CN101442124B - Method for preparing composite material of lithium ion battery cathode, and cathode and battery - Google Patents

Method for preparing composite material of lithium ion battery cathode, and cathode and battery Download PDF

Info

Publication number
CN101442124B
CN101442124B CN 200710188356 CN200710188356A CN101442124B CN 101442124 B CN101442124 B CN 101442124B CN 200710188356 CN200710188356 CN 200710188356 CN 200710188356 A CN200710188356 A CN 200710188356A CN 101442124 B CN101442124 B CN 101442124B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
silicon powder
solvent
battery
ion battery
lithium ion
Prior art date
Application number
CN 200710188356
Other languages
Chinese (zh)
Other versions
CN101442124A (en )
Inventor
沈菊林
魏剑锋
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation

Abstract

The invention relates to a method for preparing a composite material for a cathode of a lithium ion battery, and the cathode and the battery which comprise the cathode material. The preparation method comprises: uniformly mixing silicon powder, graphite, pyrolytic carbon precursor and a solvent to prepare slurry, wherein the silicon powder comprises micro-silicon powder and nano-silicon powder, and the weight ratio of the micro-silicon powder and the nano-silicon powder is 2-20:1; and removing the solvent in the slurry, performing primary sintering under the protection of inert gas, performing primary ball grinding, performing secondary sintering under the protection of the inert gas, and performing secondary ball grinding, wherein the temperature of the secondary sintering is higher thanthat of the primary sintering. The battery made from the composite material for the cathode of the lithium ion battery obtained by the method has good cycling performance and charge and discharge capacity.

Description

锂离子电池负极用复合材料的制备方法及负极和电池 Lithium Ion Battery Anode preparation and a negative electrode and a battery using the composite material

技术领域 FIELD

[0001] 本发明是关于一种锂离子电池负极用复合材料的制备方法,以及包括该负极材料的负极和电池。 [0001] The present invention relates to a lithium ion battery negative electrode prepared by using the composite material, and comprising the negative electrode material, a negative electrode and a battery.

[0002] 技术背景 [0002] BACKGROUND OF THE INVENTION

[0003] 锂离子电池由于其具有的工作电压高、能量密度大、安全性好、质量轻、无污染等特点被广泛研究和运用。 [0003] Lithium ion batteries because of its high with operating voltage, energy density, safety, light weight, no pollution has been extensively studied and applied. 由于一般采用的碳材料作为负极材料时理论比容量较低,仅为372mAh/g,发展空间非常有限,因此对新型负极材料的开发非常必要。 Due to the carbon material is generally used as a negative electrode material, the theoretical specific capacity low, only 372mAh / g, development is very limited, so the development of new negative electrode material is necessary. 将硅作为锂离子电池材料,其理论可逆容量为4400mAh/g,已经引起人们的关注。 Silicon as the lithium battery material, the theoretical reversible capacity of 4400mAh / g, has attracted attention. 但是研究发现,硅粉作为负极材料时,充放电过程中颗粒的体积变化很大,导致硅颗粒粉化,电极的循环性差。 However, studies have found that when silicon powder as a negative electrode material, a large volume change during charging and discharging of particles, resulting in the silicon granular powder, the recycle of the electrode is poor.

[0004] CN 1891668A中公开了一种制备利用超细硅粉和碳粉复合成浆后包覆在内部具有球形的碳颗粒上,通过热解和化学气相沉积得到的碳硅复合材料。 [0004] CN 1891668A discloses latter prepared using superfine silicon and carbon composite slurried coated inside with spherical carbon particles, carbon-silicon composite material obtained by pyrolysis and chemical vapor deposition. 该对比文件中公开的方法包括,配制热裂解炭前驱体溶液,加入超细硅粉和作为内核的碳材料,搅拌均勻,干燥除去溶剂,将所得固体在惰性气体保护下500-1000°C下进行热解,将得到的热解产物过筛后, 按常规的分级方式分级,得到具有球形核壳结构的碳硅复合材料。 The method of this reference are disclosed comprising, formulated pyrolysis of the carbon precursor solution, adding superfine silicon and carbon material as the core, stir, the solvent was removed and dried, the lower the resulting solid under an inert atmosphere 500-1000 ° C pyrolysis, the resulting pyrolysis products sieved, according to a conventional hierarchical way classifier to obtain a carbon-silicon composite material with a spherical core-shell structure. 但由这种材料制得的电池的放电容量和循环特性仍然不够理想。 However, the discharge capacity and cycle characteristics of this material prepared cells is still not ideal.

发明内容 SUMMARY

[0005] 本发明的目的在于克服现有的锂离子电池用硅基负极材料制得的锂离子电池的循环性能和放电容量较差的缺点,提供一种能够提高锂离子电池循环性能和充放电容量的锂离子电池负极用复合材料的制备方法。 [0005] The object of the present invention is to overcome the conventional lithium ion battery inferior cycle performance and the discharge capacity of the silicon negative electrode material prepared lithium ion battery disadvantages to provide an improved lithium ion battery cycle performance and charge-discharge capacity lithium-ion battery cathode producing a composite material used.

[0006] 本发明提供了锂离子电池负极用复合材料的制备方法,该方法包括将硅粉、石墨、 热裂解炭前驱体和溶剂混合均勻,制得浆料,其中,所述硅粉包括微米硅粉和纳米硅粉,所述微米硅粉和纳米硅粉的重量比为2-20 : 1 ;除去浆料中的溶剂并在惰性气体保护下进行第一烧结,然后进行第一球磨,再在惰性气体保护下进行第二烧结,然后进行第二球磨,其中,第二烧结的温度高于第一烧结的温度。 [0006] The present invention provides a lithium ion battery cathode by preparing a composite material, the method comprising silicon powder, graphite, mixed pyrolysis of the carbon precursor and a solvent uniformly to prepare a slurry, wherein said silicon powder comprising microns silicon powder and nano silica fume, the weight of the micron silicon powder and nano silica fume ratio of 2-20: 1; removing the solvent in the slurry and the first sintering under inert gas protection, then the first ball, and then carried out under an inert gas to protect the second sintering, followed by a second ball, wherein the second sintering temperature is higher than the first sintering temperature.

[0007] 本发明提供了一种锂离子电池负极,该负极包括导电基体和负载于该导电基体上的负极材料,所述负极材料包括负极活性物质和粘合剂,其中,所述负极活性物质包括由本发明所提供的方法制备的锂离子电池负极用复合材料。 [0007] The present invention provides a lithium ion battery negative electrode, the negative electrode comprising a conductive substrate and a load on the conductive substrate of the negative electrode material, the anode material includes an anode active material and a binder, wherein the anode active material comprises a lithium ion battery produced by the method according to the present invention provides a negative electrode composite material.

[0008] 本发明提供了一种锂离子电池,该电池包括电极组和非水电解液,所述电极组和非水电解液密封在电池壳体内,所述电极组包括正极、负极和隔膜,其中,所述负极为本发明所提供的负极。 [0008] The present invention provides a lithium ion battery which comprises an electrode group and a nonaqueous electrolyte, the electrode group and the nonaqueous electrolyte sealed in a battery case, said electrode assembly comprising a positive electrode, a negative electrode and a separator, wherein the negative electrode of the present invention is provided.

[0009] 硅粉具有比石墨更好的嵌锂能力,而纳米硅粉具有比微米硅更高的嵌锂能力,但在充放电过程中纳米硅粉存在团聚的现象,会对充放电性能产生明显的负面影响,而微米硅发生团聚的几率较低。 [0009] The silicon powder than the graphite better lithium capacity, nano silica fume than micron silicon higher lithium intercalation capacity, but nanometer silica fume presence agglomeration phenomenon charge-discharge process, will charge and discharge performance is generated significant negative impact, while micron silicon occurs less likely agglomerated. 本发明的方法中同时使用微米硅粉和纳米硅粉可以在保证高嵌锂能力的情况下,降低硅粉发生团聚的可能性,改善电池的循环性能。 The method of the present invention using both micron silicon powder and nano-silicon powder may ensuring high lithium intercalation capacity of the case, reducing the possibility of silicon powder agglomeration and improve the cycle performance of the battery. 因此,由本发明提供的方法得到的锂离子电池负极用复合材料组成的电池具有良好的循环性能和充放电容量。 Thus, obtained by the process of the present invention provides a lithium ion battery negative electrode of the battery using the composite material having excellent cycle performance and charge-discharge capacity. 具体实施方式 Detailed ways

[0010] 本发明提供的锂离子电池负极用复合材料的制备方法包括将硅粉、石墨、热裂解炭前驱体和溶剂混合均勻,制得浆料,其中,所述硅粉包括微米硅粉和纳米硅粉,所述微米硅粉和纳米硅粉的重量比为2-20 : 1 ;除去浆料中的溶剂并在惰性气体保护下进行第一烧结,然后进行第一球磨,再在惰性气体保护下进行第二烧结,然后进行第二球磨,其中,第二烧结的温度高于第一烧结的温度。 [0010] The lithium ion battery negative electrode according to the present invention provides a method for preparing a composite material comprises silicon powder, graphite, mixed pyrolysis of the carbon precursor and a solvent uniformly to prepare a slurry, wherein said silicon powder comprises micron silicon powder and by weight of nano-silicon powder, a micron silicon powder and nano silica fume ratio of 2-20: 1; removing the solvent in the slurry and the first sintering under inert gas protection, then the first ball, and then an inert gas carried out under the protection of a second sintering, followed by a second ball, wherein the second sintering temperature is higher than the first sintering temperature.

[0011] 所述硅粉、石墨、热裂解炭前驱体和溶剂的重量比1 : 1-5 : 1-5 : 5-50。 The weight of the [0011] silicon powder, graphite, pyrolysis of the carbon precursor and a solvent ratio of 1: 1-5: 1-5: 5-50.

[0012] 所述微米硅粉和纳米硅粉的重量比优选为3-15 : 1。 Weight [0012] The micron silicon powder and nano-silicon powder is preferably 3-15: 1.

[0013] 所述微米硅粉的粒径范围为1-10微米,优选为1-5微米;纳米硅粉的粒径范围为10-50纳米,优选为20-40纳米。 Particle size range of [0013] the micron silicon powder is 10 microns, preferably 1-5 microns; particle size range of nanometer silica fume 10-50 nm, preferably 20-40 nm.

[0014] 所述石墨没有特殊要求,优选情况下为改性人造石墨,优选粒径范围为1-5微米。 [0014] The graphite has no special requirements, a modified artificial graphite, preferably a particle size range of 1-5 microns Preferably.

[0015] 所述热裂解炭前驱体可以为常规的各种能够在烧结条件下裂解生成炭单质的化合物,可以根据所用的热裂解炭前驱体选择合适的溶剂。 The [0015] pyrolysis of the carbon precursor may generate compound char elemental are conventional variety can be cleaved under sintering conditions, can select the appropriate solvents according to the pyrolysis of the carbon precursor used. 例如,所述热裂解炭前驱体可以为蔗糖、淀粉、糖精和葡萄糖中的一种或几种,所述溶剂可以为醇和水的混合溶剂;所述热裂解炭前驱体可以为浙青,所述溶剂可以为四氯化碳、喹啉和聚氯乙烯中的一种或几种;所述热裂解炭前驱体可以为酚醛树脂,所述溶剂可以为醇或酮;所述热裂解炭前驱体可以为聚丙乙烯腈,所述溶剂可以为二甲基吡咯烷酮;或者,所述热裂解炭前驱体可以为羟甲基纤维素和/或聚乙二醇,所述溶剂可以为水。 For example, the pyrolysis of the carbon precursor may be one or more of sucrose, starch, saccharine and glucose, and the solvent may be a mixed solvent of alcohol and water; the pyrolysis of the carbon precursor may be Zhejiang blue, the said solvent may be carbon tetrachloride, quinoline, and polyvinyl chloride is one or more; the pyrolysis of the carbon precursor may be a phenolic resin, the solvent may be an alcohol or a ketone; the thermal cracking of carbon precursor body may be poly vinyl nitrile, the solvent may be a two-methylpyrrolidone; or the pyrolysis of the carbon precursor may be a carboxymethyl cellulose and / or polyethylene glycol, the solvent may be water.

[0016] 优选情况下,所述热裂解炭前驱体为蔗糖、淀粉、糖精和葡萄糖中的一种或几种, 所述溶剂为体积比为1 : 3-5的乙醇和水。 [0016] Preferably, the pyrolysis of the carbon precursor is sucrose, starch, saccharin and glucose in one or more of the solvent is a volume ratio of 1: 3-5 ethanol and water.

[0017] 除去浆料中的溶剂的方法可以为常规的各种方法,例如可以将浆料在80-110°C下干燥3-6小时,或者在真空条件下将浆料干燥。 [0017] removing the solvent in the slurry can be conventional various methods, for example, the slurry at 80-110 ° C and dried for 3-6 hours, or the slurry was dried under vacuum.

[0018] 所述烧结的方法可以为常规的烧结方法。 [0018] The sintering process may be a conventional sintering method. 第一烧结的温度优选为600-750°C,时间优选为8-12小时;第二烧结的温度优选为900-1100°C,时间优选为10-25小时。 A first sintering temperature is preferably 600-750 ° C, time is preferably 8-12 hours; a second sintering temperature is preferably 900-1100 ° C, time is preferably 10-25 hours.

[0019] 所述惰性气体可以为不参与反应的任何气体,优选为氮气和零族元素气体中的一种或几种。 The [0019] inert gas may be one or more nitrogen and zero elements in the gas does not participate in the reaction of any gas, preferably.

[0020] 所述球磨的方法为本领域技术人员所公知。 [0020] The method of the ball are known to those skilled in the art. 优选使用行星式球磨机,第一球磨和第二球磨的条件各自包括:球料重量比优选为100-300 : 1,球磨转速优选为150-350转/ 分钟,球磨时间优选为20-30小时。 Preferably using a planetary ball mill, a first milling and the conditions of the second milling each comprising: a ball to powder weight ratio is preferably from 100 to 300: 1, the milling speed is preferably 150 to 350 revolutions / minute milling time is preferably 20-30 hours.

[0021] 本发明提供的锂离子电池负极包括导电基体和负载于该导电基体上的负极材料, 所述负极材料包括负极活性物质和粘合剂,其中,所述的负极活性物质包括由本发明所提供的方法制备的锂离子电池负极用复合材料。 [0021] The present invention provides a lithium ion battery negative electrode material comprising a conductive substrate and a load on the conductive substrate, said negative electrode material comprises an anode active material and a binder, wherein the negative electrode active material encompassed by the present invention a lithium ion battery produced by the method provided by the negative electrode composite material.

[0022] 所述负极导电基体可以为锂离子电池中常规的负极导电基体,如冲压金属,金属箔,网状金属,泡沫状金属,在本发明的具体实施方案中使用铜箔作为负极导电基体。 [0022] The negative electrode conductive substrate may be a lithium ion battery in a conventional negative electrode conductive substrate, such as a punched metal, metal foils, metal mesh, foamed metal, copper foil is used in specific embodiments of the present invention as the negative electrode conductive substrate .

[0023] 所述粘合剂的种类和含量为本领域技术人员所公知,例如含氟树脂和聚烯烃化合物如聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)、丁苯橡胶(SBR)、羟丙基甲基纤维素、羧甲基纤维素钠、羟乙基纤维素、聚乙烯醇中的一种或几种;一般来说,根据所用粘合剂种类的不同,以负极活性物质的重量为基准,负极粘合剂的含量为0. 01-10重量%,优选为0. 02-5重量%。 [0023] The kind and content of the binder are known to those skilled in the known art, e.g. fluorine resin and a polyolefin compound such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), styrene-butadiene rubber ( SBR), hydroxypropyl methyl cellulose, sodium carboxymethyl cellulose, hydroxyethyl cellulose, polyvinyl alcohol is one or more; in general, depending on the type of adhesive used, the negative electrode by weight of the active material as a reference, a negative electrode binder in an amount of 0. 01-10 wt%, preferably 0. 02-5 wt%.

[0024] 在所述负极材料内还可以包括导电剂以增加电极的导电性,降低电池内阻。 [0024] may further include a conductive agent in the negative electrode material to increase conductivity of the electrode, reducing the battery internal resistance. 所述导电剂没有特别限制,可以为本领域常规的负极导电剂,比如碳黑、镍粉、铜粉中的一种或几种。 The conductive agent is not particularly limited, and may be conventional in the negative electrode conductive agent art, such as carbon black, nickel powder, copper powder of one or more. 以负极活性物质的重量为基准,所述导电剂的含量为0-12重量%,优选为2-10重 In the negative electrode active material based on the weight content of said conductive agent is 0-12 wt%, preferably 2-10 weight

量%。 the amount%.

[0025] 本发明所提供的负极的制备方法包括将本发明所提供的离子电池负极活性物质、 粘合剂和溶剂混合,涂覆和/或填充在所述导电基体上,干燥,压延或不压延,即可得到所述负极。 [0025] The negative electrode production method according to the present invention include a negative electrode of the present invention provides ion battery active material, mixed with a binder and a solvent, coating and / or filling on the conductive substrate, drying, calendering or calendering, to obtain the negative electrode.

[0026] 所述的溶剂可以选自N-甲基吡咯烷酮(NMP)、二甲基甲酰胺(DMF)、二乙基甲酰胺(DEF)、二甲基亚砜(DMSO)、四氢呋喃(THF)以及水和醇类中的一种或几种。 [0026] The solvent may be selected from N- methylpyrrolidone (NMP), dimethylformamide (DMF), diethylformamide (DEF), dimethyl sulfoxide (DMSO), tetrahydrofuran (THF) and one or more of water and alcohols in. 溶剂的用量能够使所述糊状物具有粘性和流动性,能够涂覆到所述导电基体上即可。 The amount of the solvent enables the paste having a viscosity and flow characteristics, can be coated onto the conductive substrate can be. 一般来说,以负极活性物质的重量为基准,所述溶剂的含量50-150重量%,优选为70-120重量%。 In general, the negative electrode active material based on the weight content of 50-150 wt.% Of the solvent, preferably 70 to 120 wt%.

[0027] 所述干燥,压延的方法和条件为本领域技术人员所公知。 [0027] The drying method and conditions for calendering are known to those skilled in the art. 例如,所述干燥的温度一般为100_150°C。 For example, the drying temperature is generally 100_150 ° C.

[0028] 本发明提供的锂离子电池包括电极组和非水电解液,所述电极组和非水电解液密封在电池壳体内,所述电极组包括正极、负极和隔膜,其中,所述负极为本发明所提供的负极。 [0028] The present invention provides a lithium ion battery includes an electrode group and a nonaqueous electrolyte, the electrode group and the nonaqueous electrolyte sealed in a battery case, said electrode assembly comprising a positive electrode, a negative electrode and a separator, wherein the negative a negative electrode provided very present invention.

[0029] 由于本发明的改进之处只涉及锂离子电池的负极,因此在本发明提供的锂离子电池中,对电池的正极、隔膜和非水电解质溶液没有特别的限制,可以使用可在锂离子二次电池中使用的所有类型的正极、隔膜层和非水电解质溶液。 [0029] Since the improvement of the present invention is directed only to the negative electrode of lithium-ion battery, so the lithium ion battery of the present invention provides the positive electrode of the battery, a separator and a non-aqueous electrolyte solution is not particularly limited, and may be lithium all types of positive-ion secondary batteries, the separator layer and a non-aqueous electrolyte solution. 本领域的普通技术人员能够根据现有技术的教导,能够非常容易地选择和制备本发明所述锂离子二次电池的正极、隔膜层和非水电解质溶液,并由所述的正极、本发明的硅负极、隔膜层和非水电解质溶液制得本发明的锂离子二次电池。 Those of ordinary skill in the art can be in accordance with the teachings of the prior art, it can be very readily selected and the present invention is a positive electrode a lithium ion secondary battery, a separator layer, and a non-aqueous electrolyte solution was prepared, by the positive electrode, the present invention silicon negative electrode, a separator layer, and a non-aqueous electrolyte solution was prepared by lithium ion secondary battery of the present invention.

[0030] 所述正极的组成为本领域技术人员所公知。 [0030] The positive electrode composition known to those skilled in the art. 一般来说,正极包括导电基体及涂覆和/或填充于导电基体上的正极材料,所述正极材料包括正极活性物质、导电剂和粘合剂。 In general, the positive electrode comprising a conductive substrate and a coating and / or filled in the positive electrode material on a conductive substrate, the cathode material includes a cathode active material, a conductive agent and a binder.

[0031] 所述正极导电基体的种类已为本领域技术人员所公知,例如可以选自铝箔、铜箔、 冲孔钢带。 The type of the [0031] positive electrode conductive substrate are known to those skilled in the known art, for example, be selected from aluminum foil, copper foil, punched strip. 在本发明的具体实施方式中使用铝箔作为正极导电基体。 An aluminum foil as a positive electrode conductive substrate in the embodiment of the present invention.

[0032] 所述正极材料中的粘合剂的种类和含量为本领域技术人员所公知,例如含氟树脂和聚烯烃化合物如聚偏二氟乙烯(PVDF)、聚四氟乙烯(PTFE)和丁苯橡胶(SBR)中的一种或几种。 [0032] The species and levels of the positive electrode material of the binder are known to those skilled in the known art, e.g. fluorine resin and a polyolefin compound such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE) and one or more of styrene-butadiene rubber (SBR). 一般来说,根据所用粘合剂种类的不同,以正极活性物质的重量为基准,粘合剂的含量为0. 01-10重量%,优选为0. 02-5重量%。 Generally, depending on the type of adhesive used, the weight of the positive electrode active material, the content of the binder is 0. 01-10% by weight, preferably 0. 02-5 wt%.

[0033] 所属正极活性物质没有特别限制,可以为本领域常见的活性物质,比如钴酸锂、镍酸锂、磷酸铁锂和锰酸锂中的一种或几种。 [0033] ordinary positive electrode active material is not particularly limited, and common in the art of active substance may be present, such as lithium cobaltate, lithium nickelate, lithium iron phosphate and the lithium manganate of one or more.

[0034] 所述导电剂没有特别限制,可以为本领域常规的正极导电剂,比如乙炔黑、导电碳黑和导电石墨中的至少一种。 [0034] The conductive agent is not particularly limited, and may be conventional in the positive electrode conductive agent art, such as acetylene black, conductive carbon black and at least one electrically conductive graphite. 以正极活性物质的重量为基准,所述导电剂的含量为0. 5-15 重量%,优选为1-10重量%。 By weight of the positive electrode active material, the content of the conductive agent is 0. 5-15 wt%, preferably 1 to 10 wt%.

[0035] 所述隔膜设置于正极和负极之间,具有电绝缘性能和液体保持性能。 The [0035] The separator disposed between the positive and negative electrodes, having electrical insulating properties and liquid retention. 所述隔膜可以选自锂离子电池中所用的各种隔膜,如聚烯烃微多孔膜、聚乙烯毡、玻璃纤维毡、或超细玻璃纤维纸。 The membrane may be selected from various separator of lithium ion batteries are used, such as a polyolefin microporous membrane, polyethylene mat, glass mat, or microglass fiber paper. 所述隔膜的位置、性质和种类为本领域技术人员所公知。 The diaphragm position, the nature and the type known to those skilled in the art. [0036] 所述非水电解液为电解质锂盐和非水溶剂的混合溶液,对它没有特别限定,可以使用本领域常规的非水电解液。 [0036] The non-aqueous electrolyte solution as an electrolyte lithium salt and a mixed solution of nonaqueous solvent, it is not particularly limited, and a conventional nonaqueous electrolyte of the present art. 比如电解质锂盐选自六氟磷酸锂(LiPF6)、高氯酸锂、四氟硼酸锂、六氟砷酸锂、商化锂、氯铝酸锂及氟烃基磺酸锂中的一种或几种。 For example electrolyte lithium salt is selected from lithium hexafluorophosphate (of LiPF6), lithium perchlorate, lithium tetrafluoroborate, lithium hexafluoroarsenate, supplier, lithium, one or more of lithium, and lithium difluoro hydrocarbyl sulfonate chloro aluminum. 有机溶剂选用链状酸酯和环状酸酯混合溶液,其中链状酸酯可以为碳酸二甲酯(DMC)、碳酸二乙酯(DEC)、 碳酸甲乙酯(EMC)、碳酸甲丙酯(MPC)、碳酸二丙酯(DPC)以及其它含氟、含硫或含不饱和键的链状有机酯类中的至少一种,环状酸酯可以为碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸亚乙烯酯(VC)、Y-丁内酯(Y-BL)、磺内酯以及其它含氟、含硫或含不饱和键的环状有机酯类中的至少一种。 An organic solvent selected chain esters and cyclic esters mixed solution, wherein the chain esters may be dimethyl carbonate (DMC), diethyl carbonate (DEC), ethylmethyl carbonate (EMC), methyl propyl carbonate (the MPC), dipropyl carbonate (DPC), and other fluorine-containing, sulfur-containing or containing at least one cyclic ester chain organic esters unsaturated bond may be ethylene carbonate (EC), propylene carbonate at least one ester (PC), vinylene carbonate (VC), Y- butyrolactone (Y-BL), sultone, and other fluorine, sulfur or unsaturated bond-containing cyclic organic esters of . 电解液的注入量一般为1. 5-4. 9克/安时,电解液的浓度一般为0. 1-2. 0 摩/ 升。 Injection amount of the electrolytic solution is generally 1. 5-4. 9 g / Ah, the concentration of the electrolytic solution is generally 0. 1-2. 0 mole / l.

[0037] 按照本发明提供的锂离子电池的制备方法,除了所述负极按照本发明提供的方法制备之外,其它步骤为本领域技术人员所公知。 [0037] The production method of the present invention provides a lithium ion battery, in addition to the negative electrode and the outside the production method provided by the invention, other steps known to those skilled in the art. 一般来说,通过隔膜层将正极和负极缠绕隔开形成电极组,将得到的电极组和电解液密封在电池壳中,即可得到本发明提供的锂离子电池。 In general, the positive electrode and the negative electrode wound spaced apart to form an electrode group by a separator layer, an electrode group and an electrolyte sealing obtained in the battery case, to obtain a lithium ion battery of the present invention is provided. 位于正极与负极之间的隔膜层的卷绕方法为本领域技术人员所公知,在此不再赘述。 Located positive and negative electrodes between the diaphragm layer winding process known to those skilled in the well-known, not discussed here.

[0038] 下面将通过实施例来更详细地描述本发明。 [0038] The following will be by way of examples in more detail description of the invention.

[0039] 实施例1 [0039] Example 1

[0040] 该实施例用于说明本发明提供的锂离子电池负极用复合材料的制备方法。 [0040] The examples illustrate the preparation of the composite material of the present invention provides a lithium ion battery anode.

[0041] 配制500mL乙醇水溶液,乙醇和水的比例为体积比1 : 3. 5,加入50g蔗糖搅拌溶解完全,再在溶液中加入16克硅粉(粒径范围为1-5微米,购自北京有色金属研究院)、3克粒径范围为20-40纳米的硅粉(购自中彰国际)和35克人造改性石墨(粒径范围为1-5微米,购自深圳贝特瑞),搅拌均勻。 Ratio of [0041] prepared 500mL aqueous ethanol solution, ethanol and water in a volume ratio of 1: 3.5, was added 50g of sucrose and stirred to dissolve completely, then 16 g of silicon powder in a solution (particle size range of 1-5 microns, available from Beijing Nonferrous Metal Research Institute), 3 grams of a particle size range of 20-40 nanometers of silicon powder (available from SINOSI) and 35 g of artificial modified graphite (particle size range of 1-5 microns, commercially available from Shenzhen BTR ), stir. 然后在烤箱中100°C下烘烤12小时。 Then baked at an oven 100 ° C 12 h. 将干燥后的混合物在高温炉中氩气保护下650°C进行烧结,时间为10小时,然后在球料重量比为200 : 1,转速为300转/分钟的行星式球磨机中球磨20小时,过300目筛,然后在氩气保护下1000°C 下热处理20小时,取出在球料重量比为150 : 1,转速为300转/分钟的行星式球磨机中球磨20小时,取出后过400目筛,得到锂离子电池负极用复合材料Al。 The mixture was dried in a high temperature furnace in an argon atmosphere at 650 ° C sintered for 10 hours and then the ball feed weight ratio of 200: 1, 300 rpm / min planetary ball milled for 20 hours through 300 mesh sieve, and then heat-treated under an argon atmosphere 1000 ° C 20 hours, remove the ball to powder weight ratio of 150: 1, 300 rpm / min planetary ball milled for 20 hours after the removal through a 400 mesh sieve to obtain a lithium ion battery negative electrode composite material Al.

[0042] 实施例2 [0042] Example 2

[0043] 该实施例用于说明本发明提供的锂离子电池负极用复合材料的制备方法。 [0043] The examples illustrate the preparation of the composite material of the present invention provides a lithium ion battery anode.

[0044] 按照与实施例1相同的方法,得到锂离子电池负极用复合材料A2。 [0044] In the same manner as in Example 1 a method to obtain a lithium ion battery negative electrode composite material A2. 不同之处在于, 在乙醇水溶液中加入45克蔗糖,15克微米硅粉(粒径范围为1-5微米)、5克纳米硅粉(粒径范围为20-40纳米)和35克人造改性石墨(粒径范围为1-5微米),得到65克负极活性材料A2。 Except that the 45 grams of sucrose in an aqueous solution of ethanol, 15 g micron silicon powder (particle size range of 1-5 microns), 5 per gram of silicon powder (particle diameter range of 20-40 nm) and 35 g of artificial change graphite (particle size range of 1-5 microns), to give 65 g anode active material A2.

[0045] 实施例3 [0045] Example 3

[0046] 该实施例用于说明本发明提供的锂离子电池负极用复合材料的制备方法。 [0046] The examples illustrate the preparation of the composite material of the present invention provides a lithium ion battery anode.

[0047] 配制500mL乙醇水溶液,乙醇和水的比例为体积比1 : 4,加入40蔗糖搅拌溶解完全,再在溶液中加入20克硅粉(粒径范围为1-5微米)、4克粒径范围为20-40纳米的硅粉和35克人造改性石墨(粒径范围为1-5微米),搅拌均勻。 Ratio of [0047] prepared 500mL aqueous ethanol solution, ethanol and water in a volume ratio of 1: 4, 40 sugar and stirred to dissolve completely, then 20 g of silicon powder in a solution (particle diameter in the range of 1-5 microns), 4 g tablets diameter in the range of silicon powder and 35 g of artificial modified graphite 20-40 nm (size range 1-5 microns), mix well. 然后在烤箱中100°C烘12小时,将干燥后的混合物在高温炉中氩气保护下700°C进行烧结,时间为12小时,然后在球料重量比为250 : 1,转速为200转/分钟的行星式球磨机中球磨25小时,过300目筛,然后在氩气保护下1000°C下热处理14小时,取出在球料重量比为300 : 1,转速为250转/分钟的行星式球磨机中球磨25小时,取出后过400目筛,得到65克锂离子电池负极用复合材料A3。 Then in an oven 100 ° C oven for 12 hours, the mixture was dried under argon 700 ° C sintered in a high temperature furnace for 12 hours and then the ball feed weight ratio of 250: 1, 200 rpm / min planetary ball milled for 25 hours through a 300 mesh sieve, and then heat-treated under an argon atmosphere 1000 ° C 14 hours, remove the ball to powder weight ratio of 300: 1, speed 250 revolutions / minute in a planetary ball milled for 25 hours, taken out through a 400 mesh sieve, to give 65 g of lithium-ion battery negative electrode composite material A3.

[0048] 实施例4 [0048] Example 4

[0049] 该实施例用于说明本发明提供的锂离子电池负极用复合材料的制备方法。 [0049] The examples illustrate the preparation of the composite material of the present invention provides a lithium ion battery anode.

[0050] 配制500mL乙醇水溶液,乙醇和水的比例为体积比1 : 3,加入45g淀粉搅拌溶解完全,再在溶液中加入26克硅粉(粒径范围为1-5微米)、2克粒径范围为20-40纳米的硅粉和45克人造改性石墨(粒径范围为1-5微米),搅拌均勻。 Ratio of [0050] prepared 500mL aqueous ethanol solution, ethanol and water in a volume ratio of 1: 3, was added 45g starch stirred to dissolve completely, then added 26 g of silicon powder in a solution (particle diameter in the range of 1 to 5 microns), 2 g tablets diameter in the range of silicon powder and 45 g of artificial modified graphite 20-40 nm (size range 1-5 microns), mix well. 然后在烤箱中100°C烘12小时,将干燥后的混合物在高温炉中氩气保护下750°C进行烧结,时间为8小时,然后在球料重量比为200 : 1,转速为300转/分钟的行星式球磨机中球磨25小时,过300目筛,然后在氩气保护下1100°C下热处理12小时,取出在球料重量比为300 : 1,转速为250转/分钟的行星式球磨机中球磨12小时,取出后过400目筛,得到80克锂离子电池负极用复合材料A4。 Then in an oven 100 ° C oven for 12 hours, the mixture was dried under argon 750 ° C sintered in a high temperature furnace, for 8 hours and then the ball to powder weight ratio of 200: 1, 300 rpm / min planetary ball milled for 25 hours through a 300 mesh sieve, and then heat-treated under an argon atmosphere 1100 ° C 12 hours, remove the ball to powder weight ratio of 300: 1, speed 250 revolutions / minute in a planetary ball milled for 12 hours, taken out through a 400 mesh sieve, to give 80 g of lithium-ion battery negative electrode composite material A4.

[0051] 实施例5 [0051] Example 5

[0052] 该实施例用于说明本发明提供的锂离子电池负极用复合材料的制备方法。 [0052] The examples illustrate the preparation of the composite material of the present invention provides a lithium ion battery anode.

[0053] 配制500mL乙醇水溶液,乙醇和水的比例为体积比1 : 4. 5,加入30g糖精,搅拌溶解完全,再在溶液中加入25克硅粉(粒径范围为1-5微米)、5克粒径范围为20-40纳米的硅粉和30克人造改性石墨(粒径范围为1-5微米),搅拌均勻。 Ratio of [0053] prepared 500mL aqueous ethanol solution, ethanol and water in a volume ratio of 1: 4.5, 30g of saccharin, and stirred to dissolve completely, then 25 g of silicon powder in a solution (particle diameter in the range of 1-5 microns), 5 g size range of silicon powder and 30 g of artificial modified graphite 20-40 nm (size range 1-5 microns), mix well. 然后在烤箱中100°C烘12 小时,将干燥后的混合物在高温炉中氩气保护下600°C进行烧结,时间为12小时,然后在球料重量比为300 : 1,转速为350转/分钟的行星式球磨机中球磨30小时,过300目筛,然后在氩气保护下950°C下热处理14小时,取出在球料重量比为250 : 1,转速为150转/分钟的行星式球磨机中球磨20小时,取出后过400目筛,得到50克锂离子电池负极用复合材料A5。 Then in an oven 100 ° C oven for 12 hours, the mixture was dried in a high temperature furnace in an argon atmosphere at 600 ° C sintered for 12 hours, then more than 300 ball Material Weight: 1, speed of 350 revolutions / min planetary ball milled for 30 hours, over a 300-mesh sieve, and then heat-treated under an argon atmosphere 950 ° C 14 hours, remove the ball to powder weight ratio of 250: 1, speed 150 revolutions / minute in a planetary ball milled for 20 hours after the removal through a 400 mesh sieve, to give 50 g of lithium-ion battery negative A5 composite material.

[0054]实施例 6-10 [0054] Example 6-10

[0055] 实施例6-10分别用于制备含实施例1-5所得到的锂离子电池负极活性材料的电池A6-A10,并分别测定电池A6-A10的首次充放电容量和50次循环后容量保持率。 After [0055] Examples 6-10 are used for lithium ion batteries of Examples 1-5 obtained was prepared containing the negative electrodes of the battery active material A6-A10, and measured battery A6-A10 of the first charge and discharge capacity and 50 cycles, respectively, capacity retention rate.

[0056] 制备电池的方法如下: [0056] The method of preparing cell is as follows:

[0057] (1)负极的制作 [0057] (1) Production of Negative Electrode

[0058] 将100重量份硅碳复合材料、4重量份粘合剂聚四氟乙烯(PTFE)、3重量份导电剂炭黑加入到135重量份去离子水中,然后搅拌形成稳定、均一的负极浆料。 [0058] 100 parts by weight of silicon-carbon composite material, 4 parts by weight of a binder of polytetrafluoroethylene (PTFE), 3 parts by weight of the conductive agent is carbon black were added to 135 parts by weight of deionized water, followed by stirring to form a stable, negative homogeneous slurry.

[0059] 将该浆料均勻地涂布在长416毫米、宽45毫米、厚12微米的铜箔上,覆料量为体密度1. 8g/cm3,经120°C烘干,得到负极,其中含有1. 88克负极活性物质。 [0059] The slurry was uniformly coated on a 416 mm length, width 45 mm, thickness 12 m copper foil, coated amount was density 1. 8g / cm3, was 120 ° C and drying, to give a negative electrode, containing 1.88 g anode active material.

[0060] (2)正极的制作 [0060] (2) Production of Positive Electrode

[0061] 将正极活性物质钴酸锂(LiCoO2)、导电剂乙炔黑、粘结剂PVDF和有机溶剂N-二甲基吡咯烷酮(NMP)按照质量比LiCoO2 :乙炔黑:PVDF : NMP = 100 : 4 : 4 : 85混合搅拌均勻,制成正极浆料,将该浆料均勻地涂布在长424毫米、宽44毫米、厚16微米的铝箔上,然后120°C烘干,得到正极,其中含有8. 75克正极活性物质。 [0061] The positive electrode active material of lithium cobalt oxide (of LiCoO2), the conductive agent, acetylene black, PVDF as a binder and an organic solvent, N- dimethyl-methylpyrrolidone (NMP) at a mass ratio of LiCoO2: acetylene black: PVDF: NMP = 100: 4 : four eighty-five mixing uniformly to prepare a positive electrode slurry, the slurry was uniformly coated on a 424 mm, width 44 mm, a thickness of 16 micron aluminum foil, and then 120 ° C and drying, to give a positive electrode, containing 8.75 g of the positive electrode active material.

[0062] (3)电池的装配 [0062] (3) Battery Assembly

[0063] 将LiPF6与碳酸乙烯酯(EC)及碳酸二乙酯(DEC)配置成LiPF6浓度为1. 0摩尔/ 升的溶液(其中,EC与DEC的体积比为1 : 1),得到非水电解液。 [0063] LiPF6 was ethylene carbonate (EC) and diethyl carbonate (DEC) arranged LiPF6 concentration of 1.0 mol / L solution (wherein, EC and DEC in a volume ratio of 1: 1), to give non- aqueous electrolyte. 将(1)中得到的正极极片1、(2)中得到得负极极片与聚丙烯膜卷绕成一个方型离子电池的极芯,然后将非水电解液以3. 8g/Ah的量注入电池壳中,密封,制成锂离子电池。 The positive electrode (1) obtained in the pole piece 1, (2) was obtained negative electrode sheet and the polypropylene film wound electrode core a square-ion battery, and a nonaqueous electrolytic solution 3. 8g / Ah of amount injected into the battery case, the seal, a lithium ion battery.

[0064] 测定电池首次充放电性能、50次循环后容量保持率和比容量的方法如下: [0064] Determination of the battery first charge and discharge performance after 50 cycles Capacity retention ratio and the specific capacity as follows:

[0065] (1)测定首次充放电容量,方法为以IC (1C为设计容量,本发明的IC为1000毫安) 的电流充电至4. 2V,然后以0. 5C电流放电至2. 7V,记录所得的电池充放电容量值。 [0065] (1) Measurement of initial discharge capacity, the method is to IC (1C design capacity, the IC of the present invention is 1000 mA) of current charging to 4. 2V, and then discharged to 2. 7V to 0. 5C current recording the resultant battery charge-discharge capacity.

[0066] 测定结果如表1所示。 [0066] The measurement results are shown in Table 1.

[0067] (2)测定50次循环后保持率,测定方法为以IOmA的恒定电流对电池进行恒流充电,充电截至电压4. 2V,在电压升至4. 2V以后进行恒压充电,截至电流2. 5mA ;搁置10分钟,以IOmA的电流放电至3. 0V,测定得到电池的初始放电容量。 [0067] (2) holding ratio measuring method measured after 50 cycles with a constant current IOmA the battery constant current charging, the charging ended voltage 4. 2V, constant voltage charging at the voltage was raised to 4. After 2V, as at current 2. 5mA; hold for 10 minutes at a current IOmA discharged to 3. 0V, was measured to obtain an initial discharge capacity of the battery. 搁置10分钟后,重复以上步骤,作连续的充放电测试,得到电池50次循环后的放电电池容量,按照下式计算50次循环后电池的放电容量保持率。 After leaving for 10 minutes, repeating the above steps for the continuous charge and discharge test, to obtain discharge of the battery capacity after 50 cycles of the battery, according to the 50 cycles is calculated as the discharge capacity retention ratio.

[0068] 放电容量保持率=50次循环后放电容量/初始放电容量X 100 %测定结果如表1 所示。 [0068] Discharge capacity retention ratio = discharge capacity / As shown in Table 1 100% measurement result of the initial discharge capacity X after 50 cycles.

[0069] (3)测定比容量,测定方法为25°C下将电池以IC电流恒流充电至3. 8V,而后转恒电压充电,截止电流0. 05C ;然后,再将电池以IC电流恒流放电至2. 0V,得到电池常温IC电流放电至2. OV的容量,以该放电容量与负极活性物质的质量的比值作为比容量。 [0069] (3) Measurement of specific capacity measuring method of 25 ° C for the battery to IC constant current charge to 3. 8V, then transfer constant-voltage charging, off current 0. 05C; Then, the battery back to IC current constant current discharge to 2. 0V, to obtain battery ambient temperature IC current discharge to 2. OV capacity to a discharge capacity of the negative electrode mass of the active substance as the ratios of specific capacity.

[0070] 测定结果如表1所示。 [0070] The measurement results are shown in Table 1.

[0071] 比较例1 [0071] Comparative Example 1

[0072] 该比较例用于制备仅使用微米硅粉制备的碳硅复合材料Bi。 [0072] The Comparative Example for the preparation of only prepared using micron silicon powder carbon-silicon composite Bi.

[0073] 按照与实施例1相同的方式制备碳硅复合材料Bi,不同之处在于,在溶剂中加入19克微米硅粉(粒径范围为1-5微米,购自北京有色金属研究院);将干燥后的混合物在氩气保护下1000°C下热处理30小时,取出在球料重量比为150 : 1,转速为300转/分钟的行星式球磨机中球磨20小时,取出后过400目筛。 [0073] in accordance with the carbon-silicon composite Bi prepared in the same manner as in Example 1, except that the addition of 19 g m silicon powder in a solvent (particle size range of 1-5 microns, commercially available from Beijing Nonferrous Metal Research Institute) ; the mixture after the dry heat treatment for 30 hours under an argon atmosphere for 1000 ° C, taken out of the ball feed weight ratio of 150: planetary ball 1, at 300 rpm / minute in a ball mill for 20 hours after taken out through a 400 mesh screen.

[0074] 比较例2 [0074] Comparative Example 2

[0075] 该比较例用于制备仅使用纳米硅粉制备的碳硅复合材料B2。 [0075] The Comparative Example for the preparation of only a carbon-silicon composite material B2 prepared nanometer silica fume.

[0076] 按照与实施例1相同的方式制备碳硅复合材料B2,不同之处在于,在溶剂中加入19克径范围为20-40纳米的硅粉(购自中彰国际);将干燥后的混合物在氩气保护下1000°C下热处理30小时,取出在球料重量比为150 : 1,转速为300转/分钟的行星式球磨机中球磨20小时,取出后过400目筛。 [0076] according to the embodiment same manner as Example 1 Preparation of a carbon silicon composites B2, except that the addition of 19 g size range of 20-40 nm silicon powder in a solvent (available from SINOSI); after drying the mixture was heat treated for 30 hours under an argon atmosphere for 1000 ° C, taken out of the ball feed weight ratio of 150: 1, 300 rpm / min planetary ball milled for 20 hours, taken out through a 400 mesh sieve.

[0077] 比较例3-4 [0077] Comparative Examples 3-4

[0078] 比较例3-4用于制备由比较例1-2所提供的具有球形核壳结构的碳硅复合材料作为负极材料的电池B3-4,并测定电池B3-4的首次充放电容量和50次循环后容量保持率。 [0078] Comparative Example 3-4 The carbon-silicon composite material with a spherical shell structure prepared in Comparative Example 1-2 is provided as a battery anode material, B3-4, and measuring the first charge-discharge capacity of the battery B3-4 of and after 50-cycle capacity retention rate.

[0079] 按照与实施例6-10相同的方法制得电池B3-4,不同之处在于所使用的负极活性材料为由比较例1-2得到的具有球形核壳结构的碳硅复合材料。 [0079] in accordance with the negative electrode active material of the embodiment same method as Example 6-10 was prepared cells B3-4, except that used by carbon-silicon composite material with a spherical shell structure obtained in Comparative Example 1-2.

[0080] 按照与实施例6-10相同的方法测定电池B3-4的首次充放电容量、50次循环后容量保持率和比容量,测定结果如表1所示。 [0080] Following the same method as 6-10 measured first charge and discharge of the battery B3-4 capacity after 50 cycles Capacity retention ratio and the specific capacity, measured results shown in Table 1. Example.

[0081] 表1 [0081] TABLE 1

[0082] [0082]

Figure CN101442124BD00091

[0083] 从表1所示的测定结果可以看出,实施例6-10中由复合材料A1-A5组成的电池A6-A10的首次充放电容量明显高于对比例3-4的电池B3-4的首次充放电容量,另外,由复合材料A1-A5组成的电池A6-A10的50次循环后容量保持率和比容量也明显高于对比例3-4的电池B3-4的50次循环后容量保持率和比容量,说明由本发明提供的方法制备的锂离子电池负极用复合材料具有较高的比容量,并改善锂离子电池的首次充放电容量和循环性能。 [0083] As can be seen from the measurement results shown in Table 1, batteries of Examples 6 to 10 of a composite material A1-A5 consisting of embodiment A6-A10 of the first charge and discharge capacity is significantly higher than the battery of Comparative Example 3-4 B3- first charge-discharge capacity of 4, in addition, after 50 cycles of the battery of a composite material A1-A5 composed of A6-A10 capacity retention ratio and the specific capacity was significantly higher than 50 cycles of the battery of Comparative Example 3-4 B3-4 of after the capacity retention ratio and the specific capacity of the lithium ion batteries produced by the method of the present invention provides a negative electrode having a higher specific capacity of composite material, and to improve initial charge-discharge capacity and cycle performance of the lithium ion battery.

Claims (9)

  1. 1. 一种锂离子电池负极用复合材料的制备方法,其特征在于,该方法包括将硅粉、石墨、热裂解炭前驱体和溶剂混合均勻,制得浆料,其中,所述硅粉包括微米硅粉和纳米硅粉, 微米硅粉的粒径范围为1-10微米,纳米硅粉的粒径范围为10-50纳米,所述微米硅粉和纳米硅粉的重量比为2-20 : 1 ;除去浆料中的溶剂并在惰性气体保护下进行第一烧结,然后进行第一球磨,再在惰性气体保护下进行第二烧结,然后进行第二球磨,其中,第二烧结的温度高于第一烧结的温度。 A lithium-ion battery cathode, characterized in that the method for preparing a composite material, the method comprising silicon powder, graphite, mixed pyrolysis of the carbon precursor and a solvent uniformly to prepare a slurry, wherein said silicon powder comprising micron silicon powder and nano-silicon powder, a particle size range micron silicon powder from 1 to 10 microns, a particle size range of nanometer silica fume 10 to 50 nanometers, the weight of the micron silicon powder and nano silica fume ratio of 2 to 20 : 1; removing the slurry solvent and under inert gas protection first sintered and then subjected to a first ball mill, and then second sintered under an inert atmosphere, followed by a second ball, wherein the second sintering temperature higher than the first sintering temperature.
  2. 2.根据权利要求1所述的方法,其中,硅粉、石墨、热裂解炭前驱体和溶剂的重量比1:1-5: 1-5 : 5-50。 The method according to claim 1, wherein the weight of the silicon powder, graphite, pyrolysis of the carbon precursor and a solvent ratio of 1: 1-5: 1-5: 5-50.
  3. 3.根据权利要求1所述的方法,其中,微米硅粉和纳米硅粉的重量比为3-15 : 1。 The method according to claim 1, wherein the weight micron silicon powder and nano silica fume ratio of 3-15: 1.
  4. 4.根据权利要求1所述的方法,其中,第一烧结的温度为600-750°C,时间为8-12小时;第二烧结的温度为900-1100°C,时间为10-25小时。 4. The method according to claim 1, wherein the first sintering temperature is 600-750 ° C, time is 8-12 hours; a second sintering temperature of 900-1100 ° C, time 10 to 25 hours .
  5. 5.根据权利要求1所述的方法,其中,第一球磨和第二球磨的条件各自包括:使用行星式球磨机,球料重量比为100-300 : 1,球磨转速为150-350转/分钟,球磨时间为20-30小时。 The method according to claim 1, wherein the first ball and the conditions of the second milling each comprising: a planetary ball mill, ball to powder weight ratio of 100-300: 1, the milling speed of 150-350 rev / min milling time is 20-30 hours.
  6. 6.根据权利要求1或2所述的方法,其中,所述热裂解炭前驱体为蔗糖、淀粉、糖精和葡萄糖中的一种或几种,所述溶剂为醇和水的混合溶剂;所述热裂解炭前驱体为浙青,所述溶剂为四氯化碳、喹啉和聚氯乙烯中的一种或几种;所述热裂解炭前驱体为酚醛树脂,所述溶剂为醇或酮;所述热裂解炭前驱体为聚丙乙烯腈,所述溶剂为二甲基吡咯烷酮;或者,所述热裂解炭前驱体为羟甲基纤维素和/或聚乙二醇,所述溶剂为水。 6. A method according to claim 1 or 2, wherein the pyrolysis of the carbon precursor is sucrose, starch, saccharin and glucose in one or several of the mixed solvent of alcohol and water solvent; the thermal cracking of a carbon precursor as Zhejiang green, said solvent is one or more of carbon tetrachloride, quinoline, and polyvinyl chloride; the pyrolysis of the carbon precursor is a phenolic resin, the solvent is an alcohol or a ketone ; the pyrolysis of the carbon precursor is a poly vinyl nitrile, the solvent is dimethyl pyrrolidone; or the pyrolysis of the carbon precursor is hydroxymethyl cellulose and / or polyethylene glycol, the solvent is water .
  7. 7.根据权利要求1或2所述的方法,其中所述热裂解炭前驱体为蔗糖、淀粉、糖精和葡萄糖中的一种或几种,所述溶剂为体积比为1 : 3-5的乙醇和水。 7. The method of claim 1 or claim 2, wherein the pyrolysis of the carbon precursor is sucrose, starch, saccharin and glucose in one or more of the solvent is a volume ratio of 1: 3-5 ethanol and water.
  8. 8. —种锂离子电池负极,该负极包括导电基体和负载于该导电基体上的负极材料,所述负极材料包括负极活性物质和粘合剂,其特征在于,所述负极活性物质包括由权利要求1-7任意一项所述方法制备的锂离子电池负极用复合材料。 8. - one lithium ion battery anode, the anode comprising a conductive substrate and a load on the conductive substrate of the negative electrode material, the anode material includes an anode active material and a binder, wherein the negative active material includes a claim requirements 1-7 arbitrary lithium ion battery prepared by the method of one negative electrode composite material.
  9. 9. 一种锂离子电池,该电池包括电极组和非水电解液,所述电极组和非水电解液密封在电池壳体内,所述电极组包括正极、负极和隔膜,其特征在于,所述负极为权利要求8所述的负极。 A lithium ion battery which comprises an electrode group and a nonaqueous electrolyte, the electrode group and the nonaqueous electrolyte sealed in a battery case, said electrode assembly comprising a positive electrode, a negative electrode and a separator, characterized by negative electrode 8 described later is extremely negative claims.
CN 200710188356 2007-11-19 2007-11-19 Method for preparing composite material of lithium ion battery cathode, and cathode and battery CN101442124B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200710188356 CN101442124B (en) 2007-11-19 2007-11-19 Method for preparing composite material of lithium ion battery cathode, and cathode and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200710188356 CN101442124B (en) 2007-11-19 2007-11-19 Method for preparing composite material of lithium ion battery cathode, and cathode and battery

Publications (2)

Publication Number Publication Date
CN101442124A true CN101442124A (en) 2009-05-27
CN101442124B true CN101442124B (en) 2011-09-07

Family

ID=40726455

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200710188356 CN101442124B (en) 2007-11-19 2007-11-19 Method for preparing composite material of lithium ion battery cathode, and cathode and battery

Country Status (1)

Country Link
CN (1) CN101442124B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
GB0601318D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
GB0713895D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Production
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US20130059205A1 (en) * 2010-03-26 2013-03-07 Hideyuki Yamamura Method for manufacturing electrode active material
GB201005979D0 (en) 2010-04-09 2010-05-26 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
CN102859760B (en) * 2010-04-26 2015-06-03 丰田自动车株式会社 Method of producing electrode active substance
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
CN101969111B (en) * 2010-09-30 2013-09-04 湛江市聚鑫新能源有限公司 Silicon-carbon alloy cathode material for lithium ion batteries and preparation method thereof
CN102790204B (en) * 2011-05-19 2015-06-10 中国科学院宁波材料技术与工程研究所 Preparation method of silicon carbon lithium ion battery cathode material
GB2492167B (en) 2011-06-24 2013-12-11 Nexeon Ltd Structured particles
GB2495951B (en) 2011-10-26 2014-07-16 Nexeon Ltd A composition for a secondary battery cell
GB2498802B (en) * 2012-01-30 2014-06-11 Nexeon Ltd Composition comprising particulate electroactive material
WO2013114094A1 (en) 2012-01-30 2013-08-08 Nexeon Limited Composition of si/c electro active material
GB2499984B (en) 2012-02-28 2014-08-06 Nexeon Ltd Composite particles comprising a removable filler
CN102709602B (en) * 2012-05-22 2014-08-06 株洲市高远电池有限公司 Manufacturing method of high energy-density lithium-ion secondary battery
GB2502625B (en) 2012-06-06 2015-07-29 Nexeon Ltd Method of forming silicon
GB2507535B (en) 2012-11-02 2015-07-15 Nexeon Ltd Multilayer electrode
CN103311514B (en) * 2013-06-05 2015-12-09 深圳市斯诺实业发展有限公司 A modified method of preparing a lithium ion battery graphite negative electrode material
CN104868159A (en) * 2015-06-05 2015-08-26 田东 Preparation method for modified graphite anode material
CN106207186A (en) * 2016-08-12 2016-12-07 浙江美都墨烯科技有限公司 Si/C-graphene composite material and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1705150A (en) 2004-05-31 2005-12-07 潘树明 Method for making negative electrode material of lithium ion cell
CN1738081A (en) 2005-06-22 2006-02-22 浙江大学 Composite negative pole material of Li-ion battery and its preparing process
CN1761089A (en) 2005-10-27 2006-04-19 中国科学院上海硅酸盐研究所 Composite cathode material of silicon/carbon/graphite in lithium ion batteries, and preparation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1705150A (en) 2004-05-31 2005-12-07 潘树明 Method for making negative electrode material of lithium ion cell
CN1738081A (en) 2005-06-22 2006-02-22 浙江大学 Composite negative pole material of Li-ion battery and its preparing process
CN1761089A (en) 2005-10-27 2006-04-19 中国科学院上海硅酸盐研究所 Composite cathode material of silicon/carbon/graphite in lithium ion batteries, and preparation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2006-228640A 2006.08.31

Also Published As

Publication number Publication date Type
CN101442124A (en) 2009-05-27 application

Similar Documents

Publication Publication Date Title
JP2007053083A (en) Nonaqueous electrolyte secondary battery and method of manufacturing same
JP2005135925A (en) Electrode material and its manufacturing method, and nonaqueous secondary battery and its manufacturing method
JP2003303588A (en) Electrode material and method of manufacturing the same, and negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
CN101609891A (en) Si/c composite, cathode active materials, and lithium battery including the same
CN101562244A (en) Method for preparing elemental sulfur composite material used by lithium secondary battery
CN101777648A (en) Preparation method of monodisperse lithium iron phosphate nanometer material and lithium-ion secondary battery
CN1532984A (en) Method for producing lithium ion secondary cell
CN101562261A (en) Lithium-sulfur battery and preparation method thereof
CN1567617A (en) Method for preparing a carbon cathode material of lithium ion battery
CN102769126A (en) Method for preparing nano-sulfur / graphene oxide composite electrode material
CN102569761A (en) Titanium dioxide/graphene nanocomposite material and preparation method and application thereof
CN1780031A (en) Anode of lithium ion cell and lithium ion cell
CN101891930A (en) Carbon nano tube-containing sulfur-based composite cathode material and preparation method thereof
CN101439972A (en) Silicon-carbon composite material, preparation thereof, battery cathode and lithium ionic cell
CN102479948A (en) Cathode active material of lithium ion battery, preparation method thereof and lithium ion battery
JP2013229163A (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
CN101478041A (en) Positive pole active substance, positive pole and battery
CN101442124A (en) Method for preparing composite material of lithium ion battery cathode, and cathode and battery
CN102983361A (en) Electrolyte for Li-S battery, preparation method thereof, and Li-S battery containing same
CN101017893A (en) A tin carbon compound electrode material for lithium ion battery cathode and preparing method
CN101877407A (en) Cathode active material, preparation method thereof and battery
JP2003263986A (en) Electrode material and lithium battery using the same
CN102208645A (en) Lithium sulfur battery anode composite material, anode and lithium sulfur battery
CN102820454A (en) Electrode composite material, its preparation method, its anode, and battery possessing anode
CN103579590A (en) Preparation method for coating anode material of lithium battery

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted