US20020007881A1 - High corrosion resistant aluminium alloy - Google Patents
High corrosion resistant aluminium alloy Download PDFInfo
- Publication number
- US20020007881A1 US20020007881A1 US09/291,255 US29125599A US2002007881A1 US 20020007881 A1 US20020007881 A1 US 20020007881A1 US 29125599 A US29125599 A US 29125599A US 2002007881 A1 US2002007881 A1 US 2002007881A1
- Authority
- US
- United States
- Prior art keywords
- weight
- alloy
- alloys
- preceeding
- alloy according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
- C22C21/10—Alloys based on aluminium with zinc as the next major constituent
Definitions
- the invention relates to a high corrosion resistant aluminum alloy, especially an alloy intended to be used for manufacture of automotive air conditioning tubes for applications as heat exchanger tubing or refrigerant carrying tube lines, or generally fluid carrying tube tines.
- the alloy has extensively improved resistance to pitting corrosion and enhanced properties in bending and endforming.
- aluminium alloy materials for automotive heat exchange components are now widespread, applications including both engine cooling and air conditioning systems.
- the aluminium components include the condenser, the evaporator and the refrigerant routing lines or fluid carrying lines. In service these components may be subjected to conditions that include mechanical loading, vibration, stone impingement and road chemicals (e.g. salt water environments during winter driving conditions).
- Aluminium alloys of the AA3000 series type have found extensive use for these applications due to their combination of relatively high strength, light weight, corrosion resistance and extrudability. To meet rising consumer expectations for durability, car producers have targeted a ten-year service life for engine coolant and air conditioning heat exchanger systems.
- the AA3000 series alloys (like AA3102, AA3003 and AA3103), however, suffers from extensive pitting corrosion when subjected to corrosive environments, leading to failure of the automotive component. To be able to meet the rising targets/requirements for longer life on the automotive systems new alloys have been developed with significantly better corrosion resistance. Especially for condenser tubing, ‘long life’ alloy alternatives have recently been developed, such as those disclosed in U.S. Pat. Nos. 5,286,316 and WO97/46726. The alloys disclosed in these patents are generally alternatives to the standard AA3102 or AA1100 alloys for condenser tube uses, i.e. extruded tube material of relatively low mechanical strength.
- the corrosion focus have shifted towards the next area to fail, the manifold and the refrigerant carrying tube lines.
- the fluid carrying tube lines are usually fabricated by means of extrusion and final precision drawing in several steps to the final dimension, and the dominating alloys for this application are AA3003 or AA3103 with a higher strength and stiffness compared with the AA3102 alloy.
- the new requirements have therefore created a demand for an aluminium alloy with processing flexibility and mechanical strength similar or better than the AA3003/AA3103 alloys, but with significantly improved corrosion resistance.
- the object of this invention is to provide an extrudable, drawable and brazeable aluminium alloy that has improved corrosion resistance and is suitable for use in thin wall fluid carrying tube lines. It is a further object of the present invention to provide an aluminium alloy suitable for use in heat exchanger tubing or extrusions. It is another object of the present invention to provide an aluminium alloy suitable for use as finstock for heat exchangers or in foil packaging applications, subjected to corrosion, for instance salt water. A still further object of the present invention is to provide an aluminium alloy with improved formability (including grain size) during bending and end-forming operations.
- an aluminium-based alloy comprising 0.06-0.35% by weight of iron, 0.05-0.15% by weight of silicon, 0.01-1.0% by weight of manganese, 0.02-0.60% by weight of magnesium, 0.05-0.70% by weight of Zn, one or more of the elements zirconium, titanium, chromium or copper, up to a maximum of 1.30% by weight, up to 0.15% by weight of other impurities, each no greater than 0.03% by weight and the balance aluminium.
- the iron content of the alloy according to the invention is between 0.10-0.20% by weight.
- the corrosion resistance is increased due to smaller amounts of iron rich particles which generally creates sites for pitting corrosion attack.
- the relatively low iron content however, has a negative influence on the final grain size (due to less iron rich particles acting as nucleation sites for recrystallization).
- the manganese content is between 0.50-70% by weight, in order to counterbalance the increase in extrusion pressure obtained when adding magnesium, and reducing the negative effect of manganese with respect to precipitation of Mn bearing phases during final annealing.
- the level of this element should be kept low to make the alloy more recyclable and save cost in the cast house. Otherwise, zinc has a strong positive effect on the corrosion resistance up to at least 0.70% by weight, but for the reasons given above the amount of zinc is preferably between 0.10-0.30% by weight.
- the zirconium content is preferably between 0.10-0.18% in weight. In this range the extrudability of the alloy is practically not influenced by any change in the amount of zirconium.
- the copper content of the alloy should be kept as low as possible, preferably below 0.01% by weight, due to the strong negative effect on corrosion resistance and also due to the substantial influence on extrudability even for small additions.
- composition of the billets were determined by means of electron spectroscopy.
- a Baird Vacuum Instrument was used, and the test standards as supplied by Pechiney, were used.
- Extrusion billets were homogenised according to standard routines, using a heating rate of 100° C./hr to a holding temperature of approximately 600° C., followed by air cooling to room temperature.
- the extrudability is related to the die pressure and the maximum extrusion pressure (peak pressure). Those parameters are registered by pressure transducers mounted on the press, giving a direct read out of these values.
- Corrosion potential measurements were performed according to a modified version of the ASTM G69 standard test, using a Gamry PC4/300 equipment with a saturated calomel electrode (SCE) as a reference.
- the tube specimens were degreased in acetone prior to measurements. No filing or abrasion of the tube specimen surface was performed, and the measurements were done without any form of agitation.
- Corrosion potentials were recorded continuously over a 60 minute period and the values presented represents the average of those recorded during the final 30 minutes of the test.
- Extrusion data for the alloys are given in Table 2 below. TABLE 2 Extrusion data for long life alloy matrix (3 hole die) Peak Die Alloy Chemical composition (wt %) pressure pressure designation Fe Si Mn Mg Cr Zn Cu Ti (kN) (kN) AC1 0.24 0.08 0.67 0.29 — — — — 2573 1395 AC2 0.23 0.09 0.70 0.29 0.10 — — — 2584 1424 AC3 0.24 0.08 0.70 0.27 0.22 — — — 2597 1464 AC4 0.21 0.08 0.68 0.28 — 0.25 — — 2536 1373 AC5 0.20 0.08 0.67 0.27 0.07 0.24 — — 2559 1415 AC6 0.20 0.08 0.69 0.28 0.21 0.25 — — 2599 1470 AC7 0.20 0.09 0.68 0.29 0.22 0.11 — 0.05 2594 1495 AC8 0.21 0.10 0.69 0.27 0.18 0.23 — 0.16 2599 1508 AC9 0.25 0.13 0.67 0.05
- the electrochemical corrosion potentials of the test alloys AC1 to AC9 are generally decreased (more negative) as compared to the standard alloys AA3103/AA3003.
- the tube material In order for the tube material not to behave sacrificial towards the filler metal (for instance when connected to cladded header in a condenser) it is recommended to select clad materials that matches the electrochemical potential. This is the usual methodology applied when designing components/systems against corrosion, and this will curb any attack of the tube due to galvanic corrosion.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Extrusion Of Metal (AREA)
- Prevention Of Electric Corrosion (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
- Powder Metallurgy (AREA)
- Secondary Cells (AREA)
- Dowels (AREA)
- Extrusion Moulding Of Plastics Or The Like (AREA)
- Cookers (AREA)
- Laminated Bodies (AREA)
- Conductive Materials (AREA)
- Catalysts (AREA)
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU29144/00A AU2914400A (en) | 1999-02-22 | 2000-02-21 | Extrudable and drawable, high corrosion resistant aluminium alloy |
PCT/EP2000/001518 WO2000050656A1 (en) | 1999-02-22 | 2000-02-21 | Extrudable and drawable, high corrosion resistant aluminium alloy |
CNB008040311A CN1159468C (zh) | 1999-02-22 | 2000-02-21 | 可挤压、可拉伸、高耐腐蚀性铝合金 |
CA002356486A CA2356486C (en) | 1999-02-22 | 2000-02-21 | Extrudable and drawable, high corrosion resistant aluminium alloy |
EA200100904A EA003950B1 (ru) | 1999-02-22 | 2000-02-21 | Алюминиевый сплав с высокой коррозионной стойкостью, способностью к протяжке и экструзии |
EP00907618A EP1155157B1 (de) | 1999-02-22 | 2000-02-21 | Extrudierbare und ziehbare, hochkorrosionsbeständige aluminiumlegierung |
AT00907618T ATE241709T1 (de) | 1999-02-22 | 2000-02-21 | Extrudierbare und ziehbare, hochkorrosionsbeständige aluminiumlegierung |
BRPI0008407-7A BR0008407B1 (pt) | 1999-02-22 | 2000-02-21 | liga à base de alumìnio, resistente à corrosão. |
ES00907618T ES2198289T3 (es) | 1999-02-22 | 2000-02-21 | Aleacion de aluminio de elevada resistencia a la corrosion, extrudable y apta para el estirado. |
JP2000601218A JP2002538296A (ja) | 1999-02-22 | 2000-02-21 | 押出し及び引抜き可能な高耐腐食性合金 |
IL14398200A IL143982A0 (en) | 1999-02-22 | 2000-02-21 | Extrudable and drawable, high corrosion resistant aluminum alloy |
DE60002990T DE60002990T2 (de) | 1999-02-22 | 2000-02-21 | Extrudierbare und ziehbare, hochkorrosionsbeständige aluminiumlegierung |
KR1020017009079A KR100650004B1 (ko) | 1999-02-22 | 2000-02-21 | 압출 및 인발이 가능한, 높은 내부식성의 알루미늄 합금 |
US10/114,812 US20030102060A1 (en) | 1999-02-22 | 2002-04-03 | Corrosion-resistant aluminum alloy |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99200493.7 | 1999-02-22 | ||
EP99200493 | 1999-02-22 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/114,812 Continuation-In-Part US20030102060A1 (en) | 1999-02-22 | 2002-04-03 | Corrosion-resistant aluminum alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020007881A1 true US20020007881A1 (en) | 2002-01-24 |
Family
ID=8239906
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/291,255 Abandoned US20020007881A1 (en) | 1999-02-22 | 1999-04-13 | High corrosion resistant aluminium alloy |
Country Status (13)
Country | Link |
---|---|
US (1) | US20020007881A1 (de) |
EP (1) | EP1155157B1 (de) |
JP (1) | JP2002538296A (de) |
KR (1) | KR100650004B1 (de) |
CN (1) | CN1159468C (de) |
AT (1) | ATE241709T1 (de) |
AU (1) | AU2914400A (de) |
BR (1) | BR0008407B1 (de) |
CA (1) | CA2356486C (de) |
DE (1) | DE60002990T2 (de) |
EA (1) | EA003950B1 (de) |
ES (1) | ES2198289T3 (de) |
WO (1) | WO2000050656A1 (de) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060088438A1 (en) * | 2004-10-21 | 2006-04-27 | Visteon Global Technologies, Inc. | Aluminum-based alloy composition and method of making extruded components from aluminum-based alloy compositions |
US20060231170A1 (en) * | 2002-12-23 | 2006-10-19 | Parson Nicholas C | Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing |
US20090301611A1 (en) * | 2008-06-10 | 2009-12-10 | Nicholas Charles Parson | Al-mn based aluminum alloy composition combined with a homogenization treatment |
US20100051247A1 (en) * | 2008-09-02 | 2010-03-04 | Calsonic Kansei Corporation | Heat exchanger made of aluminum alloy and method of producing same |
US20140048239A1 (en) * | 2008-04-24 | 2014-02-20 | Rio Tinto Alcan International Ltd. | Aluminum Alloy For Extrusion And Drawing Processes |
US8945721B2 (en) | 2010-03-02 | 2015-02-03 | Mitsubishi Aluminum Co., Ltd. | Aluminum alloy heat exchanger |
US9679966B2 (en) | 2012-10-26 | 2017-06-13 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Electronic device containing nanowire(s), equipped with a transition metal buffer layer, process for growing at least one nanowire, and process for manufacturing a device |
US9719156B2 (en) | 2011-12-16 | 2017-08-01 | Novelis Inc. | Aluminum fin alloy and method of making the same |
US10636653B2 (en) | 2012-10-26 | 2020-04-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Process for growing at least one nanowire using a transition metal nitride layer obtained in two steps |
US20210340647A1 (en) * | 2018-10-18 | 2021-11-04 | Samsung Electronics Co., Ltd. | Aluminum alloy |
US20210348254A1 (en) * | 2018-09-07 | 2021-11-11 | Tubex Holding Gmbh | Aluminium alloy, semi-finished product, can, method of producing a slug, method of producing a can, and use of an aluminium alloy |
US11255002B2 (en) | 2016-04-29 | 2022-02-22 | Rio Tinto Alcan International Limited | Corrosion resistant alloy for extruded and brazed products |
US11414729B2 (en) | 2015-05-01 | 2022-08-16 | Universite Du Quebec A Chicoutimi | Composite material having improved mechanical properties at elevated temperatures |
US11519057B2 (en) * | 2016-12-30 | 2022-12-06 | Ball Corporation | Aluminum alloy for impact extruded containers and method of making the same |
US11933553B2 (en) | 2014-08-06 | 2024-03-19 | Novelis Inc. | Aluminum alloy for heat exchanger fins |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6602363B2 (en) * | 1999-12-23 | 2003-08-05 | Alcoa Inc. | Aluminum alloy with intergranular corrosion resistance and methods of making and use |
FR2819525B1 (fr) * | 2001-01-12 | 2003-02-28 | Pechiney Rhenalu | PRODUITS LAMINES OU FILES EN ALLIAGE D'ALUMINIUM Al-Mn A RESISTANCE A LA CORROSION AMELIOREE |
GB2379669B (en) * | 2001-09-12 | 2005-02-16 | Alcan Int Ltd | Al alloy for lithographic sheet |
NO20016355D0 (no) * | 2001-12-21 | 2001-12-21 | Norsk Hydro As | Aluminium kjöleribbe med forbedret styrke og bestandighet |
FR2919306B1 (fr) * | 2007-07-27 | 2009-10-02 | Alcan Rhenalu Sa | Produits files en alliage d'aluminium al-mn a resistance mecanique amelioree |
CN101736182B (zh) * | 2009-12-28 | 2011-04-20 | 东北轻合金有限责任公司 | 手机电池壳用铝合金带材的制造方法 |
CN101906559B (zh) * | 2010-07-15 | 2012-08-08 | 镇江鼎胜铝业股份有限公司 | 空调箔材料及节能型高性能空调箔的制造方法 |
CN101956102B (zh) * | 2010-10-27 | 2012-05-23 | 江苏格林威尔金属材料科技有限公司 | 热交换器用平行流管及其制造方法 |
CN102179621A (zh) * | 2011-04-01 | 2011-09-14 | 中国科学院力学研究所 | 无规则图像毛化微坑的辊类表面毛化激光加工系统及方法 |
CN102615139A (zh) * | 2012-04-01 | 2012-08-01 | 江苏格林威尔金属材料科技有限公司 | 铝合金圆管的连续挤压生产工艺 |
CN103103412A (zh) * | 2012-11-05 | 2013-05-15 | 熊科学 | 一种热加工管用铝镁合金 |
KR101909152B1 (ko) * | 2012-12-06 | 2018-10-17 | 내셔널 유니버시티 오브 사이언스 앤드 테크놀로지 “미시스” | 열 저항 알루미늄 기본 합금 및 제조 방법 |
JP6391140B2 (ja) * | 2012-12-27 | 2018-09-19 | 三菱アルミニウム株式会社 | 内面螺旋溝付管の製造方法 |
CN103352154B (zh) * | 2013-07-01 | 2016-02-17 | 铜陵兴怡金属材料有限公司 | 高强度铝合金线材及制备方法 |
CN104233006A (zh) * | 2014-07-14 | 2014-12-24 | 江苏格林威尔金属材料科技有限公司 | 一种新型铝合金内槽圆管 |
CN105568063A (zh) * | 2014-10-13 | 2016-05-11 | 焦作市圣昊铝业有限公司 | 一种高强度耐腐蚀的铝合金 |
TR201806865T4 (tr) * | 2014-11-27 | 2018-06-21 | Hydro Aluminium Rolled Prod | Isi dönüştürücü, bi̇r alümi̇nyum alaşimin ve bi̇r alümi̇nyum şeri̇di̇n kullanimi yani sira bi̇r alümi̇nyum şeri̇di̇n üreti̇mi̇ i̇çi̇n yöntem |
CN106086535B (zh) * | 2016-08-17 | 2017-11-10 | 江苏亚太安信达铝业有限公司 | 汽车空调微通道管材铝合金 |
CN106381422B (zh) * | 2016-10-14 | 2018-03-27 | 无锡市冠云换热器有限公司 | 汽车用冷凝器 |
EP3475456B1 (de) * | 2017-03-03 | 2020-01-08 | Novelis, Inc. | Hochfeste, korrosionsbeständige aluminiumlegierungen zur verwendung als lamellenband und verfahren zur herstellung davon |
CN107699757A (zh) * | 2017-11-30 | 2018-02-16 | 福建旭晖铝业有限公司 | 一种高强耐磨电泳铝型材及其制备方法 |
DE102018215254A1 (de) * | 2018-09-07 | 2020-03-12 | Neuman Aluminium Austria Gmbh | Aluminiumlegierung, Halbzeug, Dose, Verfahren zur Herstellung eines Butzen, Verfahren zur Herstellung einer Dose sowie Verwendung einer Aluminiumlegierung |
CN112254563A (zh) * | 2019-07-22 | 2021-01-22 | 海德鲁铝业(苏州)有限公司 | 具有高耐腐蚀性的长寿命铝合金和由该合金生产的螺旋槽管 |
CN111647774A (zh) * | 2020-02-17 | 2020-09-11 | 海德鲁挤压解决方案股份有限公司 | 生产耐腐蚀和耐高温材料的方法 |
EP4106946B1 (de) * | 2020-02-17 | 2024-01-31 | Hydro Extruded Solutions AS | Hochkorrosion und wärmebeständige aluminiumlegierung |
WO2021165266A1 (en) | 2020-02-17 | 2021-08-26 | Hydro Extruded Solutions As | Method for producing a corrosion and high temperature resistant aluminium alloy extrusion material |
CN111235437A (zh) * | 2020-03-18 | 2020-06-05 | 河南誉金技术服务有限公司 | 一种家用空调换热器Al-Mn管材合金及其制备方法 |
DE102020119466A1 (de) | 2020-07-23 | 2022-01-27 | Nussbaum Matzingen Ag | Aluminiumlegierung und Verfahren zur Herstellung einer Aluminiumlegierung |
CN113481415A (zh) * | 2021-06-30 | 2021-10-08 | 惠州市富的旺旺实业发展有限公司 | 一种铝挤散热器材料及成型工艺 |
WO2024128497A1 (ko) * | 2022-12-12 | 2024-06-20 | 삼성전자주식회사 | 고전위 및 고내식성 알루미늄 합금 및 고내식성 열교환기 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3859058A (en) * | 1973-10-04 | 1975-01-07 | Alusuisse | Corrosion resistant aluminum composite material |
JPS6041697B2 (ja) * | 1980-03-31 | 1985-09-18 | 住友軽金属工業株式会社 | アルミニウム合金製熱交換器用ブレ−ジングフィン材 |
US5286316A (en) * | 1992-04-03 | 1994-02-15 | Reynolds Metals Company | High extrudability, high corrosion resistant aluminum-manganese-titanium type aluminum alloy and process for producing same |
US5906689A (en) * | 1996-06-06 | 1999-05-25 | Reynolds Metals Company | Corrosion resistant aluminum alloy |
US5976278A (en) * | 1997-10-03 | 1999-11-02 | Reynolds Metals Company | Corrosion resistant, drawable and bendable aluminum alloy, process of making aluminum alloy article and article |
-
1999
- 1999-04-13 US US09/291,255 patent/US20020007881A1/en not_active Abandoned
-
2000
- 2000-02-21 WO PCT/EP2000/001518 patent/WO2000050656A1/en active IP Right Grant
- 2000-02-21 CA CA002356486A patent/CA2356486C/en not_active Expired - Fee Related
- 2000-02-21 ES ES00907618T patent/ES2198289T3/es not_active Expired - Lifetime
- 2000-02-21 JP JP2000601218A patent/JP2002538296A/ja not_active Withdrawn
- 2000-02-21 CN CNB008040311A patent/CN1159468C/zh not_active Expired - Lifetime
- 2000-02-21 EA EA200100904A patent/EA003950B1/ru not_active IP Right Cessation
- 2000-02-21 AU AU29144/00A patent/AU2914400A/en not_active Abandoned
- 2000-02-21 KR KR1020017009079A patent/KR100650004B1/ko not_active IP Right Cessation
- 2000-02-21 BR BRPI0008407-7A patent/BR0008407B1/pt not_active IP Right Cessation
- 2000-02-21 AT AT00907618T patent/ATE241709T1/de not_active IP Right Cessation
- 2000-02-21 DE DE60002990T patent/DE60002990T2/de not_active Expired - Lifetime
- 2000-02-21 EP EP00907618A patent/EP1155157B1/de not_active Expired - Lifetime
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060231170A1 (en) * | 2002-12-23 | 2006-10-19 | Parson Nicholas C | Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing |
US7781071B2 (en) | 2002-12-23 | 2010-08-24 | Alcan International Limited | Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing |
US20060088438A1 (en) * | 2004-10-21 | 2006-04-27 | Visteon Global Technologies, Inc. | Aluminum-based alloy composition and method of making extruded components from aluminum-based alloy compositions |
US20140048239A1 (en) * | 2008-04-24 | 2014-02-20 | Rio Tinto Alcan International Ltd. | Aluminum Alloy For Extrusion And Drawing Processes |
US9631879B2 (en) * | 2008-04-24 | 2017-04-25 | Rio Tinto Alcan International Limited | Aluminum alloy for extrusion and drawing processes |
US20090301611A1 (en) * | 2008-06-10 | 2009-12-10 | Nicholas Charles Parson | Al-mn based aluminum alloy composition combined with a homogenization treatment |
US8025748B2 (en) * | 2008-06-10 | 2011-09-27 | Rio Tinto Alcan International Limited | Al—Mn based aluminum alloy composition combined with a homogenization treatment |
US20100051247A1 (en) * | 2008-09-02 | 2010-03-04 | Calsonic Kansei Corporation | Heat exchanger made of aluminum alloy and method of producing same |
US8945721B2 (en) | 2010-03-02 | 2015-02-03 | Mitsubishi Aluminum Co., Ltd. | Aluminum alloy heat exchanger |
US9328977B2 (en) | 2010-03-02 | 2016-05-03 | Mitsubishi Aluminum Co., Ltd. | Aluminum alloy heat exchanger |
US9719156B2 (en) | 2011-12-16 | 2017-08-01 | Novelis Inc. | Aluminum fin alloy and method of making the same |
US9679966B2 (en) | 2012-10-26 | 2017-06-13 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Electronic device containing nanowire(s), equipped with a transition metal buffer layer, process for growing at least one nanowire, and process for manufacturing a device |
US9991342B2 (en) | 2012-10-26 | 2018-06-05 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Electronic device containing nanowire(s), equipped with a transition metal buffer layer, process for growing at least one nanowire, and process for manufacturing a device |
US10636653B2 (en) | 2012-10-26 | 2020-04-28 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Process for growing at least one nanowire using a transition metal nitride layer obtained in two steps |
US11933553B2 (en) | 2014-08-06 | 2024-03-19 | Novelis Inc. | Aluminum alloy for heat exchanger fins |
US11414729B2 (en) | 2015-05-01 | 2022-08-16 | Universite Du Quebec A Chicoutimi | Composite material having improved mechanical properties at elevated temperatures |
US11255002B2 (en) | 2016-04-29 | 2022-02-22 | Rio Tinto Alcan International Limited | Corrosion resistant alloy for extruded and brazed products |
US11519057B2 (en) * | 2016-12-30 | 2022-12-06 | Ball Corporation | Aluminum alloy for impact extruded containers and method of making the same |
US20230104147A1 (en) * | 2016-12-30 | 2023-04-06 | Ball Corporation | Aluminum alloy for impact extruded containers and method of making the same |
US12110574B2 (en) * | 2016-12-30 | 2024-10-08 | Ball Corporation | Aluminum container |
US20210348254A1 (en) * | 2018-09-07 | 2021-11-11 | Tubex Holding Gmbh | Aluminium alloy, semi-finished product, can, method of producing a slug, method of producing a can, and use of an aluminium alloy |
US20210340647A1 (en) * | 2018-10-18 | 2021-11-04 | Samsung Electronics Co., Ltd. | Aluminum alloy |
Also Published As
Publication number | Publication date |
---|---|
EA200100904A1 (ru) | 2002-02-28 |
CN1159468C (zh) | 2004-07-28 |
AU2914400A (en) | 2000-09-14 |
KR100650004B1 (ko) | 2006-11-27 |
CN1359427A (zh) | 2002-07-17 |
DE60002990D1 (de) | 2003-07-03 |
DE60002990T2 (de) | 2004-02-19 |
ES2198289T3 (es) | 2004-02-01 |
CA2356486A1 (en) | 2000-08-31 |
EP1155157A1 (de) | 2001-11-21 |
JP2002538296A (ja) | 2002-11-12 |
ATE241709T1 (de) | 2003-06-15 |
EP1155157B1 (de) | 2003-05-28 |
EA003950B1 (ru) | 2003-10-30 |
CA2356486C (en) | 2009-09-15 |
BR0008407B1 (pt) | 2009-05-05 |
KR20010089609A (ko) | 2001-10-06 |
WO2000050656A1 (en) | 2000-08-31 |
BR0008407A (pt) | 2002-01-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020007881A1 (en) | High corrosion resistant aluminium alloy | |
JP5414991B2 (ja) | アルミニウム合金ろう付けシートおよび軽量のろう付けした熱交換機組立品の製造方法 | |
US6451453B1 (en) | Aluminum alloy strip or tube for the manufacture of brazed heat exchangers | |
CN1443249A (zh) | 耐腐蚀铝合金 | |
EP1017865B1 (de) | Korrosionsbeständige aluminiumlegierung mit titan | |
US11939654B2 (en) | Method for producing a corrosion and high temperature resistant aluminum alloy extrusion material | |
US20030102060A1 (en) | Corrosion-resistant aluminum alloy | |
US6896749B2 (en) | Rolled or extruded aluminium Al-Mn alloy products with improved corrosion resistance | |
JP2002180171A (ja) | 耐食性および加工性に優れた配管用アルミニウム合金材 | |
EP0996754B1 (de) | Korrosionsbeständige aluminiumlegierung mit zircon | |
CA3168063A1 (en) | High corrosion and heat resistant aluminium alloy | |
WO2006053064A2 (en) | Improved aluminum brazing sheet for use in heat exchanger applications, especially radiator tube stock | |
MXPA01008423A (en) | Extrudable and drawable, high corrosion resistant aluminium alloy | |
CN111647774A (zh) | 生产耐腐蚀和耐高温材料的方法 | |
CN117241912A (zh) | 用于制造钎焊式换热器的铝合金带材或片材 | |
JP2002030367A (ja) | 強度および耐食性に優れた熱交換器用アルミニウム合金ブレージングシート | |
MXPA00000552A (en) | Corrosion resistant aluminium alloy containing titanium | |
JPH04178291A (ja) | アルミニウムブレージングシート |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NORSK HYDRO A.S., NORWAY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FURU, TROND;AURAN, LARS;DAALAND, OLE;REEL/FRAME:010167/0403;SIGNING DATES FROM 19990718 TO 19990729 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |