TWI728541B - 使用釕前驅物及還原氣體之化學氣相沉積方法 - Google Patents

使用釕前驅物及還原氣體之化學氣相沉積方法 Download PDF

Info

Publication number
TWI728541B
TWI728541B TW108140567A TW108140567A TWI728541B TW I728541 B TWI728541 B TW I728541B TW 108140567 A TW108140567 A TW 108140567A TW 108140567 A TW108140567 A TW 108140567A TW I728541 B TWI728541 B TW I728541B
Authority
TW
Taiwan
Prior art keywords
cyclohexadiene
ruthenium
deposition
diene
precursor
Prior art date
Application number
TW108140567A
Other languages
English (en)
Other versions
TW202026453A (zh
Inventor
世輝 陳
布萊恩 C 漢迪克斯
湯瑪士 H 邦姆
Original Assignee
美商恩特葛瑞斯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商恩特葛瑞斯股份有限公司 filed Critical 美商恩特葛瑞斯股份有限公司
Publication of TW202026453A publication Critical patent/TW202026453A/zh
Application granted granted Critical
Publication of TWI728541B publication Critical patent/TWI728541B/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0046Ruthenium compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/42Coating with noble metals
    • C23C18/44Coating with noble metals using reducing agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28568Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising transition metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76849Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned on top of the main fill metal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本發明描述化學氣相沉積(CVD)方法,其使用式R1 R2 Ru(0)之釕前驅物及還原氣體,其中R1 為含芳基之配位體,且R2 為含二烯基之配位體。CVD可在使用釕前驅物及還原氣體之初始沉積期之後包括氧氣。該方法可在導電材料上提供選擇性Ru沉積,同時使不導電或不太導電之材料上之沉積降到最低。此外,後續使用氧氣可顯著改良沉積速率,同時使基板材料之氧化損傷降到最低或消除。該方法可用於在積體電路及其他微電子器件上形成含Ru之層。

Description

使用釕前驅物及還原氣體之化學氣相沉積方法
本發明係關於使用含釕前驅物及還原氣體之化學氣相沉積方法,及由其製成之微電子物件。
釕(Ru)已在製造各種微電子物件中(諸如在工業半導體製造中)用作材料。釕可向此等類型之物件提供各種所需性質,諸如,高熱穩定性/熔點、低電阻率、可蝕刻性、抗氧化性及銅晶種之增強。Ru被認為是可能的閘電極材料,其可用於互補金屬氧化物半導體(CMOS)以及供隨機存取記憶體應用(諸如鐵電式RAM(FRAM)及動態隨機存取記憶體(DRAM)應用)之電容器。
在形成適用於其功能之微電子物件期間,各種沉積技術已用於沉積諸如Ru之材料。此等沉積方法通常用於在微電子基板之一部分上形成材料之薄膜。例示性技術包括化學氣相沉積(CVD)、原子層沉積(ALD)、蒸發沉積及分子束磊晶法(MBE)。CVD為用於沉積Ru之常用技術。在典型CVD方法中,將諸如釕之金屬以揮發性金屬前驅物之形式錯合,該等前驅物在基板表面上反應或分解形成金屬之沉積物,且一般導致揮發性副產物之形成,使用氣流將該等揮發性副產物自沉積腔室移除。
需要由前驅物及諸如CVD之沉積方法形成之Ru薄膜作為黏著層,其可用於銅擴散障壁(TiN/TaN)層、擴散障壁層及Cu電化學電鍍(ECP)之晶種層。然而,使用Ru前驅物及CVD沉積在基板上沉積Ru可為技術上具有挑戰性之方法且亦產生不合需要之結果。釕前驅物包括彼等使用羰基、二酮及其他有機金屬化學物質之前驅物,其可能需要氧化化合物用於將Ru成功地沉積於目標基板上。舉例而言,使用氧化化合物可能適得其反,尤其在其改變基板之特性或損壞基板之其他材料時。氧化劑之存在可能會導致底層氮化物薄膜之氧化損傷,從而使其成為不太導電之界面。
儘管大體而言CVD方法有許多優良態樣,但是先前技術尚未成功將釕沉積於諸如銅層之某些底層上。因此,在此項技術中需要將釕沉積於薄金屬層上以獲得釕之益處而無上文所描述之有害影響。
本發明係關於用於在化學氣相沉積(CVD)方法中將釕沉積於基板材料上之方法及組合物。本發明之CVD方法使用某些釕前驅物化學物質與還原氣體之組合以提供選擇性及高品質釕沉積以及所需加工條件。另外,本發明之CVD方法同時使對基板材料之損傷降至最低或消除,其否則可能經由不合期望之氧化發生。本發明之方法及組合物可用於諸如在工業半導體製造中製造如積體電路(IC)之微電子物件,以提供在低k介電材料與導電互連材料之間的障壁材料或襯墊。
在一個實施例中,本發明提供一種使用CVD將釕沉積在基板材料上之方法。CVD方法包括以下步驟:汽化式R1 R2 Ru(0)之釕前驅物,其中R1 為含芳基之配位體,且R2 為含二烯基之配位體,及使基板與經汽化之釕前驅物及還原氣體接觸,其中釕沉積於基板上。
在釕前驅物中,R1 較佳為單烷基苯、二烷基苯或三烷基苯(例如異丙基甲苯),且R2 較佳為環狀非共軛二烯,諸如環己二烯或烷基環己二烯。式R1 R2 Ru(0)之釕前驅物可存在於有機溶劑中,其可促進CVD方法在導電基板上形成含釕層。
式R1 R2 Ru(0)之釕前驅物以及諸如氫氣之還原氣體之組合可使釕選擇性沉積於基板之某些材料上,諸如導電材料(例如,含鎢、含鈦、含銅或含鋁)基板特徵,同時最小化於其他材料(諸如彼等不導電或不如導電材料導電之材料(例如,含矽及/或含氧材料))上之沉積。釕於基板之導電材料上之沉積速率可為於非導電材料或不太導電材料上之沉積速率的至少2倍或更大。
該方法較佳可包括在引入釕前驅物及還原氣體之後使基板與氧氣接觸之步驟。在不具有氧氣之初始步驟中,使用釕前驅物及還原氣體在基板上形成薄釕層。在形成薄層之後,引入氧氣以及釕前驅物及還原氣體以增強釕沉積。沉積方法可包括將氧氣脈衝至沉積腔室中。
在實施例中,基板包括積體電路,其可部分地由不導電或不如導電特徵導電之諸如介電質之材料形成。在積體電路中,導電特徵(例如,含銅)可為互連件,諸如線或通孔,其可用以在積體電路的各種電子特徵當中及之間傳導電流。經沉積之釕可呈單層形式,充當導電互連材料與低k介電材料之間的襯墊或障壁層。因此,在另一個態樣中,本發明係關於一種積體電路,其諸如根據本文所描述之方法,使用包括式R1 R2 Ru(0)釕前驅物以及諸如氫氣之還原氣體的方法來製備。
有利地,使用本發明之含釕前驅體以及還原氣體之方法可在形成高品質釕膜的同時產生基板之極佳成核,其中在沉積之後基板上留下最少碳。另外,由於至少在初始沉積階段期間存在極少氧或不存在氧,因此該沉積方法可提供無氧界面,藉此避免氧化層之形成,否則其將導致接觸電阻之增加。
在其他實施例中,本發明提供一種用於將釕沉積於基板上之用於CVD之系統,其包括釕源,該釕源包括式R1 R2 Ru(0)之釕前驅物,其中R1 為含芳基之配位體,且R2 為含二烯基之配位體;及包含還原氣體之氣體供應源。該系統可呈CVD裝置之形式,其可包括特徵,諸如沉積腔室、基板支撐件、運載氣體源(若非氫氣)、一或多個管道等等。
本發明係關於使用式R1 R2 Ru(0)之釕前驅物之化學氣相沉積(CVD)方法,該等釕前驅物經組態與諸如氫氣之還原氣體一起使用。本文亦揭示CVD系統,其包括用於釕前驅物及還原氣體之源,以及視情況存在之氧氣,其經組態用於沉積方法中。本發明亦係關於用於在導電表面上形成含釕層之方法,及由其形成之基板。本發明亦係關於用於形成積體電路之方法,該等方法使用本發明之前驅物,以及由於該方法而形成之積體電路。
本發明之含釕前驅體包括式I R1 R2 Ru(0)之化合物,其中R1 為苯或含芳基之配位體,且R2 為含二烯基之配位體。如本文所使用,「含芳基之配位體」包括至少一個芳環,其中一或多個烴取代基連接至芳環。舉例而言,含芳基之配位體可為單烷基苯、二烷基苯或三烷基苯,或稠環結構,諸如茚烷或四氫化萘(苯并環己烷、萘滿)。
配位體R1 及R2 Ru(0)包括一或多個電子對且其分子軌域與釕離子之軌域重疊,藉此提供配位體與釕之間的電子結合。在本發明之線-角(骨架)結構中,Ru與配位體之部分之間的結合線表示此電子結合。
如本文所用,「含二烯基之配位體」為包括至少兩個由至少一個碳-碳單鍵分離之碳-碳雙鍵的化合物,且可包括共軛二烯及未共軛二烯,其中共軛二烯為較佳的。含二烯基之配位體可視情況包括多於兩個碳-碳雙鍵,諸如三烯。含二烯基之配位體包括直鏈及環狀化合物,其中環狀化合物較佳。含二烯基之環狀配位體可具有單環結構,諸如環己二烯或其烷基化衍生物,或可具有稠環結構,諸如六氫萘、四氫茚、二環戊二烯或降冰片二烯。
舉例而言,R1 可選自由以下組成之群:甲苯、二甲苯、乙苯、異丙苯及異丙基甲苯。在實施例中,R2 可為環狀或直鏈非共軛二烯。較佳地,R2 為環己二烯或烷基環己二烯。舉例而言,R2 可選自由以下組成之群:環己二烯、甲基環己二烯、乙基環己二烯及丙基環己二烯。
本發明之例示性含釕前驅物包括式II化合物:
Figure 02_image001
其中R3 -R8 中一或多者選自H及C1-C6烷基,R9 為0(共價鍵)或1-4個碳原子之二價烯烴基,且R10 及R11 形成一或多個環結構或選自H及C1-C6烷基。較佳地,R3 -R8 中之一者、兩者或三者選自C1-C6烷基,或更佳地C1-C3烷基,其中剩餘R3 -R8 為H。較佳地,R9 為0(共價鍵),且R10 及R11 形成一或多個環結構。
在一些實施例中,式R1 及R2 之釕前驅物不包括任何雜原子(亦即,除碳或氫以外之原子)。舉例而言,R1 及R2 可由碳及氫組成。式R1 R2 Ru(0)之化合物亦可關於其不飽和程度、其總碳原子含量、其總氫含量或其組合來描述。
舉例而言,式R1 R2 Ru(0)之釕前驅物可具有在(a1)12至20範圍內、在(a2)14至18範圍內或在(a3)15至17範圍內之總碳原子量。較佳釕前驅物具有(a4)16之總碳原子量。式R1 R2 Ru(0)之釕前驅物亦可具有在(b1)16至28範圍內、在(b2)19至25範圍內或在(b3)20至24範圍內之總氫原子量。較佳釕前驅物之總氫原子量為22。釕前驅物可具有(a1)及(b1)、(a2)及(b2)或(a3)及(b3)合併之碳及氫的量。
例示性式R1 R2 Ru(0)之化合物包括(但不限於):(異丙基甲苯)(1,3-環己二烯)Ru(0)、(異丙基甲苯)(1,4-環己二烯)Ru(0)、(異丙基甲苯)(1-甲基環己-1,3-二烯)Ru(0)、(異丙基甲苯)(2-甲基環己-1,3-二烯)Ru(0)、(異丙基甲苯)(3-甲基環己-1,3-二烯)Ru(0)、(異丙基甲苯)(4-甲基環己-1,3-二烯)Ru(0)、(異丙基甲苯)(5-甲基環己-1,3-二烯)Ru(0)、(異丙基甲苯)(6-甲基環己-1,3-二烯)Ru(0)、(異丙基甲苯)(1-甲基環己-1,4-二烯)Ru(0)、(異丙基甲苯)(2-甲基環己-1,4-二烯)Ru(0)、(異丙基甲苯)(3-甲基環己-1,4-二烯)Ru(0)、(異丙基甲苯)(4-甲基環己-1,4-二烯)Ru(0)、(異丙基甲苯)(5-甲基環己-1,4-二烯)Ru(0)及(異丙基甲苯)(6-甲基環己-1,4-二烯)Ru(0)。異丙基甲苯亦稱為1-甲基-4-(丙-2-基)苯或1-異丙基-4-甲基苯。
例示性式R1 R2 Ru(0)之化合物亦包括(但不限於):(苯)(1,3-環己二烯)Ru(0)、(甲苯)(1,3-環己二烯)Ru(0)、(乙苯)(1,3-環己二烯)Ru(0)、(1,2-二甲苯)(1,3-環己二烯)Ru(0)、(1,3-二甲苯)(1,3-環己二烯)Ru(0)、(1,4-二甲苯)(1,3-環己二烯)Ru(0)、(對異丙基甲苯)(1,3-環己二烯)Ru(0)、(鄰異丙基甲苯)(1,3-環己二烯)Ru(0)、(間異丙基甲苯)(1,3-環己二烯)Ru(0)、(異丙苯)(1,3-環己二烯)Ru(0)、(正丙基苯)(1,3-環己二烯)Ru(0)、(間乙基甲苯)(1,3-環己二烯)Ru(0)、(對乙基甲苯)(1,3-環己二烯)Ru(0)、(鄰乙基甲苯)(1,3-環己二烯)Ru(0)、(1,3,5-三甲苯)(1,3-環己二烯)Ru(0)、(1,2,3-三甲苯)(1,3-環己二烯)Ru(0)、(第三丁基苯)(1,3-環己二烯)Ru(0)、(異丁基苯)(1,3-環己二烯)Ru(0)、(第二丁基苯)(1,3-環己二烯)Ru(0)、(茚烷)(1,3-環己二烯)Ru(0)、(1,2-二乙苯)(1,3-環己二烯)Ru(0)、(1,3-二乙苯)(1,3-環己二烯)Ru(0)、(1,4-二乙苯)(1,3-環己二烯)Ru(0)、(1-甲基-4-丙基苯)(1,3-環己二烯)Ru(0)及(1,4-二甲基-2-乙苯)(1,3-環己二烯)Ru(0)。
例示性式R1 R2 Ru(0)之化合物之化學結構如下展示:
Figure 02_image003
式I R1 R2 Ru(0)之含釕前驅物亦可參考化合物之熔點及/或沸點來描述。在實施例中,含釕前驅物在室溫(25℃)下為液體。舉例而言,含釕前驅物亦可具有在約100℃至約175℃,或更特定言之約120℃至約150℃之溫度範圍內的沸點。
若式I之含釕前驅物在室溫(25℃)下呈液體形式,則其可關於其蒸氣壓進行描述。液體之蒸氣壓為高於其液體之蒸氣之平衡壓力。蒸氣之壓力由液體蒸發引起,其在特定溫度下在密閉容器中量測。舉例而言,前驅物在100℃下可具有至少約0.01托(Torr)或至少約0.05托之蒸氣壓,諸如在約0.05托至約0.50托之範圍內,或在約0.1托至約0.30托範圍內。
式I R1 R2 Ru(0)之含釕前驅物可藉由如下方式製備:使含釕反應物(諸如釕鹽水合物)與第一含烴基之配位體(R1)反應,形成中間物,且隨後使中間物與第二含烴基之配位體(R2)反應以形成最終產物。舉例而言,Eom, T.-K.等人(Electrochemical and Solid State Letters, 12:D85-D88, 2009)藉由以下步驟製備(6-1-異丙基-4-甲基苯)-(4-環己-1,3-二烯)Ru(0) (IMBCHRu):製備三氯化釕水合物及a-萜類之乙醇溶液,回流5小時,以形成間氯-雙(氯(1-異丙基-4-甲基苯)釕(II))之微結晶產物,隨後將其乾燥及隨後添加至含Na2 CO3 及1,3-環己二烯之乙醇溶液中,隨後回流4.5小時。
本發明提供用於在導電材料上形成含釕層之方法,其涉及提供包含導電特徵之基板及在化學氣相沉積方法中使用本發明之含釕前驅物或包括此前驅物之組合物從而在導電特徵上形成含釕層。導電特徵可為積體電路之一部分,其通常包括一或多種為介電質之材料,該等介電質不導電或導電性低於導電特徵。在積體電路中,導電特徵(例如,含銅)可為互連件,諸如線或通孔,其可用以在積體電路的各種電子特徵當中及之間傳導電流。積體電路之介電質可包括含矽材料及含氧材料或兩者,諸如二氧化矽。含矽材料之另一個實例為氮化矽(SiN)。
含釕層可呈薄膜形式,其可使用如此項技術中已知之化學氣相沉積方法形成。在化學氣相沉積(CVD)中,基板一般暴露於揮發性化學前驅物。化學前驅物分解基板表面或與基板表面反應,藉此沉積前驅物(例如金屬部分)表面之化學部分以產生所需沉積物。CVD可產生揮發性副產物,且可使用氣流將此等副產物自沉積腔室移除。CVD可在大氣壓下進行,但更通常在次大氣壓下進行,包括極低次大氣壓,諸如小於約10-6 Pa或小於約10-7 Pa。CVD技術可包括直接液體注射CVD,其中使用噴射器噴射及汽化液態前驅物或溶解於溶劑中之固態前驅物以在沉積腔室中提供呈氣相形式之化學前驅物。沉積裝置亦可包括諸如超音波處理器之特徵,其可用以幫助以超音波方式產生氣溶膠,其中氣溶膠包括化學前驅物。可使用諸如脈衝化學氣相沉積或熱CVD沉積之其他CVD技術。CVD裝置亦可包括電源以加熱腔室,該腔室可轉而加熱前驅物及基板,或燈絲,其可加熱化學前驅物且導致其揮發及/或分解。
在將含釕前驅體沉積於基板上之步驟之前,可視情況預處理基板,諸如用還原氣體預處理。在實施例中,在於沉積方法中使用含釕前驅物之前,本發明之方法可包括用氣體混合物處理基板之步驟,該氣體混合物包括還原氣體,諸如H2 、NH3 、肼或其混合物。可在150℃-400℃或250℃-350℃範圍內之溫度下用氣體(H2 及/或NH3 )進行預處理。此外,使用諸如H2 及/或NH3 之還原氣體的任何預處理(a)流動速率在100-600 sccm範圍內,(b)腔室壓力在1-50托範圍內,(c)處理時間在1-10分鐘範圍內,或任何兩種或兩種以上之組合,或(a)至(c)。
本發明之含釕前驅物可呈氣相形式引入至沉積腔室中,其中基板在腔室中。在一些實踐模式中,呈氣相形式之含釕前驅物可藉由汽化包括前驅物之呈液體形式之組成物而產生。前驅物之汽化可藉由如下製程經由液體組合物達成:諸如蒸餾、汽化或鼓泡惰性氣體,諸如氬氣或氦氣,其中將含釕前驅物和任何視情況選用之惰性氣體引入沉積腔室中。
視情況,及在一些實施例中,若含釕前驅物為固體或半固體形式,則其可加熱至熔化該前驅物之溫度以使得其呈液體形式且產生足以用於沉積方法之蒸氣壓。舉例而言,可在容器中將含釕前驅物加熱至大於25℃之溫度,諸如在25℃至約150℃範圍內或在30℃至約125℃範圍內之溫度。可在引入沉積腔室中期間在汽化含釕前驅物之步驟之前或期間加熱含釕前驅物。即使前驅物呈液體形式(例如,在25℃),仍可視情況預熱含釕前驅物。
沉積腔室可包括上面將形成含釕層(諸如薄膜)之基板。在本發明之實施例中,沉積腔室中之基板為形成為積體電路(IC)之基板。上面可形成含釕層之導電特徵可為導電互連件。諸如彼等通常稱為「線」或為「通孔」的導電互連件為積體電路器件之特徵,其提供在積體電路器件之其他結構之間的電子連接。互連件藉由以下操作形成:首先將低k介電材料置放於IC基板上,隨後在低k介電材料中形成開口(亦被稱為「溝槽」或「孔」),其將界定線及通孔的位置、大小以及形狀。在形成開口之後,導電材料(例如,銅、鋁、鎢、金、銀或其合金)最終藉由有效導致導電材料填充開口之方法沉積於基板上。
互連件之導電材料(亦即,「互連材料」或「導電互連材料」)可通常為目前或未來已知適用作導電互連材料之任何導電材料; 實例包括鋁(Al)、鎢(W)、釕(Ru)、鉬(Mo)、銅(Cu)、鈷(Co)、金(Au)、銀(Ag)等,以及此等中之任何一或多者之合金。在本發明之一個較佳態樣中,互連材料包括銅,或基本上由銅製成。在實施例中,含釕前驅物沉積於導電特徵上形成障壁層或襯墊(有時稱為「釕襯墊」)。釕襯墊接觸導電互連材料,且可充當單層障壁及襯墊。釕襯墊可將導電特徵與低k介電材料分離,該低k介電材料亦為積體電路之部分。視情況,積體電路可視情況包括其他障壁或襯墊材料,諸如鉭及氮化鉭。釕襯墊可與導電(例如銅)材料、低k介電材料及視情況存在之任何其他障壁或襯墊材料接觸。釕襯墊可防止互連件之導電材料至低k介電材料中之任何遷移,其轉而防止積體電路之積垢。作為一個實例,釕襯墊之厚度可在約0.6至6奈米,例如約1至3奈米範圍內。較佳地,襯墊層可形成為連續釕層或連續薄膜。
低k介電材料為具有低於約3.9(例如低於3.0)之介電常數的介電材料,例如低k介電材料可視為具有在約2.7至約3.0範圍內之介電常數的介電材料。超低k介電材料(ULK)可視為具有在約2.5至約2.7範圍內之介電常數的低k介電材料。緻密超低k介電材料(DLK)可認為具有低於約2.5、可能低於約2.3、例如介於約2.3至約2.5範圍內之介電常數的低k介電材料。
此等類型之低k介電材料中之每一者的實例為已知的且可用於半導體及積體電路技術中,其中各種實例包括基於矽之低k介電材料及有機低k介電材料。低k介電材料之某些非限制性實例包括半導體及積體電路技術中已知作為如下之材料:摻碳氧化矽、摻氟氧化矽、富氫碳氧化矽(SiCOH);多孔氧化矽、多孔摻碳氧化矽、多孔SiLK™、旋塗式基於聚矽氧的聚合介電質,諸如甲基倍半氧矽烷(MSQ)及氫倍半氧矽烷(HSQ),及旋塗式有機聚合介電質。
在其他實施例中,含釕前驅物可用於與不同於積體電路之器件(諸如與含半導體器件不同且一起使用之器件,或為平板或LCD器件之一部分,或為光伏器件)結合形成含釕層。此類器件可包括諸如含矽材料之材料:諸如二氧化矽、氮化矽、摻碳二氧化矽、氮氧化矽及/或導電材料,諸如銅及銅合金,或貴金屬,諸如金、鉑、鈀及銠。此類器件中可包括如下材料:諸如鈦(Ti)(諸如呈氮化鈦(TiN)之形式)、鉭(Ta)(諸如呈氮化鉭(TaN)之形式)及鎢(W)(諸如呈氮化鎢(WN)或碳氮化鎢(WCN)之形式)。可形成含釕層之基板可包括含有任何此等材料之層或架構。
在沉積方法期間,含釕前驅物可揮發成氣體且以所需流動速率流動至沉積腔室中。含釕前驅氣體之流動速率可維持在恆定流動速率下,或視情況在沉積方法期間波動。舉例而言,含釕前驅氣體之流動速率可為約至少0.5 μmol/min,諸如在約0.5 μmol/min至約25 μmol/min、約0.75 μmol/min至約15 μmol/min、約1 μmol/min至約10 μmol/min或約2 μmol/min至約8 μmol/min範圍內。
在沉積釕之方法期間的至少初始時期,將還原氣體、H2 、NH3 或其混合物以及含釕前驅氣體一起引入至沉積腔室中。在例示性實踐模式中,還原氣體可以約0.05 L/min至約5 L/min範圍內之速率、約0.1 L/min至約2 L/min範圍內之速率或約0.2 L/min至約1 L/min範圍內之速率引入沉積腔室中。
引入至沉積腔室中之含釕前驅物及還原氣體之量可視情況參考釕前驅物及還原氣體之量的比率來描述。在操作模式中,釕前驅物及還原氣體分別以約1 μmol: 1 L至約100 μmol: 1 L範圍內之量存在於混合物中;以約2.5 μmol: 1 L至約50 μmol: 1 L範圍內之量存在於混合物中;以約5 μmol: 1 L至約25 μmol: 1 L範圍內之量存在於混合物中;或以約8 μmol: 1 L至約15 μmol: 1 L範圍內之量存在於混合物中。
在一些實踐模式中,釕前驅物及還原氣體使用分開的供應線流入腔室中,且釕前驅物與還原氣體之混合發生在腔室中。在其他操作模式中,將釕前驅物及還原氣體在流入沉積腔室之前混合,諸如在供給線中或在氣體混合容器中,隨後遞送至沉積腔室。
含釕前驅氣體、還原氣體及視情況選用之任何其他額外氣體(例如氧氣及/或惰性氣體,諸如氬氣)之引入可以連續或半連續方式進行。在較佳實踐模式中,以連續流引入含釕前驅氣體及還原氣體。在連續流中,含釕前驅氣體及還原氣體可以恆定流動速率遞送,或替代地,流動速率可在遞送期間變化。在另一替代遞送模式中,可將含釕前驅氣體、還原氣體及/或任何二級氣體以脈衝方式引入沉積腔室中。脈衝可持續極短暫時段(例如,幾分之一秒)至數十秒。
在一些實踐模式中,在引入含釕前驅體之前一段時間將還原氣體引入沉積腔室中,如在如本文所描述之預處理步驟中。還原氣體流入腔室中時,沉積方法可藉由在還原氣體之流動期間在所需時刻開始含釕前驅物流入腔室來起始。在開始含釕前驅體流入腔室中之後,還原氣體之流動可保持相同或可經調節。亦可藉由同時開始含釕前驅物及還原氣體之流動來開始沉積方法。
含釕前驅物及還原氣體可以連續或半連續方式流動至腔室中歷時極短時間段(例如,數秒)至更長時間段(數十分鐘、一小時或兩小時)。舉例而言,該時間段可在約5秒至1小時、約30秒至約30分鐘或約1分鐘至約10分鐘之範圍內。對於所有沉積方法或對於一部分沉積方法,還原氣體可與含釕前驅物一起流動。另外,可在沉積方法期間以任何所需方式調整含釕前驅物及還原氣體之流動。舉例而言,在沉積方法過程期間,含釕前驅體之流動速率可提高或降低,及/或還原氣體之流動速率可提高或降低。在一個實踐模式中,在含釕前驅物及還原氣體兩者流動至腔室中之一段時間之後,可減少或停止還原氣體之流動。
可視情況在引入含釕前驅氣體及還原氣體期間將惰性氣體,諸如氬氣或氦氣引入沉積腔室中。惰性氣體之流動速率可維持在恆定流動速率下,或視情況在沉積方法期間波動。在例示性實踐模式中,惰性氣體之流動速率在100至1000 sccm範圍內。
在沉積方法期間,可在引入釕前驅物及還原氣體之後的一段時間之後將氧氣引入沉積腔室中。合乎需要地,釕前驅物在基板上沉積足以形成至少極薄層(例如在約0.5 nm至2 nm範圍內)之釕的時間段。此時間段可為數秒或數十秒、數分鐘或數十分鐘。使用釕前驅物及還原氣體之例示性初始沉積可持續在約30秒至約20分鐘、或更佳約1分鐘至約10分鐘範圍內之時間段。薄釕層之形成可防止在釕前驅物與還原氣體之初始引入之後引入的氧氣與基板材料反應且形成氧化層,否則該氧化層在器件上積垢。然而,在此初始時間段之後引入之氧氣可增強釕前驅物於初始形成之層上之沉積,藉此增強沉積速率且改良沉積方法。
在一些實踐模式中,以間歇性方式將氧氣引入沉積腔室中。舉例而言,在沉積方法中,以恆定速率引入釕前驅物及還原氣體,且隨後在初始時間段之後,氧氣流動至腔室中歷時一段時間且隨後停止流動。氧氣流動至腔室中之時間段可稱為「脈衝」且脈衝之時間可在約幾分之一秒至數十秒或數分鐘之範圍內。例示性初始沉積期在約0.1秒至約30秒、或更佳約0.5秒至約5秒範圍內,其中例示性脈衝時間為1或2秒。在例示性實踐模式中,惰性氣體之流動速率可在約1至約500 sccm(標準立方公分/分鐘)、約5至約100 sccm或約10至約50 sccm範圍內。流動速率可藉由操作參數測定,諸如氧氣脈衝之長度、釕前驅物及還原氣體之流動速率、沉積溫度及沉積壓力。脈衝之時間段可在沉積方法期間恆定,或脈衝之時間段可在沉積方法之持續時間內變化。舉例而言,在一些實踐模式中,脈衝之持續時間在沉積方法之過程中增加。替代地,氧氣之流動速率可在歷經沉積方法之過程的脈衝期間改變。
替代地,沉積方法可包括在釕前驅物及還原氣體之初始流動之後,氧氣至沉積腔室之非間斷或恆定流動。若使用恆定氧氣流動,則可使用低流動速率,諸如小於25 sccm或小於10 sccm。視情況,沉積腔室可包括電漿產生器以自引入至沉積腔室中之一或多種還原氣體產生氣體自由基(例如,氫自由基)。
在沉積含釕前驅體之方法期間,可選擇及控制沉積腔室內之溫度及基板之溫度以提供前驅體於基板上之所需氣相沉積及含釕層之形成。沉積腔室可與加熱元件相關聯以在沉積方法期間控制溫度。沉積溫度可維持在恆定溫度下,或視情況在沉積方法期間波動。一般而言,沉積腔室維持在大於約100℃之溫度下。舉例而言,沉積腔室可在沉積方法期間維持溫度在150℃至400℃範圍內、在200℃至375℃範圍內、在250℃至350℃範圍內或在275℃至325℃範圍內。
沉積裝置可包括能量源(例如,電漿或射頻源、微波源或UV光),其經設置以輔助沉積。在適合於導致前驅體反應且形成層之條件下,反應器之實例包括(但不限於)冷壁型反應器、熱壁型反應器、單晶圓反應器、多晶圓反應器或其他類型之沉積系統。能源之實例包括微波源、UV光源及射頻(RF)或電漿源。此等反應器中之任一者可用於CVD方法且因此有資格作為CVD反應器。
此外,在沉積方法期間,可選擇及控制在沉積腔室內之壓力以提供前驅體於基板上之所需氣相沉積及含釕層之形成。沉積期間之壓力可維持在恆定壓力下,或視情況在沉積方法期間波動。一般而言,沉積腔室維持在大於0.5托之壓力下,諸如在0.5至80托範圍內、在2.5至70托範圍內、在5至60托範圍內或在10至50托範圍內之壓力。
沉積裝置或沉積腔室亦可經組態有埠或出口以允許自腔室移除產物。埠或出口可與真空泵氣體連通(例如連接至真空泵)以允許自腔室移除副產物。亦可使用埠或出口調整反應腔室內之壓力。
含釕前驅物之沉積可進行足以在基板上形成所需的含釕層的時間段。沉積期可取決於操作條件而變化,諸如前驅氣體流動速率、沉積腔室功率等。一般而言,沉積期可在極短時段,諸如數秒至數十分鐘及甚至數小時之範圍內。在例示性沉積方法中,沉積期在約1分鐘至約10分鐘範圍內。
因此,含釕層可在基板上以所需速率形成。舉例而言,在實踐模式中,含釕層可在約2 Å/min或更大之速率下、在約2 Å/min至約20 Å/min之範圍內之速率下或在4 Å/min至15 Å/min之範圍內之速率下形成。釕沉積之速率可在沉積方法內改變,例如自第一較慢沉積速率至第二較快沉積速率。
舉例而言,在實踐模式中,諸如以本文所描述之方式將氧氣提供至反應腔室以提高釕之沉積速率。舉例而言,釕沉積之速率可自第一沉積期(其中使用釕及氫氣)至第二沉積期(其中使用釕、氫氣及氧氣)增加約4倍或約10倍。沉積可繼續直至釕塗佈層已具有所需特性。根據基板及所需產物,薄膜之厚度可在幾埃至幾百微米之範圍內。
本發明之方法提供在化學氣相沉積方法期間在導電(例如銅)表面上沉積之改良選擇性。舉例而言,使用本發明之釕前驅物及還原氣體之化學氣相沉積方法可在約150℃或更高,諸如在約150至400℃範圍內之溫度下進行,其中相對於諸如氧化物表面之非導電材料,銅表面上之沉積之選擇性極良好。在沉積期間釕及還原氣體之沉積,之後氧之沉積可提供更快速的生長速率及含釕層之形成,其提供獨特的加工優勢。
因此,含釕層可以一定速率或量形成於導電特徵上,該速率或量大於在不導電或不太導電特徵上形成任何含金屬之層之速率或量。舉例而言,在實施例中,含釕層以不導電或不太導電特徵上所形成之任何量之大於10倍、15倍或更大、20倍或更大、或25倍或更大的量形成於導電特徵上。
如所沉積,釕材料(例如,釕層)可為純或基本上純釕(例如,至少95%、98%、99%、99.5%或99.9%(原子)釕)。低含量之雜質可以如所沉積存在於釕材料中。所沉積釕中之雜質可能大部分視所用前驅物之組成而定,且所沉積釕材料中之雜質的含量可受所選擇之沉積條件影響且受其合乎需要地控制。常見雜質包含碳、氧及氮。如所沉積之釕材料中雜質之總量可能低於約5原子%,較佳低於2原子%、1原子%或0.5原子%。若需要,則典型地,沉積後退火步驟可用於將雜質之含量顯著降低,例如將碳含量降低至不超過約0.2原子%之碳含量。
視情況,包括在基板上形成含釕層之本發明方法可進一步包括其他積體電路形成方法。舉例而言,額外其他加工步驟可包括形成或處理介電材料。舉例而言,額外加工步驟可涉及在低k介電材料中形成開口。已知將開口置放於低k介電材料中之各種習知方法。開口可能為「溝槽」或「孔」,其可能例如藉由使用光阻及蝕刻方法形成,藉由該等方法,光阻材料施用至低k介電材料的表面並顯影以提供待要在後續蝕刻步驟期間移除或保留的位置的選擇性。可選擇性地移除光阻且藉由蝕刻步驟形成開口,該蝕刻步驟可藉由使用任何目前或未來有用的方法及材料來執行。可藉由「蝕刻後」清潔或處理步驟移除剩餘光阻,藉由該步驟可使用液體、溶劑、界面活性劑或電漿中之一或多者以及視情況選用之機械處理(例如,刷子)以移除剩餘光阻。一定量之殘餘光阻材料以及其他可能的污染仍可保留在低k介電層之表面處,包括開口處。
自本發明之含釕前驅物沉積釕可使用可獲得之氣相沉積設備及通常理解的技術來執行,該等設備及技術適用於使用自如目前所描述之含釕前驅物沉積釕。作為用於本發明描述之方法之適用系統的單個實例,圖4示意性地展示可適用於進行如所描述之CVD方法的系統。說明為化學氣相沉積系統2 ,包括具有內部12 之沉積腔室10 ,該內部12 含有支撐基板16 之壓板14 。如所說明之內部12 經設定大小以容納單個基板16 ,但可具有任何大小以容納多個用於CVD加工之基板。
該系統可包括「流動電路」,其可包括一系列管道及閥、或其他用於將沉積試劑(釕前驅物、氣體)自其對應源遞送至沉積腔室之遞送及控制機構。可手動或電子控制沉積試劑之流動以將所需量之沉積試劑提供至沉積腔室。
仍參考圖4,釕前驅物28 (例如呈液體形式)存在於容器22 中,諸如安瓿中,其中容器22 之內部具有一定體積足以容納所需量之釕前驅物28 之大小及一定量之額外體積或「頂部空間」,該「頂部空間」包括液體或固體前驅物上方之空間。運載氣體源18 為運載氣體(諸如惰性氣體,如氬氣)之來源。還原氣體源32 為還原氣體(諸如氫氣)之來源。管道20 (例如導管)將運載氣體源18 連接至容器22 。管道24 將容器22 連接至沉積腔室10 之內部12 。在使用中,來自運載氣體源18 之運載氣體可經由管道20 流入容器22 ,在該容器22 中,將呈蒸氣形式之一定量的含釕前驅體28 引入至運載氣體中。自容器22 ,運載氣體運載前驅物28 蒸氣(作為運載氣體前驅物混合物)通過管道24 ,通過閥門26 且進入內部12
視情況,存在於容器22 中之前驅物28 可溶解於溶劑,例如有機溶劑中。已知適用於CVD前驅物之溶劑之各種實例,其中特定實例包括烴化合物(包括烷烴、醇類、酮類等)諸如辛烷、壬烷、癸烷,及醚類,諸如四氫呋喃。
管道34 將還原氣體(例如,氫氣)源32 連接至沉積腔室10 之內部12 。在使用中,來自還原氣體源32 之還原氣體可流經導管34 、流經閥門36 且流入內部12 中。在諸如圖4之系統或亦有效用於如所描述之含釕前驅物之化學氣相沉積之替代系統中,可控制沉積加工參數以提供經加工基板之所需性質。替代地,還原氣體管道可引入至前驅物管道(未圖示)中,其可在進入沉積腔室之前提供此等試劑之混合。
管道44 將氧氣源42 連接至沉積腔室10 之內部12 。在使用中,來自氧氣源42 之氧氣可流動通過管道44 、通過閥門46 且流入內部12 中。替代地,氧氣管道可引導至還原氣體管道,此可在進入沉積腔室之前提供此等試劑之混合。實例 1 對異丙基甲苯 (1,3- 環己二烯 )Ru H2 共反應物之 CVD 沉積
使用4微莫耳/分鐘對異丙基甲苯CHD Ru及0.4 lpm H2 在300℃及30托下沉積Ru金屬。
圖1A為表明WCN、WN及TiN相對於SiO2 之自我限制沉積及沉積選擇性的圖。
圖1B為顯示在各種厚度下於WCN、WN及TiN上Ru之如所沉積電阻率的圖。實例 2 對異丙基甲苯 CHD Ru H2 O2 共反應物之 CVD 沉積
使用對異丙基甲苯CHD Ru及400 sccm H2 及400 sccm O2 在300℃,30托下沉積Ru金屬膜。
圖2A為顯示使用H2 及O2 共反應物之改良沉積速率的圖。
圖2B為顯示在各種厚度下於WCN、WN、TiN及SiO2 上Ru之如所沉積電阻率的圖。實例 3 使用對異丙基甲苯 CHD Ru H2 O2 脈衝之 Ru 金屬膜之 CVD 沉積
圖3A為顯示使用在1分鐘或2分鐘之時段內脈衝之H2 及O2 之改良沉積速率的圖。
圖3B為說明在沉積方法期間使用脈衝之H2 及O2 之氣體流動速率的圖。
雖然已展示且描述本發明之具體實例,但熟習此項技術者可在不脫離本發明之精神或教示之情況下對其進行修改。本文所描述之實施例僅為例示性的而非限制性的。組合物及方法之許多變化及修改為可能的且在本發明之範疇內。因此,保護範疇不限於本文所述之實施例,而僅受隨附申請專利範圍限制,該範疇應包括申請專利範圍之標的物之所有等效物。
2:化學氣相沉積系統 10:沉積腔室 12:內部 14:壓板 16:基板 18:運載氣體源 20:管道 22:容器 24:管道 26:閥門 28:釕前驅物 32:還原氣體源 34:管道 36:閥門 42:氧氣源 44:管道 46:閥門
圖1A為各種基板上釕沉積及選擇性的圖。圖1B為展示各種基板上Ru之如所沉積(as-dep)電阻率的圖。
圖2A為使用H2 及O2 共反應物之釕沉積的圖。圖2B為展示使用H2 及O2 共反應物於各種基板上Ru之如所沉積電阻率的圖。
圖3A為使用H2 及脈衝式O2 共反應物之釕沉積的圖。圖3B為說明在使用H2 及脈衝式O2 之沉積方法期間氣體之流動速率的圖。
圖4為用於Ru前驅物沉積之CVD系統的示意性說明。
2:化學氣相沉積系統
10:沉積腔室
12:內部
14:壓板
16:基板
18:運載氣體源
20:管道
22:容器
24:管道
26:閥門
28:釕前驅物
32:還原氣體源
34:管道
36:閥門
42:氧氣源
44:管道
46:閥門

Claims (10)

  1. 一種用於在化學氣相沉積方法中將釕沉積在基板上之方法,其包含:汽化式I:R1R2Ru(0)之釕前驅物,其中R1為含芳基之配位體,且R2為含二烯基之配位體;及使基板與該汽化之釕前驅物及還原氣體接觸,其中釕沉積於該基板上。
  2. 如請求項1之方法,其中該等含釕前驅物具有式II:
    Figure 108140567-A0305-02-0025-2
    其中R3-R8中一或多者選自H及C1-C6烷基,R9為0(共價鍵)或1-4個碳原子之二價烯烴基,且R10及R11形成一或多個環結構或選自H及C1-C6烷基。
  3. 如請求項2之方法,其中R3-R8中之一者、兩者或三者選自C1-C3烷基,剩餘R3-R8為H。
  4. 如請求項1之方法,其中R1為苯或單烷基苯、二烷基苯或三烷基苯。
  5. 如請求項1之方法,其中R2為環狀二烯。
  6. 如請求項1之方法,其中R2為共軛二烯。
  7. 如請求項1之方法,其中R2為環己二烯或烷基環己二烯。
  8. 如請求項1之方法,其中該釕前驅物選自由以下組成之群:(異丙基甲苯)(1,3-環己二烯)Ru(0)、(異丙基甲苯)(1,4-環己二烯)Ru(0)、(異丙基甲苯)(1-甲基環己-1,3-二烯)Ru(0)、(異丙基甲苯)(2-甲基環己-1,3-二烯)Ru(0)、(異丙基甲苯)(3-甲基環己-1,3-二烯)Ru(0)、(異丙基甲苯)(4-甲基環己-1,3-二烯)Ru(0)、(異丙基甲苯)(5-甲基環己-1,3-二烯)Ru(0)、(異丙基甲苯)(6-甲基環己-1,3-二烯)Ru(0)、(異丙基甲苯)(1-甲基環己-1,4-二烯)Ru(0)、(異丙基甲苯)(2-甲基環己-1,4-二烯)Ru(0)、(異丙基甲苯)(3-甲基環己-1,4-二烯)Ru(0)、(異丙基甲苯)(4-甲基環己-1,4-二烯)Ru(0)、(異丙基甲苯)(5-甲基環己-1,4-二烯)Ru(0)及(異丙基甲苯)(6-甲基環己-1,4-二烯)Ru(0)。
  9. 如請求項1之方法,其中該釕前驅物選自由以下組成之群:(苯)(1,3-環己二烯)Ru(0)、(甲苯)(1,3-環己二烯)Ru(0)、(乙苯)(1,3-環己二烯)Ru(0)、(1,2-二甲苯)(1,3-環己二烯)Ru(0)、(1,3-二甲苯)(1,3-環己二烯)Ru(0)、(1,4-二甲苯)(1,3-環己二烯)Ru(0)、(對異丙基甲苯)(1,3-環己二烯)Ru(0)、(鄰異丙基甲苯)(1,3-環己二烯)Ru(0)、(間異丙基甲苯)(1,3- 環己二烯)Ru(0)、(異丙苯)(1,3-環己二烯)Ru(0)、(正丙基苯)(1,3-環己二烯)Ru(0)、(間乙基甲苯)(1,3-環己二烯)Ru(0)、(對乙基甲苯)(1,3-環己二烯)Ru(0)、(鄰乙基甲苯)(1,3-環己二烯)Ru(0)、(1,3,5-三甲苯)(1,3-環己二烯)Ru(0)、(1,2,3-三甲苯)(1,3-環己二烯)Ru(0)、(第三丁基苯)(1,3-環己二烯)Ru(0)、(異丁基苯)(1,3-環己二烯)Ru(0)、(第二丁基苯)(1,3-環己二烯)Ru(0)、(茚烷)(1,3-環己二烯)Ru(0)、(1,2-二乙苯)(1,3-環己二烯)Ru(0)、(1,3-二乙苯)(1,3-環己二烯)Ru(0)、(1,4-二乙苯)(1,3-環己二烯)Ru(0)、(1-甲基-4-丙基苯)(1,3-環己二烯)Ru(0)及(1,4-二甲基-2-乙苯)(1,3-環己二烯)Ru(0)。
  10. 一種用於將釕沉積於基板上之系統,其包含:式R1R2Ru(0)之釕前驅物,其中R1為含芳基之配位體,且R2為含二烯基之配位體;及包含還原氣體之氣體供應源,其中該釕前驅物係經組態以在沉積腔室中與該還原氣體一起使用。
TW108140567A 2018-11-08 2019-11-08 使用釕前驅物及還原氣體之化學氣相沉積方法 TWI728541B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201862757356P 2018-11-08 2018-11-08
US62/757,356 2018-11-08

Publications (2)

Publication Number Publication Date
TW202026453A TW202026453A (zh) 2020-07-16
TWI728541B true TWI728541B (zh) 2021-05-21

Family

ID=70550969

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108140567A TWI728541B (zh) 2018-11-08 2019-11-08 使用釕前驅物及還原氣體之化學氣相沉積方法

Country Status (6)

Country Link
US (2) US11371138B2 (zh)
JP (1) JP7361771B2 (zh)
KR (1) KR20210058986A (zh)
CN (1) CN112969813B (zh)
TW (1) TWI728541B (zh)
WO (1) WO2020096976A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11371138B2 (en) * 2018-11-08 2022-06-28 Entegris, Inc. Chemical vapor deposition processes using ruthenium precursor and reducing gas
KR102642469B1 (ko) 2021-12-22 2024-03-04 (주)원익머트리얼즈 유기금속 전구체를 이용한 금속 박막 증착 방법
TWI790943B (zh) * 2022-03-11 2023-01-21 漢民科技股份有限公司 化學氣相沉積系統與方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200819459A (en) * 2006-10-06 2008-05-01 Tanaka Precious Metal Ind Organic ruthenium compound for chemical vapor deposition and chemical vapor deposition process using the organic ruthenium compound
US20080152793A1 (en) * 2006-12-22 2008-06-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitaion Des Procedes Georges Claude Method for the deposition of a ruthenium containing film with aryl and diene containing complexes
KR20090082543A (ko) * 2008-01-28 2009-07-31 (주)디엔에프 신규 루테늄 화합물 및 이를 이용한 박막 증착 방법
CN102639548A (zh) * 2009-11-14 2012-08-15 尤米科尔股份公司及两合公司 钌(0)-烯烃络合物的制备方法

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6440495B1 (en) * 2000-08-03 2002-08-27 Applied Materials, Inc. Chemical vapor deposition of ruthenium films for metal electrode applications
KR100505674B1 (ko) * 2003-02-26 2005-08-03 삼성전자주식회사 루테늄 박막을 제조하는 방법 및 이를 이용한 mim캐패시터의 제조방법
US7107998B2 (en) * 2003-10-16 2006-09-19 Novellus Systems, Inc. Method for preventing and cleaning ruthenium-containing deposits in a CVD apparatus
US7074719B2 (en) * 2003-11-28 2006-07-11 International Business Machines Corporation ALD deposition of ruthenium
US7285308B2 (en) * 2004-02-23 2007-10-23 Advanced Technology Materials, Inc. Chemical vapor deposition of high conductivity, adherent thin films of ruthenium
US20060068098A1 (en) * 2004-09-27 2006-03-30 Tokyo Electron Limited Deposition of ruthenium metal layers in a thermal chemical vapor deposition process
US7270848B2 (en) * 2004-11-23 2007-09-18 Tokyo Electron Limited Method for increasing deposition rates of metal layers from metal-carbonyl precursors
US7438949B2 (en) * 2005-01-27 2008-10-21 Applied Materials, Inc. Ruthenium containing layer deposition method
US7273814B2 (en) * 2005-03-16 2007-09-25 Tokyo Electron Limited Method for forming a ruthenium metal layer on a patterned substrate
US7402517B2 (en) * 2005-03-31 2008-07-22 Battelle Memorial Institute Method and apparatus for selective deposition of materials to surfaces and substrates
JP2008004786A (ja) 2006-06-23 2008-01-10 Matsushita Electric Ind Co Ltd 熱伝導基板の製造方法及びこれによって製造した熱伝導基板
CN103408598A (zh) * 2006-07-27 2013-11-27 宇部兴产株式会社 有机钌络合物以及使用该钌络合物的钌薄膜的制造方法
US7435484B2 (en) 2006-09-01 2008-10-14 Asm Japan K.K. Ruthenium thin film-formed structure
WO2008088563A2 (en) * 2007-01-17 2008-07-24 Advanced Technology Materials, Inc. Precursor compositions for ald/cvd of group ii ruthenate thin films
JP5202905B2 (ja) * 2007-08-22 2013-06-05 東ソー株式会社 ルテニウム化合物、その製造方法、ルテニウム含有薄膜及びその製造方法
EP2264000B1 (en) * 2008-04-07 2016-05-11 Nippon Soda Co., Ltd. Method for producing optically active aminoalcohol compound using ruthenium compound
US8124528B2 (en) * 2008-04-10 2012-02-28 Micron Technology, Inc. Method for forming a ruthenium film
US20110045171A1 (en) * 2009-08-19 2011-02-24 International Business Machines Corporation Multi-Step Method to Selectively Deposit Ruthenium Layers of Arbitrary Thickness on Copper
JP2011106008A (ja) * 2009-11-20 2011-06-02 Adeka Corp 化学気相成長用原料及びルテニウム化合物
US8357614B2 (en) * 2010-04-19 2013-01-22 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Ruthenium-containing precursors for CVD and ALD
JP2012111696A (ja) * 2010-11-22 2012-06-14 Tosoh Corp ルテニウム錯体混合物、成膜用組成物、ルテニウム含有膜及びその製造方法
WO2013117955A1 (en) * 2012-02-07 2013-08-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method for the deposition of a ruthenium containing film using arene diazadiene ruthenium(0) precursors
JP5992764B2 (ja) * 2012-08-20 2016-09-14 田中貴金属工業株式会社 ルテニウム錯体からなる化学蒸着原料及びその製造方法並びに化学蒸着方法
US20140134351A1 (en) * 2012-11-09 2014-05-15 Applied Materials, Inc. Method to deposit cvd ruthenium
US10047435B2 (en) * 2014-04-16 2018-08-14 Asm Ip Holding B.V. Dual selective deposition
US10741572B2 (en) * 2015-02-04 2020-08-11 Sandisk Technologies Llc Three-dimensional memory device having multilayer word lines containing selectively grown cobalt or ruthenium and method of making the same
US10002834B2 (en) * 2015-03-11 2018-06-19 Applied Materials, Inc. Method and apparatus for protecting metal interconnect from halogen based precursors
JP6308229B2 (ja) * 2016-02-23 2018-04-11 マツダ株式会社 エンジンのオイル供給制御装置
JP6616520B2 (ja) 2016-09-29 2019-12-04 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
TWI758363B (zh) * 2016-12-06 2022-03-21 美商應用材料股份有限公司 用於ald及cvd薄膜沉積之釕前驅物及其用法
KR101932588B1 (ko) * 2017-02-28 2018-12-27 한국과학기술연구원 반도체 메모리 소자의 커패시터 및 그 제조 방법
TWI790320B (zh) * 2017-12-16 2023-01-21 美商應用材料股份有限公司 釕的選擇性原子層沉積
US20190309422A1 (en) * 2018-04-06 2019-10-10 Versum Materials Us, Llc Spin-On Metallization
US11371138B2 (en) * 2018-11-08 2022-06-28 Entegris, Inc. Chemical vapor deposition processes using ruthenium precursor and reducing gas
CN113039309A (zh) * 2018-11-15 2021-06-25 恩特格里斯公司 使用钌前驱物的等离子体增强原子层沉积(peald)方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200819459A (en) * 2006-10-06 2008-05-01 Tanaka Precious Metal Ind Organic ruthenium compound for chemical vapor deposition and chemical vapor deposition process using the organic ruthenium compound
US20080152793A1 (en) * 2006-12-22 2008-06-26 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitaion Des Procedes Georges Claude Method for the deposition of a ruthenium containing film with aryl and diene containing complexes
KR20090082543A (ko) * 2008-01-28 2009-07-31 (주)디엔에프 신규 루테늄 화합물 및 이를 이용한 박막 증착 방법
CN102639548A (zh) * 2009-11-14 2012-08-15 尤米科尔股份公司及两合公司 钌(0)-烯烃络合物的制备方法

Also Published As

Publication number Publication date
CN112969813A (zh) 2021-06-15
US11987878B2 (en) 2024-05-21
JP2022506590A (ja) 2022-01-17
US11371138B2 (en) 2022-06-28
TW202026453A (zh) 2020-07-16
KR20210058986A (ko) 2021-05-24
WO2020096976A1 (en) 2020-05-14
JP7361771B2 (ja) 2023-10-16
US20220267895A1 (en) 2022-08-25
CN112969813B (zh) 2024-04-30
US20200149155A1 (en) 2020-05-14

Similar Documents

Publication Publication Date Title
TWI732345B (zh) 使用釕前驅物之電漿增強原子層沉積(peald)方法
US11987878B2 (en) Chemical vapor deposition processes using ruthenium precursor and reducing gas
US7435484B2 (en) Ruthenium thin film-formed structure
KR100708496B1 (ko) 루테늄 금속막의 제조 방법
TWI436428B (zh) 釕金屬覆蓋層之形成方法
US10784157B2 (en) Doped tantalum nitride for copper barrier applications
CN102859035A (zh) 用于在凹陷特征中的连续钌膜上多步骤镀铜的方法
US20080081464A1 (en) Method of integrated substrated processing using a hot filament hydrogen radical souce
TW201035356A (en) Method of depositing tungsten film with reduced resistivity and improved surface morphology
JP2008124464A (ja) Ru膜および金属配線構造の形成方法
US20080078325A1 (en) Processing system containing a hot filament hydrogen radical source for integrated substrate processing
JP4850337B2 (ja) 半導体素子の銅金属配線形成方法
TW201445002A (zh) 用於氮化錳整合之方法
JP2002057126A (ja) 半導体装置とその製造方法
JP2018178177A (ja) 金属薄膜の作製方法
US20230386831A1 (en) Selective deposition of metal oxides using silanes as an inhibitor
US20210032279A1 (en) Method of selectively forming cobalt metal layer by using cobalt compound, and method of fabricating semiconductor device by using cobalt compound
KR20060079359A (ko) TaSIN막을 사용한 확산 방지막 형성 방법 및 이를이용한 금속 배선 형성 방법
US6509268B1 (en) Thermal densification in the early stages of copper MOCVD for depositing high quality Cu films with good adhesion and trench filling characteristics
TW202400828A (zh) 選擇性沉積方法及化學品輸送系統
TW202312300A (zh) 形成用於互連結構的金屬襯墊之方法
JPH0513598A (ja) 堆積膜形成法