TWI711645B - 聚碳酸酯樹脂及光學透鏡 - Google Patents

聚碳酸酯樹脂及光學透鏡 Download PDF

Info

Publication number
TWI711645B
TWI711645B TW104132183A TW104132183A TWI711645B TW I711645 B TWI711645 B TW I711645B TW 104132183 A TW104132183 A TW 104132183A TW 104132183 A TW104132183 A TW 104132183A TW I711645 B TWI711645 B TW I711645B
Authority
TW
Taiwan
Prior art keywords
polycarbonate resin
reaction
bisphenol
optical lens
aforementioned
Prior art date
Application number
TW104132183A
Other languages
English (en)
Other versions
TW201625715A (zh
Inventor
加藤宣之
平川学
元井司
北村光晴
Original Assignee
日商三菱瓦斯化學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商三菱瓦斯化學股份有限公司 filed Critical 日商三菱瓦斯化學股份有限公司
Publication of TW201625715A publication Critical patent/TW201625715A/zh
Application granted granted Critical
Publication of TWI711645B publication Critical patent/TWI711645B/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/305General preparatory processes using carbonates and alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • C08L69/005Polyester-carbonates
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2369/00Characterised by the use of polycarbonates; Derivatives of polycarbonates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

本發明以提供一種相對於高折射率且低阿貝數之聚碳酸酯樹脂而言,吸水膨脹率之差小的高阿貝數之樹脂為課題。上述課題可藉由含有下述一般式(1)所示之構成單位之聚碳酸酯樹脂來達成。
Figure 104132183-A0202-11-0001-25
一般式(1)中,R為H、CH3或C2H5

Description

聚碳酸酯樹脂及光學透鏡
本發明係關於新穎之聚碳酸酯樹脂、及由此形成之光學透鏡。又,本發明係關於平衡地具有高阿貝數、低雙折射、高透明性、及高玻璃轉移溫度(耐熱性)的光學透鏡。
作為於照相機、底片一體型照相機、攝影機等之各種照相機之光學系所使用之光學元件的材料,使用有光學玻璃或光學用透明樹脂。光學玻璃耐熱性或透明性、尺寸安定性、耐藥品性等優異,存在有具有多種折射率(nD)或阿貝數(νD)之多種類的材料,但具有材料成本高、成形加工性差、及生產性低的問題。特別是,加工使用於像差校正之非球面透鏡時,因為需要極高度之技術與高成本在實用上成為很大的障礙。
另一方面,光學用透明樹脂,其中由熱可塑性透明樹脂而成之光學透鏡,具有藉由射出成形可大量生產,且非球面透鏡之製造亦容易的優點,當前作為照相機用透鏡用途而使用。例如例示有由雙酚A而成之聚碳酸 酯、聚苯乙烯、聚-4-甲基戊烯、聚甲基丙烯酸甲酯或非晶質聚烯烴等。
然而,光學用透明樹脂作為光學透鏡使用時,折射率或阿貝數之外,亦追求透明性、耐熱性、低雙折射性,故有因樹脂之特性平衡而限定了使用地方的弱點。例如,聚苯乙烯為耐熱性低雙折射大,聚-4-甲基戊烯為耐熱性低,聚甲基丙烯酸甲酯為玻璃轉移溫度低、耐熱性低、折射率小,故使用領域有限,由雙酚A而成之聚碳酸酯具有雙折射大等之弱點,使用地方有限故不佳。
另一方面,一般若光學材料之折射率高,則可以更小曲率的面實現具有相同折射率之透鏡元件,因此此面所產生的像差量可減小,因透鏡之片數減少、透鏡之偏心靈敏度減少、透鏡厚減少而使透鏡系之小型輕量化成為可能,故高折射率化為有用。
又,光學單元之光學設計中,已知藉由組合使用阿貝數彼此相異之複數透鏡來校正色像差。例如,組合阿貝數45~60之脂環式聚烯烴樹脂製之透鏡與低阿貝數之由雙酚A而成之聚碳酸酯(nD=1.59、νD=29)樹脂製之透鏡來進行校正色像差。
作為光學透鏡用途中實用化之光學用透明樹脂之中阿貝數為高者,有聚甲基丙烯酸甲酯(PMMA)、環烯烴聚合物等。特別是,環烯烴聚合物因具有優異之耐熱性及優異之機械特性而廣泛使用於光學透鏡用途。
作為低阿貝數之樹脂,可舉例聚酯或聚碳酸 酯。例如專利文獻1所記載之樹脂之特徵為高折射率且低阿貝數。
高阿貝數之環烯烴聚合物與低阿貝數之聚合物之聚碳酸酯樹脂之間吸水膨脹率有差異,若組合兩者之透鏡形成透鏡單元,則於智慧型手機等使用環境下吸水時透鏡之大小產生差異。因此膨脹率差而透鏡之性能受損。
專利文獻2~4中,雖記載有含有過羥基二甲橋萘骨架之聚碳酸酯共聚物,但二羥甲基之位置皆為2,3位故強度弱,不適合光學透鏡用途。進而,專利文獻2~4所載之聚碳酸酯因玻璃轉移溫度(Tg)低,耐熱性方面有問題。例如,專利文獻4之實施例1所載之HOMO之聚碳酸酯,雖數平均分子量為38000,其玻璃轉移溫度(Tg)為低的125℃。
〔先前技術文獻〕 〔專利文獻〕
〔專利文獻1〕國際公開第2014/73496號
〔專利文獻2〕日本特開平5-70584號
〔專利文獻3〕日本特開平2-69520號
〔專利文獻4〕日本特開平5-341124號
本發明所欲解決之課題為提供一種相對於高 折射率且低阿貝數之聚碳酸酯樹脂而言,吸水膨脹率之差小的高阿貝數之樹脂。又,提供一種由此樹脂製造之光學透鏡。
本發明者等,為解決上述課題深入研究之結果,發現以十氫-1、4:5、8-二甲橋萘二醇(D-NDM)作為原料之聚碳酸酯樹脂可解決上述課題,而完成本發明。
即,本發明係關於以下所示之聚碳酸酯樹脂及光學透鏡。
<1>一種含有下述一般式(1)所示之構成單位之聚碳酸酯樹脂,
Figure 104132183-A0202-12-0004-2
(一般式(1)中,R為H、CH3或C2H5)。
<2>如上述<1>所載之聚碳酸酯樹脂,其含有前述一般式(1)中之-CH2O-基鍵結於6位之異構物(2,6位之異構物)與前述一般式(1)中之-CH2O-基鍵結於7位之異構物(2,7位之異構物)的混合物。
<3>如上述<2>所載之聚碳酸酯樹脂,其係以質量比計1.0:99.0~99.0:1.0的比例含有前述2,6位之異構物與前述2,7位之異構物。
<4>如上述<1>~<3>中任一項所載之聚碳酸酯 樹脂,其中聚碳酸酯樹脂之吸水膨脹率為0.01~0.5%。
<5>如上述<1>~<4>中任一項所載之聚碳酸酯樹脂,其中聚碳酸酯樹脂之阿貝數為25以上。
<6>如上述<1>~<5>中任一項所載之聚碳酸酯樹脂,其中聚碳酸酯樹脂之玻璃轉移溫度為110~160℃。
<7>如上述<1>~<6>中任一項所載之聚碳酸酯樹脂,其中聚碳酸酯樹脂之重量平均分子量為5,000~50,000。
<8>一種光學透鏡,其係藉由使如上述<1>~<7>中任一項所載之聚碳酸酯樹脂成形而得。
<9>一種聚碳酸酯樹脂之製造方法,其具有使下述一般式(2)所示之二醇化合物及碳酸二酯反應的步驟,
Figure 104132183-A0202-12-0005-3
(一般式(2)中,R為H、CH3或C2H5)。
<10>如上述<9>所載之聚碳酸酯樹脂之製造方法,其中前述二醇化合物含有前述一般式(2)中之-CH2OH基鍵結於6位之異構物(2,6位之異構物)與前述一般式(2)中之-CH2OH基鍵結於7位之異構物(2,7位之異構物)的混合物,
Figure 104132183-A0202-12-0006-4
<11>如上述<10>所載之聚碳酸酯樹脂之製造方法,其中以質量比計1.0:99.0~99.0:1.0的比例含有前述2,6位之異構物與前述2,7位之異構物。
藉由本發明,可得到相對於高折射率且低阿貝數之聚碳酸酯樹脂而言,吸水膨脹率之差小的高阿貝數之樹脂。又,可得到由此樹脂所製造之光學透鏡。
〔圖1〕顯示單體合成例1所得之主反應生成物之1H-NMR的測定結果。
〔圖2〕顯示單體合成例1所得之主反應生成物之13C-NMR的測定結果。
〔圖3〕顯示單體合成例1所得之主反應生成物之COSY-NMR的測定結果。
〔圖4〕顯示實施例3所得之聚碳酸酯樹脂之1H- NMR的測定結果。
(A)聚碳酸酯樹脂
本發明之聚碳酸酯樹脂包含一般式(1)所示之構成單位(以下稱為「構成單位(1)」)。這之中例示有由十氫-1、4:5、8-二甲橋萘二醇(有時記載為D-NDM)
Figure 104132183-A0202-12-0007-22
Figure 104132183-A0202-12-0007-23
衍生之構成單位。如後述之構成單位(1),係使一般式(2)所示之二醇化合物與碳酸二酯反應而得。
本發明之聚碳酸酯樹脂除了僅由構成單位(1)而成之聚碳酸酯樹脂之外,亦可含有其他構成單位。
所謂其他亦可含有的構成單位,係使一般式(2)以外之二醇化合物與碳酸二酯反應而得之構成單位,作為一般式(2)以外之二醇化合物,例如例示有雙酚A、雙酚AP、雙酚AF、雙酚B、雙酚BP、雙酚C、雙酚E、雙酚F、雙酚G、雙酚M、雙酚S、雙酚P、雙酚PH、雙酚TMC、雙酚Z、9,9-雙(4-(2-羥基乙氧基)苯基)茀、9,9-雙(4-(2-羥基乙氧基)-3-甲基苯基)茀、9,9-雙(4-(2-羥基乙氧基)-3-tert-丁基苯基)茀、9,9-雙(4-(2-羥基乙氧基)-3-異丙基苯基)茀、9,9-雙(4-(2-羥基乙氧基)-3-環己基苯基)茀、9,9-雙(4-(2-羥基乙氧基)-3-苯基苯基)茀等。這之中以9,9-雙(4-(2- 羥基乙氧基)-3-苯基苯基)茀為合適。
本發明之聚碳酸酯樹脂之較佳聚苯乙烯換算重量平均分子量(Mw)為5,000~300,000。更佳之聚苯乙烯換算重量平均分子量(Mw)為30,000~120,000。其他較佳態樣中,聚苯乙烯換算重量平均分子量(Mw)為5,000~50,000較佳,7,000~45,000更佳。又,作為聚苯乙烯換算重量平均分子量(Mw)之較佳下限值,可舉例35,000及41,000。Mw若較5,000小,則光學透鏡變脆故不佳。Mw若較300,000大,則熔融黏度變高而製造後之樹脂的操作變困難,進而流動性變差以熔融狀態進行射出成形變難故不佳。
本發明之聚碳酸酯樹脂之還原黏度(ηsp/C)為0.20dl/g以上,較佳為0.23~0.84dl/g。
進而本發明之聚碳酸酯樹脂中,添加抗氧化劑、離型劑、紫外線吸收劑、流動性改性劑、結晶成核劑、強化劑、染料、抗靜電劑或是抗菌劑等較佳。
(B)一般式(2)所示之二醇化合物之製造方法
一般式(2)所示之二醇化合物,能夠以二環戊二烯或環戊二烯與具有官能基之烯烴作為原料以例如下述式(3)所示路徑合成。
Figure 104132183-A0202-12-0009-5
(式(3)中,R為H、CH3或C2H5。R1為COOCH3、COOC2H5、COOC3H7、COOC4H9、或CHO)。
〔式(C)所示之碳數13~19之單烯烴之製造〕
式(C)所示之碳數13~19之單烯烴,可藉由進行具有官能基之烯烴與二環戊二烯之狄耳士-阿德爾反應來製造。
作為用於前述狄耳士-阿德爾反應之具有官能基之烯烴的例,可舉例甲基丙烯酸甲酯、甲基丙烯酸乙酯、甲基丙烯酸丙酯、甲基丙烯酸丁酯、丙烯酸甲酯、丙烯酸乙酯、丙烯酸丙酯、丙烯酸丁酯、甲基丙烯醛、丙烯醛等,作為更佳之烯烴,可舉例甲基丙烯酸甲酯、甲基丙烯酸乙酯、丙烯酸甲酯、丙烯酸乙酯、甲基丙烯醛、及丙烯醛。
用於本狄耳士-阿德爾反應之二環戊二烯以高純度者較佳,以避開丁二烯、異戊二烯等之含有為宜。二環戊二烯之純度為90%以上更佳,95%以上再更佳。又,已知二環戊二烯在加熱條件下解聚合成為環戊二烯(所謂單環戊二烯),因此亦可使用環戊二烯代替二環戊二烯。 且,認為式(C)所示之碳數13~19之單烯烴實質上經由下述式(4)所示之碳數8~14之單烯烴(第一階段狄耳士-阿德爾反應生成物)生成,並認為所生成之式(4)之單烯烴與作為新的親二烯化合物(Dienophile)而存在於反應系內之環戊二烯(Diene)留在狄耳士-阿德爾反應(第二階段狄耳士-阿德爾反應),係生成式(C)所示之碳數13~19之單烯烴者。
Figure 104132183-A0202-12-0010-6
(式中,R為H、CH3或C2H5。R1為COOCH3、COOC2H5、COOC3H7、COOC4H9、或CHO)。
為了使前述2階段之狄耳士-阿德爾反應有效率地進行,反應系內存在有環戊二烯為重要,故作為反應溫度以100℃以上較佳,120℃以上更佳,130℃以上特佳。另一方面,為了抑制高沸物質之副產物以250℃以下之溫度進行反應較佳。又,作為反應溶劑可使用烴類或醇類、酯類等,碳數6以上之脂肪族烴類、環己烷、甲苯、二甲苯、乙基苯、三甲苯、丙醇、丁醇等為合適。
作為本狄耳士-阿德爾反應之反應方式,由槽型反應器等之批次式、於反應條件下之槽型反應器供給基質或基質溶液之半批次式、於管型反應器在反應條件下使 基質類流通之連續流通式等,可採用多種反應方式。
本狄耳士-阿德爾反應所得之反應生成物,雖可直接作為接下來氫甲醯基化反應之原料來使用,但亦可透過蒸餾、萃取、晶析等之方法進行純化後供至下步驟。
〔式(B)所示之碳數14~20之二官能性化合物之製造〕
前述式(3)中之式(B)所示之碳數14~20之二官能性化合物,可藉由使式(C)所示之碳數13~19之單烯烴與一氧化碳及氫氣在銠化合物、有機磷化合物之存在下進行氫甲醯基化反應來製造。
本氫甲醯基化反應中使用之銠化合物,與有機磷化合物形成錯合物,在一氧化碳與氫之存在下若為顯示氫甲醯基化活性之化合物則其前驅體之形態並無限制。將乙醯丙酮基二羰基銠(以下記為Rh(acac)(CO)2)、Rh2O3、Rh4(CO)l2、Rh6(CO)16、Rh(NO3)3等之觸媒前驅物質與有機磷化合物一同導入反應混合物中,在反應容器內使具有觸媒活性之銠金屬氫化物羰基磷錯合物形成亦可,預先調製銠金屬氫化物羰基磷錯合物再將其導入反應器內亦可。作為較佳之具體例可舉例使Rh(acac)(CO)2在溶劑之存在下與有機磷化合物反應後,與過多之有機磷化合物一同導入反應器,成為具有觸媒活性之銠-有機磷錯合物的方法。
對於本發明者等而言為意外的是,如式(C)所示之分子量相對較大之內部具有烯烴之2階段狄耳士- 阿德爾反應生成物以極少量之銠觸媒被氫甲醯基化。本氫甲醯基化反應中之銠化合物之使用量,相對於氫甲醯基化反應之基質即式(C)所示之碳數13~19之單烯烴1莫耳而言為0.1~30微莫耳較佳,0.2~20微莫耳更佳,0.5~10微莫耳再更佳。藉由銠化合物之使用量相對於碳數13~19之單烯烴1莫耳而言較30微莫耳少,即使不設置銠錯合物之回收再利用設備亦可減輕銠觸媒費,故能減少回收再利用設備相關的經濟負擔。
本氫甲醯基化反應中,作為形成銠化合物與氫甲醯基化反應之觸媒之有機磷化合物,可舉例一般式P(-R1)(-R2)(-R3)所示之膦或P(-OR1)(-OR2)(-OR3)所示之亞磷酸酯。作為R1、R2、R3之具體例,可舉例以碳數1~4之烷基或烷氧基所取代而得之芳基、以碳數1~4之烷基或烷氧基所取代而得之脂環式烷基等、三苯基膦、三苯基亞磷酸酯較適合使用。有機磷化合物之使用量以銠金屬之500倍莫耳~10000倍莫耳較佳,更佳為700倍莫耳~5000倍莫耳,再更佳為900倍莫耳~2000倍莫耳。有機磷化合物之使用量較銠金屬之500倍莫耳少時,觸媒活性物質之銠金屬氫化物羰基磷錯合物的安定性受損,結果為反應之進行變慢等故不佳。又,有機磷化合物之使用量較銠金屬之10000倍莫耳多時,有機磷化合物所費成本增加故不佳。
本氫甲醯基化反應雖不使用溶劑可進行,但藉由使用對反應惰性之溶劑,可更合適地實施。作為溶劑 只要是溶解式(C)所示之碳數13~19之單烯烴、及二環戊二烯或環戊二烯、及前述銠化合物、前述有機磷化合物者便無特別限制。具體而言,可舉例脂肪族烴、脂環式烴、芳香族烴等之烴類,脂肪族酯、脂環式酯、芳香族酯等之酯類,脂肪族醇、脂環式醇等之醇類,芳香族鹵化物等之溶劑。此等之中烴類較適合使用,其中脂環式烴、芳香族烴較適合使用。
作為進行本氫甲醯基化反應時之溫度以40℃~160℃較佳,80℃~140℃更佳。反應溫度為40℃以上時得到充分的反應速度,可抑制原料之單烯烴的殘留。又,藉由反應溫度定為160℃以下可抑制來自原料單烯烴或反應生成物之副產物的生成,防止反應成績的降低。
進行本氫甲醯基化反應時,必需於一氧化碳(以下亦記載為「CO」)及氫(以下亦記載為「H2」)氣體之加壓下進行反應。CO及H2氣體可各自獨立導入反應系內,又,亦可將預先調製之混合氣體導入反應系內。導入反應系內之CO及H2氣體的莫耳比(=CO/H2)為0.2~5較佳,0.5~2更佳,0.8~1.2再更佳。CO及H2氣體之莫耳比若脫離此範圍則有氫甲醯基化反應之反應活性或目標之醛的選擇率降低之情形。導入反應系內之CO及H2氣體隨反應之進行而減少,故利用預先調製之CO與H2的混合氣體則有反應控制簡便之情形。
作為本氫甲醯基化反應之反應壓力,以1~12MPa較佳,1.2~9MPa更佳,1.5~5MPa再更佳。藉由 反應壓力定為1MPa以上可得到充分之反應速度,可抑制原料之單烯烴的殘留。又,藉由反應壓力定為12MPa以下,不需要耐壓性能優異之高價設備故於經濟上有利。尤其是,以批次式或半批次式進行反應時,反應結束後必須將CO及H2氣體排出‧落壓,越低壓則CO及H2氣體之損失越少故於經濟上有利。
作為進行本氫甲醯基化反應之反應方式,以批次式反應或半批次式反應較適合。半批次式反應可藉由加入銠化合物、有機磷化合物、前述溶劑至反應器中,進行CO/H2氣體之加壓或加溫等,成為上述反應條件後將原料之單烯烴或其溶液供給至反應器來進行。
前述氫甲醯基化反應所得之反應生成物,雖可直接作為接下來的還原反應之原料使用,但亦可藉由例如蒸餾或萃取、晶析等進行純化後,供給至下步驟。
〔式(A)所示之碳數14~16之二官能性化合物之製造〕
前述式(3)中之式(A)所示之碳數14~16之二官能性化合物,可藉由將式(B)所示之碳數14~20之二官能性化合物在具有氫化能之觸媒及氫之存在下進行還原來製造。
還原反應中,作為具有氫化能之觸媒使用有包含選自銅、鉻、鐵、鋅、鋁、鎳、鈷、及鈀所成群之至少一種的元素的觸媒。作為如此之觸媒之例可舉例Cu-Cr觸媒、Cu-Zn觸媒、Cu-Zn-Al觸媒等之外,可舉例 Raney-Ni觸媒、Raney-Co觸媒等。
前述氫化觸媒之使用量,相對於基質之式(B)所示之碳數14~20之二官能性化合物而言為1~100重量%,較佳為2~50重量%,更佳為5~30重量%。藉由使觸媒使用量成為此等範圍可更合適地實施氫化反應。觸媒使用量少時反應不完結,結果係目標物之收率降低。又,觸媒使用量多時,不能得到與供於反應之觸媒量相稱的反應速度提升效果。
還原反應之反應溫度以80~250℃較合適,100℃~230℃更合適。藉由使反應溫度成為250℃以下,可抑制副反應或分解反應之發生以高收率得到目標物。又,藉由使反應溫度成為80℃以上,可以適度之時間使反應完結,可迴避生產性之降低或目標物收率之降低。
還原反應之反應壓力,氫分壓為1~20MPa較合適,2~15MPa更合適。藉由使氫分壓成為20MPa以下,可抑制副反應或分解反應之發生以高收率得到目標物。又,藉由使氫分壓成為1MPa以上,可以適度之時間使反應完結,可迴避生產性之降低或目標物收率之降低。且,亦可使對還原反應惰性之氣體(例如氮或氬)共存。
還原反應中亦可使用溶劑。作為溶劑可使用脂肪族烴類、脂環式烴類、芳香族烴類、醇類等,其中以脂環式烴類、芳香族烴類、醇類較合適。具體而言,可舉例環己烷、甲苯、二甲苯、甲醇、乙醇、1-丙醇等。
作為還原反應之反應方式可採用槽型反應器 等之批次式、於反應條件下之槽型反應器供給基質或基質溶液之半批次式、填充有成型觸媒之管型反應器於反應條件下使基質或基質溶液流通之連續流通式等多種反應方式。
還原反應所得之反應生成物,可藉由例如蒸餾或萃取、晶析等進行純化。
(C)聚碳酸酯樹脂之製造方法
本發明之聚碳酸酯樹脂可將一般式(2)所示之二醇化合物與碳酸二酯作為原料藉由熔融縮聚法來製造。一般式(2)所示之二醇化合物中,存在有羥甲基為2,6位之異構物及2,7位之異構物的混合物。此等之異構物以質量比計2,6位之異構物:2,7位之異構物=0.1:99.9~99.9:0.1。由樹脂之強度、拉伸度、成形體之外觀等之樹脂物性的觀點來看,2,6位之異構物:2,7位之異構物=1.0:99.0~99.0:1.0較佳,2,6位之異構物:2,7位之異構物=20:80~80:20更佳,2,6位之異構物:2,7位之異構物=50:50~80:20特佳。進而,亦可與其他二醇化合物併用。此反應中,作為縮聚觸媒,可在鹼性化合物觸媒、酯交換觸媒或由該兩者而成之混合觸媒的存在下製造。
作為碳酸二酯,可舉例二苯基碳酸酯、二甲苯基碳酸酯、雙(氯苯基)碳酸酯、m-甲苯酚基碳酸酯、二甲基碳酸酯、二乙基碳酸酯、二丁基碳酸酯、二環己基碳酸酯等。此等之中尤其是二苯基碳酸酯由反應性與純度 之觀點來看較佳。碳酸二酯相對於二醇成分1莫耳以0.97~1.20莫耳之比率使用較佳,更佳為0.98~1.10莫耳之比率。藉由調整此莫耳比率,可控制聚碳酸酯樹脂之分子量。
作為鹼性化合物觸媒,可舉例鹼金屬化合物、鹼土類金屬化合物、及含氮化合物等。
作為本發明中所使用之鹼金屬化合物,例如可舉例鹼金屬之有機酸鹽、無機鹽、氧化物、氫氧化物、氫化物或烷氧化物等。具體而言,使用有氫氧化鈉、氫氧化鉀、氫氧化銫、氫氧化鋰、碳酸氫鈉、碳酸鈉、碳酸鉀、碳酸銫、碳酸鋰、乙酸鈉、乙酸鉀、乙酸銫、乙酸鋰、硬脂酸鈉、硬脂酸鉀、硬脂酸銫、硬脂酸鋰、氫化硼鈉、苯基化硼鈉、苯甲酸鈉、苯甲酸鉀、苯甲酸銫、苯甲酸鋰、磷酸氫2鈉、磷酸氫2鉀、磷酸氫2鋰、苯基磷酸2鈉、雙酚A之2鈉鹽、2鉀鹽、2銫鹽、2鋰鹽、酚之鈉鹽、鉀鹽、銫鹽、鋰鹽等。由觸媒效果、價格、流通量、對樹脂色相的影響等之觀點來看、碳酸鈉、及碳酸氫鈉較佳。
作為鹼土類金屬化合物,例如可舉例鹼土類金屬化合物之有機酸鹽、無機鹽、氧化物、氫氧化物、氫化物或烷氧化物等。具體而言,使用有氫氧化鎂、氫氧化鈣、氫氧化鍶、氫氧化鋇、碳酸氫鎂、碳酸氫鈣、碳酸氫鍶、碳酸氫鋇、碳酸鎂、碳酸鈣、碳酸鍶、碳酸鋇、乙酸鎂、乙酸鈣、乙酸鍶、乙酸鋇、硬脂酸鎂、硬脂酸鈣、苯 甲酸鈣、苯基磷酸鎂等。
作為含氮化合物,例如可舉例4級胺氫氧化物及該等之鹽、胺類等。具體而言,使用有氫氧化四甲銨、氫氧化四乙銨、氫氧化四丙銨、氫氧化四丁銨、氫氧化三甲基苄銨等之具有烷基、芳基等之4級胺氫氧化物類,三乙胺、二甲基苄胺、三苯基胺等之3級胺類,二乙胺、二丁胺等之2級胺類,丙胺、丁胺等之1級胺類,2-甲基咪唑、2-苯基咪唑、苯并咪唑等之咪唑類,或是氨、硼氫化四甲銨、硼氫化四丁銨、四丁銨四苯基硼酸鹽、四苯銨四苯基硼酸鹽等之鹼或是鹼性鹽等。
作為酯交換觸媒,以鋅、錫、鋯、鉛之鹽較宜使用,此等可單獨或組合使用。又,組合上述鹼金屬化合物或鹼土類金屬化合物使用亦可。
作為酯交換觸媒,具體而言,使用有乙酸鋅、苯甲酸鋅、2-乙基已烷酸鋅、氯化錫(II)、氯化錫(IV)、乙酸錫(II)、乙酸錫(IV)、二丁基二月桂酸錫、二丁基氧化錫、二丁基二甲氧基錫、乙醯丙酮鋯、氧基乙酸鋯、四丁氧基鋯、乙酸鉛(II)、乙酸鉛(IV)等。
此等之觸媒,相對於二醇化合物之合計1莫耳而言,以1×10-9~1×10-3莫耳之比率使用,較佳為以1×10-7~1×10-4莫耳之比率使用。
熔融縮聚法係使用前述原料及觸媒,加熱下於常壓或減壓下藉由酯交換反應去除副生成物同時進行熔 融縮聚者。反應一般以二段以上之多段行程實施。
具體而言,第一階段之反應以120~260℃,較佳為以180~240℃之溫度使其反應0.1~5小時,較佳為0.5~3小時。接著一邊提升反應系之減壓度一邊調高反應溫度進行二醇化合物與碳酸二酯之反應,最終於1mmHg以下之減壓下,以200~350℃之溫度進行縮聚反應0.05~2小時。如此之反應,可以連續式進行亦可以批次式進行。進行上述反應時所使用之反應裝置,可為裝備有錨型攪拌翼、最大混合攪拌翼、螺旋帶型攪拌翼等之縱型,亦可為裝備有槳翼、格子翼、眼鏡翼等之橫型之裝備有螺旋之擠出機型,又,考慮此等聚合物之黏度使用適宜組合之反應裝置較適於實施。
本發明之聚碳酸酯樹脂之製造方法中,聚合反應結束後,為了保持熱安定性及水解安定性,亦可去除觸媒或使其失活。一般而言,藉由添加酸性物質進行觸媒的方法較適於實施。作為此等物質,具體而言,苯甲酸丁酯等之酯類,p-甲苯磺酸等之芳香族磺酸類,p-甲苯磺酸丁酯、p-甲苯磺酸己酯等之芳香族磺酸酯類,亞磷酸、磷酸、膦酸等之磷酸類、亞磷酸三苯酯、亞磷酸單苯酯、亞磷酸二苯酯、亞磷酸二乙酯、亞磷酸二n-丙酯、亞磷酸二n-丁酯、亞磷酸二n-己酯、亞磷酸二辛酯、亞磷酸單辛酯等之亞磷酸酯類,磷酸三苯基磷酸二苯酯、磷酸單苯酯、磷酸二丁酯、磷酸二辛酯、磷酸單辛酯等之磷酸酯類,二苯基膦酸、二辛基膦酸、二丁基膦酸等之膦酸類,苯基膦 酸二乙酯等之膦酸酯類,三苯基膦、雙(二苯基膦基)乙烷等之膦類,硼酸、苯基硼酸等之硼酸類,十二基苯磺酸四丁基鏻鹽等之芳香族磺酸鹽類,硬脂酸氯化物、氯化苯甲醯、p-甲苯磺酸氯化物等之有機鹵化物,二甲基硫酸等之烷基硫酸,氯化苄等之有機鹵化物等適合使用。由失活效果、樹脂色相或安定性之觀點來看,使用p-甲苯磺酸丁酯較佳。又,此等之失活劑,相對於觸媒量使用0.01~50倍莫耳,較佳為使用0.3~20倍莫耳。相對於觸媒量若少於0.01倍莫耳,則失活效果變得不充分故不佳。又,相對於觸媒量若多於50倍莫耳,則耐熱性降低,成形體變得易著色故不佳。
觸媒失活後,亦可設置聚合物中之低沸點化合物以0.1~1mmHg之壓力、200~350℃之溫度去揮發去除的步驟,為此,具備有槳翼、格子翼、眼鏡翼等表面更新能優異之攪拌翼的橫型裝置、或是薄膜蒸發器較適於使用。
本發明之聚碳酸酯樹脂,異物含量盡量少為宜,熔融原料之過濾、觸媒液之過濾較適於實施。過濾器之網目為5μm以下較佳,更佳為1μm以下。進而,生成之樹脂的以聚合物過濾器進行過濾較適於實施。聚合物過濾器之網目為100μm以下較佳,更佳為30μm以下。又,收集樹脂顆粒之步驟當然必須在低塵環境下進行,級別1000以下較佳,更佳為級別100以下。
(D)聚碳酸酯樹脂之物性
本發明之光學透鏡具有高阿貝數、高透明性、適度之吸水率、適度之吸水膨脹率。
又,本發明之聚碳酸酯樹脂之較佳的玻璃轉移溫度(Tg)為95~180℃,更佳為110~160℃,特佳為120~160℃。又,玻璃轉移溫度(Tg)之較佳的下限值可舉例130℃及140℃,玻璃轉移溫度(Tg)之較佳的上限值可舉例150℃。若Tg較95℃低,則透鏡或照相機之使用溫度範圍變窄故不佳。又,若超過180℃則進行射出成形時的成形條件變得嚴苛故不佳。
本發明之聚碳酸酯樹脂於成形後,以JIS-K-7142之方法測定的折射率為1.50~1.65較佳,1.52~1.55更佳。
本發明之聚碳酸酯樹脂於成形後,以JIS-K-7142之方法測定的阿貝數為25以上,較佳為40以上,再更佳為50以上。阿貝數之上限為60左右。
本發明之聚碳酸酯樹脂於成形後,以積分球式光電光度法測定的全光線透過率為85.0%以上,較佳為87.0%以上。全光線透過率之上限為99%左右。
本發明之聚碳酸酯樹脂,以JIS-K-7209之方法測定的吸水率為0.2~0.5%較佳,0.3~0.4%更佳。
本發明之聚碳酸酯樹脂之吸水膨脹率為0.01~0.5%較佳,0.03~0.4%更佳。
吸水膨脹率之測定方法以微米(精度1000分之 1mm)進行。測定於吸水率測定所使用之圓板的直徑,吸水前後之直徑變化率(%)定為吸水膨脹率。
(E)光學透鏡
本發明之光學透鏡,可藉由射出成形機或是射出壓縮成形機將上述本發明之聚碳酸酯樹脂射出成形為透鏡形狀而得。射出成形之成形條件雖無特別限定,但成形溫度較佳為180~280℃。又,射出壓力較佳為50~1700kg/cm2
為了極力避免光學透鏡之異物混入,成形環境當然亦必須在低塵環境,級別1000以下較佳,更佳為級別100以下。
本發明之光學透鏡,應需要以非球面透鏡之形使用較適於實施。非球面透鏡以1片透鏡可使球面像差實質上成為零,故不需要以複數球面透鏡之組合來去除球面像差,輕量化及生產成本之減低變得可能。因此,非球面透鏡,在光學透鏡之中尤其作為照相機透鏡為有用。非球面透鏡之散光為0~15mλ較佳,更佳為0~10mλ。
本發明之光學透鏡之厚度,雖應用途可設定成廣範圍而無特別限制,但較佳為0.01~30mm,更佳為0.1~15mm。本發明之光學透鏡之表面上,應需要,亦可設置防反射層或是硬塗層之塗佈層。防反射層可為單層亦可為多層,可為有機物亦可為無機物,但以無機物較佳。具體而言,例示有氧化矽、氧化鋁、氧化鋯、氧化鈦、氧化鈰、氧化鎂、氟化鎂等之氧化物或是氟化物。此等之中 更佳者為氧化矽、氧化鋯,再更佳者為氧化矽與氧化鋯之組合。又,關於防反射層,單層/多層之組合、或該等之成分、厚度之組合等雖無特別的限定,但較佳為2層構成或3層構成,特佳為3層構成。又,該防反射層整體,以光學透鏡之厚度的0.00017~3.3%、具體而言以成為0.05~3μm,特佳為成為1~2μm之厚度形成者佳。
〔實施例〕
以下雖藉由實施例說明本發明,但本發明並不受此等實施例之任何限制。另外,實施例中之測定值使用以下方法或是裝置測定。
1)聚苯乙烯換算重量平均分子量(Mw):
使用GPC,四氫呋喃作為展開溶劑,使用已知分子量(分子量分布=1)之標準聚苯乙烯做成校正曲線。基於此校正曲線算出GPC之滯留時間。
2)玻璃轉移溫度(Tg):
以示差熱掃描熱量分析儀(DSC)測定。
3)折射率nD、阿貝數νD:
將聚碳酸酯樹脂加壓成形成40
Figure 104132183-A0202-12-0023-24
、3mm厚之圓板(成形條件:200℃、100kgf/cm2、2分鐘),切出直角,以Kalneur製KPR-200測定。
4)全光線透過率:
以日本電色工業(股)製MODEL1001 DP測定。另外,全光線透過率,測定加壓成形之圓板(厚度3mm)。
5)飽和吸水率
加壓成形之圓板(厚度3mm)依循JIS-K-7209測定。
6)吸水膨脹率
關於於吸水率測定所使用之樣本,於吸水前與吸水後,以微米(Mitutoyo製、精度1000分之1mm)測定直徑,直徑之變化率(%)藉由以下之數式(1)算出。
飽和時之吸水膨脹率={(飽和吸水時之圓板直徑)-(吸水率測定前之圓板直徑)}×100/(吸水率測定前之圓板直徑)‧‧‧數式(1)
<單體合成例1>
‧於500ml不鏽鋼製反應器中加入丙烯酸甲酯173g(2.01mol)、二環戊二烯167g(1.26mol)以195℃進行反應2小時。取得含有下述式(3a)所示之單烯烴96g之反應液,將此蒸餾純化後,一部份供於後段反應。
‧使用300ml不鏽鋼製反應器,使用CO/H2混合氣體(CO/H2莫耳比=1)進行經蒸餾純化之式(3a)所示之單烯烴之氫甲醯基化反應。於反應器中加入式(3a)所示之單烯烴70g、甲苯140g、亞磷酸三苯酯0.50g、另外調製之Rh(acac)(CO)2之甲苯溶液550μl(濃度0.003mol/L)。以氮及CO/H2混合氣體之置換各進行3次後,以CO/H2混合氣體將系內加壓,以100℃、2MPa進 行反應5小時。反應結束後,進行反應液之氣相色層分析儀分析,確認為含有下述式(2a)所示之二官能性化合物76g、式(3a)所示之單烯烴1.4g之反應液(轉化率98%、選擇率97%),同時將此蒸餾純化後,一部份供於後段反應。
‧於300ml不鏽鋼製反應器中添加經蒸餾純化之式(2a)所示之二官能性化合物50g、Cu-Zn-Al觸媒(日揮觸媒化成股份有限公司製:E-01X)10g、甲苯150g,以氫氣將系內加壓,以10MPa、215℃進行反應8小時。反應後,將所得漿體以甲醇稀釋,以孔徑0.2μm之膜過濾器過濾觸媒後,使用蒸發器餾去溶劑,以氣相色層分析儀及GC-MS分析,確認為含有分子量222之主生成物43g(主生成物收率96%)。將此進一步蒸餾純化取得主生成物。
Figure 104132183-A0202-12-0025-7
(式中,Me表示甲基)。
<生成物之鑑定>
進行於單體合成例1所取得之成分的NMR分析、氣相色層分析儀分析及GC-MS分析。NMR譜表示於圖1~3。
1)NMR測定條件
‧裝置:日本電子股份有限公司製,JNM-ECA500(500MHz)
‧測定模式:IH-NMR、13C-NMR、COSY-NMR
‧溶劑:CD3OD(重氫甲醇)
‧內部標準物質:四甲基矽烷
2))氣相色層分析儀測定條件
‧分析裝置:股份有限公司島津製作所製 毛細管氣相色譜儀GC-2010 Plus
‧分析管柱:GL Sciences股份有限公司製、InertCap1(30m、0.32mmI.D.、膜厚0.25μm)
‧烘箱溫度:60℃(保持0.5分鐘)-以15℃/分鐘升溫-280℃(保持4分鐘)
‧檢測器:FID、溫度280℃
3)GC-MS測定條件
‧分析裝置:股份有限公司島津製作所製、GCMS-QP2010 Plus
‧離子化電壓:70eV
‧分析管柱:Agilent Technologies製、DB-1(30m、0.32mmI.D.、膜厚1.00μm)
‧烘箱溫度:60℃(保持0.5分鐘)-以15℃/分鐘升溫-280℃(保持4分鐘)檢測器溫度:280℃
由GC-MS分析、及圖1~3之NMR分析之結果,確認了單體合成例1所得之主生成物為前述式(1a)所示之二醇化合物(D-NDM)。進而,藉由以氣相色層分 析儀之分析,確認了所得之二醇化合物為羥甲基為2,6位之異構物=76質量%及2,7位之異構物=24質量%的異構物混合物。
<單體合成例2>
‧使用甲基丙烯醛141g(1.93mol/純度96%)代替單體合成例1之丙烯酸甲酯取得含有下述式(3b)所示之單烯烴86g之反應液,將此蒸餾純化後,一部份供於後段反應。
‧使用300ml不鏽鋼製反應器,使用CO/H2混合氣體(CO/H2莫耳比=1)進行式(3b)所示之單烯烴之氫甲醯基化反應。於反應器中加入式(3b)所示之單烯烴70g、甲苯140g、亞磷酸三苯酯0.55g、另外調製之Rh(acac)(CO)2之甲苯溶液580μl(濃度0.003mol/L)。以氮及CO/H2混合氣體之置換各進行3次後,以CO/H2混合氣體將系內加壓,以100℃、2MPa進行反應6小時。反應結束後,進行反應液之氣相色層分析儀分析。確認為含有下述式(2b)所示之二官能性化合物77g、式(3b)所示之單烯烴1.3g之液(轉化率98%、選擇率98%)。
‧於300ml不鏽鋼製反應器中添加經蒸餾純化之式(2b)所示之二官能性化合物50g、甲苯150g、雷氏鈷觸媒10ml。以氫氣將系內加壓,以4MPa、100℃進行反應5小時。反應後,將所得漿體以甲醇稀釋,以孔徑0.2μm之膜過濾器過濾觸媒。使用蒸發器餾去溶劑,以氣相色層分析儀及GC-MS分析,確認為含有分子量236之主生成物 49g(收率96%)。
‧所得之主生成物確認為下述式(1b)所示之二官能性化合物。
Figure 104132183-A0202-12-0028-8
<單體合成例3>
‧與單體合成例1同樣地進行式(3a)所示之單烯烴之合成以及蒸餾純化。
‧使用300ml不鏽鋼製反應器,使用CO/H2混合氣體(CO/H2莫耳比=1)進行式(3a)所示之單烯烴之氫甲醯基化反應。於不鏽鋼製之槽中加入式(3a)所示之單烯烴70g與甲苯100g,以氮及CO/H2混合氣體之置換各進行3次後,以CO/H2混合氣體將系內微加壓。於此之外,另外於300ml不鏽鋼製反應器中加入甲苯40g、亞磷酸三苯酯0.13g、另外調製之Rh(acac)(CO)2之甲苯溶液120μl(濃度0.003mol/L),以氮及CO/H2混合氣體之置換各進行3次後,以CO/H2混合氣體將系內加壓,保持100℃、2MPa。由前述不鏽鋼製槽花費2小時將式(3a)所示之單烯烴之甲苯溶液供給至反應器(其間,反應器控制在100℃、2MPa),供給結束後,以100℃、2MPa進行熟成3小時。反應結束後,進行反應液之氣相色層分析儀分析。確認為含有式(2a)所示之二官能性化合物78g、式 (3a)所示之單烯烴0.73g之反應液(轉化率99%、選擇率99%)。
‧與單體合成例1同樣地以式(2a)所示之二醇化合物作為原料進行還原反應(反應收率96%),進一步藉由蒸餾純化取得式(1a)所示之二醇化合物(D-NDM)。藉由以氣相色層分析儀之分析,確認了所得之二醇化合物為羥甲基為2,6位之異構物=52質量%及2,7位之異構物=48質量%的異構物混合物。
<單體合成例4>
使用乙基丙烯醛52g(0.61mol/純度99%)代替單體合成例1之丙烯酸甲酯,取得含有下述式(3c)所示之單烯烴14g之反應液。同反應進行2次,蒸餾純化後,一部份供於後段反應。
使用300ml不鏽鋼製反應器,使用CO/H2混合氣體(CO/H2莫耳比=1)進行式(3c)所示之單烯烴之氫甲醯基化反應。於反應器中加入式(3c)所示之單烯烴21.3g、甲苯20g、三苯基膦518mg、另外調製之Rh(acac)(CO)2之甲苯溶液128μl(濃度0.0384mol/L)。以氮及CO/H2混合氣體之置換各進行3次後,以CO/H2混合氣體將系內加壓,以110℃、2MPa進行反應1.5小時。反應結束後,以上述條件進行反應液之氣相色層分析儀分析。其結果,確認為含有下述式(2c)所示之二官能性化合物23.8g之反應液(收率98%)。
於300ml不鏽鋼製反應器中添加含有式(2c)所示之二官能性化合物22.7g之反應液、環己醇38g、Cu-Zn-Al觸媒(日揮觸媒化成股份有限公司製:E-01X)2.2g。以氫氣將系內加壓,以3MPa、140℃進行反應1.5小時。反應後,將所得漿體以甲醇稀釋,以孔徑0.2μm之膜過濾器過濾觸媒。使用蒸發器餾去溶劑,以上述條件以氣相色層分析儀及GC-MS進行分析。藉由GC-MS分析確認了所得之主生成物為式(1c)所示之二官能性化合物。又,確認了式(1c)所示之二官能性化合物之生成量為22g(收率96%)。
Figure 104132183-A0202-12-0030-9
<實施例1>
將由單體合成例1所得之式(1a)所示之D-NDM:23.53g(0.106莫耳)、二苯基碳酸酯:23.02g(0.107莫耳)、及碳酸氫鈉:0.07mg(0.8μ莫耳)加入附有攪拌機及餾出裝置之300mL反應器中,氮雰圍760Torr之下花1小時加熱至215℃,並攪拌。以油浴進行加熱,自200℃開始酯交換反應。自反應開始5分鐘後開始攪拌,20分鐘後,花10分鐘由760Torr減壓至200Torr。一邊減壓一 邊將溫度加熱至210℃,於反應開始後70分鐘後升溫至220℃,自80分鐘後花30分鐘減壓至150Torr,使溫度升溫至240℃的同時減壓至1Torr後保持10分鐘,得到聚碳酸酯樹脂。
所得之聚碳酸酯樹脂的Mw=8,000、Tg=110℃。此聚碳酸酯樹脂之折射率為1.536,阿貝數為55.2。全光線透過率為90%。又飽和吸水率為0.38%,飽和時之吸水膨脹率為0.038%。結果表示於表1及2。
<實施例2>
將由單體合成例1所得之式(1a)所示之D-NDM:23.20g(0.104莫耳)、二苯基碳酸酯:22.62g(0.106莫耳)、及碳酸氫鈉:0.26mg(3.1μ莫耳)加入附有攪拌機及餾出裝置之300mL反應器中,除饋入量之外與實施例1同樣地進行操作,得到聚碳酸酯樹脂。所得之聚碳酸酯樹脂為Mw=15,000、Tg=127℃。又,折射率為1.534,阿貝數為56.0。全光線透過率為90%。又,飽和吸水率為0.34%,飽和時之吸水膨脹率為0.036%。
<實施例3>
將由單體合成例1所得之式(1a)所示之D-NDM:30.9g(0.139莫耳)、二苯基碳酸酯:29.8g(0.139莫耳)、及碳酸氫鈉:0.09mg(1.1μ莫耳)加入附有攪拌機及餾出裝置之300mL反應器中,除饋入量之外與實施例1 同樣地進行操作,得到聚碳酸酯樹脂。所得之聚碳酸酯樹脂為Mw=42,000、Tg=141℃。又,折射率為1.531,阿貝數為57.3。全光線透過率為90%。又,飽和吸水率為0.35%,飽和時之吸水膨脹率為0.033%。
藉由以下之測定條件,進行所得之聚碳酸酯樹脂的NMR分析。NMR譜表示於圖4。
NMR測定條件
‧裝置:日本電子股份有限公司製,JNM-ECA500(500MHz)
‧測定模式:1H-NMR
‧溶劑:重氫氯仿
‧內部標準物質:四甲基矽烷
<實施例4>
將由單體合成例1所得之式(1a)所示之D-NDM:28.9g(0.130莫耳)、9,9-雙(4-(2-羥基乙氧基)苯基)茀:6.3g(0.014莫耳)、二苯基碳酸酯:31.5g(0.147莫耳)、及碳酸氫鈉:0.09mg(1.1μ莫耳)加入附有攪拌機及餾出裝置之300mL反應器中,除饋入量之外與實施例1同樣地進行操作,得到聚碳酸酯樹脂。所得之聚碳酸酯樹脂為Mw=27,000、Tg=142℃。又,折射率為1.551,阿貝數為45.5。全光線透過率為90%。又,飽和吸水率為0.37%,飽和時之吸水膨脹率為0.038%。
<實施例5>
將由單體合成例1所得之式(1a)所示之D-NDM:4.76g(0.021莫耳)、9,9-雙(4-(2-羥基乙氧基)苯基)茀:37.6g(0.086莫耳)、二苯基碳酸酯:23.3g(0.109莫耳)、及碳酸氫鈉:0.07mg(0.9μ莫耳)加入附有攪拌機及餾出裝置之300mL反應器中,除饋入量之外與實施例1同樣地進行操作,得到聚碳酸酯樹脂。所得之聚碳酸酯樹脂為Mw=32,000、Tg=146℃。又,折射率為1.626,阿貝數為25.3。全光線透過率為89%。又,飽和吸水率為0.37%,飽和時之吸水膨脹率為0.033%。
<實施例6>
將由單體合成例1所得之式(1a)所示之D-NDM:11.3g(0.051莫耳)、9,9-雙(4-(2-羥基乙氧基)苯基)茀:20.0g(0.046莫耳)、二苯基碳酸酯:21.0g(0.098莫耳)、及碳酸氫鈉:0.05mg(0.6μ莫耳)加入附有攪拌機及餾出裝置之300mL反應器中,除饋入量之外與實施例1同樣地進行操作,得到聚碳酸酯樹脂。所得之聚碳酸酯樹脂為Mw=35,000、Tg=144℃。又,折射率為1.597,阿貝數為30.0。全光線透過率為89%。又,飽和吸水率為0.37%,飽和時之吸水膨脹率為0.038%。
<實施例7>
除使用由單體合成例3所得之式(1a)所示之D- NDM之外,以與實施例1相同的條件合成聚碳酸酯樹脂。所得之聚碳酸酯樹脂為Mw=38,000、Tg=140℃、折射率為1.532,阿貝數為57.2。全光線透過率為90%。又,飽和吸水率為0.34%,飽和時之吸水膨脹率為0.033%。
<實施例8>
進行由單體合成例3所得之式(1a)所示之D-NDM(羥甲基為2,6位之異構物=52質量%及2,7位之異構物=48質量%)的異構物混合物之蒸餾,得到2,6位之異構物=22質量%及2,7位之異構物=78質量%之D-NDM。除使用此D-NDM之外,以與實施例1相同的條件合成聚碳酸酯樹脂。所得之聚碳酸酯樹脂為Mw=41,000、Tg=137℃,折射率為1.531,阿貝數為57.0。全光線透過率為90%。又,飽和吸水率為0.35%,飽和時之吸水膨脹率為0.033%。
<例9>
進行由單體合成例1所得之式(1a)所示之D-NDM(羥甲基為2,6位之異構物=76質量%及2,7位之異構物=24質量%)的異構物混合物之蒸餾,得到2,6位之異構物=99.5質量%及2,7位之異構物=0.5質量%之D-NDM。除使用此D-NDM之外,以與實施例1相同的條件合成聚碳酸酯樹脂。
使用所得之聚碳酸酯樹脂成形成折射率及阿貝數測定用之圓板狀成形體確認到有起因於結晶化之白濁,作為光學材料無法評估折射率及阿貝數。又,所得之聚碳酸酯樹脂為Mw=40,000、Tg=143℃。飽和吸水率為0.33%,飽和時之吸水膨脹率為0.031%。
<實施例10>
將由單體合成例2所得之下述式(1b)所示之D-NDM:25.05g(0.106莫耳)、二苯基碳酸酯:22.78g(0.106莫耳)、及碳酸氫鈉:0.26mg(3.1μ莫耳)加入附有攪拌機及餾出裝置之300mL反應器,於氮雰圍760Torr之下花1小時加熱至215℃,並攪拌。以油浴進行加熱,自200℃開始酯交換反應。自反應開始5分鐘後開始攪拌,20分鐘後,花10分鐘由760Torr減壓至200Torr。一邊減壓一邊將溫度加熱至210℃,於反應開始後70分鐘後升溫至220℃,自80分鐘後花30分鐘減壓至150Torr,使溫度升溫至240℃的同時減壓至1Torr後保持10分鐘,得到聚碳酸酯樹脂。
所得之聚碳酸酯樹脂之Mw=38,000、Tg=135℃。此聚碳酸酯樹脂之折射率為1.533,阿貝數為56.8。全光線透過率為90%。又,飽和吸水率為0.33%,飽和時之吸水膨脹率為0.035%。
Figure 104132183-A0202-12-0036-10
<實施例11>
將由單體合成例4所得之下述式(1c)所示之D-NDM:26.54g(0.104莫耳)、二苯基碳酸酯:22.78g(0.106莫耳)、及碳酸氫鈉:0.26mg(3.1μ莫耳)加入附有攪拌機及餾出裝置之300mL反應器中,除饋入量之外與實施例1同樣地進行操作,得到聚碳酸酯樹脂。所得之聚碳酸酯樹脂為Mw=35,000、Tg=133℃。又,折射率為1.534,阿貝數為56.6。全光線透過率為90%。又,飽和吸水率為0.32%,飽和時之吸水膨脹率為0.034%。
Figure 104132183-A0202-12-0036-11
本發明以提供一種相對於高折射率且低阿貝數之聚碳酸酯樹脂而言,吸水膨脹率之差小的高阿貝數之聚碳酸酯樹脂為目的。以下,顯示透鏡形成時貼合對象之樹脂(對象1及對象2)、以及高阿貝數之樹脂(比較例 1)之吸水率(%)與吸水膨脹率(%)。
<對象1>
使用低阿貝數之雙酚A型聚碳酸酯樹脂(分子量Mw=30,000、三菱瓦斯化學股份有限公司製H-4000)測定吸水率(%)與吸水膨脹率(%)。結果表示於表1及2。
<比較例1>
使用高阿貝數之環烯烴聚合物樹脂(分子量Mw=140,000、日本zeon股份有限公司製ZEONEX 330R)測定吸水率(%)與吸水膨脹率(%)。結果表示於表1及2。
<對象2>
使用低阿貝數之光學用聚碳酸酯樹脂(分子量Mw=27,000、三菱瓦斯化學股份有限公司製EP5000)測定吸水率(%)與吸水膨脹率(%)。結果表示於表1及2。
Figure 104132183-A0202-12-0037-12
Figure 104132183-A0202-12-0038-13
由表1及表2之結果可明白,對象2之低阿貝數之聚碳酸酯樹脂(三菱瓦斯化學股份有限公司製EP5000)之吸水膨脹率,與實施例1之聚碳酸酯樹脂之吸水膨脹率顯示相近之值,依據本發明達成「提供一種相對於高折射率且低阿貝數之聚碳酸酯樹脂而言,吸水膨脹率之差小的高阿貝數之聚碳酸酯樹脂」之課題。另一方面可知,比較例1之高阿貝數之樹脂的吸水膨脹率非常低,不能達成上述本發明之課題。
<比較例2>
於高壓蒸氣滅菌器中加入富馬酸二甲酯108g(0.75莫耳)、二環戊二烯128g(0.97莫耳)及p-二甲苯300g,以氮氣體置換系內。接著,將高壓蒸氣滅菌器之內溫升溫至180℃,於同溫度攪拌下使其反應20小時。反應結束後,添加擔持有10%之鈀的活性碳6g,以氫氣置換系內後,加入氫氣21MPa,於80℃攪拌1小時下使其反應。將反應混合物進行減壓蒸餾,接著,藉由將其殘渣由乙醇進行再結晶,到全氫-1,4:5,8-二甲橋萘二羧酸二甲 酯。於內容積300mL之高壓蒸氣滅菌器中加入全氫-1,4:5,8-二甲橋萘二羧酸二甲酯52g、銅-鉻氧化物(日揮化學(股)製、N-203-SD)5g及1,4-二噁烷100mL。接著,以氫氣置換系內後,加入氫氣,30MPa之壓力下,於200℃使其反應20小時。反應結束後,將藉由去除1,4-二噁烷所得之白色粉末由乙酸乙酯進行再結晶之結果,得到下述構造式所示之全氫-1,4:5,8-二甲橋萘-2,3-二甲醇。
Figure 104132183-A0202-12-0039-14
將此處所得之全氫-1,4:5,8-二甲橋萘-2,3-二甲醇30.90g(0.139莫耳)、二苯基碳酸酯:29.80g(0.139莫耳)、及碳酸氫鈉:0.09mg(1.1μ莫耳)加入附有攪拌機及餾出裝置之300mL反應器中,氮雰圍760Torr之下,花1小時加熱至215℃並攪拌。以油浴進行加熱,自200℃開始酯交換反應。自反應開始5分鐘後開始攪拌,20分鐘後,花10分鐘由760Torr減壓至200Torr。一邊減壓一邊將溫度加熱至210℃,於反應開始後70分鐘後升溫至220℃,自80分鐘後花30分鐘減壓至150Torr,使溫度升溫至240℃的同時減壓至1Torr後保持10分鐘,得到聚碳酸酯樹脂。
基於日本工業規格K7113,將所得之聚碳酸酯樹脂成形成1號型試驗片之形狀,測定拉伸屈服伸長率(拉伸速 度2mm/min.)。相對於比較例2所得之聚碳酸酯樹脂之拉伸屈服伸長率為51%,實施例3所得之聚碳酸酯樹脂之拉伸屈服伸長率為150%。
〔產業上之可利用性〕
藉由本發明,可得到優異之高阿貝數的光學透鏡。本發明之光學透鏡由於可射出成形而生產性高且低價,故可用於照相機、望遠鏡、雙筒望遠鏡、電視投影機等以往使用高價之高阿貝玻璃透鏡的領域,係極為有用。又,由於高阿貝透鏡與低阿貝透鏡之吸水率差變小,特別適於小的光學透鏡單元。進而藉由本發明,可藉由射出成形簡便地得到於玻璃透鏡技術性加工困難之高阿貝非球面透鏡,係極為有用。

Claims (11)

  1. 一種光學透鏡,其係使含有下述一般式(1)所示之構成單位之聚碳酸酯樹脂成形而得者,
    Figure 104132183-A0305-02-0043-1
    (一般式(1)中,R為H、CH3或C2H5)。
  2. 如請求項1之光學透鏡,其中前述聚碳酸酯樹脂含有前述一般式(1)中之-CH2O-基鍵結於6位之異構物(2,6位之異構物)與前述一般式(1)中之-CH2O-基鍵結於7位之異構物(2,7位之異構物)的混合物。
  3. 如請求項2之光學透鏡,其中前述聚碳酸酯樹脂係以質量比計1.0:99.0~99.0:1.0的比例含有前述2,6位之異構物與前述2,7位之異構物。
  4. 如請求項1~3中任一項之光學透鏡,其中前述聚碳酸酯樹脂之吸水膨脹率為0.01~0.5體積%。
  5. 如請求項1~3中任一項之光學透鏡,其中前述聚碳酸酯樹脂之阿貝數為25以上。
  6. 如請求項1~3中任一項之光學透鏡,其中前述聚碳酸酯樹脂之玻璃轉移溫度為110~160℃。
  7. 如請求項1~3中任一項之光學透鏡,其中前述聚碳酸酯樹脂之重量平均分子量為5,000~50,000。
  8. 如請求項1~3中任一項之光學透鏡,其中前述聚碳酸酯樹脂包含使二醇化合物與碳酸二酯反應而得的構成 單位,前述二醇化合物係選自由雙酚A、雙酚AP、雙酚AF、雙酚B、雙酚BP、雙酚C、雙酚E、雙酚F、雙酚G、雙酚M、雙酚S、雙酚P、雙酚PH、雙酚TMC、雙酚Z、9,9-雙(4-(2-羥基乙氧基)苯基)茀、9,9-雙(4-(2-羥基乙氧基)-3-甲基苯基)茀、9,9-雙(4-(2-羥基乙氧基)-3-tert-丁基苯基)茀、9,9-雙(4-(2-羥基乙氧基)-3-異丙基苯基)茀、9,9-雙(4-(2-羥基乙氧基)-3-環己基苯基)茀、9,9-雙(4-(2-羥基乙氧基)-3-苯基苯基)茀所成群組中。
  9. 一種光學透鏡之製造方法,其包含:使下述一般式(2)所示之二醇化合物及碳酸二酯反應而生成聚碳酸酯樹脂的步驟,及使所得之聚碳酸酯樹脂成形而製造光學透鏡的步驟;
    Figure 104132183-A0305-02-0044-2
    (一般式(2)中,R為H、CH3或C2H5)。
  10. 如請求項9之光學透鏡之製造方法,其中前述二醇化合物含有前述一般式(2)中之-CH2OH基鍵結於6位之異構物(2,6位之異構物)與前述一般式(2)中之-CH2OH基鍵結於7位之異構物(2,7位之異構物)的混合物,
    Figure 104132183-A0305-02-0045-3
    Figure 104132183-A0305-02-0045-4
  11. 如請求項10之光學透鏡之製造方法,其中以質量比計1.0:99.0~99.0:1.0的比例含有前述2,6位之異構物與前述2,7位之異構物。
TW104132183A 2014-09-30 2015-09-30 聚碳酸酯樹脂及光學透鏡 TWI711645B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014200807 2014-09-30
JP2014-200807 2014-09-30
JP2015-065896 2015-03-27
JP2015065896 2015-03-27

Publications (2)

Publication Number Publication Date
TW201625715A TW201625715A (zh) 2016-07-16
TWI711645B true TWI711645B (zh) 2020-12-01

Family

ID=55630406

Family Applications (2)

Application Number Title Priority Date Filing Date
TW104132183A TWI711645B (zh) 2014-09-30 2015-09-30 聚碳酸酯樹脂及光學透鏡
TW109108626A TWI757703B (zh) 2014-09-30 2015-09-30 聚碳酸酯樹脂

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW109108626A TWI757703B (zh) 2014-09-30 2015-09-30 聚碳酸酯樹脂

Country Status (7)

Country Link
US (2) US10048404B2 (zh)
EP (2) EP3202815B1 (zh)
JP (2) JP6648696B2 (zh)
KR (2) KR102355574B1 (zh)
CN (1) CN106661216B (zh)
TW (2) TWI711645B (zh)
WO (1) WO2016052370A1 (zh)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5127658B2 (ja) 2008-10-06 2013-01-23 キヤノン株式会社 通信装置、通信装置の制御方法、コンピュータプログラム及び記憶媒体
WO2017175693A1 (ja) * 2016-04-05 2017-10-12 三菱瓦斯化学株式会社 ポリカーボネート共重合体、それを用いた光学レンズ及びフィルム、並びに該共重合体の製造方法
WO2018062327A1 (ja) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 光学レンズ
KR102478201B1 (ko) 2017-03-31 2022-12-15 미츠비시 가스 가가쿠 가부시키가이샤 폴리카보네이트 수지 조성물 및 그것을 사용한 광학 렌즈
TWI808126B (zh) 2018-02-09 2023-07-11 日商三菱瓦斯化學股份有限公司 三芳基甲烷化合物
US11306180B2 (en) 2018-03-28 2022-04-19 Mitsubishi Gas Chemical Company, Inc. Polycarbonate and molded article
KR20200140845A (ko) * 2018-04-04 2020-12-16 미츠비시 가스 가가쿠 가부시키가이샤 폴리에스터 수지 조성물
JP7330951B2 (ja) * 2018-04-25 2023-08-22 Khネオケム株式会社 脂環式アルコールおよびアルデヒドの製造方法
TWI819114B (zh) * 2018-10-16 2023-10-21 日商三菱瓦斯化學股份有限公司 熱可塑性樹脂組成物及使用其之光學透鏡或薄膜
US11732088B2 (en) 2018-10-16 2023-08-22 Mitsubishi Gas Chemical Company, Inc. Polyester carbonate resin and optical lens
TW202016056A (zh) 2018-10-19 2020-05-01 德商路透化學儀器公司 多環化合物
WO2020189409A1 (ja) 2019-03-15 2020-09-24 三菱瓦斯化学株式会社 ポリエステルカーボネート樹脂、及び当該樹脂を含む樹脂組成物を成形してなる成形体
US12037451B2 (en) * 2019-04-18 2024-07-16 Mitsubishi Gas Chemical Company, Inc. Thermoplastic resin, molded object, and monomer for thermoplastic resin
TW202144492A (zh) * 2020-03-31 2021-12-01 日商三菱瓦斯化學股份有限公司 樹脂組成物與包含其之光學透鏡及光學薄膜
KR20230041958A (ko) * 2020-07-17 2023-03-27 미츠비시 가스 가가쿠 가부시키가이샤 광학 필름
KR20220032282A (ko) 2020-09-07 2022-03-15 현대자동차주식회사 이미지 표시용 퍼들램프 장치
JPWO2022220139A1 (zh) * 2021-04-12 2022-10-20
EP4324813A1 (en) * 2021-04-12 2024-02-21 Mitsubishi Gas Chemical Company, Inc. Method for producing dimethanol compound having norbornane skeleton
CN115703881B (zh) * 2021-08-06 2023-09-15 中国科学院过程工程研究所 一种聚碳酸酯光学树脂及其制备方法和应用
KR20240063141A (ko) 2021-09-10 2024-05-10 로이터 케미쉐 아파라테바우 이.카. (헤트)아릴 치환된 비스페놀 화합물 및 열가소성 수지
TW202323413A (zh) * 2021-10-05 2023-06-16 日商三菱瓦斯化學股份有限公司 二羥基化合物之製造方法及再生樹脂之製造方法
EP4414406A1 (en) 2021-10-05 2024-08-14 Mitsubishi Gas Chemical Company, Inc. Polyester resin and method for producing same, and resin composition, molded body, and optical member
CN118251460A (zh) 2021-11-30 2024-06-25 三菱瓦斯化学株式会社 聚碳酸酯树脂组合物以及使用该组合物的光学透镜
WO2023208837A1 (en) 2022-04-26 2023-11-02 Reuter Chemische Apparatebau E.K. Oligomeric binaphthyl compounds and thermoplastic resins
WO2024068860A1 (en) 2022-09-30 2024-04-04 Reuter Chemische Apparatebau E.K. Oligomeric binaphtyl compounds and thermoplastic resins
WO2024115460A1 (en) 2022-11-30 2024-06-06 Reuter Chemische Apparatebau E.K. Binaphthyl compounds and thermoplastic resins
WO2024184504A1 (en) 2023-03-09 2024-09-12 Reuter Chemische Apparatebau E.K. Dibenzothiophene-substituted aromatic compounds and thermoplastic resins prepared therefrom
WO2024184503A1 (en) 2023-03-09 2024-09-12 Reuter Chemische Apparatebau E.K. Sulfur-containing heterocyclic compounds and thermoplastic resins

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155964A (ja) * 1991-12-03 1993-06-22 Kuraray Co Ltd ポリウレタンおよびその製造方法
JP5155964B2 (ja) 2009-08-07 2013-03-06 日本特殊陶業株式会社 グロープラグの通電制御装置及び発熱システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269520A (ja) 1988-09-02 1990-03-08 Kuraray Co Ltd 脂環式ポリカーボネートおよびその製造法
CA2010319C (en) * 1989-02-20 2001-03-13 Yohzoh Yamamoto Foamable polymer composition and foamed article
JPH04338594A (ja) * 1991-05-14 1992-11-25 Arakawa Chem Ind Co Ltd 熱転写受像材料
JPH0570584A (ja) 1991-09-11 1993-03-23 Kuraray Co Ltd 脂環式ポリカーボネートおよびその製造方法
JP2882716B2 (ja) 1992-06-11 1999-04-12 株式会社クラレ 偏光板
JP2001261799A (ja) 2000-03-16 2001-09-26 Mitsubishi Gas Chem Co Inc 非晶質ポリエステル及び光学用材料
CN1219800C (zh) 2000-09-07 2005-09-21 三井化学株式会社 含极性基团的烯烃共聚物、含有它的热塑性树脂组合物及其应用
JP2007161917A (ja) 2005-12-15 2007-06-28 Teijin Ltd ポリエチレンナフタレート樹脂
TWI482797B (zh) 2009-01-20 2015-05-01 Showa Denko Kk (Poly) carbonate polyol and a carboxyl group-containing polyurethanes using the (poly) carbonate polyol as a raw material
JP5849967B2 (ja) 2010-12-10 2016-02-03 三菱瓦斯化学株式会社 ポリエステル樹脂及び光学レンズ
JP2014091787A (ja) * 2012-11-05 2014-05-19 Ube Ind Ltd 環状アルキレン基を有するポリアルキレンカーボネートジオール及びその製造方法
KR102191076B1 (ko) 2012-11-07 2020-12-15 미츠비시 가스 가가쿠 가부시키가이샤 폴리카보네이트 수지, 그 제조 방법 및 광학 성형체
WO2015147242A1 (ja) 2014-03-28 2015-10-01 三菱瓦斯化学株式会社 ノルボルナン骨格を有する二官能性化合物およびその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05155964A (ja) * 1991-12-03 1993-06-22 Kuraray Co Ltd ポリウレタンおよびその製造方法
JP5155964B2 (ja) 2009-08-07 2013-03-06 日本特殊陶業株式会社 グロープラグの通電制御装置及び発熱システム

Also Published As

Publication number Publication date
KR20170066280A (ko) 2017-06-14
US10048404B2 (en) 2018-08-14
JP6648696B2 (ja) 2020-02-14
US20170276837A1 (en) 2017-09-28
EP3202815A4 (en) 2018-04-11
EP3415546A1 (en) 2018-12-19
JP2019214727A (ja) 2019-12-19
US10605956B2 (en) 2020-03-31
TWI757703B (zh) 2022-03-11
TW201625715A (zh) 2016-07-16
EP3415546B1 (en) 2021-08-18
CN106661216A (zh) 2017-05-10
KR20210129268A (ko) 2021-10-27
WO2016052370A1 (ja) 2016-04-07
JP6729772B2 (ja) 2020-07-22
EP3202815A1 (en) 2017-08-09
JPWO2016052370A1 (ja) 2017-07-27
EP3202815B1 (en) 2019-01-23
CN106661216B (zh) 2018-12-07
KR102355574B1 (ko) 2022-01-25
US20190033489A1 (en) 2019-01-31
TW202028293A (zh) 2020-08-01
KR102355569B1 (ko) 2022-01-25

Similar Documents

Publication Publication Date Title
TWI711645B (zh) 聚碳酸酯樹脂及光學透鏡
TWI749070B (zh) 光學透鏡
TW201805329A (zh) 聚碳酸酯共聚合物、使用其之光學鏡片、及薄膜、以及該共聚合物之製造方法
TWI819114B (zh) 熱可塑性樹脂組成物及使用其之光學透鏡或薄膜
CN113330051B (zh) 热塑性树脂和光学构件
CN113677734B (zh) 热塑性树脂、成型体和热塑性树脂用单体
TWI853013B (zh) 熱塑性樹脂、成形體、以及熱塑性樹脂用單體
WO2024185905A1 (en) Dibenzothiophene-substituted aromatic compounds and thermoplastic resins prepared therefrom