US20020007881A1 - High corrosion resistant aluminium alloy - Google Patents

High corrosion resistant aluminium alloy Download PDF

Info

Publication number
US20020007881A1
US20020007881A1 US09/291,255 US29125599A US2002007881A1 US 20020007881 A1 US20020007881 A1 US 20020007881A1 US 29125599 A US29125599 A US 29125599A US 2002007881 A1 US2002007881 A1 US 2002007881A1
Authority
US
United States
Prior art keywords
weight
alloy
alloys
preceeding
alloy according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/291,255
Inventor
Ole Daaland
Lars Auran
Trond Furu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Norsk Hydro ASA
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Assigned to NORSK HYDRO A.S. reassignment NORSK HYDRO A.S. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: AURAN, LARS, FURU, TROND, DAALAND, OLE
Priority to AU29144/00A priority Critical patent/AU2914400A/en
Priority to CA002356486A priority patent/CA2356486C/en
Priority to ES00907618T priority patent/ES2198289T3/en
Priority to CNB008040311A priority patent/CN1159468C/en
Priority to IL14398200A priority patent/IL143982A0/en
Priority to EP00907618A priority patent/EP1155157B1/en
Priority to EA200100904A priority patent/EA003950B1/en
Priority to DE60002990T priority patent/DE60002990T2/en
Priority to KR1020017009079A priority patent/KR100650004B1/en
Priority to PCT/EP2000/001518 priority patent/WO2000050656A1/en
Priority to BRPI0008407-7A priority patent/BR0008407B1/en
Priority to JP2000601218A priority patent/JP2002538296A/en
Priority to AT00907618T priority patent/ATE241709T1/en
Publication of US20020007881A1 publication Critical patent/US20020007881A1/en
Priority to US10/114,812 priority patent/US20030102060A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent

Definitions

  • the invention relates to a high corrosion resistant aluminum alloy, especially an alloy intended to be used for manufacture of automotive air conditioning tubes for applications as heat exchanger tubing or refrigerant carrying tube lines, or generally fluid carrying tube tines.
  • the alloy has extensively improved resistance to pitting corrosion and enhanced properties in bending and endforming.
  • aluminium alloy materials for automotive heat exchange components are now widespread, applications including both engine cooling and air conditioning systems.
  • the aluminium components include the condenser, the evaporator and the refrigerant routing lines or fluid carrying lines. In service these components may be subjected to conditions that include mechanical loading, vibration, stone impingement and road chemicals (e.g. salt water environments during winter driving conditions).
  • Aluminium alloys of the AA3000 series type have found extensive use for these applications due to their combination of relatively high strength, light weight, corrosion resistance and extrudability. To meet rising consumer expectations for durability, car producers have targeted a ten-year service life for engine coolant and air conditioning heat exchanger systems.
  • the AA3000 series alloys (like AA3102, AA3003 and AA3103), however, suffers from extensive pitting corrosion when subjected to corrosive environments, leading to failure of the automotive component. To be able to meet the rising targets/requirements for longer life on the automotive systems new alloys have been developed with significantly better corrosion resistance. Especially for condenser tubing, ‘long life’ alloy alternatives have recently been developed, such as those disclosed in U.S. Pat. Nos. 5,286,316 and WO97/46726. The alloys disclosed in these patents are generally alternatives to the standard AA3102 or AA1100 alloys for condenser tube uses, i.e. extruded tube material of relatively low mechanical strength.
  • the corrosion focus have shifted towards the next area to fail, the manifold and the refrigerant carrying tube lines.
  • the fluid carrying tube lines are usually fabricated by means of extrusion and final precision drawing in several steps to the final dimension, and the dominating alloys for this application are AA3003 or AA3103 with a higher strength and stiffness compared with the AA3102 alloy.
  • the new requirements have therefore created a demand for an aluminium alloy with processing flexibility and mechanical strength similar or better than the AA3003/AA3103 alloys, but with significantly improved corrosion resistance.
  • the object of this invention is to provide an extrudable, drawable and brazeable aluminium alloy that has improved corrosion resistance and is suitable for use in thin wall fluid carrying tube lines. It is a further object of the present invention to provide an aluminium alloy suitable for use in heat exchanger tubing or extrusions. It is another object of the present invention to provide an aluminium alloy suitable for use as finstock for heat exchangers or in foil packaging applications, subjected to corrosion, for instance salt water. A still further object of the present invention is to provide an aluminium alloy with improved formability (including grain size) during bending and end-forming operations.
  • an aluminium-based alloy comprising 0.06-0.35% by weight of iron, 0.05-0.15% by weight of silicon, 0.01-1.0% by weight of manganese, 0.02-0.60% by weight of magnesium, 0.05-0.70% by weight of Zn, one or more of the elements zirconium, titanium, chromium or copper, up to a maximum of 1.30% by weight, up to 0.15% by weight of other impurities, each no greater than 0.03% by weight and the balance aluminium.
  • the iron content of the alloy according to the invention is between 0.10-0.20% by weight.
  • the corrosion resistance is increased due to smaller amounts of iron rich particles which generally creates sites for pitting corrosion attack.
  • the relatively low iron content however, has a negative influence on the final grain size (due to less iron rich particles acting as nucleation sites for recrystallization).
  • the manganese content is between 0.50-70% by weight, in order to counterbalance the increase in extrusion pressure obtained when adding magnesium, and reducing the negative effect of manganese with respect to precipitation of Mn bearing phases during final annealing.
  • the level of this element should be kept low to make the alloy more recyclable and save cost in the cast house. Otherwise, zinc has a strong positive effect on the corrosion resistance up to at least 0.70% by weight, but for the reasons given above the amount of zinc is preferably between 0.10-0.30% by weight.
  • the zirconium content is preferably between 0.10-0.18% in weight. In this range the extrudability of the alloy is practically not influenced by any change in the amount of zirconium.
  • the copper content of the alloy should be kept as low as possible, preferably below 0.01% by weight, due to the strong negative effect on corrosion resistance and also due to the substantial influence on extrudability even for small additions.
  • composition of the billets were determined by means of electron spectroscopy.
  • a Baird Vacuum Instrument was used, and the test standards as supplied by Pechiney, were used.
  • Extrusion billets were homogenised according to standard routines, using a heating rate of 100° C./hr to a holding temperature of approximately 600° C., followed by air cooling to room temperature.
  • the extrudability is related to the die pressure and the maximum extrusion pressure (peak pressure). Those parameters are registered by pressure transducers mounted on the press, giving a direct read out of these values.
  • Corrosion potential measurements were performed according to a modified version of the ASTM G69 standard test, using a Gamry PC4/300 equipment with a saturated calomel electrode (SCE) as a reference.
  • the tube specimens were degreased in acetone prior to measurements. No filing or abrasion of the tube specimen surface was performed, and the measurements were done without any form of agitation.
  • Corrosion potentials were recorded continuously over a 60 minute period and the values presented represents the average of those recorded during the final 30 minutes of the test.
  • Extrusion data for the alloys are given in Table 2 below. TABLE 2 Extrusion data for long life alloy matrix (3 hole die) Peak Die Alloy Chemical composition (wt %) pressure pressure designation Fe Si Mn Mg Cr Zn Cu Ti (kN) (kN) AC1 0.24 0.08 0.67 0.29 — — — — 2573 1395 AC2 0.23 0.09 0.70 0.29 0.10 — — — 2584 1424 AC3 0.24 0.08 0.70 0.27 0.22 — — — 2597 1464 AC4 0.21 0.08 0.68 0.28 — 0.25 — — 2536 1373 AC5 0.20 0.08 0.67 0.27 0.07 0.24 — — 2559 1415 AC6 0.20 0.08 0.69 0.28 0.21 0.25 — — 2599 1470 AC7 0.20 0.09 0.68 0.29 0.22 0.11 — 0.05 2594 1495 AC8 0.21 0.10 0.69 0.27 0.18 0.23 — 0.16 2599 1508 AC9 0.25 0.13 0.67 0.05
  • the electrochemical corrosion potentials of the test alloys AC1 to AC9 are generally decreased (more negative) as compared to the standard alloys AA3103/AA3003.
  • the tube material In order for the tube material not to behave sacrificial towards the filler metal (for instance when connected to cladded header in a condenser) it is recommended to select clad materials that matches the electrochemical potential. This is the usual methodology applied when designing components/systems against corrosion, and this will curb any attack of the tube due to galvanic corrosion.

Abstract

An aluminum-based, corrosion resistant, alloy comprising: 0.06-0.35% by weight of iron, 0.05-0.15% by weight of silicon, 0.01-1.0% by weight of manganese, 0.02-0.60% by weight of magnesium, 0.05-0.70% by weight of zinc,
one or more of the elements zirconium, titanium, chromium and copper up to a maximum of 1.30% by weight,
up to 0.15% by weight of other impurities, each no greater than 0.03% by weight, and the balance aluminum, said aluminum-based alloy exhibit high corrosion resistance and improved formability.

Description

  • The invention relates to a high corrosion resistant aluminum alloy, especially an alloy intended to be used for manufacture of automotive air conditioning tubes for applications as heat exchanger tubing or refrigerant carrying tube lines, or generally fluid carrying tube tines. The alloy has extensively improved resistance to pitting corrosion and enhanced properties in bending and endforming. [0001]
  • The introduction of aluminium alloy materials for automotive heat exchange components is now widespread, applications including both engine cooling and air conditioning systems. In the air conditioning systems, the aluminium components include the condenser, the evaporator and the refrigerant routing lines or fluid carrying lines. In service these components may be subjected to conditions that include mechanical loading, vibration, stone impingement and road chemicals (e.g. salt water environments during winter driving conditions). Aluminium alloys of the AA3000 series type have found extensive use for these applications due to their combination of relatively high strength, light weight, corrosion resistance and extrudability. To meet rising consumer expectations for durability, car producers have targeted a ten-year service life for engine coolant and air conditioning heat exchanger systems. The AA3000 series alloys (like AA3102, AA3003 and AA3103), however, suffers from extensive pitting corrosion when subjected to corrosive environments, leading to failure of the automotive component. To be able to meet the rising targets/requirements for longer life on the automotive systems new alloys have been developed with significantly better corrosion resistance. Especially for condenser tubing, ‘long life’ alloy alternatives have recently been developed, such as those disclosed in U.S. Pat. Nos. 5,286,316 and WO97/46726. The alloys disclosed in these patents are generally alternatives to the standard AA3102 or AA1100 alloys for condenser tube uses, i.e. extruded tube material of relatively low mechanical strength. Due to the improved corrosion performance of the condenser tubing the corrosion focus have shifted towards the next area to fail, the manifold and the refrigerant carrying tube lines. Additionally, the tendency towards using more under body/vehicle tube runs, e.g. rear climate control systems, requires improved alloys due to the more heavy exposure towards the mad environment. The fluid carrying tube lines are usually fabricated by means of extrusion and final precision drawing in several steps to the final dimension, and the dominating alloys for this application are AA3003 or AA3103 with a higher strength and stiffness compared with the AA3102 alloy. The new requirements have therefore created a demand for an aluminium alloy with processing flexibility and mechanical strength similar or better than the AA3003/AA3103 alloys, but with significantly improved corrosion resistance. [0002]
  • The object of this invention is to provide an extrudable, drawable and brazeable aluminium alloy that has improved corrosion resistance and is suitable for use in thin wall fluid carrying tube lines. It is a further object of the present invention to provide an aluminium alloy suitable for use in heat exchanger tubing or extrusions. It is another object of the present invention to provide an aluminium alloy suitable for use as finstock for heat exchangers or in foil packaging applications, subjected to corrosion, for instance salt water. A still further object of the present invention is to provide an aluminium alloy with improved formability (including grain size) during bending and end-forming operations. [0003]
  • The objects and advantages are obtained by an aluminium-based alloy, comprising 0.06-0.35% by weight of iron, 0.05-0.15% by weight of silicon, 0.01-1.0% by weight of manganese, 0.02-0.60% by weight of magnesium, 0.05-0.70% by weight of Zn, one or more of the elements zirconium, titanium, chromium or copper, up to a maximum of 1.30% by weight, up to 0.15% by weight of other impurities, each no greater than 0.03% by weight and the balance aluminium. [0004]
  • Preferably the iron content of the alloy according to the invention is between 0.10-0.20% by weight. In this way the corrosion resistance is increased due to smaller amounts of iron rich particles which generally creates sites for pitting corrosion attack. The relatively low iron content, however, has a negative influence on the final grain size (due to less iron rich particles acting as nucleation sites for recrystallization). To counterbalance the negative effect of a relatively low iron content in the alloy other elements has to be added for grain-structure refinement. [0005]
  • Addition of magnesium (preferably 0.15-0.30% by weight) results in a refinement of the final grain size (due to storage of more energy for recrystallization during deformation) as well as improvements the strain hardening capacity of the material. In total this means improved formability during for instance bending and endforming of tubes. Magnesium also has a positive influence on the corrosion properties by altering the oxide layer. The content of magnesium content is preferably below 0.3% by weight due to its strong effect in increasing extrudability. Additions above 0.3% by weight are also incompatible with good brazeability. [0006]
  • Preferably the manganese content is between 0.50-70% by weight, in order to counterbalance the increase in extrusion pressure obtained when adding magnesium, and reducing the negative effect of manganese with respect to precipitation of Mn bearing phases during final annealing. [0007]
  • In view of the polluting effect of zinc (ex. even small zinc concentrations negatively affect the anodising properties of AA6000 series alloy), the level of this element should be kept low to make the alloy more recyclable and save cost in the cast house. Otherwise, zinc has a strong positive effect on the corrosion resistance up to at least 0.70% by weight, but for the reasons given above the amount of zinc is preferably between 0.10-0.30% by weight. [0008]
  • For recycleability acceptance of chromium in the alloy is desirable. Addition of chromium, however, increases the extrudability and influences negatively on the tube drawability and therefore the level is preferably 0.05-0.15% in weight. [0009]
  • In order to optimise the resistance against corrosion, the zirconium content is preferably between 0.10-0.18% in weight. In this range the extrudability of the alloy is practically not influenced by any change in the amount of zirconium. [0010]
  • Further optimising of the corrosion resistance can be obtained by adding titanium, preferably between 0.10-0.16% by weight. No significant influence on the extrudability is found for these titanium levels. [0011]
  • The copper content of the alloy should be kept as low as possible, preferably below 0.01% by weight, due to the strong negative effect on corrosion resistance and also due to the substantial influence on extrudability even for small additions. [0012]
  • In an effort to demonstrate the improvements associated with the inventive aluminium-based alloy over known prior art alloys, the extrudability, drawability, mechanical properties (including formability parameters) and corrosion resistance were investigated for a series of alloy compositions, see Table 1. The alloys have been prepared in a traditional way by DC casting of extrusion ingots. Note that the composition of the alloys have been indicated in % by weight, taking into account that each of these alloys may contain up to 0.02% by weight of incidental impurities. Compositions were selected with varying amounts of magnesium, chromium, zinc, zirconium and titanium. In Table 1 is also shown the compositions of the standard alloys AA3003 and AA3103, which were used as reference alloys in the investigation. [0013]
    TABLE 1
    Chemical composition of alloys (weight %)
    Alloy
    desig-
    nation Fe Si Mn Mg Cr Zn Cu Zr Ti
    AC1 0.24 0.08 0.67 0.29
    AC2 0.23 0.09 0.70 0.29 0.10
    AC3 0.24 0.08 0.70 0.27 0.22
    AC4 0.21 0.08 0.68 0.28 0.25
    AC5 0.20 0.08 0.67 0.27 0.07 0.24
    AC6 0.20 0.08 0.69 0.28 0.21 0.25
    AC7 0.20 0.09 0.68 0.29 0.22 0.11 0.05
    AC8 0.21 0.10 0.69 0.27 0.18 0.23 0.16
    AC9 0.25 0.13 0.67 0.05 0.04 0.16 0.16
    AA3103 0.54 0.11 1.02 0.03 0.01
    AA3003 0.59 0.27 1.05 0.01 0.08 0.01
  • The following description details the techniques used to investigate the properties, followed by a discussion of the obtained results. [0014]
  • The composition of the billets were determined by means of electron spectroscopy. For this analysis a Baird Vacuum Instrument was used, and the test standards as supplied by Pechiney, were used. [0015]
  • Extrusion billets were homogenised according to standard routines, using a heating rate of 100° C./hr to a holding temperature of approximately 600° C., followed by air cooling to room temperature. [0016]
  • Extrusion of the homogenised billets were carried out on a full scale industrial extrusion press using the following conditions: [0017]
    billet temperature: 455-490° C.
    extrusion ration: 63:1
    ram speed: 16.5 mm/sec
    die: three hole
    extrudate: 28 mm OD tube (extrudate water cooled)
  • The extrudability is related to the die pressure and the maximum extrusion pressure (peak pressure). Those parameters are registered by pressure transducers mounted on the press, giving a direct read out of these values. [0018]
  • The extruded base tube were finally plug drawn in totally 6, draws to a final 9.5 mm OD tube with a 0.4 mm wall. The reduction in each draw was approximately 36%. After the final draw the tubes were soft annealed in a batch furnace at temperature 420° C. [0019]
  • Testing of mechanical properties of annealed tubes were carried out on a Schenk Trebel universal tensile testing machine in accordance with the Euronorm standard. In the testing the E-module was fixed to 70000 N/mm2 during the entire testing. The speed of the test was constant at 10 N/mm2 per second until YS (yield strength) was reached, whilst the testing from YS until fracture appeared was 40% Lo/min, Lo being the initial gauge length. [0020]
  • Corrosion potential measurements were performed according to a modified version of the ASTM G69 standard test, using a Gamry PC4/300 equipment with a saturated calomel electrode (SCE) as a reference. The tube specimens were degreased in acetone prior to measurements. No filing or abrasion of the tube specimen surface was performed, and the measurements were done without any form of agitation. Corrosion potentials were recorded continuously over a 60 minute period and the values presented represents the average of those recorded during the final 30 minutes of the test. [0021]
  • To demonstrate the improved corrosion resistance of the inventive aluminium alloy composition over known prior art alloys, the corrosion resistance was tested using the so-called SWAAT test (Acidified Syntetic Sea Water Testing). The test was performed according to ASTM G85-85 Annex A3, with alternating 30 minutes spray periods and 90 minutes soak periods at 98% humidity. The electrolyte used was artificial sea water acidified with acetic acid to a pH of 2.8 to 3.0 and a composition according to ASTM standard D 1141. The temperature in the chamber was kept at 49° C. The test was run in a Erichsen Salt Spray Chamber (Model 606/1000). [0022]
  • In order to study the evoluton of corrosion behaviour, samples from the different alloys were taken out of the chamber every third day. The materials were then rinsed in water and subsequently tested for leaks by immersing tube specimens in water and applying a pressure of 1 bars. The test as described is in general use within the automotive industry, where an acceptable performance is qualified as being above 20 days exposure. [0023]
  • Extrusion data for the alloys are given in Table 2 below. [0024]
    TABLE 2
    Extrusion data for long life alloy matrix (3 hole die)
    Peak Die
    Alloy Chemical composition (wt %) pressure pressure
    designation Fe Si Mn Mg Cr Zn Cu Ti (kN) (kN)
    AC1 0.24 0.08 0.67 0.29 2573 1395
    AC2 0.23 0.09 0.70 0.29 0.10 2584 1424
    AC3 0.24 0.08 0.70 0.27 0.22 2597 1464
    AC4 0.21 0.08 0.68 0.28 0.25 2536 1373
    AC5 0.20 0.08 0.67 0.27 0.07 0.24 2559 1415
    AC6 0.20 0.08 0.69 0.28 0.21 0.25 2599 1470
    AC7 0.20 0.09 0.68 0.29 0.22 0.11 0.05 2594 1495
    AC8 0.21 0.10 0.69 0.27 0.18 0.23 0.16 2599 1508
    AC9 0.25 0.13 0.67 0.05 0.04 0.24 0.16 2552 1385
    3103 0.54 0.11 1.02 0.03 0.01 2399 1281
    3003 0.59 0.27 1.05 0.01 0.08 0.01 2481 1288
  • As seen from Table 2 the extrusion pressures obtained for alloys AC1 to AC9 are approximately 5-6% higher than for alloys AA3103 and AA3003. This is regarded as a small difference and it should be noted that all alloys were run at the same billet temperature and ram speed (no press-parameter optimisation done in this test). [0025]
  • Surface finish after extrusion, especially on the interior of the tube, is particularly important in this application because the tube is to be cold drawl to a smaller diameter and wall thickness. Surface defects may interfere with the drawing process and result in fracture of the tube during drawing. All the investigated alloys in the test matrix showed good internal surface appearance. [0026]
  • The alloys drew well (same speed and productivity as for standard 3003/3103 alloys), except for AC6, AC7 and AC8 for which it was not possible to do make more than two draws. For these alloys the tube fractured on the third draw. It is emphasised that the fractures were microstructure related (too high Cr content) and not due to bad internal surface appearance of the tube. [0027]
  • The characteristics of the alloys after annealing is given in Table 3 (test results for alloys AC6, AC7 and AC8 based on tubes annealed after the second draw). [0028]
    TABLE 3
    Characteristics of the alloys after drawing and soft annealing.
    Alloy YS UTS Elong. (A10) Grain-size** SWAAT life Corrosion pot.
    designation (MPa) (MPa) (%) n-value* (um) (days) (mV SCE)
    AC1 51 113 36.1 0.244 82  7 −769
    AC2 52 115 36.1 0.236 56 15 −755
    AC3 53 117 37.1 0.232 66 15 −760
    AC4 46 112 36.0 0.250 88 57 −769
    AC5 51 113 36.6 0.237 79 41 −782
    AC6 41 112 32.1 0.238 (71) (82) −810
    AC7 39 112 30.0 0.234 (67) (82) −765
    AC8 (102)  (no perfor.)
    AC9 42 99 43.0 0.238 92 30 −830
    AA3103 48 108 41.2 0.232 141   3 −730
    AA3003 48 108 39.8 0.241 70  3 −754
  • From the results in Table 3 it can be seen that the mechanical properties, grain size and corrosion resistance are alloy dependent. First of all, the corrosion resistance (in terms of SWAAT life) of all the test alloys AC1 to AC9 are superior compared to the standard alloys AA3003 and AA3103. Note that the SWAAT life, given for each alloy in Table 3, represents the first tube parallel to fail out of totally 10 parallels mounted in the SWAAT chamber. The mechanical properties of the test alloys are slightly higher compared with the standard alloys, note also the refinement in grain structure obtained for the test alloys compared with AA3103. [0029]
  • Analysis of the SWAAT data shows that tubes of alloys AA3003 and AA3103 failed after only 3 days. Adding Mg (and at the same time reducing Mn and Fe) is seen to double the SWAAT life (AC1). Cr addition also improves the corrosion resistance (AC2 and AC3). Addition of Zn furthermore improves the corrosion resistance significantly (AC4, AC5 and AC9). [0030]
  • The best alloy combination with respect to corrosion are found for a relatively high Zn content (˜0.25%), and no Cr or Ti added. Acceptance of Cr in the alloy may be desirable related to recycleability, and although a reduction in SWAAT life is found when adding Cr the alloy still maintains good performance (AC5). Alloys AC4 and AC5 tubes completed 57 and 41 days of exposure in SWAAT, respectively, before failure. This is really a significant improvement. [0031]
  • The superior corrosion resistance obtained in case of the test alloys is attributable in art to the mode of corrosion attack being limited to generally a lamellar type. This extends the time required for corrosion to penetrate through a given thickness and thereby providing a long life alloy. [0032]
  • As can be seen from Table 3 the electrochemical corrosion potentials of the test alloys AC1 to AC9 are generally decreased (more negative) as compared to the standard alloys AA3103/AA3003. In order for the tube material not to behave sacrificial towards the filler metal (for instance when connected to cladded header in a condenser) it is recommended to select clad materials that matches the electrochemical potential. This is the usual methodology applied when designing components/systems against corrosion, and this will curb any attack of the tube due to galvanic corrosion. [0033]

Claims (10)

1. An aluminium-based, corrosion resistant, alloy comprising:
0.06-0.35% by weight of iron,
0.05-0.15% by weight of silicon,
0.01-1.0% by weight of manganese,
0.02-0.60% by weight of magnesium,
0.05-0.70% by weight of zinc,
one or more of the elements zirconium, titanium, chromium and copper up to a maximum of 1.30% by weight,
up to 0.15% by weight of other impurities, each no greater than 0.03% by weight, and the balance aluminium
2. The alloy according to claim 1, wherein said iron content ranges between about 0.10-0.20% by weight.
3. The alloy according to any one of the preceeding claims wherein said manganese content ranges between about 0.50-0.70% by weight.
4. The alloy according to any one of the preceeding claims wherein said magnesium content ranges between about 0.15-0.30% by weight.
5. The alloy according to any one of the preceeding claims wherein said zinc content ranges between about 0.10-0.30% by weight.
6. The alloy according to any one of the preceeding claims wherein said zirconium content ranges between about 0.10-0.18% by weight.
7. The alloy according to any one of the preceeding claims wherein said titanium content ranges between about 0.10-0.15% by weight.
8. The alloy according to any one of the preceeding claims wherein said chromium content ranges between about 0.05-0.15% by weight.
9. The alloy according to any of the preceeding claims wherein said copper content ranges below about 0.01% by weight.
10. The alloy as in claim 1 when extruded and drawn into tubing, has a wall thickness of about 0.4 mm and exhibit a resistance to perforation at least 10 times the exposure of conventional alloys in a cyclical accelerated corrosion test per ASTM G85-85 Annex A3.
US09/291,255 1999-02-22 1999-04-13 High corrosion resistant aluminium alloy Abandoned US20020007881A1 (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
AT00907618T ATE241709T1 (en) 1999-02-22 2000-02-21 EXTRUDABLE AND PULLABLE, HIGHLY CORROSION RESISTANT ALUMINUM ALLOY
EA200100904A EA003950B1 (en) 1999-02-22 2000-02-21 Extrudable and drawable, high corrosion resistant aluminium alloy
DE60002990T DE60002990T2 (en) 1999-02-22 2000-02-21 EXTRUDABLE AND DRAWABLE, HIGH CORROSION-RESISTANT ALUMINUM ALLOY
ES00907618T ES2198289T3 (en) 1999-02-22 2000-02-21 ALUMINUM ALLOY OF ELEVATED CORROSION RESISTANCE, EXTRUDABLE AND SUITABLE FOR STRETCHING.
CNB008040311A CN1159468C (en) 1999-02-22 2000-02-21 Extrudable and drawable, high corrosion resistant aluminium alloy
IL14398200A IL143982A0 (en) 1999-02-22 2000-02-21 Extrudable and drawable, high corrosion resistant aluminum alloy
EP00907618A EP1155157B1 (en) 1999-02-22 2000-02-21 Extrudable and drawable, high corrosion resistant aluminium alloy
AU29144/00A AU2914400A (en) 1999-02-22 2000-02-21 Extrudable and drawable, high corrosion resistant aluminium alloy
CA002356486A CA2356486C (en) 1999-02-22 2000-02-21 Extrudable and drawable, high corrosion resistant aluminium alloy
KR1020017009079A KR100650004B1 (en) 1999-02-22 2000-02-21 Extrudable and drawable, high corrosion resistant aluminum alloy
PCT/EP2000/001518 WO2000050656A1 (en) 1999-02-22 2000-02-21 Extrudable and drawable, high corrosion resistant aluminium alloy
BRPI0008407-7A BR0008407B1 (en) 1999-02-22 2000-02-21 Aluminum alloy, corrosion resistant.
JP2000601218A JP2002538296A (en) 1999-02-22 2000-02-21 Highly corrosion resistant alloy that can be extruded and drawn
US10/114,812 US20030102060A1 (en) 1999-02-22 2002-04-03 Corrosion-resistant aluminum alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP99200493 1999-02-22
EP99200493.7 1999-02-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/114,812 Continuation-In-Part US20030102060A1 (en) 1999-02-22 2002-04-03 Corrosion-resistant aluminum alloy

Publications (1)

Publication Number Publication Date
US20020007881A1 true US20020007881A1 (en) 2002-01-24

Family

ID=8239906

Family Applications (1)

Application Number Title Priority Date Filing Date
US09/291,255 Abandoned US20020007881A1 (en) 1999-02-22 1999-04-13 High corrosion resistant aluminium alloy

Country Status (13)

Country Link
US (1) US20020007881A1 (en)
EP (1) EP1155157B1 (en)
JP (1) JP2002538296A (en)
KR (1) KR100650004B1 (en)
CN (1) CN1159468C (en)
AT (1) ATE241709T1 (en)
AU (1) AU2914400A (en)
BR (1) BR0008407B1 (en)
CA (1) CA2356486C (en)
DE (1) DE60002990T2 (en)
EA (1) EA003950B1 (en)
ES (1) ES2198289T3 (en)
WO (1) WO2000050656A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060088438A1 (en) * 2004-10-21 2006-04-27 Visteon Global Technologies, Inc. Aluminum-based alloy composition and method of making extruded components from aluminum-based alloy compositions
US20060231170A1 (en) * 2002-12-23 2006-10-19 Parson Nicholas C Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing
US20090301611A1 (en) * 2008-06-10 2009-12-10 Nicholas Charles Parson Al-mn based aluminum alloy composition combined with a homogenization treatment
US20100051247A1 (en) * 2008-09-02 2010-03-04 Calsonic Kansei Corporation Heat exchanger made of aluminum alloy and method of producing same
US20140048239A1 (en) * 2008-04-24 2014-02-20 Rio Tinto Alcan International Ltd. Aluminum Alloy For Extrusion And Drawing Processes
US8945721B2 (en) 2010-03-02 2015-02-03 Mitsubishi Aluminum Co., Ltd. Aluminum alloy heat exchanger
US9679966B2 (en) 2012-10-26 2017-06-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electronic device containing nanowire(s), equipped with a transition metal buffer layer, process for growing at least one nanowire, and process for manufacturing a device
US9719156B2 (en) 2011-12-16 2017-08-01 Novelis Inc. Aluminum fin alloy and method of making the same
US10636653B2 (en) 2012-10-26 2020-04-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process for growing at least one nanowire using a transition metal nitride layer obtained in two steps
US20210340647A1 (en) * 2018-10-18 2021-11-04 Samsung Electronics Co., Ltd. Aluminum alloy
US20210348254A1 (en) * 2018-09-07 2021-11-11 Tubex Holding Gmbh Aluminium alloy, semi-finished product, can, method of producing a slug, method of producing a can, and use of an aluminium alloy
US11255002B2 (en) 2016-04-29 2022-02-22 Rio Tinto Alcan International Limited Corrosion resistant alloy for extruded and brazed products
US11414729B2 (en) 2015-05-01 2022-08-16 Universite Du Quebec A Chicoutimi Composite material having improved mechanical properties at elevated temperatures
US11519057B2 (en) * 2016-12-30 2022-12-06 Ball Corporation Aluminum alloy for impact extruded containers and method of making the same
US11933553B2 (en) 2014-08-06 2024-03-19 Novelis Inc. Aluminum alloy for heat exchanger fins

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6602363B2 (en) * 1999-12-23 2003-08-05 Alcoa Inc. Aluminum alloy with intergranular corrosion resistance and methods of making and use
FR2819525B1 (en) * 2001-01-12 2003-02-28 Pechiney Rhenalu LAMINATED OR ALUMINUM AL-Mn ALLOY PRODUCTS WITH IMPROVED CORROSION RESISTANCE
GB2379669B (en) * 2001-09-12 2005-02-16 Alcan Int Ltd Al alloy for lithographic sheet
NO20016355D0 (en) * 2001-12-21 2001-12-21 Norsk Hydro As Aluminum heat sink with improved strength and durability
FR2919306B1 (en) * 2007-07-27 2009-10-02 Alcan Rhenalu Sa ALUMINUM ALUMINUM ALLOY FILM PRODUCTS WITH IMPROVED MECHANICAL RESISTANCE
CN101736182B (en) * 2009-12-28 2011-04-20 东北轻合金有限责任公司 Manufacturing method of aluminum alloy strip for mobile phone battery shell
CN101906559B (en) * 2010-07-15 2012-08-08 镇江鼎胜铝业股份有限公司 Air-conditioner foil material and manufacturing method of energy-saving high-performance air-conditioner foil
CN101956102B (en) * 2010-10-27 2012-05-23 江苏格林威尔金属材料科技有限公司 Parallel flow tubes used for heat exchanger and manufacturing method thereof
CN102179621A (en) * 2011-04-01 2011-09-14 中国科学院力学研究所 Roller surface roughing laser processing system and method for irregular image roughing micro pit
CN102615139A (en) * 2012-04-01 2012-08-01 江苏格林威尔金属材料科技有限公司 Continuous extrusion process of circular aluminum alloy pipe
CN103103412A (en) * 2012-11-05 2013-05-15 熊科学 Aluminium magnesium alloy for hot processed tubes
KR101909152B1 (en) * 2012-12-06 2018-10-17 내셔널 유니버시티 오브 사이언스 앤드 테크놀로지 “미시스” Heat resistant aluminium base alloy and fabrication method
JP6391140B2 (en) * 2012-12-27 2018-09-19 三菱アルミニウム株式会社 Manufacturing method of internally spiral grooved tube
CN103352154B (en) * 2013-07-01 2016-02-17 铜陵兴怡金属材料有限公司 High-strength aluminium alloy wire material and preparation method
CN104233006A (en) * 2014-07-14 2014-12-24 江苏格林威尔金属材料科技有限公司 Novel aluminum alloy internal groove circular tube
CN105568063A (en) * 2014-10-13 2016-05-11 焦作市圣昊铝业有限公司 Aluminum alloy with high strength and corrosion resistance
HUE037672T2 (en) * 2014-11-27 2018-09-28 Hydro Aluminium Rolled Prod Heat exchanger, use of an aluminium alloy and an aluminium tape and method for producing an aluminium tape
CN106086535B (en) * 2016-08-17 2017-11-10 江苏亚太安信达铝业有限公司 Air conditioning for automobiles microchannel tubing aluminium alloy
CN106381422B (en) * 2016-10-14 2018-03-27 无锡市冠云换热器有限公司 Car condenser
EP3475456B1 (en) * 2017-03-03 2020-01-08 Novelis, Inc. High-strength, corrosion resistant aluminum alloys for use as fin stock and methods of making the same
CN107699757A (en) * 2017-11-30 2018-02-16 福建旭晖铝业有限公司 A kind of high-strength wearable electrophoretic aluminium section and preparation method thereof
DE102018215254A1 (en) * 2018-09-07 2020-03-12 Neuman Aluminium Austria Gmbh Aluminum alloy, semi-finished product, can, process for producing a slug, process for producing a can and use of an aluminum alloy
CN112254563A (en) * 2019-07-22 2021-01-22 海德鲁铝业(苏州)有限公司 Long-life aluminum alloy having high corrosion resistance and spiral grooved tube produced from the alloy
CN111647774A (en) * 2020-02-17 2020-09-11 海德鲁挤压解决方案股份有限公司 Method for producing corrosion-resistant and high-temperature-resistant material
WO2021165266A1 (en) 2020-02-17 2021-08-26 Hydro Extruded Solutions As Method for producing a corrosion and high temperature resistant aluminium alloy extrusion material
CA3168063A1 (en) 2020-02-17 2021-08-26 Arvid Espedal High corrosion and heat resistant aluminium alloy
CN111235437A (en) * 2020-03-18 2020-06-05 河南誉金技术服务有限公司 Al-Mn pipe alloy for household air-conditioning heat exchanger and preparation method thereof
DE102020119466A1 (en) 2020-07-23 2022-01-27 Nussbaum Matzingen Ag Aluminum alloy and method of making an aluminum alloy
CN113481415A (en) * 2021-06-30 2021-10-08 惠州市富的旺旺实业发展有限公司 Aluminum extruded radiator material and forming process

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3859058A (en) * 1973-10-04 1975-01-07 Alusuisse Corrosion resistant aluminum composite material
JPS6041697B2 (en) * 1980-03-31 1985-09-18 住友軽金属工業株式会社 Brazing fin material for aluminum alloy heat exchanger
US5286316A (en) * 1992-04-03 1994-02-15 Reynolds Metals Company High extrudability, high corrosion resistant aluminum-manganese-titanium type aluminum alloy and process for producing same
US5906689A (en) * 1996-06-06 1999-05-25 Reynolds Metals Company Corrosion resistant aluminum alloy
US5976278A (en) * 1997-10-03 1999-11-02 Reynolds Metals Company Corrosion resistant, drawable and bendable aluminum alloy, process of making aluminum alloy article and article

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060231170A1 (en) * 2002-12-23 2006-10-19 Parson Nicholas C Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing
US7781071B2 (en) 2002-12-23 2010-08-24 Alcan International Limited Aluminum alloy tube and fin assembly for heat exchangers having improved corrosion resistance after brazing
US20060088438A1 (en) * 2004-10-21 2006-04-27 Visteon Global Technologies, Inc. Aluminum-based alloy composition and method of making extruded components from aluminum-based alloy compositions
US20140048239A1 (en) * 2008-04-24 2014-02-20 Rio Tinto Alcan International Ltd. Aluminum Alloy For Extrusion And Drawing Processes
US9631879B2 (en) * 2008-04-24 2017-04-25 Rio Tinto Alcan International Limited Aluminum alloy for extrusion and drawing processes
US20090301611A1 (en) * 2008-06-10 2009-12-10 Nicholas Charles Parson Al-mn based aluminum alloy composition combined with a homogenization treatment
US8025748B2 (en) * 2008-06-10 2011-09-27 Rio Tinto Alcan International Limited Al—Mn based aluminum alloy composition combined with a homogenization treatment
US20100051247A1 (en) * 2008-09-02 2010-03-04 Calsonic Kansei Corporation Heat exchanger made of aluminum alloy and method of producing same
US8945721B2 (en) 2010-03-02 2015-02-03 Mitsubishi Aluminum Co., Ltd. Aluminum alloy heat exchanger
US9328977B2 (en) 2010-03-02 2016-05-03 Mitsubishi Aluminum Co., Ltd. Aluminum alloy heat exchanger
US9719156B2 (en) 2011-12-16 2017-08-01 Novelis Inc. Aluminum fin alloy and method of making the same
US9679966B2 (en) 2012-10-26 2017-06-13 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electronic device containing nanowire(s), equipped with a transition metal buffer layer, process for growing at least one nanowire, and process for manufacturing a device
US9991342B2 (en) 2012-10-26 2018-06-05 Commissariat A L'energie Atomique Et Aux Energies Alternatives Electronic device containing nanowire(s), equipped with a transition metal buffer layer, process for growing at least one nanowire, and process for manufacturing a device
US10636653B2 (en) 2012-10-26 2020-04-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Process for growing at least one nanowire using a transition metal nitride layer obtained in two steps
US11933553B2 (en) 2014-08-06 2024-03-19 Novelis Inc. Aluminum alloy for heat exchanger fins
US11414729B2 (en) 2015-05-01 2022-08-16 Universite Du Quebec A Chicoutimi Composite material having improved mechanical properties at elevated temperatures
US11255002B2 (en) 2016-04-29 2022-02-22 Rio Tinto Alcan International Limited Corrosion resistant alloy for extruded and brazed products
US11519057B2 (en) * 2016-12-30 2022-12-06 Ball Corporation Aluminum alloy for impact extruded containers and method of making the same
US20230104147A1 (en) * 2016-12-30 2023-04-06 Ball Corporation Aluminum alloy for impact extruded containers and method of making the same
US20210348254A1 (en) * 2018-09-07 2021-11-11 Tubex Holding Gmbh Aluminium alloy, semi-finished product, can, method of producing a slug, method of producing a can, and use of an aluminium alloy
US20210340647A1 (en) * 2018-10-18 2021-11-04 Samsung Electronics Co., Ltd. Aluminum alloy

Also Published As

Publication number Publication date
ES2198289T3 (en) 2004-02-01
CA2356486C (en) 2009-09-15
EA200100904A1 (en) 2002-02-28
KR20010089609A (en) 2001-10-06
WO2000050656A1 (en) 2000-08-31
CN1159468C (en) 2004-07-28
CN1359427A (en) 2002-07-17
JP2002538296A (en) 2002-11-12
EP1155157B1 (en) 2003-05-28
DE60002990D1 (en) 2003-07-03
DE60002990T2 (en) 2004-02-19
KR100650004B1 (en) 2006-11-27
BR0008407A (en) 2002-01-29
ATE241709T1 (en) 2003-06-15
EA003950B1 (en) 2003-10-30
BR0008407B1 (en) 2009-05-05
CA2356486A1 (en) 2000-08-31
EP1155157A1 (en) 2001-11-21
AU2914400A (en) 2000-09-14

Similar Documents

Publication Publication Date Title
US20020007881A1 (en) High corrosion resistant aluminium alloy
JP5414991B2 (en) Aluminum alloy brazing sheet and method for manufacturing lightweight brazed heat exchanger assembly
CN1443249A (en) Corrosion resistant aluminium alloy
US6451453B1 (en) Aluminum alloy strip or tube for the manufacture of brazed heat exchangers
EP1017865B1 (en) Corrosion resistant aluminium alloy containing titanium
US20030102060A1 (en) Corrosion-resistant aluminum alloy
US6896749B2 (en) Rolled or extruded aluminium Al-Mn alloy products with improved corrosion resistance
US11939654B2 (en) Method for producing a corrosion and high temperature resistant aluminum alloy extrusion material
JP2002180171A (en) Aluminum alloy material for piping excellent in corrosion resistance and workability
EP0996754B1 (en) High corrosion resistant aluminium alloy containing zirconium
EP4106946B1 (en) High corrosion and heat resistant aluminium alloy
JP3788768B2 (en) Aluminum alloy clad material
WO2006053064A2 (en) Improved aluminum brazing sheet for use in heat exchanger applications, especially radiator tube stock
MXPA01008423A (en) Extrudable and drawable, high corrosion resistant aluminium alloy
CN111647774A (en) Method for producing corrosion-resistant and high-temperature-resistant material
CN117241912A (en) Aluminum alloy strip or sheet for manufacturing brazed heat exchanger
JP2002030367A (en) Aluminum alloy brazing sheet excellent in strength and corrosion resistance for heat exchanger
MXPA00000552A (en) Corrosion resistant aluminium alloy containing titanium
JPH04178291A (en) Aluminum brazing sheet

Legal Events

Date Code Title Description
AS Assignment

Owner name: NORSK HYDRO A.S., NORWAY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FURU, TROND;AURAN, LARS;DAALAND, OLE;REEL/FRAME:010167/0403;SIGNING DATES FROM 19990718 TO 19990729

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION