US20020016405A1 - Prepaints and methods of preparing paints from the prepaints - Google Patents

Prepaints and methods of preparing paints from the prepaints Download PDF

Info

Publication number
US20020016405A1
US20020016405A1 US09/785,147 US78514701A US2002016405A1 US 20020016405 A1 US20020016405 A1 US 20020016405A1 US 78514701 A US78514701 A US 78514701A US 2002016405 A1 US2002016405 A1 US 2002016405A1
Authority
US
United States
Prior art keywords
prepaint
pigment
prepaints
paint
extender
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/785,147
Other languages
English (en)
Inventor
John Friel
John Hook
Bernhard Lieser
Jerry Washel
David Kelly
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=27391716&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20020016405(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Individual filed Critical Individual
Priority to US09/785,147 priority Critical patent/US20020016405A1/en
Publication of US20020016405A1 publication Critical patent/US20020016405A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/84Mixing plants with mixing receptacles receiving material dispensed from several component receptacles, e.g. paint tins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/84Mixing plants with mixing receptacles receiving material dispensed from several component receptacles, e.g. paint tins
    • B01F33/844Mixing plants with mixing receptacles receiving material dispensed from several component receptacles, e.g. paint tins with means for customizing the mixture on the point of sale, e.g. by sensing, receiving or analysing information about the characteristics of the mixture to be made
    • B01F33/8442Mixing plants with mixing receptacles receiving material dispensed from several component receptacles, e.g. paint tins with means for customizing the mixture on the point of sale, e.g. by sensing, receiving or analysing information about the characteristics of the mixture to be made using a computer for controlling information and converting it in a formula and a set of operation instructions, e.g. on the point of sale
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/2201Control or regulation characterised by the type of control technique used
    • B01F35/2205Controlling the mixing process from a remote server, e.g. by sending commands using radio, telephone, internet, local network, GPS or other means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44DPAINTING OR ARTISTIC DRAWING, NOT OTHERWISE PROVIDED FOR; PRESERVING PAINTINGS; SURFACE TREATMENT TO OBTAIN SPECIAL ARTISTIC SURFACE EFFECTS OR FINISHES
    • B44D2/00Special techniques in artistic painting or drawing, e.g. oil painting, water painting, pastel painting, relief painting
    • B44D2/002Kits for drawing or painting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44DPAINTING OR ARTISTIC DRAWING, NOT OTHERWISE PROVIDED FOR; PRESERVING PAINTINGS; SURFACE TREATMENT TO OBTAIN SPECIAL ARTISTIC SURFACE EFFECTS OR FINISHES
    • B44D3/00Accessories or implements for use in connection with painting or artistic drawing, not otherwise provided for; Methods or devices for colour determination, selection, or synthesis, e.g. use of colour tables
    • B44D3/003Methods or devices for colour determination, selection or synthesis, e.g. use of colour tables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B44DECORATIVE ARTS
    • B44DPAINTING OR ARTISTIC DRAWING, NOT OTHERWISE PROVIDED FOR; PRESERVING PAINTINGS; SURFACE TREATMENT TO OBTAIN SPECIAL ARTISTIC SURFACE EFFECTS OR FINISHES
    • B44D3/00Accessories or implements for use in connection with painting or artistic drawing, not otherwise provided for; Methods or devices for colour determination, selection, or synthesis, e.g. use of colour tables
    • B44D3/06Implements for stirring or mixing paints
    • B44D3/08Implements for stirring or mixing paints for liquid or semi-liquid paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D17/00Pigment pastes, e.g. for mixing in paints
    • C09D17/004Pigment pastes, e.g. for mixing in paints containing an inorganic pigment
    • C09D17/007Metal oxide
    • C09D17/008Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/30Mixing paints or paint ingredients, e.g. pigments, dyes, colours, lacquers or enamel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation

Definitions

  • This invention relates to sets of prepaints methods of formulating paint lines using the sets of prepaints, useful as architectural coatings, elastomeric coatings and non-cementitious, aggregate finish coatings.
  • the postponement of product differentiation offers the buyer the flexibility of selecting the desired final paint, whether it be the color of the paint or the type of paint, while at the same time permitting the paint manufacturer or seller (retail or wholesale or distributor) to minimize inventories of raw materials, intermediates and final products as well as stock outages.
  • Emulsion polymers are very sensitive to the solvents and surface active agents commonly found in paint formulations, such as surfactants, dispersants, rheology modifiers, and co-solvents.
  • Solution polymers are by definition soluble in the solvent they are supplied in, and there is no thermodynamic driving force causing the polymer molecules to agglomerate or become unstable.
  • latex polymers contain the material in particles that are insoluble in water. These particles require considerable surface modifications to render them stable when supplied in an aqueous medium.
  • the latex particles attach to one another forming a coagulated mass which then separates out of the latex paint. Paint formulating with a latex system is very difficult because the surface active materials in the formulation disrupt the delicate balance of surface forces that stabilize the latex particles in a water medium.
  • Paint formulating involves the process of selecting and admixing appropriate paint ingredients in the correct proportions to provide a paint with specific processing and handling properties, as well as a final dry paint film with the desired properties.
  • the major ingredients of latex paint formulations are a binder, an opacifying pigment, optional pigment extenders, and water.
  • Common optional additives include defoamers, coalescents, plasticizers, thickeners, non-thickening rheology modifiers, opacifying agents, driers, anti-skinning agents, surfactants, mildewcides, biocides and dispersants.
  • a “paint line”, as used herein, includes at least two different paints which offer dried film properties which differ materially from each other in at least one observable property such as sheen, outdoor durability or color depth.
  • a paint line may include, for example, three paints the dried films of which have different sheen levels, two paints the dried films of which have suitable interior or exterior performance, or four paints the dried films of which offer different quality or performance levels such as may be evidenced, for example, by different levels of scrub resistance.
  • a paint line could, more particularly, include four different paints, the dried films of which have different sheen levels, typically marketed as gloss; semi-gloss; eggshell, satin, or low lustre; and flat.
  • the sheen is determined by the volume and type of the binder(s), pigment(s), and extender(s), if any, in the paint.
  • paint is term used in its broadest sense which is intended to include any coating that may be applied to a surface for decorative and/or protective purposes. Specifically included are those paints employed for architectural coatings, elastomeric coatings and non-cementitious, aggregate finish coatings employed as topcoats over walls, and in an exterior insulation and finishing system (referred to as “EIFS”).
  • EIFS exterior insulation and finishing system
  • paints are commonly formulated to be neutral or accent (no or very low level of opacifying pigment), untinted (white) or tinted to a wide variety of colors using different tint bases, including pastel or light tones, medium or mid-tones, and deep tones. This capability requires a paint line having as many as five paints. Also, paints are formulated for exterior or interior use. And, paints are formulated to provide certain levels of performance properties, such as may be marketed as good/standard, better and best/premium.
  • Paint manufacturers and retailers typically offer a range of paints, which include at least two paint lines.
  • the range including at least two paint lines herein is meant that the discrete elected levels of the observable property defining a first paint line are combined with the discrete elected levels of the observable property defining a second paint line, etc. to define the paints in the range of paints.
  • a range of paints which includes four paint lines may require preparing paints four sheen levels, four tint bases, interior and exterior use, and three quality levels. For all combinations; 96 different paint formulations (4 ⁇ 4 ⁇ 2 ⁇ 3) may be needed. Also encompassed, however, is a range of paints in which certain of the defined paints, certain proportion, including up to as high as 10-60%, of the total number of paints, are selected to be omitted, for example, for commercial reasons or because they are not stable as defined herein. Further contemplated is a range of paints in which the observable properties of the dried paint films substantially, but not exactly, fulfill the standard definitions. For example, the sheen of a dried outdoor mid-tone gloss paint in the standard, better, and premium lines may differ by a few points without departing from the meaning of a range of paints of this invention.
  • Formulating the paints is complex—it is not simply a matter of mixing a few paint ingredients in different ratios. Rather, it involves the selection and mixing of different paint ingredients in different ratios depending on the type of paint desired. This requires paint manufacturers to store many different paint ingredients and change paint ingredients during manufacture depending on the specific paint type being prepared.
  • paint is term used in its broadest sense which is intended to include any coating that may be applied to a surface for decorative and/or protective purposes. Specifically included are those paints employed for architectural coatings, elastomeric coatings and non-cementitious, aggregate finish coatings employed as topcoats over walls, and in an exterior insulation and finishing system (referred to as “EIFS”).
  • EIFS exterior insulation and finishing system
  • prepaints are “mutually compatible” if the paints formed by admixing the prepaints do not evidence signs of colloidal instability such as flocculation.
  • the paints formed from the prepaints exhibit less than 5 g of residue (e.g., gel and/or grit per liter of paint when the paint is passed through a 325 mesh screen. More preferably, the paints formed from the prepaints exhibit less than 1 g of residue per liter of paint when the paint is passed through a 325 mesh screen.
  • prepaints, optional additives included to enhance specific paint properties, and colorants are fully compatible, i.e., they can be blended at any ratio without inducing colloidal instability, then they can be blended in any combination falling within the formulation space needed to achieve the desired property profile in the final paint. It is sufficient, however, for the prepaints, additives included to enhance specific paint properties, and colorants to be compatible, i.e., they can be blended at desired ratios without inducing colloidal instability to achieve the desired property profile in the range of paints.
  • the above goal is achieved by employing a set of different, but mutually compatible, prepaints sufficient to formulate at least one paint line, the set comprising: (i) at least one prepaint comprising at least one opacifying pigment; (ii) at least one prepaint comprising at least one extender pigment ; and (iii) at least one prepaint comprising at least one latex polymeric binder.
  • the number of prepaints is preferably 3-15 and wherein the prepaints are different from each other, but mutually compatible.
  • the above methods may further include the step of mixing one or more of the prepaints before, while, or after they are dispensed into the containers or before or while they are dispensed into the applicator(s) device. They also may include the step of adjusting the viscosity of the dispensed prepaints before, while, or after they are dispensed into the containers or before or while they are dispensed into the applicator(s) using a compatible thickener, water or a mixture thereof. They may further include the step of adding at least one colorant to the dispensed prepaints.
  • additives that enhance the application of the paint or the final performance properties of the paint may be included in the prepaints.
  • additives include aggregate and thickeners.
  • the above methods may be carried out at a paint manufacturing facility, a point-of-sale or a point-of-use and the providing dispensing steps may be controlled by a computer.
  • a set of different, but mutually compatible, prepaints sufficient to form at least one paint line useful as an elastomeric coating comprises (i) at least one fluid prepaint comprising at least one opacifying pigment; (ii) at least one fluid prepaint comprising at least one extender pigment; and (iii) at least one fluid prepaint comprising at least one latex polymeric binder having a Tg less than about 0° C.
  • a method of forming a range of paints is provided, the range comprising at least two paint lines useful as an elastomeric coating, which method comprises the steps of:
  • a set of different, but mutually compatible, fluid non-cementitious prepaints sufficient to form at least one paint line useful as a non-cementitious, aggregate finish which set comprises: (i) at least one prepaint comprising at least one opacifying pigment; (ii) at least one prepaint comprising at least one extender pigment; (iii) at least one prepaint comprising at least one latex polymeric binder, and (iv) at least one prepaint comprising an aggregate.
  • a method of forming a range of paints comprises at least two paint lines useful as a non-cementitious, aggregate finishing coating.
  • the method comprises the steps of:
  • the complete paint line can be made from one each of the opacifying, extender, and binder prepaints.
  • a range of paints including two paint lines is desired, i.e., if two key properties are to be varied (for example, if two will be selected from the sheen level, tint base, use type, and/or quality type), then at least one additional different opacifying, extender, or binder prepaint, depending on which key properties are to be varied must be added to the set which comprises at least one each of prepaints.
  • Additional different prepaints refers to prepaints which are different from the opacifying, extender, and binder prepaints, respectively, but which otherwise meet the limitations associated with the opacifying, extender, and binder prepaints (i), (ii), and (iii).
  • a range of paints including three paint lines is desired, i.e., if three key properties are to be varied (for example, if three will be selected from the sheen level, tint base, use type, and/or quality type), then at least two additional different prepaints, depending on which key properties are to be varied must be added to the set which comprises at least one each of the opacifying, extender, and binder prepaints (i), (ii), and (iii).
  • a range of paints including four paint lines is desired, i. e., if four key properties are to be varied (for example, the sheen level, tint base, use type, and/or quality type), then at least three additional different opacifying, extender, and binder prepaints, depending on which key properties are to be varied must be added to the set which comprises at least one each of the opacifying, extender, and binder prepaints (i), (ii), and (iii).
  • This procedure of adding additional prepaints having the desired paint property may be used to vary as many additional key paint properties as desired.
  • a paint line includes two or more different paints whose dried films differ materially in at least one observable property.
  • the paints are different from each other and must meet at least one of the following criteria:
  • the pigment volume concentration (PVC) of the paints which are most different must differ by at least 2%; or
  • the prepaints are selected so that they cover a wide formulation space so that the desired final paint properties lie within the blend space defined by the prepaints at the extremes. In many cases, the prepaints themselves will not be practical paints. But, by pushing the prepaints to these extremes one can maximize the blend space available for the set.
  • the prepaints, additives, and colorants are all fully compatible, they can be blended at desired ratios to achieve the desired paint line(s) and range of paints without inducing colloidal instability. It is possible to make a specific paint in the paint line without utilizing each of the prepaints available in the set of prepaints. For example, a deep tone paint does not require the use of an opacifying pigment prepaint.
  • This technique is similar to the design principles used in statistical experimental design and analysis of mixture component designs; however, instead of designing a mixture space to explore the response surface within it, one is designing the boundaries of the mixture space to maximize the flexibility of the paint system.
  • the key to success is to have mutual compatibility of the individual prepaint ingredients and prepaints across the mixture space.
  • Paint properties can be predicted in a number of ways.
  • One approach is to develop response surface models of the blend space using standard Mixture Component experimental design statistical tools. These simple statistical models can then be used by a linear optimization program, by a massive grid search or by a graphical analysis tool.
  • Another approach is to simply use empirical methods to determine which blends are needed for specific paint lines, then incorporate those simple empirical recipes in the paint making machine software.
  • An extension of the techniques is to have the paint machine automatically pretest certain key properties (e.g., viscosity, forced dry gloss or color) and make minor adjustments during the formulating of a paint from the prepaints. Having feedback loops in the paint machine can provide more precise matching of color, gloss, and viscosity targets.
  • certain key properties e.g., viscosity, forced dry gloss or color
  • the all fluid prepaints employed in the methods of the invention have the same or similar viscosities to aid in mixing.
  • the water-resistance, including blister resistance, wet adhesion, and scrub resistance of the paints prepared from the prepaint sets, is expected to be improved because of the use of lower amounts of stabilizing materials such as surfactants which may be used relative to conventional formulating techniques. Further, a line of pains or a range of paints prepared using the prepaints may react more predictably to added-colorants, making color matching easier and facilitating the use of software for color matching. In addition, viscosity fluctuation in the final paint formulation is expected to be reduced because of the prior equilibration of ingredients in the prepaints.
  • the prepaints are formulated to maximize the flexibility of paint manufacturing. Rather than purchasing individual paint ingredients, paint manufacturers and even buyers at point-of-sale and point-of-use (paint stores, paint departments, and contractors), can purchase a set of prepaints to prepare a desired range of paints. These sets of prepaints will contain at least one each of prepaints x, y and z and possibly additional prepaints depending upon the formulating flexibility desired. Optionally, the above prepaints are mixed with an additional prepaint which includes at least one colorant, such as a colored pigment or dye.
  • an additional prepaint which includes at least one colorant, such as a colored pigment or dye.
  • the prepaint sets and formulating method of the present invention is not limited to the preparation of only latex paints. They may also be used to prepare any water-borne coating, or related building products which require mixing ingredients, including, architectural coatings, elastomeric wall and roof coatings, topcoats and aggregate finish layers in EIFS, sealants, caulks, mastics, adhesives and other building-related products.
  • the opacifying prepaint is a fluid titanium dioxide prepaint which includes at least one opacifying pigment, at least one dispersant, at least one thickener, and water.
  • the dispersant(s) and the thickener(s) are compatible with the pigment(s) and with any other optional paint ingredients.
  • the prepaint has a volume solids content of about 30% to about 70%, preferably about 35% to about 50%, and a Stormer viscosity of about 50 to about 250 KU, preferably about 60 to about 150 KU.
  • the opacifying prepaint is a fluid titanium dioxide prepaint useful for formulating a one pack, pigmented latex paint containing other paint ingredients. It includes at least one opacifying pigment, at least one dispersant, at least one thickener, at least one film-forming or nonfilm-forming polymeric binder, and water.
  • the dispersant(s), the thickener(s), and the polymeric binder(s) are compatible with the pigment(s) and with other optional paint ingredients.
  • the prepaint has a volume solids content of about 30% to about 70%, preferably about 35% to about 50%, a PVC of about 35% to about 100%, preferably about 50% to 100%, and a Stormer viscosity of about 50 to about 250 KU, preferably about 60 to about 150 KU.
  • the prepaint is stable to sedimentation, which means that the pigment does not settle out after 10 days at 25° C.
  • the polymeric binder is adsorbed onto the opacifying pigment.
  • the extender prepaint is a fluid pigment extender prepaint which includes at least one mineral extender, at least one thickener, an optional polymeric binder, and water.
  • the prepaint has a VS of about 30% to about 70%, preferably about 35% to about 65%, a PVC of about 35% to 100%, preferably about 40% to 100%, and a Stormer viscosity of about 50 to about 250 KU, preferably about 60 to about 150 KU.
  • the prepaint ingredients are compatible with each other and with the ingredients in the other prepaints desired to be used therewith.
  • the prepaint binder is a fluid latex polymeric binder prepaint which includes a water-borne latex polymeric binder having a Tg of about ⁇ 40° C. to about 70° C., preferably about ⁇ 10° C. to about 60° C., and water.
  • the binder prepaint has a volume solids content of about 25% to about 70%, preferably about 30% to about 65%, and a Brookfield viscosity of less than about 100,000 centipoise, preferably about 100 to about 50,000 centipoise, at a shear rate of 1.25 reciprocal seconds.
  • the prepaint ingredients are compatible with each other and with the ingredients of the other prepaints desired to be used therewith.
  • Minor amounts, i.e., less than about 10% by weight, based on the total weight of the prepaint, of conventional paint additives can be included in the above prepaints.
  • additives include acids, bases, defoamers, coalescents, cosolvents, mildewcides, biocides, antifreeze agents and the like.
  • the additives must be compatible with the other paint ingredients in the prepaints.
  • Suitable opacifying pigments include white pigments which impart white scattering power to the paint across all visible wavelengths without a high degree of absorption.
  • Pigment extenders are inorganic solids or opaque polymers which do not impart the primary color or hiding power to the paint although they may have secondary influences on those properties.
  • the tint bases used for deep tone paints typically contain no or only very low levels of opacifying pigments.
  • Suitable opacifying pigments include titanium dioxide (TiO 2 ) or a combination of titanium dioxide and auxiliary hiding pigments such as synthetic polymer pigments, for example, voided latex polymer particles, zinc oxide, lead oxide, and mixtures thereof. Rutile and anatase grades of titanium dioxide are suitable for use herein. Rutile titanium dioxide is preferred. The surface of these titanium dioxides may be treated with various organic surface treatments and/or inorganic surface treatments, e.g., treatment with the oxides of silica, alumina, and zirconia. Fumed titanium oxide is also useful herein.
  • Suitable voided latex particles have a diameter of about 100 nm to about 2,500 nm, preferably about 500 nm to about 1,100 nm and a void fraction of about 10% to about 75%.
  • the particles have at least one void, but may have multiple voids, non-spherical voids, interconnected voids, voids having channels connected to the outside of the particles, and other structures described as vesiculated and sponge-like.
  • the particles have a single void.
  • the particles have a glass transition temperature (Tg), as measured by differential scanning calorimetry at a rate of 20° C./min, of at least about 20° C., preferably at least about 50° C.
  • Voided latex particles may be prepared by conventional polymerization processes known in the art, such as those disclosed in U.S. Pat. No. 3,784,391, U.S. Pat. No. 4,798,691, U.S. Pat. No. 4,908,271, U.S. Pat. No. 4,972,000, U.S. Pat. No. 5,041,464, U.S. Pat. No. 5,157,084, U.S. Pat. No. 5,216,044 and U.S. Pat. No.
  • the voided latex particles are prepared according to U.S. Pat. No. 4,427,836, U.S. Pat. No. 4,469,825, U.S. Pat. No. 4,594,363, U.S. Pat. No. 4,880,842, U.S. Pat. No. 5,494,971 and U.S. Pat. No. 6,020,435.
  • Extender pigments useful herein include exterior and interior extender pigments optimized for the intended end use. Exterior extender pigments are not soluble in water and have a low absorption number. They are optimized for exterior durability in the particular market where the paint will be sold and they do not detract from the desired non-cracking, non-chalking, and non-dirt-retaining properties of the dried paint. They also provide volume at a low cost. Interior extender pigments are optimized for hiding, gloss, and low cost.
  • Suitable extender pigments include barium sulfate (1-15 microns), Blanc Fixe (0.5-5 microns), calcium carbonate (0.05-35 microns), silica (0.001-14 microns), magnesium silicate (0.5-15 microns), aluminum silicate (0.2-5 microns), mica, bentonite, magnesium alumino-silicate, fumed allumina, colloidal attapulgite, synthetic amorphous sodium alumino-silicate, sodium potassium alumino-silicate, and the like.
  • Latex polymeric binders are polymers or prepolymers which form the primary paint film. They bind the pigment and/or extender, provide the required paint flow, and determine the gloss and hardness of the final paint film.
  • the binders selected for the prepaints will depend upon the final use of the formulated paints. Binders suitable for exterior paints are generally suitable for interior paints, but binders suitable for interior paints may not be suitable for exterior paints.
  • Suitable latex polymeric binders include, but are not limited to, homopolymers, copolymers or terpolymers such as, for example, acrylic and/or methacrylic, polymers or copolymers, polyvinyl acetate, styrene-acrylic copolymers, styrene-butadiene copolymers, vinyl acetate-acrylic copolymers, ethylene-vinyl acetate copolymers, vinyl acetate-vinyl versatate copolymers, vinyl acetate-vinyl maleate copolymers, vinyl acetate-vinyl chloride-acrylic terpolymers, ethylene-vinyl acetate-acrylic terpolymer, and urethane polymers.
  • homopolymers, copolymers or terpolymers such as, for example, acrylic and/or methacrylic, polymers or copolymers, polyvinyl acetate, styrene-acrylic copo
  • the polymers may contain up to about 10% by weight of monomers containing functional groups, for example, but not limited to, carboxylic acid, phosphate, sulfate, sulfonate and amide groups, other monomers, and mixtures thereof.
  • Latex polymer binders optionally incorporated in prepaints x, y, x′, y′, or other prepaints may be the same as or different from the latex polymeric binder of prepaint z.
  • Thickener is a general term used to describe any material added to a paint to modify its Theological profile.
  • Preferred thickeners are associative thickeners. Suitable thickeners for use herein include polyvinyl alcohol (PVA), hydrophobically-modified, alkali-soluble emulsions known in the art as HASE emulsions, alkali-soluble or alkali-swellable emulsions known in the art as ASE emulsion, hydrophobically-modified ethylene oxide-urethane polymers known in the art as HEUR thickeners; and cellulosic thickeners such as hydroxymethyl cellulose (HMC), hydroxyethyl cellulose (HEC), hydrophobically-modified hydroxy ethyl cellulose (HMHEC), sodium carboxymethyl cellulose (SCMC), sodium carboxymethyl 2-hydroxyethyl cellulose, 2-hydroxypropyl methyl cellulose, 2-hydroxyethyl methyl cellulose, 2-hydroxybutyl methyl cellulose
  • Suitable dispersants for use herein include non-ionic, anionic and cationic dispersants such as 2-amino 2-methyl 1-propanol (AMP), dimethyl amino ethanol (DMAE), potassium tripolyphosphate (KTPP), trisodium polyphosphate (TSPP), citric acid and other carboxylic acids, and the like.
  • AMP 2-amino 2-methyl 1-propanol
  • DMAE dimethyl amino ethanol
  • KTPP potassium tripolyphosphate
  • TSPP trisodium polyphosphate
  • citric acid and other carboxylic acids and the like.
  • anionic polymers such as homopolymers and copolymers based on polycarboxylic acids, including those that have been hydrophobically- or hydrophilically-modified, e.g., polyacrylic acid or polymethacrylic acid or maleic anhydride with monomers such as styrene, acrylate or methacrylate, diisobutylene, and other hydrophilic or hydrophobic comonomers as well as the salts of the aforementioned dispersants, and mixtures thereof.
  • anionic polymers such as homopolymers and copolymers based on polycarboxylic acids, including those that have been hydrophobically- or hydrophilically-modified, e.g., polyacrylic acid or polymethacrylic acid or maleic anhydride with monomers such as styrene, acrylate or methacrylate, diisobutylene, and other hydrophilic or hydrophobic comonomers as well as the salts of the aforementioned dispersants, and
  • Suitable defoamers include silicone-based and mineral oil-based defoamers, and the like.
  • Coalescents are not necessary if solvent-free latex polymer binders are used in the binder prepaints. Solvent-free binders typically have a low Tg and low minimum film-forming temperature so that they are film-forming at ambient temperatures, (about 20° C.). If a coalescent is required, preferably it is incorporated in prepaint z and any other prepaints containing latex polymeric binders.
  • Suitable coalescents, plasticizers, and other optional solvents include ethylene glycol, propylene glycol, hexylene glycol, 2,2,4-trimethyl-1,3-pentanediol monoisobutyrate (TEXANOLTM), glycol ethers, mineral spirits, methyl carbitol, butyl carbitol, phthalates, adipates, and the like.
  • Suitable mildewcides and biocides include zinc oxide, isothiazolones, triazoles, and the like.
  • Suitable surfactants include cationic, anionic, and non-ionic surfactants.
  • Suitable aggregates include small (typically 40 mesh and higher), intermediate (typically 20-40 mesh), and large (typically 20 mesh and lower) aggregates such as sand, large particle size carbonates (limestone), ceramics, glass, fibers, coal, granite, talc, multicolored quartz, crushed sea shells, recycled asphalt products, fiberglass, vermiculite, perlite, XO aggregate and the like.
  • the prepaints may be used in the formulation to make elastomeric coatings suitable for either wall or roof applications. These prepaints may be mixed in various ratios to obtain elastomeric coatings of different quality, flexibility, mildew protection, and substrate adhesion suitable for either application on walls or roofs. What distinguishing the present elastomeric coatings from typical architectural coatings is the inclusion of binders having low temperature ( ⁇ 0° C.) flexibility and the thickness at which the elastomeric coating is applied, which is typically a dry coating thickness of 6-20 mil for wall applications and 15-40 mil for roof applications.
  • Low temperature flexibility is particularly desirable for elastomeric coatings that are being used over walls that may develop cracks, such as masonry walls, or roofing substrates that have a high degree of dimensional variance with climate.
  • the quality of the elastomeric coating also depends on the absence or presence of zinc oxide (ZnO) in the formulation, because zinc oxide changes the mechanical properties of the coating.
  • the elastomeric coating may be further varied through the addition of colorants. Typically, these colorants are dry ground and made in the coating grind portion.
  • elastomeric coatings the properties which may be varied to make different elastomeric coatings which include coating flexibility, coating quality (durability), substrate adhesion, and appearance.
  • the Tg of the binder, the PVC of the coating, and presence and level of zinc oxide may be adjusted.
  • the level of TiO 2 may be adjusted.
  • the substrate adhesion of the elastomeric coating one may formulate to coat a wall or a roof by varying the binder composition and level.
  • the level and type of colorant may be adjusted. To obtain these different properties one may prepare a set of prepaints using the procedure set forth in Examples 36-41, and mix the prepaints in quantities appropriate to make elastomeric coatings that vary the above properties.
  • sets of prepaints may be used to make non-cementitious, aggregate finish coatings suitable for application directly on a wall or as a topcoat in EIFS.
  • the prepaints or preformulated components may be mixed in varying ratios to obtain coatings of different flexibility, quality (durability), color and texture.
  • Tg To differentiate based on the flexibility of non-cementitious, aggregate finish coatings, one may adjust the Tg. To differentiate based on the durability of non-cementitious, binder's aggregate finish coatings, one may adjust the PVC. To differentiate based on the color of the non-cementitious, aggregate finish coatings, one may adjust the level of TiO 2 and the type and level of colorant. To differentiate based on the texture of the non-cementitious, aggregate finish coatings, one may adjust the size and level of the large aggregate and ratio of the large aggregates to small aggregates.
  • the prepaint set as set forth in Examples 54-58 a set of prepaints which can be formulated into and mix the prepaints in appropriate quantities to make non-cementitious, aggregate finish coatings that vary in the properties.
  • the Stormer viscosity of the prepaints is measured using ASTM method D562.
  • the Brookfield viscosity of the binder prepaints and final paints is measured using spindle #4 of a Brookfield viscometer at 6 rpm.
  • the ICI viscosity of the prepaints and paints is measured using ASTM method D3205-77.
  • This example describes the preparation of a white prepaint which was prepared by combining the following ingredients: Amount Ingredient (lbs./100 gallons) Pigment - Titanium Dioxide Slurry (76.5% solids) 1152.25 (Ti-Pure TM R-746 -- DuPont) Dispersant 7.06 (Tamol TM 1124 - Rohm and Haas) Defoamer 1.00 (Drewplus TM L-475) Binder Acrylic (50% solids - Tg 28° C.
  • the prepaint was prepared using a laboratory mixer having a 45° pitch stirring blade. The water, dispersant, and defoamer, were combined and mixed. The titanium dioxide slurry was slowly added and the mixture was stirred for 15-20 minutes. The binder, coalescent, rheology modifier, ammonia, and additional water if necessary were then added.
  • the resulting prepaint had a total volume of 100 gallons, total weight of 1,505.8 lbs., total PVC of 80.0%, volume solids of 44.0%, weight solids of 67.1%, density of 15.058 lbs./gallon, 0.40% dispersant on pigment solids, and 10.0% coalescent on latex solids. Its initial and equilibrated Stormer viscosities were 88 and 90 KU. Its initial and equilibrated pH values were 8.8and8.6.
  • This example describes the preparation of an exterior pigment extender prepaint. It was prepared as above by combining the following ingredients: Ingredient Amount (lbs./100 gallons) Pigment - Nephilene Syenite (7.5 ⁇ ) 784.30 (Minex TM 4) Dispersant 7.84 (Tamol TM 1124 - Rohm and Haas) Defoamer 2.00 (Drewplus TM L-475) Binder Acrylic (53.5% solids - Tg 18° C.) 157.49 (Rhoplex TM ML-200 - Rohm and Haas) Coalescent 5.90 (Texanol TM) Rheology Modifier 2.55 (Acrysol TM RM-8W - Rohm and Haas) Water 368.86
  • the resulting prepaint had a total volume of 100 gallons, total weight of 1,328.9 lbs., total PVC of 80.0%, volume solids of 45.0%, weight solids of 65.4%, density of 13.29 lbs./gallon, 0.50% total dispersant on pigment solids and 7.0% total coalescent on binder solids.
  • the initial and equilibrated Stormer viscosities were 90 and 93.
  • the initial and equilibrated pH values were 8.9 and 8.7.
  • This example describes the preparation of an interior pigment extender prepaint which was prepared as described above by combining the following ingredients: Amount (lbs./ Ingredient 100 gallons) Pigment - Calcium Carbonate (12 ⁇ ) 405.67 (Omyacarb TM 12) Pigment - Calcium Carbonate (3.2 ⁇ ) 203.59 (Vicron TM 15-15) Pigment - Aluminum Silicate (1.4 ⁇ ) 165.41 (Optiwhite TM) Dispersant 7.75 (Tamol TM 1124 -Rohm and Haas) Defoamer 1.00 (Drewplus TM L-475) Binder - Vinyl Acetate/Acrylic (55% solids - Tg 14 ° C.) 157.61 (RES TM 3803- Rohm and Haas) Coalescent (Texanol TM) 6.07 Rheology Modifier - HEUR (Acrysol TM RM-2020-NPR) 17.53 Base - Ammonia (28%) 0.87 Water 356.59
  • the resulting prepaint had a total volume of 100 gallons, total weight of 1,322.1 lbs., total PVC of 80%, volume solids of 45%, weight solids of 65.15%, density of 13.2210 lbs./gallon, 0.50% dispersant on pigment solids, and 7.00% coalescent on binder solids, Its initial and equilibrated Stormer viscosities were 94 and 97. Its initial and equilibrated pH values were both 9.2.
  • This example describes a vinyl acetate/acrylic latex polymer binder prepaint which was prepared as described above except that the binder, defoamer, coalescent, ammonia, water, and rheology modifier were combined and mixed.
  • the resulting prepaint had a total volume of 100 gallons, total weight of 891.5 lbs., volume solids of 45.0%, a weight solids of 48.6%, a density of 8.91 lbs./gallon and 7.0% coalescent on binder solids. Its initial and equilibrated Stormer viscosities were 88 and 90. Its initial and equilibrated pH values were 8.6 and 8.4. Its equilibrated Brookfield viscosity should be less than 10,000 cps.
  • This example describes a flat acrylic binder prepaint which was prepared as above by combining the following ingredients: Ingredient Amount (lbs./100 gallons) Defoamer 8.00 (Drewplus TM L-475) Binder - Acrylic (53.5% solids - Tg 18° C.) 769.96 (Rhoplex TM ML-200 - Rohm and Haas) Coalescent 28.83 (Texanol TM) Rheology Modifier (HEUR) 1.15 (Acrysol TM RM-8W - Rohm and Hans) Base - Ammonia (28%) .57 Solvent - Propylene Glycol 60.00 Water 12.84
  • the resulting prepaint had a total volume of 100 gallons, total weight of 881.4 lbs., volume solids of 44.0%, weight solids of 46.7%, density of 8.81 lbs./gallon, and 7.0% coalescent on binder solids. Its initial and equilibrated Stormer viscosities were 91 and 89. Its initial and final pH values were both 8.9/9.0. Its equilibrated Brookfield viscosity should be less than 10,000 cps.
  • This example describes a gloss acrylic binder prepaint which was prepared as described above by combining the following ingredients: Ingredient Amount (lbs./100 gallons) Defoamer 8.00 (Drewplus TM L-475) Binder - Acrylic (50% solids - Tg 28° C.) 737.08 (Rhoplex TM SG-10M - Rohm and Haas) Coalescent 36.85 (Texanol TM ) Rheology Modifier - HEUR 11.62 (Acrysol TM RM 8W - Rohm and Haas) Base - Ammonia (28%) .35 Solvent - Propylene Glycol 60.00 Water 21.26
  • the resulting prepaint had a total volume of 100 gallons, a total weight of 875.2 lbs., volume solids of 39.0%, a weight solids of 42.11%, a density of 8.75 lbs./gallon and 10.0% coalescent on binder solids. Its initial and equilibrated Stormer viscosities were 97 and 98. The initial and equilibrated pH values were 9.0. Its equilibrated Brookfield viscosity should be less than 10,000 cps.
  • This example describes the preparation of a white pigment prepaint including a solvent-free acrylic binder and without the use of a coalescent.
  • the ingredients are mixed as described in Example 1 using the ingredients and amounts set out below.
  • Amount Ingredient (lbs./100 gallons) Pigment-Titanium Dioxide 734.49 (Ti-Pure TM R-706 - DuPont) Opacifier - Voided Latex Particles 164.43 (Ropaque TM OP-96 - Rohm and Haas) Dispersant 29.38 (Tamol TM 731 - Rohm and Haas) Non-ionic Surfactant 2.00 (Triton TM CF-10) Biocide 2.00 (Kathon TM LX (1.5%) - Rohm and Haas) Defoamer 3.00 (Foamaster TM VL) Binder - Acrylic copolymer (43.5% solids - 165.96 Tg ⁇ 2° C.) (Rhoplex
  • the resulting prepaint should have a total volume of 100 gallons, total weight of 1,401.3 lbs., total PVC of 80.0%, volume solids of 40.0%, weight solids of 61.1% density of 14.01 lbs./gallon, and 1.0% dispersant on pigment solids. Its estimated Stormer viscosity is 102 KU. Its pH should be 8.5-9.0.
  • This example describes the preparation of an exterior pigment extender prepaint with a solvent-free acrylic binder without the use of a coalescent.
  • the ingredients are mixed as described in Example 1 using the ingredient amounts set out below.
  • Ingredient Amount (lbs./100 gallons) Pigment - Nephiline Syenite (7.5 ⁇ ) 697.16 (Minex TM 4) Dispersant 27.89 (Tamol TM 731 - Rohm and Haas) Non-ionic Surfactant 2.00 (Triton TM CF-10) Biocide 2.00 (Kathon TM LX (1.5%) - Rohm and Haas) Defoamer 3.00 (Foamaster TM VL) Binder - Acrylic (46.5% solids - Tg 1° C.) 160.84 (Primal TM SF-015 Rohm and Haas) Rheology Modifier HEUR 101.80 (Acrysol TM RM-2020 NPR - Rohm and Haas) Water 284.47
  • the resulting prepaint should have a total volume of 100 gallons, total weight of 1,280.9 lbs., total PVC of 80.0%, volume solids of 40.0%, weight solids of 60.27%, density of 12.81 lbs./gallon, and 1.0% dispersant on pigment solids. Its Stormer viscosity should be 95 KU. Its pH should be 8.5-9.0. If not, the pH is adjusted as described in Example 7.
  • This example describes the preparation of an interior pigment extender prepaint including a solvent-free vinyl acetate/acrylic binder without the use of a coalescent.
  • the ingredients are mixed as described in Example 1 using the ingredient amounts set out below.
  • Ingredient Amount (lbs./100 gallons) Pigment - Calcium Carbonate (3.2 ⁇ ) 451.20 (Snowflake TM ) Pigment - Aluminum Silicate (1.4 ⁇ ) 220.37 (Optiwhite TM ) Dispersant 19.19 (Tamol TM 1254 - Rohm and Haas) Non-ionic Surfactant 2.00 (Triton TM CF-10) Biocide 2.00 (Kathon TM LX (1.5%)) Defoamer 3.00 (Foamaster TM VL) Binder - Vinyl Acetate/Acrylic (55% solids) 139.86 (Rovace TM 9900) Rheology Modifier HASE 9.00 (Acrysol TM DR-3) Base - Ammonia (28%) 0.86 Water 405.
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 1,254.9 lbs., total PVC of 80.0%, volume solids of 40.0%, weight solids of 59.65%, density of 12.55 lbs./gallon, and 1.0% dispersant on pigment solids. Its Stormer viscosity should be 95 KU. Its pH should be 8.5-9.0.
  • This example describes the preparation of a vinyl acetate/acrylic latex polymer binder prepaint including a solvent-free vinyl acetate/acrylic binder without a coalescent.
  • the ingredients are mixed as described in Example 4 using the ingredient amounts set out below.
  • Ingredient Amount (lbs./100 gallons)
  • the resulting prepaint should have a total volume of 100 gallons, total weight of 885.2 lbs., volume solids of 40.0%, a weight solids of 43.5%, and density of 8.85 lbs./gallon. Its Stormer viscosity should be 99 KU. Its Brookfield viscosity should be less than 10,000 cps. Its pH should be 8.5-9.0.
  • This example describes the preparation of a flat latex polymer binder prepaint including a solvent-free acrylic binder and no coalescent.
  • the ingredients are mixed as described in Example 4 using the ingredient amounts set out below.
  • Amount Ingredient (lbs./100 gallons) Defoamer 8.00 (Foamaster TM VL) Binder - Acrylic Copolymer (43.5% solids - 723.77 Tg ⁇ 2° C.) (Rhoplex TM SF-012 - Rohm and Haas) Rheology Modifier - HEUR 3.00 (Acrysol TM RM - 2020 NPR - Rohm and Haas) Water 133.75
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 868.5 lbs., volume solids of 36.0%, weight solids of 38.8% and density of 8.69 lbs./gallon. Its Stormer viscosity should be 99 KU. Its Brookfield viscosity should be less than 10,000 cps. Its pH should be 8.5-9.0 and, if not, it is adjusted as discussed above.
  • This example describes the preparation of a gloss latex polymer binder prepaint using a solvent-free acrylic binder and no coalescent.
  • the ingredients are mixed as described in Example 4 using the ingredient amounts set out below.
  • Amount Ingredient (lbs./100 gallons) Defoamer 8.00 (Foamaster TM VL) Binder - Acrylic Copolymer (43.5% solids - 767.57 Tg ⁇ 2° C.) (Rhoplex TM SF-012 - Rohm and Haas) Rheology Modifier - HEUR 23.00 (Acrysol TM RM-2020 NPR - Rohm and Haas) Water 61.62
  • the resulting prepaint should have a total volume of 100.0 gallons, total weight of 860.4 lbs., volume solids of 37.0%, a weight solids of 38.8% and a density of 8.60 lbs./gallon. Its Stormer viscosity should be 99 KU. Its Brookfield viscosity should be less than 10,000 cps. Its pH should be 8.5-9.0 and, if not, it should be adjusted as described above.
  • This example describes the preparation of a white pigment prepaint using an interior gloss grade titanium dioxide which was prepared by combining the following ingredients: Amount Ingredient (lbs./100 gallons) Pigment - Titanium Dioxide 734.49 (Ti-Pure TM R-900 - DuPont) Opacifier - Voided Latex Particles (30.5% solids) 164.43 (Ropaque TM Ultra-Rohm and Haas) Dispersant 20.99 (Tamol TM 1254 - Rohm and Haas) Non-ionic Surfactant 2.00 (Triton TM CF-10) Biocide 2.00 (Kathon TM LX (1.5%) - Rohm and Haas) Defoamer 3.00 (Foamaster TM VL - source) Binder - Vinyl Acetate/Acrylic (55% solids - 140.10 Tg 14° C.) (RES 3083 - Rohm and Haas) Coalescent 11.37 (Texanol
  • the resulting prepaint had a total volume of 100 gallons, a total weight of 1405.4 lbs., total PVC of 80%, volume solids of 40%, weight solids of 61.25%, density of 14.05 lbs./gallon, 1.0% dispersant on pigment solids, and 9.0% coalescent on binder solids.
  • the Stormer viscosity was 100 KU.
  • the Brookfield viscosity was 15,300 cps.
  • the pH was 8.8.
  • This example describes the preparation of a white pigment prepaint using an exterior gloss grade titanium dioxide which was prepared by combining the following ingredients: Amount Ingredient (lbs./100 gallons) Pigment-Titanium Dioxide 734.56 (Ti-Pure TM R-706-DuPont) Opacifier - Voided Latex Particles (30.5% solids) 164.44 (Ropaque TM Ultra-Rohm and Haas) Dispersant 29.38 (Tamol TM 731 - Rohm and Haas)) Non-ionic Surfactant 2.00 (Triton TM CF-10) Biocide 2.00 (Kathon TM LX (1.5%) - Rohm and Haas) Defoamer 3.00 (Foamaster TM VL) Binder - Acrylic Copolymer (50% solids - 151.20 Tg 28° C.) (Rhoplex TM SG-10 - Rohm and Haas) Coalescent 12.49 (Tex
  • the resulting prepaint had a total volume of 100 gallons, a total weight of 1403.6 lbs., total PVC of 80%, volume solids of 40%, weight solids of 61.2%, density of 14.04 lbs./gallon, 1.0% dispersant on pigment solids, and 9.0% coalescent on binder solids.
  • the Stormer viscosity was 100 KU.
  • the Brookfield viscosity was 4,010 cps.
  • the pH was 8.8.
  • This example describes the preparation of an exterior pigment extender prepaint. It was prepared by combining the following ingredients: Ingredient Amount (lbs./100 gallons) Pigment - Nephilene Syenite (7.5 ⁇ ) 697.16 (Minex TM 4) Dispersant 27.89 (Tamol TM 731 - Rohm and Haas) Non-ionic Surfactant 2.00 (Triton TM CF-10) Biocide 2.00 Kathon TM LX (1.5%) - Rohm and Haas) Defoamer 3.00 (Foamaster TM VL) Binder-Acrylic (53.5% solids - Tg 18° C.) 139.98 (Rhoplex TM Multilobe 200 - Rohm and Haas) Coalescent 5.24 (Texanol TM ) Rheology Modifier - HEUR 101.80 (Acrysol TM RM - 2020 - Rohm and Haas) Solvent-Propylene Glycol 50.00
  • the resulting prepaint had a total volume of 100 gallons, a total weight of 1281.5 lbs., total PVC of 80.0%, volume solids of 40.0%, weight solids of 60.3%, density of 12.81 lbs./gallon, 1.0% dispersant on pigment solids, and 7.0% total coalescent on binder solids.
  • the Stormer viscosity was 96 KU.
  • the Brookfield viscosity was 7,210 cps.
  • the pH was 9.8.
  • This example describes the preparation of an interior pigment extender prepaint. It was prepared by combining the following ingredients: Amounts (lbs./ Ingredients 100 gallons) Pigment - Calcium Carbonate (5 ⁇ ) 451.20 (Snowflake TM) Pigment - Aluminum Silicate (1.4 ⁇ ) 220.37 (Optiwhite ⁇ ) Dispersant 19.19 (Tamol TM 1254 - Rohm and Haas) Non-ionic Surfactant 2.00 (Triton TM CF-10) Biocide 2.00 (Kalthon TM LX (1.5%) - Rohm and Haas) Defoamer 3.00 (Foamaster ⁇ VL) Binder - Vinyl Acetate/Acrylic (55% solids - Tg 14° C.) 140.10 (RES 3083 - Rohm and Haas) Coalescent 6.93 (Texanol TM) Rheology Modifier - HASE 11.00 (Acrysol TM DR-3 - Rohm and Haas)
  • the resulting prepaint had a total volume of 100 gallons, a total weight of 1255.1 lbs., total PVC of 80.0%, volume solids of 40.0%, a weight solids of 59.7%, density of 12.55 lbs./gallon, 1.0% dispersant on pigment solids, and 9.0% total coalescent on binder solids.
  • the Stormer viscosity was 102 KU.
  • the Brookfield viscosity was 3,410 cps.
  • the pH was 8.9.
  • the resulting prepaint had a total volume of 100 gallons, a total weight of 887.5 lbs., volume solids of 40.0%, a weight solids of 43.4%, a density of 8.88 lbs./gallon, 9.0% coalescent on binder solids. Its Stormer viscosity was 98.0. The Brookfield viscosity was 13,600 cps. Its pH was 9.0.
  • This example describes the preparation of a flat acrylic binder prepaint. It was prepared by combining the following ingredients: Amounts Ingredients (lbs./100 gallons) Defoamer 3.00 (Foamaster TM VL) Binder - Acrylic (53.5% solids - Tg 18° C.) 699.92 (Rhoplex TM Multilobe 200 - Rohm and Haas) Coalescent 26.21 (Texanol TM) Rheology Modifier - HEUR 1.44 (Acrysol TM RM-2020 NPR - Rohm and Haas) Base - Ammonia (28%) 0.35 Solvent - Propylene Glycol 50.00 Water 96.59
  • the resulting prepaint had a total volume of 100 gallons, a total weight of 877.5 lbs., volume solids of 40.0%, weight solids of 42.7%, density of 8.78 lbs./gallon, 7.0% coalescent on binder solids. Its Stormer viscosity was 94.0. The Brookfield viscosity was 4,900 cps. Its pH was 8.9.
  • This example describes the preparation of a gloss acrylic binder prepaint. It was prepared by combining the following ingredients: Amounts Ingredients (lbs./100 gallons) Defoamer 3.00 (Foamaster TM VL) Binder - Acrylic Copolymer (50% solids - Tg 28° C.) 755.99 (Rhoplex TM SG-10M - Rohm and Haas) Coalescent 37.80 (Texanol TM) Rheology Modifier - HEUR 11.62 (Acrysol TM RM-2020 NPR - Rohm and Haas) Base - Ammonia (28%) 0.35 Solvent - Propylene Glycol 50.00 Water 17.68
  • the resulting prepaint had a total volume of 100 gallons, a total weight of 876.4 lbs., volume solids of 40.0%, weight solids of 43.1%, a density of 8.76 lbs./gallon, 10.0% coalescent on binder solids. Its Stormer viscosity was 96. The Brookfield viscosity was 5,000 cps. Its pH was 8.8.
  • This example describes the preparation of a white prepaint by combining the following ingredients: Ingredient Amount (lbs./100 gallons) Pigment - Titanium Dioxide 1001.66 (Ti-Pure TM R-706 -- DuPont) Dispersant 20.03 (Tamol TM 1124 - Rohm and Haas) Defoamer 1.00 (Drewplus TM L-475) Binder Acrylic (50% solids - Tg 28° C.
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 1,603.0 lbs., total PVC of 80.0%, volume solids of 50.0%, weight solids of 71.7%, a density of 16.03 lbs./gallon, 1% dispersant on pigment solids, and 10.0% coalescent on latex solids.
  • This example describes the preparation of a white pigment prepaint with pigmented vesiculated polymeric bead.
  • the pigmented vesiculated polymeric bead has a particle size of 12.5 microns, approximately 7% (s/s) titanium dioxide, and a void volume of approximately 77%.
  • the ingredients are mixed as described in Example 1 using the ingredient amounts set out below.
  • the resulting prepaint should have a total volume of 100 gallons, total weight of 913.3 lbs., total PVC of 80.0%, volume solids of 44.0%, weight solids of 28.28%, and density of 9.13 lbs./gallon. Its Stormer viscosity should be 91 KU. Its pH should be 8.5-9.0. If not, the pH is adjusted as described in Example 7.
  • This example describes the preparation of an exterior pigment extender prepaint by combining the following ingredients: Ingredient Amount (lbs./100 gallons) Pigment - Nephilene Syenite (7.5 ⁇ ) 871.44 (Minex TM 4) Dispersant 8.71 (Tamol TM 1124 - Rohm and Haas) Defoamer 2.00 (Drewplus TM L-475) Binder Acrylic (60.5% solids - Tg 16° C.) 154.74 (Rhoplex TM AC-264 - Rohm and Haas) Coalescent 6.56 (Texanol TM) Rheology Modifier 3.00 (Acrysol TM RM-8W - Rohm and Haas) Water 326.08
  • the resulting prepaint should have a total volume of 100 gallons, total weight of 1,382.5 lbs., total PVC of 80.0%, volume solids of 50.0%, weight solids of 69.8%, density of 13.82 lbs./gallon, 0.5% dispersant on pigment solids, and 7.0% coalescent on latex solids.
  • This example describes the preparation of an interior pigment extender prepaint by combining the following ingredients: Amount (lbs./ Ingredient 100 gallons) Pigment - Calcium Carbonate (12 ⁇ ) 450.67 (Omyacarb TM 12) Pigment - Calcium Carbonate (3.2 ⁇ ) 226.17 (Vicron TM 15-15) Pigment - Aluminum Silicate (1.4 ⁇ ) 183.76 (Optiwhite TM) Dispersant 8.61 (Tamol TM 1124 - Rohm and Haas) Defoamer 1.00 (Drewplus TM L-475) Binder - Vinyl Acetate/Acrylic (55% solids - Tg 14° C.) 175.09 (RES 3803) Coalescent (Texanol TM) 6.74 Rheology Modifier - HEUR (Acrysol TM SCT-275) 15.00 Base - Ammonia (28%) 0.87 Water 308.13
  • the resulting prepaint should have a total volume of 100 gallons, total weight of 1376.0 lbs., total PVC of 80.0%, volume solids of 50.0%, weight solids of 69.5%, density of 13.76 lbs./gallon, 0.5% dispersant on pigment solids, and 7.0% coalescent on latex solids.
  • Example 24 This example describes the preparation of a vinyl acetate/acrylic binder prepaint by combining the following ingredients: Amount (lbs./ Ingredient 100 gallons Defoamer 2.00 (Drewplus TM L-475) Binder - Vinyl Acetate/Acrylic (55% solids - Tg 14° C.) 875.62 (RES 3803) Coalescent 13.00 (Texanol TM) Rheology Modifier - HEUR 9.29 (Acrysol TM SCT-275 - Rohm and Haas)
  • the resulting prepaint should have a total volume of 100 gallons, total weight of 899.9 lbs., a total PVC of 0.0%, volume solids of 50.0%, weight solids of 53.2%, density of 8.99 lbs./gallon, and 10.0% coalescent on latex solids.
  • This example describes the preparation of a flat acrylic prepaint by combining the following ingredients: Ingredient Amount (lbs./100 gallons) Defoamer 8.00 (Drewplus TM L-475) Binder Acrylic (60.5% solids - Tg 16° C.) 773.67 (Rhoplex TM AC-264 - Rohm and Haas) Coalescent 23.40 (Texanol TM) Rheology Modifier (HEUR) 13 (Acrysol TM RM-8W - Rohm and Haas) Base - Ammonia (28%) 0.50 Solvent - Propylene Glycol 60.00 Water 1.84
  • the resulting prepaint should have a total volume of 100 gallons, total weight of 880.4 lbs., total PVC of 0.0%, volume solids of 50.0%, weight solids of 53.2%, density of 8.80 lbs./gallon, and 5.0% coalescent on latex solids.
  • This example describes the preparation of a gloss acrylic binder prepaint by combining the following ingredients: Ingredient Amount (lbs./100 gallons) Binder - Acrylic (50% solids - Tg 28° C.) 836.85 (Rhoplex TM SG-10M - Rohm and Haas) Coalescent 41.84 (Texanol TM)
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 878.7 lbs., total PVC of 0.0%, volume solids of 44.3%, weight solids of 47.4%, density of 8.78 lbs./gallon, and 10.0% coalescent on latex solids.
  • This example describes the preparation of nine exterior flat latex paints of varying quality and tone using different combinations of the white pigment prepaint of Example 14, the exterior pigment extender prepaint of Example 15, the vinyl acetate-acrylic (PVA) binder prepaint of Example 17, and the flat acrylic binder prepaint of Example 18.
  • the paints are formulated by adding the white pigment prepaint and exterior pigment extender prepaint to the binder prepaints and mixing well.
  • Prepaints (wt.) Paint Flat Volume Exterior PVA Acrylic PVC Solids White Extender Binder Binder Water No.
  • This example describes the preparation of nine exterior satin latex paints of varying quality and tone using different combinations of the white pigment prepaint and exterior pigment extender prepaint of Examples 14 and 15, respectively, and the vinyl acetate/acrylic binder (PVA) and flat acrylic binder prepaints of Examples 17 and 18.
  • the paints are formulated as described above.
  • Prepaints wt.
  • Paints 28-1, 28-4 and 28-7 are premium quality light, mid and deep tone paints; paints 28-2, 28-5 and 28-8 are first quality light, mid and deep tone paints; and paints 28-3, 28-6 and 28-9 are second quality light, mid and deep tone paints.
  • This example describes the preparation of nine exterior gloss latex paints of using different combinations of the white pigment and exterior extender prepaints of Examples 14 and 15 and vinyl acetate/acrylic binder (PVA) and gloss acrylic binder prepaints of Examples 17 and 19.
  • the paints are formulated as described above.
  • Prepaints wt.
  • Paints 29-1, 29-4 and 29-7 are premium quality light, mid and deep tone paints; paints 29-2, 29-5 and 29-8 are first quality light, mid and deep tone paints; and paints 29-3, 29-6 and 29-9 are second quality light, mid and deep tone paints.
  • This example describes the preparation of nine interior flat latex paints using different combinations of the white pigment and interior extender prepaints of Examples 14 and 16 and the vinyl acetate/acrylic (PVA) and flat acrylic binder prepaints of Examples 17 and 18.
  • the paints are formulated as described above.
  • Prepaints wt.
  • Paints 30-1, 30-4 and 30-7 are premium quality light, mid and deep tone paints; paints 30-2, 30-5 and 30-8 are first quality light, mid and deep tone paints; and paints 30-3, 30-6 and 30-9 are second quality light, mid and deep tone paints.
  • This example describes the preparation of nine interior satin latex paints using the white pigment and interior extender prepaints of Examples 14 and 16 and the vinyl acetate/acrylic (PVA) and flat acrylic binder prepaints of Examples 17 and 18.
  • the paints are formulated as described above.
  • Paints 31-1, 31-4 and 31-7 are premium quality light, mid and deep tone paints; paints 31-2, 31-5 and 31-8 are first quality light, mid and deep tone paints; and paints 31-3, 31-6 and 31-9 are second quality light, mid and deep tone paints.
  • This example describes the preparation of nine interior gloss latex paints using the white pigment prepaint of Example 14 and the vinyl acetate/acrylic (PVA) and gloss acrylic binder prepaints of Examples 17 and 19.
  • the paints are formulated as described above.
  • Prepaints wt.
  • Paints 32-1, 32-4 and 32-7 are premium quality light, mid and deep tone paints; paints 32-2, 32-5 and 32-8 are first quality light, mid and deep tone paints; and paints 32-3, 32-6 and 32-9 are second quality light, mid and deep tone paints.
  • This example describes the preparation of a latex paint useful for architectural coatings which can be prepared using the white pigment prepaint of Example 20, the exterior pigment extender of Example 22, and the flat acrylic binder prepaint of Example 25.
  • the paint is formulated as described above.
  • Prepaints (wt.) Paint Flat Volume Exterior Acrylic PVC Solids White Extender Binder Water (%) (%) (Ex 20) (Ex 21) (Ex 24) (wt.) 35 48 331.27 294.95 475.42 33.39
  • the resulting paint should be a premium paint having a satin finish and a light tone.
  • This example describes the preparation of a low solids interior flat paint using the white pigment prepaint of Example 20, the interior pigment extender of Example 23, and the vinyl acetate/acrylic (PVA) binder prepaint of Example 24. Paint Prepaints (wt.) Volume Interior PVA PVC Solids White Extender Binder Water (%) (%) (Ex 20) (Ex 22) (Ex 23) (wt.) 75 15 107.22 294.97 16.87 584.31
  • This example describes the preparation of paints using the prepaints of Examples 1 to 6.
  • the paints were prepared by mixing the pigment prepaint(s) with the binder prepaint(s), then adding the thickeners, water and colorants and mixing well.
  • the Stormer viscosity, ICI viscosity, and pH were the equilibrated measured values.
  • Part A Exterior Flat Paints (Best and Good) Prepaint (lbs.) Exterior Flat Thickener (lbs.) White Extender PVA Acrylic Acrysol Paint Pigment Pigment Binder Binder Acrysol RM 2020 Water Colorant No.
  • This example describes the preparation of a white opacifying pigment prepaint for use in an elastomeric coating.
  • the prepaint is prepared using a high speed disperser.
  • the water, dispersant, acrylic binder, defoamer, base, and rheology modifier are combined and mixed briefly and at low speed and then the dry pigment is added. After all the dry pigment is added, the mixture should be dispersed at high speed for 15-20 minutes, as is known to those skilled in the art.
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 1,800.80 lbs., a total PVC of 80.00%, a volume solids of 50.00%, a weight solids of 76.74%, a density of 18.008 lbs./gal., 0.80% dispersant on pigment solids, and 3.0% coalescent on latex solids.
  • This example describes the preparation of a white opacifying pigment prepaint containing zinc oxide for use in an elastomeric coating.
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 1,925.58 lbs., a total PVC of 80.00%, a titanium dioxide PVC of 67.90%, a volume solids of 50.00%, a weight solids of 78.22%, a density of 19.2558 lbs./gal., 0.80% dispersant on pigment solids, and 3.0% coalescent on latex solids.
  • This example describes the preparation of an extender pigment prepaint for use in an elastomeric coating.
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 1,408.05 lbs., a total PVC of 80.00%, a volume solids of 50.00%, a weight solids of 70.38%, a density of 14.0805 lbs./gal., 0.30% dispersant on pigment solids, and 2.0% coalescent on latex solids.
  • This example describes the preparation of a low Tg acrylic binder prepaint with good low temperature flexibility.
  • the prepaint is prepared using a laboratory mixer having a 45° pitch stirring blade.
  • Amount Ingredient lbs./100 gal.
  • Defoamer (Nopco NXZ) 1.33 Rheology Modifier (Natrosol 250 HR) 5.32 Solvent - Propylene Glycol 26.62 Base - Ammonia (28%) 2.66 Coalescent (Texanol) 8.23 Water 6.06
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 864.93 lbs., a volume solids of 46.00%, a weight solids of 47.57%, a density of 8.6493 lbs./gal., and 2.0% coalescent on latex solids.
  • This example describes the preparation of a mid-range Tg stryene/acrylic binder prepaint with low temperature flexibility only down to ⁇ 5° C.
  • the prepaint is prepared using a laboratory mixer having a 45° pitch stirring blade.
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 859.69 lbs., a volume solids of 50.00%, a weight solids of 51.43%, a density of 8.5969 lbs./gal., and 2.0% coalescent on latex solids.
  • This example describes the preparation of a high T g (14° C.) 100% acrylic binder prepaint with poor low temperature flexibility.
  • the prepaint is prepared using a laboratory mixer having a 45° pitch stirring blade.
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 885.11 lbs., a volume solids of 47.00%, a weight solids of 49.71%, a density of 8.8511 lbs./gal., and 6.0% coalescent on latex solids.
  • This example describes the preparation of 11 elastomeric wall coating formulations of varying quality and mildew resistance, using different combinations of the white pigment prepaints of Examples 36 and 37, the extender prepaints of Example 38, and the binder prepaints of Examples 39, 40 and 41.
  • the paints are formulated by adding the white pigment prepaint and extender prepaint to the binder prepaints and mixing well.
  • the elastomeric coating preparations shown above represent a range of qualities that depend upon the durability and the flexibility at low temperature. These examples are not intended to be limiting. For instance, all the pigment and extender prepaints can be formulated with or without binders, and the binders may have a higher T g than the one used in these examples.
  • the extender prepaint is not meant to limited to the use of calcium carbonate, but to show an example that could also include other commonly used extenders such as, clays, silicas, magnesium silicates, and the like.
  • Elastomeric coatings for use for roofs can be differentiated in the same manner as elastomeric coatings for walls, with two additional variations, the use of functional extenders such as aluminum trihydrate to promote flame retardency, and enhanced adhesion to specific roofing substrates.
  • functional extenders such as aluminum trihydrate to promote flame retardency
  • enhanced adhesion to specific roofing substrates The examples that follow are intended to show the capabilities of the prepaint concept when applied to elastomeric roof coatings, and are not intended to limit.
  • This example describes the preparation of a white pigment prepaint.
  • the prepaint can be prepared using a high speed disperser.
  • the water, dispersant, acrylic binder, defoamer, base, and rheology modifier are combined and mixed briefly at low speed and then the dry pigment is added. After all the dry pigment is added, the mixture is dispersed at high speed, for 15-20 minutes as is known to those skilled in the art.
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 1,799.45 lbs., a total PVC of 80.00%, a volume solids of 50.00%, a weight solids of 76.71%, a density of 17.9945 lbs./gal., 0.80% dispersant on pigment solids, and 3.0% coalescent on latex solids.
  • This example describes the preparation of a white pigment prepaint for use in preparing coatings which have good adhesion to asphalt roofing materials.
  • the prepaint is prepared using a high speed disperser, as illustrated in Example 43.
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 1,799.56 lbs., a total PVC of 80.00%, a volume solids of 50.00%, a weight solids of 76.73%, a density of 17.9956 lbs./gal., 0.80% dispersant on pigment solids, and 3.0% coalescent on latex solids.
  • This prepared is designed to work best in coatings for asphalt substrates.
  • This example describes the preparation of a white opacifying prepaint containing zinc oxide.
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 1,887.88 lbs., a total PVC of 80.00%, a titanium oxide PVC of 68.23%, a volume solids of 50.00%, a weight solids of 77.63%, a density of 18.8788 lbs./gal., 0.80% dispersant on pigment solids, and 3.0% coalescent on latex solids.
  • This example describes the preparation of an extender pigment prepaint.
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 1,406.78 lbs., a total PVC of 80.00%, a volume solids of 50.00%, a weight solids of 70.33%, a density of 14.0678 lbs./gal., 0.30% dispersant on pigment solids, and 2.0% coalescent on latex solids.
  • This example describes the preparation of an extender pigment prepaint for use in preparing coatings which have good adhesion to asphalt roofing materials.
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 1,406.90 lbs., a total PVC of 80.00%, a volume solids of 50.00%, a weight solids of 70.36%, a density of 14.0690 lbs./gal., 0.30% dispersant on pigment solids, and 2.0% coalescent on latex solids.
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 1,312.79 lbs., a total PVC of 80.00%, a volume solids of 50.00%, a weight solids of 68.24%, a density of 13.1279 lbs./gal., 0.30% dispersant on pigment solids, and 2.0% coalescent on latex solids.
  • This example describes the preparation of low Tg acrylic binder prepaint which should have good low temperature flexibility and good adhesion to a variety of roofing substrates.
  • the prepaint is prepared using a laboratory mixer having a 45° pitch stirring blade.
  • Ingredient Amount (lbs./100 gal.)
  • Defoamer Nopco NXZ
  • Rheology Modifier Na32 Pigment-Propylene Glycol 26.62 Base-Ammonia (28%) 2.66 Coalescent (Texanol) 8.79 Water 16.45
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 859.93 lbs., a volume solids of 50.00%, a weight solids of 51.09%, a density of 8.5993 lbs./gal., and 2.0% coalescent on latex solids.
  • This example describes the preparation of a mid-range Tg acrylic binder prepaint which should have good adhesion to asphalt roofing materials.
  • the prepaint prepared using a laboratory mixer having a 45° pitch stirring blade.
  • Ingredient Amount (lbs./100 gal.)
  • Defoamer Nopco NXZ
  • Rheology Modifier Naatrosol 250 HR
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 860.52 lbs., a volume solids of 50.00%, a weight solids of 51.35%, a density of 8.6052 lbs./gal., and 2.0% coalescent on latex solids.
  • This example describes the preparation of a tan pigment prepaint with zinc oxide.
  • the prepaint is prepared as in example 46 by combining the following ingredients.
  • Ingredient Amount (lbs./100 gal.)
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 2,045.89 lbs., a total PVC of 80.00%, a volume solids of 45.00%, a weight solids of 77.35%, a density of 20.4589 lbs./gal., 0.50% dispersant on pigment solids, and 3.0% coalescent on latex solids.
  • This example describes the preparation of an extender pigment prepaint using crystalline silica.
  • the resulting prepaint should have a total volume of 100 gallons, a total weight of 1,391.11 lbs., a total PVC of 80.00%, a volume solids of 50.00%, a weight solids of 69.92%, a density of 13.9111 lbs./gal., 0.75% dispersant on pigment solids, and 2.0% coalescent on latex solids.
  • This example describes the preparation of 15 elastomeric roof coating formulations of varying quality, flexibility, adhesion and flame retardency.
  • the coatings are formulated using different combinations of the white prepaints of Examples 43, 44, and 45, the non-white pigment prepaint of Example 51, the extender prepaints of Examples 46, 47, 48, and 52, and the binder prepaints of Examples 40, 49 and 50.
  • the paints are formulated by adding the pigment prepaint and extender prepaint to the binder prepaints and mixing well. The amounts mixed are those cited below. All weights are in lbs., and the total volume of each elastomeric coating is 100 gallons. The volume solids is 45%.
  • variety high 53-7 no 6.5 white CaCO 3 ⁇ 15° F. variety medium 53-8 45 yes 6.5 white CaCO 3 ⁇ 15° F. variety medium 53-9 30 no 3.5 white ATH ⁇ 15° F. variety medium 53-10 45 yes 3.5 white ATH ⁇ 15° F. variety low 53-11 30 no 4.5 white CaCO 3 20° F. variety medium 53-12 45 yes 4.5 white CaCO 3 20° F. variety low 53-13 40 no 6.5 white CaCO 3 20° F. asphalt medium 53-14 40 no 6.5 white CaCO 3 20° F. asphalt blend medium 53-15 42 yes 0 tan silica ⁇ 15° F. variety medium
  • the elastomeric coatings prepared shown above represent a range of qualities that depend upon the durability and the flexibility of the coating at low temperature.
  • Different extender prepaints are used to promote flame retardency in the dried coatings. Included are prepaints prepared using dry ground colorants and no TiO 2 to develop tinted paints. These examples are not intended to be limiting. For instance, all the pigment and extender prepaints can be formulated with or without binders, and the binders may have a higher Tg than the one used in the example.
  • the extender prepaint is not meant to be limited to calcium carbonate, but to show an example that could also include other commonly used extenders such as, clays, silicas, magnesium silicates, etc.
  • This example describes the preparation of a white pigment prepaint/preformulated component.
  • Ingredient Amount (lbs./100 gal.) Water 275.83 Solvent - Propylene Glycol 50.00 Dispersant (Tamol ® 731A - Rohm and Haas) 26.71 Defoamer (Nopco NXZ) 1.50 Surfactant(Triton CF-10) 1.00 Pigment - Titanium Dioxide (Ti-Pure R-902 - 1335.56 DuPont) Base (Ammonia - 28%) 4.00 Defoamer (Nopco NXZ) 1.50 Thickener (Acrysol ® RM-2020 NPR - Rohm 50.00 and Haas) Water 93.45
  • the resulting white pigment prepaint/preformulation should have a total volume of 100 gallons, a total weight of 1,839.55 lbs., a total PVC of 100.00%, a volume solids of 40.12%, a weight solids of 72.60%, a density of 18.4495 lbs./gal., and 0.50% dispersant on pigment solids.
  • the resulting small particle size extender prepaint/preformulation should have a total volume of 100 gallons, a total weight of 1,379.93 lbs., a total PVC of 80.00%, a volume solids of 50.00%, a weight solids of 69.72%, a density of 13.7993 lbs./gal., 0.30% dispersant on pigment solids, and 3.50% coalescent on latex solids.
  • the resulting binder prepaint/preformulation package should have a total volume of 100 gallons, a total weight of 874.31 lbs., a volume solids of 40.00%, a weight solids of 42.83%, a density of 8.7431 lbs./gal., and 3.50% coalescent on latex solids.
  • the resulting preformulated binder package should have a total volume of 100 gallons, a total weight of 857.59 lbs., a volume solids of 40.00%, a weight solids of 41.55%, a density of 8.5759 lbs./gal., and 3.50% coalescent on latex solids.
  • This example describes a small particle size aggregate for use in giving the aggregate finish a fine texture.
  • Ingredient Amount (lbs./100 gal.)
  • Sand - Small Particle Size 2,211.18 (Sand #90)
  • the resulting preformulated aggregate should have a total volume of 100 gallons, a total weight of 2,211.18 lbs., a volume solids of 100.00%, a weight solids of 100.00%, a density of 22.1118 lbs./gal.
  • This example describes the preparation of preformulated large particle size aggregate that gives coarse texture. It can be prepared using a ribbon mixer. Ingredient Amount (lbs./100 gal.) Sand - Large Particle Size 442.24 (Sand #15)
  • the resulting preformulated aggregate should have a total volume of 100 gallons, a total weight of 2,211.18 lbs., a volume solids of 100.00%, a weight solids of 100.00%, a density of 22.1118 lbs./gal.
  • This example describes the preparation of 19 aggregate finish formulations of varying quality, color intensity, and texture.
  • the aggregate finishes are formulated by adding the small particle size extender preformulation to the binder preformulation and then adding the white pigment prepaint, if needed, and finally adding the water and large particle size aggregate.
  • the components thoroughly mixed using a ribbon mixer. The amounts mixed are those shown below. All weights are in lbs., the total volume of each aggregate finish is 100 gallons, formulated to 67% volume solids.
  • the aggregate finish coatings shown above represent a range of qualities, textures, and coloring abilities that depend upon the PVC, TiO 2 level, and particle size ratio of large particle size extender. These formulations are not intended to be limited by the example. For instance, all the extender prepaints/preformulation could be formulated without binder. In addition, the extender prepaint/preformulation is not meant to be limited to the use of nepheline syenite, but to show an example that could also include other commonly used extenders such as, clays, silicas, magnesium silicates, calcium carbonates, etc.
  • Dupont de Nemours and Co., Inc. Ti-Pure TM R-706 Titanium Dioxide E.I. Dupont de Nemours and Co., Inc. (Wilmington, DE) Ti-Pure TM R-900 Titanium Dioxide E.I. Dupont de Nemours and Co., Inc. (Wilmington, DE) Ti-Pure TM R-902 Titanium Dioxide E.I. Dupont de Nemours and Co., Inc. (Wilmington, DE) Minex TM 4 Mineral Extender Inimin Corp.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Analytical Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Road Signs Or Road Markings (AREA)
  • Road Repair (AREA)
  • Paper (AREA)
  • Cosmetics (AREA)
US09/785,147 2000-02-18 2001-02-16 Prepaints and methods of preparing paints from the prepaints Abandoned US20020016405A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/785,147 US20020016405A1 (en) 2000-02-18 2001-02-16 Prepaints and methods of preparing paints from the prepaints

