10 | Juergen Schroeder | Process for preparing aminocrotonylamino-substituted quinazoline derivatives |
US20090306044A1 (en) * | 2005-11-11 | 2009-12-10 | Flavio Solca | Quinazoline derivatives for the treatment of cancer diseases |
US20090306101A1 (en) * | 2005-11-11 | 2009-12-10 | Flavio Solca | Combination treatment of cancer comprising egfr/her2 inhibitors |
US20090318480A1 (en) * | 2006-09-18 | 2009-12-24 | Boehringer Ingelheim International Gmbh | Method for treating cancer harboring egfr mutations |
US20100010023A1 (en) * | 2000-12-20 | 2010-01-14 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Quinazoline derivatives and pharmaceutical compositions containing them |
US20100069414A1 (en) * | 1999-06-21 | 2010-03-18 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Bicyclic heterocycles, pharmaceutical compositions containing these compounds, their use and processes for preparing them |
US20100144639A1 (en) * | 2002-05-11 | 2010-06-10 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Use of inhibitors of the egfr-mediated signal transduction for the treatment of benign prostatic hyperplasia (bph) / prostatic hypertrophy |
US20100178328A1 (en) * | 2007-06-27 | 2010-07-15 | Poniard Pharmaceuticals, Inc. | Combination therapy for ovarian cancer |
US20100260832A1 (en) * | 2007-06-27 | 2010-10-14 | Poniard Pharmaceuticals, Inc. | Combination therapy for ovarian cancer |
US20100280037A1 (en) * | 2007-08-03 | 2010-11-04 | Boehringer Ingelheim International Gmbh | Crystalline form of a dihydropteridione derivative |
US20100310661A1 (en) * | 2007-07-16 | 2010-12-09 | Poniard Pharmaceuticals, Inc. | Oral formulations for picoplatin |
US20110033528A1 (en) * | 2009-08-05 | 2011-02-10 | Poniard Pharmaceuticals, Inc. | Stabilized picoplatin oral dosage form |
US20110052581A1 (en) * | 2008-02-08 | 2011-03-03 | Poniard Pharmaceuticals Inc. | Use of picoplatin and cetuximab to treat colorectal cancer |
US20110142929A1 (en) * | 2008-06-06 | 2011-06-16 | Boehringer Ingelheim International Gmbh | Solid pharmaceutical formulations comprising bibw 2992 |
US20110160160A1 (en) * | 2007-08-15 | 2011-06-30 | The Research Foundation Of State University Of New York | Methods for heat shock protein dependent cancer treatment |
WO2012027445A1 (en) | 2010-08-26 | 2012-03-01 | Boehringer Ingelheim International Gmbh | Methods of administering an egfr inhibitor |
US8168662B1 (en) | 2006-11-06 | 2012-05-01 | Poniard Pharmaceuticals, Inc. | Use of picoplatin to treat colorectal cancer |
US8173686B2 (en) | 2006-11-06 | 2012-05-08 | Poniard Pharmaceuticals, Inc. | Use of picoplatin to treat colorectal cancer |
EP2457913A3 (en) * | 2006-10-19 | 2012-08-15 | Signal Pharmaceuticals LLC | Heteroaryl compounds, compositions thereof, and methods of treatment therewith |
US8546566B2 (en) | 2010-10-12 | 2013-10-01 | Boehringer Ingelheim International Gmbh | Process for manufacturing dihydropteridinones and intermediates thereof |
US8828391B2 (en) | 2011-05-17 | 2014-09-09 | Boehringer Ingelheim International Gmbh | Method for EGFR directed combination treatment of non-small cell lung cancer |
US9045445B2 (en) | 2010-06-04 | 2015-06-02 | Albany Molecular Research, Inc. | Glycine transporter-1 inhibitors, methods of making them, and uses thereof |
US9139558B2 (en) | 2007-10-17 | 2015-09-22 | Wyeth Llc | Maleate salts of (E)-N-{4-[3-Chloro-4-(2-pyridinylmethoxy)anilino]-3-cyano-7-ethoxy-6-quinolinyl}-4-(dimethylamino)-2-butenamide and crystalline forms thereof |
US9211291B2 (en) | 2009-04-06 | 2015-12-15 | Wyeth Llc | Treatment regimen utilizing neratinib for breast cancer |
US9242965B2 (en) | 2013-12-31 | 2016-01-26 | Boehringer Ingelheim International Gmbh | Process for the manufacture of (E)-4-N,N-dialkylamino crotonic acid in HX salt form and use thereof for synthesis of EGFR tyrosine kinase inhibitors |
US9265784B2 (en) | 2008-08-04 | 2016-02-23 | Wyeth Llc | Antineoplastic combinations of 4-anilino-3-cyanoquinolines and capecitabine |
US9309228B2 (en) | 2012-07-19 | 2016-04-12 | Boehringer Ingelheim International Gmbh | Fumaric acid salt of 9-[4-(3-chloro-2-fluoro-phenylamino)-7-methoxy-quinazolin-6-yloxy]-1,4-diaza-spiro[5.5]undecan-5-one, its use as a medicament and the preparation thereof |
US9358233B2 (en) | 2010-11-29 | 2016-06-07 | Boehringer Ingelheim International Gmbh | Method for treating acute myeloid leukemia |
US9370535B2 (en) | 2011-05-17 | 2016-06-21 | Boehringer Ingelheim International Gmbh | Method for treatment of advanced solid tumors |
US9511063B2 (en) | 2008-06-17 | 2016-12-06 | Wyeth Llc | Antineoplastic combinations containing HKI-272 and vinorelbine |
US9545381B2 (en) | 2009-07-06 | 2017-01-17 | Boehringer Ingelheim International Gmbh | Process for drying of BIBW2992, of its salts and of solid pharmaceutical formulations comprising this active ingredient |
US9867831B2 (en) | 2014-10-01 | 2018-01-16 | Boehringer Ingelheim International Gmbh | Combination treatment of acute myeloid leukemia and myelodysplastic syndrome |
US9956225B2 (en) | 2013-07-26 | 2018-05-01 | Boehringer Ingelheim International Gmbh | Treatment of myelodysplastic syndrome |
US10105323B2 (en) | 2008-06-06 | 2018-10-23 | Boehringer Ingelheim International Gmbh | Pharmaceutical dosage form for immediate release of an indolinone derivative |
US10596162B2 (en) | 2005-02-03 | 2020-03-24 | Wyeth Llc | Method for treating gefitinib resistant cancer |
US10729672B2 (en) | 2005-11-04 | 2020-08-04 | Wyeth Llc | Antineoplastic combinations with mTOR inhibitor, trastuzumab and/or HKI-272 |
US11434291B2 (en) | 2019-05-14 | 2022-09-06 | Provention Bio, Inc. | Methods and compositions for preventing type 1 diabetes |
US12006366B2 (en) | 2020-06-11 | 2024-06-11 | Provention Bio, Inc. | Methods and compositions for preventing type 1 diabetes |
US12053449B2 (en) | 2017-05-16 | 2024-08-06 | Ability Pharmaceuticals S.L. | Pharmaceutical combination for the treatment of a cancer |
Families Citing this family (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090014393A (ko) * | 2006-05-26 | 2009-02-10 | 셀진 코포레이션 | 조합 요법에서 면역조절 화합물을 사용하는 방법 및 조성물 |
EP2102210B1 (en) | 2006-12-14 | 2011-02-09 | Vertex Pharmceuticals Incorporated | Compounds useful as protein kinase inhibitors |
AU2016225895B2 (en) * | 2007-10-17 | 2018-02-08 | Wyeth Llc | Maleate salts of (E)-N-{4-[3-chloro-4-(2-pyridinylmethoxy)anilino]-3-cyano-7-ethoxy-6-quinolinyl} -4-)dimethylamino)-2-butenamide and crystalline forms thereof |
EP2100894A1 (en) | 2008-03-12 | 2009-09-16 | 4Sc Ag | Pyridopyrimidines used as Plk1 (polo-like kinase) inhibitors |
LT2985025T (lt) * | 2008-06-06 | 2018-04-10 | Boehringer Ingelheim International Gmbh | Farmacinis derinys |
UA107560C2 (uk) * | 2008-06-06 | 2015-01-26 | Фармацевтична лікарська форма для негайного вивільнення похідної індолінону | |
US20110301177A1 (en) | 2008-06-06 | 2011-12-08 | Boehringer Ingelheim International Gmbh | Capsule pharmaceutical dosage form comprising a suspension formulation of an indolinone derivative |
AU2015227503B2 (en) * | 2008-06-06 | 2017-02-23 | Boehringer Ingelheim International Gmbh | Capsule pharmaceutical dosage form comprising a suspension formulation of an indolinone derivative |
AU2009271658B2 (en) * | 2008-06-23 | 2014-04-10 | Vertex Pharmaceuticals Incorporated | Protein kinase inhibitors |
CA2744031A1 (en) * | 2008-11-21 | 2010-05-27 | Isis Pharmaceuticals, Inc. | Anticancer combination comprising docetaxel and an antisense oligonucleotide |
WO2010064422A1 (ja) * | 2008-12-02 | 2010-06-10 | 静岡県公立大学法人 | ヒストン高アセチル化状態における光増感処理による腫瘍殺傷法 |
KR101224468B1 (ko) * | 2009-05-20 | 2013-01-23 | 주식회사 파멥신 | 신규한 형태의 이중표적항체 및 그 용도 |
NZ598078A (en) * | 2009-08-10 | 2013-07-26 | Univ Texas | Treatment of brain metastases with macitentan in combination with paclitacel and/or temozolomide and/or radiotherapy |
JO3002B1 (ar) | 2009-08-28 | 2016-09-05 | Irm Llc | مركبات و تركيبات كمثبطات كيناز بروتين |
CN102020643A (zh) | 2009-09-22 | 2011-04-20 | 上海恒瑞医药有限公司 | 二氢喋啶酮类衍生物、其制备方法及其在医药上的应用 |
WO2011049625A1 (en) | 2009-10-20 | 2011-04-28 | Mansour Samadpour | Method for aflatoxin screening of products |
PL2496567T3 (pl) | 2009-11-05 | 2018-01-31 | Rhizen Pharmaceuticals S A | Nowe benzopiranowe modulatory kinazy |
WO2011097333A1 (en) * | 2010-02-03 | 2011-08-11 | Signal Pharmaceuticals, Llc | Identification of lkb1 mutation as a predictive biomarker for sensitivity to tor kinase inhibitors |
EP2536725B1 (en) * | 2010-02-17 | 2015-10-28 | Boehringer Ingelheim International GmbH | Dihydropteridinones, method for production and use thereof |
WO2011143657A1 (en) | 2010-05-14 | 2011-11-17 | Dana-Farber Cancer Institute, Inc. | Male contraceptive compositions and methods of use |
BR122014024883A2 (pt) | 2010-05-14 | 2019-08-20 | Dana-Farber Cancer Institute, Inc. | Compostos no tratamento de neoplasia |
EP2569434B1 (en) | 2010-05-14 | 2019-09-04 | Dana-Farber Cancer Institute, Inc. | Compositions and methods for treating leukemia and related disorders |
EP2569011A4 (en) * | 2010-05-14 | 2013-06-12 | Univ Hong Kong | ANTIBODIES AGAINST GEP AND APPLICATIONS THEREOF |
WO2012079075A1 (en) | 2010-12-10 | 2012-06-14 | Concert Pharmaceuticals, Inc. | Deuterated phthalimide derivatives |
AR085406A1 (es) | 2011-02-25 | 2013-09-25 | Takeda Pharmaceutical | Oxazinopteridinas y oxazinopteridinonas n-sustituidas |
SG194718A1 (en) | 2011-05-04 | 2013-12-30 | Rhizen Pharmaceuticals Sa | Novel compounds as modulators of protein kinases |
US20130131069A1 (en) * | 2011-05-13 | 2013-05-23 | Boehringer Ingelheim International Gmbh | Method for treatment of solid malignancies including advanced or metastatic solid malignancies |
WO2013130849A1 (en) | 2012-02-29 | 2013-09-06 | Concert Pharmaceuticals, Inc. | Substituted dioxopiperidinyl phthalimide derivatives |
US9249093B2 (en) | 2012-04-20 | 2016-02-02 | Concert Pharmaceuticals, Inc. | Deuterated rigosertib |
ES2647416T3 (es) | 2012-07-04 | 2017-12-21 | Rhizen Pharmaceuticals S.A. | Inhibidores de PI3K delta selectivos |
ES2941477T3 (es) | 2012-08-13 | 2023-05-23 | Univ Rockefeller | Agonista de LXRbeta para el tratamiento de cáncer |
AU2013203714B2 (en) | 2012-10-18 | 2015-12-03 | Signal Pharmaceuticals, Llc | Inhibition of phosphorylation of PRAS40, GSK3-beta or P70S6K1 as a marker for TOR kinase inhibitory activity |
EP2922838B1 (en) | 2012-10-22 | 2018-03-14 | Concert Pharmaceuticals Inc. | Solid forms of {s-3-(4-amino-1-oxo-isoindolin-2-yl)(piperidine-3,4,4,5,5-d5)-2,6-dione} . |
WO2014110322A2 (en) | 2013-01-11 | 2014-07-17 | Concert Pharmaceuticals, Inc. | Substituted dioxopiperidinyl phthalimide derivatives |
US9714946B2 (en) | 2013-03-14 | 2017-07-25 | Dana-Farber Cancer Institute, Inc. | Bromodomain binding reagents and uses thereof |
CN105392499B (zh) | 2013-04-17 | 2018-07-24 | 西格诺药品有限公司 | 用于治疗癌症的包含tor激酶抑制剂和胞苷类似物的组合疗法 |
KR102221029B1 (ko) | 2013-04-17 | 2021-02-26 | 시그날 파마소티칼 엘엘씨 | 디하이드로피라지노-피라진을 사용한 암의 치료 |
KR102459285B1 (ko) | 2013-04-17 | 2022-10-27 | 시그날 파마소티칼 엘엘씨 | 1-에틸-7-(2-메틸-6-(1H-1,2,4-트리아졸-3-일)피리딘-3-일)-3,4-디하이드로피라지노[2,3-b]피라진-2(1H)-온에 관한 약학 제제, 제조방법, 고체 형태 및 사용 방법 |
UA119538C2 (uk) | 2013-04-17 | 2019-07-10 | Сігнал Фармасьютікалз, Елелсі | Лікування злоякісної пухлини дигідропіразинопіразинами |
US9474757B2 (en) | 2013-04-17 | 2016-10-25 | Signal Pharmaceuticals, Llc | Methods for treating cancer using TOR kinase inhibitor combination therapy |
TW201521725A (zh) | 2013-04-17 | 2015-06-16 | Signal Pharm Llc | 使用tor激酶抑制劑組合療法以治療癌症之方法 |
AU2014254058B2 (en) | 2013-04-17 | 2019-06-06 | Signal Pharmaceuticals, Llc | Combination therapy comprising a Dihydropyrazino-Pyrazine Compound and an androgen receptor antagonist for treating prostate cancer |
CN107474051B (zh) | 2013-05-29 | 2020-10-30 | 西格诺药品有限公司 | 二氢吡嗪并吡嗪化合物的药物组合物、其固体形式和它们的用途 |
RU2016105108A (ru) | 2013-07-25 | 2017-08-30 | Дана-Фарбер Кэнсер Инститьют, Инк. | Ингибиторы факторов транскрипции и их применение |
CN105407893A (zh) * | 2013-07-26 | 2016-03-16 | 勃林格殷格翰国际有限公司 | 伏拉塞替与地西他滨组合用于急性骨髓性白血病和骨髓增生异常综合征的治疗ii |
JP2016525531A (ja) * | 2013-07-26 | 2016-08-25 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | 急性骨髄性白血病及び骨髄異形成症候群の処置のためのアザシチジンと組み合わせたボラセルチブ |
RU2016122654A (ru) | 2013-11-08 | 2017-12-14 | Дана-Фарбер Кэнсер Инститьют, Инк. | Комбинированная терапия злокачественной опухоли с использованием ингибиторов бромодоменового и экстратерминального (вет) белка |
TW201620904A (zh) | 2014-01-09 | 2016-06-16 | 武田藥品工業有限公司 | 氮雜吲哚衍生物 |
JP2017504651A (ja) | 2014-01-31 | 2017-02-09 | ダナ−ファーバー キャンサー インスティテュート, インコーポレイテッド | ジアゼパン誘導体の使用 |
CN105939607A (zh) * | 2014-01-31 | 2016-09-14 | 达纳-法伯癌症研究所股份有限公司 | 二氢蝶啶酮衍生物及其用途 |
US9695172B2 (en) | 2014-01-31 | 2017-07-04 | Dana-Farber Cancer Institute, Inc. | Diazepane derivatives and uses thereof |
KR20160115953A (ko) | 2014-01-31 | 2016-10-06 | 다나-파버 캔서 인스티튜트 인크. | 디아미노피리미딘 벤젠술폰 유도체 및 그의 용도 |
SG11201607108XA (en) | 2014-02-28 | 2016-09-29 | Tensha Therapeutics Inc | Treatment of conditions associated with hyperinsulinaemia |
NZ714742A (en) | 2014-04-16 | 2017-04-28 | Signal Pharm Llc | Solid forms of 1-ethyl-7-(2-methyl-6-(1h-1,2,4-triazol-3-yl)pyridin-3-yl)-3,4-dihydropyrazino[2,3-b]pyrazin-2(1h)-one, compositions thereof and methods of their use |
WO2015160880A1 (en) | 2014-04-16 | 2015-10-22 | Signal Pharmaceuticals, Llc | SOLID FORMS COMPRISING 1-ETHYL-7-(2-METHYL-6-(1H-1,2,4-TRIAZOL-3-YL) PYRIDIN-3-YL)-3,4-DIHYDROPYRAZINO(2,3-b)PYRAZIN-2(1H)-ONE, AND A COFORMER, COMPOSITIONS AND METHODS OF USE THEREOF |
CA2955074A1 (en) | 2014-08-08 | 2016-02-11 | Dana-Farber Cancer Institute, Inc. | Diazepane derivatives and uses thereof |
JP2017525759A (ja) | 2014-08-08 | 2017-09-07 | ダナ−ファーバー キャンサー インスティテュート, インコーポレイテッド | ジヒドロプテリジノン誘導体およびその使用 |
AU2015339511B2 (en) | 2014-10-27 | 2020-05-14 | Tensha Therapeutics, Inc. | Bromodomain inhibitors |
KR102191256B1 (ko) | 2014-10-30 | 2020-12-15 | 강푸 바이오파마슈티칼즈 리미티드 | 이소인돌린 유도체, 이의 중간체, 제조방법, 약물 조성물 및 응용 |
CN106279173A (zh) * | 2015-05-29 | 2017-01-04 | 华东理工大学 | 蝶啶酮衍生物作为egfr抑制剂的应用 |
EP3307728A4 (en) | 2015-06-12 | 2019-07-17 | Dana Farber Cancer Institute, Inc. | ASSOCIATION THERAPY USING TRANSCRIPTION INHIBITORS AND KINASE INHIBITORS |
PE20181086A1 (es) | 2015-09-11 | 2018-07-05 | Dana Farber Cancer Inst Inc | Acetamida tienotrizolodiazepinas y usos de las mismas |
CA2996974A1 (en) | 2015-09-11 | 2017-03-16 | Dana-Farber Cancer Institute, Inc. | Cyano thienotriazolodiazepines and uses thereof |
EP3380100A4 (en) | 2015-11-25 | 2019-10-02 | Dana-Farber Cancer Institute, Inc. | BIVALENT BROMODOMAIN INHIBITORS AND USES THEREOF |
DE102017005091A1 (de) | 2016-05-30 | 2017-11-30 | Bayer Pharma Aktiengesellschaft | Substituierte 3,4-Dihydropyrido[2,3-b]pyrazin-2(1H)-one |
DE102017005089A1 (de) | 2016-05-30 | 2017-11-30 | Bayer Pharma Aktiengesellschaft | Substitulerte 3,4-Dihydrochinoxalin-2(1H)-one |
CN106831765B (zh) * | 2016-12-28 | 2018-12-14 | 郑州大学 | 2-(2,6-二氰基苯基)咪唑并[1,2-α]吡啶类化合物及其制备方法 |
WO2018157779A1 (zh) | 2017-02-28 | 2018-09-07 | 康朴生物医药技术(上海)有限公司 | 一种新的异二氢吲哚衍生物、其药物组合物及应用 |
IL271491B2 (en) | 2017-06-22 | 2023-09-01 | Celgene Corp | Treatment of carcinoma of the liver characterized by hepatitis b virus infection |
CN109776788B (zh) * | 2017-11-14 | 2021-07-30 | 博瑞生物医药(苏州)股份有限公司 | 叶酸受体靶向多臂偶联物 |
CN111629725A (zh) | 2018-01-25 | 2020-09-04 | 勃林格殷格翰国际有限公司 | 急性骨髓性白血病的组合治疗 |
TW202010744A (zh) | 2018-04-24 | 2020-03-16 | 美商維泰克斯製藥公司 | 喋啶酮化合物及其用途 |
CN111285850B (zh) | 2018-12-06 | 2022-04-22 | 中国科学院上海药物研究所 | 一类异吲哚啉类化合物、其制备方法、药物组合物及其应用 |
CN110156700A (zh) * | 2019-06-05 | 2019-08-23 | 鲁南制药集团股份有限公司 | 吉非替尼与水杨酸共晶体 |
ES2982346T3 (es) | 2019-12-13 | 2024-10-15 | Inspirna Inc | Sales metálicas y usos de las mismas |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040147524A1 (en) * | 2001-09-04 | 2004-07-29 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Methods of using dihydropteridinones |
US20050014761A1 (en) * | 2003-02-26 | 2005-01-20 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Intermediate compounds for making dihydropteridinones useful as pharmaceutical compositions |
US20060074088A1 (en) * | 2004-08-14 | 2006-04-06 | Boehringer Ingelheim International Gmbh | Dihydropteridinones for the treatment of cancer diseases |
Family Cites Families (66)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL8303657A (nl) | 1983-10-24 | 1985-05-17 | Pharmachemie Bv | Voor injectie geschikte, stabiele, waterige, zoutzuur bevattende oplossing van cisplatine, alsmede werkwijze ter bereiding daarvan. |
DE3537761A1 (de) * | 1985-10-24 | 1987-04-30 | Bayer Ag | Infusionsloesungen der 1-cyclopropyl-6-fluor-1,4-dihydro-4-oxo-7- (1-piperazinyl)-chinolin-3-carbonsaeure |
JPH0276860A (ja) | 1987-10-05 | 1990-03-16 | Toyo Jozo Co Ltd | 6−置換アルコキシ−2−オキソ−1,2−ジヒドロキノキサリン誘導体 |
EP0347146B1 (en) | 1988-06-16 | 1993-09-01 | Smith Kline & French Laboratories Limited | Fused pyrimidine derivatives, process and intermediates for their preparation and pharmaceutical compositions containing them |
FR2645152B1 (fr) * | 1989-03-30 | 1991-05-31 | Lipha | 3h-pteridinones-4, procedes de preparation et medicaments les contenant |
US5043270A (en) * | 1989-03-31 | 1991-08-27 | The Board Of Trustees Of The Leland Stanford Junior University | Intronic overexpression vectors |
CA2029651C (en) | 1989-11-17 | 2000-06-06 | David D. Davey | Tricyclic pteridinones and a process for their preparation |
US5198547A (en) * | 1992-03-16 | 1993-03-30 | South Alabama Medical Science Foundation, Usa | Process for N5-formylating tetrahydropteridines |
TW274550B (el) * | 1992-09-26 | 1996-04-21 | Hoechst Ag | |
EP1195372A1 (en) * | 1994-04-18 | 2002-04-10 | Mitsubishi Pharma Corporation | N-heterocyclic substituted benzamide derivatives with antihypertensive activity |
GB9418499D0 (en) | 1994-09-14 | 1994-11-02 | Ciba Geigy Ag | Process for producing n-methylated organic pigments |
CO4410191A1 (es) | 1994-09-19 | 1997-01-09 | Lilly Co Eli | SINTESIS DE 3-[4-(2-AMINOETOXI)BENZOIL]-2-ARIL-6- HIDROXIBENZO [b] TIOFENOS |
IL117923A (en) | 1995-05-03 | 2000-06-01 | Warner Lambert Co | Anti-cancer pharmaceutical compositions containing polysubstituted pyrido¬2,3-d¾pyrimidine derivatives and certain such novel compounds |
BR9609083A (pt) | 1995-05-19 | 1999-02-02 | Novartis Ag | Processo para a hidrogenação catalítica de compostos nitro aromáticos |
US5698556A (en) * | 1995-06-07 | 1997-12-16 | Chan; Carcy L. | Methotrexate analogs and methods of using same |
ID21924A (id) | 1996-09-23 | 1999-08-12 | Lilly Co Eli | Olanzapin dihidrat d |
IL140868A0 (en) * | 1998-08-11 | 2002-02-10 | Pfizer Prod Inc | Substituted 1,8-naphthyridin-4(1h)-ones as phosphodiesterase 4 inhibitors |
WO2000043369A1 (en) | 1999-01-22 | 2000-07-27 | Elan Pharmaceuticals, Inc. | Compounds which inhibit leukocyte adhesion mediated by vla-4 |
BR0013952A (pt) | 1999-09-15 | 2002-05-14 | Warner Lambert Co | Pteridinonas como inibidores de cinase |
UA75054C2 (uk) * | 1999-10-13 | 2006-03-15 | Бьорінгер Інгельхайм Фарма Гмбх & Ко. Кг | Заміщені в положенні 6 індолінони, їх одержання та їх застосування як лікарського засобу |
GB2359551A (en) * | 2000-02-23 | 2001-08-29 | Astrazeneca Uk Ltd | Pharmaceutically active pyrimidine derivatives |
HUP0300136A2 (en) | 2000-03-06 | 2003-05-28 | Warner Lambert Co | 5-alkylpyrido [2,3-d]pyrimidines tyrosine kinase inhibitors, pharmaceutical compositions containing them and their use |
DE10018783A1 (de) | 2000-04-15 | 2001-10-25 | Fresenius Kabi De Gmbh | Lagerstabile Infusionslösung des Ciprofloxacins mit verringertem Säuregehalt |
US20020183292A1 (en) * | 2000-10-31 | 2002-12-05 | Michel Pairet | Pharmaceutical compositions based on anticholinergics and corticosteroids |
DE10058119A1 (de) * | 2000-11-22 | 2002-05-23 | Bayer Ag | Pepinotan-Kit |
ATE290882T1 (de) * | 2001-01-16 | 2005-04-15 | Glaxo Group Ltd | Pharmazeutische mischung gegen krebs, die ein 4- chinazolinamin in kombination mit paclitaxel, carboplatin or vinorelbine enthält |
US6756374B2 (en) | 2001-01-22 | 2004-06-29 | Hoffmann-La Roche Inc. | Diaminothiazoles having antiproliferative activity |
WO2002076954A1 (en) | 2001-03-23 | 2002-10-03 | Smithkline Beecham Corporation | Compounds useful as kinase inhibitors for the treatment of hyperproliferative diseases |
WO2002076985A1 (en) | 2001-03-23 | 2002-10-03 | Smithkline Beecham Corporation | Compounds useful as kinase inhibitors for the treatment of hyperproliferative diseases |
US20030055026A1 (en) * | 2001-04-17 | 2003-03-20 | Dey L.P. | Formoterol/steroid bronchodilating compositions and methods of use thereof |
JP3876254B2 (ja) | 2001-09-04 | 2007-01-31 | ベーリンガー インゲルハイム ファルマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト | 新規なジヒドロプテリジノン、その製造方法及びその医薬組成物としての使用 |
EP1908463B1 (en) * | 2001-12-14 | 2011-09-28 | Merck Serono SA | Methods of inducing ovulation using a non-polypeptide camp level modulator |
RU2004135533A (ru) * | 2002-05-03 | 2005-07-20 | Шеринг Акциенгезельшафт (De) | Тиазолидиноны и их применение в качестве ингибиторов polo- подобной киназы |
PE20040701A1 (es) * | 2002-07-23 | 2004-11-30 | Boehringer Ingelheim Pharma | Derivados de indolinona sustituidos en posicion 6 y su preparacion como medicamentos |
FR2843114B1 (fr) | 2002-08-01 | 2004-09-10 | Poudres & Explosifs Ste Nale | Procede de monomethylation d'heterocycles azotes |
PL375532A1 (en) | 2002-08-08 | 2005-11-28 | Smithkline Beecham Corporation | Benzimidazol-1-yl-thiophene compounds for the treatment of cancer |
CA2517020C (en) | 2003-02-26 | 2012-06-26 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Dihydropteridinones, method for the production and use thereof in the form of drugs |
BRPI0408779A (pt) | 2003-03-26 | 2006-04-04 | Wyeth Corp | uso de composições, composição imunogênica e kit |
EP1617820B1 (en) | 2003-04-14 | 2018-03-21 | Vectura Limited | Dry power inhaler devices and dry power formulations for enhancing dosing efficiency |
JP2007517828A (ja) * | 2004-01-17 | 2007-07-05 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | 気道の疾患を治療するための置換プテリジンの使用 |
DE102004002557A1 (de) * | 2004-01-17 | 2005-08-04 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Verwendung von substituierten Pyrimido(5,4-d)pyrimidinen zur Behandlung von Atemwegserkrankungen |
DE102004029784A1 (de) * | 2004-06-21 | 2006-01-05 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Neue 2-Benzylaminodihydropteridinone, Verfahren zur deren Herstellung und deren Verwendung als Arzneimittel |
DE102004033670A1 (de) | 2004-07-09 | 2006-02-02 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Neue Pyridodihydropyrazinone, Verfahren zu Ihrer Herstellung und Ihre Verwendung als Arzneimittel |
DE102004034623A1 (de) * | 2004-07-16 | 2006-02-02 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Neue 6-Formyl-tetrahydropteridine, Verfahren zu ihrer Herstellung und ihre Verwendung als Arzneimittel |
US20060058311A1 (en) * | 2004-08-14 | 2006-03-16 | Boehringer Ingelheim International Gmbh | Combinations for the treatment of diseases involving cell proliferation |
US7759485B2 (en) * | 2004-08-14 | 2010-07-20 | Boehringer Ingelheim International Gmbh | Process for the manufacture of dihydropteridinones |
US20060035903A1 (en) * | 2004-08-14 | 2006-02-16 | Boehringer Ingelheim International Gmbh | Storage stable perfusion solution for dihydropteridinones |
US7728134B2 (en) * | 2004-08-14 | 2010-06-01 | Boehringer Ingelheim International Gmbh | Hydrates and polymorphs of 4[[(7R)-8-cyclopentyl-7-ethyl-5,6,7,8-tetrahydro-5-methyl-6-oxo-2-pteridinyl]amino]-3-methoxy-N-(1-methyl-4-piperidinyl)-benzamide, process for their manufacture and their use as medicament |
EP1630163A1 (de) * | 2004-08-25 | 2006-03-01 | Boehringer Ingelheim Pharma GmbH & Co.KG | Dihydropteridinonderivative, Verfahren zu deren Herstellung und deren Verwendung als Arzneimittel |
EP1632493A1 (de) * | 2004-08-25 | 2006-03-08 | Boehringer Ingelheim Pharma GmbH & Co.KG | Dihydropteridinonderivative, Verfahren zu deren Herstellung und deren Verwendung als Arzneimittel |
EP1786817A1 (de) | 2004-08-26 | 2007-05-23 | Boehringer Ingelheim International GmbH | Pteridinone als plk (polo like kinase) inhibitoren |
WO2006021548A1 (de) * | 2004-08-27 | 2006-03-02 | Boehringer Ingelheim International Gmbh | Dihydropteridinone, verfahren zu deren herstellung und deren verwendung als arzneimittel |
DE102004058337A1 (de) * | 2004-12-02 | 2006-06-14 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Verfahren zur Herstellung von annelierten Piperazin-2-on Derivaten |
CA2617589A1 (en) * | 2005-08-03 | 2007-02-08 | Boehringer Ingelheim International Gmbh | Dihydropteridinones in the treatment of respiratory diseases |
CA2629249C (en) | 2005-11-11 | 2015-05-05 | Boehringer Ingelheim International Gmbh | Combination treatment of cancer comprising egfr/her2 inhibitors |
US7439358B2 (en) * | 2006-02-08 | 2008-10-21 | Boehringer Ingelheim International Gmbh | Specific salt, anhydrous and crystalline form of a dihydropteridione derivative |
EP1994002A1 (en) * | 2006-03-07 | 2008-11-26 | AstraZeneca AB | Piperidine derivatives, their process for preparation, their use as therapeutic agents and pharmaceutical compositions containing them |
CN102838599A (zh) | 2006-05-04 | 2012-12-26 | 贝林格尔.英格海姆国际有限公司 | 多晶型 |
JP5261487B2 (ja) * | 2007-08-03 | 2013-08-14 | ベーリンガー インゲルハイム インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | ジヒドロプテリジノン誘導体の結晶形 |
JP4642085B2 (ja) | 2008-01-17 | 2011-03-02 | 日本下水道事業団 | 予測健全度を利用した施設管理および更新計画システム |
EP2100894A1 (en) | 2008-03-12 | 2009-09-16 | 4Sc Ag | Pyridopyrimidines used as Plk1 (polo-like kinase) inhibitors |
EP2536725B1 (en) | 2010-02-17 | 2015-10-28 | Boehringer Ingelheim International GmbH | Dihydropteridinones, method for production and use thereof |
US8546566B2 (en) | 2010-10-12 | 2013-10-01 | Boehringer Ingelheim International Gmbh | Process for manufacturing dihydropteridinones and intermediates thereof |
US9358233B2 (en) | 2010-11-29 | 2016-06-07 | Boehringer Ingelheim International Gmbh | Method for treating acute myeloid leukemia |
US20130131069A1 (en) | 2011-05-13 | 2013-05-23 | Boehringer Ingelheim International Gmbh | Method for treatment of solid malignancies including advanced or metastatic solid malignancies |
US9370535B2 (en) | 2011-05-17 | 2016-06-21 | Boehringer Ingelheim International Gmbh | Method for treatment of advanced solid tumors |
-
2005
- 2005-07-26 US US11/189,540 patent/US20060058311A1/en not_active Abandoned
- 2005-08-09 RS RS20110302A patent/RS51807B/en unknown
- 2005-08-09 PL PL10184338T patent/PL2275107T3/pl unknown
- 2005-08-09 BR BRPI0514357-8A patent/BRPI0514357A/pt active Search and Examination
- 2005-08-09 DK DK10184338.1T patent/DK2275107T3/en active
- 2005-08-09 ME MEP-2011-124A patent/ME01209B/me unknown
- 2005-08-09 AU AU2005274384A patent/AU2005274384B2/en not_active Ceased
- 2005-08-09 SI SI200531347T patent/SI1827441T1/sl unknown
- 2005-08-09 NZ NZ553729A patent/NZ553729A/en not_active IP Right Cessation
- 2005-08-09 RU RU2007109108/15A patent/RU2407532C9/ru not_active IP Right Cessation
- 2005-08-09 EP EP05770228A patent/EP1827441B1/en active Active
- 2005-08-09 ES ES10184338.1T patent/ES2602465T3/es active Active
- 2005-08-09 AT AT05770228T patent/ATE512663T1/de active
- 2005-08-09 HU HUE10184338A patent/HUE032436T2/en unknown
- 2005-08-09 WO PCT/EP2005/008623 patent/WO2006018182A1/en active Application Filing
- 2005-08-09 PT PT05770228T patent/PT1827441E/pt unknown
- 2005-08-09 PL PL05770228T patent/PL1827441T3/pl unknown
- 2005-08-09 EP EP10184338.1A patent/EP2275107B1/en active Active
- 2005-08-09 MX MX2007001853A patent/MX2007001853A/es active IP Right Grant
- 2005-08-09 CA CA2576269A patent/CA2576269C/en not_active Expired - Fee Related
- 2005-08-09 DK DK05770228.4T patent/DK1827441T3/da active
- 2005-08-09 CN CN2005800352724A patent/CN101039673B/zh not_active Expired - Fee Related
- 2005-08-09 KR KR1020077005955A patent/KR101258426B1/ko not_active IP Right Cessation
- 2005-08-09 JP JP2007526349A patent/JP5043660B2/ja active Active
- 2005-08-12 AR ARP050103380A patent/AR050521A1/es unknown
- 2005-08-12 TW TW094127595A patent/TWI361071B/zh active
- 2005-08-12 TW TW100137048A patent/TW201201810A/zh unknown
-
2007
- 2007-02-13 IL IL181305A patent/IL181305A/en not_active IP Right Cessation
- 2007-02-14 MX MX2012003352A patent/MX340965B/es unknown
-
2009
- 2009-05-07 US US12/437,280 patent/US8143247B2/en active Active
-
2010
- 2010-09-01 RU RU2010136326/15A patent/RU2521394C2/ru not_active IP Right Cessation
-
2011
- 2011-08-03 HR HR20110578T patent/HRP20110578T1/hr unknown
- 2011-09-13 CY CY20111100877T patent/CY1112200T1/el unknown
-
2012
- 2012-01-03 US US13/342,507 patent/US8591895B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040147524A1 (en) * | 2001-09-04 | 2004-07-29 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Methods of using dihydropteridinones |
US6806272B2 (en) * | 2001-09-04 | 2004-10-19 | Boehringer Ingelheim Pharma Kg | Dihydropteridinones, processes for preparing them and their use as pharmaceutical compositions |
US20050014761A1 (en) * | 2003-02-26 | 2005-01-20 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Intermediate compounds for making dihydropteridinones useful as pharmaceutical compositions |
US20050014760A1 (en) * | 2003-02-26 | 2005-01-20 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Methods of treating diseases or conditions using dihydropteridinone compounds |
US6861422B2 (en) * | 2003-02-26 | 2005-03-01 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Dihydropteridinones, processes for preparing them and their use as pharmaceutical compositions |
US20060025411A1 (en) * | 2003-02-26 | 2006-02-02 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Methods for treating diseases or conditions using dihydropteridinone compounds |
US20060074088A1 (en) * | 2004-08-14 | 2006-04-06 | Boehringer Ingelheim International Gmbh | Dihydropteridinones for the treatment of cancer diseases |
Cited By (138)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8722694B2 (en) | 1999-06-21 | 2014-05-13 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Bicyclic heterocycles, pharmaceutical compositions containing these compounds, their use and processes for preparing them |
US20100069414A1 (en) * | 1999-06-21 | 2010-03-18 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Bicyclic heterocycles, pharmaceutical compositions containing these compounds, their use and processes for preparing them |
US20040053882A1 (en) * | 2000-05-18 | 2004-03-18 | Smith Mark Peart | Combination chemotherapy |
US20110046168A1 (en) * | 2000-12-20 | 2011-02-24 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Methods of treating diseases using quinazoline derivatives and pharmaceutical compositions containing them |
US20100010023A1 (en) * | 2000-12-20 | 2010-01-14 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Quinazoline derivatives and pharmaceutical compositions containing them |
US8586608B2 (en) | 2000-12-20 | 2013-11-19 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Quinazoline derivatives and pharmaceutical compositions containing them |
USRE43431E1 (en) | 2000-12-20 | 2012-05-29 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Quinazoline derivatives and pharmaceutical compositions containing them |
US8431585B2 (en) | 2002-05-11 | 2013-04-30 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Use of inhibitors of the EGFR-mediated signal transduction for the treatment of benign prostatic hyperplasia (BPH)/prostatic hypertrophy |
US20100144639A1 (en) * | 2002-05-11 | 2010-06-10 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Use of inhibitors of the egfr-mediated signal transduction for the treatment of benign prostatic hyperplasia (bph) / prostatic hypertrophy |
US7816530B2 (en) | 2003-02-26 | 2010-10-19 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Piperazinyl compounds |
US7786299B2 (en) | 2003-02-26 | 2010-08-31 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Methods for treating diseases or conditions using dihydropteridinone compounds |
US20080293944A1 (en) * | 2003-02-26 | 2008-11-27 | Matthias Hoffmann | Piperazinyl Compounds |
US20050014761A1 (en) * | 2003-02-26 | 2005-01-20 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Intermediate compounds for making dihydropteridinones useful as pharmaceutical compositions |
US20100324288A1 (en) * | 2003-02-26 | 2010-12-23 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Dihydropteridinone Compounds |
US20080171747A1 (en) * | 2003-02-26 | 2008-07-17 | Matthias Hoffman | Intermediate Compounds for making Dihydropteridinones Useful as Pharmaceutical Compositions |
US20060025411A1 (en) * | 2003-02-26 | 2006-02-02 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Methods for treating diseases or conditions using dihydropteridinone compounds |
US8003786B2 (en) | 2003-02-26 | 2011-08-23 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Dihydropteridinone compounds |
US7750152B2 (en) | 2003-02-26 | 2010-07-06 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Intermediate compounds for making dihydropteridinones useful as pharmaceutical compositions and processes of making the same |
US20110136826A1 (en) * | 2003-04-29 | 2011-06-09 | Boehringer Ingelheim International Gmbh | Combinations for the treatment of diseases involving cell proliferation, migration or apoptosis of myeloma cells, or angiogenesis |
US20080254040A1 (en) * | 2003-04-29 | 2008-10-16 | Boehringer Ingelheim International Gmbh | Combinations for the treatment of diseases involving cell proliferation, migration or apoptosis of myeloma cells or angiogenesis |
US7846936B2 (en) | 2003-04-29 | 2010-12-07 | Boehringer Ingelheim International Gmbh | Combinations for the treatment of diseases involving cell proliferation, migration or apoptosis of myeloma cells or angiogenesis |
US20110039863A1 (en) * | 2003-04-29 | 2011-02-17 | Boehringer Ingelheim International Gmbh | Combinations for the treatment of diseases involving cell proliferation, migration or apoptosis of myeloma cells, or angiogenesis |
US20110171289A1 (en) * | 2003-04-29 | 2011-07-14 | Boehringer Ingelheim International Gmbh | Combinations for the treatment of diseases involving cell proliferation, migration or apoptosis of myeloma cells, or angiogenesis |
US8426586B2 (en) | 2003-10-17 | 2013-04-23 | Boehringer Ingelheim International Gmbh | Process for preparing amino crotonyl compounds |
US20070027170A1 (en) * | 2003-10-17 | 2007-02-01 | Rainer Soyka | Process for preparing amino crotonyl compounds |
US20070004720A1 (en) * | 2003-10-30 | 2007-01-04 | Birgit Jung | Use of tyrosine kinase inhibitors for the treatment of inflammatory processes |
US7759347B2 (en) | 2004-06-21 | 2010-07-20 | Boehringer Ingelheim International Gmbh | 2-benzylaminodihydropteridinones, process for their manufacture and use thereof as medicaments |
US20090124628A1 (en) * | 2004-06-21 | 2009-05-14 | Boehringer Ingelheim International Gmbh | 2-benzylaminodihydropteridinones, process for their manufacture and use thereof as medicaments |
US7625899B2 (en) | 2004-07-09 | 2009-12-01 | Boehringer Ingelheim International Gmbh | Pyridodihydropyraziones, process for their manufacture and use thereof as medicaments |
US20060009457A1 (en) * | 2004-07-09 | 2006-01-12 | Boehringer Ingelheim International Gmbh | New pyridodihydropyrazinones, process for their manufacture and use thereof as medicaments |
US8193188B2 (en) | 2004-07-09 | 2012-06-05 | Boehringer Ingelheim International Gmbh | Methods of using pyridodihydropyrazinones |
US20100029642A1 (en) * | 2004-07-09 | 2010-02-04 | Boehringer Ingelheim International Gmbh | Methods of Using Pyridodihydropyrazinones |
US8591895B2 (en) | 2004-08-14 | 2013-11-26 | Boehringer Ingelheim International Gmbh | Combinations for the treatment of diseases involving cell proliferation |
US20090143379A1 (en) * | 2004-08-14 | 2009-06-04 | Boehringer Ingelheim International Gmbh | Storage stable perfusion solution for dihydropteridinones |
US20090238828A1 (en) * | 2004-08-14 | 2009-09-24 | Boehringer Ingelheim International Gmbh | Combinations for the Treatment of Diseases involving Cell Proliferation |
US8138341B2 (en) | 2004-08-14 | 2012-03-20 | Boehringer Ingelheim International Gmbh | Intermediate compounds useful for the manufacture of dihydropteridinones |
US8034816B2 (en) | 2004-08-14 | 2011-10-11 | Boehringer Ingelheim International Gmbh | Hydrates and polymorphs of 4-[[(7R)-8-cyclopentyl-7-ethyl-5,6,7,8-tetrahydro-5-methyl-6-oxo-2-pteridinyl]amino]-3-methoxy-N-(1-methyl-4-piperidinyl)-benzamide, process for their manufacture and their use as medicament |
US8058270B2 (en) | 2004-08-14 | 2011-11-15 | Boehringer Ingelheim International Gmbh | Dihydropteridinones for the treatment of cancer diseases |
US20090298840A1 (en) * | 2004-08-14 | 2009-12-03 | Boehringer Ingelheim International Gmbh | Hydrates and polymorphs of 4-[[(7R)-8-cyclopentyl-7-ethyl-5,6,7,8-tetrahydro-5-methyl-6-oxo-2-pteridinyl]amino]-3-methoxy-N-(1-methyl-4-piperidinyl)-benzamide, process for their manufacture and their use as medicament |
US20100249458A1 (en) * | 2004-08-14 | 2010-09-30 | Boehringer Ingelheim International Gmbh | Process for the manufacture of dihydropteridinones |
US20080221099A1 (en) * | 2004-08-14 | 2008-09-11 | Gerd Munzert | Dihydropteridinones for the treatment of cancer diseases |
US20060035902A1 (en) * | 2004-08-14 | 2006-02-16 | Boehringer Ingelheim International Gmbh | Hydrates and polymorphs of 4-[[(7R)-8-cyclopentyl-7-ethyl-5,6,7,8-tetrahydro-5-methyl-6-oxo-2-pteridinyl]amino]-3-methoxy-N-(1-methyl-4-piperidinyl)-benzamide, process for their manufacture and their use as medicament |
US8445675B2 (en) | 2004-08-14 | 2013-05-21 | Boehringer Ingelheim International Gmbh | Storage stable perfusion solution for dihydropteridinones |
US20100249412A1 (en) * | 2004-08-14 | 2010-09-30 | Boehringer Ingelheim International Gmbh | Process for the manufacture of dihydropteridinones |
US20090318457A1 (en) * | 2004-08-14 | 2009-12-24 | Boehringer Ingelheim International Gmbh | Methods of Using hydrates and polymorphs of 4-[[(7R)-8-cyclopentyl-7-ethyl-5,6,7,8-tetrahydro-5-methyl-6-oxo-2-pteridinyl]amino]-3-methoxy-N-(1-methyl-4-piperidinyl)-benzamide |
US20080177066A1 (en) * | 2004-08-14 | 2008-07-24 | Boehringer Ingelheim International Gmbh | Process for the manufacture of dihydropteridinones |
US20060074088A1 (en) * | 2004-08-14 | 2006-04-06 | Boehringer Ingelheim International Gmbh | Dihydropteridinones for the treatment of cancer diseases |
US8138373B2 (en) | 2004-08-14 | 2012-03-20 | Boehringer Ingelheim International Gmbh | Process for the manufacture of dihydropteridinones |
US8202867B2 (en) | 2004-08-14 | 2012-06-19 | Boehringer Ingelheim International Gmbh | Methods of using hydrates and polymorphs of 4-[[(7R)-8-cyclopentyl-7-ethyl-5,6,7,8-tetrahydro-5-methyl-6-oxo-2-pteridinyl]amino]-3-methoxy-N-(1-methyl-4-piperidinyl)-benzamide |
US7759485B2 (en) | 2004-08-14 | 2010-07-20 | Boehringer Ingelheim International Gmbh | Process for the manufacture of dihydropteridinones |
US8143247B2 (en) | 2004-08-14 | 2012-03-27 | Boehringer Ingelheim International Gmbh | Combinations for the treatment of diseases involving cell proliferation |
US7728134B2 (en) | 2004-08-14 | 2010-06-01 | Boehringer Ingelheim International Gmbh | Hydrates and polymorphs of 4[[(7R)-8-cyclopentyl-7-ethyl-5,6,7,8-tetrahydro-5-methyl-6-oxo-2-pteridinyl]amino]-3-methoxy-N-(1-methyl-4-piperidinyl)-benzamide, process for their manufacture and their use as medicament |
US7723517B2 (en) | 2004-08-25 | 2010-05-25 | Boehringer Ingelheim International Gmbh | Dihydropteridione derivatives, process for their manufacture and their use as medicament |
US20080108812A1 (en) * | 2004-08-25 | 2008-05-08 | Matthias Grauert | Dihydropteridione Intermediate Compounds |
US20080319193A1 (en) * | 2004-08-25 | 2008-12-25 | Boehringer Ingelheim International Gmbh | New dihydropteridione derivatives, process for their manufacture and their use as medicament |
US20080319190A1 (en) * | 2004-08-25 | 2008-12-25 | Boehringer Ingelheim International Gmbh | New dihydropteridione derivatives, process for their manufacture and their use as medicament |
US7700769B2 (en) | 2004-08-25 | 2010-04-20 | Boehringer Ingelheim International Gmbh | Dihydropteridione derivatives, process for their manufacture and their use as medicament |
US20080113992A1 (en) * | 2004-08-25 | 2008-05-15 | Matthias Grauert | Dihydropteridione Intermediate Compounds |
US20090018333A1 (en) * | 2004-08-25 | 2009-01-15 | Boehringer Ingelheim International Gmbh | Dihydropteridione derivatives, process for their manufacture and their use as medicament |
US20060046989A1 (en) * | 2004-08-25 | 2006-03-02 | Boehringer Ingelheim International Gmbh | New dihydropteridione derivatives, process for their manufacture and their use as medicament |
US7629460B2 (en) | 2004-08-25 | 2009-12-08 | Boehringer Ingelheim International Gmbh | Dihydropteridione derivatives, process for their manufacture and their use as medicament |
US7807831B2 (en) | 2004-08-25 | 2010-10-05 | Boehringer Ingelheim International Gmbh | Dihydropteridione derivatives, process for their manufacture and their use as medicament |
US7414053B2 (en) | 2004-08-25 | 2008-08-19 | Boehringer Ingelheim International Gmbh | Dihydropteridione derivatives, process for their manufacture and their use as medicament |
US7547780B2 (en) | 2004-08-25 | 2009-06-16 | Boehringer Ingelheim International Gmbh | Dihydropteridione intermediate compounds |
US20070232819A1 (en) * | 2004-09-14 | 2007-10-04 | Ales Franc | Oral Pharmaceutical Composition for Targeted Transport of a Platinum Complex Into the Colorectal Region, Method for Producing and Use as Medicament Thereof |
US7655697B2 (en) * | 2004-09-14 | 2010-02-02 | Pliva-Lachema A.S. | Oral pharmaceutical composition for targeted transport of a platinum complex into the colorectal region, method for producing and use as medicament thereof |
US7626019B2 (en) | 2004-12-02 | 2009-12-01 | Boehringer Ingelheim International Gmbh | Intermediate compounds for the manufacture of fused piperazin-2-one derivatives |
US20070213531A1 (en) * | 2004-12-02 | 2007-09-13 | Adil Duran | Process for the Manufacture of fused piperazin-2-one derivatives |
US20070213530A1 (en) * | 2004-12-02 | 2007-09-13 | Adil Duran | Intermediate Compounds for the Manufacture of fused piperazin-2-one derivatives |
US20070213528A1 (en) * | 2004-12-02 | 2007-09-13 | Adil Duran | Process for the Manufacture of Fused piperazin-2-one derivatives |
US20070213534A1 (en) * | 2004-12-02 | 2007-09-13 | Adil Duran | Process for the Manufacture of fused piperazin-2-one derivatives |
US20070213529A1 (en) * | 2004-12-02 | 2007-09-13 | Adil Duran | Process for the Manufacture of fused piperazin-2-one derivatives |
USRE43115E1 (en) | 2004-12-02 | 2012-01-17 | Boehringer Ingelheim International Gmbh | Process for the manufacture of fused piperazin-2-one derivatives |
US20070208027A1 (en) * | 2004-12-02 | 2007-09-06 | Adil Duran | Intermediate compounds for the manufacture of fused piperazin-2-one derivatives |
US20070219369A1 (en) * | 2004-12-02 | 2007-09-20 | Adil Duran | Process for the Manufacture of fused piperazin-2-one derivatives |
US10603314B2 (en) | 2005-02-03 | 2020-03-31 | The General Hospital Corporation | Method for treating gefitinib resistant cancer |
US10596162B2 (en) | 2005-02-03 | 2020-03-24 | Wyeth Llc | Method for treating gefitinib resistant cancer |
US10729672B2 (en) | 2005-11-04 | 2020-08-04 | Wyeth Llc | Antineoplastic combinations with mTOR inhibitor, trastuzumab and/or HKI-272 |
US9089571B2 (en) | 2005-11-11 | 2015-07-28 | Boehringer Ingelheim International Gmbh | Quinazoline derivatives for the treatment of cancer diseases |
US8404697B2 (en) | 2005-11-11 | 2013-03-26 | Boehringer Ingelheim International Gmbh | Quinazoline derivatives for the treatment of cancer diseases |
US20090306101A1 (en) * | 2005-11-11 | 2009-12-10 | Flavio Solca | Combination treatment of cancer comprising egfr/her2 inhibitors |
US20090306044A1 (en) * | 2005-11-11 | 2009-12-10 | Flavio Solca | Quinazoline derivatives for the treatment of cancer diseases |
US9539258B2 (en) | 2005-11-11 | 2017-01-10 | Boehringer Ingelheim International Gmbh | Quinazoline derivatives for the treatment of cancer diseases |
US8067593B2 (en) | 2006-01-26 | 2011-11-29 | Boehringer Ingelheim International Gmbh | Process for preparing aminocrotonylamino-substituted quinazoline derivatives |
US7960546B2 (en) | 2006-01-26 | 2011-06-14 | Boehringer Ingelheim International Gmbh | Process for preparing aminocrotonylamino-substituted quinazoline derivatives |
US20110207929A1 (en) * | 2006-01-26 | 2011-08-25 | Boehringer Ingelheim International Gmbh | Process for preparing aminocrotonylamino-substituted quinazoline derivatives |
US20110207932A1 (en) * | 2006-01-26 | 2011-08-25 | Boehringer Ingelheim International Gmbh | Process for preparing aminocrotonylamino-substituted quinazoline derivatives |
US20090306378A1 (en) * | 2006-01-26 | 2009-12-10 | Juergen Schroeder | Process for preparing aminocrotonylamino-substituted quinazoline derivatives |
US8188274B2 (en) | 2006-01-26 | 2012-05-29 | Boehringer Ingelheim International Gmbh | Process for preparing aminocrotonylamino-substituted quinazoline derivatives |
US8664222B2 (en) | 2006-02-08 | 2014-03-04 | Boehringer Ingelheim International Gmbh | Specific salt, anhydrous and crystalline form of a dihydropteridione derivative |
US20090030004A1 (en) * | 2006-02-08 | 2009-01-29 | Guenter Linz | Specific salt, anhydrous and crystalline form of a dihydropteridione derivative |
US8188086B2 (en) | 2006-02-08 | 2012-05-29 | Boehringer Ingelheim International Gmbh | Specific salt, anhydrous and crystalline form of a dihydropteridione derivative |
US20080009482A1 (en) * | 2006-07-06 | 2008-01-10 | Astrazeneca Ab | Novel compounds |
US7709471B2 (en) | 2006-07-06 | 2010-05-04 | Astrazeneca Ab | Compounds |
US8877764B2 (en) | 2006-09-18 | 2014-11-04 | Boehringer Ingelheim International Gmbh | Method for treating cancer harboring EGFR mutations |
US20090318480A1 (en) * | 2006-09-18 | 2009-12-24 | Boehringer Ingelheim International Gmbh | Method for treating cancer harboring egfr mutations |
US8372976B2 (en) | 2006-10-19 | 2013-02-12 | Signal Pharmaceuticals, Llc | Methods of treatment comprising the administration of heteroaryl compounds |
EP2457913A3 (en) * | 2006-10-19 | 2012-08-15 | Signal Pharmaceuticals LLC | Heteroaryl compounds, compositions thereof, and methods of treatment therewith |
US8178564B2 (en) | 2006-11-06 | 2012-05-15 | Poniard Pharmaceuticals, Inc. | Use of picoplatin to treat colorectal cancer |
US8173686B2 (en) | 2006-11-06 | 2012-05-08 | Poniard Pharmaceuticals, Inc. | Use of picoplatin to treat colorectal cancer |
US8168661B2 (en) | 2006-11-06 | 2012-05-01 | Poniard Pharmaceuticals, Inc. | Use of picoplatin to treat colorectal cancer |
US8168662B1 (en) | 2006-11-06 | 2012-05-01 | Poniard Pharmaceuticals, Inc. | Use of picoplatin to treat colorectal cancer |
US20090275549A1 (en) * | 2006-11-06 | 2009-11-05 | Poniard Pharmaceuticals, Inc. | Use of picoplatin to treat colorectal cancer |
US20090197854A1 (en) * | 2006-11-06 | 2009-08-06 | Poniard Pharmaceuticals, Inc. | Use of picoplatin to treat colorectal cancer |
US20100178328A1 (en) * | 2007-06-27 | 2010-07-15 | Poniard Pharmaceuticals, Inc. | Combination therapy for ovarian cancer |
US20100260832A1 (en) * | 2007-06-27 | 2010-10-14 | Poniard Pharmaceuticals, Inc. | Combination therapy for ovarian cancer |
US20100310661A1 (en) * | 2007-07-16 | 2010-12-09 | Poniard Pharmaceuticals, Inc. | Oral formulations for picoplatin |
US8329695B2 (en) | 2007-08-03 | 2012-12-11 | Boehringer Ingelheim International Gmbh | Crystalline form of the free base N-[trans-4-[4-(cyclopropylmethyl)-1-piperazinyl]cyclohexyl]-4-[[(7r)-7-ethyl-5,6,7,8-tetrahydro-5-methyl-8-(1-methylethyl)-6-oxo-2-pteridinyl]amino]-3-methoxy-benzamide |
US20100280037A1 (en) * | 2007-08-03 | 2010-11-04 | Boehringer Ingelheim International Gmbh | Crystalline form of a dihydropteridione derivative |
US20110160160A1 (en) * | 2007-08-15 | 2011-06-30 | The Research Foundation Of State University Of New York | Methods for heat shock protein dependent cancer treatment |
US8754094B2 (en) | 2007-08-15 | 2014-06-17 | The Research Foundation Of State University Of New York | Methods for heat shock protein dependent cancer treatment |
US10035788B2 (en) | 2007-10-17 | 2018-07-31 | Wyeth Llc | Maleate salts of (E)-N-{4[3-chloro-4-(2-pyridinylmethoxy)anilino]-3-cyano-7-ethoxy-6-quinolinyl}-4-(dimethylamino)-2-butenamide and crystalline forms thereof |
US9630946B2 (en) | 2007-10-17 | 2017-04-25 | Wyeth Llc | Maleate salts of (E)-N-{4-[3-chloro-4-(2-pyridinylmethoxy)anilino]-3-cyano-7-ethoxy-6-quinolinyl}-4-(dimethylamino)-2-butenamide and crystalline forms thereof |
US9139558B2 (en) | 2007-10-17 | 2015-09-22 | Wyeth Llc | Maleate salts of (E)-N-{4-[3-Chloro-4-(2-pyridinylmethoxy)anilino]-3-cyano-7-ethoxy-6-quinolinyl}-4-(dimethylamino)-2-butenamide and crystalline forms thereof |
US20110052581A1 (en) * | 2008-02-08 | 2011-03-03 | Poniard Pharmaceuticals Inc. | Use of picoplatin and cetuximab to treat colorectal cancer |
US20110142929A1 (en) * | 2008-06-06 | 2011-06-16 | Boehringer Ingelheim International Gmbh | Solid pharmaceutical formulations comprising bibw 2992 |
US8545884B2 (en) | 2008-06-06 | 2013-10-01 | Boehringer Ingelheim International Gmbh | Solid pharmaceutical formulations comprising BIBW 2992 |
US10105323B2 (en) | 2008-06-06 | 2018-10-23 | Boehringer Ingelheim International Gmbh | Pharmaceutical dosage form for immediate release of an indolinone derivative |
US9511063B2 (en) | 2008-06-17 | 2016-12-06 | Wyeth Llc | Antineoplastic combinations containing HKI-272 and vinorelbine |
US10111868B2 (en) | 2008-06-17 | 2018-10-30 | Wyeth Llc | Antineoplastic combinations containing HKI-272 and vinorelbine |
US9265784B2 (en) | 2008-08-04 | 2016-02-23 | Wyeth Llc | Antineoplastic combinations of 4-anilino-3-cyanoquinolines and capecitabine |
US9211291B2 (en) | 2009-04-06 | 2015-12-15 | Wyeth Llc | Treatment regimen utilizing neratinib for breast cancer |
US9545381B2 (en) | 2009-07-06 | 2017-01-17 | Boehringer Ingelheim International Gmbh | Process for drying of BIBW2992, of its salts and of solid pharmaceutical formulations comprising this active ingredient |
US10004743B2 (en) | 2009-07-06 | 2018-06-26 | Boehringer Ingelheim International Gmbh | Process for drying of BIBW2992, of its salts and of solid pharmaceutical formulations comprising this active ingredient |
US20110033528A1 (en) * | 2009-08-05 | 2011-02-10 | Poniard Pharmaceuticals, Inc. | Stabilized picoplatin oral dosage form |
US9045445B2 (en) | 2010-06-04 | 2015-06-02 | Albany Molecular Research, Inc. | Glycine transporter-1 inhibitors, methods of making them, and uses thereof |
WO2012027445A1 (en) | 2010-08-26 | 2012-03-01 | Boehringer Ingelheim International Gmbh | Methods of administering an egfr inhibitor |
US8546566B2 (en) | 2010-10-12 | 2013-10-01 | Boehringer Ingelheim International Gmbh | Process for manufacturing dihydropteridinones and intermediates thereof |
US9358233B2 (en) | 2010-11-29 | 2016-06-07 | Boehringer Ingelheim International Gmbh | Method for treating acute myeloid leukemia |
US9370535B2 (en) | 2011-05-17 | 2016-06-21 | Boehringer Ingelheim International Gmbh | Method for treatment of advanced solid tumors |
US8828391B2 (en) | 2011-05-17 | 2014-09-09 | Boehringer Ingelheim International Gmbh | Method for EGFR directed combination treatment of non-small cell lung cancer |
US9309228B2 (en) | 2012-07-19 | 2016-04-12 | Boehringer Ingelheim International Gmbh | Fumaric acid salt of 9-[4-(3-chloro-2-fluoro-phenylamino)-7-methoxy-quinazolin-6-yloxy]-1,4-diaza-spiro[5.5]undecan-5-one, its use as a medicament and the preparation thereof |
US9956225B2 (en) | 2013-07-26 | 2018-05-01 | Boehringer Ingelheim International Gmbh | Treatment of myelodysplastic syndrome |
US9242965B2 (en) | 2013-12-31 | 2016-01-26 | Boehringer Ingelheim International Gmbh | Process for the manufacture of (E)-4-N,N-dialkylamino crotonic acid in HX salt form and use thereof for synthesis of EGFR tyrosine kinase inhibitors |
US9867831B2 (en) | 2014-10-01 | 2018-01-16 | Boehringer Ingelheim International Gmbh | Combination treatment of acute myeloid leukemia and myelodysplastic syndrome |
US12053449B2 (en) | 2017-05-16 | 2024-08-06 | Ability Pharmaceuticals S.L. | Pharmaceutical combination for the treatment of a cancer |
US11434291B2 (en) | 2019-05-14 | 2022-09-06 | Provention Bio, Inc. | Methods and compositions for preventing type 1 diabetes |
US12006366B2 (en) | 2020-06-11 | 2024-06-11 | Provention Bio, Inc. | Methods and compositions for preventing type 1 diabetes |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8143247B2 (en) | Combinations for the treatment of diseases involving cell proliferation | |
US20180086744A1 (en) | Combination treatment of cancer comprising egfr/her2 inhibitors | |
RU2492864C2 (ru) | Способ лечения рака, несущего мутации egfr | |
ES2678250T3 (es) | Tratamiento del cáncer con inhibidores de quinasa TOR | |
JP2018500342A (ja) | トリアゾロピリミジン化合物およびその使用 | |
US20230043305A1 (en) | Morphic forms of g1t38 and methods of manufacture thereof | |
JP2023538520A (ja) | Ikaros又はaiolosによって媒介される障害に対する有利な治療法 | |
AU2011226830A1 (en) | Combinations for the treatment of diseases involving cell proliferation | |
ES2368245T3 (es) | Combinaciones para el tratamiento de enfermedades que implican una proliferación celular. | |
EP4455146A2 (en) | Morphic forms of git38 and methods of manufacture thereof | |
EA041689B1 (ru) | Морфологические формы g1t38 и способы их получения |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: BOEHRINGER INGELHEIM INTERNATIOANAL GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUNZERT, GERD;STEEGMAIER, MARTIN;BAUM, ANKE;REEL/FRAME:016884/0329;SIGNING DATES FROM 20050825 TO 20050927 |
|
AS | Assignment |
Owner name: BOEHRINGER INGELHEIM INTERNATIONAL GMBH, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MUNZERT, GERD;STEEGMAIER, MARTIN;BAUM, ANKE;REEL/FRAME:022643/0026;SIGNING DATES FROM 20050825 TO 20050927 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |