US20020151471A1 - Factor VII glycoforms - Google Patents
Factor VII glycoforms Download PDFInfo
- Publication number
- US20020151471A1 US20020151471A1 US09/969,358 US96935801A US2002151471A1 US 20020151471 A1 US20020151471 A1 US 20020151471A1 US 96935801 A US96935801 A US 96935801A US 2002151471 A1 US2002151471 A1 US 2002151471A1
- Authority
- US
- United States
- Prior art keywords
- factor vii
- preparation
- polypeptides
- factor
- oligosaccharide chains
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/64—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue
- C12N9/6421—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from animal tissue from mammals
- C12N9/6424—Serine endopeptidases (3.4.21)
- C12N9/6437—Coagulation factor VIIa (3.4.21.21)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/43—Enzymes; Proenzymes; Derivatives thereof
- A61K38/46—Hydrolases (3)
- A61K38/48—Hydrolases (3) acting on peptide bonds (3.4)
- A61K38/482—Serine endopeptidases (3.4.21)
- A61K38/4846—Factor VII (3.4.21.21); Factor IX (3.4.21.22); Factor Xa (3.4.21.6); Factor XI (3.4.21.27); Factor XII (3.4.21.38)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/04—Antihaemorrhagics; Procoagulants; Haemostatic agents; Antifibrinolytic agents
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P21/00—Preparation of peptides or proteins
- C12P21/02—Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y304/00—Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
- C12Y304/21—Serine endopeptidases (3.4.21)
- C12Y304/21021—Coagulation factor VIIa (3.4.21.21)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2400/00—Assays, e.g. immunoassays or enzyme assays, involving carbohydrates
- G01N2400/02—Assays, e.g. immunoassays or enzyme assays, involving carbohydrates involving antibodies to sugar part of glycoproteins
Definitions
- the present invention relates to compositions comprising Factor VII and other blood clotting factors having altered patterns of asparagine-linked glycosylation.
- the proteins involved in the clotting cascade including, e.g., Factor VII, Factor VIII, Factor IX, Factor X, and Protein C, are proving to be useful therapeutic agents to treat a variety of pathological conditions. Accordingly, there is an increasing need for formulations comprising these proteins that are pharmaceutically acceptable and exhibit a uniform and predetermined clinical efficacy.
- the clotting proteins are subject to a variety of co- and post-translational modifications, including, e.g., asparagine-linked (N-linked) glycosylation; O-linked glycosylation; and ⁇ -carboxylation of glu residues. These modifications may be qualitatively or quantitatively different when heterologous cells are used as hosts for large-scale production of the proteins. In particular, production in heterologous cells often results in a different array of glycoforms, which are identical polypeptides having different covalently linked oligosaccharide structures.
- compositions and methods that provide clotting protein preparations, particularly preparations comprising recombinant human Factor VII, modified Factor VII, or Factor VII-related polypeptides, that contain predetermined glycoform patterns.
- the present invention relates to preparations comprising Factor VII polypeptides or Factor VII-related polypeptides that exhibit predetermined glycoform patterns.
- a Factor VII or Factor VII-related preparation refers to a plurality of Factor VII or Factor VII-related polypeptides, including variants and chemically modified forms, as well as forms that have been proteolytically activated (e.g., Factor VIIa), that have been separated from the cell in which they were synthesized.
- a glycoform pattern refers to the distribution within the preparation of oligosaccharide chains having varying structures that are covalently linked to Factor VII polypeptides or Factor VII-related polypeptides.
- the invention provides a preparation comprising a plurality of Factor VII polypeptides or Factor VII-related polypeptides, wherein the polypeptides comprise asparagine-linked oligosaccharide chains and wherein one or more of the following applies: (i) between about 94-100% of the oligosaccharide chains comprise at least one sialic acid moiety; (ii) between about 0-7% of the oligosaccharide chains have a neutral charge; (iii) less than about 16%, such as, e.g., between about 6-16% of the oligosaccharide chains comprise at least one terminal galactose residue; (iv) less than about 25%, such as, e.g., between about 6-9% of the oligosaccharide chains comprise at least one terminal N-acetylgalactosamine residue; or (v) less than about 30%, such as, e.g., between about 11-23% of the oligosaccharide chains, wherein the poly
- all of the sialic acid residues in the oligosaccharide chains are linked to galactose via an ⁇ 2 ⁇ 3 linkage; at least some of the sialic acid residues comprise N-glycolylneuraminic acid (Neu5Gc) in addition to N-acetyineuraminic acid (Neu5Ac); and/or the oligosaccharide chains comprise fucose residues linked ⁇ 1 ⁇ 6 to a core N-acetylglucosamine.
- the invention encompasses a preparation comprising wild-type Factor VIIa in which between about 94-100% of the oligosaccharide chains have at least one sialic acid residue and all of the sialic acid residues are linked to galactose via an ⁇ 2 ⁇ 3 linkage.
- the invention encompasses a preparation comprising wild-type Factor VIIa in which between about 94-100% of the oligosaccharide chains have at least one sialic acid residue and at least some of the sialic acid residues are N-glycolylneuraminic acid.
- the invention encompasses a preparation comprising wild-type Factor VIIa in which between about 94-100% of the oligosaccharide chains have at least one sialic acid residue and at least some of the chains contain N-acetylgalactosamine.
- the preparations of the present invention thus do not encompass wild-type Factor VII or Factor VIIa that has been isolated from human plasma and has not been modified ex vivo by glycosidase treatment.
- the invention provides a preparation comprising a plurality of Factor VII polypeptides or Factor VII-related polypeptides, wherein the polypeptides comprise asparagines-linked oligosaccharide chains and wherein at least about 2% of the oligosaccharide chains contain at least one fucose linked ⁇ 1 ⁇ 3 to an antennary N-acetylglucosamine residue (i.e., an N-acetylglucosamine residue that is linked ⁇ 1 ⁇ 2,4, or 6 to a Man residue).
- an antennary N-acetylglucosamine residue i.e., an N-acetylglucosamine residue that is linked ⁇ 1 ⁇ 2,4, or 6 to a Man residue.
- at least about 5% of the oligosaccharide chains contain at least one such antennary fucose residue; more preferably, at least about 10% or 20%; and most preferably, at least about 40%.
- the preparations according to invention may comprise one or more of unmodified wild-type Factor VII; wild-type Factor VII that has been subjected to chemical and/or enzymatic modification; and Factor VII variants having one or more alterations in amino acid sequence relative to wild-type Factor VII.
- the preparations of the invention may be derived from human cells expressing Factor VII from an endogenous Factor VII gene or from cells programmed to express Factor VII or a Factor VII-related polypeptide from a recombinant gene.
- the invention provides preparations comprising Factor VII or Factor VII-related polypeptides that exhibit one or more improved functional properties, including, without limitation, increased storage stability, bioavailability, and/or half-life.
- the invention encompasses methods for determining and/or optimizing the glycoform pattern of Factor VII and Factor VII-related polypeptides, which are carried out by the steps of:
- the methods may further comprise altering the culture conditions of step (a) to achieve a second set of predetermined culture conditions; and repeating the steps until a desired glycoform pattern is achieved.
- the methods may further comprise treating the preparation chemically or enzymatically to alter the oligosaccharide structure; and repeating the steps until a desired glycoform pattern is achieved.
- the methods may comprise the additional steps of subjecting preparations having predetermined glycoform patterns to at least one test of bioactivity or other functionality (such as, e.g., pharmacokinetic profile or stability), and correlating particular glycoform patterns with particular bioactivity or functionality profiles.
- the invention provides methods for producing a preparation comprising Factor VII polypeptides or Factor VII-related polypeptides having a predetermined pattern of N-linked glycosylation.
- the methods are carried out by culturing a cell expressing the polypeptides under conditions in which at least about 94% of the asparagine-linked oligosaccharides linked to the Factor VII polypeptides or Factor VII-related polypeptides comprise at least one sialic acid residue, e.g., one, two, three, or four sialic acid residues.
- the methods are carried out by culturing a cell expressing the polypeptides under conditions in which at least about 5% of the oligosaccharide chains contain at least one fucose linked ⁇ 1 ⁇ 3 to an antennary N-acetylglucosamine residue.
- Factor VII polypeptides or Factor VII-related polypeptides are subjected to enzymatic treatments to achieve the desired glycoform patterns.
- the invention provides pharmaceutical formulations comprising the preparations of the invention and methods of preventing and/or treating syndromes that are responsive to Factor VII polypeptides or Factor VII-related polypeptides.
- the methods comprise administering the pharmaceutical formulations to a patient in need of treatment, under conditions that result in either an enhancement or inhibition in blood clotting.
- Factor VII preparations are administered when it is desired to enhance blood clotting, such as, e.g., in haemophilia A, haemophilia B, Factor XI deficiency, Factor VII deficiency, thrombocytopenia, or von Willebrand's disease; in syndromes accompanied by the presence of a clotting factor inhibitor; before, during, or after surgery or anticoagulant therapy; or after trauma.
- preparations of Factor VII-related polypeptides are administered to reduce blood clotting, such as, e.g., in patients undergoing angioplasty or those suffering from deep vein thrombosis, pulmonary embolism, stroke, disseminated intravascular coagulation (DIC), fibrin deposition in lungs and kidneys associated with gram-negative endotoxemia, or myocardial infarction.
- blood clotting such as, e.g., in patients undergoing angioplasty or those suffering from deep vein thrombosis, pulmonary embolism, stroke, disseminated intravascular coagulation (DIC), fibrin deposition in lungs and kidneys associated with gram-negative endotoxemia, or myocardial infarction.
- preparations of Factor VII-related polypeptides may also be administered when it is desired to modify, such as, e.g., reduce, intracellular signalling via a tissue factor (TF)-mediated pathway, to treat conditions such as, e.g., Acute Respiratory Distress Syndrome (ARDS), Systemic Inflammatory Response Syndrome (SIRS), Hemolytic Uremic Syndrome (HUS), Multiple Organ Failure (MOF), and thrombocytopenia purpura (TTP).
- ARDS Acute Respiratory Distress Syndrome
- SIRS Systemic Inflammatory Response Syndrome
- HUS Hemolytic Uremic Syndrome
- MOF Multiple Organ Failure
- TTP thrombocytopenia purpura
- the present inventors have discovered that preparations of coagulation proteins having predetermined glycoform patterns exhibit improved functional properties. Accordingly, the present invention relates to methods and compositions that provide these protein preparations. In particular, the invention relates to preparations comprising Factor VII polypeptides and Factor VII-related polypeptides having specific predetermined patterns of asparagine-linked (N-linked) oligosaccharides. The preparations of the invention exhibit altered properties, including, without limitation, improved pharmacokinetic properties and improved clinical efficacy. The invention also encompasses pharmaceutical formulations that comprise these preparations, as well as therapeutic methods that utilize the formulations.
- the present invention encompasses human Factor VII polypeptides, such as, e.g., those having the amino acid sequence disclosed in U.S. Pat. No. 4,784,950 (wild-type Factor VII).
- Factor VII or “Factor VII polypeptide” encompasses wild-type Factor VII, as well as variants of Factor VII exhibiting substantially the same or improved biological activity relative to wild-type Factor VII.
- the term “Factor VII” is intended to encompass Factor VII polypeptides in their uncleaved (zymogen) form, as well as those that have been proteolytically processed to yield their respective bioactive forms, which may be designated Factor VIIa. Typically, Factor VII is cleaved between residues 152 and 153 to yield Factor VIIa.
- Factor VII-related polypeptides encompasses polypeptides, including variants, in which the Factor VIIa biological activity has been substantially modified or reduced relative to the activity of wild-type Factor VIIa.
- These polypeptides include, without limitation, Factor VII or Factor VIIa that has been chemically modified and Factor VII variants into which specific amino acid sequence alterations have been introduced that modify or disrupt the bioactivity of the polypeptide.
- Factor VIIa The biological activity of Factor VIIa in blood clotting derives from its ability to (i) bind to tissue factor (TF) and (ii) catalyze the proteolytic cleavage of Factor IX or Factor X to produce activated Factor IX or X (Factor IXa or Xa, respectively).
- Factor VIIa biological activity may be quantified by measuring the ability of a preparation to promote blood clotting using Factor VII-deficient plasma and thromboplastin, as described, e.g., in U.S. Pat. No. 5,997,864.
- Factor VIIa biological activity is expressed as the reduction in clotting time relative to a control sample and is converted to “Factor VII units” by comparison with a pooled human serum standard containing 1 unit/ml Factor VII activity.
- Factor VIIa biological activity may be quantified by (i) measuring the ability of Factor VIIa to produce of Factor Xa in a system comprising TF embedded in a lipid membrane and Factor X. (Persson et al., J. Biol. Chem.
- Factor VII variants having substantially the same or improved biological activity relative to wild-type Factor VIIa encompass those that exhibit at least about 25%, preferably at least about 50%, more preferably at least about 75% and most preferably at least about 90% of the specific activity of wild-type Factor VIIa that has been produced in the same cell type, when tested in one or more of a clotting assay, proteolysis assay, or TF binding assay as described above.
- Factor VII variants having substantially reduced biological activity relative to wild-type Factor VIIa are those that exhibit less than about 25%, preferably less than about 10%, more preferably less than about 5% and most preferably less than about 1% of the specific activity of wild-type Factor VIIa that has been produced in the same cell type when tested in one or more of a clotting assay, proteolysis assay, or TF binding assay as described above.
- Factor VII variants having a substantially modified biological activity relative to wild-type Factor VII include, without limitation, Factor VII variants that exhibit TF-independent Factor X proteolytic activity and those that bind TF but do not cleave Factor X.
- Variants of Factor VII include, without limitation, polypeptides having an amino acid sequence that differs from the sequence of wild-type Factor VII by insertion, deletion, or substitution of one or more amino acids.
- Non-limiting examples of Factor VII variants having substantially the same biological activity as wild-type Factor VII include S52A-FVIIa, S60A-FVIIa (lino et al., Arch. Biochem. Biophys. 352: 182-192, 1998); FVIIa variants exhibiting increased proteolytic stability as disclosed in U.S. Pat. No.
- Factor VIIa that has been proteolytically cleaved between residues 290 and 291 or between residues 315 and 316 (Mollerup et al., Biotechnol. Bioeng. 48:501-505, 1995); and oxidized forms of Factor VIIa (Kornfelt et al., Arch. Biochem. Biophys. 363:43-54, 1999).
- Non-limiting examples of Factor VII variants having substantially reduced or modified biological activity relative to wild-type Factor VII include R152E-FVIIa (Wildgoose et al., Biochem 29:3413-3420, 1990), S344A-FVIIa (Kazama et al., J. Biol.
- the present invention provides preparations of Factor VII polypeptides or Factor VII-related polypeptides that comprise a particular spectrum of Factor VII glycoforms, i.e., Factor VII polypeptides or Factor VII-related polypeptides having predetermined patterns of asparagine-linked (N-linked) oligosaccharide chains.
- a “pattern” of N-linked glycosylation or a glycoform “pattern”, “distribution”, or “spectrum” refers to the representation of particular oligosaccharide structures within a given population of Factor VII polypeptides or Factor VII-related polypeptides.
- Non-limiting examples of such patterns include the relative proportion of oligosaccharide chains that (i) have at least one sialic acid residue; (ii) lack any sialic acid residues (i.e., are neutral in charge); (iii) have at least one terminal galactose residue; (iv) have at least one terminal N-acetylgalactosamine residue; (v) have at least one “uncapped” antenna, i.e., have at least one terminal galactose or N-acetylgalactosamine residue; or (vi) have at least one fucose linked ⁇ 1 ⁇ 3 to an antennary N-acetylglucosamine residue.
- an oligosaccharide chain refers to the entire oligosaccharide structure that is covalently linked to a single asparagine residue.
- Factor VII is normally glycosylated at Asn 145 and Asn 322.
- N-linked oligosaccharide chain present on Factor VII produced in a human in situ may be bi-, tri, or tetraantennary, with each antenna having the structure Neu5Ac( ⁇ 2 ⁇ 3 or ⁇ 2 ⁇ 6)Gal( ⁇ 1 ⁇ 4) GlcNAc linked ( ⁇ 1 ⁇ 2,4 or 6) to a Man residue which is linked ( ⁇ 1 ⁇ 3 or 6) to Man( ⁇ 1 ⁇ 4)GlcNAc( ⁇ 1 ⁇ 4)GlcNAc-Asn.
- Neu5Ac signifies N-acetyineuraminic acid (sialic acid)
- Gal signifies galactose
- GlcNAc signifies N-acetylglucosamine
- Man signifies mannose
- the oligosaccharide chains may also comprise fucose residues, which may be linked ⁇ 1 ⁇ 6 to GlcNAc.
- fucose residues which may be linked ⁇ 1 ⁇ 6 to GlcNAc.
- some of the oligosaccharide chains lack core fucose residues; all of the chains lack antennary fucose residues; and all of the chains are almost completely sialylated, i.e., the terminal sugar of each antenna is N-acetylneuraminic acid linked to galactose via an ⁇ 2 ⁇ 3 or ⁇ 2 ⁇ 6 linkage.
- Factor VII may contain oligosaccharide chains having different terminal structures on one or more of their antennae, such as, e.g., lacking sialic acid residues; containing N-glycolylneuraminic acid (Neu5Gc) residues; containing a terminal N-acetylgalactosamine (GalNAc) residue in place of galactose; and the like.
- oligosaccharide chains having different terminal structures on one or more of their antennae, such as, e.g., lacking sialic acid residues; containing N-glycolylneuraminic acid (Neu5Gc) residues; containing a terminal N-acetylgalactosamine (GalNAc) residue in place of galactose; and the like.
- oligosaccharide chains contain at least a single sialic acid residue
- 9-16% contain at least one terminal galactose residue
- At least one uncapped antenna i.e., contain at least one terminal galactose or N-acetylgalactosamine residue.
- the present inventors have produced Factor VII preparations containing specific predetermined oligosaccharide patterns that differ from those previously described.
- the present invention encompasses preparations comprising Factor VII polypeptides or Factor VII-related polypeptides exhibiting one or more of the following glycoform patterns:
- oligosaccharide chains contain at least one sialic acid residue, such as, e.g., between about 94-99%, between about 95-98%, or between about 96-97%. In different embodiments, at least about 94%, 95%, 96%, or 97% of the oligosaccharide chains contain at least one sialic acid residue.
- oligosaccharide chains are neutral, such as, e.g., between about 1.5-6% or between about 2-4%.
- oligosaccharide chains contain at least one terminal galactose, such as, e.g., between about 6-10% or between about 8-9%;
- oligosaccharide chains contain at least one terminal GaINAc residue, such as, e.g., between about 6-9% or between about 7-8%;
- oligosaccharide chains contain at least one uncapped antenna, such as, e.g., between about 11-23% or between about 12-18%; and
- At least about 2%, preferably, at least about 5%, more preferably, at least about 10% or 20%; and most preferably, at least about 40%, of the oligosaccharide chains contain at least one fucose linked ⁇ 1 ⁇ 3 to an antennary N-acetylglucosamine residue (i.e., an N-acetylglucosamine residue that is linked ⁇ 1 ⁇ 2,4, or 6 to a Man residue).
- each of (i)-(vi) may represent a distinct glycoform pattern that is encompassed by the present invention, i.e., a preparation according to the invention may be described by only one of (i)-(vi). Alternatively, depending on the particular glycoform pattern, a preparation encompassed by the invention may be described by more than one of (i)-(vi).
- a preparation encompassed by the invention may be described by one or more of (i)-(vi) in combination with one or more other structural features.
- the invention encompasses preparations comprising Factor VII polypeptides or Factor VII-related polypeptides in which the sialic acid residues (Neu5Ac or Neu5Gc) are linked to galactose exclusively in an ⁇ 2 ⁇ 3 configuration.
- the invention also encompasses preparations comprising Factor VII polypeptides or Factor VII-related polypeptides that contain fucose linked ⁇ 1 ⁇ 6 to a core N-acetylglucosamine and/or fucose linked ⁇ 1 ⁇ 3 to an antennary N-acetylglucosamine.
- the preparations of the invention encompass Factor VII or Factor VII-related polypeptides in which more than 99% of the oligosaccharide chains containg least one sialic acid residue and (a) the sialic acid residues are linked exclusively in an ⁇ 2 ⁇ 3 configuration and/or (b) there are fucose residues linked to core N-acetylglucosamines and/or (c) a detectable number of antenna terminate in N-acetylgalactosamine.
- the invention encompasses preparations comprising wild-type Factor VIIa in which more than 99% of the oligosaccharide chains contain at least one sialic acid residue and the sialic acid residues are linked to galactose exclusively in an ⁇ 2 ⁇ 3 configuration.
- the invention encompasses preparations comprising wild-type Factor VIIa in which more than 99% of the oligosaccharide chains contain at least one sialic acid residue and at least some of the oligosaccharide chains comprise N-acetylgalactosamine.
- the present invention does not encompass wild-type Factor VII or wild-type Factor VIIa that is isolated from human plasma and is not modified ex vivo by treatment with glycosidases.
- the Factor VIIa preparation comprises oligosaccharide chains having a single fucose linked ⁇ 1 ⁇ 3 to one antennary N-acetylglucosamine. In another embodiment, the Factor VIIa preparation comprises oligosaccharide chains having fucose residues linked ⁇ 1 ⁇ 3 to each antennary N-acetylglucosamine of a biantennary oligosaccharide (Sialyl Lewis X structure).
- the Factor VIIa preparation comprises oligosaccharide chains having (i) a fucose linked to a core N-acetylglucosamine and (ii) a single fucose linked ⁇ 1 ⁇ 3 to one antennary N-acetylglucosamine.
- the Factor VIIa preparation comprises oligosaccharide chains having (i) a fucose linked to a core N-acetylglucosamine and (ii) fucose residues linked ⁇ 1 ⁇ 3 to each antennary N-acetylglucosamine of a biantennary oligosaccharide.
- the pattern of N-linked oligosaccharides may be determined using any method known in the art, including, without limitation: high-performance liquid chromatography (HPLC); capillary electrophoresis (CE); nuclear magnetic resonance (NMR); mass spectrometry (MS) using ionization techniques such as fast-atom bombardment, electrospray, or matrix-assisted laser desorption (MALDI); gas chromatography (GC); and treatment with exoglycosidases in conjunction with anion-exchange (AIE)-HPLC, size-exclusion chromatography (SEC), or MS. See, e.g., Weber et al., Anal. Biochem.
- HPLC high-performance liquid chromatography
- CE capillary electrophoresis
- NMR nuclear magnetic resonance
- MS mass spectrometry
- MALDI matrix-assisted laser desorption
- GC gas chromatography
- AIE anion-exchange
- SEC size-exclusion chromatography
- the resolved species are assigned, e.g., to one of groups (i)-(v).
- the relative content of each of (i)-(v) is calculated as the sum of the oligosaccharides assigned to that group relative to the total content of oligosaccharide chains in the sample.
- N-linked oligosaccharide peaks can be resolved from a recombinant Factor VII preparation produced in BHK cells. See, e.g., Klausen et al., Mol. Biotechnol. 9:195, 1998. Five of the peaks (designated 1-5 in Klausen et al.) do not contain sialic acid, while eight of the peaks (designated 6, 7, and 10-15) do contain sialic acid.
- sialic acid-containing and sialic acid-lacking chains may depend upon (a) the polypeptide being expressed; (b) the cell type and culture conditions; and (c) the method of analysis that is employed, and that the resulting patterns may vary accordingly.
- the sialic acid-containing oligosaccharides have been resolved from the non-sialic acid-containing oligosaccharides, conventional data analysis programs are used to calculate the area under each peak; the total peak area; and the percentage of the total peak area represented by a particular peak.
- the sum of the areas of sialic acid-containing peaks/total peak area X 100 yields the % sialylation value for the preparation according to the present invention (i.e., the proportion of oligosaccharide chains having at least one sialic acid residue).
- the % of chains having no sialic acid or at least one galactose or N-acetylglucosamine can be calculated.
- Preparations of Factor VII, Factor VII variants, or Factor VII-related polypeptides, each having a predetermined pattern of N-linked oligosaccharides, may be produced using any appropriate host cell that expresses Factor VII or Factor VII-related polypeptides.
- Host cells are human cells expressing an endogenous Factor VII gene.
- the endogenous gene may be intact or may have been modified in situ, or a sequence outside the Factor VII gene may have been modified in situ to alter the expression of the endogenous Factor VII gene. Any human cell capable of expressing an endogenous Factor VII gene may be used.
- heterologous host cells are programmed to express human Factor VII from a recombinant gene.
- the host cells may be vertebrate, insect, or fungal cells.
- the cells are mammalian cells capable of the entire spectrum of mammalian N-linked glycosylation; O-linked glycosylation; and ⁇ -carboxylation. See, e.g., U.S. Pat. No. 4,784,950.
- Preferred mammalian cell lines include the CHO (ATCC CCL 61), COS-1 (ATCC CRL 1650), baby hamster kidney (BHK) and HEK293 (ATCC CRL 1573; Graham et al., J. Gen. Virol.
- a preferred BHK cell line is the tk ⁇ ts13 BHK cell line (Waechter and Baserga, Proc. Natl. Acad. Sci. USA 79:1106-1110, 1982), hereinafter referred to as BHK 570 cells.
- the BHK 570 cell line is available from the American Type Culture Collection, 12301 Parklawn Dr., Rockville, Md. 20852, under ATCC accession number CRL 10314.
- a tk ⁇ ts13 BHK cell line is also available from the ATCC under accession number CRL 1632.
- Rat Hep I Rat hepatoma; ATCC CRL 1600
- Rat Hep II Rat Hepatoma; ATCC CRL 1548
- TCMK TCC CCL 139
- Human lung ATCC HB 8065
- NCTC 1469 ATCC CCL 9.1
- DUKX cells CHO cell line
- CXB11 cells DUKX cells also referred to as CXB11 cells
- DG44 CHO cell line
- the host cells are BHK 21 cells that have been adapted to grow in the absence of serum and have been programmed to express Factor VII.
- the cells may be mutant or recombinant cells that express a qualitatively or quantitatively different spectrum of glycosylation enzymes (such as, e.g., glycosyl transferases and/or glycosidases) than the cell type from which they were derived.
- glycosylation enzymes such as, e.g., glycosyl transferases and/or glycosidases
- the cells may also be programmed to express other heterologous peptides or proteins, including, e.g., truncated forms of Factor VII.
- the host cells are CHO cells that have been programmed to co-express both the Factor VII polypeptide of interest (i.e., Factor VII or a Factor-VII-related polypeptide) and another heterologous peptide or polypeptide such as, e.g., a modifying enzyme or a Factor VII fragment.
- the Factor VII polypeptide of interest i.e., Factor VII or a Factor-VII-related polypeptide
- another heterologous peptide or polypeptide such as, e.g., a modifying enzyme or a Factor VII fragment.
- the present invention encompasses methods for producing a preparation comprising any of the glycoform patterns described above as (i)-(vi) and, in further embodiments, methods for optimizing the glycoform distribution of Factor VII and Factor VII-related polypeptides. These methods are carried out by the steps of:
- the methods may further comprise:
- step (d1) altering the culture conditions of step (a) to achieve a second set of predetermined culture conditions
- the methods may further comprise
- These methods may further comprise the step of subjecting preparations having predetermined glycoform patterns to at least one test of bioactivity (including, e.g., clotting, Factor X proteolysis, or TF binding) or other functionality (such as, e.g., pharmacokinetic profile or stability), and correlating particular glycoform patterns with particular bioactivity or functionality profiles in order to identify a desired glycoform pattern.
- bioactivity including, e.g., clotting, Factor X proteolysis, or TF binding
- other functionality such as, e.g., pharmacokinetic profile or stability
- the variables in the culture conditions that may be altered in step (d1) include, without limitation: the cell of origin, such as, e.g., a cell derived from a different species than originally used; or a mutant or recombinant cell having alterations in one or more glycosyltransferases or glycosidases or other components of the glycosylation apparatus (see, Grabenhorst et al., Glycoconjugate J. 16:81, 1999; Bragonzi et al., Biochem. Biophys. Acta 1474:273, 2000; Weikert, Nature Biotechnol.
- the cell of origin such as, e.g., a cell derived from a different species than originally used
- a mutant or recombinant cell having alterations in one or more glycosyltransferases or glycosidases or other components of the glycosylation apparatus see, Grabenhorst et al., Glycoconjugate J. 16:81,
- the level of expression of the polypeptide the metabolic conditions such as, e.g., glucose or glutamine concentration; the absence or presence of serum; the concentration of vitamin K; protein hydrolysates, hormones, trace metals, salts as well as process parameters like temperature, dissolved oxygen level and pH.
- the enzymatic treatments that may be used in step (d2) to modify the oligosaccharide pattern of a preparation include, without limitation, treatment with one or more of sialidase (neuraminidase), galactosidase, fucosidase; galactosyl transferase, fucosyl transferase, and/or sialyltransferase, in a sequence and under conditions that achieve a desired modification in the distribution of oligosaccharide chains having particular terminal structures.
- sialidase neuroaminidase
- galactosidase fucosidase
- galactosyl transferase fucosyl transferase
- sialyltransferase sialyltransferase
- host cells expressing Factor VII or a related polypeptide are subjected to specific culture conditions in which they secrete glycosylated Factor VII polypeptides having the desired pattern of oligosaccharide structures described above as any of (i)-(vi).
- culture conditions include, without limitation, a reduction in, or complete absence of, serum.
- the host cells are adapted to grow in the absence of serum and are cultured in the absence of serum both in the growth phase and in the production phase.
- Such adaptation procedures are described, e.g., in Scharfenberg, et al., Animal Cell Technology Developments towards the 21 st Century, E. C. Beuvery et al.
- the growth medium that is added to the cells contains no protein or other component that was isolated from an animal tissue or an animal cell culture. See, e.g., Example 1 below.
- a medium suitable for producing Factor VII contains Vitamin K at a concentration between 0.1-50 mg/liter, which is required for ⁇ -carboxylation of glutamine residues in Factor VII.
- the glycoforms of the invention are produced by subjecting a preparation of Factor VII or Factor VII-related polypeptides to enzymatic and/or chemical modification of the N-linked oligosaccharides contained therein.
- a “Factor VII preparation” refers to a plurality of Factor VII polypeptides, Factor VIIa polypeptides, or Factor VII-related polypeptides, including variants and chemically modified forms, that have been separated from the cell in which they were synthesized.
- Separation of polypeptides from their cell of origin may be achieved by any method known in the art, including, without limitation, removal of cell culture medium containing the desired product from an adherent cell culture; centrifugation or filtration to remove non-adherent cells; and the like.
- Factor VII polypeptides may be further purified. Purification may be achieved using any method known in the art, including, without limitation, affinity chromatography, such as, e.g., on an anti-Factor VII antibody column (see, e.g., Wakabayashi et al., J. Biol. Chem. 261:11097, 1986; and Thim et al., Biochem. 27:7785, 1988); hydrophobic interaction chromatography; ion-exchange chromatography; size exclusion chromatography; electrophoretic procedures (e.g., preparative isoelectric focusing (IEF), differential solubility (e.g., ammonium sulfate precipitation), or extraction and the like.
- affinity chromatography such as, e.g., on an anti-Factor VII antibody column (see, e.g., Wakabayashi et al., J. Biol. Chem. 261:11097, 1986; and Thim et al., Biochem.
- the preparation preferably contains less than about 10% by weight, more preferably less than about 5% and most preferably less than about 1%, of non-Factor VII proteins derived from the host cell.
- Factor VII and Factor VII-related polypeptides may be activated by proteolytic cleavage, using Factor XIIa or other proteases having trypsin-like specificity, such as, e.g., Factor IXa, kallikrein, Factor Xa, and thrombin. See, e.g., Osterud et al., Biochem. 11:2853 (1972); Thomas, U.S. Pat. No. 4,456,591; and Hedner et al., J. Clin. Invest. 71:1836 (1983).
- Factor VII may be activated by passing it through an ion-exchange chromatography column, such as Mono Q® (Pharmacia) or the like. The resulting activated Factor VII may then be formulated and administered as described below.
- the preparations of Factor VII polypeptides and Factor VII-related polypeptides having predetermined oligosaccharide patterns according to the invention exhibit improved functional properties relative to reference preparations.
- the improved functional properties may include, without limitation, a) physical properties such as, e.g., storage stability; b) pharmacokinetic properties such as, e.g., bioavailability and half-life; and c) immunogenicity in humans.
- a reference preparation refers to a preparation comprising a polypeptide that is identical to that contained in the preparation of the invention to which it is being compared (such as, e.g., wild-type Factor VII or a particular variant or chemically modified form) except for exhibiting a different pattern of asparagine-linked glycosylation.
- reference preparations typically comprise one or more of the following glycoform patterns: (i) less than about 93% (such as, e.g.
- oligosaccharide chains contain at least one sialic acid residue; (ii) at least about 6% (such as, e.g., at least about 7.5% or at least about 10%) of the oligosaccharide chains lack any sialic acid (i.e., are neutral); (iii) at least about 10% (such as, e.g., at least about 12.5% or at least about 15%) of the oligosaccharide chains contain at least one terminal galactose residue; (iv) at least about 15% (such as, e.g., at least about 20% or at least about 25%) of the oligosaccharide chains contain at least one terminal N-acetylgalactosamine residue; (v) at least about 25% (such as, e.g., at least about 30% or at least about 35%) of the oligosaccharide chains contain at least one uncapped antenna (i.e., contain at least one terminal galactose or
- Storage stability of a Factor VII preparation may be assessed by measuring (a) the time required for 20% of the bioactivity of a preparation to decay when stored as a dry powder at 25° C and/or (b) the time required for a doubling in the proportion of Factor VIIa aggregates in the preparation.
- the preparations of the invention exhibit an increase of at least about 30%, preferably at least about 60% and more preferably at least about 100%, in the time required for 20% of the bioactivity to decay relative to the time required for the same phenomenon in a reference preparation, when both preparations are stored as dry powders at 25° C.
- Bioactivity measurements may be performed using any of a clotting assay, proteolysis assay, TF-binding assay, or TF-independent thrombin generation assay.
- the preparations of the invention exhibit an increase of at least about 30%, preferably at least about 60%, and more preferably at least about 100%, in the time required for doubling of aggregates relative to a reference preparation, when both preparations are stored as dry powders at 25° C.
- the content of aggregates is determined by gel permeation HPLC on a Protein Pak 300 SW column (7.5 ⁇ 300 mm) (Waters, 80013) as follows. The column is equilibrated with Eluent A (0.2 M ammonium sulfate, 5% isopropanol, pH adjusted to 2.5 with phosphoric acid, and thereafter pH is adjusted to 7.0 with triethylamine), after which 25 ⁇ g of sample is applied to the column.
- Eluent A 0.2 M ammonium sulfate, 5% isopropanol, pH adjusted to 2.5 with phosphoric acid, and thereafter pH is adjusted to 7.0 with triethylamine
- Elution is with Eluent A at a flow rate of 0.5 ml/min for 30 min, and detection is achieved by measuring absorbance at 215 nm.
- the content of aggregates is calculated as the peak area of the Factor VII aggregates/total area of Factor VII peaks (monomer and aggregates).
- Bioavailability refers to the proportion of an administered dose of a Factor VII or Factor VII-related preparation that can be detected in plasma at predetermined times after administration. Typically, bioavailability is measured in test animals by administering a dose of between about 25-250 ⁇ g/kg of the preparation; obtaining plasma samples at predetermined times after administration; and determining the content of Factor VII or Factor VII-related polypeptides in the samples using one or more of a clotting assay (or any bioassay), an immunoassay, or an equivalent. The data are typically displayed graphically as [Factor VII] v. time and the bioavailability is expressed as the area under the curve (AUC). Relative bioavailability of a test preparation refers to the ratio between the AUC of the test preparation and that of the reference preparation.
- the preparations of the present invention exhibit a relative bioavailability of at least about 110%, preferably at least about 120%, more preferably at least about 130% and most preferably at least about 140% of the bioavailability of a reference preparation.
- the bioavailability may be measured in any mammalian species, preferably dogs, and the predetermined times used for calculating AUC may encompass different increments from 10 min-8 h.
- “Half-life” refers to the time required for the plasma concentration of Factor VII polypeptides of Factor VII-related polypeptides to decrease from a particular value to half of that value. Half-life may be determined using the same procedure as for bioavailability. In some embodiments, the preparations of the present invention exhibit an increase in half-life of at least about 0.25 h, preferably at least about 0.5 h, more preferably at least about 1 h, and most preferably at least about 2 h, relative to the half-life of a reference preparation.
- Immunogenicity of a preparation refers to the ability of the preparation, when administered to a human, to elicit a deleterious immune response, whether humoral, cellular, or both.
- Factor VIIa polypeptides and Factor VIIa-related polypeptides are not known to elicit detectable immune responses in humans. Nonetheless, in any human sub-population, there may exist individuals who exhibit sensitivity to particular administered proteins. Immunogenicity may be measured by quantifying the presence of anti-Factor VII antibodies and/or Factor VII-responsive T-cells in a sensitive individual, using conventional methods known in the art.
- the preparations of the present invention exhibit a decrease in immunogenicity in a sensitive individual of at least about 10%, preferably at least about 25%, more preferably at least about 40% and most preferably at least about 50%, relative to the immunogenicity for that individual of a reference preparation.
- the preparations of the present invention may be used to treat any Factor VII-responsive syndrome, such as, e.g., bleeding disorders, including, without limitation, those caused by clotting factor deficiencies (e.g., haemophilia A and B or deficiency of coagulation factors XI or VII); by thrombocytopenia or von Willebrand's disease, or by clotting factor inhibitors, or excessive bleeding from any cause.
- the preparations may also be administered to patients in association with surgery or other trauma or to patients receiving anticoagulant therapy.
- Preparations comprising Factor VII-related polypeptides according to the invention, which have substantially reduced bioactivity relative to wild-type Factor VII, may be used as anticoagulants, such as, e.g., in patients undergoing angioplasty or other surgical procedures that may increase the risk of thrombosis or occlusion of blood vessels as occurs, e.g., in restenosis.
- anticoagulants include, without limitation, deep vein thrombosis, pulmonary embolism, stroke, disseminated intravascular coagulation (DIC), fibrin deposition in lungs and kidneys associated with gram-negative endotoxemia, myocardial infarction; Acute Respiratory Distress Syndrome (ARDS), Systemic Inflammatory Response Syndrome (SIRS), Hemolytic Uremic Syndrome (HUS), MOF, and TTP.
- ARDS Acute Respiratory Distress Syndrome
- SIRS Systemic Inflammatory Response Syndrome
- HUS Hemolytic Uremic Syndrome
- MOF Hemolytic Uremic Syndrome
- compositions comprising the Factor VII and Factor VII-related preparations according to the present are primarily intended for parenteral administration for prophylactic and/or therapeutic treatment.
- the pharmaceutical compositions are administered parenterally, i.e., intravenously, subcutaneously, or intramuscularly. They may be administered by continuous or pulsatile infusion.
- compositions or formulations comprise a preparation according to the invention in combination with, preferably dissolved in, a pharmaceutically acceptable carrier, preferably an aqueous carrier or diluent.
- a pharmaceutically acceptable carrier preferably an aqueous carrier or diluent.
- aqueous carriers such as water, buffered water, 0.4% saline, 0.3% glycine and the like.
- the preparations of the invention can also be formulated into liposome preparations for delivery or targeting to the sites of injury. Liposome preparations are generally described in, e.g., U.S. Pat. Nos. 4,837,028, 4,501,728, and 4,975,282.
- the compositions may be sterilised by conventional, well-known sterilisation techniques.
- the resulting aqueous solutions may be packaged for use or filtered under aseptic conditions and lyophilised, the lyophilised preparation being combined with a sterile aqueous solution prior to administration.
- compositions may contain pharmaceutically acceptable auxiliary substances or adjuvants, including, without limitation, pH adjusting and buffering agents and/or tonicity adjusting agents, such as, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, etc.
- auxiliary substances or adjuvants including, without limitation, pH adjusting and buffering agents and/or tonicity adjusting agents, such as, for example, sodium acetate, sodium lactate, sodium chloride, potassium chloride, calcium chloride, etc.
- the concentration of Factor VII or Factor VII-related polypeptides in these formulations can vary widely, i.e., from less than about 0.5% by weight, usually at or at least about 1% by weight to as much as 15 or 20% by weight and will be selected primarily by fluid volumes, viscosities, etc., in accordance with the particular mode of administration selected.
- a typical pharmaceutical composition for intravenous infusion could be made up to contain 250 ml of sterile Ringer's solution and 10 mg of the preparation.
- Actual methods for preparing parenterally administrable compositions will be known or apparent to those skilled in the art and are described in more detail in, for example, Remington's Pharmaceutical Sciences, 18th ed., Mack Publishing Company, Easton, Pa. (1990).
- compositions containing the preparations of the present invention can be administered for prophylactic and/or therapeutic treatments.
- compositions are administered to a subject already suffering from a disease, as described above, in an amount sufficient to cure, alleviate or partially arrest the disease and its complications.
- An amount adequate to accomplish this is defined as “therapeutically effective amount”.
- Effective amounts for each purpose will depend on the severity of the disease or injury as well as the weight and general state of the subject. In general, however, the effective amount will range from about 0.05 mg up to about 500 mg of the preparation per day for a 70 kg subject, with dosages of from about 1.0 mg to about 200 mg of the preparation per day being more commonly used. It will be understood that determining an appropriate dosage may be achieved using routine experimentation, by constructing a matrix of values and testing different points in the matrix.
- compositions of the present invention may be carried out, e.g., by means of a spray, perfusion, double balloon catheters, stent, incorporated into vascular grafts or stents, hydrogels used to coat balloon catheters, or other well established methods.
- the pharmaceutical compositions should provide a quantity of the preparation sufficient to effectively treat the subject.
- compositions of the invention may further comprise other bioactive agents, such as, e.g., non-Factor VII-related coagulants or anticoagulants.
- a BHK cell line transformed with a Factor VII-encoding plasmid was adapted to growth in suspension culture in the absence of serum. The cells were propagated sequentially in spinner cultures and as the cell number increased, the volume was gradually increased by addition of new medium.
- N-linked oligosaccharides were released from the polypeptides by chemical cleavage (hydrazinolysis, on a GlycoPrep1000 unit, Oxford GlycoSciences) or by enzymatic cleavage (N-glycosidase F from, eg., Boehringer Mannheim).
- the released oligosaccharides were labeled with 2-aminobenzamide (using a signal labelling kit, K-404, Oxford GlycoSciences or Glyko).
- oligosa ccharides were analysed using anion-exchange HPLC on a CarboPac PA100 column (4 ⁇ 250 mm, Dionex, P/N 43055) with a Guard column (4 ⁇ 50 mm, Dionex, P/N 43054).
- the column was equilibrated with 150 mM sodium hydroxide and eluted with a gradient of 0-150 mM sodium acetate, 150 mM sodium hydroxide.
- Oligosaccharides were detected using fluorescence, with excitation at 330 nm and emission at 420 nm.
- the sum of the relative contents of the oligosaccharide chains assigned to each group was calculated as a percentage of the total oligosaccharide chains.
- the standard deviation of this determination was calculated to be 0.08% (intraday variation); 0.7% (day-to-day variation); and 0.5% (1-100 ⁇ g interval).
- the recombinant Factor VII preparations produced according to this Example exhibit a glycoform pattern that differs from both the glycoform pattern of recombinant Factor VII produced in the presence of serum and native Factor VII isolated from human plasma.
- the oligosaccharides of recombinant Factor VII produced in the absence of serum are sialylated to a higher extent than those produced in the presence of serum and contain less neutral chains and less chains that terminate in either galactose or N-acetylgalatosamine.
- Groups of 8 rats were administered either a test preparation or a reference preparation at a dose of 25 ⁇ g/kg ( ⁇ 100 ⁇ g/rat) in a glycylglycine buffer (pH 7.4) containing sodium chloride (7.87 mg/ml), calcium chloride dihydrate (1.48 mg/ml), mannitol (2.5 mg/ml) and polysorbate 80.
- Blood samples were withdrawn at 10 min and 30 min following the initial administration. Plasma was obtained from the samples and Factor VII was quantified by ELISA. Bioavailability of each sample is expressed as the dose-adjusted area under the plasma concentration curve for Factor VII based on the 10 and 30-min samples (AUC 10-30 /dose).
- the relative bioavailability is expressed as the ratio between the mean AUC 10-30 /dose of the test and reference samples X 100.
- the 90% confidence limits for the relative bioavailability were calculated from the 90% confidence limits for differences between preparations.
- Factor VII was produced as described in Example 1 above, with the exception that the Factor VII was harvested from 500-I cultures. Glycoform analysis was performed as described in Example 1. Three independent preparations (A, B, and C) were analyzed and compared with a reference preparation (D).
- Bioavailability was measured in a dog model as follows: The experiment was performed as a four leg cross-over study in 12 Beagle dogs divided in four groups. All animals received each of the three test preparations A, B, and C and the reference preparation D at a dose of ⁇ 90 ⁇ g/kg in a glycylglycine buffer (pH 5.5) containing sodium chloride (2.92 mg/ml), calcium chloride dihydrate (1.47 mg/ml), mannitol (30 mg/ml) and polysorbate 80. Blood samples were withdrawn at 10, 30, and 60 minutes and 2, 3, 4, 6 and 8 hours following the initial administration. Plasma was obtained from the samples and Factor VII was quantified by ELISA.
- Bioavailability of each sample is expressed as the dose-adjusted area under the plasma concentration curve for Factor VII (AUC/dose).
- the relative bioavailability is expressed as the ratio between the mean AUC/dose of the test and reference preparation X 100 and 90% confidence limits for the relative bioavailability were calculated.
- a plasmid vector pLN174 for expression of human FVII has been described (Persson and Nielsen. 1996. FEBS Lett. 385: 241-243). Briefly, it carries the cDNA nucleotide sequence encoding human FVII including the propeptide under the control of a mouse metallothionein promoter for transcription of the inserted cDNA, and mouse dihydrofolate reductase cDNA under the control of an SV40 early promoter for use as a selectable marker.
- a cloning vector (pBluescript II KS+, Stratagene) containing cDNA encoding FVII including its propeptide was used (pLN171). (Persson et al. 1997. J. Biol. Chem. 272: 19919-19924). A nucleotide sequence encoding a stop codon was inserted into the cDNA encoding FVII after the propeptide of FVII by inverse PCR-mediated mutagenesis using this cloning vector.
- the template plasmid was denatured by treatment with NaOH followed by PCR with Pwo (Boehringer-Mannheim) and Taq (Perkin-Elmer) polymerases with the following primers: a) 5′-AGC GTT TTA GCG CCG GCG CCG GTG CAG GAC-3′ (SEQ ID NO.19) b) 5′-CGC CGG CGC TAA AAC GCT TTC CTG GAG GAG CTG CGG CC-3′ (SEQ ID NO.20)
- the resulting mix was digested with DpnI to digest residual template DNA and Escherichia coli were transformed with the PCR product. Clones were screened for the presence of the mutation by sequencing. The cDNA from a correct clone was transferred as a BamHI-EcoRI fragment to the expression plasmid pcDNA3 (Invitrogen). The resulting plasmid was termed pLN329.
- CHO K1 cells (ATCC CCI61) were transfected with equal amounts of pLN174 and pLN329 with the Fugene6 method (Boehriner-Mannheim). Transfectants were selected by the addition of methotrexate to 1 ⁇ M and G-418 to 0.45 mg/ml. The pool of transfectants were cloned by limiting dilution and FVII expression from the clones was measured.
- a high producing clone was further subcloned and a clone E11 with a specific FVII expression of 2.4 pg/cell/day in Dulbecco-modified Eagle's medium with 10% fetal calf serum was selected.
- the clone was adapted to serum free suspension culture in a commercially available CHO medium (JRH Bioscience) free of animal derived components.
- the adapted cells were propagated sequentially in spinner cultures and as the cell number increased, the volume was gradually increased by addition of new medium. After 25 days, 6 l of spinner culture were inoculated into a 50-liter bioreactor. The cells were propagated in the bioreactor and as the cell number increased, the volume was gradually increased by addition of new medium.
- oligosaccharide assignments are as follows: (i) chains containing at least one sialic acid; (ii) chains lacking any sialic acid (i.e., neutral); (iii) chains containing at least one terminal galactose residue; (iv) chains containing at least one terminal N-acetylgalactosamine residue; and (v) chains containing at least one uncapped antenna (i.e., at least one terminal galactose or N-acetylgalactosamine residue).
- each oligosaccharide Based on the structural elements of each oligosaccharide, it was assigned to one of the following: (i) chains containing at least one sialic acid; (ii) chains lacking any sialic acid (i.e., neutral); (iii) chains containing at least one fucose linked to the antenna. Finally, the sum of the relative contents of the oligosaccharide chains assigned to each group was calculated as a percentage of the total oligosaccharide chains. The standard deviation of this determination was calculated to be 0.08% (intraday variation); 0.7% (day-to-day variation); and 0.5% (1-100 ⁇ g interval).
- the recombinant Factor VII preparations produced according to Example 1 exhibit a glycoform pattern that differs from both the glycoform pattern of recombinant Factor VII produced in the presence of serum and native Factor VII isolated from human plasma.
- the oligosaccharides of recombinant Factor VII produced in the absence of serum by the CHO 282.4 cell line include structures with fucose linked to the antenna, which are absent from both of the reference preparations. Two of the structures have been purified and characterized by matrix assisted laser desorption ionisation mass spectrometry, by treatment with linkage specific fucosidase enzymes and by anion-exchange HPLC as described above.
- the two structures have been shown to contain the sialyl Lewis x structure, i.e., fucose linked ⁇ 1 ⁇ 3 to an antennary N-acetylglucosamine in a sialylated oligosaccharide.
- Factor VII preparations produced as described in this Example were analyzed for (a) thrombin generation and (b) binding to tissue factor (TF) and compared with recombinant Factor VII produced in BHK cells in the presence of serum (reference).
- the following Table correlates the glycoform patterns (% of oligosaccharide chains containing sialic acid and the % containing fucosylated antenna) and the two bioactivities.
- Thrombin Oligosaccharide generation Factor VII Pattern (% of TF binding Preparation % Sialyl % Fucosyl reference) Kd (nM) 1 98 6 125 2.8 2 94 13 123 2.0 3 93 14 126 1.8 4 88 16 145 3.3 5 86 21 158 2.8 reference 86-93 0 100 2.2-6.6
- the following method can be used to assay Factor VIIa bioactivity.
- the assay is carried out in a microtiter plate (MaxiSorp, Nunc, Denmark).
- the absorbance at 405 nm is measured continuously in a SpectraMaxTM 340 plate reader (Molecular Devices, USA).
- the absorbance developed during a 20-minute incubation, after subtraction of the absorbance in a blank well containing no enzyme, is used to calculate the ratio between the activities of a test and a reference Factor VIIa.
- the following method can be used to assay Factor VIIa bioactivity.
- the assay is carried out in a microtiter plate (MaxiSorp, Nunc, Denmark).
- Factor VIIa (10 nM) and Factor X (0.8 microM) in 100 ⁇ l 50 mM Hepes, pH 7.4, containing 0.1 M NaCl, 5 mM CaCl 2 and 1 mg/ml bovine serum albumin, are incubated for 15 min.
- Factor X cleavage is then stopped by the addition of 50 ⁇ l 50 mM Hepes, pH 7.4, containing 0.1 M NaCl, 20 mM EDTA and 1 mg/ml bovine serum albumin.
- the amount of Factor Xa generated is measured by addition of the chromogenic substrate Z-D-Arg-Gly-Arg-p-nitroanilide (S-2765, Chromogenix, Sweden), final concentration 0.5 mM.
- the absorbance at 405 nm is measured continuously in a SpectraMaxTM 340 plate reader (Molecular Devices, USA).
- the absorbance developed during 10 minutes, after subtraction of the absorbance in a blank well containing no FVIIa, is used to calculate the ratio between the proteolytic activities of a test and a reference Factor VIIa.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- General Engineering & Computer Science (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Biotechnology (AREA)
- Pharmacology & Pharmacy (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Epidemiology (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gastroenterology & Hepatology (AREA)
- Hematology (AREA)
- Diabetes (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Compounds Of Unknown Constitution (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/969,358 US20020151471A1 (en) | 2000-10-02 | 2001-10-02 | Factor VII glycoforms |
Applications Claiming Priority (12)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200001456 | 2000-10-02 | ||
DKPA200001456 | 2000-10-02 | ||
US23894400P | 2000-10-10 | 2000-10-10 | |
DKPA200100262 | 2001-02-16 | ||
DKPA200100262 | 2001-02-16 | ||
US27158101P | 2001-02-26 | 2001-02-26 | |
DKPA200100430 | 2001-03-14 | ||
DKPA200100430 | 2001-03-14 | ||
US27632201P | 2001-03-16 | 2001-03-16 | |
DKPA200100751 | 2001-05-14 | ||
DKPA200100751 | 2001-05-14 | ||
US09/969,358 US20020151471A1 (en) | 2000-10-02 | 2001-10-02 | Factor VII glycoforms |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020151471A1 true US20020151471A1 (en) | 2002-10-17 |
Family
ID=27439823
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/398,422 Expired - Fee Related US8202973B2 (en) | 2000-10-02 | 2001-10-02 | Method for the production of vitamin K-dependent proteins |
US09/969,357 Expired - Lifetime US6903069B2 (en) | 2000-10-02 | 2001-10-02 | Factor VII glycoforms |
US09/969,358 Abandoned US20020151471A1 (en) | 2000-10-02 | 2001-10-02 | Factor VII glycoforms |
US10/725,843 Abandoned US20050075289A1 (en) | 2000-10-02 | 2003-12-02 | Factor VII glycoforms |
US11/643,607 Abandoned US20070122884A1 (en) | 2000-10-02 | 2006-12-21 | Factor VII glycoforms |
US12/503,498 Abandoned US20090281022A1 (en) | 2000-10-02 | 2009-07-15 | Method for Producing Factor VII Glycoforms |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/398,422 Expired - Fee Related US8202973B2 (en) | 2000-10-02 | 2001-10-02 | Method for the production of vitamin K-dependent proteins |
US09/969,357 Expired - Lifetime US6903069B2 (en) | 2000-10-02 | 2001-10-02 | Factor VII glycoforms |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/725,843 Abandoned US20050075289A1 (en) | 2000-10-02 | 2003-12-02 | Factor VII glycoforms |
US11/643,607 Abandoned US20070122884A1 (en) | 2000-10-02 | 2006-12-21 | Factor VII glycoforms |
US12/503,498 Abandoned US20090281022A1 (en) | 2000-10-02 | 2009-07-15 | Method for Producing Factor VII Glycoforms |
Country Status (18)
Country | Link |
---|---|
US (6) | US8202973B2 (fr) |
EP (6) | EP1325147A2 (fr) |
JP (4) | JP4361730B2 (fr) |
KR (2) | KR100880624B1 (fr) |
CN (3) | CN1468303B (fr) |
AT (2) | ATE465253T1 (fr) |
AU (5) | AU2001291653A1 (fr) |
BR (2) | BR0114373A (fr) |
CA (2) | CA2422214A1 (fr) |
CZ (1) | CZ2003718A3 (fr) |
DE (2) | DE60137950D1 (fr) |
ES (2) | ES2344887T3 (fr) |
HU (2) | HUP0301267A3 (fr) |
IL (2) | IL154880A0 (fr) |
MX (1) | MXPA03002853A (fr) |
NO (1) | NO20031471L (fr) |
PL (2) | PL361058A1 (fr) |
WO (4) | WO2002029084A2 (fr) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2008074032A1 (fr) * | 2006-12-15 | 2008-06-19 | Baxter International Inc. | Conjugué du facteur viia et de l'acide (poly)sialique présentant une demi-vie in vivo prolongée |
US20090130060A1 (en) * | 2004-08-17 | 2009-05-21 | Csl Behring Gmbh | Modified Vitamin K Dependent Polypeptides |
WO2017025566A1 (fr) * | 2015-08-10 | 2017-02-16 | Glycotope Gmbh | Facteur vii de recombinaison amélioré |
Families Citing this family (119)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050032690A1 (en) * | 1997-09-10 | 2005-02-10 | Rojkjaer Lisa Payne | Factor VII polypeptides for preventing formation of inhibitors in subjects with haemophilia |
US7786070B2 (en) | 1997-09-10 | 2010-08-31 | Novo Nordisk Healthcare A/G | Subcutaneous administration of coagulation factor VII |
US7247708B2 (en) | 1997-10-23 | 2007-07-24 | Regents Of The University Of Minnesota | Modified vitamin K-dependent polypeptides |
US6747003B1 (en) | 1997-10-23 | 2004-06-08 | Regents Of The University Of Minnesota | Modified vitamin K-dependent polypeptides |
ATE370961T1 (de) | 1998-05-06 | 2007-09-15 | Genentech Inc | Reinigung von antikörpern durch ionenaustauschchromatographie |
ATE428445T1 (de) * | 2000-02-11 | 2009-05-15 | Bayer Healthcare Llc | Gerinnungsfaktor vii oder viia konjugate |
US7220837B1 (en) | 2000-04-28 | 2007-05-22 | Regents Of The University Of Minnesota | Modified vitamin K-dependent polypeptides |
US7812132B2 (en) | 2000-04-28 | 2010-10-12 | Regents Of The University Of Minnesota | Modified vitamin K-dependent polypeptides |
US20030211094A1 (en) | 2001-06-26 | 2003-11-13 | Nelsestuen Gary L. | High molecular weight derivatives of vitamin k-dependent polypeptides |
US20030040480A1 (en) * | 2001-07-20 | 2003-02-27 | Rasmus Rojkjaer | Pharmaceutical composition comprising factor VII polypeptides and factor XI polypeptides |
HUP0402158A2 (hu) | 2001-10-02 | 2005-01-28 | Novo Nordisk Health Care Ag | Rekombináns fehérjék előállítási eljárása eukarióta sejtekben |
US7157277B2 (en) | 2001-11-28 | 2007-01-02 | Neose Technologies, Inc. | Factor VIII remodeling and glycoconjugation of Factor VIII |
WO2004099231A2 (fr) | 2003-04-09 | 2004-11-18 | Neose Technologies, Inc. | Methode de glycopegylation et proteines/peptides produits au moyen de ces methodes |
US7173003B2 (en) | 2001-10-10 | 2007-02-06 | Neose Technologies, Inc. | Granulocyte colony stimulating factor: remodeling and glycoconjugation of G-CSF |
US7214660B2 (en) | 2001-10-10 | 2007-05-08 | Neose Technologies, Inc. | Erythropoietin: remodeling and glycoconjugation of erythropoietin |
DE60232017D1 (de) | 2001-12-21 | 2009-05-28 | Novo Nordisk Healthcare Ag | Flüssige zusammensetzung aus faktor vii polypeptiden |
KR20040065278A (ko) * | 2001-12-21 | 2004-07-21 | 노보 노르디스크 에이/에스 | 변경된 인자 ⅶ 폴리펩티드의 액체 조성물 |
PL373728A1 (en) * | 2002-04-30 | 2005-09-05 | Maxygen Holdings Ltd. | Factor vii or viia polypeptide variants |
US20040009918A1 (en) * | 2002-05-03 | 2004-01-15 | Hanne Nedergaard | Stabilised solid compositions of modified factor VII |
JP4648002B2 (ja) | 2002-06-21 | 2011-03-09 | ノボ ノルディスク ヘルス ケア アクチェンゲゼルシャフト | 第vii因子ポリペプチドの安定化された固体組成物 |
PT1517710E (pt) * | 2002-06-21 | 2011-07-08 | Novo Nordisk Healthcare Ag | Glicoformas do factor vii peguilado |
ATE505487T1 (de) * | 2002-09-30 | 2011-04-15 | Bayer Healthcare Llc | Fvii- oder fviia-varianten mit erhöhter koagulationswirkung |
RU2005132164A (ru) * | 2003-03-18 | 2006-06-10 | Ново Нордиск Хелт Кэр Аг (Ch) | Жидкие, водные фармацевтические композиции полипептидов фактора vii |
EP1611236A1 (fr) * | 2003-03-18 | 2006-01-04 | Novo Nordisk Health Care AG | Procede de production de protease seriniques contenant des residus d'acide gamma-carboxyglutamique |
ES2327044T3 (es) | 2003-03-20 | 2009-10-23 | Bayer Healthcare Llc | Variantes de fvii o fviia. |
US7897734B2 (en) | 2003-03-26 | 2011-03-01 | Novo Nordisk Healthcare Ag | Method for the production of proteins |
WO2006127896A2 (fr) | 2005-05-25 | 2006-11-30 | Neose Technologies, Inc. | Facteur ix glycopegyle |
US8791070B2 (en) | 2003-04-09 | 2014-07-29 | Novo Nordisk A/S | Glycopegylated factor IX |
EP1628677B1 (fr) * | 2003-05-23 | 2010-01-13 | Novo Nordisk Health Care AG | Stabilisation de proteines dans une solution |
JP4915918B2 (ja) * | 2003-06-19 | 2012-04-11 | バイエル ヘルスケア エルエルシー | 第VII因子または第VIIa因子のGlaドメイン変種 |
ATE547114T1 (de) * | 2003-06-25 | 2012-03-15 | Novo Nordisk Healthcare Ag | Flüssige zusammensetzungen von factor vii polypeptiden |
KR100731869B1 (ko) * | 2003-06-30 | 2007-06-25 | 오츠카 가가쿠 가부시키가이샤 | 디시알로운데카 당사슬 아스파라긴―지방산 아미드, 이것을포함하는 의약 |
ATE446768T1 (de) * | 2003-07-01 | 2009-11-15 | Novo Nordisk Healthcare Ag | Flüssige wässrige pharmazeutische zusammnesetzung von factor vii polypeptiden |
WO2005012484A2 (fr) | 2003-07-25 | 2005-02-10 | Neose Technologies, Inc. | Conjugues anticorps-toxines |
AU2004264282B2 (en) * | 2003-08-14 | 2010-10-14 | Novo Nordisk Health Care Ag | Liquid, aqueous pharmaceutical composition of Factor VII polypeptides |
CN1863908B (zh) | 2003-09-09 | 2010-08-04 | 诺和诺德医疗保健公司 | 凝固因子ⅶ多肽 |
EP2380985B1 (fr) | 2003-09-23 | 2014-01-01 | University of North Carolina at Chapel Hill | Cellules exprimantes la vitamine K epoxyde réductase et utilisation des-dites. |
JP4740138B2 (ja) | 2003-10-10 | 2011-08-03 | ノボ ノルディスク ヘルス ケア アクチェンゲゼルシャフト | 真核生物細胞におけるポリペプチドの大規模生産方法及びそれに適した培養容器 |
EP2272951B1 (fr) * | 2003-10-14 | 2014-07-23 | Baxter International Inc. | Polypeptide VKCORC1 de recyclage de la vitamine k-epoxide, cible thérapeutique de la coumarine et de ses dérivés |
GB0324044D0 (en) * | 2003-10-14 | 2003-11-19 | Astrazeneca Ab | Protein |
US20080305992A1 (en) | 2003-11-24 | 2008-12-11 | Neose Technologies, Inc. | Glycopegylated erythropoietin |
EP2275432A1 (fr) * | 2003-12-01 | 2011-01-19 | Novo Nordisk Health Care AG | Nanofiltration des solutions du facteur VII pour enlever des virus |
US20060040856A1 (en) | 2003-12-03 | 2006-02-23 | Neose Technologies, Inc. | Glycopegylated factor IX |
PT2298287T (pt) * | 2003-12-19 | 2018-07-23 | Novo Nordisk Healthcare Ag | Composições estabilizadas de polipéptidos de fator vii |
WO2005068620A1 (fr) * | 2004-01-07 | 2005-07-28 | Novo Nordisk Health Care Ag | Procede de production de proteines de recombinaison |
US20080305518A1 (en) | 2004-05-04 | 2008-12-11 | Novo Nordisk Healthcare A/G | O-Linked Glycoforms Of Polypeptides And Method To Manufacture Them |
WO2006035058A2 (fr) * | 2004-09-29 | 2006-04-06 | Novo Nordisk Health Care Ag | Purification d'une substance medicamenteuse faite d'un polypeptide facteur vii par suppression des structures polypeptides facteurs vii du desgla |
US20080176790A1 (en) | 2004-10-29 | 2008-07-24 | Defrees Shawn | Remodeling and Glycopegylation of Fibroblast Growth Factor (Fgf) |
US20090100533A1 (en) * | 2004-12-21 | 2009-04-16 | Novo Nordisk Health Care Ag | Expression of gamma-carboxylated polypeptides in gamma-carboxylation deficient host sytems |
PL1831242T3 (pl) * | 2004-12-23 | 2013-04-30 | Novo Nordisk Healthcare Ag | Zmniejszanie zawartości zanieczyszczeń białkowych w kompozycjach zawierających zależne od witaminy K białko będące przedmiotem zainteresowania |
MX2007008229A (es) | 2005-01-10 | 2007-09-11 | Neose Technologies Inc | Factor estimulador de colonias de granulocitos glicopegilado. |
ES2380485T3 (es) * | 2005-02-11 | 2012-05-14 | Novo Nordisk Health Care Ag | Producción de un polipéptido en un lÃquido de cultivo sin suero con hidrolizado de proteÃnas vegetales |
MX349285B (es) | 2005-02-28 | 2017-07-20 | Baxalta Inc | Co-expresion recombinante de reductasa de epoxido de vitamina k subunidad 1 para mejorar la expresion de proteina dependiente de vitamina k. |
JP2008532544A (ja) | 2005-03-15 | 2008-08-21 | ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル | 活性ビタミンk依存性タンパク質を生産するための方法及び組成物 |
US9187546B2 (en) | 2005-04-08 | 2015-11-17 | Novo Nordisk A/S | Compositions and methods for the preparation of protease resistant human growth hormone glycosylation mutants |
MX2007012704A (es) | 2005-04-13 | 2008-01-14 | Astrazeneca Ab | Celula huesped que comprende vector para la produccion de proteinas que requieren carboxilacion-gamma. |
US20070105755A1 (en) | 2005-10-26 | 2007-05-10 | Neose Technologies, Inc. | One pot desialylation and glycopegylation of therapeutic peptides |
WO2007056191A2 (fr) | 2005-11-03 | 2007-05-18 | Neose Technologies, Inc. | Purification de sucre de nucleotide en utilisant des membranes |
CA2633661C (fr) * | 2005-12-21 | 2019-06-04 | University Of North Carolina At Chapel Hill | Procede de production de proteines dependantes de la vitamine k biologiquement actives par des procedes recombinants |
EP1816201A1 (fr) | 2006-02-06 | 2007-08-08 | CSL Behring GmbH | Facteur de coagulation VIIa modifié ayant une stabilité 'half-life' améliorée |
ES2399138T3 (es) | 2006-03-16 | 2013-03-26 | Stellaris Pharmaceuticals Aps | Tratamiento local con factor VII |
DE602007007923D1 (de) * | 2006-04-11 | 2010-09-02 | Csl Behring Gmbh | Verfahren zur erhöhung der in-vivo-gewinnung therapeutischer polypeptide |
FR2901707B1 (fr) | 2006-05-31 | 2017-09-29 | Lab Francais Du Fractionnement | Composition de facteur vii recombinant ou transgenique, chaque molecule de facteur vii possedant deux sites de n-glycosylation a motifs glycanniques definis |
JP5122562B2 (ja) * | 2006-07-17 | 2013-01-16 | ノボ ノルディスク ヘルス ケア アーゲー | 増加した活性を有する第viia因子アナログの新規用途 |
EP2049144B8 (fr) | 2006-07-21 | 2015-02-18 | ratiopharm GmbH | Glycosylation de peptides par l'intermédiaire de séquences de glycosylation à liaison o |
FR2904558B1 (fr) * | 2006-08-01 | 2008-10-17 | Lab Francais Du Fractionnement | "composition de facteur vii recombinant ou transgenique, presentant majoritairement des formes glycanniques biantennees, bisialylees et non fucosylees" |
EP2054521A4 (fr) | 2006-10-03 | 2012-12-19 | Novo Nordisk As | Méthodes de purification de conjugués de polypeptides |
WO2008056816A1 (fr) * | 2006-11-07 | 2008-05-15 | Kyoto University | Support de suspension pour une molécule d'acide nucléique linéaire, procédé d'extension d'une molécule d'acide nucléique linéaire et spécimen de molécule d'acide nucléique linéaire |
EP3231440A1 (fr) | 2006-12-22 | 2017-10-18 | CSL Behring GmbH | Facteurs de coagulation modifiés avec une demi-vie in vivo prolongée |
EP2099475B1 (fr) * | 2007-01-03 | 2016-08-24 | Novo Nordisk Health Care AG | Administration sous-cutanée de polypeptides liés au facteur viia de la coagulation |
JP2010523582A (ja) | 2007-04-03 | 2010-07-15 | バイオジェネリクス アクチェンゲゼルシャフト | グリコpeg化g−csfを用いた治療方法 |
KR20100016462A (ko) * | 2007-04-13 | 2010-02-12 | 카탈리스트 바이오사이언시즈, 인코포레이티드 | 변형 제vii 인자 폴리펩타이드 및 이의 용도 |
AU2014202989B2 (en) * | 2007-04-26 | 2016-07-07 | Aptevo Biotherapeutics Llc | Recombinant vitamin k dependent proteins with high sialic acid content and methods of preparing same |
JP6050927B2 (ja) * | 2007-04-26 | 2016-12-21 | シーエヌジェイ ホールディングス,インコーポレイテッド | 高シアル酸含量を有する組換えビタミンk依存性タンパク質およびその調製方法 |
AU2016238889B2 (en) * | 2007-04-26 | 2019-06-27 | Aptevo Biotherapeutics Llc | Recombinant vitamin K dependent proteins with high sialic acid content and methods of preparing same |
MX2009013259A (es) | 2007-06-12 | 2010-01-25 | Novo Nordisk As | Proceso mejorado para la produccion de azucares de nucleotidos. |
US8206967B2 (en) | 2007-07-06 | 2012-06-26 | Medimmune Limited | Method for production of recombinant human thrombin |
EP2014299A1 (fr) * | 2007-07-11 | 2009-01-14 | Novo Nordisk A/S | Administration sous-cutanée du facteur VII de coagulation |
KR101643277B1 (ko) | 2007-12-28 | 2016-07-28 | 박스알타 인코퍼레이티드 | 재조합 vwf 제제 |
US11197916B2 (en) | 2007-12-28 | 2021-12-14 | Takeda Pharmaceutical Company Limited | Lyophilized recombinant VWF formulations |
CN103497247A (zh) | 2008-02-27 | 2014-01-08 | 诺沃—诺迪斯克有限公司 | 缀合的因子viii分子 |
TWI538916B (zh) | 2008-04-11 | 2016-06-21 | 介控生化科技公司 | 經修飾的因子vii多肽和其用途 |
CA2740919A1 (fr) | 2008-10-21 | 2010-04-29 | Baxter International Inc. | Formulations de vwf recombinant lyophilise |
PT2356247E (pt) | 2008-11-12 | 2015-10-26 | Baxalta Inc | Método de produção de fator vii isento de soro e de insulina |
JP5027106B2 (ja) * | 2008-12-25 | 2012-09-19 | 一般財団法人阪大微生物病研究会 | 日本脳炎ウイルス抗原 |
RU2744370C2 (ru) | 2009-07-27 | 2021-03-05 | Баксалта Инкорпорейтед | Конъюгаты белков свертывания крови |
TWI537006B (zh) | 2009-07-27 | 2016-06-11 | 巴克斯歐塔公司 | 凝血蛋白接合物 |
US8809501B2 (en) | 2009-07-27 | 2014-08-19 | Baxter International Inc. | Nucleophilic catalysts for oxime linkage |
AU2010277438B2 (en) | 2009-07-27 | 2015-08-20 | Baxalta GmbH | Glycopolysialylation of non-blood coagulation proteins |
US8642737B2 (en) | 2010-07-26 | 2014-02-04 | Baxter International Inc. | Nucleophilic catalysts for oxime linkage |
US8580554B2 (en) | 2009-07-31 | 2013-11-12 | Baxter International Inc. | Method of producing a polypeptide or virus of interest in a continuous cell culture |
EP2494040B1 (fr) * | 2009-10-30 | 2018-08-29 | Aptevo BioTherapeutics LLC | Procédé de production de protéines recombinantes dépendantes de la vitamine k |
WO2011069056A2 (fr) * | 2009-12-04 | 2011-06-09 | Momenta Pharmaceuticals, Inc. | Fucosylation antennaire dans des glycoprotéines de cellules cho |
FR2954349A1 (fr) | 2009-12-22 | 2011-06-24 | Agronomique Inst Nat Rech | Sulfatase modifiant selectivement les glycosaminoglycanes |
WO2012075138A1 (fr) * | 2010-11-30 | 2012-06-07 | Progenetics Llc | Procédé de production de protéines biologiquement actives dépendantes de la vitamine k dans des animaux transgéniques |
US9631002B2 (en) | 2010-12-21 | 2017-04-25 | The University Of North Carolina At Chapel Hill | Methods and compositions for producing active vitamin K-dependent proteins |
EA032056B1 (ru) | 2010-12-22 | 2019-04-30 | Баксалта Инкорпорейтид | Конъюгат терапевтического белка и производного жирной кислоты, способы получения конъюгата терапевтического белка и производного жирной кислоты (варианты) |
EP2702077A2 (fr) | 2011-04-27 | 2014-03-05 | AbbVie Inc. | Procédé de contrôle du profil de galactosylation de protéines exprimées de manière recombinante |
US9334319B2 (en) | 2012-04-20 | 2016-05-10 | Abbvie Inc. | Low acidic species compositions |
US9067990B2 (en) | 2013-03-14 | 2015-06-30 | Abbvie, Inc. | Protein purification using displacement chromatography |
WO2013158273A1 (fr) | 2012-04-20 | 2013-10-24 | Abbvie Inc. | Procédés de modulation de la distribution de variant de lysine c-terminal |
US9512214B2 (en) | 2012-09-02 | 2016-12-06 | Abbvie, Inc. | Methods to control protein heterogeneity |
JP2015534573A (ja) | 2012-10-10 | 2015-12-03 | ノヴォ・ノルディスク・ヘルス・ケア・アーゲー | 第vii因子ポリペプチドの液体医薬組成物 |
SG11201507230PA (en) | 2013-03-12 | 2015-10-29 | Abbvie Inc | Human antibodies that bind human tnf-alpha and methods of preparing the same |
US9017687B1 (en) | 2013-10-18 | 2015-04-28 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same using displacement chromatography |
WO2014151878A2 (fr) | 2013-03-14 | 2014-09-25 | Abbvie Inc. | Procédés pour la modulation des profils de glycosylation de protéines de traitements à base de protéines recombinantes au moyen de monosaccharides et d'oligosaccharides |
FR3006591B1 (fr) | 2013-06-11 | 2016-05-06 | Lab Francais Du Fractionnement | Composition de facteur vii presentant un point isoelectrique substantiellement homogene |
EP3052640A2 (fr) | 2013-10-04 | 2016-08-10 | AbbVie Inc. | Utilisation d'ions métaux pour la modulation des profils de glycosylation de protéines recombinantes |
US9181337B2 (en) | 2013-10-18 | 2015-11-10 | Abbvie, Inc. | Modulated lysine variant species compositions and methods for producing and using the same |
US9085618B2 (en) | 2013-10-18 | 2015-07-21 | Abbvie, Inc. | Low acidic species compositions and methods for producing and using the same |
WO2015073884A2 (fr) | 2013-11-15 | 2015-05-21 | Abbvie, Inc. | Compositions de protéines de liaison génétiquement glycomodifiées |
AU2015248888A1 (en) * | 2014-04-16 | 2016-10-20 | Cmc Biologics A/S | A high cell density fill and draw fermentation process |
SG10202113019XA (en) | 2014-06-04 | 2021-12-30 | Amgen Inc | Methods for harvesting mammalian cell cultures |
US9714302B2 (en) | 2014-10-10 | 2017-07-25 | W. R. Grace & Co.—Conn. | Process for preparing spherical polymerization catalyst components for use in olefin polymerizations |
FR3034669B1 (fr) | 2015-04-07 | 2020-02-14 | Laboratoire Francais Du Fractionnement Et Des Biotechnologies | Nouvelle utilisation du facteur von willebrand |
BR102015012334A2 (pt) | 2015-05-27 | 2016-11-29 | Fundação Hemoct De Ribeirão Preto Fundherp | processo de produção do fator vii de coagulação sanguínea e fator vii de coagulação sanguínea |
US20180362952A1 (en) * | 2015-12-02 | 2018-12-20 | Csl Behring Recombinant Facility Ag | Improved media for the expression of recombinant vitamin k-dependent proteins |
EP3488858A1 (fr) | 2017-11-27 | 2019-05-29 | Laboratoire Français du Fractionnement et des Biotechnologies | Une composition de facteur de von willebrand et sone utilisation dans le traitement des maladies induites par l'angiogenese |
EP3833381B1 (fr) | 2019-08-15 | 2022-08-03 | Catalyst Biosciences, Inc. | Polypeptides de facteur vii modifiés pour une administration sous-cutanée |
Family Cites Families (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4189534A (en) * | 1976-11-11 | 1980-02-19 | Massachusetts Institute Of Technology | Cell culture microcarriers |
US4357422A (en) * | 1980-08-14 | 1982-11-02 | Massachusetts Institute Of Technology | Method of enhancing interferon production |
US4335215A (en) * | 1980-08-27 | 1982-06-15 | Monsanto Company | Method of growing anchorage-dependent cells |
US4456591A (en) | 1981-06-25 | 1984-06-26 | Baxter Travenol Laboratories, Inc. | Therapeutic method for activating factor VII |
US4501728A (en) | 1983-01-06 | 1985-02-26 | Technology Unlimited, Inc. | Masking of liposomes from RES recognition |
US4664912A (en) * | 1984-10-01 | 1987-05-12 | Wiktor Tadeusz J | Process for the large scale production of rabies vaccine |
US4978616A (en) * | 1985-02-28 | 1990-12-18 | Verax Corporation | Fluidized cell cultivation process |
GR860984B (en) * | 1985-04-17 | 1986-08-18 | Zymogenetics Inc | Expression of factor vii and ix activities in mammalian cells |
US4975282A (en) | 1985-06-26 | 1990-12-04 | The Liposome Company, Inc. | Multilamellar liposomes having improved trapping efficiencies |
SE464816B (sv) * | 1985-10-15 | 1991-06-17 | Nilsson Kjell | Makroporoesa partiklar, foerfarande foer dess framstaellning och dess anvaendning |
US4783940A (en) | 1985-12-28 | 1988-11-15 | Shimizu Construction Co., Ltd. | Concrete filled steel tube column and method of constructing same |
US5595886A (en) * | 1986-01-27 | 1997-01-21 | Chiron Corporation | Protein complexes having Factor VIII:C activity and production thereof |
US5576194A (en) * | 1986-07-11 | 1996-11-19 | Bayer Corporation | Recombinant protein production |
WO1988003926A1 (fr) * | 1986-11-17 | 1988-06-02 | New England Medical Center | Amelioration de la gamma-carboxylation de proteines recombinantes dependantes de la vitamine k |
US4837028A (en) | 1986-12-24 | 1989-06-06 | Liposome Technology, Inc. | Liposomes with enhanced circulation time |
US5580560A (en) | 1989-11-13 | 1996-12-03 | Novo Nordisk A/S | Modified factor VII/VIIa |
EP0540650A1 (fr) | 1990-07-23 | 1993-05-12 | Zymogenetics, Inc. | Gamma-carboxylase et procedes d'utilisation |
JP4236698B2 (ja) * | 1990-11-26 | 2009-03-11 | ジェネティックス インスティチュート,リミテッド ライアビリティ カンパニー | 宿主細胞でのpaceの発現およびその使用法 |
US5965789A (en) * | 1991-01-11 | 1999-10-12 | American Red Cross | Engineering protein posttranslational modification by PACE/furin in transgenic non-human mammals |
EP1479395A1 (fr) | 1991-02-28 | 2004-11-24 | Novo Nordisk A/S | Facteur VII modifié |
US5997864A (en) | 1995-06-07 | 1999-12-07 | Novo Nordisk A/S | Modified factor VII |
US5661008A (en) * | 1991-03-15 | 1997-08-26 | Kabi Pharmacia Ab | Recombinant human factor VIII derivatives |
US5268275A (en) | 1991-05-08 | 1993-12-07 | The University Of North Carolina At Chapel Hill | Vitamin K-dependent carboxylase |
US5733761A (en) | 1991-11-05 | 1998-03-31 | Transkaryotic Therapies, Inc. | Protein production and protein delivery |
IL104385A (en) * | 1992-01-17 | 1995-12-31 | Applied Research Systems | Method and device for growing biomass particles |
DK53792D0 (da) * | 1992-04-24 | 1992-04-24 | Novo Nordisk As | Fremgangsmaade til fremstilling af proteiner |
CA2111561A1 (fr) * | 1992-05-01 | 1993-11-11 | Yoshiharu Takazawa | Methode de culture par alimentation programmee pour cellules secretant des proteines |
DE4221863C2 (de) | 1992-07-03 | 1997-04-17 | Stockhausen Chem Fab Gmbh | Copolymere der Allyliminodiessigsäure mit ungesättigten Carbonsäuren und deren Verwendung als Komplexbildner, Peroxidstabilisatoren, Builder in Wasch- und Reinigungsmitteln und Dispergatoren |
US5510328A (en) * | 1994-04-28 | 1996-04-23 | La Jolla Cancer Research Foundation | Compositions that inhibit wound contraction and methods of using same |
AU3813597A (en) * | 1996-07-26 | 1998-02-20 | University Of Manitoba | Serum-free medium for growth of anchorage-dependant mammalian cells |
PT973544E (pt) * | 1997-04-08 | 2001-12-28 | Baxter Ag | Preparacao de complexo de protrombina imunotolerante |
AT407255B (de) * | 1997-06-20 | 2001-02-26 | Immuno Ag | Rekombinanter zellklon mit erhöhter stabilität in serum- und proteinfreiem medium und verfahren zur gewinnung des stabilen zellklons |
US6475725B1 (en) * | 1997-06-20 | 2002-11-05 | Baxter Aktiengesellschaft | Recombinant cell clones having increased stability and methods of making and using the same |
JP4463988B2 (ja) * | 1998-11-06 | 2010-05-19 | ノボ ノルディスク ヘルス ケア アクチェンゲゼルシャフト | Vii因子の生産方法 |
AU3629800A (en) | 1999-03-16 | 2000-10-04 | Children's Hospital Of Philadelphia, The | Enhanced gamma-carboxylation of recombinant vitamin k-dependent clotting factors |
DK1200561T3 (da) * | 1999-08-05 | 2006-10-16 | Baxter Ag | Rekombinant stabil celleklon, dens fremstilling og anvendelse |
UA74557C2 (en) * | 1999-09-03 | 2006-01-16 | Applied Research Systems | A method for producing a heterologous secreted protein from chinese hamster ovaries cells grown on microcarriers |
EP1278850B1 (fr) * | 2000-04-26 | 2007-06-13 | Sanofi-Aventis Deutschland GmbH | Recepteur edg8, sa preparation et son utilisation |
-
2001
- 2001-10-02 CA CA002422214A patent/CA2422214A1/fr not_active Abandoned
- 2001-10-02 AT AT01971734T patent/ATE465253T1/de active
- 2001-10-02 US US10/398,422 patent/US8202973B2/en not_active Expired - Fee Related
- 2001-10-02 CN CN018167462A patent/CN1468303B/zh not_active Expired - Fee Related
- 2001-10-02 EP EP01971735A patent/EP1325147A2/fr not_active Withdrawn
- 2001-10-02 IL IL15488001A patent/IL154880A0/xx unknown
- 2001-10-02 JP JP2002532615A patent/JP4361730B2/ja not_active Expired - Fee Related
- 2001-10-02 WO PCT/DK2001/000634 patent/WO2002029084A2/fr active Application Filing
- 2001-10-02 AT AT01976037T patent/ATE425254T1/de not_active IP Right Cessation
- 2001-10-02 WO PCT/DK2001/000635 patent/WO2002029045A2/fr active Application Filing
- 2001-10-02 BR BR0114373-5A patent/BR0114373A/pt not_active IP Right Cessation
- 2001-10-02 IL IL15487901A patent/IL154879A0/xx unknown
- 2001-10-02 AU AU2001291653A patent/AU2001291653A1/en not_active Abandoned
- 2001-10-02 AU AU2001291651A patent/AU2001291651A1/en not_active Abandoned
- 2001-10-02 JP JP2002532652A patent/JP2004510439A/ja active Pending
- 2001-10-02 HU HU0301267A patent/HUP0301267A3/hu unknown
- 2001-10-02 HU HU0301245A patent/HUP0301245A3/hu unknown
- 2001-10-02 ES ES01971734T patent/ES2344887T3/es not_active Expired - Lifetime
- 2001-10-02 BR BR0114374-3A patent/BR0114374A/pt not_active Application Discontinuation
- 2001-10-02 EP EP01976037A patent/EP1325127B1/fr not_active Expired - Lifetime
- 2001-10-02 CA CA2422216A patent/CA2422216C/fr not_active Expired - Fee Related
- 2001-10-02 AU AU2001295431A patent/AU2001295431A1/en not_active Abandoned
- 2001-10-02 CZ CZ2003718A patent/CZ2003718A3/cs unknown
- 2001-10-02 KR KR1020037004725A patent/KR100880624B1/ko not_active IP Right Cessation
- 2001-10-02 DE DE60137950T patent/DE60137950D1/de not_active Expired - Lifetime
- 2001-10-02 JP JP2002532653A patent/JP2004512835A/ja active Pending
- 2001-10-02 KR KR1020037004723A patent/KR100861470B1/ko not_active IP Right Cessation
- 2001-10-02 US US09/969,357 patent/US6903069B2/en not_active Expired - Lifetime
- 2001-10-02 PL PL01361058A patent/PL361058A1/xx not_active Application Discontinuation
- 2001-10-02 EP EP10010149A patent/EP2311943A3/fr not_active Withdrawn
- 2001-10-02 MX MXPA03002853A patent/MXPA03002853A/es not_active Application Discontinuation
- 2001-10-02 EP EP10003073A patent/EP2261330A1/fr not_active Withdrawn
- 2001-10-02 WO PCT/DK2001/000633 patent/WO2002029025A2/fr active Application Filing
- 2001-10-02 ES ES01976037T patent/ES2323761T3/es not_active Expired - Lifetime
- 2001-10-02 PL PL01361017A patent/PL361017A1/xx not_active Application Discontinuation
- 2001-10-02 DE DE60141908T patent/DE60141908D1/de not_active Expired - Lifetime
- 2001-10-02 AU AU9165201A patent/AU9165201A/xx active Pending
- 2001-10-02 WO PCT/DK2001/000632 patent/WO2002029083A2/fr active Application Filing
- 2001-10-02 JP JP2002532595A patent/JP4477299B2/ja not_active Expired - Fee Related
- 2001-10-02 CN CNA018166423A patent/CN1481438A/zh active Pending
- 2001-10-02 US US09/969,358 patent/US20020151471A1/en not_active Abandoned
- 2001-10-02 CN CN201210226379.9A patent/CN102766668B/zh not_active Expired - Fee Related
- 2001-10-02 EP EP01971733A patent/EP1356074A2/fr not_active Withdrawn
- 2001-10-02 EP EP01971734A patent/EP1325113B1/fr not_active Revoked
- 2001-10-02 AU AU2001291652A patent/AU2001291652B2/en not_active Ceased
-
2003
- 2003-04-01 NO NO20031471A patent/NO20031471L/no not_active Application Discontinuation
- 2003-12-02 US US10/725,843 patent/US20050075289A1/en not_active Abandoned
-
2006
- 2006-12-21 US US11/643,607 patent/US20070122884A1/en not_active Abandoned
-
2009
- 2009-07-15 US US12/503,498 patent/US20090281022A1/en not_active Abandoned
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090130060A1 (en) * | 2004-08-17 | 2009-05-21 | Csl Behring Gmbh | Modified Vitamin K Dependent Polypeptides |
US8828939B2 (en) | 2004-08-17 | 2014-09-09 | Csl Behring Gmbh | Modified vitamin K dependent polypeptides |
WO2008074032A1 (fr) * | 2006-12-15 | 2008-06-19 | Baxter International Inc. | Conjugué du facteur viia et de l'acide (poly)sialique présentant une demi-vie in vivo prolongée |
US20080221032A1 (en) * | 2006-12-15 | 2008-09-11 | Baxter Healthcare S.A. | Factor VIIa-Polysialic Acid Conjugate Having Prolonged In Vivo Half-Life |
US20110064714A1 (en) * | 2006-12-15 | 2011-03-17 | Baxter Healthcare S.A. | Factor viia-polysialic acid conjugate having prolonged in vivo half-life |
EP2532369A3 (fr) * | 2006-12-15 | 2013-01-02 | Baxter International Inc | Conjugué facteur VIIa-acide (poly)sialique présentant une demi-vie in vivo prolongée |
US8637007B2 (en) | 2006-12-15 | 2014-01-28 | Baxter International Inc. | Factor VIIa-polysialic acid conjugate having prolonged in vivo half-life |
AU2007333049B2 (en) * | 2006-12-15 | 2014-02-20 | Takeda Pharmaceutical Company Limited | Factor VIIa-(poly)sialic acid conjugate having prolonged in vivo half-life |
EP3323430A1 (fr) * | 2006-12-15 | 2018-05-23 | Baxalta GmbH | Conjugué d'acide de facteur viia-(poly) sialique présentant une demi-vie in vivo prolongée |
WO2017025566A1 (fr) * | 2015-08-10 | 2017-02-16 | Glycotope Gmbh | Facteur vii de recombinaison amélioré |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6903069B2 (en) | Factor VII glycoforms | |
AU2001291652A1 (en) | Factor VII glycoforms | |
US10844110B2 (en) | O-linked glycoforms of polypeptides and method to manufacture them | |
EP1517710B1 (fr) | Glycoformes du facteur vii pegylees | |
US20090227504A1 (en) | Pegylated Factor VII Glycoforms | |
EP1952822A1 (fr) | Polypeptides de facteur VII avec une affinité améliorée pour les plaquettes | |
US20150225711A1 (en) | Factor VII Conjugates | |
RU2325181C2 (ru) | Гликоформы фактора vii | |
AU2007214306A1 (en) | Factor VII glycoforms | |
WO2017025566A1 (fr) | Facteur vii de recombinaison amélioré |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NOVO NORDISK A/S, DENMARK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PINGEL, HANS KURT;KLAUSEN, NIELS KRISTIAN;REEL/FRAME:012623/0113 Effective date: 20011219 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- INCOMPLETE APPLICATION (PRE-EXAMINATION) |