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US18365600P 2000-02-18 2000-02-18
US18365500P 2000-02-18 2000-02-18
US24763900P 2000-11-10 2000-11-10
US09/785,147 US20020016405A1 (en) 2000-02-18 2001-02-16 Prepaints and methods of preparing paints from the prepaints

Publications (1)

Publication Number Publication Date
US20020016405A1 true US20020016405A1 (en) 2002-02-07

Family

ID=27391716

Family Applications (5)

Application Number Title Priority Date Filing Date
US09/785,147 Abandoned US20020016405A1 (en) 2000-02-18 2001-02-16 Prepaints and methods of preparing paints from the prepaints
US09/785,376 Expired - Lifetime US6919400B2 (en) 2000-02-18 2001-02-16 Stable mixtures containing opacifying pigments
US09/785,389 Expired - Fee Related US6613832B2 (en) 2000-02-18 2001-02-16 Premixes and method of preparing adhesives and caulks from premixes
US09/785,152 Expired - Fee Related US6531537B2 (en) 2000-02-18 2001-02-16 Prepaints and methods of preparing paints from the prepaints
US10/634,480 Abandoned US20040030035A1 (en) 2000-02-18 2003-08-05 Premixes and method of preparing adhesives ad caulks from premixes

Family Applications After (4)

Application Number Title Priority Date Filing Date
US09/785,376 Expired - Lifetime US6919400B2 (en) 2000-02-18 2001-02-16 Stable mixtures containing opacifying pigments
US09/785,389 Expired - Fee Related US6613832B2 (en) 2000-02-18 2001-02-16 Premixes and method of preparing adhesives and caulks from premixes
US09/785,152 Expired - Fee Related US6531537B2 (en) 2000-02-18 2001-02-16 Prepaints and methods of preparing paints from the prepaints
US10/634,480 Abandoned US20040030035A1 (en) 2000-02-18 2003-08-05 Premixes and method of preparing adhesives ad caulks from premixes

Country Status (15)

Country Link
US (5) US20020016405A1 (pt)
EP (4) EP1268683A2 (pt)
JP (4) JP2004500461A (pt)
KR (4) KR20030076924A (pt)
CN (4) CN1404518A (pt)
AR (1) AR029800A1 (pt)
AT (1) ATE299921T1 (pt)
AU (5) AU4157201A (pt)
BR (4) BR0108468A (pt)
DE (1) DE60112060T2 (pt)
ES (1) ES2244589T3 (pt)
MX (3) MXPA01001665A (pt)
PL (3) PL366299A1 (pt)
TW (3) TW583293B (pt)
WO (5) WO2001060925A2 (pt)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020002934A1 (en) * 2000-02-18 2002-01-10 Nungesser Edwin Hugh Stable mixtures containing opacifying pigments
US20030033962A1 (en) * 2001-08-15 2003-02-20 Nungesser Edwin Hugh Stable mixtures containing extender pigments
EP1371691A1 (en) * 2002-06-12 2003-12-17 Rohm And Haas Company Prepaints and methods of preparing paints from the prepaints
US20070055002A1 (en) * 2005-09-07 2007-03-08 Elementis Specialties, Inc. Paint compositions containing an additive to reduce the effect of viscosity loss caused by the addition of colorants
WO2007146142A1 (en) * 2006-06-07 2007-12-21 Elementis Specialties, Inc. Improved paint compositions containing an additive to reduce the effect of viscosity loss caused by the addition of colorants
US20070295247A1 (en) * 2005-10-24 2007-12-27 Unimin Corporation Pigment composition for paint
US20080216713A1 (en) * 2005-10-24 2008-09-11 Unimin Corporation Fluorspar-based filler and method for making the same
US20090017209A1 (en) * 2005-07-11 2009-01-15 Andrew Robert Morgan Process for preparing a powder coating composition
US20090088516A1 (en) * 2007-10-01 2009-04-02 Chunzhao Li Method to improve the color acceptance of viscosity stabilized latex paints
US20090136737A1 (en) * 2005-07-11 2009-05-28 John Ring Powder coating materials
US20090151601A1 (en) * 2007-12-17 2009-06-18 Elementis Specialties, Inc. Low voc waterbased coatings with efflorescence resistance
WO2010024944A1 (en) * 2008-08-27 2010-03-04 Sun Chemical Corporation Automated ink color matching of solids and tones
AU2012233014B2 (en) * 2011-10-03 2013-08-15 Rohm And Haas Company Coating composition with high pigment volume content opaque polymer
US9994722B2 (en) 2015-09-25 2018-06-12 Columbia Insurance Company Reduced point of sale bases for multi-finish paint line and methods for same
US11349835B2 (en) 2013-03-01 2022-05-31 Paypal, Inc. Systems and methods for authenticating a user based on a biometric model associated with the user
EP4007786A4 (en) * 2019-08-02 2023-08-30 Bmic Llc WATER RESISTANT ACRYLIC COATINGS

Families Citing this family (96)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7919546B2 (en) * 1998-12-23 2011-04-05 Microblend Technologies, Inc. Color integrated and mobile paint systems for producing paint from a plurality of prepaint components
US20090099695A1 (en) * 1998-12-23 2009-04-16 Microblend Technologies, Inc. Color integrated and mobile paint systems for producing paint from a plurality of prepaint components
US8014885B2 (en) 1998-12-23 2011-09-06 Microblend Technologies, Inc. Mobile paint system utilizing slider attribute prompts and reflectance memory storage
US7339000B1 (en) * 1998-12-23 2008-03-04 Coatings Management Systems Inc. Method and apparatus for producing an aqueous paint composition from a plurality of premixed compositions
US7250464B2 (en) * 2000-02-18 2007-07-31 Rohm And Haas Company Distributed paint manufacturing system
US7113919B1 (en) * 2000-02-29 2006-09-26 Chemdomain, Inc. System and method for configuring products over a communications network
US7812079B2 (en) 2001-02-22 2010-10-12 Valspar Sourcing, Inc. Coating compositions containing low VOC compounds
US7288616B2 (en) * 2002-01-18 2007-10-30 Lubrizol Advanced Materials, Inc. Multi-purpose polymers, methods and compositions
DE10232908A1 (de) 2002-07-19 2004-01-29 Goldschmidt Ag Verwendung organfunktionell modifizierter, Phenylderivate enthaltender Polysiloxane als Dispergier- und Netzmittel für Füllstoffe und Pigmente in wässrigen Pigmentpasten und Farb- oder Lackformulierungen
US20040121082A1 (en) * 2002-10-22 2004-06-24 Jack Dunnous Method and apparatus for producing multi-color concrete
AU2002301894B2 (en) * 2002-11-07 2007-07-05 Nawkaw Holdings B. V. A masonry staining composition, a method of coating a masonry structure and a method of producing a masonry structure, a method of producing a masonry unit
US7402627B2 (en) * 2003-08-18 2008-07-22 Columbia Insurance Company Precursor colorant composition for latex paint
US9139676B2 (en) * 2003-08-18 2015-09-22 Benjamin Moore & Co. Environmentally friendly colorant compositions and latex paints/coatings
US8329807B2 (en) * 2003-08-18 2012-12-11 Columbia Insurance Company Latex paint film resistant to adverse effects of water, and compositions and methods for making same
US20050193668A1 (en) * 2004-02-23 2005-09-08 Hamilton Coatings, Llc Drywall joint construction and method
EP1609830A1 (en) * 2004-06-24 2005-12-28 Rohm and Haas Company Aqueous compositions with polyvalent metal ions and dispersed polymers
DE102004037118A1 (de) 2004-07-30 2006-03-23 Degussa Ag Titandioxid enthaltende Dispersion
US20060165885A1 (en) * 2004-12-28 2006-07-27 Fay Ralph M Method of insulating cavities in a structure using a spray-on method and resultant insulation
AU2006275388B2 (en) 2005-08-02 2013-01-17 Rory E. Brennan Compositions and methods for adhesion
WO2007027037A1 (en) * 2005-08-31 2007-03-08 Lg Chem, Ltd. Odorless paper coating latex and paper coating composition containing the same
US20070059508A1 (en) * 2005-09-13 2007-03-15 Building Materials Investment Corporation Fiber mat and process of making same
CN1978545B (zh) * 2005-11-29 2010-12-29 深圳市海川实业股份有限公司 一种5pb 7.5/4颜料的组合物及用此组合物制备的实物色块
US20070135325A1 (en) * 2005-12-10 2007-06-14 Hawes Charles L Composition for thinning and cleanup of paint
US20090211492A1 (en) * 2005-12-10 2009-08-27 Hawes Charles L Composition for thinning of oil-based paint
US7803864B2 (en) * 2006-01-05 2010-09-28 Rohm And Haas Company Associative thickener compositions and methods of use
KR100757048B1 (ko) * 2006-01-10 2007-09-07 주식회사 유상실업 금속 및 귀금속 콜로이드 비전해 도금 용액 및 섬유에 도금방법
US20080040980A1 (en) * 2006-07-13 2008-02-21 Unimin Corporation Method of processing nepheline syenite
US20080015104A1 (en) * 2006-07-13 2008-01-17 Unimin Corporation Ultrafine nepheline syenite
US8858699B2 (en) * 2006-07-13 2014-10-14 Unimin Corporation Ultra fine nepheline syenite powder and products for using same
EP2057244B1 (en) * 2006-09-01 2010-05-12 Cedric Sheridan Intermediate product for use in the production of abrading or cutting tools
IL178698A0 (en) * 2006-10-17 2007-02-11 Rami Rotenberg A coating and method of preparing same
EP2097487B1 (en) * 2007-01-05 2013-02-20 Basf Se Co-milling organic pigments with fumed silica
TW200846637A (en) * 2007-01-16 2008-12-01 Rohm & Haas System and method for making paints from prepaints
US7757976B2 (en) * 2007-02-07 2010-07-20 Unimin Corporation Method of processing nepheline syenite powder to produce an ultra-fine grain size product
DE102007023994B4 (de) * 2007-05-23 2014-10-30 Continental Reifen Deutschland Gmbh Verfahren zum Herstellen eines lösungsmittelfreien Reifendichtmittels auf polymerer Basis
JP2008291165A (ja) * 2007-05-28 2008-12-04 Gantsu Kasei Kk 路面表示用水性塗料組成物
US8334047B2 (en) * 2007-06-18 2012-12-18 Omnova Solutions Inc. Paper coating compositions, coated papers, and methods
JP5275345B2 (ja) * 2007-07-09 2013-08-28 ユニミン コーポレーション 制御された粒子径を有する霞石閃長岩粉末とその新規製造方法
US20090156718A1 (en) * 2007-11-20 2009-06-18 Hinton John R Caulking Bead Agent and Method of Creating an Improved Caulking Bead
US20090149591A1 (en) * 2007-12-07 2009-06-11 Yong Yang Paint Compositions With Low- or Zero-VOC Coalescence Aids and Nano-Particle Pigments
EP2080789B1 (en) * 2007-12-17 2011-03-30 Merck Patent GmbH Filler pigments
US20120141785A1 (en) * 2008-01-11 2012-06-07 Hugh Winters Lowrey Process for application of durable fast drying multi-coat organic coating system
US7966588B1 (en) 2008-01-26 2011-06-21 National Semiconductor Corporation Optimization of electrical circuits
US9087164B2 (en) * 2008-01-26 2015-07-21 National Semiconductor Corporation Visualization of tradeoffs between circuit designs
US8100296B2 (en) * 2008-03-24 2012-01-24 Sashco, Inc. System and method of providing individual quantities of custom colored sealing compound
ATE556121T1 (de) 2008-04-02 2012-05-15 Evonik Degussa Gmbh Dispersion enthaltend hydrophobierte siliciumdioxidpartikel
JP5480884B2 (ja) 2008-04-17 2014-04-23 ユニミン コーポレーション 温熱フィルムに用いる、制御された粒径分布を有する、鉱石又は岩石マテリアルから形成される粉末
US9181718B2 (en) * 2008-05-08 2015-11-10 Wellington Investment Corporation System and method for installation of molding
US8141599B2 (en) * 2008-06-17 2012-03-27 Valspar Sourcing, Inc. Expanded color space architectural paint and stain tinting system
FR2932809B1 (fr) 2008-06-20 2012-03-09 Colas Sa Produits de marquage routier a proprietes photocatalytiques, autonettoyantes et a surface hyperhyrophile renouvelable.
US7719694B1 (en) 2008-06-23 2010-05-18 Hrl Laboratories, Llc System and method of surface wave imaging to detect ice on a surface or damage to a surface
US8124013B1 (en) 2008-06-23 2012-02-28 Hrl Laboratories, Llc System and method for large scale atmospheric plasma generation
US8009276B1 (en) 2008-06-23 2011-08-30 Hrl Laboratories, Llc System and method of surface wave imaging to map pressure on a surface
US7931858B1 (en) 2008-06-23 2011-04-26 Hrl Laboratories, Llc System and method for surface decontamination using electromagnetic surface waves
US8333829B2 (en) * 2008-08-18 2012-12-18 Robert Richard Liversage Sprayable liquid emulsion polymer coating compositions
US20100151198A1 (en) * 2008-12-12 2010-06-17 Khan Amir G Roofing Material
DE102009038146A1 (de) * 2009-08-21 2011-03-03 Heubach Gmbh Abtönsystem zur Herstellung einer definierten Anzahl von Farbtönen einer gebrauchsfertigen Anstrichfarbe, einschliesslich dazugehöriger Komponenten
IT1395469B1 (it) * 2009-07-31 2012-09-21 Panettieri Substrato patinato per la stampa e relativo metodo di produzione
JP5442577B2 (ja) * 2009-11-18 2014-03-12 ローム アンド ハース カンパニー 水性コーティング組成物
JP5351190B2 (ja) * 2010-03-16 2013-11-27 ローム アンド ハース カンパニー 多価金属カチオンおよび分散されたポリマーを含む水性組成物
US9309435B2 (en) * 2010-03-29 2016-04-12 The Clorox Company Precursor polyelectrolyte complexes compositions comprising oxidants
US8712741B2 (en) 2010-06-28 2014-04-29 National Semiconductor Corporation Power supply architecture system designer
CN101974262B (zh) * 2010-11-16 2012-07-11 天津市万畅建材有限公司 一种具有柔韧性的中性耐水腻子膏及其制备方法
JP5349562B2 (ja) 2010-11-19 2013-11-20 ローム アンド ハース カンパニー 疎水的変性アルキレンオキシドウレタンポリマー
CN103221761B (zh) * 2010-12-15 2015-07-29 三菱电机株式会社 空调热水供给复合系统
US9511566B2 (en) 2011-05-13 2016-12-06 Polyglass Usa, Inc. Building construction material with high solar reflectivity
CN103930282B (zh) 2011-11-18 2015-12-09 惠普发展公司,有限责任合伙企业 喷墨记录材料
BR112014024561A2 (pt) 2012-04-20 2017-09-19 Valspar Sourcing Inc método para preparar uma dispersão de trituração de pigmento de partículas de compósito de polímero de pigmento de dióxido de titânio.
BR112014024559A2 (pt) * 2012-04-20 2017-09-19 Valspar Sourcing Inc método para preparar uma dispersão de trituração de pigmento de partículas de compósito de polímero de pigmento de dióxido de titânio, dispersão de trituração de pigmento, e, composição de revestimento.
JP2014051651A (ja) * 2012-08-24 2014-03-20 Rohm & Haas Co ヒンダードアルキルアミンポリマー
US9041408B2 (en) 2013-01-16 2015-05-26 Hrl Laboratories, Llc Removable surface-wave networks for in-situ material health monitoring
ES2688532T3 (es) 2013-01-18 2018-11-05 Basf Se Composiciones de recubrimiento a base de dispersión acrílica
US9606098B2 (en) * 2013-03-29 2017-03-28 Weyerhaeuser Nr Company Moisture indicator for wood substrates
KR101364323B1 (ko) * 2013-06-20 2014-02-19 주식회사 쌍 곰 건조시간이 빠르며 미끄럼 저항성이 우수한 일액형 폴리싱 타일접착제
CN104405853A (zh) * 2014-12-12 2015-03-11 常熟市明瑞针纺织有限公司 纺织设备用凸轮
JP6467220B2 (ja) * 2014-12-22 2019-02-06 ダイハツ工業株式会社 塗装方法
TWI644702B (zh) * 2015-08-26 2018-12-21 美商愛康運動與健康公司 力量運動機械裝置
KR101675488B1 (ko) * 2016-01-29 2016-11-14 태정산업개발(주) 밀착성과 부착력이 향상된 방수제의 실내외 시공방법
US10407586B2 (en) * 2016-07-28 2019-09-10 Michelman, Inc. Seed coating compositions including ethylene copolymer and lubricant
CN106433524B (zh) * 2016-08-30 2018-07-06 泰兴联创绝缘材料有限公司 一种丙烯酸乳液共混剥离力连续可调压敏胶配方、制备方法
WO2018067829A1 (en) * 2016-10-05 2018-04-12 Valspar Sourcing, Inc. Pigment dispersion with coalescent
CN106752269A (zh) * 2016-12-30 2017-05-31 安徽真信涂料有限公司 一种铝型材粉末涂料装饰性颜料分散剂
IT201700004305A1 (it) * 2017-01-17 2018-07-17 Alfa Srl Prodotti semilavorati per la realizzazione estemporanea di prodotti fluidi coprenti, ottenuti individuando e ricomponendo i componenti di un prodotto fluido coprente bianco
JP6839585B2 (ja) * 2017-03-30 2021-03-10 花王株式会社 印刷インキ用分散剤組成物
AU2017239540A1 (en) 2017-08-09 2019-02-28 Pidilite Industries Limited Organic-inorganic hybrid polymer latex for high durable traffic marking paint
US10813857B2 (en) 2018-02-01 2020-10-27 The Procter & Gamble Company Heterogenous cosmetic ink composition for inkjet printing applications
US10610471B2 (en) 2018-02-01 2020-04-07 The Procter & Gamble Company Cosmetic ink composition comprising a surface tension modifier
JP7104180B2 (ja) 2018-02-01 2022-07-20 ザ プロクター アンド ギャンブル カンパニー 材料を分配するためのシステム及び方法
US10849843B2 (en) 2018-02-01 2020-12-01 The Procter & Gamble Company Stable cosmetic ink composition
US11518893B2 (en) * 2018-11-20 2022-12-06 Columbia Insurance Company Manufacturing method for multi paint finishes and a multi-finish extender grind
CN111286290A (zh) * 2019-12-12 2020-06-16 西安中科贝昂环保科技有限公司 一种环保美缝剂及制备方法
US20210292593A1 (en) * 2020-02-27 2021-09-23 Ppg Industries Ohio, Inc. Coating System
US20230174801A1 (en) * 2020-06-22 2023-06-08 Rohm And Haas Company Method for tuning gloss in paint formulations
WO2022241327A1 (en) * 2021-05-14 2022-11-17 Rohm And Haas Company In-line process for preparing paint
US11697872B2 (en) * 2021-06-23 2023-07-11 GM Global Technology Operations LLC Multi-layered coating system for a substrate and method of making the same
EP4370613A1 (en) * 2021-07-13 2024-05-22 Rohm and Haas Company In-line process for preparing paint

Family Cites Families (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US183655A (en) 1876-10-24 Improvement in harness-saddles
US86941A (en) 1869-02-16 Improvement in corn-planter
US185311A (en) 1876-12-12 Improvement in paint-staffs for millstones
US183656A (en) 1876-10-24 Improvement in grain-separators
US140272A (en) 1873-06-24 Improvement in ruling-pens
US62510A (en) 1867-02-26 Improved railway-switch
US156387A (en) 1874-10-27 Improvement in cotton-presses
US223873A (en) 1880-01-27 Process of autographic printing
US66710A (en) 1867-07-16 William f
US127336A (en) 1872-05-28 Improvement in devices for locking nuts
US247639A (en) 1881-09-27 hawley
DE2027737C3 (de) 1969-07-08 1975-11-20 Ncr Corp., Dayton, Ohio (V.St.A.) Härtbare Klebstoff- oder Vergußmasse auf Basis von Epoxidharz und ungesättigtem Polyesterharz
US3868263A (en) * 1970-06-22 1975-02-25 Kenneth E Mcconnaughay Method of making a paving composition
CA935255A (en) 1971-02-12 1973-10-16 Canadian Titanium Pigments Limited High-solids tio2 pigment and method for making same
US3784391A (en) 1971-12-27 1974-01-08 Nl Industries Inc Finely divided hollow microcapsules of polymeric resins
US4243430A (en) 1977-09-21 1981-01-06 Rohm And Haas Company Pigment dispersant for aqueous paints
US4170485A (en) * 1978-08-22 1979-10-09 American Cyanamid Company Titanium dioxide slurries from recycle material
US4427836A (en) 1980-06-12 1984-01-24 Rohm And Haas Company Sequential heteropolymer dispersion and a particulate material obtainable therefrom, useful in coating compositions as a thickening and/or opacifying agent
JPS5874757A (ja) * 1981-10-29 1983-05-06 Toa Paint Kk 道路標示用塗料
US4403866A (en) * 1982-05-07 1983-09-13 E. I. Du Pont De Nemours And Company Process for making paints
US4469825A (en) 1983-03-09 1984-09-04 Rohm And Haas Company Sequential heteropolymer dispersion and a particulate material obtainable therefrom, useful in coating compositions as an opacifying agent
JPS6187734A (ja) 1984-10-03 1986-05-06 Japan Synthetic Rubber Co Ltd 中空ポリマ−粒子の製造方法
US4594363A (en) 1985-01-11 1986-06-10 Rohm And Haas Company Production of core-sheath polymer particles containing voids, resulting product and use
GB8705482D0 (en) 1987-03-09 1987-04-15 Ici Plc Dispensing apparatus
CA1303437C (en) 1988-02-29 1992-06-16 Nobuo Kawahashi Hollow polymer particles, process for production thereof, and use thereof as pigment
JP2591050B2 (ja) 1988-03-31 1997-03-19 日産自動車株式会社 アンチスキッド制御装置
US4880842A (en) 1988-05-20 1989-11-14 Rohm & Haas Company Multi-stage opacifying polymer particles containing non-polymeric acid absorbed therein
JP2728910B2 (ja) 1988-12-27 1998-03-18 三井東圧化学株式会社 小孔を有する合成樹脂粒子の製造法
DE3910742A1 (de) 1989-04-03 1990-10-04 Aqualon Gmbh Verwendung von hydrophobierten, nicht-ionogenen celluloseethern in dispersionsfarben und so erhaltene dispersionsfarben
US5078302A (en) 1989-07-17 1992-01-07 Fluid Management Limited Partnership Paint dispensing apparatus
CA2020629C (en) 1989-07-21 2000-02-01 Frank Landy Shelf stable fast-cure aqueous coating
JP2872710B2 (ja) 1989-10-27 1999-03-24 三井化学株式会社 合成樹脂エマルション及びその製造方法
US5114630A (en) * 1990-09-21 1992-05-19 The United Of America As Represented By The Secretary Of The Navy Continuous manufacture and casting
US5157084A (en) 1990-10-12 1992-10-20 The Dow Chemical Company Process of making hollow polymer latex particles
WO1993009187A1 (en) 1991-10-31 1993-05-13 E.I. Du Pont De Nemours And Company Dispersant treated pigments
DE69324953T2 (de) 1992-03-26 1999-09-16 Aqualon Co Fluidisierte Polymer-Suspension für die kontinuierliche Herstellung eines Überzugsmittels
DE4301991A1 (de) 1993-01-26 1994-07-28 Herberts Gmbh Modulsystem und dessen Verwendung bei Verfahren zur Herstellung von wäßrigen Überzugsmitteln
DE4307498A1 (de) * 1993-03-10 1994-09-15 Herberts Gmbh Modulsystem und dessen Verwendung bei Verfahren zur Herstellung von wäßrigen Überzugsmitteln
BR9406675A (pt) 1993-05-05 1996-01-23 Du Pont Aparelho para dispensar um volume controlado de liquido e aparelho para dispensar um volume preciso de liquido
US5823670A (en) 1993-11-17 1998-10-20 Calgon Corporation Chemical delivery and on-site blending system for producing multiple products
DE4415292A1 (de) 1994-04-30 1995-11-02 Herberts Gmbh Modulsystem und Verfahren zur Herstellung wäßriger Überzugsmittel
US5494971A (en) 1994-08-12 1996-02-27 Rohm And Haas Company Encapsulated hydrophilic polymers and their preparation
IE73467B1 (en) 1994-08-26 1997-06-04 Gen Paints Intellectual Proper Paint manufacture
AU709278B2 (en) * 1996-03-06 1999-08-26 Rohm And Haas Company Quick-drying aqueous coating compositions
IT1283307B1 (it) * 1996-03-27 1998-04-16 Corob Srl Dispositivo umidificatore di ugelli di erogazione di fluidi di una macchina dispensatrice.
US5989331A (en) * 1996-05-28 1999-11-23 Southern Clay Products, Inc. TiO2 slurry stabilization
MY115083A (en) 1996-06-07 2003-03-31 Rohm & Haas Waterborne traffic paints having improved fast dry characteristic and method of producing traffic markings therefrom
IT1287957B1 (it) 1996-08-06 1998-08-26 Corob Spa Macchina dispensatrice di prodotti allo stato fluido, in particolare di coloranti ed affini per la formulazione di vernici e simili.
DE19714577A1 (de) 1997-04-09 1998-10-15 Basf Coatings Ag Mischsystem zur Herstellung wasserverdünnbarer Überzugsmittel
US6020435A (en) 1997-11-05 2000-02-01 Rohm And Haas Company Process for preparing polymer core shell type emulsions and polymers formed therefrom
US6073055A (en) * 1997-11-10 2000-06-06 Basf Corporation Computerized virtual paint manufacturing and application system
ITPS980005T1 (en) 1998-02-23 1999-08-23 Colorificio Adriatico S R L Method for the instantaneous preparation of matt and gloss paint
US6221145B1 (en) * 1998-12-23 2001-04-24 Coating Management Systems, Inc. Method of producing and aqueous paint composition from a plurality of premixed components
DE19904330A1 (de) 1999-01-28 2000-08-10 Basf Coatings Ag Wäßriger Beschichtungsstoff und Modulsystem zu seiner Herstellung
EP1057522B1 (en) * 1999-05-31 2004-07-21 Kikusui Chemical Industries Co., Ltd., Kozuka Bldg. Method for manufacturing/handling fluid component packaged goods, manufacture/handling instructing data code for use in this method and fluid component packaged goods affixed by this manufacture/handlung instructing data code
US20020007867A1 (en) 1999-07-07 2002-01-24 Kikusui Chemical Industries Co., Ltd. Method for manufacturing/handling fluid component packaged goods, manufacture/handling instructing data code for use in this method and fluid component packaged goods affixed by this manufacture/handling instructing data code
EP1094096A1 (fr) 1999-10-22 2001-04-25 Nickolas Bizzio Procédé pour réaliser des peintures en mélangeant des quantités prédéterminées de produits fluides
MXPA01001665A (es) * 2000-02-18 2002-04-01 John Michael Friel Pinturas para el marcado de caminos,preparadas a partir de prepinturas; metodo y aparato para formar zonas y lineas marcadas en los caminos, con dichas pinturas y dispositivo para aplicar dichas pinturas
US6689824B2 (en) * 2000-02-18 2004-02-10 Rohm And Haas Company Prepaints and method of preparing road-marking paints from prepaints
US7250464B2 (en) * 2000-02-18 2007-07-31 Rohm And Haas Company Distributed paint manufacturing system

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020002934A1 (en) * 2000-02-18 2002-01-10 Nungesser Edwin Hugh Stable mixtures containing opacifying pigments
US20030033962A1 (en) * 2001-08-15 2003-02-20 Nungesser Edwin Hugh Stable mixtures containing extender pigments
US6921432B2 (en) * 2001-08-15 2005-07-26 Rohm & Haas Company Stable mixtures containing extender pigments
EP1371691A1 (en) * 2002-06-12 2003-12-17 Rohm And Haas Company Prepaints and methods of preparing paints from the prepaints
US20030232913A1 (en) * 2002-06-12 2003-12-18 Bakule Ronald David Prepaints and methods of preparing paints fron the prepaints
US7166667B2 (en) 2002-06-12 2007-01-23 Rohm And Haas Company Methods of preparing paints from prepaints
US20090017209A1 (en) * 2005-07-11 2009-01-15 Andrew Robert Morgan Process for preparing a powder coating composition
US20090136737A1 (en) * 2005-07-11 2009-05-28 John Ring Powder coating materials
US20070055002A1 (en) * 2005-09-07 2007-03-08 Elementis Specialties, Inc. Paint compositions containing an additive to reduce the effect of viscosity loss caused by the addition of colorants
US20070295247A1 (en) * 2005-10-24 2007-12-27 Unimin Corporation Pigment composition for paint
US20080216713A1 (en) * 2005-10-24 2008-09-11 Unimin Corporation Fluorspar-based filler and method for making the same
US7582157B2 (en) * 2005-10-24 2009-09-01 The Unimin Corporation Pigment composition for paint
US7618487B2 (en) * 2005-10-24 2009-11-17 Unimin Corporation Fluorspar-based filler and method for making the same
WO2007146142A1 (en) * 2006-06-07 2007-12-21 Elementis Specialties, Inc. Improved paint compositions containing an additive to reduce the effect of viscosity loss caused by the addition of colorants
EP2195389A1 (en) * 2007-10-01 2010-06-16 Elementis Specialties, Inc. A method to improve the color acceptance of viscosity stabilized latex paints
US20090088516A1 (en) * 2007-10-01 2009-04-02 Chunzhao Li Method to improve the color acceptance of viscosity stabilized latex paints
EP2195389A4 (en) * 2007-10-01 2011-03-30 Elementis Specialties Inc METHOD FOR IMPROVING THE COLOR ACCEPTANCE OF VISCOSITY STABILIZED LATEX COLORS
US20090151601A1 (en) * 2007-12-17 2009-06-18 Elementis Specialties, Inc. Low voc waterbased coatings with efflorescence resistance
WO2010024944A1 (en) * 2008-08-27 2010-03-04 Sun Chemical Corporation Automated ink color matching of solids and tones
CN102160046A (zh) * 2008-08-27 2011-08-17 太阳化学公司 纯色和色调的自动化油墨配色
US8467098B2 (en) 2008-08-27 2013-06-18 Sun Chemical Corporation Automated ink color matching of solids and tones
AU2012233014B2 (en) * 2011-10-03 2013-08-15 Rohm And Haas Company Coating composition with high pigment volume content opaque polymer
US8609759B2 (en) * 2011-10-03 2013-12-17 Rohm And Haas Company Coating composition with high pigment volume content opaque polymer
US11349835B2 (en) 2013-03-01 2022-05-31 Paypal, Inc. Systems and methods for authenticating a user based on a biometric model associated with the user
US11863554B2 (en) 2013-03-01 2024-01-02 Paypal, Inc. Systems and methods for authenticating a user based on a biometric model associated with the user
US9994722B2 (en) 2015-09-25 2018-06-12 Columbia Insurance Company Reduced point of sale bases for multi-finish paint line and methods for same
EP4007786A4 (en) * 2019-08-02 2023-08-30 Bmic Llc WATER RESISTANT ACRYLIC COATINGS

Also Published As

Publication number Publication date
AU4157201A (en) 2001-08-27
WO2001060925A2 (en) 2001-08-23
KR20030076924A (ko) 2003-09-29
DE60112060D1 (de) 2005-08-25
PL366299A1 (en) 2005-01-24
BR0108468A (pt) 2002-12-03
WO2001060929A2 (en) 2001-08-23
CN1404515A (zh) 2003-03-19
MXPA01001665A (es) 2002-04-01
WO2001060936A2 (en) 2001-08-23
BR0108474A (pt) 2003-04-22
CN1208407C (zh) 2005-06-29
US20020002934A1 (en) 2002-01-10
EP1268683A2 (en) 2003-01-02
US20020013401A1 (en) 2002-01-31
AU3979001A (en) 2001-08-27
WO2001060930A2 (en) 2001-08-23
US6613832B2 (en) 2003-09-02
BR0108475A (pt) 2003-04-22
AR029800A1 (es) 2003-07-16
JP2004500461A (ja) 2004-01-08
KR100810949B1 (ko) 2008-03-10
PL357302A1 (en) 2004-07-26
US6531537B2 (en) 2003-03-11
US20020004551A1 (en) 2002-01-10
KR20030032919A (ko) 2003-04-26
WO2001060931A2 (en) 2001-08-23
CN1404518A (zh) 2003-03-19
AU4317301A (en) 2001-08-27
KR20020093811A (ko) 2002-12-16
WO2001060930A3 (en) 2002-03-21
TWI283698B (en) 2007-07-11
EP1265970A2 (en) 2002-12-18
JP2003523443A (ja) 2003-08-05
TW583293B (en) 2004-04-11
WO2001060936A3 (en) 2002-05-02
ES2244589T3 (es) 2005-12-16
MX235121B (es) 2006-03-22
BR0108470A (pt) 2003-04-22
CN1404513A (zh) 2003-03-19
CN1416455A (zh) 2003-05-07
TW583292B (en) 2004-04-11
AU3850901A (en) 2001-08-27
WO2001060925A3 (en) 2001-12-20
ATE299921T1 (de) 2005-08-15
DE60112060T2 (de) 2006-04-20
EP1268689B1 (en) 2005-07-20
AU2001238426A1 (en) 2001-08-27
KR100754939B1 (ko) 2007-09-04
US20040030035A1 (en) 2004-02-12
MX248298B (es) 2007-08-22
EP1257605A2 (en) 2002-11-20
MXPA02007924A (es) 2004-09-10
JP2003523442A (ja) 2003-08-05
US6919400B2 (en) 2005-07-19
JP2003523440A (ja) 2003-08-05
WO2001060931A3 (en) 2002-03-21
PL365175A1 (en) 2004-12-27
WO2001060929A3 (en) 2002-02-28
MXPA02007926A (es) 2004-09-10
CN1188478C (zh) 2005-02-09
KR20020086541A (ko) 2002-11-18
AU781472B2 (en) 2005-05-26
EP1268689A2 (en) 2003-01-02
AU783738B2 (en) 2005-12-01

Similar Documents

Publication Publication Date Title
US20020016405A1 (en) Prepaints and methods of preparing paints from the prepaints
EP1371691B1 (en) Prepaints and methods of preparing paints from the prepaints
US6689824B2 (en) Prepaints and method of preparing road-marking paints from prepaints
AU782576B2 (en) Distributed paint manufacturing system
RU2278880C2 (ru) Полуфабрикаты красок и способы приготовления красок из полуфабрикатов красок
CA2430496A1 (en) Waterborne coating compositions
AU2005204287B2 (en) Distributed paint manufacturing system
AU2002300414B2 (en) Stable mixtures containing extender pigments

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: EXPRESSLY ABANDONED -- DURING EXAMINATION