JP2002279974A - Method of manufacturing electrode for secondary battery - Google Patents

Method of manufacturing electrode for secondary battery

Info

Publication number
JP2002279974A
JP2002279974A JP2001078203A JP2001078203A JP2002279974A JP 2002279974 A JP2002279974 A JP 2002279974A JP 2001078203 A JP2001078203 A JP 2001078203A JP 2001078203 A JP2001078203 A JP 2001078203A JP 2002279974 A JP2002279974 A JP 2002279974A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
thin film
active material
secondary battery
method
mesh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2001078203A
Other languages
Japanese (ja)
Inventor
Koichi Nishimura
Hisaki Tarui
Hiromasa Yagi
弘雅 八木
久樹 樽井
康一 西村
Original Assignee
Sanyo Electric Co Ltd
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/54Manufacturing of lithium-ion, lead-acid or alkaline secondary batteries

Abstract

PROBLEM TO BE SOLVED: To manufacture an electrode for secondary battery, having a high discharge capacity and superior charging and discharging cycle life characteristics and making it hard for wrinkles to be produced on the collector by charging and discharging.
SOLUTION: In this method of manufacturing an electrode for secondary battery formed by depositing active material film 4 on the collector 1, meshes 3 are disposed above the collector 1, and the active material film 4 is stacked through the meshes 3.
COPYRIGHT: (C)2002,JPO

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、リチウム二次電池などの二次電池用電極を製造する方法及びこの方法により製造された二次電池用電極に関するものである。 The present invention relates, to a method and a secondary battery electrode produced by the method for producing a secondary battery electrode of the lithium secondary battery.

【0002】 [0002]

【従来の技術】近年、リチウム二次電池の開発が盛んに行われている。 In recent years, the development of lithium secondary batteries have been actively carried out. リチウム二次電池は、用いられる電極活物質により、充放電電圧、充放電サイクル寿命特性、保存特性などの電池特性が大きく左右される。 Lithium secondary batteries, by the electrode active material used, the charge and discharge voltage, charge-discharge cycle life characteristics, the battery characteristics such as storage characteristics greatly affected.

【0003】リチウムを吸蔵・放出することができる電極活物質の中でも、シリコンは、リチウムと合金化することによりリチウムを吸蔵することができる物質であり、その理論容量が大きいことから種々検討されている。 [0003] Among the electrode active material capable of lithium storage and release, silicon is a material capable of occluding lithium by alloying with lithium, been studied since its theoretical capacity is large there. しかしながら、シリコンは合金化によりリチウムを吸蔵するものであるので、充放電反応に伴う体積の膨張収縮が大きい。 However, silicon is so is to absorb lithium by alloying, a large expansion and contraction in volume during charge and discharge reactions. このため、シリコン粒子を活物質として用いたリチウム二次電池用電極では、活物質の微粉化や集電体からの剥離が起こるなどの理由により、充放電サイクル特性が悪く、実用化されるに至っていない。 Therefore, in the electrode for a lithium secondary battery using silicon particles as an active material, for reasons such as separation from micronized and collector of the active material occurs, the charge-discharge cycle characteristics is poor, it is practically It led to not.

【0004】 [0004]

【発明が解決しようとする課題】本出願人は、電解銅箔などの銅箔の上にCVD法やスパッタリング法により形成したシリコン薄膜からなる電極を、リチウム二次電池用電極として用いることにより、放電容量が高く、かつ充放電サイクル寿命特性に優れたリチウム二次電池が得られることを見出している(特願2000−32120 The Applicant The object of the invention is to solve the above-electrodes made of silicon thin film formed by a CVD method or a sputtering method on the copper foil such as electrolytic copper foil, the use as an electrode for a lithium secondary battery, discharge capacity is high and excellent lithium secondary battery charge-discharge cycle life characteristics are found to be obtained (Japanese Patent Application No. 2000-32120
1号)。 No. 1). これらの電極においては、充放電反応により薄膜の厚み方向に切れ目が形成されることにより、薄膜が柱状に分離され、柱状部分の周辺には空隙が形成される。 In these electrodes, by cuts formed in the thickness direction of the thin film by the charge and discharge reaction, a thin film is separated into columnar voids are formed around the columnar portion. このような空隙により、充放電反応の際の活物質の体積の膨張収縮を緩和することができるものと思われる。 Such voids are believed to be able to relieve the expansion and contraction of the volume of the active material during the charge and discharge reaction.

【0005】しかしながら、このような電極においては、充放電反応による活物質の体積の膨張収縮による応力が集電体に働き、集電体に皺が発生する場合があった。 However, in such an electrode, the stress due to expansion and contraction of the volume of the active material due to charge and discharge reaction acts on the current collector, there are cases where wrinkles are generated in current collector. 集電体に皺が発生すると、電池缶内に収納した時の体積当たりのエネルギー密度が低下することとなる。 When wrinkles are generated in current collector, the energy density per volume when housed in the battery can is lowered.

【0006】本発明の目的は、放電容量が高く、充放電サイクル寿命特性に優れ、かつ充放電反応に伴う皺が集電体に生じにくい二次電池用電極の製造方法を提供することにある。 An object of the present invention, a high discharge capacity, excellent charge-discharge cycle life characteristics, and wrinkles due to the charge and discharge reactions is to provide a method for producing hardly occurs secondary battery electrode current collector .

【0007】 [0007]

【課題を解決するための手段】本発明は、集電体上に活物質薄膜を堆積させて形成する二次電池用電極の製造方法であり、集電体の上方にメッシュを配置し、該メッシュを通して活物質薄膜を堆積させることを特徴としている。 The present invention SUMMARY OF] is a method of manufacturing a secondary battery electrode formed by depositing a thin film of active material on the collector, placing a mesh over the current collector, the It is characterized by depositing a thin film of active material through the mesh.

【0008】本発明によれば、メッシュの孔に対応する集電体の領域には、相対的に厚みが厚くなるように活物質薄膜が形成される。 According to the invention, in the region of the current collector corresponding to the holes in the mesh, the thin film of active material is formed to a relatively thick thicker. また、メッシュの枠に相当する領域には相対的に厚みが薄い活物質薄膜が形成されるか、 Further, if the region corresponding to the frame of the mesh relatively small thickness the active material thin film is formed,
あるいは活物質薄膜が形成されない。 Alternatively the active material thin film is not formed. 一般に、集電体の近くにメッシュを配置することにより、メッシュの枠部分に相当する領域に形成される薄膜の厚みが薄くなる傾向にあり、メッシュの枠に相当する領域において活物質薄膜を形成させないようにするためには、できるだけメッシュを集電体の近くに配置する。 In general, by placing the mesh in the vicinity of the current collector tends to thickness of the thin film formed on the region corresponding to the frame portion of the mesh is reduced, forming a thin film of active material in a region corresponding to a frame of the mesh in order to ensure that not to is to place as much as possible mesh in the vicinity of the current collector. 好ましくは、集電体に密着するようにメッシュを配置する。 Preferably, placing the mesh so as to be in close contact with the current collector.

【0009】本発明によれば、活物質薄膜の厚みの厚い領域がメッシュの孔に対応して島状に分散して存在する活物質薄膜を形成することができる。 According to the present invention, it is possible to form an active material film thickness thick region of the thin film of active material is present dispersed in island shape so as to correspond to the holes in the mesh. 本発明に従い形成された活物質薄膜では、厚みの厚い島状の領域における体積の膨張収縮を、その周囲の厚みの薄い領域あるいは薄膜が存在しない領域で吸収することができるので、活物質薄膜の体積の膨張及び収縮による応力が集電体に働くのを緩和することができ、集電体に皺が発生するのを抑制することができる。 The active material film formed in accordance with the present invention, the volume of expansion and contraction in the thick island region thick, can be absorbed in a region where no thin area or film thickness of the periphery of the thin film of active material can stress due to expansion and contraction of the volume to alleviate working on the current collector, it is possible to suppress the creasing of current collector.

【0010】本発明に従う好ましい実施形態では、メッシュの孔に対応した領域にのみ活物質薄膜を堆積して形成する。 [0010] In a preferred embodiment according to the present invention is formed by depositing a thin film of active material only in a region corresponding to the holes in the mesh. このようにして形成された活物質薄膜においては、活物質薄膜の島状部分の周囲に活物質薄膜が存在しないため、活物質薄膜の体積膨張を十分に緩和することができ、集電体に応力が働き集電体に皺が発生するのをより効果的に防止することができる。 In the active material thin film formed in this manner, since no active material thin film is present on the periphery of the island shaped portion of the thin film of active material, the volume expansion of the active material thin film can be sufficiently relaxed, the current collector it is possible to prevent the stress creasing of work collector more effectively.

【0011】本発明においては、集電体上に予め活物質の連続した薄膜を形成しておき、この薄膜の上にメッシュを通して活物質薄膜を堆積させてもよい。 [0011] In the present invention, previously formed a continuous film of pre-active material on the current collector, it may be a thin film of active material is deposited through the mesh onto the thin film. この下地層となる連続薄膜は、例えば集電体の上方にメッシュを配置せずに活物質薄膜を堆積させることにより形成することができる。 This continuous film as a base layer, for example can be formed by depositing a thin film of active material without placing a mesh over the current collector. このように連続した活物質薄膜を形成した後、集電体の上方にメッシュを配置し、連続薄膜を形成した時と同様の薄膜形成方法で活物質薄膜を形成することができる。 After forming a continuous thin film of active material in this way, can the mesh disposed above the current collector to form a thin film of active material in the same film forming method as when forming a continuous film. このような方法によれば、同一の薄膜形成装置内で下地層となる連続薄膜とその上に形成する活物質薄膜を形成することができる。 According to this method, it is possible to form the active material thin film formed in the same film forming apparatus and a continuous thin film to be the base layer thereon. 下地層となる連続した活物質薄膜の厚みは、特に限定されるものではないが、 Continuous active material thin film having a thickness as a base layer is not particularly limited,
片面あたり10μm以下であることが好ましい。 It is preferable that the 10μm or less per one side.

【0012】メッシュの孔に対応する部分にのみ活物質薄膜を堆積させ、メッシュの枠に対応する部分に活物質薄膜を堆積させないようにする場合には、集電体または集電体上の上記連続薄膜の上にメッシュを密着させた状態で活物質薄膜を堆積させることが好ましい。 [0012] depositing a thin film of active material only in a portion corresponding to the hole of the mesh, when so as not to deposit a thin film of active material in a portion corresponding to the frame of the mesh current collector or above on the current collector it is preferable to deposit the thin film of active material in a state of being in close contact with the mesh over a continuous film. このようにして形成した活物質薄膜は、上記のように、島状部分の周囲に薄膜が存在しないため、島状部分の体積膨張収縮による応力を十分に緩和することができ、集電体に皺が発生するのをより効果的に防止することができる。 Active material thin film formed in this way, as described above, because there is no thin film around the island shaped portion, it is possible to sufficiently relax the stress due to volumetric expansion and shrinkage of the island shaped portion, the current collector it is possible to prevent the wrinkling more efficiently.

【0013】本発明に従い製造される二次電池用電極をリチウム二次電池用電極として用いる場合、活物質薄膜としては、リチウムを吸蔵・放出する活物質からなる薄膜が形成される。 [0013] When using a secondary battery electrode produced according to the present invention as an electrode for a lithium secondary battery, the active material thin film, a thin film made of an active material occluding and releasing lithium are formed. リチウムを吸蔵・放出する活物質として、リチウムを合金化することにより吸蔵する活物質が挙げられる。 Lithium as an active material for absorbing and releasing, and active material capable of absorbing by alloying lithium. このような活物質としては、シリコン、ゲルマニウム、アルミニウム、スズなどの薄膜が挙げられる。 Such active material, silicon, germanium, aluminum, and a thin film such as tin. これらの中でも、シリコンは、その充放電容量が高いので、シリコン薄膜またはシリコンを含む薄膜が好ましく用いられる。 Among these, silicon, because the charging and discharging capacity is high, a thin film containing a silicon thin film or silicon is preferably used. シリコンを含む薄膜としては、シリコンを50原子%以上含む薄膜が好ましい。 The thin film containing silicon, thin film containing silicon 50 atomic% or more. また、シリコン薄膜またはシリコンを含む薄膜は、非晶質または微結晶薄膜であることが好ましい。 The thin-film comprising a silicon thin film, or silicon, preferably amorphous or microcrystalline thin film.

【0014】本発明における活物質薄膜の形成方法としては、気相から薄膜を形成する方法及び液相から薄膜を形成する方法が挙げられる。 [0014] As a method for forming the thin film of active material in the present invention include a method of forming a thin film from a method and a liquid phase to form a thin film from a gas phase. 気相から薄膜を堆積して形成する方法としては、スパッタリング法、真空蒸着法、 As a method for forming deposited thin films from the gas phase, a sputtering method, a vacuum deposition method,
CVD法、溶射法などが挙げられる。 CVD method, such as spraying method, and the like. また、液相から薄膜を堆積する方法としては、電解めっき法及び無電解めっき法などが挙げられる。 As a method of depositing a thin film from a liquid phase, and the like electrolytic plating and electroless plating.

【0015】本発明において用いるメッシュは、そのメッシュの孔に対応した領域において厚みが厚くなるように活物質薄膜が形成されるものであるので、厚みを厚く形成したい領域の大きさに応じて、適宜選択して用いられるものである。 Mesh used in [0015] The present invention, because the active material thin film to a thickness of thicker in regions corresponding to the holes of the mesh is intended to be formed, depending on the size of the area to be formed thick in thickness, and it is used by appropriately selecting. 例えば、その孔の大きさが2μm〜1 For example, the size of its pores 2μm~1
mmの範囲のものを用いることができる。 It can be used in the mm range.

【0016】本発明において使用するメッシュとして、 [0016] as a mesh to be used in the present invention,
エレクトロフォームドスクリーンと呼ばれるメッシュが好ましく用いられる。 Mesh called electro informed screen is preferably used. これは、電成ふるいとも呼ばれるものであり、電気化学的な方法で作製されたスクリーンである。 This is also called a sieve DenNaru is a screen made by electrochemical methods.

【0017】本発明において用いる集電体は、厚みの薄いものであることが好ましく、金属箔であることが好ましい。 [0017] The present invention is used in the current collector is preferably one thin thickness, it is preferably a metal foil. リチウム二次電池用電極の場合、集電体としては、リチウムと合金化しない材料から形成されているものが好ましく用いられる。 For a lithium secondary battery electrode, as current collector, those are preferably used which is formed from a material which is not alloyed with lithium. このような集電体の具体例としては、銅、ニッケル、ステンレス、モリブデン、タングステン、及びタンタルから選ばれる少なくとも一種が挙げられる。 Specific examples of such current collector, copper, nickel, stainless steel, molybdenum, tungsten, and at least one can be cited selected from tantalum. 特に好ましい集電体としては、銅箔が用いられる。 Particularly preferred current collector, a copper foil is used. 銅箔としては、その表面が粗面化された銅箔が好ましい。 The copper foil, a copper foil whose surface is roughened is preferred. このような銅箔として電解銅箔が挙げられる。 Electrolytic copper foils as such foil. また、ニッケル箔などの他の金属箔の上に電解法により銅を析出させ、これによって表面を粗面化した金属箔を用いてもよい。 Further, the copper was precipitated by electrolysis on the other metal foil such as nickel foil, thereby may be used a metal foil obtained by roughening the surface.

【0018】図1は、本発明の製造方法を説明するための模式的斜視図である。 [0018] Figure 1 is a schematic perspective view for explaining the manufacturing method of the present invention. 図1を参照して、集電体1とターゲットなどの蒸着源2との間にはメッシュ3が配置されている。 Referring to FIG. 1, the mesh 3 is disposed between the deposition source 2 such as a current collector 1 and the target. 蒸着源2から発生した薄膜形成のための活性種は、メッシュ3を通り集電体1の上に到達し、薄膜4 Active species for forming a thin film generated from the evaporation source 2 reaches the top of the street mesh 3 collector 1, a thin film 4
が形成される。 There is formed. 蒸着源2と集電体1の間にメッシュ3を設けることにより、図1に示すように、メッシュ3の孔に対応した島状に分離された薄膜4が集電体1の上に形成される。 By providing the mesh 3 during the deposition source 2 and the current collector 1, as shown in FIG. 1, a thin film 4 that are separated in an island shape corresponding to the holes of the mesh 3 is formed on the current collector 1 that. メッシュ3を集電体1に近づけることにより、メッシュ3の孔のパターンに対応したパターン形状を有する島状の活物質薄膜4を形成することができる。 By bringing the mesh 3 on the current collector 1, it is possible to form the island-like active material thin film 4 having the corresponding pattern to the pattern of holes in the mesh 3.
メッシュ3を集電体1から離すことにより、徐々に活物質薄膜4の凹凸形状が緩やかになり、なだらかな凹凸表面を有する活物質薄膜となる。 By releasing the mesh 3 from the current collector 1, and gradually becomes gentle uneven shape of the active material thin film 4, the active material thin film having a smooth irregular surface.

【0019】本発明の二次電池用電極は、上記本発明の製造方法により製造された二次電池用電極であることを特徴としている。 The secondary battery electrode of the present invention is characterized in that an electrode for a secondary battery produced by the production method of the present invention. 本発明においてより限定された局面における二次電池用電極は、集電体上の分離された複数の島状領域に活物質薄膜が選択的に形成されたことを特徴としている。 Electrode for secondary battery in a more limited aspect the present invention is characterized in that the active material thin film is selectively formed on the separated plurality of island regions on the current collector.

【0020】 [0020]

【発明の実施の形態】以下、本発明を実施例により詳細に説明するが、本発明は以下の実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。 DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, detailed explanation of the present invention embodiment, the present invention is not intended to be limited to the following examples, carried out appropriately modified within a scope not changing the gist of the invention it is as it can.

【0021】(実施例1及び2) [電極の作製]4インチ(約100mm)の単結晶Si [0021] (Examples 1 and 2) [Preparation of Electrode] 4 inches monocrystalline Si (about 100 mm)
をターゲットとして用い、RFマグネトロンスパッタ装置を使用して、集電体の上に活物質薄膜をスパッタリング法により形成した。 It was used as a target, using the RF magnetron sputtering apparatus was formed by sputtering thin film of active material on the current collector. 集電体としては、電解銅箔(厚み18μm)を用いた。 As the current collector, using electrolytic copper foil (thickness 18 [mu] m). この集電体を、回転式ドラムの円筒状外周面に固定し、集電体の上にメッシュを密着させた状態で貼り付けた。 The current collector, fixed to the cylindrical outer peripheral surface of the rotary drum, was attached in a state of being in close contact with the mesh on a current collector. メッシュとしては、エレクトロフォームドスクリーン(電気化学的方法で作製された網) The mesh, electro informed screen (mesh made by electrochemical method)
を用いた。 It was used. 使用したエレクトロフォームドスクリーンは2種類であり、250LPI(厚み34μm、空隙率3 Electro informed screen used was two, 250LPI (thickness 34 .mu.m, porosity 3
8%)と400LPI(厚み20μm、空隙率34%) 8%) and 400 lpi (thickness 20 [mu] m, porosity of 34%)
を用いた。 It was used. なお、LPIは、1インチ(2.54cm) In addition, LPI is, one inch (2.54cm)
当たりのメッシュの線の数を示しており、250LPI Indicates the number of mesh of lines per, 250LPI
は、1インチ(2.54cm)当たり250本の線が入っているメッシュであることを示している。 Shows that 250 lines per inch (2.54 cm) is in which mesh on.

【0022】真空チャンバー内部を8×10 -4 Pa以下になるまで排気した後、アルゴンガスを50sccmの流量で導入しながらスパッタリングを行い、集電体上に非晶質シリコン薄膜を堆積させた。 [0022] After evacuating to a vacuum chamber interior becomes less 8 × 10 -4 Pa, subjected to sputtering while introducing argon gas at a flow rate of 50 sccm, was deposited an amorphous silicon thin film on a current collector. シリコン薄膜の堆積量は、メッシュを配置しない場合において厚み10μm Deposition amount of the silicon thin film has a thickness 10μm when not disposed mesh
となる堆積量とした。 It was deposited amount to be. RF電力は350Wとした。 RF power was 350W.

【0023】図2は、メッシュとして用いた200LP [0023] FIG. 2, 200LP, which was used as a mesh
Iのエレクトロフォームドスクリーンを示す光学顕微鏡写真である。 It is an optical micrograph showing the electro informed screen I. 図3は、図2に示すメッシュを用いて集電体である銅箔上にシリコン薄膜を堆積して形成した電極を示す光学顕微鏡写真である。 Figure 3 is an optical microscope photograph showing an electrode formed by depositing a silicon thin film on a copper foil as a current collector by using a mesh as shown in FIG.

【0024】図4は、メッシュとして用いた400LP [0024] FIG. 4, 400LP, which was used as a mesh
Iのエレクトロフォームドスクリーンを示す光学顕微鏡写真である。 It is an optical micrograph showing the electro informed screen I. 図5は、図4に示すメッシュを用いて集電体である銅箔の上にシリコン薄膜を堆積して形成した電極を示す光学顕微鏡写真である。 Figure 5 is an optical microscope photograph showing an electrode formed by depositing a silicon thin film on a copper foil as a current collector by using a mesh as shown in FIG.

【0025】図2〜図5から明らかなように、メッシュの孔(空隙部)に対応したパターン形状の、島状に分離したシリコン薄膜が集電体上に形成されている。 As it is apparent from FIGS. 2 to 5, a pattern shape corresponding to a mesh hole (air gap), the silicon thin film separated in an island shape is formed on the current collector. メッシュの枠に相当する領域にはシリコン薄膜が形成されておらず、銅箔の表面が露出した状態となっている。 The region corresponding to the frame of the mesh not silicon thin film is formed, in a state of the surface of the copper foil is exposed.

【0026】以上のようにして集電体の片面上にシリコン薄膜を形成した電極を2cm×2cmの大きさに切り出し、これを作用極として用いて単極試験セルを作製した。 [0026] As described above cut out electrode forming a silicon thin film on one surface of the current collector to a size of 2 cm × 2 cm, were prepared unipolar test cell used as a working electrode. なお、250LPIのメッシュを用いて作製した電極を実施例1とし、400LPIのメッシュを用いて作製した電極を実施例2とした。 Note that the electrode prepared by using the mesh 250LPI Example 1, the electrode prepared by using the mesh 400LPI was as in Example 2.

【0027】[単極試験セルの作製]上述のように実施例1及び実施例2の電極を作用極として用い、対極及び参照極として金属リチウムを用いて試験セルを作製した。 [0027] Using the electrode of Example 1 and Example 2 as described above [Production of the single-pole test cell as the working electrode, to prepare a test cell using metallic lithium as a counter electrode and a reference electrode. 電解液としてはエチレンカーボネートとジエチルカーボネートとの体積比1:1の混合溶媒にLiPF 6を1モル/リットル溶解させたものを用いた。 As an electrolytic solution volume ratio of ethylene carbonate and diethyl carbonate 1: LiPF 6 was used by dissolving 1 mol / liter in a mixed solvent of 1. なお、単極試験セルにおいては、作用極の還元を充電とし、酸化を放電としている。 In the unipolar test cell, and it charges the reduction of the working electrode, and the oxidized discharge.

【0028】(比較例1)比較として、メッシュを集電体上に配置せずにシリコン薄膜を集電体上に堆積させる以外は、上記実施例と同様にして、集電体である銅箔上にシリコン薄膜を形成し、これを比較例1の電極とした。 [0028] Comparative (Comparative Example 1), except for depositing a silicon thin film on the current collector without placing the mesh on the current collector, as in the above embodiment, as a current collector foil the silicon thin film was formed on a sample of Comparative example 1 of the electrode it. この電極を用いて、上記と同様にして単極試験セルを作製した。 Using this electrode, to produce a unipolar test cell in the same manner as described above.

【0029】[充放電試験]上記のようにして作製した実施例1及び2並びに比較例1の試験セルについて、2 [0029] About the charge-discharge test] Test cells of Examples 1 and 2 and Comparative Example 1 was produced as described above, 2
5℃で充放電試験を行った。 The charge and discharge test was conducted at 5 ° C.. 実施例1及び2の試験セルについては4mAの定電流で、比較例1の試験セルについては2mAの定電流で、参照極を基準とする電位が0 At a constant current of Example 1 and 4mA for 2 test cells, in Comparative Example 1 of 2mA constant current for the test cell, the potential relative to the reference electrode is 0
Vに達するまで充電した後、2.0Vに達するまで放電を行った。 After charging until it reaches the V, it was discharged until it reaches 2.0V. これを1サイクルの充放電とし、10サイクルまで充放電を行った。 This was defined as one cycle of charge and discharge, the charge and discharge was carried out up to 10 cycles.

【0030】10サイクルまでの間の各試験セルの電極面積1cm 2当たりの最大の放電容量を、最大容量として表1に示す。 [0030] The maximum discharge capacity of the electrode area 1 cm 2 per each of the test cells for up to 10 cycles is shown in Table 1 as the maximum capacity. また、10サイクル後の電極の厚みをマイクロメータで測定し、充電前の電極の厚みと10サイクル後の電極の厚みから電極の厚み変化を求めた。 Further, the thickness of after 10 cycles the electrode was measured by a micrometer, to determine the change in thickness of the electrode from the thickness of the thickness and after 10 cycles electrode before charging electrode. 電極により最大容量に若干のばらつきが認められため、電極の厚み変化を最大容量で割り、1mAh当たりの厚み変化として、これを「電極厚み変化」として表1に示す。 Since observed slight variation in the maximum capacity by the electrode divided by the maximum capacity change in thickness of the electrode, as the thickness change per 1 mAh, shown in Table 1 so as "electrode thickness change".

【0031】 [0031]

【表1】 [Table 1] 表1から明らかなように、本発明に従い製造した実施例1及び実施例2の電極は、比較例1の電極に比べ、電極厚み変化が小さいことがわかる。 Table 1 As is apparent from, the electrode of Example 1 and Example 2 were prepared in accordance with the present invention as compared to the electrode of Comparative Example 1, it can be seen that the electrode thickness change is small. また、実施例1及び2 In Examples 1 and 2
の電極は、比較例1の電極に比べ、集電体に発生する皺が著しく少ないことが肉眼により観察されている。 Electrodes, compared to the electrode of Comparative Example 1, it has been observed by the naked eye significantly less wrinkles generated in the current collector. 実施例1及び2の電極厚み変化が比較例1の電極厚み変化に比べ小さくなっているのは、実施例1及び2の電極においては充放電に伴う集電体における皺の発生が抑制されているためである。 Example 1 and the electrode thickness variation of 2 is smaller than the electrode thickness change of Comparative Example 1, in the electrode of Example 1 and 2 are generated wrinkles inhibition in the current collector due to charging and discharging This is because you are.

【0032】従って、実施例1及び2の電極を電池缶内に収納した場合、比較例1の電極に比べ体積当たりのエネルギー密度を高めることができる。 [0032] Therefore, when housing the electrode of Example 1 and 2 to the battery can, it is possible to increase the energy density per volume as compared to the electrode of Comparative Example 1. (実施例3) [電極の作製]実施例1と同様の集電体、ターゲット及び装置を用い、メッシュを用いずに集電体の上に約2μ (Example 3) [Preparation of Electrode] As in Example 1 of the current collector, using a target and equipment, about 2μ on the current collector without using a mesh
mの非晶質シリコン薄膜を形成した。 Forming an amorphous silicon thin film m. 次に、集電体上に形成したシリコン薄膜の上に、250LPIのエレクトロフォームドスクリーンを貼り付け、再び実施例1と同様の条件で非晶質シリコン薄膜を堆積させた。 Then, on the silicon thin film formed on the current collector, paste the electro informed screen 250LPI, it was deposited an amorphous silicon thin film under the same conditions as in Example 1 again. メッシュを配置した状態で約6μmシリコン薄膜を堆積させた。 About 6μm silicon thin film in the state in which the mesh was deposited.

【0033】作製した電極について光学顕微鏡で観察したところ、下地層となるシリコン薄膜の上にメッシュの孔に対応したパターン形状で島状のシリコン薄膜が形成されていることが確認された。 [0033] was observed in the produced optical microscope for electrodes, it was confirmed that the island-shaped silicon thin film pattern corresponding to the holes of the mesh on the silicon thin film as a base layer is formed.

【0034】 [0034]

【発明の効果】本発明によれば、放電容量が高く、充放電サイクル寿命特性に優れ、かつ充放電に伴う皺が集電体に生じにくい二次電池用電極とすることができる。 According to the present invention, a high discharge capacity, excellent charge-discharge cycle life characteristics, and wrinkles due to charging and discharging can be hardly generated secondary battery electrode current collector.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の製造方法を説明するための模式的斜視図。 Schematic perspective view for explaining a manufacturing method of the present invention; FIG.

【図2】本発明の実施例においてメッシュとして用いた250LPIのエレクトロフォームドスクリーンを示す平面図。 Plan view illustrating the electro-informed screen 250LPI used as a mesh in the embodiment of the present invention; FIG.

【図3】本発明の実施例において図2に示すメッシュを用いて作製した電極の表面状態を示す平面図。 Plan view showing the surface state of the electrode prepared by using the mesh shown in FIG. 2 in the embodiment of the present invention; FIG.

【図4】本発明の実施例においてメッシュとして用いた400LPIのエレクトロフォームドスクリーンを示す平面図。 Plan view illustrating the electro-informed screen 400LPI used as a mesh in the embodiment of the present invention; FIG.

【図5】本発明の実施例において図4に示すメッシュを用いて作製した電極の表面状態を示す平面図。 5 is a plan view showing the surface state of the electrodes produced with the mesh of FIG. 4 in the embodiment of the present invention.

【符号の説明】 DESCRIPTION OF SYMBOLS

1…集電体 2…蒸着源 3…メッシュ 4…活物質薄膜 1 ... collector 2 ... vapor deposition source 3 ... mesh 4 ... active material thin film

───────────────────────────────────────────────────── フロントページの続き (72)発明者 樽井 久樹 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H029 AJ03 AJ05 AL12 AM03 AM07 CJ24 5H050 AA07 AA08 BA16 CB12 DA03 DA04 GA24 ────────────────────────────────────────────────── ─── front page of the continuation (72) inventor Tarui Hisaju Osaka Prefecture Moriguchi Keihanhondori 2-chome No. 5 No. 5, Sanyo electric Co., Ltd. in the F-term (reference) 5H029 AJ03 AJ05 AL12 AM03 AM07 CJ24 5H050 AA07 AA08 BA16 CB12 DA03 DA04 GA24

Claims (10)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 集電体の上に活物質薄膜を堆積させて形成する二次電池用電極の製造方法において、 集電体の上方にメッシュを配置し、該メッシュを通して活物質薄膜を堆積させることを特徴とする二次電池用電極の製造方法。 1. A method of manufacturing a secondary battery electrode formed by a thin film of active material is deposited on the current collector, the mesh disposed above the current collector, depositing a thin film of active material through the mesh method of manufacturing a secondary battery electrode, characterized in that.
  2. 【請求項2】 前記メッシュの孔に対応した前記集電体上の分離された島状領域の上に前記活物質薄膜が堆積して形成されていることを特徴とする請求項1に記載の二次電池用電極の製造方法。 2. A according to claim 1, characterized in that the active material thin film is formed by depositing on the isolated island regions on the current collector corresponding to the hole of the mesh method of manufacturing a secondary battery electrode.
  3. 【請求項3】 前記集電体上に予め活物質の連続した薄膜が形成されており、該薄膜の上に前記メッシュを通して活物質薄膜を堆積させることを特徴とする請求項1または2に記載の二次電池用電極の製造方法。 3. are continuous thin film formed in advance active material on the current collector, according to claim 1 or 2, characterized in depositing a thin film of active material through the mesh onto the thin film the method of manufacturing the secondary battery electrode.
  4. 【請求項4】 前記連続薄膜が前記集電体の上方にメッシュを配置させずに形成した薄膜であり、該薄膜を形成した後、集電体の上方にメッシュを配置し、前記連続薄膜と同様の薄膜形成方法で活物質薄膜を形成することを特徴とする請求項3に記載の二次電池用電極の製造方法。 Wherein a thin film in which the continuous film was formed without disposing the mesh above the collector, after forming the thin film, placing a mesh over the current collector, said continuous film method of manufacturing a secondary battery electrode according to claim 3, characterized in that to form a thin film of active material in the same thin film forming method.
  5. 【請求項5】 前記メッシュが前記集電体または前記連続薄膜に密着して配置されていることを特徴とする請求項1〜4のいずれか1項に記載の二次電池用電極の製造方法。 Wherein said mesh method of manufacturing a secondary battery electrode according to any one of claims 1 to 4, characterized in that it is arranged in close contact with the current collector or said continuous film .
  6. 【請求項6】 前記活物質薄膜がリチウムを吸蔵・放出する薄膜であり、二次電池用電極がリチウム二次電池用電極であることを特徴とする請求項1〜5のいずれか1 6. is a thin film, wherein the thin film of active material is absorbing and releasing lithium, either of claims 1 to 5, wherein the secondary battery electrode is an electrode for a lithium secondary battery 1
    項に記載の二次電池用電極の製造方法。 Method of manufacturing a secondary battery electrode according to claim.
  7. 【請求項7】 前記活物質薄膜がシリコン薄膜またはシリコンを含む薄膜であることを特徴とする請求項1〜6 7. A claim, wherein the active material thin film is a thin film including a silicon thin film or a silicon 1-6
    のいずれか1項に記載の二次電池用電極の製造方法。 Method of manufacturing a secondary battery electrode according to any one of.
  8. 【請求項8】 前記活物質薄膜が、スパッタリング法、 Wherein said active material thin film, a sputtering method,
    真空蒸着法、またはCVD法により形成されることを特徴とする請求項1〜7のいずれか1項に記載の二次電池用電極の製造方法。 Method of manufacturing a secondary battery electrode according to any one of claims 1 to 7, characterized in that it is formed by vacuum deposition or CVD.
  9. 【請求項9】 請求項1〜8のいずれか1項に記載の方法で製造されたことを特徴とする二次電池用電極。 9. The secondary battery electrode, characterized in that it is produced by the method according to any one of claims 1-8.
  10. 【請求項10】 集電体上の分離された複数の島状領域に活物質薄膜が選択的に形成されたことを特徴とする二次電池用電極。 10. A secondary battery electrode, wherein the active material thin film is selectively formed on the separated plurality of island regions on the current collector.
JP2001078203A 2001-03-19 2001-03-19 Method of manufacturing electrode for secondary battery Withdrawn JP2002279974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001078203A JP2002279974A (en) 2001-03-19 2001-03-19 Method of manufacturing electrode for secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001078203A JP2002279974A (en) 2001-03-19 2001-03-19 Method of manufacturing electrode for secondary battery

Publications (1)

Publication Number Publication Date
JP2002279974A true true JP2002279974A (en) 2002-09-27

Family

ID=18934850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001078203A Withdrawn JP2002279974A (en) 2001-03-19 2001-03-19 Method of manufacturing electrode for secondary battery

Country Status (1)

Country Link
JP (1) JP2002279974A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004036670A1 (en) * 2002-10-15 2004-04-29 Kabushiki Kaisha Toshiba Nonacqueous electrolyte secondary cell
JP2005293960A (en) * 2004-03-31 2005-10-20 Jfe Chemical Corp Anode for lithium ion secondary battery, and lithium ion secondary battery
KR100553826B1 (en) 2003-09-22 2006-02-21 주식회사 엘지화학 Electrode with a mesh structure of electronic conductor
WO2006043382A1 (en) * 2004-10-21 2006-04-27 Matsushita Electric Industrial Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
WO2007074654A1 (en) * 2005-12-28 2007-07-05 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO2008044449A1 (en) 2006-10-13 2008-04-17 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery, process for producing the same and nonaqueous electrolyte secondary battery utilizing the electrode
WO2008072430A1 (en) 2006-12-13 2008-06-19 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same and nonaqueous electrolyte secondary battery employing it
WO2008072460A1 (en) 2006-12-13 2008-06-19 Panasonic Corporation Negative electrode for rechargeable battery with nonaqueous electrolyte, process for producing the negative electrode, and rechargeable battery with nonaqueous electrolyte using the negative electrode
US7407727B2 (en) 2002-09-30 2008-08-05 Hitachi Maxell Ltd. Electrode used for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery used the same for a negative electrode
US7432016B2 (en) 2003-09-17 2008-10-07 Hitachi Maxell, Ltd. Electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same
EP2003715A2 (en) 2007-05-24 2008-12-17 Nissan Motor Co., Ltd. Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
US20100124706A1 (en) * 2008-11-14 2010-05-20 Sony Corporation Secondary battery and anode
JP2010135332A (en) * 2002-11-05 2010-06-17 Nexeon Ltd Structured silicon anode
EP2395579A1 (en) 2010-06-08 2011-12-14 Dainippon Screen Mfg., Co., Ltd. Battery, vehicle, electronic device and battery manufacturing method
US8101298B2 (en) 2006-01-23 2012-01-24 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
JP2012048955A (en) * 2010-08-26 2012-03-08 Sanyo Electric Co Ltd Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing negative electrode for lithium ion secondary battery
US8142931B2 (en) 2006-10-19 2012-03-27 Panasonic Corporation Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
US8148012B2 (en) 2007-02-01 2012-04-03 Panasonic Corporation Method for forming active material on a current collector of negative electrode using feedback process with measuring collector
US8192864B2 (en) 2007-02-01 2012-06-05 Panasonic Corporation Battery, examination method and manufacturing method for negative electrode thereof, and examination apparatus and manufacturing apparatus for negative electrode thereof
US8221915B2 (en) * 2010-11-12 2012-07-17 Leyden Energy, Inc. High performance lithium or lithium ion cell
US8257858B2 (en) * 2006-11-01 2012-09-04 Panasonic Corporation Lithium ion secondary battery and method for forming negative electrode plate for lithium ion secondary battery
US8257869B2 (en) 2007-06-01 2012-09-04 Panasonic Corporation Electrode for electrochemical element and electrochemical element using the electrode
US8273136B2 (en) 2007-03-16 2012-09-25 Panasonic Corporation Electrochemical element, and method and apparatus for manufacturing electrode thereof
US8334073B2 (en) 2006-10-12 2012-12-18 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
US8389156B2 (en) 2006-08-25 2013-03-05 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8585918B2 (en) 2006-01-23 2013-11-19 Nexeon Ltd. Method of etching a silicon-based material
US8642211B2 (en) 2007-07-17 2014-02-04 Nexeon Limited Electrode including silicon-comprising fibres and electrochemical cells including the same
US8734997B2 (en) 2006-10-10 2014-05-27 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery
US8772174B2 (en) 2010-04-09 2014-07-08 Nexeon Ltd. Method of fabricating structured particles composed of silicon or silicon-based material and their use in lithium rechargeable batteries
WO2014156053A1 (en) * 2013-03-26 2014-10-02 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US8999587B2 (en) 2010-09-28 2015-04-07 SCREEN Holdings Co., Ltd. Lithium-ion secondary battery, vehicle, electronic device and manufacturing method of lithium-ion secondary battery
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
US9350017B2 (en) 2010-11-12 2016-05-24 A123 Systems Llc High performance lithium or lithium ion cell
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
JP2017527094A (en) * 2014-07-22 2017-09-14 リクリッス カンパニー リミテッド Microbattery a pcb substrate and the semiconductor chip using the same
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
US10115994B2 (en) * 2015-05-26 2018-10-30 Apple Inc. Devices and methods for reducing battery defects

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7407727B2 (en) 2002-09-30 2008-08-05 Hitachi Maxell Ltd. Electrode used for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery used the same for a negative electrode
WO2004036670A1 (en) * 2002-10-15 2004-04-29 Kabushiki Kaisha Toshiba Nonacqueous electrolyte secondary cell
EP2363908A1 (en) * 2002-11-05 2011-09-07 Nexeon Ltd Structured silicon anode
US8384058B2 (en) 2002-11-05 2013-02-26 Nexeon Ltd. Structured silicon anode
JP2010135332A (en) * 2002-11-05 2010-06-17 Nexeon Ltd Structured silicon anode
US7432016B2 (en) 2003-09-17 2008-10-07 Hitachi Maxell, Ltd. Electrode for non-aqueous secondary battery and non-aqueous secondary battery using the same
KR100553826B1 (en) 2003-09-22 2006-02-21 주식회사 엘지화학 Electrode with a mesh structure of electronic conductor
JP2005293960A (en) * 2004-03-31 2005-10-20 Jfe Chemical Corp Anode for lithium ion secondary battery, and lithium ion secondary battery
JP2006120445A (en) * 2004-10-21 2006-05-11 Matsushita Electric Ind Co Ltd Anode for nonaqueous electrolyte secondary battery and its manufacturing method
WO2006043382A1 (en) * 2004-10-21 2006-04-27 Matsushita Electric Industrial Co., Ltd. Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
KR100860927B1 (en) * 2004-10-21 2008-09-29 마쯔시다덴기산교 가부시키가이샤 Negative electrode for nonaqueous electrolyte secondary battery and method for producing same
US7807294B2 (en) 2004-10-21 2010-10-05 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
KR100901048B1 (en) 2005-12-28 2009-06-04 파나소닉 주식회사 Nonaqueous electrolyte secondary battery
WO2007074654A1 (en) * 2005-12-28 2007-07-05 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP4613953B2 (en) * 2005-12-28 2011-01-19 パナソニック株式会社 Non-aqueous electrolyte secondary battery
US9583762B2 (en) 2006-01-23 2017-02-28 Nexeon Limited Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8597831B2 (en) 2006-01-23 2013-12-03 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8585918B2 (en) 2006-01-23 2013-11-19 Nexeon Ltd. Method of etching a silicon-based material
US8101298B2 (en) 2006-01-23 2012-01-24 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8389156B2 (en) 2006-08-25 2013-03-05 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
US8734997B2 (en) 2006-10-10 2014-05-27 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery
US8334073B2 (en) 2006-10-12 2012-12-18 Panasonic Corporation Non-aqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
WO2008044449A1 (en) 2006-10-13 2008-04-17 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery, process for producing the same and nonaqueous electrolyte secondary battery utilizing the electrode
US8029933B2 (en) 2006-10-13 2011-10-04 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method for manufacturing the same, and non-aqueous electrolyte secondary battery using the same
US8142931B2 (en) 2006-10-19 2012-03-27 Panasonic Corporation Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode thereof
US8257858B2 (en) * 2006-11-01 2012-09-04 Panasonic Corporation Lithium ion secondary battery and method for forming negative electrode plate for lithium ion secondary battery
US7947396B2 (en) 2006-12-13 2011-05-24 Panasonic Corporation Negative electrode for non-aqueous electrolyte secondary battery, method of manufacturing the same, and non-aqueous electrolyte secondary battery using the same
WO2008072430A1 (en) 2006-12-13 2008-06-19 Panasonic Corporation Negative electrode for nonaqueous electrolyte secondary battery and method for producing the same and nonaqueous electrolyte secondary battery employing it
WO2008072460A1 (en) 2006-12-13 2008-06-19 Panasonic Corporation Negative electrode for rechargeable battery with nonaqueous electrolyte, process for producing the negative electrode, and rechargeable battery with nonaqueous electrolyte using the negative electrode
US8192864B2 (en) 2007-02-01 2012-06-05 Panasonic Corporation Battery, examination method and manufacturing method for negative electrode thereof, and examination apparatus and manufacturing apparatus for negative electrode thereof
US8148012B2 (en) 2007-02-01 2012-04-03 Panasonic Corporation Method for forming active material on a current collector of negative electrode using feedback process with measuring collector
US8273136B2 (en) 2007-03-16 2012-09-25 Panasonic Corporation Electrochemical element, and method and apparatus for manufacturing electrode thereof
US9871249B2 (en) 2007-05-11 2018-01-16 Nexeon Limited Silicon anode for a rechargeable battery
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
US9017877B2 (en) 2007-05-24 2015-04-28 Nissan Motor Co., Ltd. Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
EP2003715A2 (en) 2007-05-24 2008-12-17 Nissan Motor Co., Ltd. Current collector for nonaqueous solvent secondary battery, and electrode and battery, which use the current collector
US8257869B2 (en) 2007-06-01 2012-09-04 Panasonic Corporation Electrode for electrochemical element and electrochemical element using the electrode
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
US8642211B2 (en) 2007-07-17 2014-02-04 Nexeon Limited Electrode including silicon-comprising fibres and electrochemical cells including the same
US9871244B2 (en) 2007-07-17 2018-01-16 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8940437B2 (en) 2007-07-17 2015-01-27 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US20100124706A1 (en) * 2008-11-14 2010-05-20 Sony Corporation Secondary battery and anode
JP2010118287A (en) * 2008-11-14 2010-05-27 Sony Corp Secondary battery and negative electrode
US9553304B2 (en) 2009-05-07 2017-01-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US10050275B2 (en) 2009-05-11 2018-08-14 Nexeon Limited Binder for lithium ion rechargeable battery cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
US8772174B2 (en) 2010-04-09 2014-07-08 Nexeon Ltd. Method of fabricating structured particles composed of silicon or silicon-based material and their use in lithium rechargeable batteries
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US9368836B2 (en) 2010-06-07 2016-06-14 Nexeon Ltd. Additive for lithium ion rechargeable battery cells
US9017868B2 (en) 2010-06-08 2015-04-28 SCREEN Holdings Co., Ltd. Battery, vehicle, electronic device and battery manufacturing method
EP2395579A1 (en) 2010-06-08 2011-12-14 Dainippon Screen Mfg., Co., Ltd. Battery, vehicle, electronic device and battery manufacturing method
JP2012048955A (en) * 2010-08-26 2012-03-08 Sanyo Electric Co Ltd Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for manufacturing negative electrode for lithium ion secondary battery
US9947920B2 (en) 2010-09-03 2018-04-17 Nexeon Limited Electroactive material
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US8999587B2 (en) 2010-09-28 2015-04-07 SCREEN Holdings Co., Ltd. Lithium-ion secondary battery, vehicle, electronic device and manufacturing method of lithium-ion secondary battery
US9350017B2 (en) 2010-11-12 2016-05-24 A123 Systems Llc High performance lithium or lithium ion cell
US8221915B2 (en) * 2010-11-12 2012-07-17 Leyden Energy, Inc. High performance lithium or lithium ion cell
US9263731B2 (en) 2010-11-12 2016-02-16 A123 Systems Llc High performance lithium or lithium ion cell
WO2014156053A1 (en) * 2013-03-26 2014-10-02 三洋電機株式会社 Negative electrode for non-aqueous electrolyte secondary batteries and non-aqueous electrolyte secondary battery
JP2017527094A (en) * 2014-07-22 2017-09-14 リクリッス カンパニー リミテッド Microbattery a pcb substrate and the semiconductor chip using the same
US10115994B2 (en) * 2015-05-26 2018-10-30 Apple Inc. Devices and methods for reducing battery defects

Similar Documents

Publication Publication Date Title
US6051340A (en) Rechargeable lithium battery
Ke et al. Fabrication and properties of three-dimensional macroporous Sn–Ni alloy electrodes of high preferential (1 1 0) orientation for lithium ion batteries
US7235330B1 (en) Electrode for use in lithium battery and rechargeable lithium battery
US20110129732A1 (en) Compressed powder 3d battery electrode manufacturing
US6685804B1 (en) Method for fabricating electrode for rechargeable lithium battery
US7659034B2 (en) Lithium secondary battery
US6649033B2 (en) Method for producing electrode for lithium secondary battery
EP1231654A1 (en) Electrode for lithium cell and lithium secondary cell
US7192673B1 (en) Electrode for rechargeable lithium battery and rechargeable lithium battery
Yu et al. Three-dimensional porous amorphous SnO2 thin films as anodes for Li-ion batteries
JP2003017040A (en) Electrode for lithium secondary battery, and manufacturing method thereof
US20100178568A1 (en) Process for producing carbon nanostructure on a flexible substrate, and energy storage devices comprising flexible carbon nanostructure electrodes
JP2008251369A (en) Negative electrode for lithium secondary battery, lithium secondary battery equipped with it, and manufacturing method of negative electrode for lithium secondary battery
JP2006114454A (en) Battery
JP2004127561A (en) Micro-patterned thin film electrode and lithium secondary battery using the same as negative electrode
JP2007194076A (en) Lithium secondary battery
WO2007052803A1 (en) Electrode for lithium rechargeable battery, lithium rechargeable battery, and process for producing said lithium rechargeable battery
JP2002319431A (en) Lithium secondary cell
JP2007027084A (en) Nonaqueous electrolyte solution secondary battery
JP2001283834A (en) Secondary battery
JP2005196970A (en) Negative pole for nonaqueous electrolyte secondary battery, its manufacturing method and nonaqueous electrolyte secondary battery using it
WO2002058182A1 (en) Lithium secondary battery
JP2002083594A (en) Electrode for lithium battery, lithium battery using it and lithium secondary battery
Wang et al. Ultrahigh volumetric capacity lithium ion battery anodes with CNT–Si film
JP2002373644A (en) Electrode for lithium secondary battery, and manufacturing method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050208

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061229