JP2002279974A - Method of manufacturing electrode for secondary battery - Google Patents

Method of manufacturing electrode for secondary battery

Info

Publication number
JP2002279974A
JP2002279974A JP2001078203A JP2001078203A JP2002279974A JP 2002279974 A JP2002279974 A JP 2002279974A JP 2001078203 A JP2001078203 A JP 2001078203A JP 2001078203 A JP2001078203 A JP 2001078203A JP 2002279974 A JP2002279974 A JP 2002279974A
Authority
JP
Japan
Prior art keywords
thin film
electrode
active material
secondary battery
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001078203A
Other languages
Japanese (ja)
Inventor
Koichi Nishimura
康一 西村
Hiromasa Yagi
弘雅 八木
Hisaki Tarui
久樹 樽井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2001078203A priority Critical patent/JP2002279974A/en
Publication of JP2002279974A publication Critical patent/JP2002279974A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To manufacture an electrode for secondary battery, having a high discharge capacity and superior charging and discharging cycle life characteristics and making it hard for wrinkles to be produced on the collector by charging and discharging. SOLUTION: In this method of manufacturing an electrode for secondary battery formed by depositing active material film 4 on the collector 1, meshes 3 are disposed above the collector 1, and the active material film 4 is stacked through the meshes 3.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
などの二次電池用電極を製造する方法及びこの方法によ
り製造された二次電池用電極に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing an electrode for a secondary battery such as a lithium secondary battery and an electrode for a secondary battery manufactured by this method.

【0002】[0002]

【従来の技術】近年、リチウム二次電池の開発が盛んに
行われている。リチウム二次電池は、用いられる電極活
物質により、充放電電圧、充放電サイクル寿命特性、保
存特性などの電池特性が大きく左右される。
2. Description of the Related Art In recent years, lithium secondary batteries have been actively developed. In a lithium secondary battery, battery characteristics such as charge / discharge voltage, charge / discharge cycle life characteristics, and storage characteristics greatly depend on the electrode active material used.

【0003】リチウムを吸蔵・放出することができる電
極活物質の中でも、シリコンは、リチウムと合金化する
ことによりリチウムを吸蔵することができる物質であ
り、その理論容量が大きいことから種々検討されてい
る。しかしながら、シリコンは合金化によりリチウムを
吸蔵するものであるので、充放電反応に伴う体積の膨張
収縮が大きい。このため、シリコン粒子を活物質として
用いたリチウム二次電池用電極では、活物質の微粉化や
集電体からの剥離が起こるなどの理由により、充放電サ
イクル特性が悪く、実用化されるに至っていない。
[0003] Among the electrode active materials capable of inserting and extracting lithium, silicon is a material capable of inserting lithium by alloying with lithium, and has been studied variously because of its large theoretical capacity. I have. However, since silicon absorbs lithium by alloying, volume expansion and contraction associated with charge / discharge reactions are large. For this reason, electrodes for lithium secondary batteries using silicon particles as an active material have poor charge / discharge cycle characteristics due to the fact that the active material is pulverized and peeled off from the current collector, and thus are not put into practical use. Not reached.

【0004】[0004]

【発明が解決しようとする課題】本出願人は、電解銅箔
などの銅箔の上にCVD法やスパッタリング法により形
成したシリコン薄膜からなる電極を、リチウム二次電池
用電極として用いることにより、放電容量が高く、かつ
充放電サイクル寿命特性に優れたリチウム二次電池が得
られることを見出している(特願2000−32120
1号)。これらの電極においては、充放電反応により薄
膜の厚み方向に切れ目が形成されることにより、薄膜が
柱状に分離され、柱状部分の周辺には空隙が形成され
る。このような空隙により、充放電反応の際の活物質の
体積の膨張収縮を緩和することができるものと思われ
る。
SUMMARY OF THE INVENTION The present applicant uses an electrode made of a silicon thin film formed on a copper foil such as an electrolytic copper foil by a CVD method or a sputtering method as an electrode for a lithium secondary battery. It has been found that a lithium secondary battery having a high discharge capacity and excellent charge-discharge cycle life characteristics can be obtained (Japanese Patent Application No. 2000-32120).
No. 1). In these electrodes, a cut is formed in the thickness direction of the thin film by the charge / discharge reaction, whereby the thin film is separated into a columnar shape, and a void is formed around the columnar portion. It is thought that such voids can reduce expansion and contraction of the volume of the active material during the charge / discharge reaction.

【0005】しかしながら、このような電極において
は、充放電反応による活物質の体積の膨張収縮による応
力が集電体に働き、集電体に皺が発生する場合があっ
た。集電体に皺が発生すると、電池缶内に収納した時の
体積当たりのエネルギー密度が低下することとなる。
[0005] However, in such an electrode, stress due to expansion and contraction of the volume of the active material due to a charge / discharge reaction acts on the current collector, and wrinkles may occur in the current collector. When wrinkles occur in the current collector, the energy density per volume when stored in the battery can is reduced.

【0006】本発明の目的は、放電容量が高く、充放電
サイクル寿命特性に優れ、かつ充放電反応に伴う皺が集
電体に生じにくい二次電池用電極の製造方法を提供する
ことにある。
An object of the present invention is to provide a method for producing an electrode for a secondary battery having a high discharge capacity, excellent charge-discharge cycle life characteristics, and in which wrinkles due to a charge-discharge reaction are unlikely to occur on a current collector. .

【0007】[0007]

【課題を解決するための手段】本発明は、集電体上に活
物質薄膜を堆積させて形成する二次電池用電極の製造方
法であり、集電体の上方にメッシュを配置し、該メッシ
ュを通して活物質薄膜を堆積させることを特徴としてい
る。
SUMMARY OF THE INVENTION The present invention is a method of manufacturing an electrode for a secondary battery formed by depositing an active material thin film on a current collector, wherein a mesh is arranged above the current collector, and It is characterized in that an active material thin film is deposited through a mesh.

【0008】本発明によれば、メッシュの孔に対応する
集電体の領域には、相対的に厚みが厚くなるように活物
質薄膜が形成される。また、メッシュの枠に相当する領
域には相対的に厚みが薄い活物質薄膜が形成されるか、
あるいは活物質薄膜が形成されない。一般に、集電体の
近くにメッシュを配置することにより、メッシュの枠部
分に相当する領域に形成される薄膜の厚みが薄くなる傾
向にあり、メッシュの枠に相当する領域において活物質
薄膜を形成させないようにするためには、できるだけメ
ッシュを集電体の近くに配置する。好ましくは、集電体
に密着するようにメッシュを配置する。
According to the present invention, an active material thin film is formed in a region of the current collector corresponding to the hole of the mesh so as to be relatively thick. Also, a relatively thin active material thin film is formed in a region corresponding to the mesh frame,
Alternatively, no active material thin film is formed. Generally, by arranging a mesh near the current collector, the thickness of a thin film formed in a region corresponding to a frame portion of the mesh tends to be thin, and an active material thin film is formed in a region corresponding to a mesh frame. To avoid this, the mesh is placed as close as possible to the current collector. Preferably, a mesh is arranged so as to be in close contact with the current collector.

【0009】本発明によれば、活物質薄膜の厚みの厚い
領域がメッシュの孔に対応して島状に分散して存在する
活物質薄膜を形成することができる。本発明に従い形成
された活物質薄膜では、厚みの厚い島状の領域における
体積の膨張収縮を、その周囲の厚みの薄い領域あるいは
薄膜が存在しない領域で吸収することができるので、活
物質薄膜の体積の膨張及び収縮による応力が集電体に働
くのを緩和することができ、集電体に皺が発生するのを
抑制することができる。
According to the present invention, it is possible to form an active material thin film in which thick regions of the active material thin film are dispersed in an island shape corresponding to the holes of the mesh. In the active material thin film formed according to the present invention, the expansion and contraction of the volume in the thick island-like region can be absorbed in the surrounding thin region or the region where the thin film does not exist. It is possible to alleviate the stress due to the expansion and contraction of the volume acting on the current collector, and to suppress the occurrence of wrinkles in the current collector.

【0010】本発明に従う好ましい実施形態では、メッ
シュの孔に対応した領域にのみ活物質薄膜を堆積して形
成する。このようにして形成された活物質薄膜において
は、活物質薄膜の島状部分の周囲に活物質薄膜が存在し
ないため、活物質薄膜の体積膨張を十分に緩和すること
ができ、集電体に応力が働き集電体に皺が発生するのを
より効果的に防止することができる。
In a preferred embodiment according to the present invention, the active material thin film is deposited and formed only in the region corresponding to the holes of the mesh. In the active material thin film formed in this way, since the active material thin film does not exist around the island-shaped portion of the active material thin film, the volume expansion of the active material thin film can be sufficiently reduced, and the It is possible to more effectively prevent the current collector from wrinkling due to the stress.

【0011】本発明においては、集電体上に予め活物質
の連続した薄膜を形成しておき、この薄膜の上にメッシ
ュを通して活物質薄膜を堆積させてもよい。この下地層
となる連続薄膜は、例えば集電体の上方にメッシュを配
置せずに活物質薄膜を堆積させることにより形成するこ
とができる。このように連続した活物質薄膜を形成した
後、集電体の上方にメッシュを配置し、連続薄膜を形成
した時と同様の薄膜形成方法で活物質薄膜を形成するこ
とができる。このような方法によれば、同一の薄膜形成
装置内で下地層となる連続薄膜とその上に形成する活物
質薄膜を形成することができる。下地層となる連続した
活物質薄膜の厚みは、特に限定されるものではないが、
片面あたり10μm以下であることが好ましい。
In the present invention, a continuous thin film of the active material may be formed on the current collector in advance, and the active material thin film may be deposited on the thin film through a mesh. The continuous thin film serving as the underlayer can be formed, for example, by depositing an active material thin film without disposing a mesh above the current collector. After forming the continuous active material thin film in this manner, a mesh is arranged above the current collector, and the active material thin film can be formed by the same thin film forming method as when the continuous thin film is formed. According to such a method, a continuous thin film serving as a base layer and an active material thin film formed thereon can be formed in the same thin film forming apparatus. The thickness of the continuous active material thin film serving as an underlayer is not particularly limited,
It is preferably 10 μm or less per side.

【0012】メッシュの孔に対応する部分にのみ活物質
薄膜を堆積させ、メッシュの枠に対応する部分に活物質
薄膜を堆積させないようにする場合には、集電体または
集電体上の上記連続薄膜の上にメッシュを密着させた状
態で活物質薄膜を堆積させることが好ましい。このよう
にして形成した活物質薄膜は、上記のように、島状部分
の周囲に薄膜が存在しないため、島状部分の体積膨張収
縮による応力を十分に緩和することができ、集電体に皺
が発生するのをより効果的に防止することができる。
In the case where the active material thin film is deposited only on the portion corresponding to the hole of the mesh and the active material thin film is not deposited on the portion corresponding to the frame of the mesh, the above-mentioned current collector or the above-mentioned current collector may be used. It is preferable to deposit the active material thin film in a state where the mesh is in close contact with the continuous thin film. As described above, the active material thin film formed as described above does not have a thin film around the island portion, so that the stress due to the volume expansion and contraction of the island portion can be sufficiently relaxed, and the current collector The generation of wrinkles can be more effectively prevented.

【0013】本発明に従い製造される二次電池用電極を
リチウム二次電池用電極として用いる場合、活物質薄膜
としては、リチウムを吸蔵・放出する活物質からなる薄
膜が形成される。リチウムを吸蔵・放出する活物質とし
て、リチウムを合金化することにより吸蔵する活物質が
挙げられる。このような活物質としては、シリコン、ゲ
ルマニウム、アルミニウム、スズなどの薄膜が挙げられ
る。これらの中でも、シリコンは、その充放電容量が高
いので、シリコン薄膜またはシリコンを含む薄膜が好ま
しく用いられる。シリコンを含む薄膜としては、シリコ
ンを50原子%以上含む薄膜が好ましい。また、シリコ
ン薄膜またはシリコンを含む薄膜は、非晶質または微結
晶薄膜であることが好ましい。
When the electrode for a secondary battery manufactured according to the present invention is used as an electrode for a lithium secondary battery, the active material thin film is formed of a thin film made of an active material that absorbs and releases lithium. Examples of the active material that stores and releases lithium include an active material that stores and absorbs lithium by alloying. Examples of such an active material include thin films of silicon, germanium, aluminum, tin, and the like. Among these, silicon has a high charge / discharge capacity, and therefore, a silicon thin film or a thin film containing silicon is preferably used. As the thin film containing silicon, a thin film containing 50 atomic% or more of silicon is preferable. Further, the silicon thin film or the thin film containing silicon is preferably an amorphous or microcrystalline thin film.

【0014】本発明における活物質薄膜の形成方法とし
ては、気相から薄膜を形成する方法及び液相から薄膜を
形成する方法が挙げられる。気相から薄膜を堆積して形
成する方法としては、スパッタリング法、真空蒸着法、
CVD法、溶射法などが挙げられる。また、液相から薄
膜を堆積する方法としては、電解めっき法及び無電解め
っき法などが挙げられる。
The method for forming an active material thin film in the present invention includes a method for forming a thin film from a gas phase and a method for forming a thin film from a liquid phase. As a method of depositing and forming a thin film from a gas phase, a sputtering method, a vacuum deposition method,
CVD method, thermal spraying method and the like can be mentioned. Examples of the method for depositing a thin film from a liquid phase include an electrolytic plating method and an electroless plating method.

【0015】本発明において用いるメッシュは、そのメ
ッシュの孔に対応した領域において厚みが厚くなるよう
に活物質薄膜が形成されるものであるので、厚みを厚く
形成したい領域の大きさに応じて、適宜選択して用いら
れるものである。例えば、その孔の大きさが2μm〜1
mmの範囲のものを用いることができる。
In the mesh used in the present invention, the active material thin film is formed so as to be thicker in a region corresponding to the hole of the mesh. It is appropriately selected and used. For example, the size of the hole is 2 μm to 1 μm.
mm range.

【0016】本発明において使用するメッシュとして、
エレクトロフォームドスクリーンと呼ばれるメッシュが
好ましく用いられる。これは、電成ふるいとも呼ばれる
ものであり、電気化学的な方法で作製されたスクリーン
である。
As the mesh used in the present invention,
A mesh called an electroformed screen is preferably used. This is also called an electric sieve, and is a screen produced by an electrochemical method.

【0017】本発明において用いる集電体は、厚みの薄
いものであることが好ましく、金属箔であることが好ま
しい。リチウム二次電池用電極の場合、集電体として
は、リチウムと合金化しない材料から形成されているも
のが好ましく用いられる。このような集電体の具体例と
しては、銅、ニッケル、ステンレス、モリブデン、タン
グステン、及びタンタルから選ばれる少なくとも一種が
挙げられる。特に好ましい集電体としては、銅箔が用い
られる。銅箔としては、その表面が粗面化された銅箔が
好ましい。このような銅箔として電解銅箔が挙げられ
る。また、ニッケル箔などの他の金属箔の上に電解法に
より銅を析出させ、これによって表面を粗面化した金属
箔を用いてもよい。
The current collector used in the present invention preferably has a small thickness, and is preferably a metal foil. In the case of a lithium secondary battery electrode, a current collector formed of a material that does not alloy with lithium is preferably used. Specific examples of such a current collector include at least one selected from copper, nickel, stainless steel, molybdenum, tungsten, and tantalum. As a particularly preferred current collector, a copper foil is used. As the copper foil, a copper foil whose surface is roughened is preferable. An electrolytic copper foil is mentioned as such a copper foil. Alternatively, a metal foil whose surface is roughened by depositing copper on another metal foil such as a nickel foil by an electrolytic method may be used.

【0018】図1は、本発明の製造方法を説明するため
の模式的斜視図である。図1を参照して、集電体1とタ
ーゲットなどの蒸着源2との間にはメッシュ3が配置さ
れている。蒸着源2から発生した薄膜形成のための活性
種は、メッシュ3を通り集電体1の上に到達し、薄膜4
が形成される。蒸着源2と集電体1の間にメッシュ3を
設けることにより、図1に示すように、メッシュ3の孔
に対応した島状に分離された薄膜4が集電体1の上に形
成される。メッシュ3を集電体1に近づけることによ
り、メッシュ3の孔のパターンに対応したパターン形状
を有する島状の活物質薄膜4を形成することができる。
メッシュ3を集電体1から離すことにより、徐々に活物
質薄膜4の凹凸形状が緩やかになり、なだらかな凹凸表
面を有する活物質薄膜となる。
FIG. 1 is a schematic perspective view for explaining the manufacturing method of the present invention. Referring to FIG. 1, a mesh 3 is arranged between a current collector 1 and an evaporation source 2 such as a target. The active species for forming a thin film generated from the evaporation source 2 reach the current collector 1 through the mesh 3 and reach the thin film 4.
Is formed. By providing the mesh 3 between the evaporation source 2 and the current collector 1, as shown in FIG. 1, a thin film 4 separated into islands corresponding to the holes of the mesh 3 is formed on the current collector 1. You. By bringing the mesh 3 closer to the current collector 1, an island-shaped active material thin film 4 having a pattern shape corresponding to the pattern of the holes of the mesh 3 can be formed.
By separating the mesh 3 from the current collector 1, the unevenness of the active material thin film 4 gradually becomes gentle, and the active material thin film has a smooth uneven surface.

【0019】本発明の二次電池用電極は、上記本発明の
製造方法により製造された二次電池用電極であることを
特徴としている。本発明においてより限定された局面に
おける二次電池用電極は、集電体上の分離された複数の
島状領域に活物質薄膜が選択的に形成されたことを特徴
としている。
The secondary battery electrode of the present invention is characterized in that it is a secondary battery electrode manufactured by the above-described manufacturing method of the present invention. The electrode for a secondary battery according to a more limited aspect of the present invention is characterized in that an active material thin film is selectively formed on a plurality of isolated island regions on a current collector.

【0020】[0020]

【発明の実施の形態】以下、本発明を実施例により詳細
に説明するが、本発明は以下の実施例に何ら限定される
ものではなく、その要旨を変更しない範囲において適宜
変更して実施することが可能なものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in detail with reference to examples, but the present invention is not limited to the following examples at all, and may be carried out by appropriately changing the scope of the present invention. It is possible.

【0021】(実施例1及び2) [電極の作製]4インチ(約100mm)の単結晶Si
をターゲットとして用い、RFマグネトロンスパッタ装
置を使用して、集電体の上に活物質薄膜をスパッタリン
グ法により形成した。集電体としては、電解銅箔(厚み
18μm)を用いた。この集電体を、回転式ドラムの円
筒状外周面に固定し、集電体の上にメッシュを密着させ
た状態で貼り付けた。メッシュとしては、エレクトロフ
ォームドスクリーン(電気化学的方法で作製された網)
を用いた。使用したエレクトロフォームドスクリーンは
2種類であり、250LPI(厚み34μm、空隙率3
8%)と400LPI(厚み20μm、空隙率34%)
を用いた。なお、LPIは、1インチ(2.54cm)
当たりのメッシュの線の数を示しており、250LPI
は、1インチ(2.54cm)当たり250本の線が入
っているメッシュであることを示している。
(Examples 1 and 2) [Preparation of electrode] 4 inch (about 100 mm) single crystal Si
Was used as a target, and an active material thin film was formed on the current collector by a sputtering method using an RF magnetron sputtering apparatus. As the current collector, an electrolytic copper foil (18 μm in thickness) was used. This current collector was fixed to the cylindrical outer peripheral surface of the rotary drum, and affixed to the current collector in a state where the mesh was in close contact with the current collector. Electroformed screen (mesh made by electrochemical method) as mesh
Was used. Two types of electroformed screens were used, 250 LPI (thickness 34 μm, porosity 3).
8%) and 400 LPI (thickness 20 μm, porosity 34%)
Was used. LPI is 1 inch (2.54 cm)
The number of mesh lines per mesh, 250 LPI
Indicates that the mesh has 250 lines per inch (2.54 cm).

【0022】真空チャンバー内部を8×10-4Pa以下
になるまで排気した後、アルゴンガスを50sccmの
流量で導入しながらスパッタリングを行い、集電体上に
非晶質シリコン薄膜を堆積させた。シリコン薄膜の堆積
量は、メッシュを配置しない場合において厚み10μm
となる堆積量とした。RF電力は350Wとした。
After the inside of the vacuum chamber was evacuated to 8 × 10 −4 Pa or less, sputtering was performed while introducing an argon gas at a flow rate of 50 sccm to deposit an amorphous silicon thin film on the current collector. The deposition amount of the silicon thin film is 10 μm when no mesh is arranged.
And the amount of deposition. The RF power was 350 W.

【0023】図2は、メッシュとして用いた200LP
Iのエレクトロフォームドスクリーンを示す光学顕微鏡
写真である。図3は、図2に示すメッシュを用いて集電
体である銅箔上にシリコン薄膜を堆積して形成した電極
を示す光学顕微鏡写真である。
FIG. 2 shows a 200 LP used as a mesh.
1 is an optical micrograph showing an electroformed screen of I. FIG. 3 is an optical micrograph showing an electrode formed by depositing a silicon thin film on a copper foil as a current collector using the mesh shown in FIG.

【0024】図4は、メッシュとして用いた400LP
Iのエレクトロフォームドスクリーンを示す光学顕微鏡
写真である。図5は、図4に示すメッシュを用いて集電
体である銅箔の上にシリコン薄膜を堆積して形成した電
極を示す光学顕微鏡写真である。
FIG. 4 shows 400 LP used as a mesh.
1 is an optical micrograph showing an electroformed screen of I. FIG. 5 is an optical microscope photograph showing an electrode formed by depositing a silicon thin film on a copper foil as a current collector using the mesh shown in FIG.

【0025】図2〜図5から明らかなように、メッシュ
の孔(空隙部)に対応したパターン形状の、島状に分離
したシリコン薄膜が集電体上に形成されている。メッシ
ュの枠に相当する領域にはシリコン薄膜が形成されてお
らず、銅箔の表面が露出した状態となっている。
As is apparent from FIGS. 2 to 5, an island-like silicon thin film having a pattern corresponding to the holes (voids) of the mesh is formed on the current collector. No silicon thin film is formed in a region corresponding to the mesh frame, and the surface of the copper foil is exposed.

【0026】以上のようにして集電体の片面上にシリコ
ン薄膜を形成した電極を2cm×2cmの大きさに切り
出し、これを作用極として用いて単極試験セルを作製し
た。なお、250LPIのメッシュを用いて作製した電
極を実施例1とし、400LPIのメッシュを用いて作
製した電極を実施例2とした。
An electrode having a silicon thin film formed on one side of the current collector as described above was cut into a size of 2 cm × 2 cm, and a monopolar test cell was prepared using the electrode as a working electrode. Note that an electrode manufactured using a 250 LPI mesh was referred to as Example 1, and an electrode manufactured using a 400 LPI mesh was referred to as Example 2.

【0027】[単極試験セルの作製]上述のように実施
例1及び実施例2の電極を作用極として用い、対極及び
参照極として金属リチウムを用いて試験セルを作製し
た。電解液としてはエチレンカーボネートとジエチルカ
ーボネートとの体積比1:1の混合溶媒にLiPF6
1モル/リットル溶解させたものを用いた。なお、単極
試験セルにおいては、作用極の還元を充電とし、酸化を
放電としている。
[Preparation of Single Electrode Test Cell] As described above, a test cell was prepared using the electrodes of Examples 1 and 2 as a working electrode and metallic lithium as a counter electrode and a reference electrode. As the electrolytic solution, one obtained by dissolving 1 mol / liter of LiPF 6 in a mixed solvent of ethylene carbonate and diethyl carbonate at a volume ratio of 1: 1 was used. In the unipolar test cell, the reduction of the working electrode is charged and the oxidation is discharge.

【0028】(比較例1)比較として、メッシュを集電
体上に配置せずにシリコン薄膜を集電体上に堆積させる
以外は、上記実施例と同様にして、集電体である銅箔上
にシリコン薄膜を形成し、これを比較例1の電極とし
た。この電極を用いて、上記と同様にして単極試験セル
を作製した。
Comparative Example 1 As a comparison, a copper foil as a current collector was prepared in the same manner as in the above example except that a silicon thin film was deposited on the current collector without disposing a mesh on the current collector. A silicon thin film was formed thereon, and this was used as an electrode of Comparative Example 1. Using this electrode, a monopolar test cell was produced in the same manner as described above.

【0029】[充放電試験]上記のようにして作製した
実施例1及び2並びに比較例1の試験セルについて、2
5℃で充放電試験を行った。実施例1及び2の試験セル
については4mAの定電流で、比較例1の試験セルにつ
いては2mAの定電流で、参照極を基準とする電位が0
Vに達するまで充電した後、2.0Vに達するまで放電
を行った。これを1サイクルの充放電とし、10サイク
ルまで充放電を行った。
[Charge / Discharge Test] With respect to the test cells of Examples 1 and 2 and Comparative Example 1 produced as described above,
A charge / discharge test was performed at 5 ° C. The test cells of Examples 1 and 2 had a constant current of 4 mA, the test cell of Comparative Example 1 had a constant current of 2 mA, and the potential with respect to the reference electrode was 0.
After charging until the voltage reached V, the battery was discharged until the voltage reached 2.0 V. This was defined as one cycle of charge and discharge, and charge and discharge were performed up to 10 cycles.

【0030】10サイクルまでの間の各試験セルの電極
面積1cm2当たりの最大の放電容量を、最大容量とし
て表1に示す。また、10サイクル後の電極の厚みをマ
イクロメータで測定し、充電前の電極の厚みと10サイ
クル後の電極の厚みから電極の厚み変化を求めた。電極
により最大容量に若干のばらつきが認められため、電極
の厚み変化を最大容量で割り、1mAh当たりの厚み変
化として、これを「電極厚み変化」として表1に示す。
The maximum discharge capacity per 1 cm 2 of the electrode area of each test cell up to 10 cycles is shown in Table 1 as the maximum capacity. The thickness of the electrode after 10 cycles was measured with a micrometer, and the change in electrode thickness was determined from the thickness of the electrode before charging and the thickness of the electrode after 10 cycles. Since a slight variation was observed in the maximum capacity depending on the electrode, the change in electrode thickness was divided by the maximum capacity, and the change in thickness per 1 mAh is shown in Table 1 as “change in electrode thickness”.

【0031】[0031]

【表1】 表1から明らかなように、本発明に従い製造した実施例
1及び実施例2の電極は、比較例1の電極に比べ、電極
厚み変化が小さいことがわかる。また、実施例1及び2
の電極は、比較例1の電極に比べ、集電体に発生する皺
が著しく少ないことが肉眼により観察されている。実施
例1及び2の電極厚み変化が比較例1の電極厚み変化に
比べ小さくなっているのは、実施例1及び2の電極にお
いては充放電に伴う集電体における皺の発生が抑制され
ているためである。
[Table 1] As is clear from Table 1, the electrodes of Examples 1 and 2 manufactured according to the present invention have a smaller change in electrode thickness than the electrode of Comparative Example 1. Examples 1 and 2
It has been observed with the naked eye that the wrinkle generated on the current collector of the electrode of Comparative Example 1 was significantly smaller than that of the electrode of Comparative Example 1. The reason why the change in the electrode thickness in Examples 1 and 2 is smaller than the change in the electrode thickness in Comparative Example 1 is that in the electrodes of Examples 1 and 2, the generation of wrinkles in the current collector due to charging and discharging is suppressed. Because it is.

【0032】従って、実施例1及び2の電極を電池缶内
に収納した場合、比較例1の電極に比べ体積当たりのエ
ネルギー密度を高めることができる。 (実施例3) [電極の作製]実施例1と同様の集電体、ターゲット及
び装置を用い、メッシュを用いずに集電体の上に約2μ
mの非晶質シリコン薄膜を形成した。次に、集電体上に
形成したシリコン薄膜の上に、250LPIのエレクト
ロフォームドスクリーンを貼り付け、再び実施例1と同
様の条件で非晶質シリコン薄膜を堆積させた。メッシュ
を配置した状態で約6μmシリコン薄膜を堆積させた。
Therefore, when the electrodes of Examples 1 and 2 are housed in a battery can, the energy density per volume can be increased as compared with the electrode of Comparative Example 1. (Example 3) [Preparation of electrode] Using the same current collector, target and apparatus as in Example 1, about 2 μm was formed on the current collector without using a mesh.
m amorphous silicon thin films were formed. Next, an electroformed screen of 250 LPI was attached on the silicon thin film formed on the current collector, and an amorphous silicon thin film was deposited again under the same conditions as in Example 1. An approximately 6 μm silicon thin film was deposited with the mesh arranged.

【0033】作製した電極について光学顕微鏡で観察し
たところ、下地層となるシリコン薄膜の上にメッシュの
孔に対応したパターン形状で島状のシリコン薄膜が形成
されていることが確認された。
Observation of the fabricated electrode with an optical microscope confirmed that an island-shaped silicon thin film was formed on the silicon thin film serving as a base layer in a pattern corresponding to the holes of the mesh.

【0034】[0034]

【発明の効果】本発明によれば、放電容量が高く、充放
電サイクル寿命特性に優れ、かつ充放電に伴う皺が集電
体に生じにくい二次電池用電極とすることができる。
According to the present invention, an electrode for a secondary battery having a high discharge capacity, excellent charge / discharge cycle life characteristics, and less wrinkling due to charge / discharge on a current collector can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法を説明するための模式的斜視
図。
FIG. 1 is a schematic perspective view for explaining a manufacturing method of the present invention.

【図2】本発明の実施例においてメッシュとして用いた
250LPIのエレクトロフォームドスクリーンを示す
平面図。
FIG. 2 is a plan view showing a 250 LPI electroformed screen used as a mesh in the embodiment of the present invention.

【図3】本発明の実施例において図2に示すメッシュを
用いて作製した電極の表面状態を示す平面図。
FIG. 3 is a plan view showing a surface state of an electrode manufactured using the mesh shown in FIG. 2 in the example of the present invention.

【図4】本発明の実施例においてメッシュとして用いた
400LPIのエレクトロフォームドスクリーンを示す
平面図。
FIG. 4 is a plan view showing a 400 LPI electroformed screen used as a mesh in the embodiment of the present invention.

【図5】本発明の実施例において図4に示すメッシュを
用いて作製した電極の表面状態を示す平面図。
FIG. 5 is a plan view showing a surface state of an electrode manufactured using the mesh shown in FIG. 4 in the example of the present invention.

【符号の説明】[Explanation of symbols]

1…集電体 2…蒸着源 3…メッシュ 4…活物質薄膜 DESCRIPTION OF SYMBOLS 1 ... Current collector 2 ... Evaporation source 3 ... Mesh 4 ... Active material thin film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樽井 久樹 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H029 AJ03 AJ05 AL12 AM03 AM07 CJ24 5H050 AA07 AA08 BA16 CB12 DA03 DA04 GA24  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Hisaki Tarui 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. F-term (reference) 5H029 AJ03 AJ05 AL12 AM03 AM07 CJ24 5H050 AA07 AA08 BA16 CB12 DA03 DA04 GA24

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 集電体の上に活物質薄膜を堆積させて形
成する二次電池用電極の製造方法において、 集電体の上方にメッシュを配置し、該メッシュを通して
活物質薄膜を堆積させることを特徴とする二次電池用電
極の製造方法。
1. A method for manufacturing an electrode for a secondary battery in which an active material thin film is formed by depositing an active material thin film on a current collector, wherein a mesh is arranged above the current collector, and the active material thin film is deposited through the mesh. A method for producing an electrode for a secondary battery, comprising:
【請求項2】 前記メッシュの孔に対応した前記集電体
上の分離された島状領域の上に前記活物質薄膜が堆積し
て形成されていることを特徴とする請求項1に記載の二
次電池用電極の製造方法。
2. The active material thin film according to claim 1, wherein the active material thin film is formed on an isolated island region on the current collector corresponding to the hole of the mesh. A method for manufacturing an electrode for a secondary battery.
【請求項3】 前記集電体上に予め活物質の連続した薄
膜が形成されており、該薄膜の上に前記メッシュを通し
て活物質薄膜を堆積させることを特徴とする請求項1ま
たは2に記載の二次電池用電極の製造方法。
3. The active material thin film according to claim 1, wherein a continuous thin film of the active material is previously formed on the current collector, and the active material thin film is deposited on the thin film through the mesh. Method for producing an electrode for a secondary battery.
【請求項4】 前記連続薄膜が前記集電体の上方にメッ
シュを配置させずに形成した薄膜であり、該薄膜を形成
した後、集電体の上方にメッシュを配置し、前記連続薄
膜と同様の薄膜形成方法で活物質薄膜を形成することを
特徴とする請求項3に記載の二次電池用電極の製造方
法。
4. The continuous thin film is a thin film formed without disposing a mesh above the current collector. After the thin film is formed, a mesh is disposed above the current collector, and the continuous thin film is formed. The method for manufacturing an electrode for a secondary battery according to claim 3, wherein the active material thin film is formed by a similar thin film forming method.
【請求項5】 前記メッシュが前記集電体または前記連
続薄膜に密着して配置されていることを特徴とする請求
項1〜4のいずれか1項に記載の二次電池用電極の製造
方法。
5. The method for manufacturing an electrode for a secondary battery according to claim 1, wherein the mesh is disposed in close contact with the current collector or the continuous thin film. .
【請求項6】 前記活物質薄膜がリチウムを吸蔵・放出
する薄膜であり、二次電池用電極がリチウム二次電池用
電極であることを特徴とする請求項1〜5のいずれか1
項に記載の二次電池用電極の製造方法。
6. The electrode according to claim 1, wherein the active material thin film is a thin film for inserting and extracting lithium, and the electrode for a secondary battery is an electrode for a lithium secondary battery.
13. The method for producing an electrode for a secondary battery according to the above item.
【請求項7】 前記活物質薄膜がシリコン薄膜またはシ
リコンを含む薄膜であることを特徴とする請求項1〜6
のいずれか1項に記載の二次電池用電極の製造方法。
7. The thin film of the active material is a silicon thin film or a thin film containing silicon.
The method for producing an electrode for a secondary battery according to any one of the above.
【請求項8】 前記活物質薄膜が、スパッタリング法、
真空蒸着法、またはCVD法により形成されることを特
徴とする請求項1〜7のいずれか1項に記載の二次電池
用電極の製造方法。
8. The method according to claim 1, wherein the active material thin film is formed by a sputtering method,
The method for producing an electrode for a secondary battery according to any one of claims 1 to 7, wherein the electrode is formed by a vacuum deposition method or a CVD method.
【請求項9】 請求項1〜8のいずれか1項に記載の方
法で製造されたことを特徴とする二次電池用電極。
9. An electrode for a secondary battery, manufactured by the method according to claim 1. Description:
【請求項10】 集電体上の分離された複数の島状領域
に活物質薄膜が選択的に形成されたことを特徴とする二
次電池用電極。
10. An electrode for a secondary battery, wherein an active material thin film is selectively formed on a plurality of isolated island regions on a current collector.
JP2001078203A 2001-03-19 2001-03-19 Method of manufacturing electrode for secondary battery Withdrawn JP2002279974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001078203A JP2002279974A (en) 2001-03-19 2001-03-19 Method of manufacturing electrode for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001078203A JP2002279974A (en) 2001-03-19 2001-03-19 Method of manufacturing electrode for secondary battery

Publications (1)

Publication Number Publication Date
JP2002279974A true JP2002279974A (en) 2002-09-27

Family

ID=18934850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001078203A Withdrawn JP2002279974A (en) 2001-03-19 2001-03-19 Method of manufacturing electrode for secondary battery

Country Status (1)

Country Link
JP (1) JP2002279974A (en)

Cited By (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036670A1 (en) * 2002-10-15 2004-04-29 Kabushiki Kaisha Toshiba Nonacqueous electrolyte secondary cell
JP2005293960A (en) * 2004-03-31 2005-10-20 Jfe Chemical Corp Anode for lithium ion secondary battery, and lithium ion secondary battery
KR100553826B1 (en) 2003-09-22 2006-02-21 주식회사 엘지화학 Electrode with a mesh structure of electronic conductor
WO2006043382A1 (en) * 2004-10-21 2006-04-27 Matsushita Electric Industrial Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
WO2007074654A1 (en) * 2005-12-28 2007-07-05 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2008044449A1 (en) 2006-10-13 2008-04-17 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery, process for producing the same and nonaqueous electrolyte secondary battery utilizing the electrode
WO2008072460A1 (en) 2006-12-13 2008-06-19 Panasonic Corporation Negative electrode for rechargeable battery with nonaqueous electrolyte, process for producing the negative electrode, and rechargeable battery with nonaqueous electrolyte using the negative electrode
WO2008072430A1 (en) 2006-12-13 2008-06-19 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same and nonaqueous electrolyte secondary battery employing it
US7407727B2 (en) 2002-09-30 2008-08-05 Hitachi Maxell Ltd. Electrode used for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery used the same for a negative electrode
US7432016B2 (en) 2003-09-17 2008-10-07 Hitachi Maxell, Ltd. Electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same
EP2003715A2 (en) 2007-05-24 2008-12-17 Nissan Motor Co., Ltd. Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
US20100124706A1 (en) * 2008-11-14 2010-05-20 Sony Corporation Secondary battery and anode
JP2010135332A (en) * 2002-11-05 2010-06-17 Nexeon Ltd Structured silicon anode
EP2395579A1 (en) 2010-06-08 2011-12-14 Dainippon Screen Mfg., Co., Ltd. Battery, vehicle, electronic device and battery manufacturing method
US8101298B2 (en) 2006-01-23 2012-01-24 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
JP2012048955A (en) * 2010-08-26 2012-03-08 Sanyo Electric Co Ltd Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing negative electrode for lithium ion secondary battery
US8142931B2 (en) 2006-10-19 2012-03-27 Panasonic Corporation Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
US8148012B2 (en) 2007-02-01 2012-04-03 Panasonic Corporation Method for forming active material on a current collector of negative electrode using feedback process with measuring collector
US8192864B2 (en) 2007-02-01 2012-06-05 Panasonic Corporation Battery, examination method and manufacturing method for negative electrode thereof, and examination apparatus and manufacturing apparatus for negative electrode thereof
US8221915B2 (en) * 2010-11-12 2012-07-17 Leyden Energy, Inc. High performance lithium or lithium ion cell
US8257869B2 (en) 2007-06-01 2012-09-04 Panasonic Corporation Electrode for electrochemical element and electrochemical element using the electrode
US8257858B2 (en) * 2006-11-01 2012-09-04 Panasonic Corporation Lithium ion secondary battery and method for forming negative electrode plate for lithium ion secondary battery
US8273136B2 (en) 2007-03-16 2012-09-25 Panasonic Corporation Electrochemical element, and method and apparatus for manufacturing electrode thereof
US8334073B2 (en) 2006-10-12 2012-12-18 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
US8389156B2 (en) 2006-08-25 2013-03-05 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8585918B2 (en) 2006-01-23 2013-11-19 Nexeon Ltd. Method of etching a silicon-based material
US8642211B2 (en) 2007-07-17 2014-02-04 Nexeon Limited Electrode including silicon-comprising fibres and electrochemical cells including the same
US8734997B2 (en) 2006-10-10 2014-05-27 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery
US8772174B2 (en) 2010-04-09 2014-07-08 Nexeon Ltd. Method of fabricating structured particles composed of silicon or silicon-based material and their use in lithium rechargeable batteries
WO2014156053A1 (en) * 2013-03-26 2014-10-02 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US8999587B2 (en) 2010-09-28 2015-04-07 SCREEN Holdings Co., Ltd. Lithium-ion secondary battery, vehicle, electronic device and manufacturing method of lithium-ion secondary battery
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
US9350017B2 (en) 2010-11-12 2016-05-24 A123 Systems Llc High performance lithium or lithium ion cell
CN106463677A (en) * 2014-05-27 2017-02-22 苹果公司 Devices and methods for reducing battery defects
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
JP2017527094A (en) * 2014-07-22 2017-09-14 リクリッス カンパニー リミテッド Micro battery, PCB substrate and semiconductor chip using the same
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
KR20200030835A (en) * 2018-09-13 2020-03-23 한국기계연구원 An Anode for Secondary battery and Fabricating Method of the same

Cited By (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407727B2 (en) 2002-09-30 2008-08-05 Hitachi Maxell Ltd. Electrode used for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery used the same for a negative electrode
WO2004036670A1 (en) * 2002-10-15 2004-04-29 Kabushiki Kaisha Toshiba Nonacqueous electrolyte secondary cell
EP2363908A1 (en) * 2002-11-05 2011-09-07 Nexeon Ltd Structured silicon anode
JP2010135332A (en) * 2002-11-05 2010-06-17 Nexeon Ltd Structured silicon anode
US8384058B2 (en) 2002-11-05 2013-02-26 Nexeon Ltd. Structured silicon anode
US7432016B2 (en) 2003-09-17 2008-10-07 Hitachi Maxell, Ltd. Electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same
KR100553826B1 (en) 2003-09-22 2006-02-21 주식회사 엘지화학 Electrode with a mesh structure of electronic conductor
JP2005293960A (en) * 2004-03-31 2005-10-20 Jfe Chemical Corp Anode for lithium ion secondary battery, and lithium ion secondary battery
JP2006120445A (en) * 2004-10-21 2006-05-11 Matsushita Electric Ind Co Ltd Anode for nonaqueous electrolyte secondary battery and its manufacturing method
KR100860927B1 (en) * 2004-10-21 2008-09-29 마쯔시다덴기산교 가부시키가이샤 Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
WO2006043382A1 (en) * 2004-10-21 2006-04-27 Matsushita Electric Industrial Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
US7807294B2 (en) 2004-10-21 2010-10-05 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
WO2007074654A1 (en) * 2005-12-28 2007-07-05 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP4613953B2 (en) * 2005-12-28 2011-01-19 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JPWO2007074654A1 (en) * 2005-12-28 2009-06-04 パナソニック株式会社 Nonaqueous electrolyte secondary battery
KR100901048B1 (en) 2005-12-28 2009-06-04 파나소닉 주식회사 Nonaqueous electrolyte secondary battery
US8597831B2 (en) 2006-01-23 2013-12-03 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8585918B2 (en) 2006-01-23 2013-11-19 Nexeon Ltd. Method of etching a silicon-based material
US8101298B2 (en) 2006-01-23 2012-01-24 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9583762B2 (en) 2006-01-23 2017-02-28 Nexeon Limited Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8389156B2 (en) 2006-08-25 2013-03-05 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8734997B2 (en) 2006-10-10 2014-05-27 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery
US8334073B2 (en) 2006-10-12 2012-12-18 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
WO2008044449A1 (en) 2006-10-13 2008-04-17 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery, process for producing the same and nonaqueous electrolyte secondary battery utilizing the electrode
US8029933B2 (en) 2006-10-13 2011-10-04 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method for manufacturing the same, and non-aqueous electrolyte secondary battery using the same
US8142931B2 (en) 2006-10-19 2012-03-27 Panasonic Corporation Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
US8257858B2 (en) * 2006-11-01 2012-09-04 Panasonic Corporation Lithium ion secondary battery and method for forming negative electrode plate for lithium ion secondary battery
WO2008072430A1 (en) 2006-12-13 2008-06-19 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same and nonaqueous electrolyte secondary battery employing it
US7947396B2 (en) 2006-12-13 2011-05-24 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method of manufacturing the same, and non-aqueous electrolyte secondary battery using the same
WO2008072460A1 (en) 2006-12-13 2008-06-19 Panasonic Corporation Negative electrode for rechargeable battery with nonaqueous electrolyte, process for producing the negative electrode, and rechargeable battery with nonaqueous electrolyte using the negative electrode
US8192864B2 (en) 2007-02-01 2012-06-05 Panasonic Corporation Battery, examination method and manufacturing method for negative electrode thereof, and examination apparatus and manufacturing apparatus for negative electrode thereof
US8148012B2 (en) 2007-02-01 2012-04-03 Panasonic Corporation Method for forming active material on a current collector of negative electrode using feedback process with measuring collector
US8273136B2 (en) 2007-03-16 2012-09-25 Panasonic Corporation Electrochemical element, and method and apparatus for manufacturing electrode thereof
US9871249B2 (en) 2007-05-11 2018-01-16 Nexeon Limited Silicon anode for a rechargeable battery
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
EP2003715A2 (en) 2007-05-24 2008-12-17 Nissan Motor Co., Ltd. Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
US9017877B2 (en) 2007-05-24 2015-04-28 Nissan Motor Co., Ltd. Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
US8257869B2 (en) 2007-06-01 2012-09-04 Panasonic Corporation Electrode for electrochemical element and electrochemical element using the electrode
US9871244B2 (en) 2007-07-17 2018-01-16 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
US8642211B2 (en) 2007-07-17 2014-02-04 Nexeon Limited Electrode including silicon-comprising fibres and electrochemical cells including the same
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8940437B2 (en) 2007-07-17 2015-01-27 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US20100124706A1 (en) * 2008-11-14 2010-05-20 Sony Corporation Secondary battery and anode
JP2010118287A (en) * 2008-11-14 2010-05-27 Sony Corp Secondary battery and negative electrode
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US9553304B2 (en) 2009-05-07 2017-01-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US10050275B2 (en) 2009-05-11 2018-08-14 Nexeon Limited Binder for lithium ion rechargeable battery cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US8772174B2 (en) 2010-04-09 2014-07-08 Nexeon Ltd. Method of fabricating structured particles composed of silicon or silicon-based material and their use in lithium rechargeable batteries
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US9368836B2 (en) 2010-06-07 2016-06-14 Nexeon Ltd. Additive for lithium ion rechargeable battery cells
US9017868B2 (en) 2010-06-08 2015-04-28 SCREEN Holdings Co., Ltd. Battery, vehicle, electronic device and battery manufacturing method
EP2395579A1 (en) 2010-06-08 2011-12-14 Dainippon Screen Mfg., Co., Ltd. Battery, vehicle, electronic device and battery manufacturing method
JP2012048955A (en) * 2010-08-26 2012-03-08 Sanyo Electric Co Ltd Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing negative electrode for lithium ion secondary battery
US9947920B2 (en) 2010-09-03 2018-04-17 Nexeon Limited Electroactive material
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
US8999587B2 (en) 2010-09-28 2015-04-07 SCREEN Holdings Co., Ltd. Lithium-ion secondary battery, vehicle, electronic device and manufacturing method of lithium-ion secondary battery
US8221915B2 (en) * 2010-11-12 2012-07-17 Leyden Energy, Inc. High performance lithium or lithium ion cell
US9350017B2 (en) 2010-11-12 2016-05-24 A123 Systems Llc High performance lithium or lithium ion cell
US9263731B2 (en) 2010-11-12 2016-02-16 A123 Systems Llc High performance lithium or lithium ion cell
WO2014156053A1 (en) * 2013-03-26 2014-10-02 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
CN106463677A (en) * 2014-05-27 2017-02-22 苹果公司 Devices and methods for reducing battery defects
US10115994B2 (en) * 2014-05-27 2018-10-30 Apple Inc. Devices and methods for reducing battery defects
US11011773B2 (en) 2014-05-27 2021-05-18 Apple Inc. Devices and methods for reducing battery defects
JP2017527094A (en) * 2014-07-22 2017-09-14 リクリッス カンパニー リミテッド Micro battery, PCB substrate and semiconductor chip using the same
US10418661B2 (en) 2014-07-22 2019-09-17 Rekrix Co., Ltd. Micro-battery, and PCB and semiconductor chip using same
KR20200030835A (en) * 2018-09-13 2020-03-23 한국기계연구원 An Anode for Secondary battery and Fabricating Method of the same
KR102165952B1 (en) * 2018-09-13 2020-10-14 한국기계연구원 An Anode for Secondary battery and Fabricating Method of the same

Similar Documents

Publication Publication Date Title
JP2002279974A (en) Method of manufacturing electrode for secondary battery
JP3896025B2 (en) Secondary battery electrode
JP3733071B2 (en) Lithium battery electrode and lithium secondary battery
JP3733067B2 (en) Lithium battery electrode and lithium secondary battery
JP3733065B2 (en) Lithium battery electrode and lithium secondary battery
JP3733070B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP4642835B2 (en) Current collector for electrode
JP3733066B2 (en) Electrode for lithium secondary battery and lithium secondary battery
US6649033B2 (en) Method for producing electrode for lithium secondary battery
JP2002083594A (en) Electrode for lithium battery, lithium battery using it and lithium secondary battery
JP4245270B2 (en) Method for manufacturing electrode for secondary battery
JP4581029B2 (en) Negative electrode for lithium secondary battery, lithium secondary battery including the same, and method for producing negative electrode for lithium secondary battery
JP2009117267A (en) Electrode for electrochemical element
JP2004127561A (en) Micro-patterned thin film electrode and lithium secondary battery using the same as negative electrode
CN108886150B (en) Negative electrode for secondary battery comprising lithium metal layer having fine pattern and protective layer thereof, and method for manufacturing same
JP2001283834A (en) Secondary battery
JP2001266851A (en) Manufacturing method of electrode for lithium secondary battery
JPWO2009019869A1 (en) ELECTRODE FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY HAVING THE SAME
JP4330290B2 (en) Method for producing electrode for lithium secondary battery
JP2006269306A (en) Electrode for lithium secondary battery and its manufacturing method
JP2008243828A (en) Negative electrode and manufacturing method for secondary battery
JP3707617B2 (en) Negative electrode and battery using the same
JP2005085632A (en) Battery
US6610357B2 (en) Method for fabricating electrode for lithium secondary battery
JP3955727B2 (en) Method for producing electrode for lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061229