TWI805938B - 生物感測器及用於決定其對電極尺寸和延長其壽命的方法 - Google Patents

生物感測器及用於決定其對電極尺寸和延長其壽命的方法 Download PDF

Info

Publication number
TWI805938B
TWI805938B TW109126241A TW109126241A TWI805938B TW I805938 B TWI805938 B TW I805938B TW 109126241 A TW109126241 A TW 109126241A TW 109126241 A TW109126241 A TW 109126241A TW I805938 B TWI805938 B TW I805938B
Authority
TW
Taiwan
Prior art keywords
silver halide
electrodes
working electrode
measurement
pair
Prior art date
Application number
TW109126241A
Other languages
English (en)
Other versions
TW202107090A (zh
Inventor
黃椿木
陳界行
Original Assignee
華廣生技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華廣生技股份有限公司 filed Critical 華廣生技股份有限公司
Publication of TW202107090A publication Critical patent/TW202107090A/zh
Application granted granted Critical
Publication of TWI805938B publication Critical patent/TWI805938B/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • A61B5/1473Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14503Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14507Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood
    • A61B5/1451Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue specially adapted for measuring characteristics of body fluids other than blood for interstitial fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14546Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring analytes not otherwise provided for, e.g. ions, cytochromes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1468Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means
    • A61B5/1473Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter
    • A61B5/14735Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using chemical or electrochemical methods, e.g. by polarographic means invasive, e.g. introduced into the body by a catheter comprising an immobilised reagent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1486Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase
    • A61B5/14865Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using enzyme electrodes, e.g. with immobilised oxidase invasive, e.g. introduced into the body by a catheter or needle or using implanted sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/686Permanently implanted devices, e.g. pacemakers, other stimulators, biochips
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/04Constructional details of apparatus
    • A61B2560/0462Apparatus with built-in sensors
    • A61B2560/0468Built-in electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0215Silver or silver chloride containing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0209Special features of electrodes classified in A61B5/24, A61B5/25, A61B5/283, A61B5/291, A61B5/296, A61B5/053
    • A61B2562/0217Electrolyte containing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/028Microscale sensors, e.g. electromechanical sensors [MEMS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0295Strip shaped analyte sensors for apparatus classified in A61B5/145 or A61B5/157
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/12Manufacturing methods specially adapted for producing sensors for in-vivo measurements
    • A61B2562/125Manufacturing methods specially adapted for producing sensors for in-vivo measurements characterised by the manufacture of electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/16Details of sensor housings or probes; Details of structural supports for sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/042Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism

Abstract

本發明提供一種供量測與待測物相關聯的生理參數的生理訊號的生物感測器,包括:工作電極及對電極,對電極包括銀與具有該初始量的鹵化銀,且初始量被配置成由以下步驟決定:定義由該生物感測器執行至少一次該量測期間中的該鹵化銀的一所需消耗量範圍;以及根據該所需消耗量範圍的上限值加上緩衝量決定該初始量,以於該再生期間中的該鹵化銀的所需回充量範圍被控制成足以讓該鹵化銀的量維持在安全庫存區間內。

Description

生物感測器及用於決定其對電極尺寸和延長其壽命的方法
本發明關於一種生物感測器及用於決定其對電極尺寸的方法,特別關於一種用於量測與待測物關聯的生理參數所代表的生理訊號、以及用於延長生物感測器的使用壽命的方法。
糖尿病病患人口呈快速增長,隨之益發強調需監控體內葡萄糖(Glucose)的變化,故許多研究開始朝向研發可植入體內進行連續式葡萄糖監控(continuous glucose monitoring,CGM)的系統以解決患者一天需反覆多次採血與檢測所帶來生活上的不便。
於一基於酶的生物感測器的CGM系統領域上,其中取決於分析物濃度的生化反應訊號轉換成可測量的物理訊號,例如光學或電化學訊號。以葡萄糖量測而言,電化學反應例如以葡萄糖氧化酵素(glucose oxidase,GOx)催化葡萄糖反應生成葡萄糖酸內酯(Gluconolactone)與還原態酵素,後續還原態酵素將與體內生物流體中的氧氣進行電子轉移進而生成產物過氧化氫(H2O2),最後藉由催化產物H2O2的氧化反應來量化葡萄糖濃度,其反應式如下。
Glucose+GOx(FAD)→GOx(FADH2)+Gluconolactone GOx(FADH2)+O2→GOx(FAD)+H2O2在上述反應中,FAD(黃素腺嘌呤二核苷酸,Flavin Adenine Dinucleotide)為GOx的活性中心。
使用者通常佩戴CGM天數長,例如14天以上,因此將其小型化成為必然趨勢。CGM的基本結構包括:(a)生物感測器(Biosensor),用於測量與人體葡萄糖濃度相對應的生理訊號;以及(b)傳感器(Transmitter),用於傳輸這些生理訊號。該生物感測器可以是雙電極系統或三電極系統。在三電極系統的生物感測器中,包括一個工作電極(WE)、一個對電極(CE)和一個參考電極(RE)。雙電極系統的生物感測器包括一個工作電極(WE)和一個對電極(CE),其中對電極兼具有參考電極的功能,因此有時也稱對/參考電極(R/C)。三電極系統的生物感測器中的參考電極和雙電極系統的生物感測器中作為參考電極的對電極在葡萄糖濃度的穩定測量上合適材料是銀/氯化銀(Ag/AgCl)。然而,在將感測器植入生物體內之後,當工作電極發生氧化還原反應以測量葡萄糖濃度時,相對應的參考電極(RE)或參考/對電極(R/C)發生還原反應,使氯化銀還原為銀而使氯化銀被消耗。另外,如果植入生物體內的感測器是兩或三電極系統的感測器,由於氯化銀在體液中的解離,參考電極上的氯化銀會發生損耗,從而會造成對參考電壓的漂移問題。然而在兩電極系統的參考/對電極(R/C)因參與反應,其氯化銀耗損程度更是高過三電極系統。因此感測器的使用壽命受限於對電極和/或參考電極上氯化銀的含量。
目前亦有許多針對生物感測器的使用壽命的問題所 提出的發明。以二電極系統為例,在平均感測電流20奈米安培(nA)下對電極的消耗量約為每日1.73毫庫倫(mC),假設對電極的長寬高分別為3.3毫米、0.25毫米與0.01毫米,且原本設計的電極容量(Capacity)僅為6mC時,其穩定量測的狀態至多維持一天左右。不過,假如還要延長使用壽命,若欲將生物感測器植入皮下進行連續16天的葡萄糖監控,對電極的容量至少需達27.68mC的容量,在不改變寬度與厚度的狀況下現有技術的對電極長度可將需要長達15.2mm。故現有技術嘗試拉長對電極的長度至大於10mm,又為了避免植入深達皮下組織,此等生物感測器需以斜角方式植入。因此對患者造成較大的植入傷口、以及較高感染風險等問題,且因植入長度長,植入時的痛感亦較顯著。
US 8,620,398描述了一種生物感測器,主要為三電極系統,雖然參考電極基本上不參與化學反應,但氯化銀仍於體內環境中逐漸自然消耗,只是消耗速率較兩電極系統緩慢,文中揭露其於AgCl將耗完才進行再生,也就是說當量測訊號不穩定、也就是說所量測的訊號已是雜訊時,回充AgCl的程序才會被啟動,使AgCl回復到具有足夠多次量測所需的量。然後直到下一次雜訊再發生時,還需要再一次回充AgCl。可以了解,US 8,620,398雖然考慮了AgCl會於量測中消耗而於生物感測器失效時進行AgCl回充。但是失效時的量測值已不可信,需要等待生物感測器完成AgCl回充的程序才能取得正確的量測值、暫時採用採血量測的方式、或是直接跳過這一次的量測,這問題對於患者或是需要得知當時血糖濃度的人員總是很困擾的。此外,由於此種生物感測器要應付至少連續數次或甚至數日的多次量測,必須準備較多的AgCl容量,但是也 無可避免地會造成生物感測器的植入長度較長的問題,其也並未提出可以利用即時的AgCl回充的方式來提供不中斷的量測、具有較短植入長度、且具有更長使用壽命的生物感測器。
US 9,351,677主要為兩電極系統,參考/對電極(R/C)參與化學反應,故氯化銀則伴隨電化學反應消耗,文中提出一種具有增加的AgCl容量的分析物感測器,其使用H2O2來再生參考電極上的AgCl,但是由於H2O2容易被還原成H2O、或被氧化成O2,因此在人體內不易穩定地存在。因此,在再生/回充期間,體內H2O2的濃度可能不足以穩定地回充足夠的AgCl的量,且相對地其生物感測器需要配置較大的AgCl電極尺寸,其植入端也長達12mm。
生物感測器的使用壽命取決於對電極中存在的鹵化銀的量。但是,對電極的尺寸也取決於鹵化銀的量。生物感測器的壽命越長,鹵化銀的量就越大。鹵化銀的量越大,對電極的尺寸越大。對電極的尺寸越大,向患者的植入長度越長。對患者的植入長度越長,患者遭受的不適就越大。本公開提供了減小對電極的尺寸的解決方案,並且提供了一種對於對電極上所需的鹵化銀的初始量進行定量的方法。因此,本發明提供一種生物感測器,能夠達成即用即充以提供不間斷量測、可穩定的回充AgCl、延長其使用壽命、以及微型化植入端的小尺寸的功效,更能減少產品的製造成本,而這些功效能夠解決前述習知技術所難以克服的問題。
因此,本發明提供一種生物感測器,能夠達成即用即充以提供不間斷量測、可穩定的回充AgCl、延長其使用壽命、以及微型化植入端的小尺寸的功效,更能減少產品的製造成本,而這些功效能夠解決前述習知技術所難以克服的問題。
本案申請人鑑於習知技術中的不足,經過悉心試驗與研究,並一本鍥而不捨的精神,終構思出本案,能夠克服先前技術的不足,以下為本案的簡要說明。
透過本發明的回充技術,本發明的微型生物感測器中對電極訊號感測段的尺寸可縮小,進而可降低生物毒性並使微型生物感測器具有延長的使用壽命。此外,電極尺寸縮小可縮短感測器的植入端長度,因此可降低使用者植入痛感。此外,本發明包含四電極的裝置可提供更彈性及有效率的操作模式。
本案之目的之一在於提供一種可延長一微型生物感測器使用壽命的量測一待分析物的方法,該生物感測器用於植入皮下以量測與一生物流體中的該待分析物所關聯的一生理參數的一生理訊號,該生物感測器包括一工作電極與一對電極,該工作電極被一化學試劑至少部分覆蓋並用於與該分析物產生一電化學反應,該對電極的一電極材料包括一銀及一氯化銀,該方法包括下列的循環步驟:a)執行一第一量測步驟,包括:i.於一第一量測期間施加一第一量測電位差於該工作電極與該對電極之間,使該工作電極的一電壓高於該對電極的一電壓,而使該工作電極發生一第一氧化反應,並與該化學試劑、該分析物進行該電化學反應而輸出一第一生理訊號,同時該對電極的該氯化銀具有對應於該第一生理訊號的一第一消耗量;以及ii.移除該第一量測電位差,停止該第一量測步驟,且該第一生理訊號經運算後輸出一第一生理參數;b)執行一第一回充步驟,包括:i.於一第一回充期間施加一第一回充電位差於該對電極與該工作電極之間,使該對電極的該電壓高於 該工作電極的該電壓,從而使該對電極上的該銀發生一第二氧化反應,並使該氯化銀具有一第一回充量,其中該第一回充量對應於該第一消耗量,使該對電極上之該氯化銀的一量控制在一安全庫存區間內,而使下一量測步驟時所獲得的下一該生理訊號與下一該生理參數保持一穩定的比例關係;以及ii.移除該第一回充電位差,停止該第一回充步驟;c)執行與該a)步驟相同的一第二量測步驟,以獲得該第二生理訊號並輸出一第二生理參數;d)執行與該b)步驟相同的一第二回充步驟;以及e)依序反覆循環執行一第N量測步驟與執行一第N回充步驟。
本案的另一目的在於提供一種可延長一生物感測器的一使用壽命的量測一待分析物的方法,該生物感測器用於植入皮下以量測該待分析物所關聯的一生理參數的一生理訊號,且包括一工作電極與一對電極,該工作電極被一化學試劑至少部分覆蓋,該對電極的一電極材料包括一銀及一鹵化銀,該鹵化銀具有一初始量,該方法包括下列步驟:施加一量測電壓,以驅動該工作電極,以量測該生理訊號並用以獲得該生理參數,且該鹵化銀被消耗一特定量;停止施加該量測電壓;以及每當獲得一次該生理參數後,施加一回充電壓,使該對電極被驅動,從而使該鹵化銀的一量被回充一回充量,其中各該回充量與該初始量的和減去被消耗的各該消耗量的一值被控制在該初始量加減一特定值的一範圍內。
本案的再一目的在於提供一種植入式微型生物感測器,用於植入皮下用以量測自一生物體內的一待分析物所關聯的一生理參數的一生理訊號,該生物感測器包括:一基材;一化學試劑;一工作電極,設置於該基材上,被該化學試劑至少部分覆蓋, 且於一量測期間內被驅動而發生一第一氧化反應以量測該生理訊號並用以產生該生理參數;一對電極,設置於該基材上,該對電極的一電極材料包括一銀及一鹵化銀,其中該鹵化銀具有一初始量,且於該量測期間內被消耗一特定量;以及於每當獲得一次該生理參數後,於一回充期間內,該對電極被驅動,使被驅動的對電極的該鹵化銀被回充一回充量,其中各該回充量與該初始量的和減去各該消耗量之一值被控制在該初始量加減一特定值的一範圍內。
本案之目的之一在於提供一種可延長一微型生物感測器使用壽命的量測一待分析物的方法,該生物感測器用於植入皮下以量測與一生物流體中的該待分析物所關聯的一生理參數的一生理訊號,該生物感測器包括一工作電極、一對電極及一輔助電極,該工作電極被一化學試劑至少部分覆蓋並用於與該分析物產生一電化學反應,該對電極的一電極材料包括一銀及一鹵化銀,該方法包括下列步驟:a)執行一第一量測步驟,包括:i.於一第一量測期間施加一第一量測電位差於該工作電極與該對電極之間,使該工作電極的一電壓高於該對電極的一電壓,從而使該工作電極發生一第一氧化反應,並與該化學試劑、該分析物進行該電化學反應而輸出一第一生理訊號,同時該對電極的該鹵化銀具有對應於該第一生理訊號的一第一消耗量;以及ii.移除該第一量測電位差,停止該第一量測步驟,該第一生理訊號經運算後輸出一第一生理參數;b)執行一第一回充步驟,包括:i.於一第一回充期間施加一第一回充電位差於該對電極與該輔助電極之間,使該對電極的該電壓高於該輔助電極的該電壓,從而使該對電極上的該銀發生一第二氧化反應,並使該鹵化銀具有一第一回充量,其中該第一回充 量對應於該第一消耗量,使該對電極上之該鹵化銀的一量控制在一安全庫存區間內,而使下一次量測步驟時所獲得的下一該生理訊號與下一該生理參數保持一穩定的比例關係;以及ii.移除該第一回充電位差,停止該第一回充步驟;c)執行與該a)步驟相同的一第二量測步驟,以獲得該第二生理訊號並輸出一第二生理參數;d)執行與該b)步驟相同的一第二回充步驟;以及e)依序反覆循環執行一第N量測步驟與執行一第N回充步驟。
本案之另一目的在於提供一種可延長一生物感測器的一使用壽命的量測一待分析物的方法,該生物感測器用於植入皮下以量測該待分析物所關聯的一生理參數的一生理訊號,且包括一工作電極、一對電極及一輔助電極,該工作電極被一化學試劑至少部分覆蓋,該對電極的一電極材料包括一銀及一鹵化銀,該鹵化銀具有一初始量,該方法包括下列步驟:施加一量測電壓以驅動該工作電極,以量測該生理訊號以獲得該生理參數,且該鹵化銀被消耗一特定量;停止施加該量測電壓;以及每當獲得一次該生理參數後,施加一回充電壓於該對電極及該輔助電極之間,以驅動該對電極,使該鹵化銀的一量被回充一回充量,其中:各該回充量與該初始量的和減去被消耗的各該消耗量之一值被控制在該初始量加減一特定值的一範圍內。
本案之再一目的在於提供一種植入式微型生物感測器,用於植入皮下用以量測自一生物體內的一待分析物所關聯的一生理參數的一生理訊號,該生物感測器包括:一基材;一化學試劑;一工作電極,設置於該基材上,被該化學試劑至少部分覆蓋,且於一量測期間內被驅動而發生一第一氧化反應以量測該生理訊 號;一對電極,設置於該基材上,該對電極的一電極材料包括一銀及一鹵化銀,其中該鹵化銀具有一初始量,且於該量測期間內被消耗一特定量;以及一輔助電極,設置於該基材上,其中:於每當獲得一次該生理參數後,於一回充期間內,透過該對電極及該輔助電極被驅動,使該鹵化銀被回充至該對電極一回充量,其中該回充量與該初始量的和減去該消耗量之一值被控制在該初始量加減一特定值的一範圍內。
本案之目的之一在於提供一種可延長一微型生物感測器使用壽命的量測一待分析物的方法,該生物感測器用於植入皮下以量測與一生物流體中的該待分析物所關聯的一生理參數的一生理訊號,該生物感測器包括一第一及一第二工作電極與一第一及一第二對電極,各該工作電極被一化學試劑至少部分覆蓋並用於與該分析物產生一電化學反應,各該對電極的一電極材料包括一銀及一氯化銀,該方法包括下列步驟:a)執行一第一量測步驟,包括:i.於一第一量測期間施加一第一量測電位差於該第一工作電極與該第一對電極之間,使該第一工作電極的一電壓高於該第一對電極的一電壓,從而使該第一工作電極發生一第一氧化反應,並與該化學試劑、該分析物進行該電化學反應而輸出一第一生理訊號,同時該第一對電極的該氯化銀具有對應於該第一生理訊號的一第一消耗量;以及ii.移除該第一量測電位差,停止該第一量測步驟,且該第一生理訊號經運算後輸出一第一生理參數;b)執行一第一回充步驟,包括:i.於一第一回充期間施加一第一回充電位差於該第一對電極與該第一或該第二工作電極其中之一之間,使該第一對電極的該電壓高於該第一或該第二工作電極其中之一 的該電壓,從而使該對第一電極上的該銀發生一第二氧化反應,並使該氯化銀具有一第一回充量,其中該第一回充量對應於該第一消耗量;以及ii.移除該第一回充電位差,停止該第一回充步驟;c)執行一第二量測步驟,包括:i.於一第二量測期間施加該第一量測電位差於該第一及該第二工作電極其中之一與該第二對電極之間,使該第一及該第二工作電極其中之一的一電壓高於該第二對電極的一電壓,從而使該第一及該第二工作電極其中之一發生該第一氧化反應,並與該化學試劑、該分析物進行該電化學反應而輸出一第二生理訊號,同時該第二對電極的該氯化銀具有對應於該第二生理訊號的一第二消耗量;以及ii.移除該第二量測電位差,停止該第二生理訊號的量測步驟,且該第二生理訊號經運算後輸出一第二生理參數;d)執行一第二回充步驟,包括:i.於一第二回充期間施加一第二回充電位差於該第二對電極與該第二工作電極之間,使該第二對電極的該電壓高於該第二工作電極的該電壓,使該第二對電極上的該銀發生該第二氧化反應,並使該氯化銀具有一第二回充量;以及ii.移除該第一回充電位差,停止該第二的回充步驟;以及e)依序反覆循環執行以下步驟a2)~d2):a2)執行與該a)步驟相同的一第M量測步驟,以獲得該第M生理訊號並輸出一第M生理參數,且該第一對電極的該氯化銀具有對應於該第M生理訊號的一第M消耗量;b2)執行與該b)步驟相同的一第M回充步驟,使該第一對電極的該氯化銀具有一第M回充量且該第M回充量對應於該第M消耗量;c2)執行與該c)步驟相同的一第N量測步驟,以獲得該第N生理訊號並輸出一第N生理參數,且該第二對電極的該氯化銀具有對應於該第N生理訊號的一第N消耗量;以及d2)執 行與該d)步驟相同的一第N氯化銀的回充步驟,使該第二對電極的該氯化銀具有一第N回充量,且該第N回充量對應於該第N消耗量,其中:各該對電極上之該氯化銀的一量控制在一安全庫存區間內,而使下一量測步驟時所獲得的下一該生理訊號與下一該生理參數保持一穩定的比例關係。
本案之另一目的在於提供一種可延長一生物感測器的一使用壽命的量測一待分析物的方法,該生物感測器用於植入皮下以量測該待分析物的一生理參數所關聯的一生理訊號,且包括設置於一基板上的兩工作電極及兩對電極,各該工作電極被一化學試劑至少部分覆蓋,各該對電極具有包括一銀及一鹵化銀的一電極材料,各該鹵化銀具有一初始量,該方法包括下列步驟:於一第一量測期間施加一量測電壓以驅動該兩工作電極之一,以量測該生理訊號以獲得該生理參數,且該兩對電極之一的該鹵化銀被消耗一消耗量;停止施加該量測電壓;於一第一回充期間施加一回充電壓以驅動該兩對電極之一,從而使該兩對電極之一的該鹵化銀的一量被回充一回充量;於一第二量測期間施加該量測電壓以驅動該兩工作電極之一或另一,以量測另一該生理訊號以獲得另一該生理參數,且該兩對電極之另一的該鹵化銀被消耗一消耗量;停止施加該量測電壓;以及於一第二回充期間施加該回充電壓以驅動該兩對電極之另一,從而使該兩對電極之另一的該鹵化銀的一量被回充一回充量;其中於每當獲得一次該生理參數後,於各該回充期間內,各該回充量與各該初始量的一和減去各該消耗量之一值被控制在各該初始量加減一特定值的一範圍內。
本案之再一目的在於提供一種兼具長使用壽命及短 小對電極尺寸的植入式微型生物感測器,用以量測一生物體內的一待分析物所關聯的一生理參數的一生理訊號,該生物感測器包括:一基材;一化學試劑;兩工作電極,設置於該基材上、各包括一第一訊號感測段、被該化學試劑至少部分覆蓋,且於一特定量測期間內,該兩工作電極之一被驅動而發生一氧化反應,以量測該待測物的一生理訊號並用以產生該生理參數;以及兩對電極,設置於該基材上、各包括具有一尺寸的一第二訊號感測段,該兩對電極各具有包括一銀及一鹵化銀的一電極材料,其中各該鹵化銀具有一初始量,且於該特定量測期間內,該各該鹵化銀被消耗一消耗量,其中;於每當獲得一次該生理參數後,於一回充期間內,該兩對電極之一被驅動,而使該被驅動之對電極的該鹵化銀之一量被回充一回充量,其中各該回充量與各該初始量的一和減去各該消耗量之一值被控制在各該初始量加減一特定值的一範圍內。
本案之目的之一在於提供一種決定一生物感測器的一對電極的一尺寸以及可延長該生物感測器的一使用壽命的方法,該對電極包括一銀及一鹵化銀,該尺寸依據該鹵化銀的一初始量而被量化,該初始量足以量測一生物體內之一待分析物相關聯的一生理參數的一生理訊號,該生物感測器還包括一工作電極,於一量測期間中該鹵化銀被消耗,且於一再生期間中該鹵化銀被回充,該方法包括以下步驟:a.定義由該生物感測器執行至少一次該量測期間中的該鹵化銀的一所需消耗量範圍;b.根據該所需消耗量範圍的一上限值加上一緩衝量決定該初始量,以於該再生期間中的該鹵化銀的一所需回充量範圍被控制成足以讓該鹵化銀的一量維持在一安全庫存區間內,以確保在該再生期間後的一第二量測 期間所獲得的一第二生理訊號與一第二生理參數保持一穩定的比例關係;c.轉換該初始量成該對電極的該尺寸;d.使該對電極具有包含至少該初始量的該鹵化銀;e.於該量測期間量測該生理訊號且該鹵化銀被消耗一消耗量;以及f.於該再生期間該鹵化銀被回充一回充量。
本案的另一目的在於提供一種決定一生物感測器的一對電極的一尺寸以及可延長該生物感測器的一使用壽命的方法,該對電極包括一銀及一鹵化銀,該尺寸依據該鹵化銀的一初始量而被量化,該初始量足以量測一生物體內之一待分析物相關聯的一生理參數的一生理訊號,該生物感測器還包括一工作電極,於一量測期間中該鹵化銀被消耗,且於一再生期間中該鹵化銀被回充,該方法包括以下步驟:a.定義由該生物感測器執行至少一次該量測期間中的該鹵化銀的一所需消耗量範圍;b.根據該所需消耗量範圍的一上限值加上一緩衝量決定該初始量,以於該再生期間中的該鹵化銀的一所需回充量範圍被控制成足以讓該鹵化銀的一量(>0)維持在一安全庫存區間內,以確保在該再生期間後的一第二量測期間所獲得的一第二生理訊號與一第二生理參數保持一穩定的比例關係;c.轉換該初始量成該對電極的該尺寸;d.使該對電極具有包含至少該初始量的該鹵化銀;e.於該量測期間量測該生理訊號且該鹵化銀被消耗一消耗量;以及f.於該再生期間該鹵化銀被回充一回充量;其中該步驟d是於該生物感測器被植入後、於該步驟e之前完成。
本案的再一目的在於提供一種具一初始量以供量測與一待測物相關聯的一生理參數的一生理訊號的生物感測器,包 括:一工作電極,被配置成於一第一量測期間被驅動以量測該生理訊號;以及一對電極,包括一銀與一鹵化銀,該鹵化銀具有該初始量,且被配置成於每一量測期間,該鹵化銀被消耗一消耗量,以及於該第一量測期間之後的一第一再生期間,該對電極及該工作電極被驅動,從而使該鹵化銀被回充,其中該初始量被配置成由以下步驟決定:a.定義由該生物感測器執行至少一次該量測期間中的該鹵化銀的一所需消耗量範圍;以及b.根據該所需消耗量範圍的一上限值加上一緩衝量決定該初始量,以於該再生期間中的該鹵化銀的一所需回充量範圍被控制成足以讓該鹵化銀的一量維持在一安全庫存區間內。
10:生理訊號量測裝置
20:使用者裝置
61:有段切換的部分定電流電路
71:無段切換的部分定電流電路
100、300、400:微型生物感測器
110、310、410:基板
111、311、411:表面
112、312、412:對側表面
113、313、413:第一端
114、314、414:第二端
115、315、415:訊號輸出區域
116、316、416:感測區域
117、317、417:連接區域
120、320:工作電極
121、321:訊號輸出段
122、322、332、342:訊號感測段
130、330:對電極
131:訊號輸出段
132:訊號感測段
140、350、460:化學試劑
200:傳感單元
210:處理器
220:電源
230:電路切換單元
240:溫度感測單元
250:通訊單元
318、418:短植入端
323、420:第一工作電極
324、430:第二工作電極
325:第三工作電極
340:輔助電極
321:第一訊號輸出段
322:第一訊號感測段
431:第二訊號輸出段
432:第二訊號感測段
440:第一對電極
441:第三訊號輸出段
442:第三訊號感測段
450:第二對電極
451:第四訊號輸出段
452:第四訊號感測段
S1、S2、S3、S4、S5、S6、S901、S902、S1001、S1002、S1003、S1004、S1005:步驟
本發明的上述目的及優點在參閱以下詳細說明及附隨圖式之後對那些所屬技術領域中具有通常知識者將變得更立即地顯而易見。
〔圖1〕為本發明的生理訊號量測裝置的示意圖。
〔圖2A〕為本發明的微型生物感測器的正面示意圖。
〔圖2B〕為本發明的微型生物感測器的背面示意圖。
〔圖2C〕為本發明圖2A中沿A-A’線的剖面示意圖。
〔圖3〕為本發明的微型生物感測器的第二實施例的剖面示意圖。
〔圖4A〕為本發明中處於量測模式的定電壓電路。
〔圖4B〕為本發明中處於回充模式的定電壓電路。
〔圖5A〕為本發明的定電壓電路以第一方式交替進行量測模式和回充模式的電流示意圖。
〔圖5B〕為本發明的定電壓電路以第二方式交替進行量測模式和回充模式的電流示意圖。
〔圖5C〕為本發明的定電壓電路以第三方式交替進行量測模式和回充模式的電流示意圖。
〔圖5D〕為本發明的定電壓電路以第四方式交替進行量測模式和回充模式的電流示意圖。
〔圖5E〕為本發明的定電壓電路以第五方式交替進行量測模式和回充模式的電流示意圖。
〔圖5F〕為本發明的定電壓電路以第六方式交替進行量測模式和回充模式的電流示意圖。
〔圖6A〕本發明中處於量測模式的有段切換的定電流電路。
〔圖6B〕本發明中處於回充模式的有段切換的定電流電路。
〔圖7A〕本發明中處於量測模式的無段切換的定電流電路。
〔圖7B〕本發明中處於回充模式的無段切換的定電流電路。
〔圖8A〕為本發明的定電流電路以第一方式交替進行量測模式和回充模式的電壓示意圖。
〔圖8B〕為本發明的定電流電路以第二方式交替進行量測模式和回充模式的電壓示意圖。
〔圖8C〕為本發明的定電流電路以第三方式交替進行量測模式和回充模式的電壓示意圖。
〔圖8D〕為本發明的定電流電路以第三方式交替進行量測模式和回充模式的示意圖。
〔圖9〕為根據本發明一實施例的量測待分析物的方法。
〔圖10〕為根據本發明另一實施例的量測待分析物的方法。
〔圖11〕為本發明的生理訊號量測裝置的示意圖。
〔圖12A〕為本發明的微型生物感測器的第一實施例的正面示意圖。
〔圖12B〕為本發明的微型生物感測器的第一實施例的背面示意圖。
〔圖12C〕為本發明圖2A中沿A-A’線的剖面示意圖。
〔圖13A〕為本發明的微型生物感測器的第二實施例的剖面示意圖。
〔圖13B〕為本發明的微型生物感測器的第三實施例的剖面示意圖。
〔圖13C〕為本發明的微型生物感測器的第四實施例的剖面示意圖。
〔圖13D〕為本發明的微型生物感測器的第五實施例的剖面示意圖。
〔圖13E〕為本發明的微型生物感測器的第六實施例的剖面示意圖。
〔圖13F〕為本發明的微型生物感測器的第七實施例的剖面示意圖。
〔圖13G〕為本發明的微型生物感測器的第八實施例的剖面示意圖。
〔圖14A〕為本發明中處於量測模式的定電壓電路。
〔圖14B〕為本發明中處於回充模式的定電壓電路。
〔圖15A〕本發明中處於量測模式的有段切換的定電流電路。
〔圖15B〕本發明中處於回充模式的有段切換的定電流電路。
〔圖16A〕本發明中處於量測模式的無段切換的定電流電路。
〔圖16B〕本發明中處於回充模式的無段切換的定電流電路。
〔圖17〕為本發明的生理訊號量測裝置的示意圖。
〔圖18A〕為本發明的微型生物感測器的第一實施例的正面示意圖。
〔圖18B〕為本發明的微型生物感測器的第一實施例的背面示意圖。
〔圖18C〕為本發明圖2A中沿A-A’線的剖面示意圖。
〔圖19A〕為本發明的微型生物感測器的第二實施例的剖面示意圖。
〔圖19B〕為本發明的微型生物感測器的第三實施例的剖面示意圖。
〔圖19C〕為本發明的微型生物感測器的第四實施例的剖面示意圖。
〔圖20A〕為本發明中根據第一方式可執行量測模式和回充模式的定電壓電路。
〔圖20B〕為本發明中根據第二方式可執行量測模式和回充模式的定電壓電路。
〔圖20C〕為本發明中根據第三方式可執行量測模式和回充模式的定電壓電路。
〔圖21〕為本發明中可進行量測模式和回充模式的有段切換的定電流電路。
〔圖22〕為本發明中可執行量測模式和回充模式的無段切換的定電流電路。
〔圖23A〕為本發明的定電流或定電壓電路根據一實施例進行量測模式和回充模式的示意圖。
〔圖23B〕為本發明的定電流或定電壓電路根據另一實施例進行量測模式和回充模式的示意圖。
〔圖24〕為根據本發明一實施例的流程圖。
本案所提出的發明將可由以下的實施例說明而得到充分瞭解,使得所屬技術領域中具有通常知識者可以據以完成,然而本案的實施並非可由下列實施例而被限制其實施型態,所屬技術領域中具有通常知識者仍可依據除既揭露的實施例的精神推演出其他實施例,該等實施例皆當屬於本發明的範圍。
除非在特定範例中另外限制,下列定義適用於整份說明書中所使用的用語。
用語“量”是指對電極中鹵化銀(AgX)或氯化銀(AgCl)的容量(Capacity),且優選以微庫侖(μC)、毫庫侖(mC)或庫侖(C)的單位來表示,但不限於以重量百分比濃度wt%、莫耳數、莫耳濃度等方式表示。
實施例I
請參閱圖1,其為本發明的生理訊號量測裝置的示意圖。本發明的生理訊號量測裝置10可以用於植入皮下以量測生物流體中的待分析物所關聯的生理參數的生理訊號。本發明的生理訊號量測裝置10包括微型生物感測器100及傳感單元200,其中傳感單元200與微型生物感測器100電連接,且具有處理器210、電源220、電路切換單元230、溫度感測單元240及通訊單元250。電源220經處理器210控制電路切換單元230提供電壓給微型生物感測器100進行生理訊號的量測,溫度感測單元240則進行生物體溫度量測,因此溫度量測訊號及微型生物感測器100所量測到的生理訊號會傳送至處理器210,再由處理器210將生理訊號運算成生理參數。通訊單元250可以與使用者裝置20進行有線或無線傳輸。
請參閱圖2A及2B,其為本發明微型生物感測器的正面與背面示意圖。本發明的微型生物感測器100包括基板110、設置於基板110上的工作電極120及對電極130、以及包圍工作電極120及對電極130的化學試劑140(如圖2C所示)。基板110的材質可選用任何已知適合使用於電極基板的材質且較佳具備可撓性及絕緣性質,例如但不限於:聚酯(Polyester)、聚醯亞胺(Polyimide)等高分子材質,前述高分子材質可以單獨使用一種或者混合多種使用。基板110具有表面111(即第一表面)、與表面111相對的對側表面112 (即第二表面)、第一端113及第二端114,且基板110分為3個區域,分別為靠近第一端113的訊號輸出區域115、靠近第二端114的感測區域116、及位於訊號輸出區域115及感測區域116之間的連接區域117。工作電極120設置於基板110的表面111上,且從基板110的第一端113延伸至第二端114。工作電極120包括位於基板110的訊號輸出區域115的訊號輸出段121,及位於基板110的感測區域116的訊號感測段122。工作電極120的材料包含但不限於:碳、鉑、鋁、鎵、金、銦、銥、鐵、鉛、鎂、鎳、錳、鉬、鋨、鈀、銠、銀、錫、鈦、鋅、矽、鋯、前述元素的混合物、或前述元素的衍生物(如合金、氧化物或金屬化合物等),較佳地,工作電極120的材料為貴金屬、貴金屬之衍生物或前述的組合,更佳地,工作電極120為含鉑材料。
對電極130設置於基板110的對側表面112,且從基板110的第一端113延伸至第二端114。對電極130包括位於基板110的訊號輸出區域115的訊號輸出段131,及位於基板110的感測區域116的訊號感測段132。對電極130表面的材料包含銀(Silver)及鹵化銀(Silver Halide),其中鹵化銀較佳為氯化銀(Silver Chloride)或碘化銀(Silver Iodine),使該對電極130兼具參考電極的功能,即本發明的對電極130可以(1)與工作電極120形成電子迴路,使工作電極120上電流暢通,以確保電化學反應在工作電極120上發生;以及(2)提供穩定的相對電位作為參考電位。因此,本發明的工作電極120與對電極130形成一個二電極系統。為了進一步降低成本以及提高本發明之生物感測器的生物相容性,該銀/鹵化銀更可與碳混合使用,例如將該銀/鹵化銀混入碳膠,其鹵化銀含量只要讓 對電極130能穩定執行設定的量測動作即可。對電極130的部份的表面上還可以覆蓋導電材料以防止鹵化銀解離(dissolution),進而保護對電極130,其中導電材料係選擇不影響工作電極量測表現的導電材質為主,例如導電材料為碳(Carbon)。
另一實施例中生物感測器不限於導線式或疊層式的電極結構。
在本發明的另一個實施例中,在準備將生物感測器運送出工廠出售之前,鹵化銀的初始量可以為零。在這種情況下,生物感測器的對電極130上沒有鹵化銀。在將生物感測器皮下植入患者體內之後以及在進行首次測量之前的最開始回充期間中,經由氧化被塗佈在對電極130上的銀,可以在對電極130上回充初始量的鹵化銀。
化學試劑140至少覆蓋於工作電極120的訊號感測段122上及位於感測區域116的對電極130的表面上。另一實施例中,化學試劑140至少覆蓋工作電極120之訊號感測段122(圖未示)。也就是說,對電極130上可以不被化學試劑140覆蓋。微型生物感測器100的感測區域116可以植入皮下使工作電極120的訊號感測段122進行生物流體中待分析物所關聯的生理訊號的量測,生理訊號會被傳送至工作電極120的訊號輸出段121,再由訊號輸出段121傳送至處理器210以得到生理參數。另該生理參數除了從傳感單元200取得外,亦可經由無線/有線通訊傳送至使用者裝置20取得,常用的使用者裝置20例如智慧型手機、生理訊號接收器或血糖儀。
請參閱圖2C,其為圖2A中沿A-A’線的剖面示意圖,其中A-A’線為從微型生物感測器100的感測區域116的剖面線。在 圖2C中,工作電極120設置於基板110的表面111,對電極130設置基板110的對側表面112,且工作電極120及對電極130的表面上覆蓋化學試劑140。基本上化學試劑140至少覆蓋於工作電極120的部分表面上。本發明的微型生物感測器100會在量測期間執行量測步驟,及在回充(即再生)期間執行回充步驟。當執行量測步驟時,工作電極120的電壓高於對電極130的電壓,使電流從工作電極120往對電極130的方向流動,進而使工作電極120發生氧化反應(即工作電極120、化學試劑140及待分析物之間的電化學反應)而量測生理訊號,對電極130發生還原反應,使對電極130中的鹵化銀消耗而解離成銀(Ag)及鹵離子(X-)。由於對電極130中的鹵化銀被消耗,故需要回充對電極130中的鹵化銀以進行下一次的量測步驟。當執行回充步驟時,對電極130的電壓高於工作電極120的電壓,使電流從對電極130往工作電極120的方向流動,進而使對電極130發生氧化反應使銀與生物體內的鹵離子或AgCl氧化(或解離)後的Cl-結合而回充鹵化銀,詳細量測步驟與回充步驟見圖9說明。
在另一實施例中,本發明的工作電極120及對電極130可以設置於基板110的同一表面,即工作電極120及對電極130皆設置於基板110的表面111或對側表面112上,如圖3所示。同樣的,當執行量測步驟時,電流從工作電極120往對電極130的方向流動,進而使工作電極120發生氧化反應而量測生理訊號,對電極130中的鹵化銀被消耗而解離成銀(Ag)及鹵離子(X-)。當執行回充步驟時,電流從對電極130往工作電極120的方向流動,進而使對電極130發生氧化反應使銀與鹵離子結合而回充鹵化銀。
以上圖2C-3其詳細電極疊層省略,僅示意電極位置。
在上述任一實施例中,為了防止銀電極材料的過度氯化而發生斷線,還可以在基板110的對側表面112與對電極130的銀之間添加一層導電材料(如碳)。然而,若對電極130的底層是碳會造成開關處的阻值過高,故還可在碳導電材料跟基板110的對側表面112之間再增設一層導電層,例如為銀以降低訊號輸出端的阻抗,使本發明的對電極130從基板110的對側表面112開始依序為導電層、碳層及銀/鹵化銀層。
定電壓電路切換應用
請參考圖4A-4B和5A-5D,其中圖4A和圖4B分別示出本發明中處於量測模式和回充模式的定電壓電路,圖5A-5D分別示出該定電壓電路以不同方式交替進行量測模式和回充模式的電流示意圖。量測模式可分別藉由施加量測電位差V1和移除量測電位差V1而開始和停止,而對應的電流以Ia表示。在量測模式時,於量測期間T1施加量測電位差V1於工作電極W與對電極R/C之間,使工作電極W的電壓高於對電極R/C的電壓。如圖4A所示,此時開關S1和S4為閉路狀態,而開關S2和S3為開路狀態,工作電極W為+V1,對電極R/C為接地,以使工作電極W進行氧化反應,並與化學試劑和待分析物進行電化學反應而輸出生理訊號Ia,同時對電極R/C的AgCl具有對應於該生理訊號Ia的消耗量。如圖5A-5D所示,在多個量測期間T1之間的是未進行量測的期間T2。在某些較佳實施例中,T2為固定值。
回充模式可分別藉由施加回充電位差V2和移除回充電位差V2而開始和停止,而對應的電流以Ib表示。V2為0.1V至0.8V之間的固定值,較佳為0.2V至0.5V之間的固定值。在回充模式時, 施加回充電位差V2於工作電極W與對電極R/C之間持續回充期間t2(t2介於0至T2之間),使對電極R/C的電壓高於工作電極W的電壓。如圖4B所示,此時開關S1和S4為開路狀態,而開關S2和S3為閉路狀態,工作電極W為接地,對電極R/C為+V2,以使對電極R/C上的Ag進行氧化反應,而回充對電極R/C上的AgCl達一回充量。在定電壓電路中的回充電位差V2為固定電壓,測得的輸出電流為Ib。本發明是透過計算電流曲線下的面積以定義AgCl的容量(Capacity,單位庫倫,以符號"C"表示),故量測模式中AgCl的消耗量為Ia*T1,回充模式中AgCl的回充量為Ib*t2。因此,可經由調控回充電位差V2的施加時間t2來控制AgCl的回充量。換言之,在對電極R/C上的AgCl保持在安全庫存量之內的前提下,可使回充量等於或不等於(包含約略相近、大於或小於)消耗量。
圖5A-5D中橫軸為時間,V1的線條表示量測電位差V1的施加和移除,V2的線條表示回充電位差V2的施加和移除。請參考圖5A,在一較佳實施例中,V2和T2都是固定值,V2的施加時間t2(即回充期間)是變動值。回充期間t2是根據在量測模式所測得的生理訊號Ia及量測期間T1而在0至T2之間動態調整。如圖5A中所示,t2可為t2’、t2”、或t2'''…。換言之,回充期間t2可根據AgCl的消耗量而改變,若AgCl的消耗量大,則可回充較長的時間以使對電極R/C上的AgCl保持在安全庫存量之內。舉例而言,在t2”期間所回充的AgCl的量將大於t2’期間所回充的AgCl量。
請參考圖5B,在另一較佳實施例中,V2、T2和t2都是固定值,其中t2=T2。也就是說,量測模式和回充模式是無縫交替的,在未進行量測的期間即為回充期間。請參考圖5C和5D,在 某些較佳實施例中,V2、T2和t2都是固定值,其中t2為大於0且小於T2的固定值,例如t2=1/2的T2、2/5的T2、3/5的T2等。圖5C和5D的差別在於,圖5C中是在每次量測模式結束後,經歷一段緩衝時間(緩衝時間=T2-t2),才開始回充模式;圖5D中是每次量測模式結束後未經緩衝時間即立即開始回充模式,而在每次回充模式結束與下一次量測模式開始之間間隔一段時間。在某些較佳實施例中,t2小於T2,且t2可為T2期間的任何時間段。
請參考圖5E和5F,其示出本發明的定電壓電路以不同方式交替進行量測模式和回充模式的電流示意圖。圖5E和5F中,橫軸為時間,縱軸為電流,曲線表示所量測到的生理訊號Ia換算而成的生理參數值曲線。在這兩個實施例中,類似於圖5A,V2和T2為固定值,回充期間t2是變動值。圖5E和5F中,曲線下白色面積代表量測模式中AgCl的消耗量(Ia*T1),斜線面積代表回充模式中AgCl的回充量(Ib*t2)。由圖中可看出,為了使Ib*t2接近Ia*T1或在Ia*T1的某個範圍內,回充期間t2是根據所測得的生理訊號Ia及量測期間T1而在0至T2之間動態調整。根據需要,可選擇在未執行量測模式的期間(T2)的前段(如圖5E所示)或後段(如圖5F所示)進行回充模式。
有段切換的定電流電路切換應用
請參考圖6A-6B和圖8A-8C,其中圖6A和圖6B分別示出本發明中處於量測模式和回充模式的有段切換的定電流電路,圖8A-8C示出本發明的定電流電路以不同方式交替進行量測模式和回充模式的三種電壓示意圖。量測模式可分別藉由施加量測電位差V1和移除量測電位差V1而開始和停止,而對應的電流以Ia表 示。在量測模式時,施加量測電位差V1於工作電極W與對電極R/C之間持續量測期間T1。如圖6A所示,此時開關S1和S4為閉路狀態,而其他開關都為開路狀態,工作電極W為+V1,對電極R/C為接地,以使工作電極W進行氧化反應,並與化學試劑和待分析物進行電化學反應而輸出生理訊號Ia,同時對電極R/C的AgCl具有對應於該生理訊號Ia的消耗量。如圖8A-C所示,在多個量測期間T1之間的是未進行量測的期間T2。在某些較佳實施例中,T2為固定值。
回充模式可分別藉由施加回充電位差V2(V2為變動值)和移除回充電位差V2而開始和停止,而對應的電流以Ib表示。在回充模式時,施加回充電位差V2於工作電極W與對電極R/C之間持續回充期間t2(t2介於0至T2之間)。如圖6B所示,此時開關S1和S4為開路狀態,S2和I_F1至I_Fn所對應的至少一個開關為閉路狀態(圖中示例性地示出I_F1和I_F3對應的開關為閉路狀態),工作電極W為接地,對電極R/C為+V2,以使對電極R/C上的Ag進行氧化反應,進而回充AgCl。在回充模式時,可根據該生理訊號Ia的大小及量測期間T1,而選擇切換I_F1至I_Fn所對應的至少一個開關以輸出固定電流Ib,並經由調控電位差V2的施加時間t2來控制AgCl的回充量。換言之,在對電極R/C上的AgCl保持在安全庫存量之內的前提下,可使回充量等於或不等於(包含約略相近、大於或小於)消耗量。
無段切換的定電流電路切換應用
請參考圖7A-7B和圖8A-8C,其中圖7A和圖7B分別示出本發明中處於量測模式和回充模式的無段切換的定電流電路。本實施例的量測模式與回充模式與圖6A-6B類似,故於此不再贅 述,與圖6實施例之差異僅在本實施例在回充模式時,可根據該生理訊號Ia,藉由數位類比轉換器(DAC)的控制而輸出固定電流Ib,並經由調控電位差V2的施加時間t2來控制AgCl的回充量。換言之,在對電極R/C上的AgCl保持在安全庫存量之內的前提下,可使回充量等於或不等於(包含約略相近、大於或小於)消耗量。
圖8A-8C中橫軸為時間,縱軸為電流,其中V1的線條表示量測電位差V1的施加和移除,V2的線條表示回充電位差V2的施加和移除。請參考圖8A,在一較佳實施例中,T2是固定值,V2和V2的施加時間t2(即回充期間)是變動值。回充期間t2是根據在量測模式所測得的生理訊號Ia及量測期間T1而在0至T2之間動態調整。如圖8A中所示,t2可為t2’、t2”、或t2'''…。換言之,回充期間t2可根據AgCl的消耗量而改變,若AgCl的消耗量大,則可回充較長的時間以使對電極R/C上的AgCl保持在安全庫存量之內。
請參考圖8B,在另一較佳實施例中,V2是變動值,T2和t2都是固定值,其中t2為大於0且小於T2的固定值,例如t2=1/2的T2、2/5的T2、3/7的T2等。在此實施例中,V2是根據於生理訊號量測步驟(即在量測模式中)的AgCl的消耗量而動態調整。動態調整方式的其中一個實施例如下。使用例如上述的有段切換的定電流電路,該電路具有n個固定電流源與n個開關,各固定電流源分別對應一個開關。於回充模式時,依據AgCl的消耗量,選擇開啟n個開關中的至少一個開關(即使該開關處於閉路狀態)以輸出固定電流值。在回充期間t2為固定值的情況下,可以藉由選擇不同的固定電流輸出來控制AgCl的回充量。
請參考圖8C,在另一較佳實施例中,V2是變動值, T2和t2都是固定值,其中t2=T2。也就是說,量測模式和回充模式是無縫交替的,在未進行量測的期間即為回充期間。
相較於無段切換的定電流電路,有段切換的定電流電路可透過多個開關控制多個電流路徑,而得以根據所需的電流量以分段式的定電流進行回充,以此方式較為省電且可以降低成本。此外,不管是定電壓電路或定電流電路,電位差可以來自直流電源或交流電源。
圖5A至圖8C的實施例都是描述量測步驟和回充步驟交替循環的操作方式,亦即每個量測步驟之間都有一個AgCl回充步驟,此方式可較佳地確保AgCl保持在安全庫存量之內。然而,在某些較佳實施例中,亦可在進行N次的量測期間選擇性搭配Y次的AgCl回充,其中Y≦N,使AgCl的累積回充量仍可保持在安全庫存範圍內。量測步驟和回充步驟也不必然需要以交替循環的方式進行,亦可於數次量測步驟後再進行一次回充步驟,或是在預定的量測時間之後,才進行一次回充步驟。舉例而言,可於量測10次後再進行一次回充步驟,或可於累積量測時間達1小時後才進行一次回充步驟。
請參考圖8D,其示出本發明的定電流電路以類似圖8C的方式交替進行量測模式和回充模式的示意圖。圖8D中,曲線表示所量測到的生理訊號Ia所轉換成的生理參數值曲線,且類似於圖8C,T2和t2都是固定值,V2是變動值。圖8D中,曲線下白色面積代表量測模式中AgCl的消耗量(Ia*T1),斜線面積代表回充模式中AgCl的回充量(Ib*t2)。由圖中可看出,為了使Ib*t2接近Ia*T1或在Ia*T1的某個範圍內,回充電位差V2是根據AgCl的消耗量而動態 調整。
另外圖5E、5F及圖8D中,雖未顯示每次執行生理訊號量測步驟後所輸出各生理參數值輸出時機點,但生理參數值不限於完成量測時輸出或於在回充期間內輸出,而AgCl回充步驟不限於在每一個生理參數輸出後執行或獲得生理訊號後執行。
請參考圖9,其示出根據本發明一實施例的量測待分析物的方法,透過該方法可延長微型生物感測器的使用壽命。該微型生物感測器可為例如圖2A-圖3所示的微型生物感測器,用於植入皮下以量測與生物流體(例如組織液)中的該待分析物所關聯的生理參數的生理訊號。在圖9的實施例中,該待分析物可為組織液中的葡萄糖,生理參數為人體中的葡萄糖值,生理訊號為微型生物感測器量得的電流值。此實施例中,量測待分析物的方法包含反覆循環地執行量測步驟(S901)及回充步驟(S902)。量測步驟(S901)包含使用前述定電壓或定電流電路於量測期間T1執行如前述的量測模式以輸出生理訊號(即電流值),同時對電極的AgCl具有對應於該電流值的消耗量。量測步驟(S901)還包含透過停止如前述的量測模式來停止量測步驟,且該電流值經運算後輸出生理參數(即葡萄糖值)。
在量測步驟(S901),其化學反應式如下:
於工作電極120進行以下氧化反應:
葡萄糖(Glucose)+還原型葡萄糖氧化酶(Glucose oxidase,Gox)(FAD)
Figure 109126241-A0305-02-0031-1
葡萄糖酸內酯(Gluconolactone)+氧化型葡萄糖氧化酶(FADH2)
氧化型葡萄糖氧化酶(FADH2)+O2
Figure 109126241-A0305-02-0031-2
還原型葡萄糖氧化酶 (FAD)+H2O2
H2O2
Figure 109126241-A0305-02-0032-3
2H++O2+2e-
於對電極130進行以下還原反應:
2AgCl+2e-
Figure 109126241-A0305-02-0032-4
2Ag+2Cl-
回充步驟(S902)包含使用前述定電壓或定電流電路於回充期間執行如前述的回充模式,以使對電極的AgCl具有對應於消耗量的回充量,進而使對電極上之AgCl的量控制在安全庫存區間內。由此,可使該工作電極與對電極之間的電位差保持穩定,讓所獲得的電流值仍能與葡萄糖值保持穩定的比例關係(若偵測物質為其他待分析物亦可能是正比關係也可能是反比關係)。換言之,可使下一量測步驟時所獲得的下一個電流值與下一個葡萄糖值保持穩定的比例關係。回充步驟(S902)還包含透過停止如前述的回充模式來停止回充步驟。回充步驟(S902)結束後循環回去執行量測步驟(S901),直到執行了N次量測步驟(S901)與N次回充步驟(S902)。
在回充步驟(S902),其化學反應式如下:
於工作電極120進行以下還原反應:
葡萄糖(Glucose)+還原型葡萄糖氧化酶(Glucose oxidase)(FAD)
Figure 109126241-A0305-02-0032-5
葡萄糖酸內酯(Gluconolactone)+氧化型葡萄糖氧化酶(FADH2)
氧化型葡萄糖氧化酶(FADH2)+O2
Figure 109126241-A0305-02-0032-6
還原型葡萄糖氧化酶(FAD)+H2O2
H2O2+2H++2e-
Figure 109126241-A0305-02-0032-7
H2O
O2+4H++4e-
Figure 109126241-A0305-02-0032-8
2H2O
於對電極130的正電位促使對電極130進行以下氧化反應:
2Ag
Figure 109126241-A0305-02-0033-9
2Ag++2Cl-
Figure 109126241-A0305-02-0033-10
2AgCl+2e-
其中對電極上的Ag氧化成Ag+,與來自生物體內Cl-或AgCl氧化(或解離)後的Cl-結合而成AgCl,使得於量測期間T1內被消耗的部分或全部AgCl被回充到對電極上。
人體透過摻碘的食鹽可以取得氯離子及碘離子,故可取得的鹵離子至少包括氯離子及碘離子,以用於回充鹵化銀。
以下實施例是針對N次量測步驟(S901)及N次回充步驟(S902)的循環,其中所提到的生理參數較佳是葡萄糖值,所提到的生理訊號較佳是電流值。根據某些較佳實施例,各量測電位差V1於量測期間T1被施加,各回充電位差V2於回充期間t2被施加,且量測期間T1為固定值,其可為3秒內、5秒內、10秒內、15秒內、30秒內、1分鐘內、2分鐘內、5分鐘內或10分鐘內的一時間值。根據某些較佳實施例,較佳為30秒內的時間值。量測期間T1為固定值,且可為2.5秒、5秒、15秒、30秒、1分鐘、2.5分鐘、5分鐘、10分鐘或30分鐘,較佳為30秒。根據某些較佳實施例,各量測期間T1加上各回充期間t2為固定值。根據某些較佳實施例,各回充電位差V2具有固定電壓值,各回充期間t2是根據AgCl的每次消耗量而動態調整(如圖5A所示)。根據某些較佳實施例,輸出的各生理參數是經由各量測期間T1中的一個單一量測時間點的各生理訊號運算而獲得。根據某些較佳實施例,輸出的各生理參數是經由各量測期間T1中的多個量測時間點的多個生理訊號的一數學運算值運算而獲得。前述數學運算值為例如累加值、平均值、中位數、中位數的平均值等。根據某些較佳實施例,藉由控制每次回充量為等於或不 等於(包含約略相近、大於或小於)每次消耗量,而控制對電極之AgCl量在安全庫存區間內,而使下一量測步驟時所獲得的下一生理訊號與下一生理參數保持穩定的比例關係。根據某些較佳實施例,移除各量測電位差V1的步驟是將配置於連通工作電極及對電極之電路斷路、或設定各量測電位差V1為0。換言之,可進行斷電,以使量測電路具有開路狀態;或者,可施加0伏特電壓於工作電極及對電極之間,其中該兩項操作其中任一操作的操作時間皆為0.01~0.5秒。移除量測電位差V1的步驟可避免Λ形的生理訊號產生。根據某些較佳實施例,移除各回充電位差V2的步驟是將配置於連通工作電極及對電極之電路斷路、或設定各回充電位差V2為0。
根據某些較佳實施例,感測器植入人體後需經過暖機時間,使感測器在體內達到平衡穩定才能穩定呈現與分析物濃度呈正相關的生理訊號。因此,在量測步驟(S901)持續施加量測電壓直至量測期間T1結束,並控制該量測期間T1以使得生理訊號與分析物的生理參數達到穩定的比例關係。因此,量測期間T1可為變動值或為變動值和固定值的組合(例如變動值+固定值,該變動值可為1小時、2小時、3小時、6小時、12小時或24小時,該固定值可為例如30秒)。
請參考圖5A-5F、圖8A-8D及圖9,本發明利用施加電壓於對電極R/C來量測一期間內對電極之反應電流,並經由將該期間內反應電流經數學運算而得知AgCl初始容量,例如透過計算反應電流曲線下的面積以定義AgCl初始容量,又稱初始量或初始庫倫量(Cinitial),以下皆以量來說明。對電極R/C包含Ag和AgCl,當 得知AgCl的百分比(X%AgCl)時,即可算出Ag百分比(Y% Ag=100%-X% AgCl)。於每次量測步驟(S901)中透過計算工作電極W的電流曲線下的面積來定義每次AgCl的消耗量(以Cconsume表示)。對電極R/C的AgCl具有對應於該生理訊號Ia的消耗量Cconsume,即Cconsume=Ia*T1。於每次回充步驟(S902)中,透過計算對電極R/C的電流曲線下的面積來定義每次AgCl的回充量(以Creplenish表示),即Creplenish=Ib*t2,t2介於0~T2之間。
以下描述AgCl安全庫存量的計算方法。在某些較佳實施例中,安全庫存區間是以Ag與AgCl的比例呈現,本發明是以於對電極量測到的庫倫量(C)以反映Ag與AgCl的比例關係。在某些較佳實施例中,Ag與AgCl的比例為99.9%:0.1%、99%:1%、95%:5%、90%:10%、70%:30%、50%:50%、40%:60%或30:70%,使AgCl在對電極上具備一程度上的量而不會被消耗殆盡,讓每次生理訊號量測步驟皆能穩定執行。AgCl的剩餘量為回充量與初始量的和減去消耗量。在某些較佳實施例中,AgCl的剩餘量在一區間範圍內變動,亦即AgCl的剩餘量被控制在初始量加減特定值(X值)的範圍內,即(Creplenish+Cinitial)-Cconsume=Cinitial±X,其中0<X<100% Cinitial、10% Cinitial<X≦90% Cinitial、或0.5% Cinitial<X≦50% Cinitial。在某些較佳實施例中,AgCl的剩餘量可在一區間範圍內逐漸下降、逐漸上升、或是平穩變動或任意變動但仍於該區間範圍內。
請參考圖10,其示出根據本發明另一實施例的量測待分析物的方法,透過該方法不但可延長微型生物感測器的使用壽命並且能縮減對電極之銀及鹵化銀材料用量。該微型生物感測器可為例如圖2A-2C及圖3所示的微型生物感測器,用於植入皮下 以量測與生物流體(例如組織液)中的該待分析物所關聯的生理參數的生理訊號。該微型生物感測器的對電極的電極材料包括銀及鹵化銀,在圖10的實施例中,該待分析物可為組織液中的葡萄糖,生理參數為人體中的葡萄糖值,生理訊號為微型生物感測器量得的電流值。以下僅描述此實施例的一個循環。此實施例的方法始於以下步驟:施加量測電壓以驅動工作電極,以量測用以獲得生理參數的生理訊號,其中鹵化銀被消耗特定量(下文略稱為消耗量)(S1001)。
接著停止施加量測電壓(S1002),並利用所獲得的生理訊號來獲得生理參數(S1003)。獲得生理參數後,施加回充電壓於對電極及工作電極之間,以驅動對電極,從而使鹵化銀的量被回充一回充量(S1004),其中回充量與初始量的和減去消耗量的值(即前文所述的剩餘量)被控制在初始量加減特定值的範圍內。上述控制步驟是藉由控制回充量等於或不等於(包含約略相近、大於或小於)消耗量來達成,以維持鹵化銀的量在安全庫存區間內。根據反應式,鹵化銀的莫耳數增減對應銀的莫耳數增減,故為了便於說明,鹵化銀的消耗量對應模擬的銀的增加量。在某些較佳實施例中,剩餘量的值被控制成使得鹵化銀的量與銀的量加上鹵化銀的量的和(AgCl/Ag+AgCl)的比值是大於0且小於1,亦即對電極的鹵化銀有一個量即可,較佳為介於0.01-0.99之間、介於0.1-0.9之間、介於0.2-0.8之間、介於0.3-0.7之間或介於0.4-0.6之間。在達到該回充量時停止施加回充電壓(S1005)。之後再循環至步驟S1001執行下一個循環。
以下描述本發明的一具體實施例,以生物感測器使 用壽命須達到16天作為示例以計算所需電極訊號感測段Ag/AgCl材料尺寸之方法,例如每次測量的待分析物平均量測電流為30nA、量測期間(T1)為30秒、且回充期間(t2)為30秒。每天所需AgCl的消耗量(Cconsume/day)=1.3mC/天。假設感測器使用壽命的需求為16天,則使用16天所需AgCl的消耗量為1.3 x 16=20.8mC。
例如對電極的長度為2.5mm,其對應AgCl初始量Cintial=10mC;
(1)在無執行AgCl的回充的情況下,針對感測器使用壽命16天,對電極需要的長度至少為:C16day/Cconsume/day=20.8mC/1.3mg/day=16mm
(2)故在無使用本發明鹵化銀的回充方法的情況下,對電極的長度需超出16mm才能使感測器壽命達16天。
於本實施例中,在無使用本發明之鹵化銀的回充技術情況下,對電極訊號感測段需配置相對應較大的Ag/AgCl材料尺寸才能達到16天的感測器壽命。透過本發明鹵化銀的回充方法,於兩次量測步驟之間進行鹵化銀的回充步驟,該鹵化銀的消耗與回充可在短時間內重複循環(即用即充),故可縮減感測器中的Ag/AgCl材料用量,進而使感測器微型化,因此對電極訊號感測段材料不須準備16天份的AgCl的容量以供消耗。例如,大約準備1~2天份AgCl的容量即可使用感測器達16天,由此達到延長感測器使用壽命之功效。1~2天份的AgCl的容量亦指於出廠前或執行第一次量測前的對電極所具有例如在約1.3~2.6mC之間的AgCl的初始量,該初始量亦可為其他更小或更大的範圍。於其他實施例中亦可準備1~5天份、1~3天份、6~24小時、6~12小時等不同的AgCl容量。 對電極訊號感測段的材料尺寸只要具備讓每次葡萄糖量測步驟皆能穩定執行、使量測電流能與體內的葡萄糖濃度呈現正相關性的容量即可。
若在無使用本發明之氯化銀的回充技術情況下,先前技術會透過增加電極長度/面積使感測器達到所需天數需求。以先前技術為例,感測器植入端長度約為12mm,因植入長度長,而為了避免植入深達皮下組織,需以斜角方式植入皮下,其植入傷口較大。另外舉例來說,1~2天份的AgCl的容量約在1.3~2.6mC之間,換算該1~2天的對電極長度為2.5~5mm,其相較於無使用本發明鹵化銀的回充方法的情況下需要16mm的對電極長度,更加凸顯本發明能有效縮減所需對電極尺寸。透過本發明鹵化銀的回充方法,可縮短植入端長度,例如使長度縮減為不大於10mm。於本發明圖2A-2C所揭示的微型生物感測器100的連接區域117的下半部分至第二端114屬於短植入端118(如圖2A及2B所示),且短植入端118植入深度需至少滿足到真皮層可量測到組織液葡萄糖的深度,透過本發明鹵化銀的回充方法,短植入端118的最長邊不大於6mm,以使微型生物感測器100能以垂直於生物體表皮的方式被部分植入於生物體表皮下。短植入端118的最長邊較佳為不大於5mm、4.5mm、3.5mm或2.5mm。本發明的短植入端118包含對電極的訊號感測段132,其訊號感測段132的最長邊不大於6mm,較佳為2-6mm、2-5mm、2-4.5mm、2-3.5mm、0.5-2mm、0.2-1mm。
因此與未使用本發明之鹵化銀的回充技術情況比較下,透過本發明鹵化銀的回充方法,能有效延長感測器使用壽命、且能大幅縮減對電極上Ag/AgCl材料的使用,而使對電極訊號感測 段的尺寸可縮小。由於縮減對電極上Ag/AgCl材料的使用,而使感測器可微型化且可降低生物毒性。此外,電極尺寸縮小特別是指縮短感測器的植入端長度,因此可降低使用者植入痛感。
實施例II
請參閱圖11,其為本發明的生理訊號量測裝置的示意圖。本發明的生理訊號量測裝置10可以用於植入皮下以量測生物流體中的待分析物所關聯的生理參數的生理訊號。本發明的生理訊號量測裝置10包括微型生物感測器300及傳感單元200,其中傳感單元200與微型生物感測器300電連接,且具有處理器210、電源220、電路切換單元230、溫度感測單元240及通訊單元250。電源220經處理器210控制電路切換單元230提供電壓給微型生物感測器300進行生理訊號的量測,溫度感測單元240則進行生物體溫度量測,因此溫度量測訊號及微型生物感測器300所量測到的生理訊號會傳送至處理器210,再由處理器210將生理訊號運算成生理參數。通訊單元250可以與使用者裝置20進行有線或無線傳輸。
請參閱圖12A及12B,其為本發明微型生物感測器的第一實施例的正面與背面示意圖。本發明的微型生物感測器300包括基板310、設置於基板310上的工作電極320、對電極330與輔助電極340、以及包圍工作電極320、對電極330與輔助電極340的化學試劑350(如圖12C所示)。基板310的材質可選用任何已知適合使用於電極基板的材質且較佳具備可撓性及絕緣性質,例如但不限於:聚酯(Polyester)、聚醯亞胺(Polyimide)等高分子材質,前述高分子材質可以單獨使用一種或者混合多種使用。基板310具有表面311(即第一表面)、與表面311相對的對側表面312(即第二表面)、 第一端313及第二端314,且基板310分為3個區域,分別為靠近第一端313的訊號輸出區域315、靠近第二端314的感測區域316、及位於訊號輸出區域315及感測區域316之間的連接區域317。工作電極320設置於基板310的表面311上,且從基板310的第一端313延伸至第二端314,工作電極320包括位於基板310的訊號輸出區域315的訊號輸出段321,及位於基板310的感測區域316的訊號感測段322。
對電極330與輔助電極340設置於基板310的對側表面312,且從基板310的第一端313延伸至第二端314。對電極330包括位於基板310的感測區域316的訊號感測段332且輔助電極340包括位於基板310的感測區域316的訊號感測段342。微型生物感測器300的感測區域316可以植入皮下使訊號感測段322進行生物流體中待分析物所關聯的生理訊號的量測,生理訊號會被傳送至訊號輸出段321,再由訊號輸出段321傳送至處理器210以得到生理參數。另該生理參數除了從傳感單元200取得外,亦可經由無線/有線通訊傳送至使用者裝置20取得,常用的使用者裝置20例如智慧型手機、生理訊號接收器或血糖儀。
對電極330表面的材料包含銀(Silver)及鹵化銀(Silver Halide),其中鹵化銀較佳為氯化銀(Silver Chloride)或碘化銀(Silver Iodine),使該對電極330兼具參考電極的功能,即本發明的對電極330可以(1)與工作電極320形成電子迴路,使工作電極320上電流暢通,以確保氧化反應在工作電極320上發生;以及(2)提供穩定的相對電位作為參考電位。因此,本發明的工作電極320與對電極330形成一個二電極系統。為了進一步降低成本以及提高本發明之生物感測器的生物相容性,該銀/鹵化銀更可與碳混 合使用,例如將該銀/鹵化銀混入碳膠,其鹵化銀含量只要讓對電極330能穩定執行設定的量測動作即可。對電極330的部份的最外表面上還可以覆蓋導電材料以防止鹵化銀解離(dissolution),進而保護對電極330,其中導電材料係選擇不影響工作電極量測表現的導電材料為主,例如導電材料為碳(Carbon)。
另一實施例中生物感測器不限於導線式或疊層式的電極結構。
在本發明的另一個實施例中,在準備將生物感測器運送出工廠出售之前,鹵化銀的初始量可以為零。在這種情況下,生物感測器的對電極330上沒有鹵化銀。在將生物感測器皮下植入患者體內之後以及在進行首次測量之前的最開始回充期間中,經由氧化被塗佈在對電極330上的銀,可以在對電極330上回充初始量的鹵化銀。
輔助電極340,於回充步驟時,與對電極330形成電子迴路,使對電極330上電流暢通,以確保氧化反應在對電極330上發生,其電極材料係選用與工作電極320同樣材質或與工作電極320相比對於過氧化氫具有較低靈敏度之材料,例如碳。
化學試劑350至少覆蓋各電極的訊號感測段322,332,342。另一實施例中,化學試劑350至少覆蓋工作電極320的訊號感測段322(圖未示出)。也就是說,對電極330上可以不被化學試劑350覆蓋。微型生物感測器300的感測區域316可以植入皮下使工作電極320的訊號感測段322進行生物流體中待分析物所關聯的生理訊號的量測,生理訊號會被傳送至工作電極320的訊號輸出段321,再由訊號輸出段321傳送至處理器210以得到生理參數。另 該生理參數除了從傳感單元200取得外,亦可經由無線/有線通訊傳送至使用者裝置20取得。
請參閱圖12C,其為圖12A中沿A-A’線的剖面示意圖,其中A-A’線為從微型生物感測器300的感測區域316的剖面線。在圖12C中,工作電極320設置於基板310的表面311,對電極330及輔助電極340設置基板310的對側表面312,且工作電極320、對電極330及輔助電極340的表面上覆蓋化學試劑350。基本上化學試劑350至少覆蓋於工作電極320的部分表面上。本發明的微型生物感測器300會在量測期間執行量測步驟,及在回充期間執行回充步驟。當執行量測步驟時,工作電極320的電壓高於對電極330的電壓,使電流從工作電極320往對電極330的方向流動,進而使工作電極320發生氧化反應(即工作電極320、化學試劑350及待分析物之間的電化學反應)而量測生理訊號,對電極330發生還原反應,使對電極330中的鹵化銀(AgX)消耗而解離成銀(Ag)及鹵離子(X-)。由於對電極330中的鹵化銀被消耗,故需要回充對電極330中的鹵化銀以進行下一次的量測步驟。當執行回充步驟時,對電極330的電壓高於輔助電極340的電壓,使電流從對電極330往輔助電極340的方向流動,進而使對電極330發生氧化反應使銀與生物體內的鹵離子或結合而回充鹵化銀,詳細量測步驟與回充步驟見圖9說明。
請參閱圖13A,其為本發明的微型生物感測器的第二實施例的剖面示意圖。在圖13A中,本發明的工作電極320及輔助電極340可以設置於基板310的表面311上,對電極330設置於基板310的對側表面312上,且工作電極320、對電極330及輔助電極340的表面上覆蓋化學試劑350。在此實施例中,當執行量測步驟時, 電流從工作電極320往對電極330的方向流動,進而使工作電極320發生氧化反應而量測生理訊號,對電極330中的鹵化銀被消耗而解離成銀(Ag)及鹵離子(X-)。當執行回充步驟時,電流從對電極330往輔助電極340的方向流動,進而使對電極330發生氧化反應使銀與鹵離子結合而回充鹵化銀。
請參閱圖13B,其為本發明的微型生物感測器的第三實施例的剖面示意圖。在此實施例中,本發明的微型生物感測器300可以有兩個工作電極,分別為第一工作電極323及第二工作電極324,第二工作電極324取代輔助電極。在圖13B中,第一工作電極323及第二工作電極324設置於基板310的表面311,對電極330設置基板310的對側表面312,且第一工作電極323、第二工作電極324及對電極330的表面上覆蓋化學試劑350。在量測步驟時,可以選擇第一工作電極323或第二工作電極324來量測生理訊號,且在回充步驟時,由第一工作電極323或第二工作電極324幫助對電極330回充鹵化銀。因此,在此實施例中,當執行量測步驟時,電流從第一工作電極323或第二工作電極324往對電極330的方向流動,進而使第一工作電極323或第二工作電極324發生氧化反應而量測生理訊號,對電極330中的鹵化銀被消耗而解離成銀(Ag)及鹵離子(X-)。當執行回充步驟時,電流從對電極330往第一工作電極323或第二工作電極324的方向流動,進而使對電極330發生氧化反應使銀與鹵離子結合而回充鹵化銀。
請參閱圖13C,其為本發明的微型生物感測器的第四實施例的剖面示意圖。在此實施例中,本發明的微型生物感測器300可以有兩個工作電極,分別為第一工作電極323及第二工作電 極324,第二工作電極324取代輔助電極。在圖13C中,第一工作電極323設置於基板310的表面311,對電極330及第二工作電極324設置基板310的對側表面312,且第一工作電極323、第二工作電極324及對電極330的表面上覆蓋化學試劑350。在此實施例中,第一工作電極323的面積可以增加以作為量測的電極,第二工作電極324的面積可以降低以作為回充的電極,故在量測步驟時,以第一工作電極323來量測生理訊號,且在回充步驟時,由第二工作電極324幫助對電極330回充鹵化銀。因此,在此實施例中,當執行量測步驟時,電流從第一工作電極323往對電極330的方向流動,進而使第一工作電極323發生氧化反應而量測生理訊號,對電極330中的鹵化銀被消耗而解離成銀(Ag)及鹵離子(X-)。當執行回充步驟時,電流從對電極330往第二工作電極324的方向流動,進而使對電極330發生氧化反應使銀與鹵離子結合而回充鹵化銀。
請參閱圖13D,其為本發明的微型生物感測器的第五實施例的剖面示意圖。第五實施例為第一實施例多了一個工作電極,即在第五實施例中,本發明的微型生物感測器300有兩個工作電極,分別為第一工作電極323及第二工作電極324,一個對電極330及一個輔助電極340。在圖13D中,第一工作電極323及第二工作電極324設置於基板310的表面311,對電極330及輔助電極340設置基板310的對側表面312,且第一工作電極323、第二工作電極324、對電極330及輔助電極340的表面上覆蓋化學試劑350。在量測步驟時,可以選擇第一工作電極323或第二工作電極324來量測生理訊號,且在回充步驟時,由輔助電極340幫助對電極330回充鹵化銀。因此,在此實施例中,當執行量測步驟時,電流從第一工作電 極323或第二工作電極324往對電極330的方向流動,進而使第一工作電極323或第二工作電極324發生氧化反應而量測生理訊號,對電極330中的鹵化銀被消耗而解離成銀(Ag)及鹵離子(X-)。當執行回充步驟時,電流從對電極330往輔助電極340的方向流動,進而使對電極330發生氧化反應使銀與鹵離子結合而回充鹵化銀。
請參閱圖13E,其為本發明的微型生物感測器的第六實施例的剖面示意圖。在此實施例中,本發明的微型生物感測器300可以有三個工作電極,分別為第一工作電極323、第二工作電極324及第三工作電極325,第三工作電極325取代輔助電極。在圖13E中,第一工作電極323及第二工作電極324設置於基板310的表面311,對電極330及第三工作電極325設置基板310的對側表面312,且第一工作電極323、第二工作電極324、第三工作電極325及對電極330的表面上覆蓋化學試劑350。在量測步驟時,可以選擇第一工作電極323、第二工作電極324或第三工作電極325來量測生理訊號,且在回充步驟時,亦可以選擇第一工作電極323、第二工作電極324或第三工作電極325幫助對電極330回充鹵化銀。因此,在此實施例中,當執行量測步驟時,電流從第一工作電極323、第二工作電極324或第三工作電極325往對電極330的方向流動,進而使第一工作電極323、第二工作電極324或第三工作電極325發生氧化反應而量測生理訊號,對電極330中的鹵化銀被消耗而解離成銀(Ag)及鹵離子(X-)。當執行回充步驟時,電流從對電極330往第一工作電極323、第二工作電極324或第三工作電極325的方向流動,進而使對電極330發生氧化反應使銀與鹵離子結合而回充鹵化銀。
請參閱圖13F,其為本發明的微型生物感測器的第七 實施例的剖面示意圖。第七實施例是第六實施例的電極配置的變化。在此實施例中,如圖13F圖所示,第一工作電極323、第二工作電極324及第三工作電極325皆設置於基板310的表面311,對電極330設置基板310的對側表面312,且第一工作電極323、第二工作電極324、第三工作電極325及對電極330的表面上覆蓋化學試劑350。在量測步驟時,可以選擇第一工作電極323、第二工作電極324或第三工作電極325來量測生理訊號,且在回充步驟時,亦可以選擇第一工作電極323、第二工作電極324或第三工作電極325幫助對電極330回充鹵化銀。因此,在此實施例中,當執行量測步驟時,電流從第一工作電極323、第二工作電極324或第三工作電極325往對電極330的方向流動,進而使第一工作電極323、第二工作電極324或第三工作電極325發生氧化反應而量測生理訊號,對電極330中的鹵化銀被消耗而解離成銀(Ag)及鹵離子(X-)。當執行回充步驟時,電流從對電極330往第一工作電極323、第二工作電極324或第三工作電極325的方向流動,進而使對電極330發生氧化反應使銀與鹵離子結合而回充鹵化銀。
請參閱圖13G,其為本發明的微型生物感測器的第八實施例的剖面示意圖。相較於圖13D差別在於第二工作電極324為U型,在此第八實施例中,第一工作電極323及第二工作電極324配置於基板310的表面311上,第二工作電極324鄰設並圍繞於第一工作電極323的側邊,對電極330與輔助電極340設置於基板310的對側表面312上。在此實施例中,當執行量測步驟時,電流從第一工作電極323往對電極330的方向流動,進而使第一工作電極323發生氧化反應而量測生理訊號,對電極330中的鹵化銀被消耗而解離成 銀(Ag)及鹵離子(X-)。當執行回充步驟時,電流從對電極330往輔助電極340或第二工作電極324的方向流動,進而使對電極330發生氧化反應使銀與鹵離子結合而回充鹵化銀。
以上圖12C-13G其詳細電極疊層省略,僅示意電極位置。
在上述任一實施例中,本發明的基板310為絕緣體。本發明的工作電極320及第一工作電極323的電極材料包含但不限於:碳、鉑、鋁、鎵、金、銦、銥、鐵、鉛、鎂、鎳、錳、鉬、鋨、鈀、銠、銀、錫、鈦、鋅、矽、鋯、前述元素的混合物、或前述元素的衍生物(如合金、氧化物或金屬化合物等),較佳地,工作電極320及第一工作電極323的材料為貴金屬、貴金屬之衍生物或前述的組合。更佳地,工作電極320及第一工作電極323為含鉑材料。第二工作電極324及第三工作電極325同樣可使用如上述工作電極320及第一工作電極323所例舉的元素或其衍生物。另一實施例中,第二工作電極324及第三工作電極325的電極材料選用與第一工作電極323相比對於過氧化氫具有較低靈敏度之材料,例如碳。
由於本發明的對電極330的電極材料包括銀及鹵化銀(Ag/AgX),因此同時具有習知中對電極及參考電極的功能,即本發明的對電極330可以(1)與工作電極320形成電子迴路,使工作電極320上電流暢通,以確保電化學反應在工作電極320上發生;(2)與輔助電極340形成電子迴路,使對電極330上電流暢通,以確氧化反應在對電極330上發生;以及(3)提供穩定的相對電位作為參考電位。因此,本發明的工作電極320、對電極330與輔助電極340形成一個有別於傳統的三電極系統。
當本發明的輔助電極340的電極材料為表面覆蓋鉑時,輔助電極340亦可作為量測生理訊號的電極。
在上述任一實施例中,為了防止銀電極材料的過度氯化而發生斷線,還可以在基板310的對側表面312與對電極330的銀之間添加一層導電材料(如碳)。然而,若對電極330的底層是碳會造成開關處的阻值過高,故還可在碳導電材料跟基板310的對側表面312之間再增設一層導電層,例如為銀以降低訊號輸出端的阻抗,使本發明的對電極330從基板310的對側表面312開始依序為導電層、碳層及銀/鹵化銀層。
定電壓電路切換應用
請參考圖14A-14B和5A-5D,其中圖14A和圖14B分別示出本發明中處於量測模式和回充模式的定電壓電路,圖5A-5D分別示出該定電壓電路以不同方式交替進行量測模式和回充模式的電流示意圖。量測模式可分別藉由施加量測電位差V1和移除量測電位差V1而開始和停止,而對應的電流以Ia表示。在量測模式時,於量測期間T1施加量測電位差V1於工作電極W與對電極R/C之間,使工作電極W的電壓高於對電極R/C的電壓。如圖14A所示,此時開關S1和S4為閉路狀態,而開關S2和S3為開路狀態,工作電極W為+V1,對電極R/C為接地,輔助電極Aux為開路狀態,以使工作電極W進行氧化反應,並與化學試劑和待分析物進行電化學反應而輸出生理訊號Ia,同時對電極R/C的AgCl具有對應於該生理訊號Ia的消耗量。如圖5A-5D所示,在多個量測期間T1之間的是未進行量測的期間T2。在某些較佳實施例中,T2為固定值。
回充模式可分別藉由施加回充電位差V2和移除回充 電位差V2而開始和停止,而對應的電流以Ib表示。V2為0.1V至0.8V之間的固定值,較佳為0.2V至0.5V之間的固定值。在回充模式時,施加回充電位差V2於對電極R/C與輔助電極Aux之間持續回充期間t2(t2介於0至T2之間),使對電極R/C的電壓高於輔助電極Aux的電壓。如圖14B所示,此時開關S1和S4為開路狀態,而開關S2和S3為閉路狀態,工作電極W為開路狀態,對電極R/C為+V2,輔助電極Aux接地,以使對電極R/C上的Ag進行氧化反應,而回充對電極R/C上的AgCl達一回充量。在定電壓電路中的回充電位差V2為固定電壓,測得的輸出電流為Ib。本發明是透過計算電流曲線下的面積以定義AgCl的容量(Capacity,單位庫倫,以符號"C"表示),故量測模式中AgCl的消耗量為Ia*T1,回充模式中AgCl的回充量為Ib*t2。因此,可經由調控回充電位差V2的施加時間t2來控制AgCl的回充量。換言之,在對電極R/C上的AgCl保持在安全庫存量之內的前提下,可使回充量等於或不等於(包含約略相近、大於或小於)消耗量。
圖5A-5D中橫軸為時間,V1的線條表示量測電位差V1的施加和移除,V2的線條表示回充電位差V2的施加和移除。請參考圖5A,在一較佳實施例中,V2和T2都是固定值,V2的施加時間t2(即回充期間)是變動值。回充期間t2是根據在量測模式所測得的生理訊號Ia及量測期間T1而在0至T2之間動態調整。如圖5A中所示,t2可為t2’、t2”、或t2'''…。換言之,回充期間t2可根據AgCl的消耗量而改變,若AgCl的消耗量大,則可回充較長的時間以使對電極R/C上的AgCl保持在安全庫存量之內。舉例而言,在t2”期間所回充的AgCl的量將大於t2’期間所回充的AgCl量。
請參考圖5B,在另一較佳實施例中,V2、T2和t2都是固定值,其中t2=T2。也就是說,量測模式和回充模式是無縫交替的,在未進行量測的期間即為回充期間。請參考圖15C和5D,在某些較佳實施例中,V2、T2和t2都是固定值,其中t2為大於0且小於T2的固定值,例如t2=1/2的T2、2/5的T2、3/5的T2等。圖5C和5D的差別在於,圖5C中是在每次量測模式結束後,經歷一段緩衝時間(緩衝時間=T2-t2),才開始回充模式;圖5D中是每次量測模式結束後未經緩衝時間即立即開始回充模式,而在每次回充模式結束與下一次量測模式開始之間間隔一段時間。在某些較佳實施例中,t2小於T2,且t2可為T2期間的任何時間段。
請參考圖5E和5F,其示出本發明的定電壓電路以不同方式交替進行量測模式和回充模式的電流示意圖。圖5E和5F中,橫軸為時間,縱軸為電流,曲線表示所量測到的生理訊號Ia換算而成的生理參數值曲線。在這兩個實施例中,類似於圖5A,V2和T2為固定值,回充期間t2是變動值。圖5E和5F中,曲線下白色面積代表量測模式中AgCl的消耗量(Ia*T1),斜線面積代表回充模式中AgCl的回充量(Ib*t2)。由圖中可看出,為了使Ib*t2接近Ia*T1或在Ia*T1的某個範圍內,回充期間t2是根據所測得的生理訊號Ia及量測期間T1而在0至T2之間動態調整。根據需要,可選擇在未執行量測模式的期間(T2)的前段(如圖5E所示)或後段(如圖5F所示)進行回充模式。
有段切換的定電流電路切換應用
請參考圖16A-16B和圖18A-18C,其中圖16A和圖16B分別示出本發明中處於量測模式和回充模式的有段切換的定電流 電路,圖18A-18C示出本發明的定電流電路以不同方式交替進行量測模式和回充模式的三種電壓示意圖。量測模式可分別藉由施加量測電位差V1和移除量測電位差V1而開始和停止,而對應的電流以Ia表示。在量測模式時,施加量測電位差V1於工作電極W與對電極R/C之間持續量測期間T1。如圖16A所示,此時開關S1和S4為閉路狀態,而其他開關都為開路狀態,工作電極W為+V1,對電極R/C為接地,輔助電極Aux為開路狀態,以使工作電極W進行氧化反應,並與化學試劑和待分析物進行電化學反應而輸出生理訊號Ia,同時對電極R/C的AgCl具有對應於該生理訊號Ia的消耗量。如圖18A-18C所示,在多個量測期間T1之間的是未進行量測的期間T2。在某些較佳實施例中,T2為固定值。
回充模式可分別藉由施加回充電位差V2(V2為變動值)和移除回充電位差V2而開始和停止,而對應的電流以Ib表示。在回充模式時,施加回充電位差V2於輔助電極Aux與對電極R/C之間持續回充期間t2(t2介於0至T2之間)。如圖16B所示,此時開關S1和S4為開路狀態,S2和I_F1至I_Fn所對應的至少一個開關為閉路狀態(圖中示例性地示出I_F1和I_F3對應的開關為閉路狀態),工作電極W為開路狀態,輔助電極Aux為接地,對電極R/C為+V2,以使對電極R/C上的Ag進行氧化反應,進而回充AgCl。在回充模式時,可根據該生理訊號Ia的大小及量測期間T1,而選擇切換I_F1至I_Fn所對應的至少一個開關以輸出固定電流Ib,並經由調控電位差V2的施加時間t2來控制AgCl的回充量。換言之,在對電極R/C上的AgCl保持在安全庫存量之內的前提下,可使回充量等於或不等於(包含約略相近、大於或小於)消耗量。
無段切換的定電流電路切換應用
請參考圖17A-17B和圖18A-18C,其中圖17A和圖17B分別示出本發明中處於量測模式和回充模式的無段切換的定電流電路。本實施例的量測模式與回充模式與圖16A-16B類似,故於此不再贅述,圖16A-16B實施例之差異僅在本實施例在回充模式時,可根據該生理訊號Ia,藉由數位類比轉換器(DAC)的控制而輸出固定電流Ib,並經由調控電位差V2的施加時間t2來控制AgCl的回充量。換言之,在對電極R/C上的AgCl保持在安全庫存量之內的前提下,可使回充量等於或不等於(包含約略相近、大於或小於)消耗量。
圖18A-18C中橫軸為時間,縱軸為電流,其中V1的線條表示量測電位差V1的施加和移除,V2的線條表示回充電位差V2的施加和移除。請參考圖18A,在一較佳實施例中,T2是固定值,V2和V2的施加時間t2(即回充期間)是變動值。回充期間t2是根據在量測模式所測得的生理訊號Ia及量測期間T1而在0至T2之間動態調整。如圖18A中所示,t2可為t2’、t2”、或t2'''…。換言之,回充期間t2可根據AgCl的消耗量而改變,若AgCl的消耗量大,則可回充較長的時間以使對電極R/C上的AgCl保持在安全庫存量之內。
請參考圖18B,在另一較佳實施例中,V2是變動值,T2和t2都是固定值,其中t2為大於0且小於T2的固定值,例如t2=1/2的T2、2/5的T2、3/7的T2等。在此實施例中,V2是根據於生理訊號量測步驟(即在量測模式中)的AgCl的消耗量而動態調整。動態調整方式的其中一個實施例如下。使用例如上述的有段切換的定 電流電路,該電路具有n個固定電流源與n個開關,各固定電流源分別對應一個開關。於回充模式時,依據AgCl的消耗量,選擇開啟n個開關中的至少一個開關(即使該開關處於閉路狀態)以輸出固定電流值。在回充期間t2為固定值的情況下,可以藉由選擇不同的固定電流輸出來控制AgCl的回充量。
請參考圖18C,在另一較佳實施例中,V2是變動值,T2和t2都是固定值,其中t2=T2。也就是說,量測模式和回充模式是無縫交替的,在未進行量測的期間即為回充期間。
相較於無段切換的定電流電路,有段切換的定電流電路可透過多個開關控制多個電流路徑,而得以根據所需的電流量以分段式的定電流進行回充,以此方式較為省電且可以降低成本。此外,不管是定電壓電路或定電流電路,電位差可以來自直流電源或交流電源,較佳來自直流電源。
圖5A-5F、圖15A-15B、圖16A-16B以及圖8A-8C的實施例都是描述量測步驟和回充步驟交替循環的操作方式,亦即每個量測步驟之間都有一個AgCl回充步驟,此方式可較佳地確保AgCl保持在安全庫存量之內。然而,在某些較佳實施例中,亦可在進行N次的量測期間選擇性搭配Y次的AgCl回充,其中Y≦N,使AgCl的累積回充量仍可保持在安全庫存範圍內。量測步驟和回充步驟也不必然需要以交替循環的方式進行,亦可於數次量測步驟後再進行一次回充步驟,或是在預定的量測時間之後,才進行一次回充步驟。舉例而言,可於量測10次後再進行一次回充步驟,或可於累積量測時間達1小時後才進行一次回充步驟。
請參考圖8D,其示出本發明的定電流電路以類似圖 8C的方式交替進行量測模式和回充模式的示意圖。圖8D中,曲線表示所量測到的生理訊號Ia所轉換成的生理參數值曲線,且類似於圖8C,T2和t2都是固定值,V2是變動值。圖8D中,曲線下白色面積代表量測模式中AgCl的消耗量(Ia*T1),斜線面積代表回充模式中AgCl的回充量(Ib*t2)。由圖中可看出,為了使Ib*t2接近Ia*T1或在Ia*T1的某個範圍內,回充電位差V2是是根據AgCl的消耗量而動態調整。
另外圖5E、5F及圖8D中,雖未顯示每次執行生理訊號量測步驟後所輸出各生理參數值輸出時機點,但生理參數值不限於完成量測時輸出或於在回充期間內輸出,而AgCl回充步驟不限於在每一個生理參數輸出後執行或獲得生理訊號後執行。
於包含工作電極W和對電極R/C的兩電極系統中,工作電極W必須在執行氧化反應和執行還原反應之間不斷循環切換。在電極的化學反應環境中,氧化和還原反應之間的切換須經過一回穩期,例如數秒鐘或數分鐘才能回穩。相較之下,在包含工作電極W、對電極R/C和輔助電極Aux的三電極系統中,可利用工作電極W和對電極R/C之間的迴路進行量測步驟,接著經由輔助電極Aux與對電極R/C之間的迴路進行回充步驟,由此可避免工作電極W需要回穩期的缺點,亦即在量測步驟之後可立即進行回充步驟。
請參考圖9,其示出根據本發明一實施例的量測待分析物的方法,透過該方法可延長微型生物感測器的使用壽命。該微型生物感測器可為例如圖12A-圖13所示的微型生物感測器,用於植入皮下以量測與生物流體(例如組織液)中的該待分析物所關聯的生理參數的生理訊號。在圖9的實施例中,該待分析物可為組織 液中的葡萄糖,生理參數為人體中的葡萄糖值,生理訊號為微型生物感測器量得的電流值。此實施例中,量測待分析物的方法包含反覆循環地執行量測步驟(S901)及回充步驟(S902)。量測步驟(S901)包含使用前述定電壓或定電流電路於量測期間T1執行如前述的量測模式以輸出生理訊號(即電流值),同時對電極的AgCl具有對應於該電流值的消耗量。量測步驟(S901)還包含透過停止如前述的量測模式來停止量測步驟,且該電流值經運算後輸出生理參數(即葡萄糖值)。
在量測步驟(S901),其化學反應式如下:
於工作電極320進行以下氧化反應:
葡萄糖(Glucose)+還原型葡萄糖氧化酶(Glucose oxidase,Gox)(FAD)
Figure 109126241-A0305-02-0055-11
葡萄糖酸內酯(Gluconolactone)+氧化型葡萄糖氧化酶(FADH2)
氧化型葡萄糖氧化酶(FADH2)+O2
Figure 109126241-A0305-02-0055-12
還原型葡萄糖氧化酶(FAD)+H2O2
H2O2
Figure 109126241-A0305-02-0055-13
2H++O2+2e-
於對電極330進行以下還原反應:
2AgCl+2e-
Figure 109126241-A0305-02-0055-14
2Ag+2Cl-
回充步驟(S902)包含使用前述定電壓或定電流電路於回充期間執行如前述的回充模式,以使對電極的AgCl具有對應於消耗量的回充量,進而使對電極上之AgCl的量控制在安全庫存區間內。由此,可使該工作電極與對電極之間的電位差保持穩定,讓所獲得的電流值仍能與葡萄糖值保持穩定的比例關係(若偵測物質為其他待分析物亦可能是正比關係也可能是反比關係)。換言 之,可使下一量測步驟時所獲得的下一個電流值與下一個葡萄糖值保持穩定的比例關係。回充步驟(S902)還包含透過停止如前述的回充模式來停止回充步驟。回充步驟(S902)結束後循環回去執行量測步驟(S901),直到執行了N次量測步驟(S901)與N次回充步驟(S902)。
在回充步驟(S902),其化學反應式如下:
於輔助電極進行以下還原反應:
葡萄糖(Glucose)+還原型葡萄糖氧化酶(Glucose oxidase)(FAD)
Figure 109126241-A0305-02-0056-15
葡萄糖酸內酯(Gluconolactone)+氧化型葡萄糖氧化酶(FADH2)
氧化型葡萄糖氧化酶(FADH2)+O2
Figure 109126241-A0305-02-0056-16
還原型葡萄糖氧化酶(FAD)+H2O2
H2O2+2H++2e-
Figure 109126241-A0305-02-0056-17
H2O
O2+4H++4e-
Figure 109126241-A0305-02-0056-18
2H2O
於對電極330的正電位促使對電極330進行以下氧化反應:
2Ag
Figure 109126241-A0305-02-0056-19
2Ag++2Cl-
Figure 109126241-A0305-02-0056-20
2AgCl+2e-
其中對電極上的Ag氧化成Ag+,與來自生物體內Cl-或AgCl氧化(或解離)後的Cl-結合而成AgCl,使得於量測期間T1內被消耗的部分或全部AgCl被回充到對電極上。
人體透過摻碘的食鹽可以取得氯離子及碘離子,故可取得的鹵離子至少包括氯離子及碘離子,以用於回充鹵化銀。
以下實施例是針對N次量測步驟(S901)及N次回充步驟(S902)的循環,其中所提到的生理參數較佳是葡萄糖值,所提到的生理訊號較佳是電流值。根據某些較佳實施例,各量測電位 差V1於量測期間T1被施加,各回充電位差V2於回充期間t2被施加,且量測期間T1為固定值,其可為3秒內、5秒內、10秒內、15秒內、30秒內、1分鐘內、2分鐘內、5分鐘內或10分鐘內的一時間值。根據某些較佳實施例,較佳為30秒內的時間值。量測期間T1為固定值,且可為2.5秒、5秒、15秒、30秒、1分鐘、2.5分鐘、5分鐘、10分鐘或30分鐘,較佳為30秒。根據某些較佳實施例,各量測期間T1加上各回充期間t2為固定值。根據某些較佳實施例,各回充電位差V2具有固定電壓值,各回充期間t2是根據AgCl的每次消耗量而動態調整(如圖5A所示)。根據某些較佳實施例,輸出的各生理參數是經由各量測期間T1中的一個單一量測時間點的各生理訊號運算而獲得。根據某些較佳實施例,輸出的各生理參數是經由各量測期間T1中的多個量測時間點的多個生理訊號的一數學運算值運算而獲得。前述數學運算值為例如累加值、平均值、中位數、中位數的平均值等。根據某些較佳實施例,藉由控制每次回充量為等於或不等於(包含約略相近、大於或小於)每次消耗量,而控制對電極之AgCl量在安全庫存區間內,而使下一量測步驟時所獲得的下一生理訊號與下一生理參數保持穩定的比例關係。根據某些較佳實施例,移除各量測電位差V1的步驟是將配置於連通工作電極及對電極之電路斷路、或設定各量測電位差V1為0。換言之,可進行斷電,以使量測電路具有開路狀態;或者,可施加0伏特電壓於工作電極及對電極之間,其中該兩項操作其中任一操作的操作時間皆為0.01~0.5秒。移除量測電位差V1的步驟可避免Λ形的生理訊號產生。根據某些較佳實施例,移除各回充電位差V2的步驟是將配置於連通輔助電極及對電極之電路斷路、或設定各回充電位差V2為 0。
根據某些較佳實施例,感測器植入人體後需經過暖機時間,使感測器在體內達到平衡穩定才能穩定呈現與分析物濃度呈正相關的生理訊號。因此,在量測步驟(S901)持續施加量測電壓直至量測期間T1結束,並控制該量測期間T1以使得生理訊號與分析物的生理參數達到穩定的比例關係。因此,量測期間T1可為變動值或為變動值和固定值的組合(例如變動值+固定值,該變動值可為1小時、2小時、3小時、6小時、12小時或24小時,該固定值可為例如30秒)。
請參考圖5A-5F、圖8A-8D及圖9,本發明利用施加電壓於對電極R/C來量測一期間內對電極之反應電流,並經由將該期間內反應電流經數學運算而得知AgCl初始容量,例如透過計算反應電流曲線下的面積以定義AgCl初始容量,又稱初始量或初始庫倫量(Cinitial),以下皆以量來說明。對電極R/C包含Ag和AgCl,當得知AgCl的百分比(X%AgCl)時,即可算出Ag百分比(Y% Ag=100%-X% AgCl)。於每次量測步驟(S901)中透過計算工作電極W的電流曲線下的面積來定義每次AgCl的消耗量(以Cconsume表示)。對電極R/C的AgCl具有對應於該生理訊號Ia的消耗量Cconsume,即Cconsume=Ia*T1。於每次回充步驟(S902)中,透過計算對電極R/C的電流曲線下的面積來定義每次AgCl的回充量(以Creplenish表示),即Creplenish=Ib*t2,t2介於0~T2之間。
以下描述AgCl安全庫存量的計算方法。在某些較佳實施例中,安全庫存區間是以Ag與AgCl的比例呈現,本發明是以於對電極量測到的庫倫量(C)以反映Ag與AgCl的比例關係。在某 些較佳實施例中,Ag與AgCl的比例為99.9%:0.1%、99%:1%、95%:5%、90%:10%、70%:30%、50%:50%、40%:60%或30:70%,使AgCl在對電極上具備一程度上的量而不會被消耗殆盡,讓每次生理訊號量測步驟皆能穩定執行。AgCl的剩餘量為回充量與初始量的和減去消耗量。在某些較佳實施例中,AgCl的剩餘量在一區間範圍內變動,亦即AgCl的剩餘量被控制在初始量加減特定值(X值)的範圍內,即(Creplenishe+Cinitial)-Cconsume=Cinitial±X,其中0<X<100% Cinitial、10% Cinitial<X≦90% Cinitial、或0.5% Cinitial<X≦50% Cinitial。在某些較佳實施例中,AgCl的剩餘量可在一區間範圍內逐漸下降、逐漸上升、或是平穩變動或任意變動但仍於該區間範圍內。
請參考圖10,其示出根據本發明另一實施例的量測待分析物的方法,透過該方法可延長微型生物感測器的使用壽命並且能縮減對電極之銀及鹵化銀材料用量。該微型生物感測器可為例如圖12A-12C及圖13A-13G所示的微型生物感測器,用於植入皮下以量測與生物流體(例如組織液)中的該待分析物所關聯的生理參數的生理訊號。該微型生物感測器的對電極的電極材料包括銀及鹵化銀,在圖10的實施例中,該待分析物可為組織液中的葡萄糖,生理參數為人體中的葡萄糖值,生理訊號為微型生物感測器量得的電流值。以下僅描述此實施例的一個循環。此實施例的方法始於以下步驟:施加量測電壓以驅動工作電極,以量測用以獲得生理參數的生理訊號,其中鹵化銀被消耗特定量(下文略稱為消耗量)(S1001)。
接著停止施加量測電壓(S1002),並利用所獲得的生理訊號來獲得生理參數(S1003)。獲得生理參數後,施加回充電壓 於對電極及輔助電極之間,以驅動對電極,從而使鹵化銀的量被回充一回充量(S1004),其中回充量與初始量的和減去消耗量的值(即前文所述的剩餘量)被控制在初始量加減特定值的範圍內。上述控制步驟是藉由控制回充量等於或不等於(包含約略相近、大於或小於)消耗量來達成,以維持鹵化銀的量在安全庫存區間內。根據反應式,鹵化銀的莫耳數增減對應銀的莫耳數增減,故為了便於說明,鹵化銀的消耗量對應模擬的銀的增加量。在某些較佳實施例中,剩餘量的值被控制成使得鹵化銀的量與銀的量加上鹵化銀的量的和(AgCl/Ag+AgCl)的比值是大於0且小於1,亦即對電極的鹵化銀有一個量即可,較佳為介於0.01-0.99之間、介於0.1-0.9之間、介於0.2-0.8之間、介於0.3-0.7之間或介於0.4-0.6之間。在達到該回充量時停止施加回充電壓(S1005)。之後再循環至步驟S1001執行下一個循環。
以下描述本發明的一具體實施例,以生物感測器使用壽命須達到16天作為示例以計算所需電極訊號感測段Ag/AgCl材料尺寸之方法,例如每次測量的待分析物平均量測電流為30nA、量測期間(T1)為30秒、且回充期間(t2)為30秒。每天所需AgCl的消耗量(Cconsume/day)=1.3mC/天。假設感測器使用壽命的需求為16天,則使用16天所需AgCl的消耗量為1.3 x 16=20.8mC。
例如對電極的長度為2.5mm,其對應AgCl初始量Cintial=10mC;
(3)在無執行AgCl的回充的情況下,針對感測器使用壽命16天,對電極需要的長度至少為:C16day/Cconsume/day=20.8mC/1.3mg/day=16mm
(4)故在無使用本發明鹵化銀的回充方法的情況下,對電極的長度需超出16mm才能使感測器壽命達16天。
於本實施例中,在無使用本發明之鹵化銀的回充技術情況下,對電極訊號感測段需配置相對應較大的Ag/AgCl材料尺寸才能達到16天的感測器壽命。透過本發明鹵化銀的回充方法,於兩次量測步驟之間進行鹵化銀的回充步驟,該鹵化銀的消耗與回充可在短時間內重複循環(即用即充),故可縮減感測器中的Ag/AgCl材料用量,進而使感測器微型化,因此對電極訊號感測段材料不須準備16天份的AgCl的容量以供消耗。例如,大約準備1~2天份AgCl的容量即可使用感測器達16天,由此達到延長感測器使用壽命之功效。1~2天份的AgCl的容量亦指於出廠前或執行第一次量測前的對電極所具有例如在約1.3~2.6mC之間的AgCl的初始量,該初始量亦可為其他更小或更大的範圍。於其他實施例中亦可準備1~5天份、1~3天份、6~24小時、6~12小時等不同的AgCl容量。對電極訊號感測段的材料尺寸只要具備讓每次葡萄糖量測步驟皆能穩定執行、使量測電流能與體內的葡萄糖濃度呈現正相關性的容量即可。
若在無使用本發明之氯化銀的回充技術情況下,先前技術會透過增加電極長度/面積使感測器達到所需天數需求,以先前技術為例,感測器植入端長度約為12mm,因植入長度長,而為了避免植入深達皮下組織,需以斜角方式植入皮下,其植入傷口較大。另外舉例來說,1~2天份的AgCl的容量約在1.3~2.6mC之間,換算該1~2天的對電極長度為2.5~5mm,其相較於無使用本發明鹵化銀的回充方法的情況下需要16mm的對電極長度,更加凸顯本發 明能有效縮減所需對電極尺寸。透過本發明鹵化銀的回充方法,可縮短植入端長度,例如使長度縮減為不大於10mm。於本發明的微型生物感測器300的連接區域317的下半部分至第二端314屬於短植入端318(如圖12A及12B所示),且短植入端318植入深度需至少滿足到真皮層可量測到組織液葡萄糖的深度,故短植入端318的最長邊不大於6mm,以使微型生物感測器300能以垂直於生物體表皮的方式被部分植入於生物體表皮下。短植入端318的最長邊較佳為不大於5mm、4.5mm或3.5mm或2.5mm。本發明的短植入端包含對電極330的訊號感測段332,其訊號感測段332最長邊不大於6mm,較佳為2-6mm、2-5mm、2-4.5mm或2-3.5mm、0.5-2mm、0.2-1mm。
因此與未使用本發明之鹵化銀的回充技術情況比較下,透過本發明鹵化銀的回充方法,能有效延長感測器使用壽命、且能大幅縮減對電極上Ag/AgCl材料的使用,而使對電極訊號感測段的尺寸可縮小。由於縮減對電極上Ag/AgCl材料的使用,而使感測器可微型化且可降低生物毒性。此外,電極尺寸縮小特別是指縮短感測器的植入端長度,因此可降低使用者植入痛感。
實施例III
請參閱圖17,其為本發明的生理訊號量測裝置的示意圖。本發明的生理訊號量測裝置10可以用於植入皮下以量測生物流體中的待分析物所關聯的生理參數的生理訊號。本發明的生理訊號量測裝置10包括微型生物感測器400及傳感單元200,其中傳感單元200與微型生物感測器400電連接,且具有處理器210、電源220、電路切換單元230、溫度感測單元240及通訊單元250。電源 220經處理器210控制電路切換單元230提供電壓給微型生物感測器400進行生理訊號的量測,溫度感測單元240則進行生物體溫度量測,因此溫度量測訊號及微型生物感測器400所量測到的生理訊號會傳送至處理器210,再由處理器210將生理訊號運算成生理參數。通訊單元250可以與使用者裝置20進行有線或無線傳輸。
請參閱圖18A及18B,其為本發明微型生物感測器的第一實施例的正面與背面示意圖。本發明的微型生物感測器400包括基板410、設置於基板410上的第一工作電極420、第二工作電極430、第一對電極440與第二對電極450、以及包圍第一工作電極420、第二工作電極430、第一對電極440與第二對電極450的化學試劑460(如圖18C所示)。基板410的材質可選用任何已知適合使用於電極基板的材質且較佳具備可撓性及絕緣性質,例如但不限於:聚酯(Polyester)、聚醯亞胺(Polyimide)等高分子材質,前述高分子材質可以單獨使用一種或者混合多種使用。基板410具有表面411(即第一表面)、與表面411相對的對側表面412(即第二表面)、第一端413及第二端414,且基板410分為3個區域,分別為靠近第一端413的訊號輸出區域415、靠近第二端414的感測區域416、及位於訊號輸出區域415及感測區域416之間的連接區域417。第一工作電極420與第二工作電極430設置於基板410的表面411上,且從基板410的第一端413延伸至第二端414。第一工作電極420包括位於基板410的訊號輸出區域415的第一訊號輸出段421,及位於基板410的感測區域416的第一訊號感測段422。第二工作電極430包括位於基板410的訊號輸出區域415的第二訊號輸出段431,及位於基板410的感測區域416的第二訊號感測段432。
第一對電極440與第二對電極450設置於基板410的對側表面412,且從基板410的第一端413延伸至第二端414。第一對電極440包括位於基板410的訊號輸出區域415的第三訊號輸出段441,及位於基板410的感測區域416的第三訊號感測段442,且第二對電極450包括位於基板410的訊號輸出區域415的第四訊號輸出段451,及位於基板410的感測區域416的第四訊號感測段452。第一對電極440及第二對電極450表面的材料包含銀(Silver)及鹵化銀(Silver Halide),其中鹵化銀較佳為氯化銀(Silver Chloride)或碘化銀(Silver Iodine),使第一對電極440及第二對電極450兼具參考電極的功能,即本發明的第一對電極440及第二對電極450可以(1)與第一工作電極420或第二工作電極430形成電子迴路,使第一工作電極420或第二工作電極430上電流暢通,以確保氧化反應在第一工作電極420或第二工作電極430上發生;以及(2)提供穩定的相對電位作為參考電位。因此,本發明的第一工作電極420、第二工作電極430、第一對電極440及第二對電極450形成一個四電極系統。為了進一步降低成本以及提高本發明之生物感測器的生物相容性,該銀/鹵化銀更可與碳混合使用,例如將該銀/鹵化銀混入碳膠,其鹵化銀含量只要讓第一對電極440及第二對電極450能穩定執行設定的量測動作即可。第一對電極440及第二對電極450的部份的表面上還可以覆蓋導電材料以防止鹵化銀解離(dissolution),進而保護第一對電極440及第二對電極450,其中導電材料係選擇不影響工作電極量測表現的導電材質為主,例如導電材料為碳(Carbon)。
另一實施例中生物感測器不限於導線式或疊層式的 電極結構。
在本發明的另一個實施例中,在準備將生物感測器運送出工廠出售之前,鹵化銀的初始量可以為零。在這種情況下,生物感測器的第一對電極440及/或第二對電極450上沒有鹵化銀。在將生物感測器皮下植入患者體內之後以及在進行首次測量之前的最開始回充期間中,經由氧化被塗佈在第一對電極440及/或第二對電極450上的銀,可以在第一對電極440及/或第二對電極450上回充初始量的鹵化銀。
化學試劑460至少覆蓋於第一工作電極420的第一訊號感測段422。於另一實施例中,化學試劑460至少覆蓋於第一工作電極420與第二工作電極430的第一訊號感測段422與第二訊號感測段432。另一實施例,化學試劑460包覆所有電極之訊號感測段422,432,442,452。而在另一實施例中,第一對電極440及/或第二對電極450可以不被化學試劑460覆蓋。微型生物感測器400的感測區域416可以植入皮下使第一訊號感測段422與第二訊號感測段432進行生物流體中待分析物所關聯的生理訊號的量測,生理訊號會分別被傳送至訊號第一輸出段421與第二輸出段431,再由第一輸出段421與第二輸出段431傳送至處理器210以得到生理參數。另該生理參數除了從傳感單元200取得外,亦可經由無線/有線通訊傳送至使用者裝置20取得,常用的使用者裝置20例如智慧型手機、生理訊號接收器或血糖儀。
請參閱圖18C,其為圖18A中沿A-A’線的剖面示意圖,其中A-A’線為從微型生物感測器400的感測區域416的剖面線。在圖18C中,第一工作電極420與第二工作電極430設置於基板410的 表面411,第一對電極440與第二對電極450設置基板410的對側表面412,且第一工作電極420、第二工作電極430、第一對電極440與第二對電極450的表面上覆蓋化學試劑460。基本上化學試劑460至少覆蓋於一個工作電極的部分表面上。本發明的微型生物感測器400會在量測期間執行量測步驟,及在回充期間執行回充步驟。在量測步驟時,可以選擇第一工作電極420或第二工作電極430來量測生理訊號,且在回充步驟時,由第一工作電極420或第二工作電極430幫助第一對電極440或第二對電極450回充鹵化銀。因此,在此實施例中,當執行量測步驟時,第一工作電極420或第二工作電極430的電壓高於第一對電極440或第二對電極450的電壓,使電流從第一工作電極420或第二工作電極430往第一對電極440或第二對電極450的方向流動,進而使第一工作電極420或第二工作電極430發生氧化反應(即第一工作電極420或第二工作電極430、化學試劑460及待分析物之間的電化學反應)而量測生理訊號,第一對電極440或第二對電極450發生還原反應,使第一對電極440或第二對電極450中的鹵化銀消耗而解離成銀(Ag)及鹵離子(X-)。由於第一對電極440或第二對電極450中的鹵化銀被消耗,故需要回充第一對電極440或第二對電極450中的鹵化銀以進行下一次的量測步驟。當執行回充步驟時,第一對電極440或第二對電極450的電壓高於第一工作電極420或第二工作電極430的電壓,使電流從第一對電極440或第二對電極450往第一工作電極420或第二工作電極430的方向流動,進而使第一對電極440或第二對電極450發生氧化反應使銀與鹵離子結合而回充鹵化銀,詳細量測步驟與回充步驟見圖10說明。
請參閱圖19A,其為本發明的微型生物感測器的第二實施例的剖面示意圖。第二實施例為第一實施例的電極配置的變化。在此實施例中,如圖19A所示,本發明的微型生物感測器400的第一工作電極420及第一對電極440設置於基板410的表面411,第二工作電極430及第二對電極450設置基板410的對側表面412,且第一工作電極420、第二工作電極430、第一對電極440或第二對電極450的表面上覆蓋化學試劑460。同樣地,在量測步驟時,可以選擇第一工作電極420或第二工作電極430來量測生理訊號,且在回充步驟時,亦可以選擇第一工作電極420或第二工作電極430幫助對第一對電極440或第二對電極450回充鹵化銀。因此,在此實施例中,當執行量測步驟時,電流從第一工作電極420或第二工作電極430往第一對電極440或第二對電極450的方向流動,進而使第一工作電極420或第二工作電極430發生氧化反應而量測生理訊號,第一對電極440或第二對電極450發生還原反應,使第一對電極440或第二對電極450中的鹵化銀消耗而解離成銀(Ag)及鹵離子(X-)。當執行回充步驟時,電流從第一對電極440或第二對電極450往第一工作電極420或第二工作電極430的方向流動,進而使第一對電極440或第二對電極450發生氧化反應使銀與鹵離子結合而回充鹵化銀。
請參閱圖19B,其為本發明的微型生物感測器的第三實施例的剖面示意圖。在第三實施例中,本發明的微型生物感測器400的第一工作電極420設置於基板410的表面411,第二工作電極430、第一對電極440及第二對電極450設置基板410的對側表面412,且第一工作電極420、第二工作電極430、第一對電極440或第 二對電極450的表面上覆蓋化學試劑460。第二工作電極430位置除了被配置於兩個對極之間外,亦可設置在最左或最右側邊位置(圖未示出)。在本實施例中,在量測步驟時,可以選擇第一工作電極420或第二工作電極430來量測生理訊號,且在回充步驟時,亦皆可以選擇第一工作電極420或第二工作電極430幫助對第一對電極440或第二對電極450回充鹵化銀。
請參閱圖19C,其為本發明的微型生物感測器的第四實施例的剖面示意圖。在第四實施例中,本發明的微型生物感測器400的第一工作電極420及第二工作電極430設置於基板410的表面411上,第二工作電極430為U型並鄰設且圍繞於第一工作電極420的側邊,第一對電極440及第二對電極450設置於基板410的對側表面412上,且第一工作電極420、第二工作電極430、第一對電極440及第二對電極450的表面上覆蓋化學試劑460。在此實施例中,在量測步驟時,可以選擇第一工作電極420或第二工作電極430來量測生理訊號,且在回充步驟時,亦可以選擇第一工作電極420或第二工作電極430幫助對第一對電極440或第二對電極450回充鹵化銀。
以上圖18C-19C其詳細電極疊層省略,僅示意電極位置。以上圖18C-19C基本上化學試劑460至少覆蓋第一工作電極420部分的表面上。
在上述任一實施例中,第一工作電極420及第二工作電極430的材料包含但不限於:碳、鉑、鋁、鎵、金、銦、銥、鐵、鉛、鎂、鎳、錳、鉬、鋨、鈀、銠、銀、錫、鈦、鋅、矽、鋯、前述元素的混合物、或前述元素的衍生物(如合金、氧化物或金屬化合物等),較佳地,第一工作電極420及第二工作電極430的材料為 貴金屬、貴金屬之衍生物或前述的組合,更佳地,第一工作電極420及第二工作電極430為含鉑材料。於另一實施例中,第二工作電極430的電極材料係選用與第一工作電極420相比對於過氧化氫具有較低靈敏度之材料,例如碳。
在上述任一實施例中,為了防止銀電極材料的過度氯化而發生斷線,還可以在基板410的對側表面412與第一對電極440及第二對電極450的銀之間添加一層導電材料(如碳)。然而,若第一對電極440及第二對電極450的底層是碳會造成開關處的阻值過高,故還可在碳導電材料跟基板410的對側表面412之間再增設一層導電層,例如為銀以降低訊號輸出端的阻抗,使本發明的第一對電極440及第二對電極450從基板410的對側表面412開始依序為導電層、碳層及銀/鹵化銀層。
由於本發明的微型生物感測器400有兩個工作電極及兩個對電極,使微型生物感測器400可以在使用例如第一工作電極420與第一對電極440執行量測步驟的同時,使用第二工作電極430與第二對電極450執行回充步驟。或使用例如第一工作電極420連續執行量測步驟的同時,使用第二工作電極430幫助第一對電極440或第二對電極450執行回充步驟。
定電壓電路切換應用
請參考圖20A-20C,其分別示出本發明中根據不同方式可進行量測模式和回充模式的定電壓電路。量測模式可分別藉由施加量測電位差V1和移除量測電位差V1而開始和停止,而對應的電流以Ia表示。在定電壓電路中,第一工作電極W1是藉由開關S1控制,第一對電極R/C1是藉由開關S5和S6控制,第二工作電極 W2是藉由開關S2和S7控制,第二對電極R/C2是藉由開關S3和S4控制。藉由上述開關的控制,可有多種彈性的操作方式,以下示例說明。
如圖20A所示,在量測模式時,於量測期間T1施加量測電位差V1於第一工作電極W1與第一對電極R/C1之間,使第一工作電極W1的電壓高於第一對電極R/C1的電壓。此時開關S1和S6為閉路狀態,而開關S5為開路狀態,第一工作電極W1為+V1,第一對電極R/C1接地,以使第一工作電極W1進行氧化反應,並與化學試劑和待分析物進行電化學反應而輸出生理訊號Ia,同時第一對電極R/C1的AgCl具有對應於該生理訊號Ia的消耗量。在回充模式時,可分別藉由施加回充電位差V2和移除回充電位差V2而開始和停止,而對應的電流以Ib表示。V2為0.1V至0.8V之間的固定值,較佳為0.2V至0.5V之間的固定值。在回充模式時,施加回充電位差V2於第二工作電極W2與第二對電極R/C2之間持續回充期間t2,使第二對電極R/C2的電壓高於第二工作電極W2的電壓。此時開關S4和S7為開路狀態,而開關S2和S3為閉路狀態,第二對電極R/C2為+V2,第二工作電極W2為接地,以使第二對電極R/C2上的Ag進行氧化反應,而回充第二對電極R/C2上的AgCl達一回充量。在定電壓電路中的回充電位差V2為固定電壓,測得的輸出電流為Ib。本發明是透過計算電流曲線下的面積以定義AgCl的容量(Capacity,單位庫倫,以符號"C"表示),故量測模式中AgCl的消耗量為Ia*T1,回充模式中AgCl的回充量為Ib*t2。因此,可經由調控回充電位差V2的施加時間t2來控制AgCl的回充量。換言之,在第一或第二對電極R/C1或R/C2上的AgCl保持在安全庫存量之內的前提下,可使回充 量等於或不等於(包含約略相近、大於或小於)消耗量。圖20A以同時進行量測模式的時序與回充模式的時序重疊進行示意,上述開關的控制亦可變換其它形式電路而具有多種彈性的操作方式,在某些較佳實施例中,使量測模式時序與回充模式時序除了同時進行外,亦可部分重疊或不重疊。
圖20B-20C類似圖20A,差異僅在於圖20B示出的是使用W2和R/C2進行量測並使用W1和R/C1進行回充的實施例;以及圖20C示出的是使用W1和R/C2進行量測並使用W2和R/C1進行回充的實施例。在某些較佳實施例中,定電壓電路交替地切換至圖20A和圖20B並重複循環。在某些較佳實施例中,定電壓電路交替地切換至圖20A和圖20C並重複循環。以上述方式,第一對電極R/C1和第二對電極R/C2可輪流被消耗及回充,以使這兩個對電極上的AgCl都能保持在安全庫存量之內。在某些較佳實施例中,定電壓電路可具有第三電壓源以控制回充電壓差不同於量測電壓差。
透過控制電壓差的施加和開關的切換,如圖20A-20C所示出的定電壓電路亦可交替進行量測模式和回充模式。圖5A-5D分別示出該定電壓電路以不同方式交替進行量測模式和回充模式的電流示意圖。如圖所示,在多個量測期間T1之間的是未進行量測的期間T2。在某些較佳實施例中,T2為固定值。圖5A-5D中橫軸為時間,V1的線條表示量測電位差V1的施加和移除,V2的線條表示回充電位差V2的施加和移除。請參考圖5A,在一較佳實施例中,V2和T2都是固定值,V2的施加時間t2(即回充期間)是變動值。回充期間t2是根據在量測模式所測得的生理訊號Ia及量測期間T1 而在0至T2之間動態調整。如圖5A中所示,t2可為t2’、t2”、或t2'''…。換言之,回充期間t2可根據AgCl的消耗量而改變,若AgCl的消耗量大,則可回充較長的時間以使第一對電極R/C1上的AgCl保持在安全庫存量之內。舉例而言,在t2”期間所回充的AgCl的量將大於t2’期間所回充的AgCl量。
請參考圖5B,在另一較佳實施例中,V2、T2和t2都是固定值,其中t2=T2。也就是說,量測模式和回充模式是無縫交替的,在未進行量測的期間即為回充期間。請參考圖5C和5D,在某些較佳實施例中,V2、T2和t2都是固定值,其中t2為大於0且小於T2的固定值,例如t2=1/2的T2、2/5的T2、3/5的T2等。圖5C和5D的差別在於,圖5C中是在每次量測模式結束後,經歷一段緩衝時間(緩衝時間=T2-t2),才開始回充模式;圖5D中是每次量測模式結束後未經緩衝時間即立即開始回充模式,而在每次回充模式結束與下一次量測模式開始之間間隔一段時間。在某些較佳實施例中,t2小於T2,且t2可為T2期間的任何時間段。
請參考圖5E和5F,其示出本發明的定電壓電路以不同方式交替進行量測模式和回充模式的電流示意圖。圖5E和5F中,橫軸為時間,縱軸為電流,曲線表示所量測到的生理訊號Ia換算而成的生理參數值曲線。在這兩個實施例中,類似於圖5A,V2和T2為固定值,回充期間t2是變動值。圖5E和5F中,曲線下白色面積代表量測模式中AgCl的消耗量(Ia*T1),斜線面積代表回充模式中AgCl的回充量(Ib*t2)。由圖中可看出,為了使Ib*t2接近Ia*T1或在Ia*T1的某個範圍內,回充期間t2是根據所測得的生理訊號Ia及量測期間T1而在0至T2之間動態調整。根據需要,可選擇在未執行量測 模式的期間(T2)的前段(如圖5E所示)或後段(如圖5F所示)進行回充模式。
有段切換的定電流電路切換應用
請參考圖21,其示出本發明中可進行量測模式和回充模式的有段切換的定電流電路。有段切換的定電流電路重複循環進行量測模式與回充模式的方式與圖20A類似,故於此不再贅述。主要差異在於回充模式可分別藉由施加回充電位差V2(V2為變動值)和移除回充電位差V2而開始和停止,而對應的電流以Ib表示。以回充模式執行於於第二工作電極W2與第二對電極R/C2為例,施加回充電位差V2於第二工作電極W2與第二對電極R/C2之間持續回充期間t2。此時開關S2、S3為閉路狀態,開關S2和部分定電流電路61中的I_F1至I_Fn所對應的至少一個開關為閉路狀態,第二工作電極W2為接地,第二對電極R/C2為+V2,以使第二對電極R/C2上的Ag進行氧化反應,而回充AgCl。本實施例中有段切換的定電流電路可透過控制I_F1至I_Fn所對應的多個開關,選擇性切換至I_F1、I_F2、I_F3…I_Fn以調整所需的回充電位差V2並輸出電流Ib。在回充模式時,可根據生理訊號Ia的大小及量測期間T1,而經由調控回充電位差V2及其施加時間t2來控制AgCl的回充量。換言之,在第一或第二對電極R/C1或R/C2上的AgCl保持在安全庫存量之內的前提下,可使回充量等於或不等於(包含約略相近、大於或小於)消耗量。在另一實施例中,部分定電流電路61可設置連接第二對電極R/C2。
無段切換的定電流電路切換應用
請參考圖22,其示出本發明中可進行量測模式和回 充模式的無段切換的定電流電路。無段切換的定電流電路的量測模式與圖20A-20C類似,回充模式與圖21類似,故於此不再贅述。圖22與圖21的實施例之差異僅在圖22的定電流電路中,無段切換的部分定電流電路71是藉由數位類比轉換器(DAC)的控制而輸出固定電流Ib。
請參考圖8A-8C,其示出本發明的定電流電路以不同方式交替進行量測模式和回充模式的電壓示意圖。圖8A-8C中橫軸為時間,V1的線條表示量測電位差V1的施加和移除,V2的線條表示回充電位差V2的施加和移除。請參考圖8A,在一較佳實施例中,T2是固定值,V2和V2的施加時間t2(即回充期間)是變動值。回充期間t2是根據在量測模式所測得的生理訊號Ia及量測期間T1而在0至T2之間動態調整。如圖8A中所示,t2可為t2’、t2”、或t2'''…。換言之,回充期間t2可根據AgCl的消耗量而改變,若AgCl的消耗量大,則可回充較長的時間以使第一對電極R/C1上的AgCl保持在安全庫存量之內。
請參考圖8B,在另一較佳實施例中,V2是變動值,T2和t2都是固定值,其中t2為大於0且小於T2的固定值,例如t2=1/2的T2、2/5的T2、3/7的T2等。在此實施例中,V2是根據於生理訊號量測步驟(即在量測模式中)的AgCl的消耗量而動態調整。動態調整方式的其中一個實施例如下。使用例如上述的有段切換的定電流電路,該電路具有n個固定電流源與n個開關,各固定電流源分別對應一個開關。於回充模式時,依據AgCl的消耗量,選擇開啟n個開關中的至少一個開關(即使該開關處於閉路狀態)以輸出固定電流值。在回充期間t2為固定值的情況下,可以藉由選擇不同的固 定電流輸出來控制AgCl的回充量。
請參考圖8C,在另一較佳實施例中,V2是變動值,T2和t2都是固定值,其中t2=T2。也就是說,量測模式和回充模式是無縫交替的,在未進行量測的期間即為回充期間。
相較於無段切換的定電流電路,有段切換的定電流電路可透過多個開關控制多個電流路徑,而得以根據所需的電流量以分段式的定電流進行回充,以此方式較為省電且可以降低成本。此外,不管是定電壓電路或定電流電路,電位差可以來自直流電源或交流電源,較佳為直流電源。
圖5A-5F、圖21-22以及圖8A-8C的實施例都是描述量測步驟和回充步驟交替循環的操作方式,亦即每個量測步驟之間都有一個AgCl回充步驟,此方式可較佳地確保AgCl保持在安全庫存量之內。然而,在某些較佳實施例中,亦可在進行N次的量測期間選擇性搭配Y次的AgCl回充,其中Y≦N,使AgCl的累積回充量仍可保持在安全庫存範圍內。量測步驟和回充步驟也不必然需要以交替循環的方式進行,亦可於數次量測步驟後再進行一次回充步驟,或是在預定的量測時間之後,才進行一次回充步驟。舉例而言,可於量測10次後再進行一次回充步驟,或可於累積量測時間達1小時後才進行一次回充步驟。
請參考圖8D,其示出本發明的定電流電路以類似圖8C的方式交替進行量測模式和回充模式的示意圖。圖8D中,曲線表示所量測到的生理訊號Ia所轉換成的生理參數值曲線,且類似於圖8C,T2和t2都是固定值,V2是變動值。圖8D中,曲線下白色面積代表量測模式中AgCl的消耗量(Ia*T1),斜線面積代表回充模式 中AgCl的回充量(Ib*t2)。由圖中可看出,為了使Ib*t2接近Ia*T1或在Ia*T1的某個範圍內,回充電位差V2是是根據AgCl的消耗量而動態調整。
另外圖5E、5F及圖8D中,雖未顯示每次執行生理訊號量測步驟後所輸出各生理參數值輸出時機點,但生理參數值不限於完成量測時輸出或於在回充期間內輸出,而AgCl回充步驟不限於在每一個生理參數輸出後執行或獲得生理訊號後執行。
在前述使用本發明的定電流或定電壓電路交替進行量測模式和回充模式的實施例中,在量測模式和回充模式中所使用的工作電極都可為第一工作電極W1和第二工作電極W2的任一者,在量測模式中所使用的對電極亦可為第一對電極R/C1和第二對電極R/C2的任一者,然而在回充模式中所使用的對電極較佳為前一次量測模式中所使用的對電極。以下說明兩個示例性實施例。實施例1依時間先後進行:(a)使用W1/W2(表示W1和W2其一者)及R/C1量測、(b)使用W1/W2另一者及R/C1回充、(c)使用W1/W2其一者及R/C2量測、(d)使用W1/W2另一者及R/C2回充、重複執行步驟(a)-(d)。實施例2依時間先後重複執行步驟(a)、(b)、(a)、(b)、(c)、(d)、(c)、(d)。
請參考圖23A和23B,其示出本發明的定電流或定電壓電路同時進行量測模式和回充模式的不同實施例的示意圖。圖23A和23B中橫軸為時間,V1的線條表示量測電位差V1的施加和移除,V2的線條表示回充電位差V2的施加和移除。由於本發明中有兩個對電極及兩個工作電極,故量測步驟和回充步驟可同時進行。圖23A的實施例中,由第一工作電極W1與第一對電極R/C1形成的 第一組合和第二工作電極W2與第二對電極R/C2形成的第二組合輪流進行量測和回充步驟。亦即,第一組合用於進行量測步驟時,第二組合用於進行回充步驟,反之亦然。圖23B的實施例中,第一工作電極W1固定用於量測步驟,第二工作電極W2固定用於回充步驟,而兩個對電極則是在量測步驟和回充步驟之間輪流使用。在某些較佳實施例中,多個T1彼此不重疊。在某些較佳實施例中,多個t2彼此不重疊。在某些較佳實施例中,T1和t2重疊(表示同時間開始和結束)或部分重疊。圖23A和23B示出第一次進行量測(使用R/C1)時未同時伴隨回充步驟,第二次進行量測(使用R/C2)時才同時進行回充(回充R/C1)。然而,亦可於第一次進行量測(使用R/C1)時即同時伴隨回充步驟(回充R/C2)。
請參考圖9,其示出根據本發明一實施例的量測待分析物的方法,透過該方法可延長微型生物感測器的使用壽命。該微型生物感測器可為例如圖18A-18C及圖19A-19C所示的微型生物感測器,用於植入皮下以量測與生物流體(例如組織液)中的該待分析物所關聯的生理參數的生理訊號。在圖9的實施例中,該待分析物可為組織液中的葡萄糖,生理參數為人體中的葡萄糖值(或濃度),生理訊號為微型生物感測器量得的電流值。此實施例中,量測待分析物的方法包含反覆循環地執行量測步驟(S901)及回充步驟(S902)。量測步驟(S901)包含使用前述定電壓或定電流電路於量測期間T1執行如前述的量測模式以輸出生理訊號(即電流值),同時對電極的AgCl具有對應於該電流值的消耗量。量測步驟(S901)還包含透過停止如前述的量測模式來停止量測步驟,且該電流值經運算後輸出生理參數(即葡萄糖值)。
在量測步驟(S901),其化學反應式如下:
於第一工作電極420或第二工作電極430進行以下氧化反應:
葡萄糖(Glucose)+還原型葡萄糖氧化酶(Glucose oxidase,Gox)(FAD)
Figure 109126241-A0305-02-0078-21
葡萄糖酸內酯(Gluconolactone)+氧化型葡萄糖氧化酶(FADH2)
氧化型葡萄糖氧化酶(FADH2)+O2
Figure 109126241-A0305-02-0078-22
還原型葡萄糖氧化酶(FAD)+H2O2
H2O2
Figure 109126241-A0305-02-0078-23
2H++O2+2e-
於第一對電極440或第二對電極450進行以下還原反應:
2AgCl+2e-
Figure 109126241-A0305-02-0078-24
2Ag+2Cl-
回充步驟(S902)包含使用前述定電壓或定電流電路於回充期間執行如前述的回充模式,以使對電極的AgCl具有對應於消耗量的回充量,進而使對電極上之AgCl的量控制在安全庫存區間內。由此,可使該工作電極與對電極之間的電位差保持穩定,讓所獲得的電流值仍能與葡萄糖值保持穩定的比例關係(若偵測物質為其他待分析物亦可能是正比關係也可能是反比關係)。換言之,可使下一量測步驟時所獲得的下一個電流值與下一個葡萄糖值保持穩定的比例關係。回充步驟(S902)還包含透過停止如前述的回充模式來停止回充步驟。回充步驟(S902)結束後循環回去執行量測步驟(S901),直到執行了N次量測步驟(S901)與N次回充步驟(S902)。在某些較佳實施例中,量測步驟(S901)與回充步驟(S902)為同時進行、不同時進行、或部分重疊地進行。在某些較佳實施例中,N次的量測步驟彼此不重疊。在某些較佳實施例中,N次的回充步驟彼此不重疊。
在回充步驟(S902),其化學反應式如下:
於第一工作電極420或第二工作電極430進行以下還原反應:
葡萄糖(Glucose)+還原型葡萄糖氧化酶(Glucose oxidase)(FAD)
Figure 109126241-A0305-02-0079-25
葡萄糖酸內酯(Gluconolactone)+氧化型葡萄糖氧化酶(FADH2)
氧化型葡萄糖氧化酶(FADH2)+O2
Figure 109126241-A0305-02-0079-26
還原型葡萄糖氧化酶(FAD)+H2O2
H2O2+2H++2e-
Figure 109126241-A0305-02-0079-27
H2O
O2+4H++4e-
Figure 109126241-A0305-02-0079-28
2H2O
於第一對電極440或第二對電極450的正電位促使第一對電極440或第二對電極450進行以下氧化反應:
2Ag
Figure 109126241-A0305-02-0079-29
2Ag++2Cl-
Figure 109126241-A0305-02-0079-30
2AgCl+2e-
其中對電極上的Ag氧化成Ag+,與來自生物體內Cl-或AgCl氧化(或解離)後的Cl-結合而成AgCl,使得於量測期間T1內被消耗的部分或全部AgCl被回充到對電極上。
人體透過摻碘的食鹽可以取得氯離子及碘離子,故可取得的鹵離子至少包括氯離子及碘離子,以用於回充鹵化銀。
以下實施例是針對N次量測步驟(S901)及N次回充步驟(S902)的循環,其中所提到的生理參數較佳是葡萄糖值,所提到的生理訊號較佳是電流值。根據某些較佳實施例,各量測電位差V1於量測期間T1被施加,各回充電位差V2於回充期間t2被施加,且量測期間T1為固定值,其可為3秒內、5秒內、10秒內、15秒內、30秒內、1分鐘內、2分鐘內、5分鐘內或10分鐘內的一時間值。根據某些較佳實施例,較佳為30秒內的時間值。根據某些較佳實施 例,量測期間T1為固定值,且可為2.5秒、5秒、15秒、30秒、1分鐘、2.5分鐘、5分鐘、10分鐘或30分鐘,較佳為30秒。根據某些較佳實施例,各量測期間T1加上各回充期間t2為固定值。根據某些較佳實施例,各回充電位差V2具有固定電壓值,各回充期間t2是根據AgCl的每次消耗量而動態調整(如圖5A所示)。根據某些較佳實施例,輸出的各生理參數是經由各量測期間T1中的一個單一量測時間點的各生理訊號運算而獲得。根據某些較佳實施例,輸出的各生理參數是經由各量測期間T1中的多個量測時間點的多個生理訊號的一數學運算值運算而獲得。前述數學運算值為例如累加值、平均值、中位數、中位數的平均值等。根據某些較佳實施例,藉由控制每次回充量為等於或不等於(包含約略相近、大於或小於)每次消耗量,而控制對電極之AgCl量在安全庫存區間內,而使下一量測步驟時所獲得的下一生理訊號與下一生理參數保持穩定的比例關係。根據某些較佳實施例,移除各量測電位差V1的步驟是將配置於連通工作電極及對電極之電路斷路、或設定各量測電位差V1為0。換言之,可進行斷電,以使量測電路具有開路狀態;或者,可施加0伏特電壓於工作電極及對電極之間,其中該兩項操作其中任一操作的操作時間皆為0.01~0.5秒。移除量測電位差V1的步驟可避免Λ形的生理訊號產生。根據某些較佳實施例,移除各回充電位差V2的步驟是將配置於連通工作電極及對電極之電路斷路、或設定各回充電位差V2為0。
根據某些較佳實施例,感測器植入人體後需經過暖機時間,使感測器在體內達到平衡穩定才能穩定呈現與分析物濃度呈正相關的生理訊號。因此,在量測步驟(S901)持續施加量測 電壓直至量測期間T1結束,並控制該量測期間T1以使得生理訊號與分析物的生理參數達到穩定的比例關係。因此,量測期間T1可為變動值或為變動值和固定值的組合(例如變動值+固定值,該變動值可為1小時、2小時、3小時、6小時、12小時或24小時,該固定值可為例如30秒)。
請參考圖5A-5F、圖8A-8D及圖9,本發明利用施加電壓於對電極R/C來量測一期間內對電極之反應電流,並經由將該期間內反應電流經數學運算而得知AgCl初始容量,例如透過計算反應電流曲線下的面積以定義AgCl初始容量,又稱初始量或初始庫倫量(Cinitial),以下皆以量來說明。對電極R/C包含Ag和AgCl,當得知AgCl的百分比(X%AgCl)時,即可算出Ag百分比(Y% Ag=100%-X% AgCl)。於每次量測步驟(S901)中透過計算工作電極W的電流曲線下的面積來定義每次AgCl的消耗量(以Cconsume表示)。對電極R/C的AgCl具有對應於該生理訊號Ia的消耗量Cconsume,即Cconsume=Ia*T1。於每次回充步驟(S902)中,透過計算對電極R/C的電流曲線下的面積來定義每次AgCl的回充量(以Creplenish表示),即Creplenish=Ib*t2,t2介於0~T2之間。
以下描述AgCl安全庫存量的計算方法。在某些較佳實施例中,安全庫存區間是以Ag與AgCl的比例呈現,本發明是以於對電極量測到的庫倫量(C)以反映Ag與AgCl的比例關係。在某些較佳實施例中,Ag與AgCl的比例為99.9%:0.1%、99%:1%、95%:5%、90%:10%、70%:30%、50%:50%、40%:60%或30:70%,使AgCl在對電極上具備一程度上的量而不會被消耗殆盡,讓每次生理訊號量測步驟皆能穩定執行。AgCl的剩餘量為回充量與初始量 的和減去消耗量。在某些較佳實施例中,AgCl的剩餘量在一區間範圍內變動,亦即AgCl的剩餘量被控制在初始量加減特定值(X值)的範圍內,即(Creplenish+Cinitial)-Cconsume=Cinitial±X,其中0<X<100% Cinitial、10% Cinitial<X≦90% Cinitial、或0.5% Cinitia<X≦50% Cinitial。在某些較佳實施例中,AgCl的剩餘量可在一區間範圍內逐漸下降、逐漸上升、或是平穩變動或任意變動但仍於該區間範圍內。
請參考圖10,其示出根據本發明另一實施例的量測待分析物的方法,透過該方法不但可延長微型生物感測器的使用壽命並且能縮減對電極之銀及鹵化銀材料用量。該微型生物感測器可為例如圖18A-18C及圖19A-19C所示的微型生物感測器,用於植入皮下以量測與生物流體(例如組織液)中的該待分析物所關聯的生理參數的生理訊號。該微型生物感測器的對電極的電極材料包括銀及鹵化銀,在圖10的實施例中,該待分析物可為組織液中的葡萄糖,生理參數為人體中的葡萄糖值,生理訊號為微型生物感測器量得的電流值。以下僅描述此實施例的2個循環。此實施例的方法始於以下步驟:於第一量測期間施加量測電壓以驅動第一或第二工作電極W1/W2,以量測用以獲得生理參數的生理訊號,其中第一或第二對電極R/C1或R/C2(假設為第一對電極R/C1)的鹵化銀被消耗一消耗量(S1101)。
接著停止施加量測電壓(S1102),並利用所獲得的生理訊號來獲得生理參數(S1103)。獲得生理參數後,於第一回充期間施加回充電壓以驅動在S1101中使用而具有該消耗量的對電極(即第一對電極R/C1),從而使鹵化銀的量被回充一回充量(S1104),其中回充量與初始量的和減去消耗量的值(即前文所述的剩餘量) 被控制在初始量加減特定值的範圍內。上述控制步驟是藉由控制回充量等於或不等於(包含約略相近、大於或小於)消耗量來達成,以維持鹵化銀的量在安全庫存區間內。根據反應式,鹵化銀的莫耳數增減對應銀的莫耳數增減,故為了便於說明,鹵化銀的消耗量對應模擬的銀的增加量。在某些較佳實施例中,剩餘量的值被控制成使得鹵化銀的量與銀的量加上鹵化銀的量的和(AgCl/Ag+AgCl)的比值是大於0且小於1,亦即對電極的鹵化銀有一個量即可,較佳為介於0.01-0.99之間、介於0.1-0.9之間、介於0.2-0.8之間、介於0.3-0.7之間或介於0.4-0.6之間。在達到該回充量時停止施加回充電壓(S1105)。之後再回至步驟S1101,於第二量測期間施加量測電壓以驅動第一或第二工作電極W1/W2,以量測用以獲得另一生理參數的另一生理訊號,其中另一個對電極(即第二對電極R/C2)的鹵化銀被消耗一消耗量。接著停止施加量測電壓(S1102),並利用所獲得的生理訊號來獲得生理參數(S1103)。獲得生理參數後,於第二回充期間施加回充電壓以驅動在S1101中使用而具有該消耗量的對電極(即第二對電極R/C2),從而使鹵化銀的量被回充一回充量(S1104)。之後再循環至步驟S1001執行下一個循環。
以下描述本發明的一具體實施例,以生物感測器使用壽命須達到16天作為示例以計算所需電極訊號感測段Ag/AgCl材料尺寸之方法,例如每次測量的待分析物平均量測電流為30nA、量測期間(T1)為30秒、且回充期間(t2)為30秒。每天所需AgCl的消耗量(Cconsume/day)=1.3mC/天。假設感測器使用壽命的需求為16天,則使用16天所需AgCl的消耗量為1.3 x 16=20.8mC。
例如對電極的長度為2.5mm,其對應AgCl初始量Cintial=10mC;
(5)在無執行AgCl的回充的情況下,針對感測器使用壽命16天,對電極需要的長度至少為:C16day/Cconsume/day=20.8mC/1.3mg/day=16mm
(6)故在無使用本發明鹵化銀的回充方法的情況下,對電極的長度需超出16mm才能使感測器壽命達16天。
於本實施例中,在無使用本發明之鹵化銀的回充技術情況下,對電極訊號感測段需配置相對應較大的Ag/AgCl材料尺寸才能達到16天的感測器壽命。透過本發明鹵化銀的回充方法,於兩次量測步驟之間進行鹵化銀的回充步驟,該鹵化銀的消耗與回充可在短時間內重複循環(即用即充),故可縮減感測器中的Ag/AgCl材料用量,進而使感測器微型化,因此對電極訊號感測段材料不須準備16天份的AgCl的容量以供消耗。例如,大約準備1~2天份AgCl的容量即可使用感測器達16天,由此達到延長感測器使用壽命之功效。1~2天份的AgCl的容量亦指於出廠前或執行第一次量測前的對電極所具有例如在約1.3~2.6mC之間的AgCl的初始量,該初始量亦可為其他更小或更大的範圍。於其他實施例中亦可準備1~5天份、1~3天份、6~24小時、6~12小時等不同的AgCl容量。對電極訊號感測段的材料尺寸只要具備讓每次葡萄糖量測步驟皆能穩定執行、使量測電流能與體內的葡萄糖濃度呈現正相關性的容量即可。
若在無使用本發明之氯化銀的回充技術情況下,先前技術會透過增加電極長度/面積使感測器達到所需天數需求。以 先前技術為例,感測器植入端長度約為12mm,因植入長度長,而為了避免植入深達皮下組織,需以斜角方式植入皮下,其植入傷口較大。另外舉例來說,1~2天份的AgCl的容量約在1.3~2.6mC之間,換算該1~2天的對電極長度為2.5~5mm,其相較於無使用本發明鹵化銀的回充方法的情況下需要16mm的對電極長度,更加凸顯本發明能有效縮減所需對電極尺寸。透過本發明鹵化銀的回充方法,可縮短植入端長度,例如使長度縮減為不大於10mm。於本發明圖18A-18C所揭示的微型生物感測器400的連接區域417的下半部分至第二端414屬於短植入端418(如圖18A及18B所示),且短植入端418植入深度需至少滿足到真皮層可量測到組織液葡萄糖的深度,透過本發明鹵化銀的回充方法,短植入端418的最長邊不大於6mm,以使微型生物感測器400能以垂直於生物體表皮的方式被部分植入於生物體表皮下。短植入端418的最長邊較佳為不大於5mm、4.5mm、3.5mm或2.5mm。本發明的短植入端418包含第三訊號感測段442及第四訊號感測段452,且第三訊號感測段442及第四訊號感測段452的最長邊不大於6mm,較佳為2-6mm、2-5mm、2-4.5mm、2-3.5mm、0.5-2mm、0.2-1mm。
因此與未使用本發明之鹵化銀的回充技術情況比較下,透過本發明鹵化銀的回充方法,能有效延長感測器使用壽命、且能大幅縮減對電極上Ag/AgCl材料的使用,而使對電極訊號感測段的尺寸可縮小。由於縮減對電極上Ag/AgCl材料的使用,而使感測器可微型化且可降低生物毒性。此外,電極尺寸縮小特別是指縮短感測器的植入端長度,因此可降低使用者植入痛感。在本發明包含四電極的裝置中,由於可同時進行量測和回充,故相較於包含兩 電極或三電極的裝置可具有更短的對電極尺寸及更彈性及有效率的操作模式。
減小對電極的尺寸
為了減小對電極的尺寸,可以使對電極上的鹵化銀的量最小化至足以支持對生物感測器的至少一次量測的初始量。基於鹵化銀的初始量來量化對電極的尺寸,該初始量足以處理與患者中的分析物相關的生理參數的生理訊號的至少一次的量測。在第一次量測之後,執行回充期間以回充被消耗的鹵化銀。因此,本發明提供了一種用於確定生物感測器的對電極的尺寸並且用於延長生物感測器的使用壽命的方法。
圖24為根據本發明一實施例的流程圖。如圖24所示,該方法包括以下步驟:步驟a:定義由該生物感測器執行至少一次該量測期間中的該鹵化銀的一所需消耗量範圍;步驟b:根據該所需消耗量範圍的一上限值加上一緩衝量決定該初始量,以於該再生期間中的該鹵化銀的一所需回充量範圍被控制成足以讓該鹵化銀的一量維持在一安全庫存區間內,以確保在該再生期間後的一第二量測期間所獲得的一第二生理訊號與一第二生理參數保持一穩定的比例關係;步驟c:轉換該初始量成該對電極的該尺寸;步驟d:使該對電極具有包含至少該初始量的該鹵化銀;步驟e:於該量測期間量測該生理訊號且該鹵化銀被消耗一消耗量;以及步驟f:於該再生期間該鹵化銀被回充一回充量。
根據本發明的一個實施例,在準備將生物感測器出廠銷售之前,已備妥具有初始量的鹵化銀。可經由在對電極上印刷 具有初始量的鹵化銀層或經由鹵化塗佈於對電極上的銀層以使其具有初始量的鹵化銀。
在本發明的另一個實施例中,在準備將生物感測器運送出工廠出售之前,鹵化銀的初始量可以為零。在這種情況下,生物感測器的對電極上沒有鹵化銀。在將生物感測器皮下植入患者體內之後以及在進行首次測量之前的最開始回充期間中,經由氧化被塗佈在對電極上的銀,可以在對電極上回充初始量的鹵化銀。
通常,當將生物感測器植入患者體內時,對皮膚和/或皮下組織可能造成的創傷有時會導致感測器監測的訊號不穩定。另外,在使用生物感測器之前,必須將生物感測器完全“濕潤”或水合以與患者體內的分析物(例如生物流體中的葡萄糖)達成平衡。因此,在將生物感測器植入到生物體內之後,在生物感測器的最開始測量之前,使用者必須等待一段暖機期,以備妥獲得分析物濃度的準確讀數。在這種情況下,由於生物感測器在植入生物體之後就需要在測量分析物之前需要暖機期,因此可以在熱機期中執行最開始的回充期而不會延遲任何所需的測量。
為了能夠了解如何決定鹵化銀的初始量,以下舉例一種計算方法,透過於生理感測器上執行至少一次生理訊號量測期間,以定義鹵化銀所需消耗量範圍,其所需消耗量範圍係與待分析物的該生理參數相關聯,以人體內的葡萄糖量測且鹵化銀為一氯化銀為例,選擇一預定偵測葡萄糖濃度的上限值作為基準,例如葡萄糖濃度為600mg/dL時進行一次生理訊號量測以獲得所需消耗電流為每秒100nA,如果測量期間持續30秒,則一個量 測期間內所需氯化銀的消耗量為3000nC(或0.003mC),這是將100nA乘以30秒獲得的。在這種情況下,可以將測量一次所需氯化銀的消耗量的上限選擇為大於或等於0.003mC。於其他實施例中,上限值可以選擇其它濃度值。
由於不同患者的分析物濃度或同一患者在不同時間的濃度可能會在很大程度上波動及體內環境變因多等因素,因此建議使用更大範圍的所需鹵化銀的消耗量(亦即需要較大的初始量),因此所需鹵化銀的消耗量範圍還須加上緩衝量以應付患者體內分析物濃度的波動以滿足在量測過程中讓鹵化銀在對電極一量保持在一安全庫存區間內變動,使量測的生理訊號與生理參數保持一穩定的比例關係。緩衝量可以大於0,並且可以基於生物感測器的預定使用期間來調整。預定使用期間的時間可以是一次量測期間的時間的任意倍數,例如1、2、4、10和100倍等等,或者根據感測器選擇一適當的預定使用期間,例如1小時、2小時、6小時、1天、2天、3天、5天等等來準備充足但量少的初始量。
另外所需消耗量範圍除了選擇一次量測作為計算基準外,亦可根據生物感測器的預定使用期間,選擇複數量測期間來調整所需消耗量範圍,而相對應的緩衝量亦跟隨所需消耗量範圍而調整,進而調整所需鹵化銀的初始量。
在本發明的另一實施例中,所需消耗量範圍的算術平均值、幾何平均值、或中間數也可以被使用來取代所需消耗範圍的上限以決定初始量,這取決於生物感測器可能面臨的實際情況。舉例來說,已知一次量測中生物感測器量測到的生理訊號的平均電流為每秒20nA,如果測量期間持續30秒,則一個測量期間內平 均所需氯化銀的消耗量為600nC(或0.0006mC),這是將20nA乘以30秒獲得的。在這種情況下,可以將測量一次所需氯化銀的平均消耗量決定為0.0006mC。
由於同樣需考量不同患者的分析物濃度或同一患者在不同時間的濃度可能會有很大程度上波動及體內環境變因多等因素,因此建議使用更大範圍的所需鹵化銀的消耗量(亦即需要較大的初始量),例如,如果量測期間是每1分鐘執行一次,並且一次量測持續30秒,一天需量測1440次,故所需的氯化銀消耗量為0.864mC,這是將0.0006mC乘以每天1440次而獲得的,其值接近1mC,故可選擇1mC內一個值作為緩衝量來決定氯化銀的初始量。
其中上述實施例,所需鹵化銀的消耗量範圍及緩衝量皆可基於生物感測器的預定使用期間來調整。預定使用期間的時間可以是一次量測期間的時間的任意倍數,例如1、2、4、10和100倍等等,或者根據感測器選擇一適當的預定使用期間,例如1小時、2小時、6小時、1天、2天、3天、5天等等來準備充足但量少的初始量。
由於每個生物感測器進行一次量測所需的電流取決於不同製造商生產的生物感測器的設計和特性,因此所需鹵化銀的消耗範圍也取決於不同的生物感測器。因此,可以了解,對所需消耗量的任何修改都在本發明的範圍內。
除了所需鹵化銀的消耗量範圍外,還可考慮加上緩衝量以應付患者體內分析物濃度的波動。緩衝量可以大於0,並且可以基於生物感測器的預定使用期間來調整。可以根據生物感測器的預定使用期間中的多個量測時間來調整所需消耗量。
可以依據所需消耗量範圍的上限和緩衝量的總和來決定初始量,以確保在回充期間鹵化銀的所需回充量足以使鹵化銀的量保持在安全的庫存範圍內,以安然地確保在下一個測量期間中成功取得下一個生理訊號和下一個生理參數並使其兩者保持一穩定的比例關係。在將鹵化銀的回充量控制為足以支持下一次量測中的消耗量的情況下,緩衝量可以為零。
如果將所需的氯化銀消耗範圍的上限選擇為1mC,並且將緩衝量選擇為0.5mC,則可以將對電極上氯化銀的初始量決定為1.5mC,其為1mC和0.5mC的總和。因此,所需的回充量範圍可以大於零,大於1.5mC或小於1.5mC。
基於鹵化銀的初始量,可以至少進行第一次的量測。在執行第一次量測之後,執行第一次的回充,以回充被消耗的鹵化銀。
在決定初始量之後,因而決定了對電極的所需尺寸。對電極的尺寸與對電極上銀和鹵化銀的總體積有關。鹵化銀的初始量可以轉化為對電極上鹵化銀的總體積。可以由對電極上的銀和鹵化銀的寬度、長度和厚度的算術乘積簡單地定義銀和鹵化銀的總體積。寬度、長度和厚度中的任何一種均可調整以改變銀和鹵化銀的體積。通常,對電極上的銀和鹵化銀的寬度和厚度是預先確定的,以滿足設計和製造能力的限制。因此,可以藉由減小對電極上的銀和鹵化銀的長度來減小對電極上的銀和鹵化銀的體積,這意味著可以縮短對電極的長度。因此,利用本發明提供的決定鹵化銀的初始量的方法,可以實現具有延長使用壽命以及較短對電極的生物感測器。因此,患者對於植入的生物感測器感受的痛苦和不 適將大大減輕,並且不需要頻繁地購買新的生物感測器來更換舊的生物感測器。
根據本發明的一個實施例,當用於一天的鹵化銀的初始量為1.5mC時,取決於不同製造商的生物傳感器的特性的鹵化銀的單位量(或單位容量)為300mC/mm3的情況下,所需的鹵化銀體積為0.005mm3。當對電極的寬度為0.3mm且鹵化銀的厚度為0.01mm時,對電極上的鹵化銀的長度為1.67mm。按比例,如果所需鹵化銀的初始量需要3.6天的量,則鹵化銀的長度,即對電極的長度約為6mm,如果所需鹵化銀的初始量需要6天的量,則對電極的長度約為10mm。因為可以縮短對電極的長度,所以可以相應地縮短植入患者體內的生物感測器的長度,並且還可以將生物感測器垂直地植入患者體內,以使對患者的傷害最小化。因此,不僅由於本發明提供的回充期間而可以延長生物感測器的使用壽命,而且由於對電極的長度縮短,還可以減少對患者造成的痛苦和不適。
當然,可以經由改變銀和鹵化銀的長度、寬度和厚度中的至少其中之一來實現減少銀和鹵化銀的體積。所有上述修改仍在本發明的範圍內。
本發明也適用於具有任意數量的對電極和任意數量的工作電極的生物感測器,例如具有一個工作電極、一個輔助電極和一個對電極的生物感測器、具有兩個工作電極和一個對電極的生物感測器、或者具有兩個工作電極和兩個對電極的生物感測器。如果生物感測器具有兩個或更多個對電極,則所有對電極可以具有相同的尺寸和/或相同鹵化銀的初始量。
因此與未使用本發明之鹵化銀的回充技術情況比較下,透過本發明鹵化銀的回充方法,能有效延長感測器使用壽命、且能大幅縮減對電極上Ag/AgCl材料的使用,而使對電極訊號感測段的尺寸可縮小。由於縮減對電極上Ag/AgCl材料的使用,而使感測器可微型化且可降低生物毒性。此外,電極尺寸縮小特別是指縮短感測器的植入端長度,因此可降低使用者植入痛感。
儘管已經根據當前被認為是最實際和優選的實施例描述了本發明,但是應當理解,本發明並不限於所公開的實施例。相反地,其意旨是涵蓋包括在所附申請專利範圍的精神和範圍內的各種修改和類似配置,這些修改和類似被置應與最廣泛的解釋相一致,以涵蓋所有此等的修改和類似結構。
S1、S2、S3、S4、S5、S6:步驟

Claims (19)

  1. 一種決定一生物感測器的一對電極的一尺寸以及可延長該生物感測器的一使用壽命的方法,該對電極包括一銀及一鹵化銀,該尺寸依據該鹵化銀的一初始量而被量化,該初始量足以量測一生物體內之一待分析物相關聯的一生理參數的一生理訊號,該生物感測器被皮下植入一生物體、且還包括一工作電極,該鹵化銀於一量測期間中被消耗,且於一再生期間中該鹵化銀被回充,該方法包括以下步驟:a.定義由該生物感測器執行至少一次該量測期間中的該鹵化銀的一所需消耗量範圍;b.根據該所需消耗量範圍的一上限值加上一緩衝量決定該初始量,以於該再生期間中的該鹵化銀的一所需回充量範圍被控制成足以讓該鹵化銀的一量維持在一安全庫存區間內,以確保在該再生期間後的一第二量測期間所獲得的一第二生理訊號與一第二生理參數保持一穩定的比例關係;c.轉換該初始量成該對電極的該尺寸;d.使該對電極具有包含至少該初始量的該鹵化銀;e.於該量測期間量測該生理訊號且該鹵化銀被消耗一消耗量;以及f.於該再生期間該鹵化銀被回充一回充量,其中在該再生期間中讓鹵化銀的該量維持在該安全庫存區內 係指讓該鹵化銀的該回充量與該初始量的和減去該消耗量之一值被控制在該初始量加減一特定值的一範圍內。
  2. 如請求項1所述的方法,其中該所需消耗量範圍係與待分析物的該生理參數相關聯。
  3. 如請求項1所述的方法,其中該所需消耗量範圍係根據該生物感測器之一預定使用時間內的複數量測期間而調整。
  4. 如請求項1所述的方法,其中該緩衝量係大於0並可根據該生物感測器之一預定使用時間而調整。
  5. 如請求項1所述的方法,其中該步驟d是於該生物感測器於出廠前完成。
  6. 如請求項1所述的方法,其中該特定值為X,且該X滿足以下條件:0<X<該初始量。
  7. 如請求項1所述的方法,其中:於該量測期間,施加一量測電壓於該工作電極及該對電極之間,以驅動該工作電極量測該生理訊號用以獲得該生理參數;停止施加該量測電壓,且該鹵化銀被消耗該消耗量;以及於該再生期間,施加一再生電壓於該對電極及該工作電極之間,從而使該鹵化銀被回充該回充量。
  8. 如請求項7所述的方法,其中該生物感測器還包括一輔助電極,以及該方法還包括:於一第二量測期間,施加該量測電壓於該工作電極及該對電極之間,以驅動該工作電極量測該生理訊號用以獲得該生理參數;停止施加該量測電壓;以及於一第二再生期間,施加該再生電壓於該對電極與該輔助電極之間,從而使該鹵化銀被回充。
  9. 如請求項7所述的方法,其中該生物感測器還包括一第二工作電極與一第二對電極,該第二對電極亦包括一銀及一鹵化銀,以及該方法還包括:於一第二量測期間,施加一量測電壓於該第二工作電極與該第二對電極之間,以驅動該該第二工作電極量測該生理訊號;停止施加該量測電壓;於一第二再生期間,施加該再生電壓於該工作電極及該第二工作電極之一與該第二對電極之間,從而使該第二對電極的該鹵化銀被回充。
  10. 如請求項7所述的方法,其中該生物感測器還包括一第二工作電極與一第二對電極,該第二對電極亦包括一銀及一鹵化銀,以及該方法還包括:於一第二量測期間,施加該量測電壓於該對電極及該第二對 電極之一與該工作電極之間,以驅動該工作電極量測該生理訊號;停止施加該量測電壓;以及於一第二再生期間,施加該再生電壓於該對電極及該第二對電極之一與該第二工作電極之間,從而使該對電極及該第二對電極之一的該鹵化銀被回充。
  11. 一種決定一生物感測器的一對電極的一尺寸以及可延長該生物感測器的一使用壽命的方法,該對電極包括一銀及一鹵化銀,該尺寸依據該鹵化銀的一初始量而被量化,該初始量足以量測一生物體內之一待分析物相關聯的一生理參數的一生理訊號,該生物感測器還包括一工作電極,於一量測期間中該鹵化銀被消耗,且於一再生期間中該鹵化銀被回充,該方法包括以下步驟:a.定義由該生物感測器執行至少一次該量測期間中的該鹵化銀的一所需消耗量範圍;b.根據該所需消耗量範圍的一上限值加上一緩衝量決定該初始量,以於該再生期間中的該鹵化銀的一所需回充量範圍被控制成足以讓該鹵化銀的一量(>0)維持在一安全庫存區間內,以確保在該再生期間後的一第二量測期間所獲得的一第二生理訊號與一第二生理參數保持一穩定的比例關係;c.轉換該初始量成該對電極的該尺寸; d.使該對電極具有包含至少該初始量的該鹵化銀;e.於該量測期間量測該生理訊號且該鹵化銀被消耗一消耗量;以及f.於該再生期間該鹵化銀被回充一回充量,其中該步驟d是於該生物感測器被植入後、於該步驟e之前完成,其中在該再生期間中讓鹵化銀的該量維持在該安全庫存區內係指讓該鹵化銀的該回充量與該初始量的和減去該消耗量之一值被控制在該初始量加減一特定值的一範圍內。
  12. 一種具一初始量以供量測與一待測物相關聯的一生理參數的一生理訊號的生物感測器,包括:一工作電極,被配置成於一第一量測期間被驅動以量測該生理訊號;以及一對電極,包括一銀與一鹵化銀,該鹵化銀具有該初始量,且被配置成於每一量測期間,該鹵化銀被消耗一消耗量,以及於該第一量測期間之後的一第一再生期間,該對電極及該工作電極被驅動,從而使該鹵化銀被回充,其中該初始量被配置成由以下步驟決定:a.定義由該生物感測器執行至少一次量測期間中的該鹵化銀的一所需消耗量範圍;以及b.根據該所需消耗量範圍的一上限值加上一緩衝量決定該初始量,以於該第一再生期間中的該鹵化銀的 一所需回充量範圍被控制成足以讓該鹵化銀的一量維持在一安全庫存區間內,其中在該第一再生期間中讓鹵化銀的該量維持在該安全庫存區內係指讓該鹵化銀的該回充量與該初始量的和減去該消耗量之一值被控制在該初始量加減一特定值的一範圍內。
  13. 如請求項12所述的生物感測器,還包括一輔助電極,其中該輔助電極與該對電極於一第二量測期間之後的一第二再生期間被驅動,從而使該鹵化銀被回充。
  14. 如請求項12所述的生物感測器,還包括一第二工作電極與一第二對電極,該第二對電極亦包括一銀及一鹵化銀,其中於一第二量測期間,該第二工作電極及該第二對電極被驅動以量測該生理訊號;以及於一第二再生期間,該第二工作電極與該第二對電極被驅動,從而使該第二對電極的該鹵化銀被回充。
  15. 如請求項12所述的生物感測器,還包括一第二工作電極與一第二對電極,該第二對電極亦包括一銀及一鹵化銀,其中於一第二量測期間,該工作電極及該第二對電極被驅動以量測該生理訊號;以及於一第二再生期間,該第二工作電極與該第二對電極被驅動,從而使該第二對電極的該鹵化銀被回充。
  16. 如請求項12所述的生物感測器,其中該對電極的一長度是依照該初始量而定義。
  17. 如請求項16所述的生物感測器,其中該長度不大於6mm,使該生物感測器能以垂直於一生物體皮膚的方式被部分植入於該生物體內。
  18. 如請求項16所述的生物感測器,其中該長度不大於10mm。
  19. 如請求項12所述的生物感測器,其中該生物感測器被植入一生物體內。
TW109126241A 2019-08-02 2020-08-03 生物感測器及用於決定其對電極尺寸和延長其壽命的方法 TWI805938B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201962882162P 2019-08-02 2019-08-02
US62/882,162 2019-08-02
US202062988549P 2020-03-12 2020-03-12
US62/988,549 2020-03-12

Publications (2)

Publication Number Publication Date
TW202107090A TW202107090A (zh) 2021-02-16
TWI805938B true TWI805938B (zh) 2023-06-21

Family

ID=71943924

Family Applications (11)

Application Number Title Priority Date Filing Date
TW109125964A TWI755803B (zh) 2019-08-02 2020-07-31 植入式微型生物感測器及其製法
TW109125962A TWI755802B (zh) 2019-08-02 2020-07-31 植入式微型生物感測器
TW109125968A TWI799725B (zh) 2019-08-02 2020-07-31 植入式微型生物感測器及其操作方法
TW111132568A TWI788274B (zh) 2019-08-02 2020-08-03 微型生物感測器及其量測方法
TW109126239A TWI783250B (zh) 2019-08-02 2020-08-03 微型生物感測器及其量測方法
TW111132569A TWI784921B (zh) 2019-08-02 2020-08-03 微型生物感測器及其量測方法
TW109126213A TWI770571B (zh) 2019-08-02 2020-08-03 降低微型生物感測器量測干擾的方法
TW109126240A TWI736383B (zh) 2019-08-02 2020-08-03 微型生物感測器及其量測方法
TW109126201A TWI757811B (zh) 2019-08-02 2020-08-03 微型生物感測器及其用於降低量測干擾的方法
TW109126241A TWI805938B (zh) 2019-08-02 2020-08-03 生物感測器及用於決定其對電極尺寸和延長其壽命的方法
TW109126238A TWI783249B (zh) 2019-08-02 2020-08-03 微型生物感測器及其量測方法

Family Applications Before (9)

Application Number Title Priority Date Filing Date
TW109125964A TWI755803B (zh) 2019-08-02 2020-07-31 植入式微型生物感測器及其製法
TW109125962A TWI755802B (zh) 2019-08-02 2020-07-31 植入式微型生物感測器
TW109125968A TWI799725B (zh) 2019-08-02 2020-07-31 植入式微型生物感測器及其操作方法
TW111132568A TWI788274B (zh) 2019-08-02 2020-08-03 微型生物感測器及其量測方法
TW109126239A TWI783250B (zh) 2019-08-02 2020-08-03 微型生物感測器及其量測方法
TW111132569A TWI784921B (zh) 2019-08-02 2020-08-03 微型生物感測器及其量測方法
TW109126213A TWI770571B (zh) 2019-08-02 2020-08-03 降低微型生物感測器量測干擾的方法
TW109126240A TWI736383B (zh) 2019-08-02 2020-08-03 微型生物感測器及其量測方法
TW109126201A TWI757811B (zh) 2019-08-02 2020-08-03 微型生物感測器及其用於降低量測干擾的方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW109126238A TWI783249B (zh) 2019-08-02 2020-08-03 微型生物感測器及其量測方法

Country Status (9)

Country Link
US (10) US11506627B2 (zh)
EP (10) EP3771410A1 (zh)
JP (6) JP7104109B2 (zh)
KR (5) KR102497046B1 (zh)
CN (9) CN112294318A (zh)
AU (5) AU2020294358B2 (zh)
CA (5) CA3088582C (zh)
TW (11) TWI755803B (zh)
WO (4) WO2021024132A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11506627B2 (en) * 2019-08-02 2022-11-22 Bionime Corporation Micro biosensor and measuring method thereof
TWI770871B (zh) * 2020-03-12 2022-07-11 華廣生技股份有限公司 回復生物感測器的方法及使用此方法的裝置
EP3928697A1 (en) 2020-06-23 2021-12-29 Roche Diabetes Care GmbH Analyte sensor and a method for producing an analyte sensor
EP4296385A1 (en) 2021-03-08 2023-12-27 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for manufacturing steel sheet
CO2021005504A1 (es) * 2021-04-27 2022-10-31 Pontificia Univ Javeriana Dispositivo para la medición electrónica y electroquímica de concentraciones de analitos en muestras biológicas
TW202305354A (zh) * 2021-07-22 2023-02-01 華廣生技股份有限公司 微型生物感測器及其感測結構
CN114748208B (zh) * 2022-04-15 2024-01-12 柔脉医疗(深圳)有限公司 一种可原位检测多种化学、生物成分的组织工程支架
WO2024023000A1 (en) * 2022-07-26 2024-02-01 F. Hoffmann-La Roche Ag A method and an analyte sensor system for detecting at least one analyte
CN116421191A (zh) * 2023-03-08 2023-07-14 宁波康麦隆医疗器械有限公司 柔性一体化生物电信号传感器、检测方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090298104A1 (en) * 2008-06-02 2009-12-03 Zenghe Liu Reference electrodes having an extended lifetime for use in long term amperometric sensors
US20130245412A1 (en) * 2009-07-02 2013-09-19 Dexcom, Inc. Analyte sensor with increased reference capacity
CN105445345A (zh) * 2015-11-12 2016-03-30 三诺生物传感股份有限公司 一种柔性植入电极的制备方法
WO2019004585A1 (ko) * 2017-06-29 2019-01-03 주식회사 아이센스 Cgms 센서용 agcl 보충시스템 및 보충방법
TW201903404A (zh) * 2017-06-03 2019-01-16 暐世生物科技股份有限公司 金屬電極試片及其製作方法

Family Cites Families (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5200051A (en) * 1988-11-14 1993-04-06 I-Stat Corporation Wholly microfabricated biosensors and process for the manufacture and use thereof
AUPN363995A0 (en) * 1995-06-19 1995-07-13 Memtec Limited Electrochemical cell
US6002954A (en) * 1995-11-22 1999-12-14 The Regents Of The University Of California Detection of biological molecules using boronate-based chemical amplification and optical sensors
DE19605739C1 (de) * 1996-02-16 1997-09-04 Wolfgang Dr Fleckenstein Gehirn-pO2-Meßvorrichtung
US20050033132A1 (en) * 1997-03-04 2005-02-10 Shults Mark C. Analyte measuring device
WO1998058250A2 (en) * 1997-06-16 1998-12-23 Elan Corporation, Plc Methods of calibrating and testing a sensor for in vivo measurement of an analyte and devices for use in such methods
US6134461A (en) 1998-03-04 2000-10-17 E. Heller & Company Electrochemical analyte
US6587705B1 (en) * 1998-03-13 2003-07-01 Lynn Kim Biosensor, iontophoretic sampling system, and methods of use thereof
US8688188B2 (en) * 1998-04-30 2014-04-01 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6175752B1 (en) * 1998-04-30 2001-01-16 Therasense, Inc. Analyte monitoring device and methods of use
US8974386B2 (en) * 1998-04-30 2015-03-10 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
US6338790B1 (en) * 1998-10-08 2002-01-15 Therasense, Inc. Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
US6654625B1 (en) * 1999-06-18 2003-11-25 Therasense, Inc. Mass transport limited in vivo analyte sensor
US6682649B1 (en) * 1999-10-01 2004-01-27 Sophion Bioscience A/S Substrate and a method for determining and/or monitoring electrophysiological properties of ion channels
US6885883B2 (en) * 2000-05-16 2005-04-26 Cygnus, Inc. Methods for improving performance and reliability of biosensors
US6872297B2 (en) * 2001-05-31 2005-03-29 Instrumentation Laboratory Company Analytical instruments, biosensors and methods thereof
TWI244550B (en) * 2001-06-21 2005-12-01 Hmd Biomedical Inc Electrochemistry test unit, biological sensor, the manufacturing method, and the detector
US20030032874A1 (en) * 2001-07-27 2003-02-13 Dexcom, Inc. Sensor head for use with implantable devices
US6964871B2 (en) * 2002-04-25 2005-11-15 Home Diagnostics, Inc. Systems and methods for blood glucose sensing
US7736309B2 (en) * 2002-09-27 2010-06-15 Medtronic Minimed, Inc. Implantable sensor method and system
WO2004040286A1 (ja) * 2002-10-31 2004-05-13 Matsushita Electric Industrial Co., Ltd. 検体液種を自動的に判別する定量方法、及びバイオセンサ用標準液
US9763609B2 (en) * 2003-07-25 2017-09-19 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
EP1649260A4 (en) 2003-07-25 2010-07-07 Dexcom Inc ELECTRODE SYSTEMS FOR ELECTROCHEMICAL DETECTORS
AU2004268222B2 (en) * 2003-08-21 2010-03-11 Agamatrix, Inc. Method and apparatus for assay of electrochemical properties
US20050067277A1 (en) * 2003-09-30 2005-03-31 Pierce Robin D. Low volume electrochemical biosensor
US7563588B2 (en) * 2003-10-29 2009-07-21 Agency For Science, Technology And Research Electrically non-conductive, nanoparticulate membrane
PL1685393T3 (pl) * 2003-10-31 2007-07-31 Lifescan Scotland Ltd Elektrochemiczny pasek testowy do zmniejszania efektu bezpośredniego prądu interferencyjnego
US11633133B2 (en) * 2003-12-05 2023-04-25 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
US8423114B2 (en) 2006-10-04 2013-04-16 Dexcom, Inc. Dual electrode system for a continuous analyte sensor
DE602004029092D1 (de) * 2003-12-05 2010-10-21 Dexcom Inc Kalibrationsmethoden für einen kontinuierlich arbeitenden analytsensor
US7125382B2 (en) * 2004-05-20 2006-10-24 Digital Angel Corporation Embedded bio-sensor system
CN101023343A (zh) * 2004-08-20 2007-08-22 诺和诺德公司 用于生产细小传感器的制造工艺
KR100698961B1 (ko) * 2005-02-04 2007-03-26 주식회사 아이센스 전기화학적 바이오센서
PL1698891T3 (pl) * 2005-03-03 2008-02-29 Apex Biotechnology Corp Sposób redukcji pomiarowego napięcia wstępnego w amperometrycznych czujnikach biologicznych
US7695600B2 (en) * 2005-06-03 2010-04-13 Hypoguard Limited Test system
KR101503072B1 (ko) 2005-07-20 2015-03-16 바이엘 헬스케어 엘엘씨 게이트형 전류 측정법
US7846311B2 (en) * 2005-09-27 2010-12-07 Abbott Diabetes Care Inc. In vitro analyte sensor and methods of use
EP1962668B1 (de) 2005-12-19 2009-06-17 F. Hoffmann-La Roche AG Sandwichsensor zur ermittlung einer analytkonzentration
JP4394654B2 (ja) * 2006-02-24 2010-01-06 三菱重工環境・化学エンジニアリング株式会社 高含水有機物炭化処理システムの熱分解ガス処理方法及びその装置
US7887682B2 (en) * 2006-03-29 2011-02-15 Abbott Diabetes Care Inc. Analyte sensors and methods of use
ATE514942T1 (de) * 2006-04-10 2011-07-15 Bayer Healthcare Llc Korrektur von sauerstoffeffekten bei einem testsensor unter verwendung von reagenzien
MX2008014250A (es) * 2006-05-08 2008-11-26 Bayer Healthcare Llc Sistema de deteccion de salida anormal para biosensor.
US20070299617A1 (en) * 2006-06-27 2007-12-27 Willis John P Biofouling self-compensating biosensor
ES2825036T3 (es) * 2006-10-24 2021-05-14 Ascensia Diabetes Care Holdings Ag Amperometría de decaimiento transitorio
US20080214912A1 (en) * 2007-01-10 2008-09-04 Glucose Sensing Technologies, Llc Blood Glucose Monitoring System And Method
US8808515B2 (en) * 2007-01-31 2014-08-19 Abbott Diabetes Care Inc. Heterocyclic nitrogen containing polymers coated analyte monitoring device and methods of use
US20200037875A1 (en) * 2007-05-18 2020-02-06 Dexcom, Inc. Analyte sensors having a signal-to-noise ratio substantially unaffected by non-constant noise
EP2179027A4 (en) * 2007-07-23 2013-12-04 Agamatrix Inc ELECTROCHEMICAL TEST STRIP
CN101520428B (zh) * 2008-02-25 2013-05-01 华广生技股份有限公司 电化学式感测方法与试片
US8583204B2 (en) * 2008-03-28 2013-11-12 Dexcom, Inc. Polymer membranes for continuous analyte sensors
WO2009121026A1 (en) * 2008-03-28 2009-10-01 Dexcom, Inc. Polymer membranes for continuous analyte sensors
US8620398B2 (en) 2008-06-02 2013-12-31 Abbott Diabetes Care Inc. Reference electrodes having an extended lifetime for use in long term amperometric sensors
US8155722B2 (en) * 2008-06-02 2012-04-10 Abbott Diabetes Care Inc. Reference electrodes having an extended lifetime for use in long term amperometric sensors
US8700114B2 (en) 2008-07-31 2014-04-15 Medtronic Minmed, Inc. Analyte sensor apparatuses comprising multiple implantable sensor elements and methods for making and using them
JP5228891B2 (ja) * 2008-11-21 2013-07-03 株式会社リコー センサデバイス
WO2010093803A2 (en) * 2009-02-12 2010-08-19 Keimar, Inc. Physiological parameter sensors
CN104825171B (zh) * 2009-02-26 2017-08-04 雅培糖尿病护理公司 改进的分析物传感器及其制造和使用方法
DK3912551T3 (da) * 2009-02-26 2023-10-30 Abbott Diabetes Care Inc Fremgangsmåde til kalibrering af en analytsensor
US20100219085A1 (en) * 2009-02-27 2010-09-02 Edwards Lifesciences Corporation Analyte Sensor Offset Normalization
GR1007310B (el) * 2009-03-09 2011-06-10 Αχιλλεας Τσουκαλης Εμφυτευσιμος βιοαισθητηρας με αυτοματη βαθμονομηση
US8359081B2 (en) * 2009-04-28 2013-01-22 Abbott Diabetes Care Inc. Service-detectable analyte sensors and methods of using and making same
WO2011031751A1 (en) * 2009-09-08 2011-03-17 Bayer Healthcare Llc Electrochemical test sensor
US8500979B2 (en) * 2009-12-31 2013-08-06 Intel Corporation Nanogap chemical and biochemical sensors
US10448872B2 (en) * 2010-03-16 2019-10-22 Medtronic Minimed, Inc. Analyte sensor apparatuses having improved electrode configurations and methods for making and using them
CA3134869C (en) * 2010-03-24 2024-03-05 Abbott Diabetes Care Inc. Medical device inserters and processes of inserting and using medical devices
JP5753720B2 (ja) 2010-04-22 2015-07-22 アークレイ株式会社 バイオセンサ
US8476079B2 (en) * 2010-04-30 2013-07-02 Abbott Point Of Care Inc. Reagents for reducing leukocyte interference in immunoassays
JP2012026910A (ja) * 2010-07-26 2012-02-09 Arkray Inc バイオセンサユニットおよびバイオセンサシステム
CN107961016B (zh) * 2010-12-09 2021-06-15 雅培糖尿病护理股份有限公司 具有包括小型感测斑点的感测表面的分析物传感器
JP4991967B1 (ja) * 2011-02-25 2012-08-08 パナソニック株式会社 変換ストリッピング法により化学物質を定量する方法およびそのために用いられるセンサチップ
US8399262B2 (en) * 2011-03-23 2013-03-19 Darrel A. Mazzari Biosensor
US20130092526A1 (en) * 2011-10-03 2013-04-18 Cpfilms Inc. Method of activation of noble metal for measurement of glucose and associated biosensor electrode
US9493807B2 (en) * 2012-05-25 2016-11-15 Medtronic Minimed, Inc. Foldover sensors and methods for making and using them
KR101466222B1 (ko) * 2012-06-01 2014-12-01 주식회사 아이센스 정확도가 향상된 전기화학적 바이오센서
US9213010B2 (en) 2012-06-08 2015-12-15 Medtronic Minimed, Inc. Application of electrochemical impedance spectroscopy in sensor systems, devices, and related methods
US10598627B2 (en) * 2012-06-29 2020-03-24 Dexcom, Inc. Devices, systems, and methods to compensate for effects of temperature on implantable sensors
US10881339B2 (en) 2012-06-29 2021-01-05 Dexcom, Inc. Use of sensor redundancy to detect sensor failures
US9201038B2 (en) * 2012-07-24 2015-12-01 Lifescan Scotland Limited System and methods to account for interferents in a glucose biosensor
JP6282226B2 (ja) * 2012-09-19 2018-02-21 パナソニックヘルスケアホールディングス株式会社 バイオセンサ及びバイオセンサの製造方法
US8965478B2 (en) * 2012-10-12 2015-02-24 Google Inc. Microelectrodes in an ophthalmic electrochemical sensor
US9265455B2 (en) * 2012-11-13 2016-02-23 Medtronic Minimed, Inc. Methods and systems for optimizing sensor function by the application of voltage
US20140275903A1 (en) * 2013-03-14 2014-09-18 Lifescan Scotland Limited System and method for quick-access physiological measurement history
CN103462615B (zh) * 2013-09-13 2015-12-16 上海移宇科技有限公司 微米尺度葡萄糖传感器微电极
EP3076167B1 (en) * 2013-11-27 2018-03-14 Panasonic Healthcare Holdings Co., Ltd. Method of measuring blood component amount
US9861747B2 (en) * 2013-12-05 2018-01-09 Lifescan, Inc. Method and system for management of diabetes with a glucose monitor and infusion pump to provide feedback on bolus dosing
US9649058B2 (en) * 2013-12-16 2017-05-16 Medtronic Minimed, Inc. Methods and systems for improving the reliability of orthogonally redundant sensors
US20150196224A1 (en) * 2014-01-16 2015-07-16 Dermal Therapy (Barbados) Inc. Implantable Sensor and Method for Such Sensor
CA3220825A1 (en) * 2014-04-10 2015-10-15 Dexcom, Inc. Sensors for continuous analyte monitoring, and related methods
CN115349856A (zh) * 2014-06-06 2022-11-18 德克斯康公司 基于数据和背景的故障判别和响应处理
CN105445339B (zh) * 2014-07-31 2018-07-06 天津大学 一种柔性差分式阵列电化学葡萄糖传感器及使用方法
US20170238851A1 (en) 2014-08-26 2017-08-24 Echo Therapeutics, Inc. Differential Biosensor System
KR101703948B1 (ko) * 2014-10-27 2017-02-07 광운대학교 산학협력단 인체 삽입형 플렉시블 바이오센서, 및 그 제조방법
WO2016090189A1 (en) * 2014-12-03 2016-06-09 The Regents Of The University Of California Non-invasive and wearable chemical sensors and biosensors
JP6410308B2 (ja) * 2014-12-12 2018-10-24 国立大学法人東北大学 センサチップ、検出システム、及び、検出方法
CN104535627B (zh) 2014-12-17 2017-01-04 浙江大学 葡萄糖传感系统
US20160235347A1 (en) * 2015-02-13 2016-08-18 Maarij Baig Artificial sensors and methods of manufacture thereof
US10575767B2 (en) * 2015-05-29 2020-03-03 Medtronic Minimed, Inc. Method for monitoring an analyte, analyte sensor and analyte monitoring apparatus
GB2539224A (en) * 2015-06-09 2016-12-14 Giuseppe Occhipinti Luigi Method of forming a chemical sensor device and device
EP3308152B1 (en) 2015-06-15 2019-07-24 Roche Diagnostics GmbH Method for electrochemically detecting at least one analyte in a sample of a body fluid
GB201510765D0 (en) * 2015-06-18 2015-08-05 Inside Biometrics Ltd Method, apparatus and electrochemical test device
US20170185733A1 (en) * 2015-12-28 2017-06-29 Medtronic Minimed, Inc. Retrospective sensor systems, devices, and methods
WO2017117468A1 (en) * 2015-12-30 2017-07-06 Dexcom, Inc. Enzyme immobilized adhesive layer for analyte sensors
PL3220137T3 (pl) * 2016-03-14 2019-07-31 F. Hoffmann-La Roche Ag Sposób wykrywania udziału zakłócającego w biosensorze
JP2017173014A (ja) * 2016-03-22 2017-09-28 大日本印刷株式会社 電極構造の製造方法、電気化学センサの製造方法、電極構造および電気化学センサ
TWM528727U (zh) * 2016-03-25 2016-09-21 Hong Yue Technology Corp 穿戴式生理量測儀
CN105891297B (zh) * 2016-05-09 2018-07-06 三诺生物传感股份有限公司 一种电化学测量方法
US11298059B2 (en) * 2016-05-13 2022-04-12 PercuSense, Inc. Analyte sensor
EP3263712A1 (en) * 2016-06-29 2018-01-03 Roche Diabetes Care GmbH Galvanically functionalized sensors
JP2018019826A (ja) * 2016-08-02 2018-02-08 セイコーエプソン株式会社 検出素子、測定装置、薬剤供給装置および検出素子の製造方法
TWI589869B (zh) * 2016-08-08 2017-07-01 友達光電股份有限公司 感測裝置及該感測裝置之電極試片
CN106290530B (zh) * 2016-08-31 2018-10-30 微泰医疗器械(杭州)有限公司 一种可自纠正干扰信号的电化学分析物传感系统及方法
CN107817337B (zh) * 2016-09-13 2020-09-22 华广生技股份有限公司 一种分析物量测模块
EP3515295A1 (en) * 2016-09-21 2019-07-31 University of Cincinnati Accurate enzymatic sensing of sweat analytes
TWI631330B (zh) * 2016-10-03 2018-08-01 國立清華大學 非酶葡萄糖感測器及其製造方法與金屬奈米觸媒的製造方法
EP3529612A4 (en) * 2016-10-24 2020-05-20 H. Hoffnabb-La Roche Ag METHODS OF CORRECTING UNCENSATED RESISTORS IN CONDUCTIVE ELEMENTS OF BIOSENSORS, AS WELL AS DEVICES AND SYSTEMS
CN106725470B (zh) * 2016-11-22 2023-12-19 南通九诺医疗科技有限公司 一种连续或非连续的生理参数分析系统
AU2018209930B2 (en) * 2017-01-19 2020-04-30 Dexcom, Inc. Flexible analyte sensors
US20180217079A1 (en) * 2017-01-31 2018-08-02 Cilag Gmbh International Determining an analyte concentration of a physiological fluid having an interferent
CN107122703B (zh) * 2017-03-15 2019-12-17 深圳信炜科技有限公司 生物信息传感装置、电子设备和共模干扰检测方法
EP3606599A4 (en) * 2017-04-03 2021-01-13 Presidio Medical, Inc. SYSTEMS AND PROCEDURES FOR A DC NERVOUS GUIDE BLOCK
US20180306744A1 (en) * 2017-04-20 2018-10-25 Lifescan Scotland Limited Analyte measurement system and method
CN107064261A (zh) * 2017-05-01 2017-08-18 台州亿联健医疗科技有限公司 一种基于葡萄糖脱氢酶的生物传感器及检测方法
CN107064266A (zh) * 2017-06-07 2017-08-18 杭州暖芯迦电子科技有限公司 一种多工作电极葡萄糖传感器及其制造方法
US11344235B2 (en) * 2017-09-13 2022-05-31 Medtronic Minimed, Inc. Methods, systems, and devices for calibration and optimization of glucose sensors and sensor output
CN109920922B (zh) * 2017-12-12 2020-07-17 京东方科技集团股份有限公司 有机发光器件及其制备方法、显示基板、显示驱动方法
CN111655147A (zh) * 2018-01-29 2020-09-11 普和希控股公司 生物传感器探针用保护膜材料
CA3089729A1 (en) * 2018-02-05 2019-08-08 Abbott Diabetes Care Inc. Notes and event log information associated with analyte sensors
US11583213B2 (en) 2018-02-08 2023-02-21 Medtronic Minimed, Inc. Glucose sensor electrode design
US11284816B2 (en) * 2018-02-13 2022-03-29 PercuSense, Inc. Multi-analyte continuous glucose monitoring
CN109283234A (zh) 2018-08-15 2019-01-29 浙江大学 一种去干扰纸基电化学传感器及其测试方法
CN109298032A (zh) * 2018-08-15 2019-02-01 浙江大学 一种基于叉指结构的去干扰电化学纸基试片及其测试方法
CA3147845A1 (en) * 2019-07-16 2021-01-21 Dexcom, Inc. Analyte sensor electrode arrangements
US11506627B2 (en) * 2019-08-02 2022-11-22 Bionime Corporation Micro biosensor and measuring method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090298104A1 (en) * 2008-06-02 2009-12-03 Zenghe Liu Reference electrodes having an extended lifetime for use in long term amperometric sensors
US20130245412A1 (en) * 2009-07-02 2013-09-19 Dexcom, Inc. Analyte sensor with increased reference capacity
CN105445345A (zh) * 2015-11-12 2016-03-30 三诺生物传感股份有限公司 一种柔性植入电极的制备方法
TW201903404A (zh) * 2017-06-03 2019-01-16 暐世生物科技股份有限公司 金屬電極試片及其製作方法
WO2019004585A1 (ko) * 2017-06-29 2019-01-03 주식회사 아이센스 Cgms 센서용 agcl 보충시스템 및 보충방법

Also Published As

Publication number Publication date
JP2021023816A (ja) 2021-02-22
TW202106247A (zh) 2021-02-16
TWI788274B (zh) 2022-12-21
TW202248636A (zh) 2022-12-16
TW202107090A (zh) 2021-02-16
US20210030342A1 (en) 2021-02-04
TWI755802B (zh) 2022-02-21
AU2020210301A1 (en) 2021-02-18
TW202107087A (zh) 2021-02-16
JP7089559B2 (ja) 2022-06-22
CN112305040A (zh) 2021-02-02
AU2020294358A1 (en) 2021-02-18
KR102446995B1 (ko) 2022-09-23
CN112305040B (zh) 2023-10-31
TWI799725B (zh) 2023-04-21
KR102506277B1 (ko) 2023-03-07
AU2020324193A1 (en) 2021-05-06
TW202107086A (zh) 2021-02-16
EP3771411A1 (en) 2021-02-03
CA3088599C (en) 2023-01-10
US11974842B2 (en) 2024-05-07
US20210030340A1 (en) 2021-02-04
CN112294310A (zh) 2021-02-02
TWI784921B (zh) 2022-11-21
US11506627B2 (en) 2022-11-22
CA3127420C (en) 2024-01-02
CN112294320A (zh) 2021-02-02
KR20210016291A (ko) 2021-02-15
TWI736383B (zh) 2021-08-11
AU2020324193B2 (en) 2022-04-21
TWI755803B (zh) 2022-02-21
CN112294324A (zh) 2021-02-02
CA3088599A1 (en) 2021-02-02
WO2021023125A1 (en) 2021-02-11
EP4186423A1 (en) 2023-05-31
CN112294322A (zh) 2021-02-02
JP2021047172A (ja) 2021-03-25
JP2021037272A (ja) 2021-03-11
JP7104109B2 (ja) 2022-07-20
WO2021023153A1 (en) 2021-02-11
TW202109040A (zh) 2021-03-01
TWI783249B (zh) 2022-11-11
EP3771420B1 (en) 2024-04-24
TW202107088A (zh) 2021-02-16
JP2022167894A (ja) 2022-11-04
KR20210016314A (ko) 2021-02-15
TW202106246A (zh) 2021-02-16
EP3771421B1 (en) 2024-04-24
CN112294321A (zh) 2021-02-02
CA3088582C (en) 2023-10-31
CA3088582A1 (en) 2021-02-02
EP3771421A1 (en) 2021-02-03
TW202300910A (zh) 2023-01-01
JP7198243B2 (ja) 2022-12-28
CN112294323A (zh) 2021-02-02
TW202107089A (zh) 2021-02-16
KR20210016311A (ko) 2021-02-15
TWI770571B (zh) 2022-07-11
CA3127420A1 (en) 2021-02-11
US11950902B2 (en) 2024-04-09
EP3771415A1 (en) 2021-02-03
US20210030324A1 (en) 2021-02-04
JP2021041143A (ja) 2021-03-18
WO2021024136A1 (en) 2021-02-11
CN112294325A (zh) 2021-02-02
US20210030338A1 (en) 2021-02-04
AU2020327164B2 (en) 2023-02-23
EP3771420A1 (en) 2021-02-03
US20210030329A1 (en) 2021-02-04
JP7143373B2 (ja) 2022-09-28
AU2020210303A1 (en) 2021-03-04
EP3771430A1 (en) 2021-02-03
EP3771414A1 (en) 2021-02-03
EP3771419B1 (en) 2024-04-10
KR20210016290A (ko) 2021-02-15
EP3771410A1 (en) 2021-02-03
AU2020210303B2 (en) 2021-09-23
US20210030331A1 (en) 2021-02-04
US11766193B2 (en) 2023-09-26
KR102417943B1 (ko) 2022-07-06
US20240148280A1 (en) 2024-05-09
JP7162642B2 (ja) 2022-10-28
US20210030341A1 (en) 2021-02-04
US11319570B2 (en) 2022-05-03
US20210032671A1 (en) 2021-02-04
WO2021024132A1 (en) 2021-02-11
EP3771415B1 (en) 2022-11-23
AU2020210301B2 (en) 2021-12-16
EP3771419A1 (en) 2021-02-03
EP3771416A1 (en) 2021-02-03
JP2021036228A (ja) 2021-03-04
US20210033560A1 (en) 2021-02-04
CA3104900A1 (en) 2021-02-02
KR102497046B1 (ko) 2023-02-09
AU2020294358B2 (en) 2022-06-16
KR102532761B1 (ko) 2023-05-16
TW202107078A (zh) 2021-02-16
AU2020327164A1 (en) 2021-07-15
CN112294318A (zh) 2021-02-02
TWI783250B (zh) 2022-11-11
KR20210016292A (ko) 2021-02-15
CA3104769A1 (en) 2021-02-02
TWI757811B (zh) 2022-03-11

Similar Documents

Publication Publication Date Title
TWI805938B (zh) 生物感測器及用於決定其對電極尺寸和延長其壽命的方法
CN112294319A (zh) 植入式微型生物传感器的制造方法
TWI770871B (zh) 回復生物感測器的方法及使用此方法的裝置