TWI485921B - A binder for lithium ion rechargeable battery cells - Google Patents

A binder for lithium ion rechargeable battery cells Download PDF

Info

Publication number
TWI485921B
TWI485921B TW099114616A TW99114616A TWI485921B TW I485921 B TWI485921 B TW I485921B TW 099114616 A TW099114616 A TW 099114616A TW 99114616 A TW99114616 A TW 99114616A TW I485921 B TWI485921 B TW I485921B
Authority
TW
Taiwan
Prior art keywords
binder
electrode
weight
acid
electrode according
Prior art date
Application number
TW099114616A
Other languages
Chinese (zh)
Other versions
TW201101564A (en
Inventor
Melanie J Loveridge
Michael Jonathan Lain
Esam Kronfli
Original Assignee
Nexeon Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nexeon Ltd filed Critical Nexeon Ltd
Publication of TW201101564A publication Critical patent/TW201101564A/en
Application granted granted Critical
Publication of TWI485921B publication Critical patent/TWI485921B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/49115Electric battery cell making including coating or impregnating

Description

用於鋰離子可充電電池組電池的黏結劑Adhesive for lithium ion rechargeable battery cells

本發明關於鋰離子可充電電池組電池,且尤其關於用於此等電池中的黏結劑。This invention relates to lithium ion rechargeable battery cells, and more particularly to bonding agents for use in such batteries.

鋰離子可充電電池組電池目前使用以碳/石墨為基之陽極。包括以石墨為基之陽極電極的習知之鋰離子可充電電池組電池的基本組成顯示於圖1中。電池組可包括單一電池,但亦可包括一個以上的電池。Lithium-ion rechargeable battery cells currently use carbon/graphite based anodes. A basic composition of a conventional lithium ion rechargeable battery cell including a graphite-based anode electrode is shown in FIG. The battery pack can include a single battery, but can also include more than one battery.

電池組電池通常包含用於陽極之銅電流收集器10及用於陰極之鋁電流收集器12,彼等在適當時可對外連接至負載或充電源。應注意以術語〝陽極〞及〝陰極〞用於本發明說明書中,因為那些術語係在跨接於負載而配置之電池組的上下文中獲悉,亦即術語〝陽極〞代表電池組的負極及術語〝陰極〞代表電池組的正極。以石墨為基之複合陽極層14覆蓋電流收集器10及以含鋰之金屬氧化物為基之複合陰極層16覆蓋電流收集器12。多孔塑膠間隔板或分隔板20係提供在以石墨為基之複合陽極層14與以含鋰之金屬氧化物為基之複合陰極層16之間:液體電解質材料分散在多孔塑膠間隔板或分隔板20、複合陽極層14及複合陰極層16之內。在一些例子中,多孔塑膠間隔板或分隔板20可以聚合物電解質材料取代,且在此等例子中,聚合物電解質材料係存在於複合陽極層14及複合陰極層16二者之內。The battery cells typically include a copper current collector 10 for the anode and an aluminum current collector 12 for the cathode, which may be externally connected to a load or source of charge when appropriate. It should be noted that the terms 〝 anode 〝 and 〝 cathode 〞 are used in the description of the present invention because those terms are known in the context of a battery pack configured across a load, that is, the term 〝 anode 〞 represents the negative electrode of the battery pack and the term The cathode 〞 represents the anode of the battery pack. A graphite-based composite anode layer 14 covers the current collector 10 and a composite cathode layer 16 based on a lithium-containing metal oxide covers the current collector 12. The porous plastic spacer or separator 20 is provided between the graphite-based composite anode layer 14 and the lithium-containing metal oxide-based composite cathode layer 16: the liquid electrolyte material is dispersed in the porous plastic spacer or Within the separator 20, the composite anode layer 14, and the composite cathode layer 16. In some examples, the porous plastic spacer or separator 20 can be replaced with a polymer electrolyte material, and in such examples, the polymer electrolyte material is present within both the composite anode layer 14 and the composite cathode layer 16.

當電池組電池完全充電時,鋰已經由電解質從陰極中的含鋰之金屬氧化物被運送至以石墨為基之陽極中,鋰在此藉由與石墨反應而插入,以產生鋰碳化合物,典型為LiC6 。石墨為複合陽極層中的電化學活性材料,其具有372毫安培小時/公克之最大容量。When the battery cell is fully charged, lithium has been transported from the lithium-containing metal oxide in the cathode to the graphite-based anode, where lithium is inserted by reaction with graphite to produce lithium carbon compounds. Typically LiC 6 . Graphite is an electrochemically active material in a composite anode layer having a maximum capacity of 372 milliampere hours per gram.

已熟知可使用矽代替石墨作為活性陽極材料(參見例如Insertion Electrode Materials for Rechargeable Lithium Batteries,M. Winter,J. O. Besenhard,M. E. Spahr,and P. Novak in Adv. Mater. 1998,10,No. 10)。通常相信當使用矽作為鋰離子可充電電池中的活性陽極材料時,矽可提供比目前所使用的石墨更顯著高的容量。當矽藉由與電化學電池中的鋰反應而轉化成化合物Li21 Si5 時,矽具有4,200毫安培小時/公克之理論最大容量,其比石墨的最大容量還更高。因此,若在鋰可充電電池組中以矽代替石墨,則可達成以每單位質量及每單位體積計實質增加的儲存能量。It is well known that rhodium can be used in place of graphite as the active anode material (see, for example, Insertion Electrode Materials for Rechargeable Lithium Batteries, M. Winter, JO Besenhard, ME Spahr, and P. Novak in Adv. Mater. 1998, 10, No. 10). It is generally believed that when ruthenium is used as the active anode material in a lithium ion rechargeable battery, ruthenium can provide a significantly higher capacity than the graphite currently used. When ruthenium is converted to the compound Li 21 Si 5 by reaction with lithium in an electrochemical cell, ruthenium has a theoretical maximum capacity of 4,200 mAh/g, which is higher than the maximum capacity of graphite. Therefore, if graphite is replaced by ruthenium in a lithium rechargeable battery pack, a substantially increased storage energy per unit mass and per unit volume can be achieved.

在使用以石墨為基之陽極的鋰離子可充電電池組電池中,石墨具有細粉末形式,其粒子係藉由黏結劑固定在一起。聚偏二氟乙烯(PVDF)及苯乙烯丁二烯橡膠(SBR)為石墨陽極中最常使用的黏結劑,但是曾建議其他的黏結劑,例如US-5660948揭示下列的黏結劑於鋰離子電池的碳陽極中:乙烯-丙烯二烯第三單體(termonomer)、PVDF、乙烯-丙烯酸共聚物及乙烯乙酸乙烯酯共聚物。In a lithium ion rechargeable battery cell using a graphite-based anode, graphite has a fine powder form, and the particles are fixed together by a binder. Polyvinylidene fluoride (PVDF) and styrene butadiene rubber (SBR) are the most commonly used binders in graphite anodes, but other binders have been suggested. For example, US-5660948 discloses the following binders for lithium ion batteries. Among the carbon anodes: ethylene-propylene diene third monomer (termonomer), PVDF, ethylene-acrylic acid copolymer and ethylene vinyl acetate copolymer.

US-6399246教示聚(丙烯酸)不在鋰離子電池組電池的石墨陽極中提供好的黏著劑性質且請求聚丙烯醯胺黏結劑的用途。US-6,399,246 teaches that poly(acrylic acid) does not provide good adhesive properties in the graphite anode of a lithium ion battery cell and requires the use of a polypropylene guanamine binder.

US-6620547揭示一種具有碳陽極之鋰二次電池,可將鋰插入其中且陰極係從以基質聚合物固定的過渡金屬形成。所使用的聚合物對過渡金屬離子具有親和性,所以該等離子固定在聚合物鏈上。聚合物可選自許多種材料,諸如聚丙烯酸酯、聚(丙烯酸)、聚甲基丙烯酸甲酯、聚(乙烯基吡咯啶酮)、聚丙烯腈、聚(偏二氟乙烯)及聚(氯乙烯)。US-6620547 discloses a lithium secondary battery having a carbon anode into which lithium can be inserted and a cathode system formed from a transition metal fixed with a matrix polymer. The polymer used has an affinity for the transition metal ion so the plasma is immobilized on the polymer chain. The polymer may be selected from a wide variety of materials such as polyacrylates, poly(acrylic acid), polymethyl methacrylate, poly(vinylpyrrolidone), polyacrylonitrile, poly(vinylidene fluoride), and poly(chlorine). Ethylene).

US5260148揭示一種鋰二次電極,其具有從藉由黏結劑固定在一起的鋰化合物所形成的陽極,該黏結劑可為澱粉、羧甲基纖維素(CMC)、二乙醯基纖維素、羥丙基纖維素、乙二醇、聚(丙烯酸)、聚四氟乙烯及聚(偏二氟乙烯)。No. 5,260,148 discloses a lithium secondary electrode having an anode formed from a lithium compound held together by a binder, which may be starch, carboxymethyl cellulose (CMC), diethyl cellulose, hydroxy Propyl cellulose, ethylene glycol, poly(acrylic acid), polytetrafluoroethylene, and poly(vinylidene fluoride).

最常被用於鋰離子電池的石墨陽極中的黏結劑(PVDF及SBR)不使經過連續的充電循環的以矽為基之陽極中的矽電極材料以黏聚方式黏結在一起,且相信這是由於在電池的充電及放電階段與鋰離子嵌入矽材料中及移出矽材料有關聯的相對大體積變化。體積變化遠大於在對應之石墨陽極中的體積變化,且可在矽陽極由於放電期間的鋰離子移出而縮小時引起個別的矽粒子彼此及與電流收集器總是不再建立電接觸。The binders (PVDF and SBR) most commonly used in graphite anodes for lithium-ion batteries do not cohesively bond the ruthenium electrode materials in the ruthenium-based anodes through a continuous charge cycle, and believe this This is due to the relatively large volume change associated with the removal and removal of lithium ions from the germanium material during the charging and discharging phases of the battery. The volume change is much larger than the volume change in the corresponding graphite anode and can cause the individual tantalum particles to never again establish electrical contact with each other and with the current collector as the tantalum anode shrinks due to lithium ion removal during discharge.

曾就矽系統提出的替代黏結劑為羧甲基纖維素鈉(NaCMC)。在與高純度矽(製造積體電路(IC)Si-晶圓所使用的類型)結合使用時,Na-CMC具有作為黏結劑的適當功能。然而,此等矽非常昂貴。當使用相對便宜的較低等級之矽時,有不與黏結劑溶液以化學相容且造成矽/黏結劑混合物的黏度降低的微量雜質存在。因此,所得塗層不保留與電流收集器足夠的接觸,以便在損失電池容量來保持充電之前進行任何超過有限次數的放電/充電循環。An alternative binder that has been proposed for the system is sodium carboxymethyl cellulose (NaCMC). Na-CMC has a suitable function as a binder when used in combination with high purity bismuth (the type used to fabricate integrated circuit (IC) Si-wafers). However, this is very expensive. When a relatively inexpensive lower grade crucible is used, there are trace impurities that are not chemically compatible with the binder solution and which cause a decrease in the viscosity of the crucible/binder mixture. Thus, the resulting coating does not retain sufficient contact with the current collector to perform any more than a limited number of discharge/charge cycles before losing battery capacity to maintain charging.

Journal of Applied Electrochemistry(2006) 36: 1099-1104揭示丙烯酸黏著劑作為Li-離子電池組陽極之黏結劑的用途。陽極材料為Si/C複合物,所以具有比其中陽極為單獨的Si之電極更低的體積變化。除了稱為產物LA132的黏著劑以外,相信其組成物為丙烯腈與丁二烯在甲基乙酮、乙酸乙酯及甲苯中的混合物,未揭示丙烯酸黏著劑的本性。Journal of Applied Electrochemistry (2006) 36: 1099-1104 discloses the use of an acrylic adhesive as a binder for the anode of a Li-ion battery. The anode material is a Si/C composite, so it has a lower volume change than an electrode in which the anode is a separate Si. In addition to the adhesive referred to as product LA132, it is believed that the composition is a mixture of acrylonitrile and butadiene in methyl ethyl ketone, ethyl acetate and toluene, and the nature of the acrylic adhesive is not disclosed.

J Power Sources,161(2006),612-616揭示鋰離子電池組的碳陽極,其亦含有NaCMC作為增稠劑及SBR作為黏結劑。添加PAA(聚(丙烯酸))作為表面活性分散劑。J Power Sources, 161 (2006), 612-616 discloses a carbon anode for a lithium ion battery, which also contains NaCMC as a thickener and SBR as a binder. PAA (poly(acrylic acid)) was added as a surface active dispersant.

J Power Sources,173(2007),518-521提出用於Li-離子電池之石墨電極在使用碳酸丙烯酯溶劑/電解質時的問題,因為碳酸丙烯酯在充電/放電期間插入石墨電極中,造成溶劑分解及石墨剝離。以添加PAA解決此問題。J Power Sources, 173 (2007), 518-521 proposes a problem in the use of a propylene carbonate solvent/electrolyte for a graphite electrode for a Li-ion battery because propylene carbonate is inserted into the graphite electrode during charging/discharging, causing a solvent Decomposition and graphite stripping. Solve this problem by adding a PAA.

本發明的目的係發現一種黏結劑,在損失電池容量來保持充電之前,其可滿意地使經過很多次放電/充電循環的可充電鋰離子電池的電極中之各種微粒矽材料黏結在一起,且尤其是由相對便宜的〝較低等級〞之矽所製成的粒子,任憑在此等循環期間與鋰離子嵌入矽材料中及除出矽材料有關聯的大體積變化。It is an object of the present invention to find a binder which satisfactorily bonds together various particulate germanium materials in the electrodes of a rechargeable lithium ion battery that has undergone many discharge/charge cycles before losing battery capacity to maintain charging, and In particular, particles made from relatively inexpensive crucibles of lower grades are subject to large volume changes associated with the incorporation of lithium ions into and/or out of the crucible material during such cycles.

驚訝地發現聚(丙烯酸)(PAA)對可充電鋰離子電池的電極中之微粒矽材料而言為好的黏結劑,任憑與放電/充電循環有關聯的大體積變化,且其可與高純度矽(99.90%純度或以上)及較低純度矽(低於99.90%純度或以下)二者使用。Surprisingly, it was found that poly(acrylic acid) (PAA) is a good binder for the particulate ruthenium material in the electrode of a rechargeable lithium ion battery, regardless of the large volume change associated with the discharge/charge cycle, and it can be combined with high purity. Both hydrazine (99.90% purity or above) and lower purity hydrazine (less than 99.90% purity or less) are used.

本發明的第一個觀點係提供一種用於鋰離子可充電電池組電池的電極,其包含:A first aspect of the present invention provides an electrode for a lithium ion rechargeable battery cell comprising:

-電流收集器,及- current collector, and

-黏聚性物料,其包含矽作為活性材料及聚合性黏結劑,其特徵在於聚合性黏結劑為一或多種單體之均聚物或共聚物,該單體係選自由以下各物所組之群組:丙烯酸、3-丁烯酸、2-甲基丙烯酸、2-戊烯酸、2,3-二甲基丙烯酸、3,3-二甲基丙烯酸、反式-丁烯二酸、順式-丁烯二酸及伊康酸和視需要其鹼金屬鹽,其中矽包含20至100%之活性材料,且其中將黏結劑與矽混合,以形成黏聚性物料,其附著於電流收集器且維持該黏聚性物料與電流收集器以電接觸。a cohesive material comprising ruthenium as an active material and a polymeric binder, characterized in that the polymerizable binder is a homopolymer or a copolymer of one or more monomers selected from the group consisting of the following Groups: acrylic acid, 3-butenoic acid, 2-methacrylic acid, 2-pentenoic acid, 2,3-dimethacrylic acid, 3,3-dimethacrylic acid, trans-butenedioic acid, Cis-butenedioic acid and itaconic acid and, if desired, an alkali metal salt thereof, wherein cerium comprises from 20 to 100% of active material, and wherein the binder is mixed with cerium to form a cohesive material which is attached to the current The collector maintains the cohesive material in electrical contact with the current collector.

黏結劑適合為均聚物或共聚物形式。典型的共聚物包括交替共聚物、嵌段共聚物、週期共聚物(periodic copolymers)及統計共聚物。此等聚合物可從以上述及之單體單位的不同組合形成且亦從此等單體單元所形成的聚合物嵌段之反應形成。The binder is suitably in the form of a homopolymer or a copolymer. Typical copolymers include alternating copolymers, block copolymers, periodic copolymers, and statistical copolymers. These polymers can be formed from the reaction of polymer blocks formed from different combinations of the above-described monomer units and also formed from such monomer units.

此等聚合物之適合的鹼金屬鹽類包括鋰、鈉及鉀之鹽類。以聚丙烯酸之鹼金屬鹽類較佳,尤其為其鈉及鋰鹽類。Suitable alkali metal salts of such polymers include the salts of lithium, sodium and potassium. The poly(acrylic acid) alkali metal salts are preferred, especially for their sodium and lithium salts.

如上所述,雖然已知使用聚(丙烯酸)作為用於鋰離子電池的石墨電極中更常使用的PVDF及SBR黏結劑的替代黏結劑,但是在使用矽作為電極中的活性材料的充電/放電循環期間發生的體積變化比使用石墨作為活性材料時還更大。另外,US-6399246指導聚(丙烯酸)不對在鋰離子電池中的石墨陽極材料提供好的黏著劑(黏結劑)性質。As described above, although poly(acrylic acid) is known as an alternative binder for PVDF and SBR binders which are more commonly used in graphite electrodes for lithium ion batteries, charging/discharging using ruthenium as an active material in an electrode is known. The volume change that occurs during the cycle is greater than when graphite is used as the active material. In addition, US-6,399,246 teaches that poly(acrylic acid) does not provide good adhesive (bonding) properties to graphite anode materials in lithium ion batteries.

本發明者發現聚(丙烯酸)能夠有效地黏結作為鋰離子電池組的電極中之活性材料的矽因此同時令人驚訝且意外。The inventors have found that poly(acrylic acid) can effectively bond ruthenium as an active material in an electrode of a lithium ion battery, and thus is surprisingly and unexpectedly at the same time.

與NaCMC對照,本發明的丙烯酸黏結劑可與在Li-離子電極中之所有等級的矽使用且能有穩定的循環壽命性能,同時亦克服NaCMC黏結劑對可存在於較低成本等級的矽中之雜質元素的潛在不穩定性。Compared with NaCMC, the acrylic adhesive of the present invention can be used with all grades of ruthenium in Li-ion electrodes and can have stable cycle life performance, while also overcoming the need for NaCMC binders to be present in lower cost grades. The potential instability of the impurity element.

除了PAA以外,其他的聚合性丙烯酸衍生物可用作為黏結劑,如在表1中所陳述,且亦可使用此等黏結劑的混合物。In addition to PAA, other polymeric acrylic acid derivatives can be used as the binder, as set forth in Table 1, and mixtures of such binders can also be used.

亦可使用上述聚合物中之一或多者彼此或與其他含有乙烯基的單體(例如,乙酸乙烯酯)之共聚物,例如聚(丙烯醯胺-共-丙烯酸)。Copolymers of one or more of the above polymers with each other or with other vinyl-containing monomers (for example, vinyl acetate) such as poly(acrylamide-co-acrylic acid) may also be used.

可使用各種廣泛的分子量之聚(丙烯酸)或聚(甲基丙烯酸)或彼之衍生物,例如較佳的PAA分子量係大於50,000(例如,450,000之分子量)且亦大於1,000,000(例如,1,250,000)。A wide variety of molecular weight poly(acrylic acid) or poly(methacrylic acid) or derivatives thereof can be used, for example, preferred PAA molecular weight systems are greater than 50,000 (e.g., 450,000 molecular weight) and also greater than 1,000,000 (e.g., 1, 250,000).

在電極中的矽可為任何適合的形式。矽適合以粒子、纖維、似薄片、似柱狀或似帶狀粒子(如在WO 2008/139157中所述)或成柱狀粒子形式提供。纖維可使用WO 2007/083152、WO 2007/083155及WO 2009/010758中所揭示之技術製得。成柱狀粒子為矽粒子,其上的柱已使用上述技術蝕刻,如在WO 2009/010758中所揭示。The crucible in the electrode can be in any suitable form. Niobium is suitably provided in the form of particles, fibers, flakes, columnar or ribbon-like particles (as described in WO 2008/139157) or in the form of columnar particles. Fibers can be made using the techniques disclosed in WO 2007/083152, WO 2007/083155, and WO 2009/010758. The columnar particles are ruthenium particles, and the columns thereon have been etched using the techniques described above, as disclosed in WO 2009/010758.

矽較佳地為粒子、纖維或成柱狀粒子或其混合形式。矽粒子典型地具有3至15微米範圍之直徑,較佳為4.5微米。矽纖維典型地具有80至500奈米範圍之直徑及20至300微米範圍之長度。成柱狀粒子典型地具有15至25微米範圍之直徑及1至4微米範圍之柱高度。除了以矽作為活性材料以外,黏聚性物料亦可包括在其他活性材料的混合物內,諸如石墨或硬碳及/或導電性材料,諸如碳黑、乙炔黑或克特仁(ketjen)黑。The ruthenium is preferably a particle, a fiber or a columnar particle or a mixture thereof. The ruthenium particles typically have a diameter in the range of 3 to 15 microns, preferably 4.5 microns. Tantalum fibers typically have a diameter in the range of 80 to 500 nanometers and a length in the range of 20 to 300 micrometers. The columnar particles typically have a diameter in the range of 15 to 25 microns and a column height in the range of 1 to 4 microns. In addition to using ruthenium as the active material, the cohesive material may also be included in a mixture of other active materials, such as graphite or hard carbon and/or conductive materials such as carbon black, acetylene black or ketjen black.

矽較佳為較便宜的矽,其與上述討論的NaCMC產生問題;此等矽通常具有少於99.800%之純度,雖然矽的表面積對引起電極變質的雜質水平似乎亦具有影響。然而,純度通常應大於95.00質量%,以確保有足夠的矽插入鋰中,且純度較佳地大於98%。矽可包括各種廣泛的雜質,主要為鐵、鋁、鈣、鈦、磷、硼及/或碳,各以至多約0.2%之量存在。矽 is preferably a less expensive ruthenium which has problems with the NaCMC discussed above; such ruthenium typically has a purity of less than 99.800%, although the surface area of ruthenium also appears to have an effect on the level of impurities that cause electrode deterioration. However, the purity should generally be greater than 95.00% by mass to ensure that sufficient ruthenium is inserted into the lithium and the purity is preferably greater than 98%. The crucible can include a wide variety of impurities, primarily iron, aluminum, calcium, titanium, phosphorus, boron, and/or carbon, each present in an amount of up to about 0.2%.

用於製備在本發明的電極製造中所使用的矽纖維及成柱狀粒子之矽顆粒可為結晶形,例如單-或多-晶形。多晶形粒子可包含任何數量的晶體,例如二或多個。The ruthenium particles used to prepare the ruthenium fibers and the columnar particles used in the manufacture of the electrode of the present invention may be in the form of a crystal, such as a mono- or poly-crystal form. The polymorphic particles may comprise any number of crystals, such as two or more.

應理解本發明的第一個觀點之電極包含除了電流收集器以外的黏聚性物料,其包含活性材料、黏結劑及視需要之導電性材料。應瞭解以術語〝活性材料〞意謂(在鋰離子電池組的上下文中)能夠在電池組的充電及放電循環期間分別使鋰併入及使鋰從其結構釋出的材料。矽較佳地包含在黏聚性物料中的20至100%之活性材料。可添加其他的活性材料。適合的活性材料包括石墨及硬碳。在本發明的第一個觀點的電極之第一個具體實例中,活性材料包含20至100%之矽及從0至80%之選自石墨及/或硬碳的活性碳。It will be understood that the electrode of the first aspect of the invention comprises a cohesive material other than a current collector comprising an active material, a binder and, if desired, a conductive material. It should be understood that the term "active material" means (in the context of a lithium ion battery) a material that is capable of incorporation of lithium and release of lithium from its structure during the charge and discharge cycles of the battery. Preferably, the crucible comprises from 20 to 100% of the active material in the cohesive material. Other active materials can be added. Suitable active materials include graphite and hard carbon. In a first embodiment of the electrode of the first aspect of the invention, the active material comprises from 20 to 100% bismuth and from 0 to 80% of activated carbon selected from the group consisting of graphite and/or hard carbon.

黏聚性物料適合包含50至95%之活性材料,較佳為60至90%,且尤其為70至80%。The cohesive material suitably comprises from 50 to 95% active material, preferably from 60 to 90%, and especially from 70 to 80%.

表1的黏結劑可用在與其他的黏結劑之混合物中且應構成至少10重量%,較佳為至少25重量%,且表1的黏結劑可視需要包含在電極中的至少90重量%之總黏結劑含量。應特別提及聚(丙烯酸)(PAA)/羧甲基纖維素(CMC)之組合及PAA與聚二氟乙烯(PVDF)之組合。The binder of Table 1 can be used in a mixture with other binders and should constitute at least 10% by weight, preferably at least 25% by weight, and the binder of Table 1 can optionally comprise at least 90% by weight of the total of the electrodes. Adhesive content. Particular mention should be made of a combination of poly(acrylic acid) (PAA) / carboxymethyl cellulose (CMC) and a combination of PAA and polyvinylidene fluoride (PVDF).

黏聚性物料適合包含5至20重量%之黏結劑,較佳為8至15重量%,且尤其為8至12重量%之黏結劑。以12%之黏結劑含量最佳。The cohesive material suitably comprises from 5 to 20% by weight of binder, preferably from 8 to 15% by weight, and especially from 8 to 12% by weight of binder. The best content is 12% binder.

如以上所指示,黏聚性物料可視需要包括導電性材料。適合的導電性材料的實例包括碳黑、乙炔黑、克特仁黑、槽法碳黑;導電性纖維,諸如碳纖維(包括碳奈米管)。黏聚性物料適合包含10至30%之導電性碳,較佳為8至20%,且尤其為12至14%。As indicated above, the cohesive material may optionally comprise a conductive material. Examples of suitable electrically conductive materials include carbon black, acetylene black, kettering black, channel black, and conductive fibers such as carbon fibers (including carbon nanotubes). The cohesive material suitably comprises from 10 to 30% of electrically conductive carbon, preferably from 8 to 20%, and especially from 12 to 14%.

較佳的具體實例的特殊敘述Special description of preferred specific examples

實施例1-電極的製備及黏結劑的測試Example 1 - Preparation of Electrode and Testing of Adhesive

一系列的黏結劑係藉由使用作為活性材料的矽粉、表2中所陳述之黏結劑及導電性碳黑(從TIMCAL,Strada Industriale,CH-6743 Bodio,Switzerland所獲得的Super P碳黑,或從Denka(Denki Kagaku Kogyo Kabushiki Kaisha,Tokyo)所獲得的Denka Black,或其混合物)以80:8:12(重量%)或76:12:12(重量%)之矽活性材料:黏結劑:碳黑之比率所組裝之陽極進行測試。聚合物溶液係藉由將聚合物固體材料溶解在適當的溶劑中(水或有機溶劑,如表2中所陳述)而預製得。特殊的複合混合物係以相對的重量%之Si活性材料以剪力攪拌12小時分散至10-15重量%之珠磨的碳黑(Super P碳或Denka Black)溶液中而著手開始。接著將相對的重量%之聚合物溶液添加於其中且將所得複合物接受20分鐘的雙不對稱離心(Dual Asymmetric Centrifugation)分散。A range of binders are made by using tantalum powder as the active material, the binder as stated in Table 2, and conductive carbon black (Super P from TIMCAL, Strada Industriale, CH-6743 Bodio, Switzerland). Carbon black, or Denka Black obtained from Denka (Denki Kagaku Kogyo Kabushiki Kaisha, Tokyo), or a mixture thereof, is an active material of 80:8:12 (% by weight) or 76:12:12 (% by weight): Adhesive: The anode assembled by the ratio of carbon black was tested. The polymer solution is pre-formed by dissolving the polymeric solid material in a suitable solvent (water or organic solvent, as set forth in Table 2). The special composite mixture was started with a relative weight % of the Si active material dispersed by shearing for 12 hours to 10-15% by weight of bead milled carbon black (Super P carbon or Denka Black) solution. A relative weight percent polymer solution was then added thereto and the resulting composite was subjected to a Dual Asymmetric Centrifugation dispersion for 20 minutes.

另一選擇是,可將碳黑以剪力攪拌分散至聚合物溶液中。接著將矽材料以另一剪力攪拌步驟添加至聚合物/碳混合物中。Alternatively, the carbon black can be dispersed into the polymer solution by shear stirring. The tantalum material is then added to the polymer/carbon mixture in another shear agitation step.

將所得混合物使用下引刮刀(draw down blade)以薄的〝濕〞膜沉積在銅箔基板上。將沉積膜留置乾燥(較佳地在50至70℃之熱板上),使得所有的溶劑(水或有機溶劑)移除,留下附著於銅箔基板的乾燥之複合電極,其充當電池組電池中的電流收集器。The resulting mixture was deposited on a copper foil substrate with a thin wet down film using a draw down blade. The deposited film is left to dry (preferably on a hot plate of 50 to 70 ° C), so that all the solvent (water or organic solvent) is removed, leaving a dry composite electrode attached to the copper foil substrate, which serves as a battery pack Current collector in the battery.

用於測試黏結劑組成物的矽活性材料為下列者之一:(a)來自挪威Elkem的矽粉〝J230〞,其具有4.5微米之平均粒徑,或(b)成柱狀粒子(在表2中稱為〝PP〞),其係根據WO 2009/010758中所揭示之程序製得,或(c)纖維(在表2中稱為〝F+〞),其為一經從成柱狀粒子的核分離之成柱狀粒子之柱,如WO 2009/010758中所揭示。The bismuth active material used to test the composition of the binder is one of: (a) 矽 powder J230 from Elkem, Norway, having an average particle size of 4.5 microns, or (b) columnar particles (in the table) 2 is referred to as 〝PP〞), which is prepared according to the procedure disclosed in WO 2009/010758, or (c) fiber (referred to as 〝F+〞 in Table 2), which is formed from columnar particles. The column of nuclear separation into columnar particles is as disclosed in WO 2009/010758.

從分批分析的Jetmilled SilgrainHQ(用作為製備成柱狀粒子及纖維的起始材料,如WO 2009/010758中所述,且亦為J230材料所屬之品牌)之化學分析記錄如下:Jetmilled Silgrain from batch analysis The chemical analysis records of HQ (used as the starting material for the preparation of columnar particles and fibers, as described in WO 2009/010758 and also the brand of J230 material) are as follows:

將含有矽、聚合物黏結劑材料及碳的複合電極併入具有鋰金屬相對電極、微孔分離板及具有在碳酸乙烯酯/碳酸乙基甲酯混合物中的1.2莫耳/立方公寸之六氟磷酸鋰形式的電解質之電池中。將約15平方公分面積的乾燥之複合電極(含有矽、聚合物及碳)的個別樣品在無水環境中與類似面積尺寸的金屬鋰裝配,在中間配置微孔分離板。在熱密封在鋁疊層包裝材料中之前,將電池結構浸泡在電解質溶液中,使得複合電極及金屬鋰相對電極可經由兩個末端對外連接。藉由測量電池的第一次充電/放電循環的充電與放電容量(電流及時間的產物)之間的差異測試電池的第一次循環損失(FCL)。A composite electrode comprising ruthenium, a polymer binder material and carbon is incorporated into a lithium metal counter electrode, a microporous separation plate, and a lithium hexafluorophosphate having a 1.2 m/m3 mixture in a mixture of ethylene carbonate/ethyl methyl carbonate. The form of electrolyte in the battery. An individual sample of a dry composite electrode (containing ruthenium, polymer, and carbon) of about 15 square centimeters was assembled in a water-free environment with metal lithium of a similar size, with a microporous separation plate disposed therebetween. The battery structure is immersed in the electrolyte solution prior to heat sealing in the aluminum laminate packaging material such that the composite electrode and the metallic lithium counter electrode are externally connected via the two ends. The first cycle loss (FCL) of the battery was tested by measuring the difference between the charge and discharge capacity (product of current and time) of the first charge/discharge cycle of the battery.

在電池容量到達少於50%之初充電容量之前,將可能可逆執行的充電/放電/循環之次數記錄在以電腦控制之電池組試驗站上。電腦測量每次循環的充電及放電容量且測定在放電容量少於50%之最大放電容量時的循環次數。將結果總結陳述於表2中:The number of possible reversible charge/discharge/cycles is recorded on a computer controlled battery test station before the battery capacity reaches less than 50% of the initial charge capacity. The computer measures the charge and discharge capacity per cycle and measures the number of cycles at a discharge capacity of less than 50% of the maximum discharge capacity. A summary of the results is presented in Table 2:

在表2中所使用的縮寫陳述於表3中:The abbreviations used in Table 2 are stated in Table 3:

可如表2中所見,PAA黏結劑提供超過其他黏結劑的第一次循環損失(FCL)及壽命(就循環次數而論),尤其在NMP溶劑中。As can be seen in Table 2, PAA binders provide first cycle losses (FCL) and lifetime (in terms of cycle number) over other binders, especially in NMP solvents.

所有的鋰離子電池具有一些第一次循環損失。FCL值>20%表示黏結劑不維持在矽粒子與銅電流收集器之間的電接觸,因為矽粒子膨脹及收縮。All lithium ion batteries have some first cycle losses. An FCL value of >20% indicates that the binder does not maintain electrical contact between the ruthenium particles and the copper current collector because the ruthenium particles expand and contract.

一些試驗係使用74:13:13之活性材料(Si):黏結劑:碳比率(以重量%計)進行,使用聚合物黏結劑NaCMC(使用以水為基之溶劑)及PAA(使用水及有機溶劑二者),且此等複合陽極產生在8-9%FCL之範圍內的第一次循環損失。Some tests used 74:13:13 active material (Si): binder: carbon ratio (in % by weight), polymer binder NaCMC (using water-based solvent) and PAA (using water and Both organic solvents), and such composite anodes produced a first cycle loss in the range of 8-9% FCL.

實施例2-測量第一次循環損失Example 2 - Measuring the first cycle loss

使用與實施例1相同的電池結構及製造方法,形成具有伊照表2的各種黏結劑之電池且測試FCL。將各種黏結劑的FCL試驗結果顯示於圖2的條狀圖中。應注意表2包括各種廣泛的實驗,其包括不同的組成物比率(諸如74:13:13),反之,圖2係以80:8:12之標準配方為基準。Using the same battery structure and manufacturing method as in Example 1, a battery having various binders of Izumi 2 was formed and the FCL was tested. The FCL test results of various binders are shown in the bar graph of Fig. 2. It should be noted that Table 2 includes a wide variety of experiments including different composition ratios (such as 74:13:13), whereas Figure 2 is based on a standard formulation of 80:8:12.

實施例3Example 3

使用與實施例1相同的電池結構及製造方法,形成具有伊照表2的各種黏結劑之電池且測試電池,以找出陽極黏結劑對循環容量的效應且將結果顯示於圖3的條狀圖中。圖3顯示具有鋰金屬相對電極的矽粉複合電極的總脫鋰化容量。總脫鋰化容量為從與電化學步驟有關聯的試驗樣品電池以毫安培計之鋰容量,相當於在真正的Li-離子電池(亦即其中將鋰從矽材料移除)中的放電。總脫鋰化容量為從所有循環起至試驗電池看似失效的點之容量累積量。Using the same battery structure and manufacturing method as in Example 1, a battery having various binders of Izumi 2 was formed and the battery was tested to find out the effect of the anode binder on the cycle capacity and the results are shown in the strip of FIG. In the picture. Figure 3 shows the total delithiation capacity of a tantalum composite electrode having a lithium metal counter electrode. The total delithiation capacity is the lithium capacity in milliamperes from the test sample cell associated with the electrochemical step, corresponding to the discharge in a true Li-ion battery (i.e., where lithium is removed from the tantalum material). The total delithiation capacity is the cumulative amount of capacity from all cycles up to the point at which the test cell appears to be ineffective.

鋰金屬電極具有限的循環壽命,因為在鋁於充電期間再電鍍於陽極上時形成的多孔且不均勻的沉積物。典型地,在鋰電極失效之前,可通過標準的電池構造的總容量為500-600毫安培小時。因此,若容量>500毫安培小時,則電池已失效,因為鋰金屬相對電極。然而,若容量<500毫安培小時,則電池已失效,因為矽粉複合電極。因此,大部分的黏結劑不允許電池完全循環。Lithium metal electrodes have a limited cycle life because of the porous and uneven deposits that are formed when aluminum is electroplated onto the anode during charging. Typically, the total capacity of a standard battery configuration can be 500-600 milliampere hours before the lithium electrode fails. Therefore, if the capacity is >500 mAh, the battery has failed because the lithium metal is opposite the electrode. However, if the capacity is <500 mAh, the battery has failed because of the powder composite electrode. Therefore, most of the adhesive does not allow the battery to fully circulate.

實施例4Example 4

使用與實施例1相同的電池結構及製造方法,使用伊照表2的溶劑形成具有各種黏結劑的電池且測試電池,以找出黏結劑對電池循環容量的效應。Using the same battery structure and manufacturing method as in Example 1, a battery having various binders was formed using the solvent of Izumi 2 and the battery was tested to find out the effect of the binder on the cycle capacity of the battery.

將結果顯示於圖4中,其顯示使用四種不同類型的黏結劑:PVDF、SBR、NaCMC及PAA的SilgrainHQ J230矽粉複合電極的脫鋰化容量。第一次循環的鋰化容量受限於以電極中的矽粉重量為基準計1200毫安培小時/公克。後續循環的鋰化受限於充電及/或電壓限度。The results are shown in Figure 4, which shows the use of four different types of binders: PVDF, SBR, NaCMC and PAA of Silgrain Delithiation capacity of HQ J230 tantalum composite electrode. The lithiation capacity of the first cycle was limited to 1200 milliampere-hours per gram based on the weight of the tantalum powder in the electrode. Lithiumization in subsequent cycles is limited by charging and/or voltage limits.

如以上所解釋,這些電池的循環最後受到鋰金屬相對電極的限制。然而,在鋰金屬相對電極受到危害之前,顯然具有PVDF及SBR二者的電池還更容易損失容量。As explained above, the cycling of these cells is ultimately limited by the lithium metal opposing electrode. However, it is clear that batteries with both PVDF and SBR are more susceptible to capacity loss before the lithium metal counter electrode is compromised.

實施例5Example 5

各種電池係使用下列方法製造:將活性物料塗覆於銅基板以形成陽極且將裝配乾燥,如實施例1中所述。在電池中所使用的陰極材料為商業供應的標準陰極材料且與鋁電流收集器一起使用。切割出所需尺寸的陽極及陰極且接著在動態真空下以120℃經隔夜再乾燥。將附屬件以超聲波焊接至陽極及陰極,允許電池密封在鋁疊層袋內,且接著將電極與一層在彼等之間的TonenTM 多孔聚乙烯分隔板裝配,纏繞成捲且配置在疊層袋中。將電池繞線密封在袋內,留下一個未密封的邊緣,以允許電解質填充。Various batteries were made using the following method: The active material was applied to a copper substrate to form an anode and the assembly was dried as described in Example 1. The cathode material used in the battery is a commercially available standard cathode material and is used with an aluminum current collector. The anode and cathode of the desired size were cut and then dried overnight at 120 ° C under dynamic vacuum. The appendix to ultrasonic welding to the anode and the cathode, allowing the battery sealed in an aluminum laminate bag, and then the electrode layer with a porous polyethylene separator in Tonen TM fit between their plates, wound into a roll and is arranged in the stack In the layer bag. The battery is wound in a bag and left in an unsealed edge to allow electrolyte filling.

將電池在部分真空下以所需之電解質重量填充。電解質為在3:7之EC(碳酸乙烯酯):EMC(碳酸乙基甲酯)中的1M LiPF6 。允許電解質浸泡在電極中1小時且接著將袋的最後邊緣經真空密封。The battery was filled under a partial vacuum with the desired electrolyte weight. The electrolyte was 1 M LiPF 6 in 3:7 EC (ethylene carbonate): EMC (ethyl methyl carbonate). The electrolyte was allowed to soak in the electrode for 1 hour and then the last edge of the bag was vacuum sealed.

將電池連接至ArbinTM 電池組循環設備且以連續充電及放電循環測試。試驗模式使用容量限度、在充電時的電壓上限及在放電時的電壓下限。將電池充電至多1200毫安培小時/公克之容量。The battery is connected to the battery pack Arbin TM circulation device and with the continuous charging and discharging cycle test. The test mode uses a capacity limit, an upper voltage limit at the time of charging, and a lower voltage limit at the time of discharge. Charge the battery to a capacity of up to 1200 mAh/g.

一系列黏結劑係藉由使用上述方法組裝成陽極來測試;活性陽極物料為J230矽粉(以來自挪威Elkem的Silgrain HQ產品之一所銷售),陳述於表4中的黏結劑及導電性碳黑(Super P碳黑),具有在表4中所陳述之矽活性材料(A):黏結劑(B):Super P碳(C)比率。表4亦陳述在各種試驗中所使用的陰極,其中〝MMO〞代表混合的金屬氧化物(尤其為Li1+x Ni0.8 Co0.15 Al0.05 O2 ,其中0<x<1,0.05<x<0.1)陰極及〝LCO〞代表氧化鋰鈷(LiCoO2 )陰極,二者為熟知且以商業上可取得。A series of binders were tested by assembling the anodes using the above method; the active anode material was J230 tantalum powder (sold by one of the Silgrain HQ products from Elkem, Norway), and the binders and conductive carbons listed in Table 4 Black (Super P Carbon black), with the active material (A) stated in Table 4: Adhesive (B): Super P Carbon (C) ratio. Table 4 also states the cathodes used in the various tests, where 〝MMO〞 represents a mixed metal oxide (especially Li 1+x Ni 0.8 Co 0.15 Al 0.05 O 2 , where 0<x< 1 , 0.05 <x< 0.1) Cathodes and 〝LCO〞 represent lithium cobalt oxide (LiCoO 2 ) cathodes, both of which are well known and commercially available.

表4中的縮寫陳述於表5中。The abbreviations in Table 4 are set forth in Table 5.

圖5顯示不同的黏結劑在固定的充電/放電循環期間對放電容量的效應。可如所見,PAA黏結劑與其他電池中所使用的黏結劑相比提供實質上更好的放電容量維護。Figure 5 shows the effect of different binders on discharge capacity during a fixed charge/discharge cycle. As can be seen, PAA adhesives provide substantially better discharge capacity maintenance than the adhesives used in other batteries.

實施例6-矽纖維Example 6 - Tantalum fiber

黏結劑係藉由使用實施例5的方法組裝成陽極來測試,除了使用以WO 2007/083152或WO 2007/083155中所陳述之方法製備的矽纖維代替矽粉以外。此等纖維典型地具有80至500奈米範圍之直徑及20至300微米範圍之長度。在電池中的黏結劑及各種變化陳述於表6中。The binder was tested by assembling the anode using the method of Example 5, except that the enamel fibers prepared by the method set forth in WO 2007/083152 or WO 2007/083155 were used instead of the tantalum powder. These fibers typically have a diameter in the range of 80 to 500 nanometers and a length in the range of 20 to 300 micrometers. The binders and various variations in the battery are set forth in Table 6.

表6中的縮寫陳述於表7中。The abbreviations in Table 6 are set forth in Table 7.

圖6顯示不同的黏結劑在固定的充電/放電循環期間對放電容量的效應。可如所見,PAA黏結劑與其他電池中所使用的黏結劑相比提供實質上更好的放電容量維護。Figure 6 shows the effect of different binders on discharge capacity during a fixed charge/discharge cycle. As can be seen, PAA adhesives provide substantially better discharge capacity maintenance than the adhesives used in other batteries.

實施例7-矽粉粒子Example 7 - 矽 powder particles

黏結劑係藉由使用實施例5的方法組裝成陽極來測試,除了代替矽粉的矽具有根據WO 2009/010758中所陳述之方法製備的成柱狀粒子形式(其具有15至25微米範圍之直徑及1至4微米範圍之柱高度)以外。在電池中的黏結劑及各種變化陳述於表8中。The binder was tested by assembling the anode using the method of Example 5, except that the crucible instead of the crucible had the form of columnar particles prepared according to the method set forth in WO 2009/010758 (which had a range of 15 to 25 microns) Outside the diameter and column height in the range of 1 to 4 microns). The binders and various variations in the battery are set forth in Table 8.

圖7顯示不同的黏結劑在固定的充電/放電循環期間對放電容量的效應。可如所見,PAA黏結劑與其他電池中所使用的黏結劑相比提供實質上更好的放電容量維護。Figure 7 shows the effect of different binders on discharge capacity during a fixed charge/discharge cycle. As can be seen, PAA adhesives provide substantially better discharge capacity maintenance than the adhesives used in other batteries.

10‧‧‧銅電流收集器10‧‧‧ Copper Current Collector

12‧‧‧鋁電流收集器12‧‧‧Aluminum Current Collector

14‧‧‧以石墨為基之複合陽極層14‧‧‧Febricated composite anode layer

16‧‧‧以含鋰之金屬氧化物為基之複合陰極層16‧‧‧Composite cathode layer based on lithium-containing metal oxides

20‧‧‧多孔塑膠間隔板或分隔板20‧‧‧Porous plastic partition or divider

圖1為鋰離子電池之圖示代表;圖2-7為顯示實施例2-7的結果之圖形。1 is a graphical representation of a lithium ion battery; and FIGS. 2-7 are graphs showing the results of Examples 2-7.

10...銅電流收集器10. . . Copper current collector

12...鋁電流收集器12. . . Aluminum current collector

14...以石墨為基之複合陽極層14. . . Graphite-based composite anode layer

16...以含鋰之金屬氧化物為基之複合陰極層16. . . Composite cathode layer based on lithium-containing metal oxide

20...多孔塑膠間隔板或分隔板20. . . Porous plastic partition or divider

Claims (12)

一種用於鋰離子可充電電池組電池之電極,其包含:-電流收集器,及-黏聚性物料,其包含矽作為活性材料及聚合性黏結劑,其特徵在於聚合性黏結劑為一或多種單體之均聚物或共聚物,該單體係選自由以下各物所組之群組:丙烯酸、3-丁烯酸、2-甲基丙烯酸、2-戊烯酸、2,3-二甲基丙烯酸、3,3-二甲基丙烯酸、反式-丁烯二酸、順式-丁烯二酸及伊康酸和視需要其鹼金屬鹽,其中矽包含20至100%之活性材料,且其中將黏結劑與矽混合,以形成黏聚性物料,其附著於電流收集器且維持該黏聚性物料與電流收集器以電接觸。 An electrode for a lithium ion rechargeable battery cell, comprising: a current collector, and a cohesive material comprising ruthenium as an active material and a polymerizable binder, wherein the polymerizable binder is one or a homopolymer or copolymer of a plurality of monomers selected from the group consisting of acrylic acid, 3-butenoic acid, 2-methacrylic acid, 2-pentenoic acid, 2,3- Dimethacrylic acid, 3,3-dimethacrylic acid, trans-butenedioic acid, cis-butenedioic acid and itaconic acid, and optionally an alkali metal salt thereof, wherein cerium contains 20 to 100% active A material, and wherein the binder is mixed with the crucible to form a cohesive material that adheres to the current collector and maintains the cohesive material in electrical contact with the current collector. 根據申請專利範圍第1項之電極,其中-該矽材料構成在電極中至少50重量%之活性材料;且聚合性黏結劑係取自下列中之一: 及其共聚物,其中上述聚合物構成大部分的單體單元,該黏結劑係與矽材料(例如,粒子、纖維、結構體(structoids)或成柱狀粒子)混合,以形成黏聚性物料,其附著於電流 收集器且維持物料與電流收集器以電接觸。The electrode according to claim 1, wherein the bismuth material constitutes at least 50% by weight of the active material in the electrode; and the polymerizable binder is taken from one of the following: And a copolymer thereof, wherein the above polymer constitutes a majority of monomer units mixed with a ruthenium material (for example, particles, fibers, structoids or columnar particles) to form a cohesive material It is attached to the current collector and maintains the material in electrical contact with the current collector. 根據申請專利範圍第1或2項之電極,其中該聚合性黏結劑為具有分子量大於50,000、例如大於450,000之聚丙烯酸。 The electrode according to claim 1 or 2, wherein the polymerizable binder is polyacrylic acid having a molecular weight of more than 50,000, for example, more than 450,000. 根據申請專利範圍第1項之電極,其中該矽具有95-99.90重量%、例如98-99.0重量%之純度。 The electrode according to claim 1, wherein the crucible has a purity of 95 to 99.90% by weight, for example 98 to 99.0% by weight. 根據申請專利範圍第1、2或4項之電極,其中該黏結劑包含該聚合物中之一或多者與另一黏結劑,例如彈性體,如羧甲基纖維素(CMC)及/或聚二氟乙烯之混合物。 The electrode according to claim 1, 2 or 4, wherein the binder comprises one or more of the polymer and another binder, such as an elastomer such as carboxymethyl cellulose (CMC) and/or a mixture of polyvinylidene fluoride. 根據申請專利範圍第1、2或4項之電極,其中該黏聚性物料包括導電性增強材料,例如碳黑及/或乙炔黑。 The electrode according to claim 1, 2 or 4, wherein the cohesive material comprises a conductive reinforcing material such as carbon black and/or acetylene black. 根據申請專利範圍第1、2或4項之電極,其為陽極。 An electrode according to the first, second or fourth aspect of the patent application is an anode. 根據申請專利範圍第1、2或4項之電極,其中該矽材料係為粒子、纖維、帶狀物或成柱狀粒子形式。 The electrode according to claim 1, 2 or 4, wherein the bismuth material is in the form of particles, fibers, ribbons or columnar particles. 根據申請專利範圍第1、2或4項之電極,其中該矽材料包含在電極中的20至100重量%、例如至少50重量%,較佳為至少70重量%,且視需要為100重量%之活性材料。 The electrode according to claim 1, 2 or 4, wherein the bismuth material comprises 20 to 100% by weight, for example at least 50% by weight, preferably at least 70% by weight, and optionally 100% by weight, in the electrode. Active material. 根據申請專利範圍第1、2或4項之電極,其中該活性材料進一步包含選自石墨及/或硬碳之活性碳。 The electrode according to claim 1, 2 or 4, wherein the active material further comprises activated carbon selected from the group consisting of graphite and/or hard carbon. 一種鋰離子電池,其包括如申請專利範圍第1至10項中任一項請求之電極。 A lithium ion battery comprising the electrode as claimed in any one of claims 1 to 10. 一種裝置,其包括根據申請專利範圍第1至10項中任一項之電極或根據申請專利範圍第11項之鋰離子電池。 A device comprising the electrode according to any one of claims 1 to 10 or the lithium ion battery according to claim 11 of the patent application.
TW099114616A 2009-05-11 2010-05-07 A binder for lithium ion rechargeable battery cells TWI485921B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB0908088A GB2470190B (en) 2009-05-11 2009-05-11 A binder for lithium ion rechargeable battery cells

Publications (2)

Publication Number Publication Date
TW201101564A TW201101564A (en) 2011-01-01
TWI485921B true TWI485921B (en) 2015-05-21

Family

ID=40833818

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099114616A TWI485921B (en) 2009-05-11 2010-05-07 A binder for lithium ion rechargeable battery cells

Country Status (9)

Country Link
US (2) US10050275B2 (en)
EP (1) EP2415108B1 (en)
JP (2) JP5738847B2 (en)
KR (2) KR101379236B1 (en)
CN (2) CN103972469A (en)
GB (1) GB2470190B (en)
SG (1) SG174605A1 (en)
TW (1) TWI485921B (en)
WO (1) WO2010130976A1 (en)

Families Citing this family (105)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
GB0601318D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
GB0713895D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Production
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
GB2495951B (en) 2011-10-26 2014-07-16 Nexeon Ltd A composition for a secondary battery cell
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
KR102067922B1 (en) * 2009-05-19 2020-01-17 원드 매터리얼 엘엘씨 Nanostructured materials for battery applications
US11380890B2 (en) 2010-01-18 2022-07-05 Enevate Corporation Surface modification of silicon particles for electrochemical storage
US9553303B2 (en) 2010-01-18 2017-01-24 Enevate Corporation Silicon particles for battery electrodes
US10461366B1 (en) 2010-01-18 2019-10-29 Enevate Corporation Electrolyte compositions for batteries
US20170040598A1 (en) 2015-08-07 2017-02-09 Enevate Corporation Surface modification of silicon particles for electrochemical storage
GB201005979D0 (en) 2010-04-09 2010-05-26 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
KR101180263B1 (en) * 2010-05-24 2012-09-06 한국기계연구원 A thermoelectric powder and composotes made from thermoelectric material and Method for fabricating thereof
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
GB201014707D0 (en) * 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
FR2966981B1 (en) * 2010-11-02 2013-01-25 Commissariat Energie Atomique LITHIUM ACCUMULATOR COMPRISING IONIC LIQUID ELECTROLYTE
GB2487569B (en) * 2011-01-27 2014-02-19 Nexeon Ltd A binder for a secondary battery cell
DE102011004564A1 (en) * 2011-02-23 2012-08-23 Evonik Litarion Gmbh Electrode material with high capacity
WO2012127564A1 (en) * 2011-03-18 2012-09-27 株式会社日立製作所 Electrode precursor and electrode using same
US10256458B2 (en) * 2011-04-01 2019-04-09 Georgia Tech Research Corporation Curved two-dimensional nanocomposites for battery electrodes
GB2492167C (en) 2011-06-24 2018-12-05 Nexeon Ltd Structured particles
US10135062B2 (en) * 2011-12-21 2018-11-20 Nexeon Limited Fabrication and use of carbon-coated silicon monoxide for lithium-ion batteries
FR2985598B1 (en) * 2012-01-06 2016-02-05 Hutchinson CARBON COMPOSITION FOR SUPERCONDENSER CELL ELECTRODE, ELECTRODE, METHOD FOR MANUFACTURING SAME, AND CELL INCORPORATING SAME.
KR20140133529A (en) 2012-01-30 2014-11-19 넥세온 엘티디 Composition of si/c electro active material
GB2499984B (en) 2012-02-28 2014-08-06 Nexeon Ltd Composite particles comprising a removable filler
US9370096B2 (en) 2012-04-18 2016-06-14 Cornell University Method of making conducting polymer nanofibers
GB2502625B (en) 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
BR112014029112B1 (en) 2012-06-06 2021-01-05 Dow Global Technologies, Llc process for producing a multicolored dispersion, multicolored dispersion, and coating composition
JP5737265B2 (en) * 2012-10-23 2015-06-17 信越化学工業株式会社 Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
GB2507535B (en) 2012-11-02 2015-07-15 Nexeon Ltd Multilayer electrode
WO2014073647A1 (en) 2012-11-09 2014-05-15 日本ゼオン株式会社 Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, method for producing negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2014176217A1 (en) * 2013-04-23 2014-10-30 E. I. Du Pont De Nemours And Company Battery binder
JP6550377B2 (en) 2013-05-23 2019-07-24 ハーキュリーズ エルエルシー Binder composition for electrode and method for producing the same
US20140346618A1 (en) * 2013-05-23 2014-11-27 Nexeon Limited Surface treated silicon containing active materials for electrochemical cells
US20160118650A1 (en) * 2013-06-04 2016-04-28 Solvay Specialty Polymers Italy S.P.A. Core-shell type anode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries containing the same
FR3007204B1 (en) * 2013-06-17 2022-03-18 Centre Nat Rech Scient USE OF NEW COMPOUNDS AS NEGATIVE ELECTRODE ACTIVE MATERIAL IN A SODIUM-ION BATTERY.
KR20140147779A (en) * 2013-06-20 2014-12-30 주식회사 엘지화학 Electrode active material for lithium secondary battery with high capacity and Lithium secondary battery comprising the same
CN103351448B (en) * 2013-06-28 2015-12-23 中国科学院青岛生物能源与过程研究所 A kind of High-temperature resistance lithium ion secondary battery adhesive and preparation method
JP2015022956A (en) * 2013-07-22 2015-02-02 Jsr株式会社 Slurry for power storage device, power storage device electrode, separator and power storage device
KR20160040227A (en) * 2013-07-29 2016-04-12 더 펜 스테이트 리서어치 파운데이션 Elastic gel polymer binder for silicon-based anode
JP5965445B2 (en) 2013-09-25 2016-08-03 国立大学法人 東京大学 Nonaqueous electrolyte secondary battery
CN105580192B (en) * 2013-09-25 2019-03-12 国立大学法人东京大学 Non-aqueous electrolyte secondary battery
CN105580184B (en) 2013-09-25 2019-03-12 国立大学法人东京大学 Non-aqueous electrolyte secondary battery
US20150096887A1 (en) 2013-10-04 2015-04-09 Toyota Motor Engineering & Manufacturing North America, Inc. Electrodes containing iridium nanoparticles for the electrolytic production of oxygen from water
US9761904B2 (en) * 2013-10-04 2017-09-12 Toyota Motor Engineering & Manufacturing North America, Inc. Electrodes and electrochemical cells employing metal nanoparticles synthesized via a novel reagent
KR102192082B1 (en) * 2013-10-18 2020-12-16 삼성전자주식회사 Anode active material, anode including the anode active material, and lithium secondary battery including the anode
KR101744089B1 (en) * 2013-10-29 2017-06-07 삼성에스디아이 주식회사 Binder composition for rechargable lithium battery, method of manufacturing the same, and recharable lithium battery including the same
US10106710B2 (en) 2013-11-13 2018-10-23 R.R. Donnelley & Sons Company Insulator material composition and method
US20150280239A1 (en) * 2014-04-01 2015-10-01 Ppg Industries Ohio, Inc. Aqueous binder composition for lithium ion electrical storage devices
KR101567203B1 (en) 2014-04-09 2015-11-09 (주)오렌지파워 Negative electrode material for rechargeable battery and method of fabricating the same
KR101604352B1 (en) 2014-04-22 2016-03-18 (주)오렌지파워 Negative electrode active material and rechargeable battery having the same
DE102014207882A1 (en) * 2014-04-25 2015-10-29 Volkswagen Aktiengesellschaft New coating of silicon particles for lithium-ion batteries for improved cycle stability
KR101550781B1 (en) 2014-07-23 2015-09-08 (주)오렌지파워 Method of forming silicon based active material for rechargeable battery
JP6066021B2 (en) 2014-10-03 2017-01-25 凸版印刷株式会社 Non-aqueous electrolyte secondary battery negative electrode agent, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
GB2533161C (en) 2014-12-12 2019-07-24 Nexeon Ltd Electrodes for metal-ion batteries
KR101614016B1 (en) 2014-12-31 2016-04-20 (주)오렌지파워 Silicon based negative electrode material for rechargeable battery and method of fabricating the same
MX2017010952A (en) * 2015-02-27 2018-06-06 Imerys Graphite & Carbon Switzerland Ltd Nanoparticle surface-modified carbonaceous material and methods for producing such material.
EP3353844B1 (en) 2015-03-27 2022-05-11 Mason K. Harrup All-inorganic solvents for electrolytes
CN107406711B (en) * 2015-03-31 2020-11-03 陶氏环球技术有限责任公司 Adhesive compositions and paint formulations made therefrom
JP6477329B2 (en) * 2015-07-28 2019-03-06 株式会社村田製作所 Negative electrode, battery, battery pack, electronic device, electric vehicle, power storage device, and power system
WO2017022844A1 (en) * 2015-08-06 2017-02-09 株式会社クラレ Slurry composition for non aqueous electrolyte battery electrode, and non aqueous electrolyte battery positive electrode and non aqueous electrolyte battery using same
DE102015215415A1 (en) * 2015-08-12 2017-02-16 Wacker Chemie Ag Silicon particle-containing anode materials for lithium-ion batteries
KR102496375B1 (en) 2015-11-20 2023-02-06 삼성전자주식회사 Electrode composite separator assembly for lithium battery and lithium battery including the same
FR3044012B1 (en) * 2015-11-24 2019-04-05 Arkema France BINDER FOR ATTACHING MATERIAL CONTAINING VINYLIDENE POLYFLUORIDE TO A METAL - ELECTRODE FOR LITHIUM ION BATTERY
FR3048821B1 (en) * 2016-03-08 2021-12-17 Commissariat Energie Atomique INK INCLUDING A MIXTURE OF POLYACRYLIC ACIDS FOR THE REALIZATION OF A LITHIUM-ION BATTERY ELECTRODE, AND ELECTRODE OBTAINED WITH SUCH AN INK
CN109196692A (en) * 2016-06-03 2019-01-11 罗伯特·博世有限公司 Preparation method, lithium ion battery and the solid state battery of the negative electrode material of battery
US11127945B2 (en) 2016-06-14 2021-09-21 Nexeon Limited Electrodes for metal-ion batteries
KR20180001973A (en) 2016-06-28 2018-01-05 삼성전자주식회사 Lithium battery, and preparing method thereof
CN116960344A (en) * 2016-06-30 2023-10-27 魁北克电力公司 Electrode material and preparation method thereof
KR102273774B1 (en) 2016-07-28 2021-07-06 삼성에스디아이 주식회사 Binder composition for lithium secondary battery, electrode for lithium secondary battery including the same, and lithium secondary battery including the electrode
US9847157B1 (en) 2016-09-23 2017-12-19 Toyota Motor Engineering & Manufacturing North America, Inc. Ferromagnetic β-MnBi alloy
US10707531B1 (en) 2016-09-27 2020-07-07 New Dominion Enterprises Inc. All-inorganic solvents for electrolytes
US10903484B2 (en) 2016-10-26 2021-01-26 The Regents Of The University Of Michigan Metal infiltrated electrodes for solid state batteries
CN108110215B (en) * 2016-11-25 2021-04-09 深圳新宙邦科技股份有限公司 Positive plate, preparation method thereof and lithium ion battery
JP6941669B2 (en) * 2017-03-31 2021-09-29 パナソニック株式会社 Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
US10916766B2 (en) * 2017-04-10 2021-02-09 Global Graphene Group, Inc. Alkali metal-sulfur secondary battery containing a polymer-encapsulated sulfur cathode and manufacturing method
KR20200004415A (en) * 2017-05-15 2020-01-13 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Materials for Lithium-ion Electrochemical Cells and Methods for Manufacturing and Using the Same
US11710815B2 (en) * 2017-07-12 2023-07-25 Lg Energy Solution, Ltd. Negative electrode for lithium secondary battery, lithium secondary battery comprising the same, and method of preparing the negative electrode
KR102148507B1 (en) * 2017-07-26 2020-08-26 주식회사 엘지화학 Lithium Metal Electrode and Method for Preparing the Same
GB201803983D0 (en) 2017-09-13 2018-04-25 Unifrax I Llc Materials
KR102369813B1 (en) * 2017-10-30 2022-03-03 다이킨 고교 가부시키가이샤 Binder for secondary battery, electrode mixture for secondary battery, electrode for secondary battery and secondary battery
US11196043B2 (en) * 2017-11-24 2021-12-07 Lg Chem, Ltd. Silicon-based particle-polymer composite and negative electrode active material comprising the same
KR102561118B1 (en) 2017-12-07 2023-07-28 에네베이트 코포레이션 Composites containing silicon carbide and carbon particles
US11817583B2 (en) * 2017-12-21 2023-11-14 Panasonic Holdings Corporation Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US11196045B2 (en) 2018-02-01 2021-12-07 GM Global Technology Operations LLC Plasma pretreatment on current collectors for thin film lithium metallization
KR102591515B1 (en) 2018-02-22 2023-10-24 삼성전자주식회사 Cathode and lithium battery including cathode
US10608241B2 (en) 2018-04-17 2020-03-31 GM Global Technology Operations LLC Methods of preparing lithium metal anodes
US11652205B2 (en) 2018-04-18 2023-05-16 Enwair Enerji Teknolojileri A.S. Modification of silicon with acrylic or methacrylic derivatives used as an anode active material in the lithium ion battery technology
KR20200024980A (en) 2018-08-28 2020-03-10 삼성전자주식회사 Cathode and lithium battery including cathode
US20210036328A1 (en) * 2019-07-29 2021-02-04 Chongqing Jinkang New Energy Automobile Co., Ltd. Anode-free solid state battery having a pseudo-solid lithium gel layer
US20210036327A1 (en) * 2019-07-29 2021-02-04 TeraWatt Technology Inc. Interfacial bonding layer for an anode-free solid-state-battery
US20210036363A1 (en) * 2019-07-29 2021-02-04 TeraWatt Technology Inc. Phase-change electrolyte separator for a solid-state battery
US11114660B1 (en) * 2020-07-09 2021-09-07 Enevate Corporation Silicon anodes with water-soluble maleic anhydride-, and/or maleic acid-containing polymers/copolymers, derivatives, and/or combinations (with or without additives) as binders
US11522193B1 (en) * 2021-06-10 2022-12-06 Enevate Corporation Water soluble PAA-based polymer blends as binders for Si dominant anodes
WO2022210738A1 (en) * 2021-03-31 2022-10-06 富士フイルム株式会社 Composition for negative electrode, negative electrode sheet, non-aqueous secondary battery, and method for manufacturing negative electrode sheet and non-aqueous secondary battery
US20230163309A1 (en) 2021-11-22 2023-05-25 Enevate Corporation Silicon based lithium ion battery and improved cycle life of same
CN114566649B (en) * 2022-02-24 2024-01-23 东莞赣锋电子有限公司 High-areal-density negative plate and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901260A (en) * 2005-08-29 2007-01-24 松下电器产业株式会社 Negative electrode for non-aqueous electrolyte secondary battery, producing method therefor, and non-aqueous electrolyte secondary battery

Family Cites Families (276)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB980513A (en) 1961-11-17 1965-01-13 Licentia Gmbh Improvements relating to the use of silicon in semi-conductor devices
US3351445A (en) 1963-08-07 1967-11-07 William S Fielder Method of making a battery plate
GB1014706A (en) 1964-07-30 1965-12-31 Hans Ohl Improvements in or relating to devices for controlling the dosing of a plurality of different pourable substances for the production of mixtures
US4002541A (en) 1972-11-03 1977-01-11 Design Systems, Inc. Solar energy absorbing article and method of making same
SU471402A1 (en) 1973-03-02 1975-05-25 Предприятие П/Я Г-4671 Pickling solution
SU544019A1 (en) 1975-07-22 1977-01-25 Одесский Ордена Трудового Красного Знамени Государственный Университет Им.И.И.Мечникова Etcher for semiconductor materials
US4436796A (en) 1981-07-30 1984-03-13 The United States Of America As Represented By The United States Department Of Energy All-solid electrodes with mixed conductor matrix
US4614696A (en) 1983-12-20 1986-09-30 Sanyo Electric Co., Ltd Negative electrode plate for alkaline storage cells of sealed type
JPS63215041A (en) 1987-03-04 1988-09-07 Toshiba Corp Etching liquid for crystal defect evaluation
US4950566A (en) 1988-10-24 1990-08-21 Huggins Robert A Metal silicide electrode in lithium cells
JPH08987B2 (en) 1989-02-10 1996-01-10 日産自動車株式会社 Aluminum alloy surface treatment method
JP2717890B2 (en) 1991-05-27 1998-02-25 富士写真フイルム株式会社 Lithium secondary battery
DE4202454C1 (en) 1992-01-29 1993-07-29 Siemens Ag, 8000 Muenchen, De
JP3216311B2 (en) 1993-03-26 2001-10-09 松下電器産業株式会社 Lithium battery
JPH0888175A (en) 1994-09-14 1996-04-02 Sony Corp Molecular beam epitaxial growth equipment and manufacture of optical semiconductor device
US5660948A (en) 1995-09-26 1997-08-26 Valence Technology, Inc. Lithium ion electrochemical cell
US5907899A (en) 1996-06-11 1999-06-01 Dow Corning Corporation Method of forming electrodes for lithium ion batteries using polycarbosilanes
JP3713900B2 (en) 1996-07-19 2005-11-09 ソニー株式会社 Negative electrode material and non-aqueous electrolyte secondary battery using the same
JPH1046366A (en) 1996-08-02 1998-02-17 Toyota Motor Corp Liquid etchant for aluminum alloy and etching method
US6022640A (en) 1996-09-13 2000-02-08 Matsushita Electric Industrial Co., Ltd. Solid state rechargeable lithium battery, stacking battery, and charging method of the same
JP3296543B2 (en) 1996-10-30 2002-07-02 スズキ株式会社 Plating coated aluminum alloy, its cylinder block, plating line, plating method
JP3620559B2 (en) 1997-01-17 2005-02-16 株式会社ユアサコーポレーション Non-aqueous electrolyte battery
JPH11176470A (en) 1997-10-07 1999-07-02 Hitachi Maxell Ltd Organic electrolyte secondary battery
US6337156B1 (en) 1997-12-23 2002-01-08 Sri International Ion battery using high aspect ratio electrodes
JP4399881B2 (en) 1998-12-02 2010-01-20 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP3624088B2 (en) 1998-01-30 2005-02-23 キヤノン株式会社 Powder material, electrode structure, manufacturing method thereof, and lithium secondary battery
JPH11283603A (en) 1998-03-30 1999-10-15 Noritake Co Ltd Separator for battery and its manufacture
US6235427B1 (en) 1998-05-13 2001-05-22 Fuji Photo Film Co., Ltd. Nonaqueous secondary battery containing silicic material
JP4728458B2 (en) 1998-06-12 2011-07-20 宇部興産株式会社 Non-aqueous secondary battery
JP2948205B1 (en) 1998-05-25 1999-09-13 花王株式会社 Method for producing negative electrode for secondary battery
JP4534265B2 (en) 1998-12-02 2010-09-01 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US6063995A (en) 1998-07-16 2000-05-16 First Solar, Llc Recycling silicon photovoltaic modules
KR100276656B1 (en) 1998-09-16 2001-04-02 박찬구 Solid type secondary battery composed of thin film composite anode
EP1052712B1 (en) 1998-12-02 2010-02-24 Panasonic Corporation Non-aqueous electrolyte secondary cell
DE19922257A1 (en) 1999-05-14 2000-11-16 Siemens Ag Process for building in slits in silicon wafers comprises producing hole structures longitudinal to the slits by pore etching, and connecting the hole structures to the slits by chemical etching
EP1208002A4 (en) 1999-06-03 2006-08-02 Penn State Res Found Deposited thin film void-column network materials
GB9919479D0 (en) 1999-08-17 1999-10-20 Imperial College Island arrays
CN1257567C (en) 1999-10-22 2006-05-24 三洋电机株式会社 Electrode for lithium cell and lithium secondary cell
EP1231653B1 (en) 1999-10-22 2010-12-08 Sanyo Electric Co., Ltd. Electrode for lithium cell and lithium secondary cell
JP3702223B2 (en) 1999-10-22 2005-10-05 三洋電機株式会社 Method for producing electrode material for lithium battery
US7192673B1 (en) 1999-10-22 2007-03-20 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
JP2003514353A (en) 1999-11-08 2003-04-15 ネオフォトニクス・コーポレイション Electrodes containing particles of specific size
JP2000348730A (en) * 2000-01-01 2000-12-15 Seiko Instruments Inc Nonaqueous electrolyte secondary battery
US6353317B1 (en) 2000-01-19 2002-03-05 Imperial College Of Science, Technology And Medicine Mesoscopic non-magnetic semiconductor magnetoresistive sensors fabricated with island lithography
US7335603B2 (en) 2000-02-07 2008-02-26 Vladimir Mancevski System and method for fabricating logic devices comprising carbon nanotube transistors
CN1236509C (en) 2000-03-13 2006-01-11 佳能株式会社 Electrode material for rechargeable lithium cell, electrod structure body, cell, and production method thereof
JP2001291514A (en) 2000-04-06 2001-10-19 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary battery and its manufacturing method
US6399246B1 (en) 2000-05-05 2002-06-04 Eveready Battery Company, Inc. Latex binder for non-aqueous battery electrodes
US6334939B1 (en) 2000-06-15 2002-01-01 The University Of North Carolina At Chapel Hill Nanostructure-based high energy capacity material
JP4137350B2 (en) 2000-06-16 2008-08-20 三星エスディアイ株式会社 Negative electrode material for lithium secondary battery, electrode for lithium secondary battery, lithium secondary battery, and method for producing negative electrode material for lithium secondary battery
NL1015956C2 (en) 2000-08-18 2002-02-19 Univ Delft Tech Battery, especially for portable devices, has an anode containing silicon
JP4212263B2 (en) 2000-09-01 2009-01-21 三洋電機株式会社 Negative electrode for lithium secondary battery and method for producing the same
CN1280930C (en) 2000-09-01 2006-10-18 三洋电机株式会社 Negative electrode for lithium secondary cell and method for producing the same
US20040061928A1 (en) 2000-09-25 2004-04-01 William Stewart Artificially structured dielectric material
JP3466576B2 (en) * 2000-11-14 2003-11-10 三井鉱山株式会社 Composite material for negative electrode of lithium secondary battery and lithium secondary battery
WO2002047185A2 (en) 2000-12-06 2002-06-13 Huggins Robert A Improved electrodes for lithium batteries
KR100545613B1 (en) 2001-01-18 2006-01-25 산요덴키가부시키가이샤 Lithium secondary battery
JP2002279974A (en) 2001-03-19 2002-09-27 Sanyo Electric Co Ltd Method of manufacturing electrode for secondary battery
US7141859B2 (en) 2001-03-29 2006-11-28 Georgia Tech Research Corporation Porous gas sensors and method of preparation thereof
JP2002313319A (en) 2001-04-09 2002-10-25 Sanyo Electric Co Ltd Electrode for lithium secondary battery and lithium secondary battery
US6887623B2 (en) 2001-04-09 2005-05-03 Sanyo Electric Co., Ltd. Electrode for rechargeable lithium battery and rechargeable lithium battery
EP1258937A1 (en) 2001-05-17 2002-11-20 STMicroelectronics S.r.l. Micro silicon fuel cell, method of fabrication and self-powered semiconductor device integrating a micro fuel cell
JP4183401B2 (en) 2001-06-28 2008-11-19 三洋電機株式会社 Method for manufacturing electrode for lithium secondary battery and lithium secondary battery
US7070632B1 (en) 2001-07-25 2006-07-04 Polyplus Battery Company Electrochemical device separator structures with barrier layer on non-swelling membrane
KR100382767B1 (en) 2001-08-25 2003-05-09 삼성에스디아이 주식회사 Anode thin film for Lithium secondary battery and manufacturing method thereof
EP1313158A3 (en) 2001-11-20 2004-09-08 Canon Kabushiki Kaisha Electrode material for rechargeable lithium battery, electrode comprising said electrode material, rechargeable lithium battery having said electrode , and process for the production thereof
US7252749B2 (en) 2001-11-30 2007-08-07 The University Of North Carolina At Chapel Hill Deposition method for nanostructure materials
JP4035760B2 (en) 2001-12-03 2008-01-23 株式会社ジーエス・ユアサコーポレーション Nonaqueous electrolyte secondary battery
WO2003063271A1 (en) 2002-01-19 2003-07-31 Huggins Robert A Improved electrodes for alkali metal batteries
US20030135989A1 (en) 2002-01-19 2003-07-24 Huggins Robert A. Electrodes for alkali metal batteries
JP4199460B2 (en) 2002-01-23 2008-12-17 パナソニック株式会社 Square sealed battery
US7147894B2 (en) 2002-03-25 2006-12-12 The University Of North Carolina At Chapel Hill Method for assembling nano objects
JP2004071305A (en) 2002-08-05 2004-03-04 Hitachi Maxell Ltd Non-aqueous electrolyte rechargeable battery
US8236443B2 (en) 2002-08-09 2012-08-07 Infinite Power Solutions, Inc. Metal film encapsulation
US20070264564A1 (en) 2006-03-16 2007-11-15 Infinite Power Solutions, Inc. Thin film battery on an integrated circuit or circuit board and method thereof
US8021778B2 (en) 2002-08-09 2011-09-20 Infinite Power Solutions, Inc. Electrochemical apparatus with barrier layer protected substrate
US8445130B2 (en) 2002-08-09 2013-05-21 Infinite Power Solutions, Inc. Hybrid thin-film battery
US20080003496A1 (en) 2002-08-09 2008-01-03 Neudecker Bernd J Electrochemical apparatus with barrier layer protected substrate
US6916679B2 (en) 2002-08-09 2005-07-12 Infinite Power Solutions, Inc. Methods of and device for encapsulation and termination of electronic devices
JP2004095264A (en) * 2002-08-30 2004-03-25 Mitsubishi Materials Corp Negative electrode for lithium ion secondary battery and lithium ion secondary battery manufactured by using the same
AU2003261909A1 (en) 2002-09-05 2004-03-29 National Institute Of Advanced Industrial Science And Technology Carbon fine powder coated with metal oxide, metal nitride or metal carbide, process for producing the same, and supercapacitor and secondary battery using the carbon fine powder
WO2004025757A2 (en) 2002-09-10 2004-03-25 California Institute Of Technology High-capacity nanostructured silicon and lithium alloys thereof
JP4614625B2 (en) 2002-09-30 2011-01-19 三洋電機株式会社 Method for manufacturing lithium secondary battery
US7051945B2 (en) 2002-09-30 2006-05-30 Nanosys, Inc Applications of nano-enabled large area macroelectronic substrates incorporating nanowires and nanowire composites
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
CA2411695A1 (en) 2002-11-13 2004-05-13 Hydro-Quebec Electrode covered with a film obtained from an aqueous solution containing a water soluble binder, manufacturing process and usesthereof
JP3664252B2 (en) 2002-11-19 2005-06-22 ソニー株式会社 Negative electrode and battery using the same
JP4088957B2 (en) 2002-11-19 2008-05-21 ソニー株式会社 Lithium secondary battery
JP4025995B2 (en) 2002-11-26 2007-12-26 信越化学工業株式会社 Nonaqueous electrolyte secondary battery negative electrode material, method for producing the same, and lithium ion secondary battery
AU2003294586A1 (en) 2002-12-09 2004-06-30 The University Of North Carolina At Chapel Hill Methods for assembly and sorting of nanostructure-containing materials and related articles
US7491467B2 (en) 2002-12-17 2009-02-17 Mitsubishi Chemical Corporation Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP3827642B2 (en) 2003-01-06 2006-09-27 三星エスディアイ株式会社 Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery
CN100349311C (en) 2003-01-06 2007-11-14 三星Sdi株式会社 Cathode active material of rechargeable lithium battery and rechargeable lithium battery
US20040214085A1 (en) 2003-01-06 2004-10-28 Kyou-Yoon Sheem Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery
US7244513B2 (en) 2003-02-21 2007-07-17 Nano-Proprietary, Inc. Stain-etched silicon powder
FR2852148B1 (en) 2003-03-07 2014-04-11 Batscap Sa MATERIAL FOR COMPOSITE ELECTRODE, PROCESS FOR PREPARING THE SAME
JP2004281317A (en) 2003-03-18 2004-10-07 Matsushita Electric Ind Co Ltd Electrode material for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery using it
US20040185346A1 (en) 2003-03-19 2004-09-23 Takeuchi Esther S. Electrode having metal vanadium oxide nanoparticles for alkali metal-containing electrochemical cells
US6969690B2 (en) 2003-03-21 2005-11-29 The University Of North Carolina At Chapel Hill Methods and apparatus for patterned deposition of nanostructure-containing materials by self-assembly and related articles
CN1322611C (en) 2003-03-26 2007-06-20 佳能株式会社 Electrode material for lithium secondary battery, electrode structure comprising the electrode material and secondary battery comprising the electrode structure
JP4464173B2 (en) 2003-03-26 2010-05-19 キヤノン株式会社 Electrode material for lithium secondary battery, electrode structure having the electrode material, and secondary battery having the electrode structure
EP2302720B1 (en) * 2003-03-26 2012-06-27 Canon Kabushiki Kaisha Electrode material for lithium secondary battery and electrode structure including the same
JP4027255B2 (en) 2003-03-28 2007-12-26 三洋電機株式会社 Negative electrode for lithium secondary battery and method for producing the same
US20040241548A1 (en) 2003-04-02 2004-12-02 Takayuki Nakamoto Negative electrode active material and non-aqueous electrolyte rechargeable battery using the same
JP4607488B2 (en) 2003-04-25 2011-01-05 三井化学株式会社 Nonaqueous electrolyte for lithium battery, method for producing the same, and lithium ion secondary battery
CN100347885C (en) 2003-05-22 2007-11-07 松下电器产业株式会社 Nonaqueous electrolyte secondary battery and method for producing same
WO2004109839A1 (en) 2003-06-09 2004-12-16 Sanyo Electric Co., Ltd. Lithium secondary battery and method for producing same
US7094499B1 (en) 2003-06-10 2006-08-22 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Carbon materials metal/metal oxide nanoparticle composite and battery anode composed of the same
JP4610213B2 (en) 2003-06-19 2011-01-12 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
US7318982B2 (en) 2003-06-23 2008-01-15 A123 Systems, Inc. Polymer composition for encapsulation of electrode particles
JP4095499B2 (en) 2003-06-24 2008-06-04 キヤノン株式会社 Electrode material for lithium secondary battery, electrode structure, and lithium secondary battery
CN1823439B (en) 2003-07-15 2013-07-17 伊藤忠商事株式会社 Current collecting structure and electrode structure
KR100595896B1 (en) 2003-07-29 2006-07-03 주식회사 엘지화학 A negative active material for lithium secondary battery and a method for preparing same
KR100496306B1 (en) 2003-08-19 2005-06-17 삼성에스디아이 주식회사 Method for preparing of lithium metal anode
KR100497251B1 (en) 2003-08-20 2005-06-23 삼성에스디아이 주식회사 Protective composition for negative electrode of lithium sulfur battery and lithium sulfur battery fabricated by using same
US7479351B2 (en) 2003-10-09 2009-01-20 Samsung Sdi Co., Ltd. Electrode material for a lithium secondary battery, lithium secondary battery, and preparation method for the electrode material for a lithium secondary battery
DE10347570B4 (en) 2003-10-14 2015-07-23 Evonik Degussa Gmbh Inorganic separator-electrode unit for lithium-ion batteries, method for their production, use in lithium batteries and lithium batteries with the inorganic separator-electrode unit
JP4497899B2 (en) 2003-11-19 2010-07-07 三洋電機株式会社 Lithium secondary battery
US7816032B2 (en) 2003-11-28 2010-10-19 Panasonic Corporation Energy device and method for producing the same
KR100578870B1 (en) 2004-03-08 2006-05-11 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
JP2005259635A (en) 2004-03-15 2005-09-22 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
US7348102B2 (en) 2004-03-16 2008-03-25 Toyota Motor Corporation Corrosion protection using carbon coated electron collector for lithium-ion battery with molten salt electrolyte
US7521153B2 (en) 2004-03-16 2009-04-21 Toyota Motor Engineering & Manufacturing North America, Inc. Corrosion protection using protected electron collector
US7468224B2 (en) 2004-03-16 2008-12-23 Toyota Motor Engineering & Manufacturing North America, Inc. Battery having improved positive electrode and method of manufacturing the same
JP4623283B2 (en) 2004-03-26 2011-02-02 信越化学工業株式会社 Silicon composite particles, production method thereof, and negative electrode material for non-aqueous electrolyte secondary battery
US7790316B2 (en) 2004-03-26 2010-09-07 Shin-Etsu Chemical Co., Ltd. Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
US8231810B2 (en) 2004-04-15 2012-07-31 Fmc Corporation Composite materials of nano-dispersed silicon and tin and methods of making the same
US7781102B2 (en) 2004-04-22 2010-08-24 California Institute Of Technology High-capacity nanostructured germanium-containing materials and lithium alloys thereof
CN101010780B (en) 2004-04-30 2012-07-25 纳米系统公司 Systems and methods for nanowire growth and harvesting
KR100821630B1 (en) 2004-05-17 2008-04-16 주식회사 엘지화학 Electrode, and method for preparing the same
US20060019115A1 (en) 2004-05-20 2006-01-26 Liya Wang Composite material having improved microstructure and method for its fabrication
GB2414231A (en) 2004-05-21 2005-11-23 Psimedica Ltd Porous silicon
FR2873854A1 (en) 2004-07-30 2006-02-03 Commissariat Energie Atomique PROCESS FOR PRODUCING A LITHIUM ELECTRODE, LITHIUM ELECTRODE THAT CAN BE OBTAINED BY THIS METHOD AND USES THEREOF
US7298017B1 (en) 2004-08-28 2007-11-20 Hrl Laboratories, Llc Actuation using lithium/metal alloys and actuator device
US20060088767A1 (en) 2004-09-01 2006-04-27 Wen Li Battery with molten salt electrolyte and high voltage positive active material
US20060051670A1 (en) * 2004-09-03 2006-03-09 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary cell negative electrode material and metallic silicon power therefor
US7955735B2 (en) 2004-11-15 2011-06-07 Panasonic Corporation Non-aqueous electrolyte secondary battery
US7635540B2 (en) 2004-11-15 2009-12-22 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
US7939218B2 (en) 2004-12-09 2011-05-10 Nanosys, Inc. Nanowire structures comprising carbon
US7615314B2 (en) 2004-12-10 2009-11-10 Canon Kabushiki Kaisha Electrode structure for lithium secondary battery and secondary battery having such electrode structure
JP4824394B2 (en) 2004-12-16 2011-11-30 パナソニック株式会社 Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the same
KR100738054B1 (en) 2004-12-18 2007-07-12 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP4229062B2 (en) 2004-12-22 2009-02-25 ソニー株式会社 Lithium ion secondary battery
JPWO2006067891A1 (en) 2004-12-22 2008-06-12 松下電器産業株式会社 Composite negative electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery
JP2006196338A (en) 2005-01-14 2006-07-27 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2006075446A1 (en) * 2005-01-14 2006-07-20 Matsushita Electric Industrial Co., Ltd. Negative electrode for lithium ion secondary battery, process for producing the same, lithium ion secondary battery and process for producing the same
JP4095621B2 (en) 2005-03-28 2008-06-04 アドバンスド・マスク・インスペクション・テクノロジー株式会社 Optical image acquisition apparatus, optical image acquisition method, and mask inspection apparatus
JP2006290938A (en) 2005-04-06 2006-10-26 Nippon Brake Kogyo Kk Friction material
CA2506104A1 (en) 2005-05-06 2006-11-06 Michel Gauthier Surface modified redox compounds and composite electrode obtain from them
US7569202B2 (en) 2005-05-09 2009-08-04 Vesta Research, Ltd. Silicon nanosponge particles
US7781100B2 (en) 2005-05-10 2010-08-24 Advanced Lithium Electrochemistry Co., Ltd Cathode material for manufacturing rechargeable battery
TWI254031B (en) 2005-05-10 2006-05-01 Aquire Energy Co Ltd Manufacturing method of LixMyPO4 compound with olivine structure
US7700236B2 (en) 2005-09-09 2010-04-20 Aquire Energy Co., Ltd. Cathode material for manufacturing a rechargeable battery
US7799457B2 (en) 2005-05-10 2010-09-21 Advanced Lithium Electrochemistry Co., Ltd Ion storage compound of cathode material and method for preparing the same
US20080138710A1 (en) 2005-05-10 2008-06-12 Ben-Jie Liaw Electrochemical Composition and Associated Technology
US7887954B2 (en) 2005-05-10 2011-02-15 Advanced Lithium Electrochemistry Co., Ltd. Electrochemical composition and associated technology
FR2885734B1 (en) 2005-05-13 2013-07-05 Accumulateurs Fixes NANOCOMPOSITE MATERIAL FOR LITHIUM ACCUMULATOR ANODE
JP2006351516A (en) 2005-05-16 2006-12-28 Toshiba Corp Anode active material and nonaqueous electrolyte secondary battery
FR2885913B1 (en) 2005-05-18 2007-08-10 Centre Nat Rech Scient COMPOSITE ELEMENT COMPRISING A CONDUCTIVE SUBSTRATE AND A NANOSTRUCTURED METAL COATING.
JP4603422B2 (en) 2005-06-01 2010-12-22 株式会社タカギセイコー Surface treatment method for resin tanks
WO2006129415A1 (en) 2005-06-03 2006-12-07 Matsushita Electric Industrial Co., Ltd. Rechargeable battery with nonaqueous electrolyte and process for producing negative electrode
JP2006339093A (en) * 2005-06-06 2006-12-14 Matsushita Electric Ind Co Ltd Wound type nonaqueous electrolyte secondary battery and its negative electrode
JP5230904B2 (en) 2005-06-17 2013-07-10 パナソニック株式会社 Non-aqueous electrolyte secondary battery
US7682741B2 (en) 2005-06-29 2010-03-23 Panasonic Corporation Composite particle for lithium rechargeable battery, manufacturing method of the same, and lithium rechargeable battery using the same
US7272041B2 (en) 2005-06-30 2007-09-18 Intel Corporation Memory array with pseudo single bit memory cell and method
KR100684733B1 (en) 2005-07-07 2007-02-20 삼성에스디아이 주식회사 Lithium secondary battery
JP4876468B2 (en) * 2005-07-27 2012-02-15 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US8080334B2 (en) 2005-08-02 2011-12-20 Panasonic Corporation Lithium secondary battery
KR100845702B1 (en) 2005-08-23 2008-07-11 주식회사 엘지화학 Binder with improved adhesive strength and coating properties for secondary battery
JP5016276B2 (en) * 2005-08-29 2012-09-05 パナソニック株式会社 Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US9413550B2 (en) * 2005-09-06 2016-08-09 Sigma Designs Israel S.D.I. Ltd Collision avoidance media access method for shared networks
US7524529B2 (en) 2005-09-09 2009-04-28 Aquire Energy Co., Ltd. Method for making a lithium mixed metal compound having an olivine structure
KR100738057B1 (en) 2005-09-13 2007-07-10 삼성에스디아이 주식회사 Anode electride and lithium battery containing the material
JP2007115671A (en) * 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd Negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery using it
US20070065720A1 (en) * 2005-09-22 2007-03-22 Masaki Hasegawa Negative electrode for lithium ion secondary battery and lithium ion secondary battery prepared by using the same
JP2007123242A (en) 2005-09-28 2007-05-17 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP4994631B2 (en) * 2005-10-12 2012-08-08 パナソニック株式会社 Nonaqueous electrolyte secondary battery and positive electrode active material thereof
CN101288200B (en) 2005-10-13 2012-04-18 3M创新有限公司 Method of using an electrochemical cell
KR100759556B1 (en) 2005-10-17 2007-09-18 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
KR100749486B1 (en) 2005-10-31 2007-08-14 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same and rechargeable lithium battery comprising same
US20070099084A1 (en) 2005-10-31 2007-05-03 T/J Technologies, Inc. High capacity electrode and methods for its fabrication and use
JP2007128766A (en) 2005-11-04 2007-05-24 Sony Corp Negative electrode active substance and battery
US20070117018A1 (en) 2005-11-22 2007-05-24 Huggins Robert A Silicon and/or boron-based positive electrode
KR100949330B1 (en) 2005-11-29 2010-03-26 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery
JP2007165079A (en) 2005-12-13 2007-06-28 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using it
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
JP4613953B2 (en) * 2005-12-28 2011-01-19 パナソニック株式会社 Nonaqueous electrolyte secondary battery
KR100763892B1 (en) 2006-01-20 2007-10-05 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
GB0601318D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
US7717968B2 (en) 2006-03-08 2010-05-18 Yevgen Kalynushkin Electrode for energy storage device and method of forming the same
US7972731B2 (en) 2006-03-08 2011-07-05 Enerl, Inc. Electrode for cell of energy storage device and method of forming the same
CN100467670C (en) 2006-03-21 2009-03-11 无锡尚德太阳能电力有限公司 Acid corrosion solution for preparing multicrystal silicon pile surface and its using method
US7776473B2 (en) 2006-03-27 2010-08-17 Shin-Etsu Chemical Co., Ltd. Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
JP5178508B2 (en) 2006-03-30 2013-04-10 三洋電機株式会社 Lithium secondary battery
KR101328982B1 (en) 2006-04-17 2013-11-13 삼성에스디아이 주식회사 Anode active material and method of preparing the same
CN100563047C (en) 2006-04-25 2009-11-25 立凯电能科技股份有限公司 Be applicable to the composite material and the prepared battery thereof of the positive pole of making secondary cell
KR101483123B1 (en) 2006-05-09 2015-01-16 삼성에스디아이 주식회사 Anode active material comprising metal nanocrystal composite, method of preparing the same, and anode and lithium battery having the material
JP2007305546A (en) 2006-05-15 2007-11-22 Sony Corp Lithium ion battery
KR100863733B1 (en) * 2006-05-15 2008-10-16 주식회사 엘지화학 Electrode Material Containing Polyacrylic Acid Physically Mixed with Polyurethane as Binder and Lithium Secondary Battery Employed with the Same
US20070269718A1 (en) 2006-05-22 2007-11-22 3M Innovative Properties Company Electrode composition, method of making the same, and lithium ion battery including the same
KR100830612B1 (en) 2006-05-23 2008-05-21 강원대학교산학협력단 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
US8080335B2 (en) 2006-06-09 2011-12-20 Canon Kabushiki Kaisha Powder material, electrode structure using the powder material, and energy storage device having the electrode structure
JP5200339B2 (en) 2006-06-16 2013-06-05 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP5398962B2 (en) 2006-06-30 2014-01-29 三洋電機株式会社 Lithium secondary battery and manufacturing method thereof
US7964307B2 (en) 2006-07-24 2011-06-21 Panasonic Corporation Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
JP2008034266A (en) 2006-07-28 2008-02-14 Canon Inc Manufacturing method of negative electrode material for lithium secondary battery
US7722991B2 (en) 2006-08-09 2010-05-25 Toyota Motor Corporation High performance anode material for lithium-ion battery
JPWO2008029502A1 (en) 2006-08-29 2010-01-21 ユニチカ株式会社 Electrode forming binder, electrode forming slurry using the binder, electrode using the slurry, secondary battery using the electrode, capacitor using the electrode
JP5039956B2 (en) 2006-09-07 2012-10-03 トヨタ自動車株式会社 Negative electrode active material, negative electrode and lithium secondary battery
US8734997B2 (en) 2006-10-10 2014-05-27 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery
US8187754B2 (en) 2006-10-11 2012-05-29 Panasonic Corporation Coin-type non-aqueous electrolyte battery
KR100994181B1 (en) 2006-10-31 2010-11-15 주식회사 엘지화학 Enhancement of electro-conductivity of conducting material in lithium ion battery
KR100778450B1 (en) 2006-11-22 2007-11-28 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, method of preparing same, and rechargeable lithium battery comprising same
KR100814816B1 (en) 2006-11-27 2008-03-20 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery
JP4501081B2 (en) 2006-12-06 2010-07-14 ソニー株式会社 Electrode forming method and battery manufacturing method
JP2008171802A (en) 2006-12-13 2008-07-24 Matsushita Electric Ind Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and its manufacturing method, and nonaqueous electrolyte secondary battery using the same
JP4321584B2 (en) 2006-12-18 2009-08-26 ソニー株式会社 Negative electrode for secondary battery and secondary battery
US7709139B2 (en) 2007-01-22 2010-05-04 Physical Sciences, Inc. Three dimensional battery
JP5143437B2 (en) 2007-01-30 2013-02-13 日本カーボン株式会社 Method for producing negative electrode active material for lithium ion secondary battery, negative electrode active material, and negative electrode
WO2008097723A1 (en) 2007-02-06 2008-08-14 3M Innovative Properties Company Electrodes including novel binders and methods of making and using the same
US7875388B2 (en) * 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
JP5277656B2 (en) 2007-02-20 2013-08-28 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP5165258B2 (en) 2007-02-26 2013-03-21 日立マクセルエナジー株式会社 Nonaqueous electrolyte secondary battery
US20080206631A1 (en) 2007-02-27 2008-08-28 3M Innovative Properties Company Electrolytes, electrode compositions and electrochemical cells made therefrom
US20080206641A1 (en) 2007-02-27 2008-08-28 3M Innovative Properties Company Electrode compositions and electrodes made therefrom
US20090053589A1 (en) 2007-08-22 2009-02-26 3M Innovative Properties Company Electrolytes, electrode compositions, and electrochemical cells made therefrom
JP2008234988A (en) 2007-03-20 2008-10-02 Sony Corp Anode and its manufacturing method as well as battery and its manufacturing method
KR100859687B1 (en) 2007-03-21 2008-09-23 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery
KR100796664B1 (en) 2007-03-21 2008-01-22 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery
EP1978587B1 (en) 2007-03-27 2011-06-22 Hitachi Vehicle Energy, Ltd. Lithium secondary battery
JP2008243717A (en) 2007-03-28 2008-10-09 Mitsui Mining & Smelting Co Ltd Non-aqueous electrolyte secondary battery, and method of manufacturing it
US20080241703A1 (en) 2007-03-28 2008-10-02 Hidekazu Yamamoto Nonaqueous electrolyte secondary battery
WO2008119080A1 (en) 2007-03-28 2008-10-02 Life Bioscience Inc. Compositions and methods to fabricate a photoactive substrate suitable for shaped glass structures
JP4979432B2 (en) 2007-03-28 2012-07-18 三洋電機株式会社 Cylindrical lithium secondary battery
JP5628469B2 (en) 2007-04-26 2014-11-19 三菱化学株式会社 Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
JP2008269827A (en) 2007-04-17 2008-11-06 Matsushita Electric Ind Co Ltd Electrode material of electrochemical element, its manufacturing method, electrode plate of electrode using it, and electrochemical element
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
JP5104025B2 (en) 2007-05-18 2012-12-19 パナソニック株式会社 Non-aqueous electrolyte battery
JP5338041B2 (en) 2007-06-05 2013-11-13 ソニー株式会社 Negative electrode for secondary battery and secondary battery
GB0713785D0 (en) 2007-07-16 2007-08-22 Cellfire Security Technologies Voice over IP system
GB0713895D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Production
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
GB0713898D0 (en) * 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
WO2009026466A1 (en) 2007-08-21 2009-02-26 The Regents Of The University Of California Nanostructures having high performance thermoelectric properties
TWI387150B (en) * 2007-09-06 2013-02-21 Canon Kk Release material manufacturing method, lithium ion accumulation. A release material, and an electrode structure and a power storage device using the same
US20090078982A1 (en) 2007-09-24 2009-03-26 Willy Rachmady Alpha hydroxy carboxylic acid etchants for silicon microstructures
US20090087731A1 (en) 2007-09-27 2009-04-02 Atsushi Fukui Lithium secondary battery
US8119288B2 (en) 2007-11-05 2012-02-21 Nanotek Instruments, Inc. Hybrid anode compositions for lithium ion batteries
CN101442124B (en) 2007-11-19 2011-09-07 比亚迪股份有限公司 Method for preparing composite material of lithium ion battery cathode, and cathode and battery
US20090186267A1 (en) 2008-01-23 2009-07-23 Tiegs Terry N Porous silicon particulates for lithium batteries
US8105718B2 (en) 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
US8273591B2 (en) 2008-03-25 2012-09-25 International Business Machines Corporation Super lattice/quantum well nanowires
JP2009252348A (en) * 2008-04-01 2009-10-29 Panasonic Corp Nonaqueous electrolyte battery
JP4998358B2 (en) 2008-04-08 2012-08-15 ソニー株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR101041829B1 (en) 2008-04-16 2011-06-17 주식회사 엘지화학 Anode material including polyacrylonitrile-acrylic acid, and binder, manufacture of the same and rechargeable lithium battery comprising the same
WO2009128800A1 (en) 2008-04-17 2009-10-22 The Board Of Trustees Of The University Of Illinois Silicon nanowire and composite formation and highly pure and uniform length silicon nanowires
JP4844849B2 (en) 2008-04-23 2011-12-28 ソニー株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN100580876C (en) 2008-04-25 2010-01-13 华东师范大学 Method for selectively etching silicon nano line
US8034485B2 (en) 2008-05-29 2011-10-11 3M Innovative Properties Company Metal oxide negative electrodes for lithium-ion electrochemical cells and batteries
JP2010073571A (en) * 2008-09-19 2010-04-02 Panasonic Corp Lithium ion secondary battery and method of manufacturing the same
US20100085685A1 (en) 2008-10-06 2010-04-08 Avx Corporation Capacitor Anode Formed From a Powder Containing Coarse Agglomerates and Fine Agglomerates
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
KR101065778B1 (en) 2008-10-14 2011-09-20 한국과학기술연구원 Carbon nanotube-coated silicon/copper composite particle and the preparation method thereof, and negative electrode for secondary battery and secondary battery using the same
JP2010097761A (en) 2008-10-15 2010-04-30 Denso Corp Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP4952746B2 (en) 2008-11-14 2012-06-13 ソニー株式会社 Lithium ion secondary battery and negative electrode for lithium ion secondary battery
CN101740747B (en) 2008-11-27 2012-09-05 比亚迪股份有限公司 Silicon cathode and lithium ion battery comprising same
KR101819035B1 (en) 2009-02-16 2018-01-18 삼성전자주식회사 Anode comprising Group 14 metal nanotube, lithium battery comprising anode, and preparation method thereof
US20100285358A1 (en) 2009-05-07 2010-11-11 Amprius, Inc. Electrode Including Nanostructures for Rechargeable Cells
GB0908089D0 (en) 2009-05-11 2009-06-24 Nexeon Ltd A binder for lithium ion rechargaable battery cells
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
KR102067922B1 (en) 2009-05-19 2020-01-17 원드 매터리얼 엘엘씨 Nanostructured materials for battery applications
US20100330419A1 (en) 2009-06-02 2010-12-30 Yi Cui Electrospinning to fabricate battery electrodes
WO2011056847A2 (en) 2009-11-03 2011-05-12 Envia Systems, Inc. High capacity anode materials for lithium ion batteries
GB2487569B (en) 2011-01-27 2014-02-19 Nexeon Ltd A binder for a secondary battery cell

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1901260A (en) * 2005-08-29 2007-01-24 松下电器产业株式会社 Negative electrode for non-aqueous electrolyte secondary battery, producing method therefor, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
GB2470190A (en) 2010-11-17
JP2013179059A (en) 2013-09-09
KR20120090766A (en) 2012-08-17
SG174605A1 (en) 2011-10-28
EP2415108B1 (en) 2017-07-05
GB0908088D0 (en) 2009-06-24
KR101379236B1 (en) 2014-04-11
KR20130050857A (en) 2013-05-16
JP5738847B2 (en) 2015-06-24
CN102439768A (en) 2012-05-02
KR101354050B1 (en) 2014-02-21
US9608272B2 (en) 2017-03-28
TW201101564A (en) 2011-01-01
JP5860834B2 (en) 2016-02-16
CN103972469A (en) 2014-08-06
JP2012527070A (en) 2012-11-01
EP2415108A1 (en) 2012-02-08
US20120135308A1 (en) 2012-05-31
GB2470190B (en) 2011-07-13
US20120094178A1 (en) 2012-04-19
US10050275B2 (en) 2018-08-14
WO2010130976A1 (en) 2010-11-18

Similar Documents

Publication Publication Date Title
TWI485921B (en) A binder for lithium ion rechargeable battery cells
US11502299B2 (en) Battery cell engineering and design to reach high energy
US11387440B2 (en) Lithium ions cell designs with high capacity anode materials and high cell capacities
US20220255122A1 (en) Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics
CN107925058B (en) Negative electrode for secondary battery, method for producing same, and secondary battery comprising same
US20170271678A1 (en) Primer Surface Coating For High-Performance Silicon-Based Electrodes
TW201624819A (en) Li-ion battery and method of preparing a pre-lithiated anode for use in a Li-ion cell
CN101894941A (en) Positive electrode for lithium secondary batteries and lithium secondary battery
KR20230029988A (en) Lithium ion battery having a negative electrode with a silicon-based active material and a water-based binder with good adhesion and cohesion
KR20170108458A (en) Method of Preparing Cathode for Secondary Battery
JP2002134111A (en) Carbon material for lithium ion secondary battery negative electrode and lithium ion secondary battery
CN112652761A (en) Ternary lithium ion battery capable of discharging to 0V and preparation method thereof
JPH08124597A (en) Solid electrolytic secondary cell
EP4213262A1 (en) Secondary battery having low cell resistance and excellent lifespan characteristics
EP4336599A1 (en) Modified binder, binder composition, preparation method, negative electrode slurry, negative electrode sheet, secondary battery, battery module, battery pack, and electrical device
JP2017152119A (en) Positive electrode active material, positive electrode using the same, and lithium ion secondary battery
SE2250851A1 (en) A cathode active material for a cathode in a battery cell, a cathode assembly for a battery cell and a battery cell
KR20220167329A (en) A cathode active material and a lithium ion battery containing the cathode active material
JP2021163707A (en) Nonaqueous electrolyte power storage element
Scrosati Low Voltage Lithium-Ion Cells

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees