TWI636551B - 半導體元件及其製造方法 - Google Patents

半導體元件及其製造方法 Download PDF

Info

Publication number
TWI636551B
TWI636551B TW102104641A TW102104641A TWI636551B TW I636551 B TWI636551 B TW I636551B TW 102104641 A TW102104641 A TW 102104641A TW 102104641 A TW102104641 A TW 102104641A TW I636551 B TWI636551 B TW I636551B
Authority
TW
Taiwan
Prior art keywords
insulating film
spacer
gate
semiconductor device
gate electrode
Prior art date
Application number
TW102104641A
Other languages
English (en)
Other versions
TW201340295A (zh
Inventor
姜洪成
金倫楷
尹鍾植
Original Assignee
三星電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三星電子股份有限公司 filed Critical 三星電子股份有限公司
Publication of TW201340295A publication Critical patent/TW201340295A/zh
Application granted granted Critical
Publication of TWI636551B publication Critical patent/TWI636551B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/7682Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing the dielectric comprising air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76897Formation of self-aligned vias or contact plugs, i.e. involving a lithographically uncritical step
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823456MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different shapes, lengths or dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823468MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • H01L29/41783Raised source or drain electrodes self aligned with the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo
    • H01L29/4958Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo with a multiple layer structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4983Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
    • H01L29/4991Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material comprising an air gap
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6653Unipolar field-effect transistors with an insulated gate, i.e. MISFET using the removal of at least part of spacer, e.g. disposable spacer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66545Unipolar field-effect transistors with an insulated gate, i.e. MISFET using a dummy, i.e. replacement gate in a process wherein at least a part of the final gate is self aligned to the dummy gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4966Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a composite material, e.g. organic material, TiN, MoSi2

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

半導體元件及其製造方法包含位於半導體基板上方之閘極絕緣薄膜圖案。閘電極形成於所述閘極絕緣薄膜圖案上方。間隔物結構形成於所述閘電極以及所述閘極絕緣薄膜圖案之至少一側上。所述間隔物結構包含:第一絕緣薄膜間隔物,其接觸所述閘極絕緣薄膜圖案;以及第二絕緣薄膜間隔物,其位於所述第一絕緣薄膜間隔物之外側上。所述半導體元件具有位於所述第一絕緣薄膜間隔物與所述第二絕緣薄膜間隔物之間的氣隙。

Description

半導體元件及其製造方法 【相關申請案】
本申請案主張2012年3月20日於韓國智慧財產局提申的韓國專利申請案第10-2012-0028305號的優先權,該案的揭露內容以引用的方式全文併入本文。
示範性實施例是關於半導體元件及/或其製造方法。
隨著半導體元件的整合程度變得更大,半導體元件中所包含之配線(wiring)之大小以及配線之間的間隙正迅速減小。配線通常由具有低電阻率之金屬材料製成。在由具有低電阻率之金屬材料製成之配線以彼此相距很小距離的方式置放時,所述配線之間的寄生電容可能變得極高。因此,已研究降低配線之間的寄生電容的各種方法。作為所述方法中之一者,正對氣隙間隔物(air gap spacer)進行研究。
示範性實施例是關於半導體元件及/或其製造方法。
根據一個示範性實施例,提供一種半導體元件,由於接點與閘極結構之間的寄生電容降低,所述半導體元件具有改良之操作效能。
根據另一示範性實施例,提供一種製造半導體元件之方法,由於接點與閘極結構之間的寄生電容降低,所述半導體元件具有改良之操作效能。
然而,本揭露之態樣不限於本文所闡述之態樣。藉由參考下文給出之詳細描述,對於一般熟習本揭露所屬技術者而言,上述以及其他態樣將變得更顯而易見。
根據再一示範性實施例,提供一種半導體元件,包括:閘極絕緣薄膜圖案,其位於半導體基板上方;閘電極,其位於閘極絕緣薄膜圖案上方;以及間隔物結構,其位於閘電極以及閘極絕緣薄膜圖案之至少一側上,其中間隔物結構包含:第一絕緣薄膜間隔物,其接觸閘極絕緣薄膜圖案;以及第二絕緣薄膜間隔物,其位於第一絕緣薄膜間隔物之外側上。所述半導體元件具有位於第一絕緣薄膜間隔物與第二絕緣薄膜間隔物之間的氣隙。
第一絕緣薄膜間隔物以及第二絕緣薄膜間隔物之厚度可不同於氣隙之厚度。氣隙之厚度可大於第一絕緣薄膜間隔物以及第二絕緣薄膜間隔物之厚度。
所述半導體元件可更包含:遮罩薄膜圖案,其位於閘電極上方。
所述半導體元件可更包含:自對準接點,其鄰近於間隔物結構。
遮罩薄膜圖案以及第一絕緣薄膜間隔物可包括相同材料。第一絕緣薄膜間隔物以及第二絕緣薄膜間隔物可包括相同材料。
所述半導體元件可更包含:層間絕緣薄膜,其位於半導體基板上。第二絕緣薄膜間隔物可相對於層間絕緣薄膜具有蝕刻選擇性。
閘電極可包括金屬閘電極,且所述半導體元件可更包含:具有功函數之金屬,其形成於閘極絕緣薄膜圖案與金屬閘電極之間。具有所述功函數之金屬可沿著金屬閘電極之兩個側壁延伸。
根據再一示範性實施例,提供一種製造半導體元件之方法,所述方法包括:提供閘極結構,其包含閘極絕緣薄膜圖案,閘極絕緣薄膜圖案形成於半導體基板上方,以及閘電極,閘電極形成於閘極絕緣薄膜圖案上方;提供間隔物結構,其包含第一絕緣薄膜間隔物,第一絕緣薄膜間隔物形成於閘極結構之至少一側上以接觸閘極絕緣薄膜圖案,以及第三絕緣薄膜間隔物及第二絕緣薄膜間隔物,第三絕緣薄膜間隔物及第二絕緣薄膜間隔物依序形成於第一絕緣薄膜間隔物之外側上;在半導體基板上形成第一層間絕緣薄膜;利用第一絕緣薄膜間隔物以及第二絕緣薄膜間隔物與第三絕緣薄膜間隔物之間的蝕刻選擇性,而選擇性地移除第三絕緣薄膜間隔物;以及在間隔物結構上形成第二層間絕緣薄膜,以使得氣隙形成於第一絕緣薄膜間隔物與第二絕緣薄膜間隔物之間。
選擇性移除第三絕緣薄膜間隔物之步驟可包含同時蝕刻第一層間絕緣薄膜與第三絕緣薄膜間隔物。
第一絕緣薄膜間隔物以及第二絕緣薄膜間隔物可各 自包括氮化矽薄膜間隔物,且第三絕緣薄膜間隔物可包括氧化矽薄膜間隔物。
所述方法可更包含將閘電極替換為金屬閘電極。
所述方法可更包含形成鄰近於間隔物結構之自對準接點。
根據再一示範性實施例,一種半導體元件包括:閘極結構,其包含閘電極;接點結構,其包含至少一個連接配線以及自對準接點,接點結構操作性連接至閘極結構;以及絕緣分隔區,其用以將閘極結構與至少一個連接配線絕緣,絕緣分隔區包含在絕緣分隔區內界定空穴之絕緣薄膜。
空穴可填充有氣體介質,且絕緣薄膜可由介電常數高於氣體介質之介電常數的材料形成。
接點結構可包含多個連接配線。所述半導體元件可更包含多個絕緣分隔區,且絕緣分隔區中之每一者可將多個連接配線中之至少一者與閘極結構絕緣。
絕緣分隔區可包含至少一對對置絕緣薄膜,其位於閘極結構與接點結構之間。空穴可位於對置絕緣薄膜之間。
空穴之截面積可大於對置絕緣薄膜中之每一者之截面積。
現將參看附圖來更全面描述各種示範性實施例,附圖中繪示了一些示範性實施例。然而,就描述示範性實施例之目的而言,本文中所揭露之具體結構以及功能細節僅為 代表性的,且因此可按照許多替代形式體現,且不應解釋為僅限於本文中所闡述之示範性實施例。因此,應理解,不欲將示範性實施例限於所揭露之特定形式,相反地,示範性實施例應涵蓋落入本揭露之範疇內的所有修改、均等物以及替代。
在諸圖中,可能為了清楚起見而誇示了層以及區域之厚度,且在諸圖之描述中,相似數字始終表示相似部件。
儘管本文中可使用術語「第一」、「第二」等來描述各種部件,但此等部件不應受此等術語限制。此等術語僅用於區分一個部件與另一部件。舉例而言,第一部件可稱為第二部件,且類似地,第二部件可稱為第一部件,而不脫離示範性實施例之範疇。如本文中所使用,術語「及/或」包含相關聯之所列出項目中之一或多者的任何以及所有組合。
應理解,若一部件被稱為「連接至」或「耦接至」另一部件,則所述部件可直接連接至或耦接至所述另一部件,或可存在介入部件。相比而言,若一部件被稱為「直接連接至」或「直接耦接至」另一部件,則不存在介入部件。用以描述部件之間的關係的其他詞應以相似方式解釋(例如,「在……之間」相對於「直接在……之間」、「鄰近」相對於「直接鄰近」等)。
本文中所使用之術語僅是出於描述特定實施例之目的,且不意欲限制示範性實施例。如本文中所使用,除非上下文另有清楚指示,單數形式「一個」以及「所述」意 欲亦包含複數形式。應進一步理解,術語「包括」及/或「包含」在用於本文中之情況下指定所敍述之特徵、整體、步驟、操作、部件及/或組件之存在,但不排除一或多個其他特徵、整體、步驟、操作、部件、組件及/或其群組之存在或添加。
為便於描述,可在本文中使用空間相對術語(例如,「在…之下」、「在…下方」、「下部」、「在…上方」、「上部」以及其類似術語)以描述如諸圖中所說明的一個部件或特徵與另一部件或特徵之間的關係。應理解,除了諸圖中所描繪之定向以外,所述空間相對術語意欲亦涵蓋在使用時或操作時之元件之不同定向。舉例而言,若翻轉諸圖中之元件,則描述為在其他部件或特徵「下方」或「之下」之部件繼而將定向於其他部件或特徵「上方」。因此,舉例而言,術語「在…下方」可涵蓋「在…上方」與「在…下方」兩種定向。元件可按其他方式定向(旋轉90度或在其他的定向檢視或參考),且本文中所使用之空間相對描述詞應相應地作出解釋。
本文中參考橫截面說明來描述示範性實施例,所述橫截面說明為理想化實施例(以及中間結構)之示意性說明。因而,應預料到由於(例如)製造技術及/或容差(tolerance)而存在與所說明之形狀的差異。因此,示範性實施例不應解釋為限於本文中所說明之區域的特定形狀,而是可包含由(例如)製造引起之形狀之偏差。舉例而言,被說明為矩形之植入區域可具有圓形或彎曲特徵及/或在植入區域 之邊緣處的梯度(例如,植入濃度梯度),而非自植入區域至非植入區域之急劇(abrupt)改變。同樣地,藉由植入形成之內埋區域可在所述內埋區域與進行所述植入時可穿過之表面之間的區域中導致一些植入。因此,諸圖中所說明之區域本質上為示意性的,且其形狀未必說明元件之區域之實際形狀且不限制範疇。
亦應注意,在一些替代實施方案中,所注明之功能/動作可並不按照諸圖中所注明之次序發生。舉例而言,取決於所涉及之功能性/動作,連續繪示之兩個圖可實際上實質上同時執行,或可有時按照相反次序執行。
除非另有定義,否則本文中所使用之所有術語(包含技術以及科學術語)具有與一般熟習示範性實施例所屬技術者通常所理解者相同的含義。應進一步理解,除非本文中明確地定義,術語(諸如,常用字典中所定義之術語)應被解釋為具有與其在相關技術背景中之含義一致的含義,且不應以理想化或過度正式之意義來解釋。
為了更具體地描述示範性實施例,將參看附圖來詳細描述各種態樣。
示範性實施例是關於半導體元件及/或其製造方法。
圖1為根據示範性實施例之半導體元件之截面圖。圖2為圖1所示之區域A之放大圖。
參看圖1及圖2,半導體元件包含閘極結構300以及形成於閘極結構300之兩側上的間隔物結構310。
閘極結構300可包含閘極絕緣薄膜圖案110、功函數 金屬182、閘電極192以及遮罩薄膜圖案202。
形成於半導體基板100上之閘極絕緣薄膜圖案110可為由高k材料製成的高k薄膜圖案。具體言之,閘極絕緣薄膜圖案110可為高k金屬氧化物薄膜圖案。更具體言之,閘極絕緣薄膜圖案110可為(但不限於)由一種材料(例如,氧化鉿(HfO2)、氧化鋁(Al2O3)、氧化鋯(ZrO2)或氧化鉭(TaO2))製成之金屬氧化物薄膜圖案。
用於提高閘電極192之功函數的功函數金屬182可形成於閘極絕緣薄膜圖案110上。功函數金屬182可為由金屬製成的單層薄膜、由金屬氮化物薄膜製成之單層薄膜、由金屬以及金屬氮化物薄膜製成之多層薄膜或前述薄膜之組合。功函數金屬182之組成可根據半導體基板100之通道區域中存在的載子(carrier)之類型而變化。在一些其他示範性實施例中,可視需要而省略功函數金屬182。
如圖所示,在一些示範性實施例中,功函數金屬182可沿著閘電極192之兩個側壁而向上延伸。具體言之,功函數金屬182可形成於閘電極192與第一絕緣薄膜間隔物140之間,以沿著閘電極192以及第一絕緣薄膜間隔物140之側壁而向上延伸。此處,如圖所示,功函數金屬182之頂表面可處於與閘電極192之頂表面相同的高度。
閘電極192可形成於功函數金屬182上。在一些示範性實施例中,閘電極192可為(例如)替換金屬閘極(replacement metal gate;RMG)電極。閘電極192可為由金屬製成之單層薄膜或由金屬氮化物薄膜以及金屬製成 的多層薄膜。形成閘電極192之金屬之實例可包含(但不限於)鋁(Al)、鎢(W)、鈦(Ti)以及前述金屬之組合。此外,形成閘電極192之金屬氮化物薄膜之實例可包含(但不限於)氮化鈦(TiN)、氮化鉭(TaN)以及前述金屬氮化物薄膜之組合。
遮罩薄膜圖案202可形成於閘電極192上。如圖所示,在一些示範性實施例中,遮罩薄膜圖案202亦可形成於功函數金屬182上以與功函數金屬182重疊。
遮罩薄膜圖案202可用於在稍後將描述之形成自對準接點222之製程中保護閘極結構300。因此,遮罩薄膜圖案202可由硬質薄膜材料製成。在一些示範性實施例中,遮罩薄膜圖案202可含有氮化矽(SiN)薄膜。
在閘極結構300之兩側上鄰近於閘極結構300形成之間隔物結構310可包含第一絕緣薄膜間隔物140、氣隙間隔物152以及第二絕緣薄膜間隔物160。
第一絕緣薄膜間隔物140位於最接近閘極結構300處且接觸閘極絕緣薄膜圖案110以及功函數金屬182。第一閘極絕緣薄膜間隔物140可防止閘極絕緣薄膜圖案110在稍後將描述之形成氣隙間隔物152之製程中被移除。亦即,第一絕緣薄膜間隔物140可在形成氣隙間隔物152之製程中保護閘極絕緣薄膜圖案110。
雖然遮罩薄膜圖案202以及第一絕緣薄膜間隔物140在圖中彼此分離,但兩者可由實質上相同之材料製成(或者,一體成形)。在一些示範性實施例中,遮罩薄膜圖案 202以及第一絕緣薄膜間隔物140中之每一者可由SiN薄膜製成,但不限於由SiN薄膜製成。
氣隙間隔物152以及第二絕緣薄膜間隔物160可依序形成於第一絕緣薄膜間隔物140之外側上。此處,氣隙間隔物152之厚度W2以及第一絕緣薄膜間隔物140之厚度W1與第二絕緣薄膜間隔物160之厚度W3可視需要加以調整,以降低自對準接點222與閘極結構300之間的寄生電容。
在一些示範性實施例中,氣隙間隔物152之厚度W2可不同於第一絕緣薄膜間隔物140之厚度W1以及第二絕緣薄膜間隔物160之厚度W3。具體言之,氣隙間隔物152之厚度W2可大於第一絕緣薄膜間隔物140之厚度W1以及第二絕緣薄膜間隔物160之厚度W3。
如圖所示,在一些其他示範性實施例中,第一絕緣薄膜間隔物140之厚度W1可實質上等於第二絕緣薄膜間隔物160之厚度W3。然而,示範性實施例不限於圖中之說明。不同於圖中之說明,第一絕緣薄膜間隔物140之厚度W1亦可不同於第二絕緣薄膜間隔物160之厚度W3。
形成於氣隙間隔物152之外側上之第二絕緣薄膜間隔物160可用於在稍後將描述之形成自對準接點222之製程中保護閘極結構300以及間隔物結構310。因此,第二絕緣薄膜間隔物160可由相對於第一層間絕緣薄膜170具有蝕刻選擇性的硬質薄膜材料製成。
在一些示範性實施例中,第二絕緣薄膜間隔物160可 含有與第一絕緣薄膜間隔物140以及遮罩薄膜圖案202相同之材料。舉例而言,遮罩薄膜圖案202以及第一絕緣薄膜間隔物140與第二絕緣薄膜間隔物160全部可由SiN薄膜製成。
自對準接點222可形成於閘極結構300以及間隔物結構310之兩側上。自對準接點222可將形成於半導體基板100中之源極及汲極區域105電連接至連接配線242。自對準接點222可穿透第一層間絕緣薄膜170(或者延伸穿過第一層間絕緣薄膜170)。連接配線242可形成於自對準接點222上(連接配線242與自對準接點222共同稱為“接點結構”)且可電連接至上部接點(未圖示),所述上部接點電連接至外部元件。連接配線242可穿透第二層間絕緣薄膜230(或者在第二層間絕緣薄膜230內延伸)。
在諸圖中,第一層間絕緣薄膜170以及第二層間絕緣薄膜230彼此分離。然而,在一些示範性實施例中,第一層間絕緣薄膜170以及第二層間絕緣薄膜230可由相同材料製成。具體言之,第一層間絕緣薄膜170以及第二層間絕緣薄膜230可由氧化矽(SiO2)薄膜製成,但不限於由氧化矽(SiO2)薄膜製成。
如上所述,在根據本示範性實施例之半導體元件中,間隔物結構310形成於閘極結構300之兩側上,間隔物結構310包含第一絕緣薄膜間隔物140、氣隙間隔物152以及第二絕緣薄膜間隔物160。因此,可降低自對準接點222與閘極結構300之間的寄生電容,藉此改良半導體元件之操作效能。此外,在根據本示範性實施例之半導體元件中, 可視需要調整第一絕緣薄膜間隔物140、氣隙間隔物152以及第二絕緣薄膜間隔物160之厚度W1至W3。因此,可根據周圍環境調整自對準接點222與閘極結構300之間的寄生電容。
下文中,將描述製造上述半導體元件之實例方法。
圖3至圖16為說明根據示範性實施例之製造半導體元件之方法中所包含的中間製程的圖式。
參看圖3,在半導體基板100上形成預先閘極結構110至130以及預先間隔物結構140至160。此處,預先閘極結構110至130可包含:閘極絕緣薄膜圖案110,其形成於半導體基板100上;虛設閘電極120,其形成於閘極絕緣薄膜圖案110上;以及蝕刻終止薄膜圖案130,其形成於虛設閘電極120上。此外,預先間隔物結構140至160可包含:第一閘極絕緣薄膜間隔物140,其形成於預先閘極結構110至130之兩側上以接觸閘極絕緣薄膜圖案110;以及第三絕緣薄膜間隔物150及第二絕緣薄膜間隔物160,其依序形成於第一絕緣薄膜間隔物140之外側上。
可使用各種方法來形成預先閘極結構110至130以及預先間隔物結構140至160。下文將以舉例方式來描述所述方法中之一者。
如圖所示,首先,在半導體基板100上依序堆疊第一絕緣薄膜(未圖示)、閘電極薄膜(未圖示)以及蝕刻終止薄膜(未圖示),且接著進行圖案化以形成預先閘極結構110至130,預先閘極結構110至130包含閘極絕緣薄 膜圖案110、虛設閘電極120以及蝕刻終止薄膜圖案130。
此處,閘極絕緣薄膜(未圖示)可為金屬氧化物薄膜,其由HfO2、Al2O3、ZrO2或TaO2製成,但不限於由HfO2、Al2O3、ZrO2或TaO2製成。閘電極薄膜(未圖示)可為(但不限於)多晶矽薄膜。此外,蝕刻終止薄膜(未圖示)可為(但不限於)SiN薄膜。
在半導體基板100以及預先閘極結構110至130上共形地沉積第一絕緣薄膜(未圖示),且接著進行蝕刻,藉此在預先閘極結構110至130之兩個側壁上形成第一絕緣薄膜間隔物140。在半導體基板100、第一絕緣薄膜間隔物140以及預先閘極結構110至130上共形地沉積第三絕緣薄膜(未圖示),且接著進行蝕刻,藉此在第一絕緣薄膜間隔物140上形成第三絕緣薄膜間隔物150。在半導體基板100、第三絕緣薄膜間隔物150以及預先閘極結構110至130上共形地沉積第二絕緣薄膜(未圖示),且接著進行蝕刻,藉此在第三絕緣薄膜間隔物150上形成第二絕緣薄膜間隔物160。
此處,第三絕緣薄膜(未圖示)可由相對於第一絕緣薄膜(未圖示)以及第二絕緣薄膜(未圖示)具有蝕刻選擇性的材料製成。具體言之,第三絕緣薄膜(未圖示)可為SiO2薄膜,且第一絕緣薄膜(未圖示)以及第二絕緣薄膜(未圖示)可為SiN薄膜。在一些示範性實施例中,第三絕緣薄膜(未圖示)可比第一絕緣薄膜(未圖示)以及第二絕緣薄膜(未圖示)厚。
參看圖4,在半導體基板100上沉積第一層間絕緣薄膜170。具體言之,藉由化學氣相沉積(chemical vapor deposition;CVD)、電漿增強CVD(plasma enhanced CVD;PECVD)或其類似者在半導體基板100上共形地沉積第一層間絕緣薄膜170。將所沉積之第一層間絕緣薄膜170平坦化(planarize),直至暴露蝕刻終止薄膜圖案130為止。在一些示範性實施例中,第一層間絕緣薄膜170可為SiO2薄膜。
參看圖5至圖8,以金屬閘電極192來替換虛設閘電極120。
具體言之,參看圖5,藉由乾式蝕刻製程來移除所暴露之蝕刻終止薄膜圖案130(參見圖4)。可使用蝕刻終止薄膜圖案130(參見圖4)與第一層間絕緣薄膜170之間以及蝕刻終止薄膜圖案130與虛設閘電極120之間的蝕刻選擇性來執行乾式蝕刻製程。此處,若蝕刻終止薄膜圖案130(參見圖4)以及第一絕緣薄膜間隔物140及第二絕緣薄膜間隔物160由相同材料製成,則如圖所示,亦可部分移除第一絕緣薄膜間隔物140及第二絕緣薄膜間隔物160之上部部分。
參看圖6,藉由濕式蝕刻製程來移除虛設閘電極120(參見圖5)。在移除虛設閘電極120(參見圖5)時,可暴露虛設閘電極120下所形成之閘極絕緣薄膜圖案110。
參看圖7,在所暴露之閘極絕緣薄膜圖案110上形成功函數金屬薄膜180。此處,所暴露之功函數金屬薄膜180 可沿著第一絕緣薄膜間隔物140之側壁向上延伸以形成在第一層間絕緣薄膜170上。在本示範性實施例中,功函數金屬薄膜180可為(但不限於)由金屬製成的單層薄膜、由金屬氮化物薄膜製成之單層薄膜、由金屬以及金屬氮化物薄膜製成之多層薄膜或前述薄膜之組合。
在功函數金屬薄膜180上形成金屬導電薄膜190。金屬導電薄膜190可由具有低電阻率之金屬製成。在一些示範性實施例中,金屬導電薄膜190可由Al或W製成,但不限於由Al或W製成。
參看圖8,藉由回蝕(etch-back)製程來部分移除功函數金屬薄膜180(參見圖7)以及金屬導電薄膜190(參見圖7)。因此,形成功函數金屬182以及金屬閘電極192。此處,可執行回蝕製程歷時足夠時段,以使得功函數金屬182以及金屬閘電極192變得比鄰近的第一絕緣薄膜間隔物140、第二絕緣薄膜間隔物160以及第三絕緣薄膜間隔物150低。
參看圖9至圖14,鄰近於預先間隔物結構140至160而形成自對準接點222。
具體言之,參看圖9,在金屬閘電極192以及第一層間絕緣薄膜170上形成遮罩薄膜200。在本示範性實施例中,遮罩薄膜200可由與第一絕緣薄膜間隔物140以及第二絕緣薄膜間隔物160實質上相同之材料製成。具體言之,遮罩薄膜200可為SiN薄膜。
參看圖10,將遮罩薄膜200平坦化,藉此在金屬閘電 極192上形成遮罩薄膜圖案202。此處,如圖所示,亦可部分移除第一層間絕緣薄膜170以及第三絕緣薄膜間隔物150之上部部分。如圖所示,在一些示範性實施例中,亦可在第一絕緣薄膜間隔物140以及功函數金屬182上形成遮罩薄膜圖案202。
參看圖11,在第一層間絕緣薄膜170以及遮罩薄膜圖案202上形成蝕刻遮罩210。接著,參看圖12,使用遮罩薄膜圖案202以及蝕刻遮罩210(參見圖11)作為遮罩來蝕刻第一層間絕緣薄膜170,直至暴露半導體基板100為止。藉此,在半導體基板100上形成由第一層間絕緣薄膜170以及預先間隔物結構140至160圍繞之接點渠溝172,且暴露第二絕緣薄膜間隔物160之側壁。
將預定(或者選定)雜質注入至所暴露之半導體基板100中以形成源極及汲極區域105。必要時,另外在半導體基板100中形成矽化物(未圖示)。
參看圖13,以導電材料220填充接點渠溝172(參見圖12)。在本示範性實施例中,導電材料220可為金屬(例如,W)。在導電材料220為金屬時,可在以導電材料220填充接點渠溝172(參見圖12)之前,在接點渠溝172中形成阻斷(blocking)薄膜(未圖示)。
參看圖14,藉由(例如)化學機械拋光(chemical mechanical polishing;CMP)製程,而將導電材料220(參見圖13)平坦化。藉此,鄰近於預先間隔物結構140至160而形成自對準接點222。此處,如圖所示,亦可部分移除 第一層間絕緣薄膜170、預先間隔物結構140至160以及遮罩薄膜圖案202之上部部分。
參看圖15,利用第一絕緣薄膜間隔物140及第二絕緣薄膜間隔物160與第三絕緣薄膜間隔物150(參見圖14)之間的蝕刻選擇性,而選擇性地移除第三絕緣薄膜間隔物150(參見圖14)。可藉由濕式蝕刻製程來達成第三絕緣薄膜間隔物150(參見圖14)之選擇性移除。在此狀況下,可蝕刻第三絕緣薄膜間隔物150(參見圖14)歷時足夠時段,直至暴露半導體基板100為止。
若第一層間絕緣薄膜170以及第三絕緣薄膜間隔物150(參見圖14)由相同材料製成,則可在蝕刻第三絕緣薄膜間隔物150(參見圖14)的同時,蝕刻第一層間絕緣薄膜170。
參看圖16,在第一層間絕緣薄膜170上形成第二層間絕緣薄膜230。可使用具有低劣階梯覆蓋(step coverage)之沉積方法,在第一層間絕緣薄膜170上沉積第二層間絕緣薄膜230。因此,可未在第一絕緣薄膜間隔物140與第二絕緣薄膜間隔物160之間形成第二層間絕緣薄膜230。實際上,如圖所示,可在第一絕緣薄膜間隔物140與第二絕緣薄膜間隔物160之間形成氣隙間隔物152。
雖然第一層間絕緣薄膜170以及第二層間絕緣薄膜230在圖中彼此分離,但兩者可由相同材料製成。在一些示範性實施例中,第一層間絕緣薄膜170以及第二層間絕緣薄膜230可為SiO2薄膜。
在第二層間絕緣薄膜230中形成連接配線渠溝(未圖示)且接著以導電材料填充。因此,形成圖1所示之連接配線242。
圖17為根據再一示範性實施例之半導體元件之截面圖。
下文中,將參看圖17來描述根據再一示範性實施例之半導體元件。為了簡單起見,將省略與前述示範性實施例之部件實質上相同之部件的描述,且將主要描述本示範性實施例與前述示範性實施例之間的差異。
參看圖17,根據本示範性實施例之半導體元件之閘極結構302包含閘極絕緣薄膜圖案110、功函數金屬184、閘電極194以及遮罩薄膜圖案202。然而,功函數金屬184不沿著閘電極194之側壁向上延伸,而是僅在閘電極194下形成。
因此,如圖所示,第一閘極絕緣薄膜間隔物140可形成於閘極結構302之兩側上以接觸閘極絕緣薄膜圖案110、功函數金屬184以及閘電極194三者。亦可使用各種方法來製造半導體元件,所述半導體元件所包含之功函數金屬184以及閘電極194的形狀不同於其在根據前述示範性實施例之半導體元件中之對應物(counterpart)的形狀。
下文中,將描述製造上述半導體元件之實例方法。
圖18至圖24為說明根據再一示範性實施例之製造半導體元件之方法中所包含的中間製程的圖式。
參看圖18,在半導體基板100上形成閘極結構110、 184、194以及202以及預先間隔物結構140至160。在本示範性實施例中,閘極結構110、184、194以及202可包含:高k閘極絕緣薄膜圖案110,其形成於半導體基板100上;功函數金屬184,其形成於閘極絕緣薄膜圖案110上;金屬閘電極194,其形成於功函數金屬184上;以及遮罩薄膜圖案202,其形成於金屬閘電極194上。亦即,在本示範性實施例中,閘極結構110、184、194以及202不包含由多晶矽製成之虛設閘電極(參見圖3),而是包含金屬閘電極194。
因為上文已全面描述形成於閘極結構110、184、194以及202之兩側上的預先間隔物結構140至160,所以將省略其重複描述。
參看圖19,藉由(例如)CVD或PECVD而在半導體基板100上共形地形成第一層間絕緣薄膜170。接著,將所沉積之第一層間絕緣薄膜170平坦化,直至暴露遮罩薄膜圖案202為止。在一些示範性實施例中,第一層間絕緣薄膜170可為SiO2薄膜。
參看圖20,在第一層間絕緣薄膜170以及遮罩薄膜圖案202上形成蝕刻遮罩210。接著,參看圖21,使用遮罩薄膜圖案202以及蝕刻遮罩210(參見圖20)作為遮罩來蝕刻第一層間絕緣薄膜170,直至暴露半導體基板100為止。藉此,在半導體基板100上形成由第一層間絕緣薄膜170以及預先間隔物結構140至160圍繞之接點渠溝172。將預定(或者選定)雜質注入至所暴露之半導體基板100 中以形成源極及汲極區域105。
參看圖22,以導電材料(未圖示)填充接點渠溝172(參見圖21),且接著藉由(例如)CMP製程而將導電材料平坦化。因此,鄰近於預先間隔物結構140至160而形成自對準接點222。
參看圖23,利用第一絕緣薄膜間隔物140及第二絕緣薄膜間隔物160與第三絕緣薄膜間隔物150(參見圖22)之間的蝕刻選擇性,而選擇性地移除第三絕緣薄膜間隔物150(參見圖22)。
參看圖24,使用具有低劣階梯覆蓋之沉積方法,在第一層間絕緣薄膜170上形成第二層間絕緣薄膜230。因此,在第一絕緣薄膜間隔物140與第二絕緣薄膜間隔物160之間形成氣隙間隔物152。
在第二層間絕緣薄膜230中形成連接配線渠溝(未圖示)且接著以導電材料(未圖示)填充。因此,形成圖17所示之連接配線242。
下文中,將參看圖25及圖26來描述根據再一示範性實施例之半導體元件。
圖25為根據再一示範性實施例之半導體元件之概念佈局圖。圖26為圖25所示之半導體元件之截面圖。
參看圖25及圖26,根據本示範性實施例之半導體元件之半導體基板100可包含記憶體胞元陣列(memory cell array)區域500以及電連接至記憶體胞元陣列區域500之周邊電路區域600。亦即,根據本示範性實施例之半導體 元件可為包含記憶體胞元陣列區域500以及周邊電路區域600之半導體元件。周邊電路區域600可包含第一邏輯區域610以及第二邏輯區域620,其電連接至記憶體胞元陣列區域500。
在本示範性實施例中,第一閘極結構300可形成於第一邏輯區域610中,且第二閘極結構302可形成於第二邏輯區域620中。間隔物結構310可形成於第一閘極結構300以及第二閘極結構302中之每一者的兩側上。間隔物結構310包含第一絕緣薄膜間隔物140、氣隙間隔物152以及第二絕緣薄膜間隔物160,其依序形成於第一閘極結構300以及第二閘極結構302中之每一者的外側上。
第一閘極結構300可包含:高k閘極絕緣薄膜圖案110,其形成於半導體基板100上;第一功函數金屬182,其形成於高k閘極絕緣薄膜圖案110上以沿著第一絕緣薄膜間隔物140之側壁延伸;第一金屬閘電極192,其形成於第一功函數金屬182上;以及遮罩薄膜圖案202,其形成於第一金屬閘電極192上。
第二閘極結構302可包含:高k閘極絕緣薄膜圖案110,其形成於半導體基板100上;第二功函數金屬184,其形成於高k閘極絕緣薄膜圖案110上;第二金屬閘電極194,其形成於第二功函數金屬184上;以及遮罩薄膜圖案202,其形成於第二金屬閘電極194上。
其他部件與上文所述之前述示範性實施例之部件相同,且因此將省略其詳細描述。
圖27為應用根據其他示範性實施例之半導體元件之電子系統的方塊圖。
參看圖27,電子系統可包含記憶體系統912、處理器914、隨機存取記憶體(RAM)916以及使用者介面918。電子系統之實例可包含行動電話以及電腦。
記憶體系統912、處理器914、RAM 916以及使用者介面918可使用匯流排920來執行彼此之間的資料通信。處理器914可執行程式且控制電子系統。RAM 916可用作處理器914之操作記憶體(operation memory)。
根據上述示範性實施例,處理器914、RAM 916以及記憶體系統912中之至少一者可包含半導體元件。在一些示範性實施例中,處理器914以及RAM 916可包含於一個封裝中。
使用者介面918可用於將資料輸入至電子系統或自電子系統輸出資料。記憶體系統912可儲存用於操作記憶體914之程式碼、由處理器914處理之資料或自外部源輸入之資料。記憶體系統912可包含控制器以及記憶體。
前述內容說明示範性實施例,且並不解釋為限制示範性實施例。雖然,已描述幾個示範性實施例,但熟習此項技術者將容易瞭解,可對示範性實施例進行許多修改,而不會實質上偏離新穎的教示及優勢。因此,所有此等修改意欲包含於如申請專利範圍所界定的本發明之範疇內。因此,應理解,前述內容說明各種示範性實施例,且並不解釋為限於所揭露之具體實施例,且對所揭露之實施例之修 改以及其他實施例意欲包含於隨附申請專利範圍之範疇內。
100‧‧‧半導體基板
105‧‧‧源極及汲極區域
110‧‧‧閘極絕緣薄膜圖案
120‧‧‧虛設閘電極
130‧‧‧蝕刻終止薄膜圖案
140‧‧‧第一絕緣薄膜間隔物
150‧‧‧第三絕緣薄膜間隔物
152‧‧‧氣隙間隔物
160‧‧‧第二絕緣薄膜間隔物
170‧‧‧第一層間絕緣薄膜
172‧‧‧接點渠溝
180‧‧‧功函數金屬薄膜
182‧‧‧功函數金屬
184‧‧‧功函數金屬
190‧‧‧金屬導電薄膜
192‧‧‧閘電極
194‧‧‧閘電極
200‧‧‧遮罩薄膜
202‧‧‧遮罩薄膜圖案
210‧‧‧蝕刻遮罩
220‧‧‧導電材料
222‧‧‧自對準接點
230‧‧‧第二層間絕緣薄膜
242‧‧‧連接配線
300‧‧‧閘極結構
302‧‧‧閘極結構
310‧‧‧間隔物結構
500‧‧‧記憶體胞元陣列區域
600‧‧‧周邊電路區域
610‧‧‧第一邏輯區域
620‧‧‧第二邏輯區域
912‧‧‧記憶體系統
914‧‧‧處理器
916‧‧‧隨機存取記憶體
918‧‧‧使用者介面
920‧‧‧匯流排
A‧‧‧區域
W1‧‧‧厚度
W2‧‧‧厚度
W3‧‧‧厚度
藉由參看附圖詳細描述示範性實施例,上述以及其他態樣以及特徵將變得更顯而易見。
圖1為根據示範性實施例之半導體元件之截面圖。
圖2為圖1所示之區域A之放大圖。
圖3至圖16為說明根據另一示範性實施例之製造半導體元件之方法中所包含的中間製程的圖式。
圖17為根據再一示範性實施例之半導體元件之截面圖。
圖18至圖24為說明根據再一示範性實施例之製造半導體元件之方法中所包含的中間製程的圖式。
圖25為根據再一示範性實施例之半導體元件之概念佈局圖。
圖26為圖25所示之半導體元件之截面圖。
圖27為應用根據再一示範性實施例之半導體元件之電子系統的方塊圖。

Claims (18)

  1. 一種半導體元件,包括:閘極絕緣薄膜圖案,其位於半導體基板上方;閘電極,其位於所述閘極絕緣薄膜圖案上方;間隔物結構,其位於所述閘電極以及所述閘極絕緣薄膜圖案之至少一側上;以及自對準接點,其位於所述間隔物結構的側壁上,所述間隔物結構包含,第一絕緣薄膜間隔物,其接觸所述閘極絕緣薄膜圖案;以及第二絕緣薄膜間隔物,其位於所述第一絕緣薄膜間隔物之外側上,所述半導體元件具有位於所述第一絕緣薄膜間隔物與所述第二絕緣薄膜間隔物之間的氣隙間隔物,其中所述自對準接點之頂表面的高度與所述第二絕緣薄膜間隔物之頂表面的高度相同,其中所述氣隙間隔物的頂端高度高於所述閘電極的頂面高度。
  2. 如申請專利範圍第1項所述之半導體元件,其中所述第一絕緣薄膜間隔物以及所述第二絕緣薄膜間隔物之厚度不同於所述氣隙間隔物之厚度。
  3. 如申請專利範圍第2項所述之半導體元件,其中所述氣隙間隔物之所述厚度大於所述第一絕緣薄膜間隔物以 及所述第二絕緣薄膜間隔物之所述厚度。
  4. 如申請專利範圍第1項所述之半導體元件,更包括:遮罩薄膜圖案,其位於所述閘電極上方。
  5. 如申請專利範圍第4項所述之半導體元件,其中所述遮罩薄膜圖案以及所述第一絕緣薄膜間隔物包括相同材料。
  6. 如申請專利範圍第5項所述之半導體元件,其中所述第一絕緣薄膜間隔物以及所述第二絕緣薄膜間隔物包括相同材料。
  7. 如申請專利範圍第1項所述之半導體元件,更包括:層間絕緣薄膜,其位於所述半導體基板上,所述第二絕緣薄膜間隔物相對於所述層間絕緣薄膜具有蝕刻選擇性。
  8. 如申請專利範圍第1項所述之半導體元件,其中所述閘電極包括金屬閘電極,且所述半導體元件更包括:具有功函數之金屬,其形成於所述閘極絕緣薄膜圖案與所述金屬閘電極之間。
  9. 如申請專利範圍第8項所述之半導體元件,其中所述具有所述功函數之金屬沿著所述金屬閘電極之兩個側壁延伸。
  10. 一種製造半導體元件之方法,所述方法包括: 提供閘極結構,其包含,閘極絕緣薄膜圖案,其形成於半導體基板上方,以及閘電極,其形成於所述閘極絕緣薄膜圖案上方;提供間隔物結構,其包含,第一絕緣薄膜間隔物,其形成於所述閘極結構之至少一側上以接觸所述閘極絕緣薄膜圖案,以及第三絕緣薄膜間隔物及第二絕緣薄膜間隔物,其依序形成於所述第一絕緣薄膜間隔物之外側上;在所述半導體基板上形成第一層間絕緣薄膜;在所述第二絕緣薄膜間隔物的側壁形成自對準接點;利用所述第一絕緣薄膜間隔物以及所述第二絕緣薄膜間隔物與所述第三絕緣薄膜間隔物之間的蝕刻選擇性,而選擇性地移除所述第三絕緣薄膜間隔物;以及在所述間隔物結構上形成第二層間絕緣薄膜,以使得氣隙間隔物形成於所述第一絕緣薄膜間隔物與所述第二絕緣薄膜間隔物之間,其中所述自對準接點之頂表面的高度與所述第二絕緣薄膜間隔物之頂表面的高度相同,其中所述氣隙間隔物的頂端高度高於所述閘電極的頂面高度。
  11. 如申請專利範圍第10項所述之製造半導體元件之方法,其中所述選擇性移除所述第三絕緣薄膜間隔物之步驟包含同時蝕刻所述第一層間絕緣薄膜與所述第三絕緣 薄膜間隔物。
  12. 如申請專利範圍第10項所述之製造半導體元件之方法,其中:所述第一絕緣薄膜間隔物以及所述第二絕緣薄膜間隔物各自包括氮化矽薄膜間隔物,且所述第三絕緣薄膜間隔物包括氧化矽薄膜間隔物。
  13. 如申請專利範圍第10項所述之製造半導體元件之方法,更包括:將所述閘電極替換為金屬閘電極。
  14. 一種半導體元件,包括:閘極結構,其包含閘電極;接點結構,其包含形成於所述閘極結構之側壁的自對準接點,以及在所述自對準接點上的連接配線,所述接點結構操作性連接至所述閘極結構;以及絕緣分隔區,其用以將所述閘極結構與所述連接配線絕緣,所述絕緣分隔區包含在所述絕緣分隔區內界定氣隙間隔物之絕緣薄膜,其中所述自對準接點之頂表面的高度與所述氣隙間隔物之頂端高度相同,其中所述氣隙間隔物的頂端高度高於所述閘電極的頂面高度。
  15. 如申請專利範圍第14項所述之半導體元件,其中:所述氣隙間隔物填充有氣體介質,且 所述絕緣薄膜由介電常數高於所述氣體介質之介電常數的材料形成。
  16. 如申請專利範圍第14項所述之半導體元件,其中:所述接點結構包含多個連接配線,所述半導體元件更包括:多個所述絕緣分隔區,且所述絕緣分隔區中之每一者將所述多個連接配線中之至少一者與所述閘極結構絕緣。
  17. 如申請專利範圍第14項所述之半導體元件,其中:所述絕緣分隔區包含至少一對對置絕緣薄膜,其位於所述閘極結構與所述接點結構之間,且所述氣隙間隔物位於所述對置絕緣薄膜之間。
  18. 如申請專利範圍第17項所述之半導體元件,其中所述氣隙間隔物之截面積大於所述對置絕緣薄膜中之每一者之截面積。
TW102104641A 2012-03-20 2013-02-06 半導體元件及其製造方法 TWI636551B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120028305A KR101887414B1 (ko) 2012-03-20 2012-03-20 반도체 장치 및 그 제조 방법
??10-2012-0028305 2012-03-20

Publications (2)

Publication Number Publication Date
TW201340295A TW201340295A (zh) 2013-10-01
TWI636551B true TWI636551B (zh) 2018-09-21

Family

ID=49210967

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102104641A TWI636551B (zh) 2012-03-20 2013-02-06 半導體元件及其製造方法

Country Status (3)

Country Link
US (1) US8952452B2 (zh)
KR (1) KR101887414B1 (zh)
TW (1) TWI636551B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708330B (zh) * 2018-12-27 2020-10-21 南亞科技股份有限公司 半導體結構及其製備方法
US11094796B2 (en) 2019-09-30 2021-08-17 Taiwan Semiconductor Manufacturing Co., Ltd. Transistor spacer structures
TWI756853B (zh) * 2019-09-30 2022-03-01 台灣積體電路製造股份有限公司 半導體結構及其形成方法

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101164972B1 (ko) * 2010-12-31 2012-07-12 에스케이하이닉스 주식회사 에어갭 스페이서를 구비한 반도체장치 및 그 제조 방법
KR20130039525A (ko) * 2011-10-12 2013-04-22 에스케이하이닉스 주식회사 다마신비트라인을 구비한 반도체장치 및 그 제조 방법
KR101950349B1 (ko) * 2012-12-26 2019-02-20 에스케이하이닉스 주식회사 보이드 프리 폴리실리콘 갭필 방법 및 그를 이용한 반도체장치 제조 방법
FR3001831B1 (fr) * 2013-02-04 2016-11-04 St Microelectronics Sa Transistor mos a espaceurs d'air
KR20140100798A (ko) * 2013-02-07 2014-08-18 삼성전자주식회사 반도체 장치 및 그 형성방법
KR20140108982A (ko) * 2013-03-04 2014-09-15 삼성전자주식회사 메모리 장치 및 그 제조 방법
US8841711B1 (en) * 2013-03-12 2014-09-23 Globalfoundries Inc. Methods of increasing space for contact elements by using a sacrificial liner and the resulting device
US9153498B2 (en) * 2013-07-22 2015-10-06 Globalfoundries Inc. Methods of forming semiconductor device with self-aligned contact elements and the resulting devices
US9257348B2 (en) 2013-08-06 2016-02-09 Globalfoundries Inc. Methods of forming replacement gate structures for transistors and the resulting devices
US9136131B2 (en) * 2013-11-04 2015-09-15 Globalfoundries Inc. Common fill of gate and source and drain contacts
KR102131325B1 (ko) * 2014-01-06 2020-07-07 삼성전자 주식회사 에어 스페이서를 구비한 반도체 소자
KR102190370B1 (ko) * 2014-01-10 2020-12-11 삼성전자주식회사 도전 패턴의 형성 방법 및 이를 이용한 반도체 장치의 제조 방법
US9331072B2 (en) 2014-01-28 2016-05-03 Samsung Electronics Co., Ltd. Integrated circuit devices having air-gap spacers defined by conductive patterns and methods of manufacturing the same
US9093467B1 (en) 2014-02-04 2015-07-28 Globalfoundries Inc. Methods of forming gate structures for semiconductor devices using a replacement gate technique and the resulting devices
KR102154085B1 (ko) 2014-02-12 2020-09-09 에스케이하이닉스 주식회사 에어갭을 구비한 반도체장치 및 그 제조 방법
US9941388B2 (en) * 2014-06-19 2018-04-10 Globalfoundries Inc. Method and structure for protecting gates during epitaxial growth
JP6249888B2 (ja) * 2014-06-19 2017-12-20 ルネサスエレクトロニクス株式会社 半導体装置
TWI612563B (zh) * 2014-07-07 2018-01-21 聯華電子股份有限公司 金屬閘極結構與其製作方法
KR102197402B1 (ko) * 2014-10-14 2020-12-31 삼성전자주식회사 반도체 장치 제조 방법
KR102321390B1 (ko) 2014-12-18 2021-11-04 에스케이하이닉스 주식회사 에어갭을 구비한 반도체장치 및 그 제조 방법
US9484250B2 (en) * 2015-03-10 2016-11-01 International Business Machines Corporation Air gap contact formation for reducing parasitic capacitance
KR20160148795A (ko) * 2015-06-16 2016-12-27 삼성전자주식회사 반도체 소자 및 이의 제조 방법
KR102542847B1 (ko) * 2015-07-17 2023-06-14 인텔 코포레이션 에어갭 스페이서를 갖는 트랜지스터
CN106531776B (zh) * 2015-09-11 2021-06-29 联华电子股份有限公司 半导体结构
US9735242B2 (en) 2015-10-20 2017-08-15 Globalfoundries Inc. Semiconductor device with a gate contact positioned above the active region
US9583581B1 (en) * 2015-10-27 2017-02-28 Broadcom Corporation Discontinuities in a semiconductor device to accommodate for manufacturing variations and/or misalignment tolerances
US9853110B2 (en) * 2015-10-30 2017-12-26 Globalfoundries Inc. Method of forming a gate contact structure for a semiconductor device
US10163719B2 (en) * 2015-12-15 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming self-alignment contact
US10164029B2 (en) * 2015-12-18 2018-12-25 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor structure and manufacturing method thereof
CN106920771B (zh) * 2015-12-28 2020-03-10 中芯国际集成电路制造(北京)有限公司 金属栅晶体管源漏区接触塞的制作方法
US9831119B2 (en) * 2015-12-28 2017-11-28 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
US9627514B1 (en) 2015-12-28 2017-04-18 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
DE102016116026B4 (de) 2015-12-29 2024-02-01 Taiwan Semiconductor Manufacturing Co., Ltd. Halbleitervorrichtung und Herstellungsverfahren
US10163704B2 (en) 2015-12-29 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and a method for fabricating the same
US9947657B2 (en) 2016-01-29 2018-04-17 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and a method for fabricating the same
US9716158B1 (en) * 2016-03-21 2017-07-25 International Business Machines Corporation Air gap spacer between contact and gate region
KR102272315B1 (ko) 2016-04-25 2021-07-01 어플라이드 머티어리얼스, 인코포레이티드 수평 게이트 올어라운드 디바이스 나노와이어 에어 갭 스페이서 형성
US9865738B2 (en) 2016-04-29 2018-01-09 Samsung Electronics Co., Ltd. Fin field effect transistor (FinFET) having air gap and method of fabricating the same
US10276674B2 (en) 2016-06-28 2019-04-30 Globalfoundries Inc. Method of forming a gate contact structure and source/drain contact structure for a semiconductor device
US9754946B1 (en) * 2016-07-14 2017-09-05 Micron Technology, Inc. Methods of forming an elevationally extending conductor laterally between a pair of conductive lines
US9892961B1 (en) * 2016-08-09 2018-02-13 International Business Machines Corporation Air gap spacer formation for nano-scale semiconductor devices
US10256321B2 (en) 2016-08-19 2019-04-09 International Business Machines Corporation Semiconductor device including enhanced low-k spacer
US10741654B2 (en) * 2016-11-17 2020-08-11 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and forming method thereof
CN108122761B (zh) * 2016-11-30 2020-06-09 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
DE102017113681A1 (de) 2016-12-14 2018-06-14 Taiwan Semiconductor Manufacturing Co. Ltd. Halbleiter-bauelement mit luft-abstandshalter
US10522642B2 (en) 2016-12-14 2019-12-31 Taiwan Semiconductor Manufacturing Co. Ltd. Semiconductor device with air-spacer
CN108573926B (zh) 2017-03-09 2020-01-21 联华电子股份有限公司 半导体存储装置以及其制作方法
US9947589B1 (en) * 2017-05-22 2018-04-17 Globalfoundries Inc. Methods of forming a gate contact for a transistor above an active region and the resulting device
TWI716601B (zh) * 2017-06-06 2021-01-21 聯華電子股份有限公司 半導體元件及其製作方法
CN109216192B (zh) * 2017-07-03 2021-10-15 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
US10128334B1 (en) * 2017-08-09 2018-11-13 Globalfoundries Inc. Field effect transistor having an air-gap gate sidewall spacer and method
US10411114B2 (en) 2017-12-21 2019-09-10 International Business Machines Corporation Air gap spacer with wrap-around etch stop layer under gate spacer
CN109962014B (zh) * 2017-12-26 2022-10-04 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN109994429B (zh) * 2017-12-29 2021-02-02 中芯国际集成电路制造(上海)有限公司 半导体器件及其形成方法
CN110098175B (zh) * 2018-01-31 2021-08-20 中芯国际集成电路制造(上海)有限公司 半导体器件及其制造方法
TWI705529B (zh) * 2018-02-15 2020-09-21 美商應用材料股份有限公司 空氣間隙形成處理
US10573552B2 (en) * 2018-03-15 2020-02-25 Samsung Electronics Co., Ltd. Semiconductor device and method of fabricating the same
US11404536B2 (en) * 2018-03-30 2022-08-02 Intel Corporation Thin-film transistor structures with gas spacer
US10861953B2 (en) 2018-04-30 2020-12-08 Taiwan Semiconductor Manufacturing Company, Ltd. Air spacers in transistors and methods forming same
US10553486B1 (en) * 2018-07-27 2020-02-04 Globalfoundries Inc. Field effect transistors with self-aligned metal plugs and methods
US11101385B2 (en) * 2018-09-19 2021-08-24 Taiwan Semiconductor Manufacturing Co., Ltd. Fin field effect transistor (FinFET) device structure with air gap and method for forming the same
US10923565B2 (en) * 2018-09-27 2021-02-16 Taiwan Semiconductor Manufacturing Co., Ltd. Self-aligned contact air gap formation
US11069579B2 (en) 2018-10-19 2021-07-20 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method
US10840351B2 (en) * 2019-01-03 2020-11-17 International Business Machines Corporation Transistor with airgap spacer and tight gate pitch
US11482456B2 (en) * 2019-03-21 2022-10-25 Globalfoundries U.S. Inc. Forming two portion spacer after metal gate and contact formation, and related IC structure
US11328982B2 (en) * 2019-06-28 2022-05-10 Taiwan Semiconductor Manufacturing Co., Ltd. Air gap seal for interconnect air gap and method of fabricating thereof
US11145540B2 (en) 2019-08-08 2021-10-12 Nanya Technology Corporation Semiconductor structure having air gap dielectric and the method of preparing the same
US11018221B2 (en) * 2019-08-12 2021-05-25 Globalfoundries U.S. Inc. Air gap regions of a semiconductor device
US11456383B2 (en) * 2019-08-30 2022-09-27 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device having a contact plug with an air gap spacer
DE102020114875B4 (de) 2019-08-30 2024-02-22 Taiwan Semiconductor Manufacturing Co., Ltd. Finfet-vorrichtung und verfahren
US11527444B2 (en) * 2019-09-25 2022-12-13 Taiwan Semiconductor Manufacturing Co., Ltd. Air spacer formation for semiconductor devices
US11145727B2 (en) * 2019-10-29 2021-10-12 Nanya Technology Corporation Semiconductor structure and method of forming the same
US11563001B2 (en) * 2020-03-30 2023-01-24 Taiwan Semiconductor Manufacturing Co., Ltd. Air spacer and capping structures in semiconductor devices
DE102020123264B4 (de) * 2020-03-30 2022-11-10 Taiwan Semiconductor Manufacturing Co. Ltd. Halbleitervorrichtung und Verfahren zu dessen Herstellung
US11502182B2 (en) * 2020-05-11 2022-11-15 Taiwan Semiconductor Manufacturing Co., Ltd. Selective gate air spacer formation
US11817491B2 (en) * 2020-07-21 2023-11-14 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device having an air gap along a gate spacer
KR20220129150A (ko) 2021-03-15 2022-09-23 삼성전자주식회사 반도체 소자
CN112951769B (zh) * 2021-03-19 2023-04-07 长鑫存储技术有限公司 半导体存储器及其形成方法
US12068390B2 (en) 2021-07-28 2024-08-20 Infineon Technologies Ag Power semiconductor device having a gate dielectric stack that includes a ferroelectric insulator
US11791383B2 (en) * 2021-07-28 2023-10-17 Infineon Technologies Ag Semiconductor device having a ferroelectric gate stack

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW273043B (en) * 1994-04-15 1996-03-21 United Microelectronics Corp Device isolation structure with void for IC and fabricating method thereof
US6180988B1 (en) * 1997-12-04 2001-01-30 Texas Instruments-Acer Incorporated Self-aligned silicided MOSFETS with a graded S/D junction and gate-side air-gap structure
US6306701B1 (en) * 1999-04-20 2001-10-23 United Microelectronics Corp. Self-aligned contact process
US6445050B1 (en) * 2000-02-08 2002-09-03 International Business Machines Corporation Symmetric device with contacts self aligned to gate
US6468877B1 (en) * 2001-07-19 2002-10-22 Chartered Semiconductor Manufacturing Ltd. Method to form an air-gap under the edges of a gate electrode by using disposable spacer/liner
TW200601463A (en) * 2004-06-23 2006-01-01 Taiwan Semiconductor Mfg Co Ltd Method and apparatus for a semiconductor device with a high-k gate dielectric
TW201135927A (en) * 2010-04-13 2011-10-16 United Microelectronics Corp Semiconductor device having metal gate and manufacturing methd thereof
TW201201360A (en) * 2010-06-18 2012-01-01 United Microelectronics Corp Nonvolatile memory device and manufacturing method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW393693B (en) 1997-07-26 2000-06-11 United Microelectronics Corp MOS device with air-gap spacers and its manufacturing method
KR100239422B1 (ko) * 1997-10-28 2000-01-15 김영환 반도체 소자 및 제조 방법
US6001695A (en) * 1998-03-02 1999-12-14 Texas Instruments - Acer Incorporated Method to form ultra-short channel MOSFET with a gate-side airgap structure
US6127712A (en) * 1998-05-22 2000-10-03 Texas Instruments--Acer Incorporated Mosfet with buried contact and air-gap gate structure
US6596599B1 (en) 2001-07-16 2003-07-22 Taiwan Semiconductor Manufacturing Company Gate stack for high performance sub-micron CMOS devices
US7381608B2 (en) * 2004-12-07 2008-06-03 Intel Corporation Method for making a semiconductor device with a high-k gate dielectric and a metal gate electrode
US20090075470A1 (en) 2007-09-14 2009-03-19 International Business Machines Corporation Method for Manufacturing Interconnect Structures Incorporating Air-Gap Spacers
KR101564052B1 (ko) 2009-05-11 2015-10-28 삼성전자주식회사 반도체 소자 및 그 제조 방법.
KR20110033654A (ko) 2009-09-25 2011-03-31 삼성전자주식회사 비휘발성 기억 소자 및 그 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW273043B (en) * 1994-04-15 1996-03-21 United Microelectronics Corp Device isolation structure with void for IC and fabricating method thereof
US6180988B1 (en) * 1997-12-04 2001-01-30 Texas Instruments-Acer Incorporated Self-aligned silicided MOSFETS with a graded S/D junction and gate-side air-gap structure
US6306701B1 (en) * 1999-04-20 2001-10-23 United Microelectronics Corp. Self-aligned contact process
US6445050B1 (en) * 2000-02-08 2002-09-03 International Business Machines Corporation Symmetric device with contacts self aligned to gate
US6468877B1 (en) * 2001-07-19 2002-10-22 Chartered Semiconductor Manufacturing Ltd. Method to form an air-gap under the edges of a gate electrode by using disposable spacer/liner
TW200601463A (en) * 2004-06-23 2006-01-01 Taiwan Semiconductor Mfg Co Ltd Method and apparatus for a semiconductor device with a high-k gate dielectric
TW201135927A (en) * 2010-04-13 2011-10-16 United Microelectronics Corp Semiconductor device having metal gate and manufacturing methd thereof
TW201201360A (en) * 2010-06-18 2012-01-01 United Microelectronics Corp Nonvolatile memory device and manufacturing method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI708330B (zh) * 2018-12-27 2020-10-21 南亞科技股份有限公司 半導體結構及其製備方法
US10818541B2 (en) 2018-12-27 2020-10-27 Nanya Technology Corporation Semiconductor structure
US11094796B2 (en) 2019-09-30 2021-08-17 Taiwan Semiconductor Manufacturing Co., Ltd. Transistor spacer structures
TWI756853B (zh) * 2019-09-30 2022-03-01 台灣積體電路製造股份有限公司 半導體結構及其形成方法
US11830931B2 (en) 2019-09-30 2023-11-28 Taiwan Semiconductor Manufacturing Co., Ltd. Transistor spacer structures

Also Published As

Publication number Publication date
US8952452B2 (en) 2015-02-10
US20130248950A1 (en) 2013-09-26
TW201340295A (zh) 2013-10-01
KR101887414B1 (ko) 2018-08-10
KR20130106622A (ko) 2013-09-30

Similar Documents

Publication Publication Date Title
TWI636551B (zh) 半導體元件及其製造方法
US11942515B2 (en) Semiconductor device having asymmetrical source/drain
US9673300B2 (en) Semiconductor devices including a gate core and a fin active core and methods of fabricating the same
TWI548096B (zh) 於鰭式場效電晶體半導體裝置上形成接觸結構的方法及其所產生的裝置
CN111180449B (zh) 形成三维存储设备的栅极结构的方法
US9349633B2 (en) Semiconductor devices and methods of manufacturing the same
US8609492B2 (en) Vertical memory cell
CN106057803B (zh) 具有在隔离区上的间隔件的半导体器件
CN110088906B (zh) 三维存储器件中的高k电介质层及其形成方法
CN102237364B (zh) 存储器件的制造方法
US11037989B2 (en) Method to form memory cells separated by a void-free dielectric structure
US20150111360A1 (en) Method of manufacturing a semiconductor device
US9082647B2 (en) Semiconductor devices
US9343355B2 (en) Wiring structures including spacers and an airgap defined thereby, and methods of manufacturing the same
TWI475668B (zh) 包含具有位元線凸肩攻擊保護之埋入式閘極電極之半導體裝置及其形成方法
KR102070094B1 (ko) 저항 전극을 갖는 반도체 소자
KR102611247B1 (ko) 패턴 게이트를 갖는 반도체 금속 산화물 트랜지스터 및 이를 형성하는 방법
TW201903892A (zh) 用於形成自對準接觸物的擴大犧牲閘極覆蓋物
TWI636491B (zh) 記憶元件及其製造方法
US20240147707A1 (en) Semiconductor memory device
US20200152871A1 (en) Multi function single via patterning
KR20140030501A (ko) 에어 갭을 갖는 반도체 소자의 제조 방법
TW202407883A (zh) 半導體結構製備方法及半導體結構
KR102045864B1 (ko) 반도체 장치 및 이의 제조 방법
JP2013219097A (ja) 半導体装置の製造方法