JP2001266851A - Manufacturing method of electrode for lithium secondary battery - Google Patents

Manufacturing method of electrode for lithium secondary battery

Info

Publication number
JP2001266851A
JP2001266851A JP2000321200A JP2000321200A JP2001266851A JP 2001266851 A JP2001266851 A JP 2001266851A JP 2000321200 A JP2000321200 A JP 2000321200A JP 2000321200 A JP2000321200 A JP 2000321200A JP 2001266851 A JP2001266851 A JP 2001266851A
Authority
JP
Japan
Prior art keywords
thin film
active material
current collector
electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000321200A
Other languages
Japanese (ja)
Inventor
Hiroaki Ikeda
博昭 池田
Yoichi Domoto
洋一 堂本
Hiromasa Yagi
弘雅 八木
Hisaki Tarui
久樹 樽井
Masahisa Fujimoto
正久 藤本
Shin Fujitani
伸 藤谷
Masaki Shima
正樹 島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2000321200A priority Critical patent/JP2001266851A/en
Publication of JP2001266851A publication Critical patent/JP2001266851A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To manufacture an electrode for lithium secondary battery that has a high charge and discharge capacity and is excellent in charge and discharge cycle characteristics. SOLUTION: The manufacturing method of lithium secondary battery comprises a method of forming a film by supplying the material from gas phase in which a film having an active material to be alloyed with lithium is formed on a current collector made of a metal which is not alloyed with lithium. A film is formed by a temperature under which a mixed layer dispersed with the components of the current collector is formed in the film at the vicinity of the surface interfacing with the current collector.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、新規なリチウム二
次電池用電極を製造する方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a novel electrode for a lithium secondary battery.

【0002】[0002]

【従来の技術】近年、研究開発が盛んに行われているリ
チウム二次電池は、用いられる電極により充放電電圧、
充放電サイクル寿命特性、保存特性などの電池特性が大
きく左右される。このことから、電極に用いる活物質を
改善することにより、電池特性の向上が図られている。
2. Description of the Related Art In recent years, a lithium secondary battery, which has been actively researched and developed, has a charge / discharge voltage,
Battery characteristics such as charge-discharge cycle life characteristics and storage characteristics are greatly affected. For this reason, the battery characteristics have been improved by improving the active material used for the electrode.

【0003】負極活物質としてリチウム金属を用いる
と、重量当たり及び体積当たりともに高いエネルギー密
度の電池を構成することができるが、充電時にリチウム
がデンドライト状に析出し、内部短絡を引き起こすとい
う問題があった。
[0003] When lithium metal is used as the negative electrode active material, a battery having a high energy density per weight and per volume can be formed. However, there is a problem that lithium precipitates in a dendrite shape during charging and causes an internal short circuit. Was.

【0004】これに対し、充電の際に電気化学的にリチ
ウムと合金化するアルミニウム、シリコン、錫などを電
極として用いるリチウム二次電池が報告されている(So
lidState Ionics,113-115,p57(1998)) 。これらのう
ち、特にシリコンは理論容量が大きく、高い容量を示す
電池用負極として有望であり、これを負極とする種々の
二次電池が提案されている(特開平10−255768
号公報)。しかしながら、この種の合金負極は、電極活
物質である合金自体が充放電により微粉化し集電特性が
悪化することから、十分なサイクル特性は得られていな
い。
On the other hand, there has been reported a lithium secondary battery using, as an electrode, aluminum, silicon, tin or the like which electrochemically alloys with lithium during charging (So).
lidState Ionics, 113-115, p57 (1998)). Among these, silicon is particularly promising as a battery negative electrode having a large theoretical capacity and a high capacity, and various secondary batteries using this as a negative electrode have been proposed (Japanese Patent Application Laid-Open No. 10-255768).
No.). However, in this type of alloy negative electrode, sufficient cycle characteristics have not been obtained because the alloy itself, which is an electrode active material, is pulverized by charging and discharging and the current collecting characteristics are deteriorated.

【0005】[0005]

【発明が解決しようとする課題】本出願人は、シリコン
を電極活物質とし、良好な充放電サイクル特性を示すリ
チウム二次電池用電極として、CVD法またはスパッタ
リング法などの薄膜形成方法により、集電体上に微結晶
シリコン薄膜または非晶質シリコン薄膜を形成したリチ
ウム二次電池用電極を提案している(特願平11−30
1646号など)。
SUMMARY OF THE INVENTION The present applicant has proposed a method of forming a thin film such as a CVD method or a sputtering method as an electrode for a lithium secondary battery which uses silicon as an electrode active material and exhibits good charge / discharge cycle characteristics. An electrode for a lithium secondary battery in which a microcrystalline silicon thin film or an amorphous silicon thin film is formed on an electric body has been proposed (Japanese Patent Application No. 11-30 / 1990).
No. 1646).

【0006】本発明の目的は、このようなシリコン薄膜
などの活物質薄膜を用いたリチウム二次電池用電極であ
って、充放電容量が高く、かつ充放電サイクル特性に優
れたリチウム二次電池用電極を製造する方法を提供する
ことにある。
An object of the present invention is to provide an electrode for a lithium secondary battery using such an active material thin film such as a silicon thin film, which has a high charge / discharge capacity and excellent charge / discharge cycle characteristics. It is to provide a method of manufacturing an electrode for use.

【0007】[0007]

【課題を解決するための手段】本発明は、気相から原料
を供給して薄膜を形成する方法を用いて、リチウムと合
金化する活物質からなる活物質薄膜をリチウムと合金化
しない金属からなる集電体上に形成するリチウム二次電
池用電極の製造方法であり、集電体との界面近傍の活物
質薄膜内に集電体成分が拡散してなる混合層が形成され
る温度で上記薄膜を形成することを特徴としている。
SUMMARY OF THE INVENTION The present invention uses a method of forming a thin film by supplying a raw material from a gaseous phase, and converting an active material thin film made of an active material that alloys with lithium from a metal that is not alloyed with lithium. A method of manufacturing an electrode for a lithium secondary battery formed on a current collector, wherein the temperature is at a temperature at which a mixed layer formed by diffusion of a current collector component into an active material thin film near an interface with the current collector is formed. It is characterized in that the thin film is formed.

【0008】気相から原料を供給して活物質薄膜を形成
する方法としては、スパッタリング法、CVD法、蒸着
法、及び溶射法などが挙げられる。本発明において活物
質として用いられる材料は、リチウムと合金化する材料
であり、例えば、シリコン、ゲルマニウム、錫、鉛、亜
鉛、マグネシウム、ナトリウム、アルミニウム、ガリウ
ム、インジウムなどが挙げられる。
As a method for forming an active material thin film by supplying a raw material from a gas phase, there are a sputtering method, a CVD method, a vapor deposition method, a thermal spraying method and the like. The material used as the active material in the present invention is a material that is alloyed with lithium, and examples thereof include silicon, germanium, tin, lead, zinc, magnesium, sodium, aluminum, gallium, and indium.

【0009】上記の薄膜形成方法により薄膜として形成
し易いという観点からは、シリコンまたはゲルマニウム
を主成分とする活物質が好ましい。また、高い充放電容
量の観点からは、シリコンを主成分とする活物質が特に
好ましい。また、活物質薄膜は、非晶質薄膜または微結
晶薄膜であることが好ましい。従って、活物質薄膜とし
ては、非晶質シリコン薄膜または微結晶シリコン薄膜が
好ましく用いられる。非晶質シリコン薄膜は、ラマン分
光分析において結晶領域に対応する520cm -1近傍の
ピークが実質的に検出されない薄膜であり、微結晶シリ
コン薄膜は、ラマン分光分析において、結晶領域に対応
する520cm-1近傍のピークと、非晶質領域に対応す
る480cm-1近傍のピークの両方が実質的に検出され
る薄膜である。また、非晶質ゲルマニウム薄膜、微結晶
ゲルマニウム薄膜、非晶質シリコンゲルマニウム合金薄
膜、及び微結晶シリコンゲルマニウム合金薄膜も好まし
く用いることができる。
Formed as a thin film by the above thin film forming method
Silicon or germanium in terms of ease of use
An active material containing as a main component is preferable. Also high charge and discharge capacity
In terms of quantity, active materials containing silicon as a main component are particularly
preferable. The active material thin film may be an amorphous thin film or
It is preferably a crystalline thin film. Therefore, the active material thin film
In general, amorphous silicon thin film or microcrystalline silicon thin film
It is preferably used. Amorphous silicon thin film
520 cm corresponding to the crystal area in optical analysis -1Nearby
This is a thin film with virtually no peaks detected.
Con thin film corresponds to crystalline region in Raman spectroscopy
520cm to do-1Near peaks and amorphous regions
480cm-1Both nearby peaks are virtually detected
Thin film. In addition, amorphous germanium thin film, microcrystal
Germanium thin film, amorphous silicon germanium alloy thin film
Films and microcrystalline silicon germanium alloy thin films are also preferred
Can be used.

【0010】本発明において用いられる集電体は、リチ
ウムと合金化しない金属から形成される。リチウムと合
金化しない金属としては、例えば銅などが挙げられる。
本発明においては、集電体と活物質薄膜との界面近傍の
活物質薄膜内に、集電体成分が拡散してなる混合層が形
成される温度で活物質薄膜を形成する。すなわち、活物
質薄膜を形成する際の温度(薄膜形成温度)が高くなる
と、集電体成分が活物質薄膜内に拡散し易くなるので、
本発明においては集電体成分が十分に拡散し、活物質薄
膜内に集電体成分と活物質成分との混合層が十分に形成
される温度で活物質薄膜を形成する。
[0010] The current collector used in the present invention is formed of a metal that does not alloy with lithium. Examples of the metal that does not alloy with lithium include copper and the like.
In the present invention, the active material thin film is formed at a temperature at which a mixed layer formed by diffusion of the current collector component is formed in the active material thin film near the interface between the current collector and the active material thin film. That is, if the temperature at which the active material thin film is formed (thin film formation temperature) increases, the current-collector component easily diffuses into the active material thin film.
In the present invention, the active material thin film is formed at a temperature at which the current collector component is sufficiently diffused and a mixed layer of the current collector component and the active material component is sufficiently formed in the active material thin film.

【0011】集電体成分が活物質薄膜内に拡散して混合
層が形成されることにより、集電体と活物質薄膜の密着
性が良好になる。また、集電体成分はリチウムと合金化
しない金属成分であるので、このような集電体成分が活
物質薄膜内に拡散することにより、リチウムを吸蔵及び
放出する際の、活物質薄膜の膨張及び収縮が相対的に小
さくなる。このため、活物質薄膜の膨張・収縮に伴う応
力が集電体との界面近傍で小さくなるため、体積の膨張
・収縮による活物質薄膜の集電体からの剥離を防止する
ことができ、集電体と活物質薄膜との密着性をさらに良
好なものにすることができる。
When the current collector component is diffused into the active material thin film to form a mixed layer, the adhesion between the current collector and the active material thin film is improved. In addition, since the current collector component is a metal component that is not alloyed with lithium, such a current collector component diffuses into the active material thin film, thereby expanding the active material thin film when inserting and extracting lithium. And the shrinkage is relatively small. For this reason, since the stress accompanying the expansion and contraction of the active material thin film is reduced near the interface with the current collector, it is possible to prevent the active material thin film from peeling off from the current collector due to expansion and contraction of the volume. Adhesion between the conductor and the active material thin film can be further improved.

【0012】このような混合層において、集電体成分の
濃度は集電体との界面近傍において高く、活物質薄膜の
表面に向かうにつれてその濃度が減少していることがわ
かっている。混合層内においてその濃度が連続的に減少
していることから、混合層における集電体成分は、活物
質と固溶体を形成していると考えられる。
In such a mixed layer, it is known that the concentration of the current collector component is high near the interface with the current collector, and the concentration decreases toward the surface of the active material thin film. Since the concentration is continuously reduced in the mixed layer, it is considered that the current collector component in the mixed layer forms a solid solution with the active material.

【0013】また、薄膜形成温度を高めると、集電体成
分が過剰に薄膜内に拡散するとともに、集電体成分と活
物質との金属間化合物が形成され易くなる。このような
金属間化合物が形成されると、化合物となった活物質原
子に関し、活物質として作用するサイトが減少して活物
質薄膜の充放電容量が低下する。また金属間化合物の形
成により集電体と活物質薄膜との密着性が悪くなる。従
って、混合層において活物質と集電体成分の金属間化合
物が形成されない温度で、活物質薄膜を集電体上に形成
することが好ましい。このような温度としては、300
℃未満の温度であることが好ましい。
When the temperature for forming the thin film is increased, the current collector component excessively diffuses into the thin film, and an intermetallic compound between the current collector component and the active material is easily formed. When such an intermetallic compound is formed, the number of sites acting as the active material for the active material atoms in the compound decreases, and the charge / discharge capacity of the active material thin film decreases. Further, the formation of the intermetallic compound deteriorates the adhesion between the current collector and the active material thin film. Therefore, it is preferable to form the active material thin film on the current collector at a temperature at which the intermetallic compound of the active material and the current collector component is not formed in the mixed layer. As such a temperature, 300
It is preferred that the temperature be less than ° C.

【0014】また、本発明においては、活物質薄膜を形
成した後、熱処理を行なってもよい。このような熱処理
を行なうことにより、薄膜内に集電体成分をさらに拡散
することができる。従って、活物質薄膜を形成する際
に、集電体成分を十分に薄膜内に拡散させることができ
ず、十分な厚みの混合層が形成できなかった場合に、こ
のような熱処理を行なうことが好ましい。熱処理は、上
述のように、集電体成分の過剰な拡散により、集電体成
分と活物質との金属間化合物が形成されないような条件
で行なうことが好ましい。このような熱処理の温度とし
ては、650℃未満の温度であることが好ましく、さら
に好ましくは400℃以下である。
In the present invention, heat treatment may be performed after forming the active material thin film. By performing such a heat treatment, the current collector component can be further diffused into the thin film. Therefore, when the active material thin film is formed, the current collector component cannot be sufficiently diffused into the thin film, and when a mixed layer having a sufficient thickness cannot be formed, such heat treatment can be performed. preferable. As described above, the heat treatment is preferably performed under such a condition that an excessive diffusion of the current collector component does not form an intermetallic compound between the current collector component and the active material. The temperature of such a heat treatment is preferably a temperature of less than 650 ° C, more preferably 400 ° C or less.

【0015】本発明において、活物質薄膜内に拡散する
集電体成分としては、銅が特に好ましい。このような銅
は、集電体の表面部分から活物質薄膜内に拡散するもの
であるので、集電体の少なくとも表面部分が銅を主成分
としていることが好ましい。
In the present invention, copper is particularly preferable as the current collector component diffused into the active material thin film. Since such copper diffuses from the surface of the current collector into the active material thin film, it is preferable that at least the surface of the current collector contains copper as a main component.

【0016】本発明において、活物質薄膜をスパッタリ
ング法で形成する場合、活物質の構成原子を含むターゲ
ットに投入する電力密度は、50W/cm2 以下である
ことが好ましく、さらに好ましくは6W/cm2 以下で
ある。このとき、電力の投入は、DC電圧、RF電圧、
あるいは、パルス電圧の印加のいずれを用いて行なって
もよい。
In the present invention, when an active material thin film is formed by a sputtering method, the power density applied to the target containing the constituent atoms of the active material is preferably 50 W / cm 2 or less, more preferably 6 W / cm 2. 2 or less. At this time, power is supplied by DC voltage, RF voltage,
Alternatively, it may be performed using any of the application of pulse voltages.

【0017】また、本発明においては、集電体上への活
物質薄膜の形成を間欠的に行なうことが好ましい。間欠
的に活物質薄膜を形成することにより、薄膜形成の際の
温度、すなわち薄膜形成において到達する最高温度を低
くすることができる。従って、上記のような金属間化合
物が形成されにくい条件で活物質薄膜を形成することが
できる。間欠的に薄膜を形成する方法としては、集電体
をドラム状のホルダーの外周面上に設置し、該ホルダー
を回転させながら集電体上に活物質薄膜を形成させる方
法が挙げられる。
In the present invention, it is preferable that the active material thin film is formed on the current collector intermittently. By forming the active material thin film intermittently, the temperature at the time of forming the thin film, that is, the maximum temperature reached in forming the thin film can be lowered. Therefore, the active material thin film can be formed under the condition that the intermetallic compound is hardly formed as described above. As a method of forming a thin film intermittently, there is a method in which a current collector is placed on the outer peripheral surface of a drum-shaped holder, and an active material thin film is formed on the current collector while rotating the holder.

【0018】気相から原料を供給して薄膜を形成する薄
膜形成方法における好ましい薄膜形成条件を以下に説明
する。基板温度は、上述のように300℃未満であるこ
とが好ましい。基板温度が高くなり過ぎると、活物質と
集電体成分の金属間化合物が形成される場合がある。
Preferred thin film forming conditions in a thin film forming method for forming a thin film by supplying a raw material from a gas phase will be described below. The substrate temperature is preferably lower than 300 ° C. as described above. If the substrate temperature is too high, an intermetallic compound of the active material and the current collector component may be formed.

【0019】成膜速度は、0.01nm/秒(0.1Å
/秒)以上であることが好ましい。成膜速度が低くなり
過ぎると、低温であっても、表面拡散及び再配列の影響
が顕著になり、熱平衡プロセスに近くなるため、金属間
化合物が生じ易くなる。
The film formation rate is 0.01 nm / sec (0.1Å / sec).
/ Sec) or more. If the film formation rate is too low, even at low temperatures, the effects of surface diffusion and rearrangement become remarkable, and the process becomes close to a thermal equilibrium process, so that an intermetallic compound is easily generated.

【0020】雰囲気圧力(真空度)は、10-2〜102
Pa程度が好ましい。雰囲気圧力(真空度)がこの範囲
よりも高くなると、粉末状の粒子を堆積したような薄膜
が作製され易くなり、集電体との密着性が悪くなる場合
がある。また、雰囲気圧力(真空度)がこの範囲よりも
低くなると、成膜速度が極端に遅くなり、上述のように
金属間化合物が生じ易くなる。
The atmospheric pressure (degree of vacuum) is 10 −2 to 10 2
About Pa is preferable. When the atmospheric pressure (degree of vacuum) is higher than this range, a thin film in which powdery particles are deposited is easily formed, and the adhesion to the current collector may be deteriorated. On the other hand, when the atmospheric pressure (degree of vacuum) is lower than this range, the film forming rate becomes extremely slow, and the intermetallic compound is easily generated as described above.

【0021】活物質薄膜をスパッタリング法で形成する
場合において、ターゲットに投入する電力密度は、上述
のように50W/cm2 以下であることが好ましく、さ
らに好ましくは6W/cm2 以下である。ターゲットに
投入する電力密度が高くなり過ぎると、プラズマからの
輻射熱の影響が大きくなり、金属間化合物が形成し易く
なる。
When the active material thin film is formed by the sputtering method, the power density applied to the target is preferably 50 W / cm 2 or less as described above, and more preferably 6 W / cm 2 or less. If the power density applied to the target becomes too high, the influence of radiant heat from the plasma increases, and an intermetallic compound is easily formed.

【0022】また、スパッタリングガスとしては、シリ
コンなどのターゲット材料と反応しないガスが好まし
く、このような観点からは、He、Ne、Ar、Kr、
Xe、Rn等の不活性ガスが好ましい。これらの中で
も、プラズマが発生し易く、スパッタリングの効率が高
いArガスが特に好ましい。
As the sputtering gas, a gas that does not react with the target material such as silicon is preferable. From such a viewpoint, He, Ne, Ar, Kr,
Inert gases such as Xe and Rn are preferred. Among them, Ar gas which easily generates plasma and has high sputtering efficiency is particularly preferable.

【0023】また、スパッタリングに用いるターゲット
としては、単結晶あるいは多結晶のターゲットが好まし
く、純度は99%以上であることが好ましい。これは、
形成する活物質薄膜への不純物の混入が減少するからで
ある。
As a target used for sputtering, a single crystal or polycrystal target is preferable, and its purity is preferably 99% or more. this is,
This is because the contamination of the formed active material thin film with impurities is reduced.

【0024】また、薄膜形成を開始する前のチャンバー
内の圧力としては、0.1Pa以下であることが好まし
い。これも、活物質薄膜への不純物の混入を少なくする
ことができるからである。
The pressure in the chamber before the start of thin film formation is preferably 0.1 Pa or less. This is also because the contamination of the active material thin film with impurities can be reduced.

【0025】薄膜を形成する前に、基板である集電体に
対してプラズマ照射などの前処理を行なうことが好まし
い。このような前処理のプラズマ照射としては、Arプ
ラズマ照射、水素プラズマ照射などが挙げられる。この
ような前処理を行なうことにより、集電体の表面を清浄
化することができる。このような前処理により、基板の
温度上昇も生じるため、基板温度が300℃以上となら
ないようにすることが好ましい。
Before forming the thin film, it is preferable to perform a pretreatment such as plasma irradiation on the current collector as the substrate. Examples of such pretreatment plasma irradiation include Ar plasma irradiation and hydrogen plasma irradiation. By performing such a pretreatment, the surface of the current collector can be cleaned. Since the temperature of the substrate is increased by such pretreatment, it is preferable that the temperature of the substrate does not exceed 300 ° C.

【0026】また、基板である集電体は、表面を清浄化
するため、薄膜を形成する前に洗浄しておくことが好ま
しい。洗浄剤としては、水、有機溶媒、酸、アルカリ、
中性洗剤及びこれらを組み合わせたものが好ましく用い
られる。
Further, the current collector serving as the substrate is preferably cleaned before forming a thin film in order to clean the surface. As cleaning agents, water, organic solvents, acids, alkalis,
Neutral detergents and combinations thereof are preferably used.

【0027】薄膜を形成した後、熱処理を行なう場合、
上述のように、熱処理温度は650℃未満であることが
好ましく、さらに好ましくは400℃以下である。熱処
理温度が高くなると、上述のように金属間化合物が形成
され易くなる。
When performing a heat treatment after forming the thin film,
As described above, the heat treatment temperature is preferably lower than 650 ° C, more preferably 400 ° C or lower. When the heat treatment temperature is increased, an intermetallic compound is easily formed as described above.

【0028】また、集電体上への活物質薄膜の形成は、
間欠的に行なうことが好ましい。従って、上述のように
集電体をドラム状のホルダーの外周面上に設置し、ホル
ダーを回転させながら集電体上に活物質薄膜を形成させ
たり、あるいは往復運動するホルダーの上に集電体を取
り付け、集電体の上に間欠的に活物質薄膜を形成させる
ことが好ましい。さらには、活物質薄膜を形成するため
のターゲットを複数設け、集電体がターゲットに対向す
る領域を順次通過するようにすることにより、活物質薄
膜の形成を間欠的に行うことができる。このように間欠
的に活物質薄膜を形成することにより、基板の温度上昇
を抑制することができる。また、1回の薄膜形成の膜厚
は、1μm以下であることが好ましい。
The formation of the active material thin film on the current collector is as follows.
It is preferable to perform it intermittently. Therefore, the current collector is set on the outer peripheral surface of the drum-shaped holder as described above, and the active material thin film is formed on the current collector while rotating the holder, or the current is collected on the reciprocating holder. It is preferable to attach a body and form an active material thin film intermittently on the current collector. Further, by providing a plurality of targets for forming an active material thin film and allowing the current collector to sequentially pass through a region facing the target, the active material thin film can be formed intermittently. By forming the active material thin film intermittently in this manner, a rise in the temperature of the substrate can be suppressed. The thickness of one thin film formation is preferably 1 μm or less.

【0029】[0029]

【発明の実施の形態】以下、本発明を実施例に基づいて
さらに詳細に説明するが、本発明は以下の実施例に何ら
限定されるものではなく、その要旨を変更しない範囲に
おいて適宜変更して実施することが可能なものである。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described below in more detail with reference to examples. However, the present invention is not limited to the following examples, and may be appropriately modified within the scope of the invention. It can be implemented by

【0030】(実験1) 〔負極の作製〕集電体として、表面に電解法で銅を析出
させることにより、表面を粗面化した圧延銅箔(厚み2
6μm)を用い、この集電体の上に平行平板型RFスパ
ッタリング装置を用いて、シリコン薄膜を形成した。ス
パッタリングの雰囲気ガスとしてはArガスのみを用
い、ターゲットとしては、99.999%のシリコン単
結晶を用いた。Arガス流量や排気バルブの開度を調整
しながら、表1及び表2に示す薄膜形成条件において、
実施例1〜7及び比較例1〜3の負極を作製した。シリ
コン薄膜の厚みは約6μmとした。
(Experiment 1) [Preparation of Negative Electrode] A rolled copper foil (thickness: 2) having a roughened surface by depositing copper on the surface by electrolytic method as a current collector.
6 μm), and a silicon thin film was formed on the current collector using a parallel plate RF sputtering apparatus. Only an Ar gas was used as an atmosphere gas for sputtering, and a 99.999% silicon single crystal was used as a target. While adjusting the Ar gas flow rate and the opening of the exhaust valve, under the thin film forming conditions shown in Tables 1 and 2,
The negative electrodes of Examples 1 to 7 and Comparative Examples 1 to 3 were produced. The thickness of the silicon thin film was about 6 μm.

【0031】実施例1〜3及び比較例1〜2において
は、基板温度を変化させ、薄膜形成温度(最高到達温
度)を変えてシリコン薄膜(活物質薄膜)を形成した。
実施例4及び比較例3においては、薄膜形成後、表2に
示す条件で熱処理を行なった。実施例5〜7は、ターゲ
ットに投入する電力密度を変化させて薄膜を形成した。
In Examples 1 to 3 and Comparative Examples 1 and 2, a silicon thin film (active material thin film) was formed by changing the substrate temperature and changing the thin film forming temperature (the highest temperature reached).
In Example 4 and Comparative Example 3, after forming the thin film, heat treatment was performed under the conditions shown in Table 2. In Examples 5 to 7, thin films were formed by changing the power density applied to the target.

【0032】形成したシリコン薄膜についてラマン分光
分析を行い、その結晶性を同定した。480cm-1近傍
のピークが実質的に認められ、520cm-1近傍のピー
クが実質的に認められないものは「非晶質」とした。ま
た、480cm-1近傍のピークが実質的に認められず、
520cm-1近傍のピークのみが実質的に認められるも
のを「多結晶」とした。
The silicon thin film thus formed was analyzed by Raman spectroscopy to identify its crystallinity. When the peak near 480 cm -1 was substantially recognized and the peak near 520 cm -1 was not substantially recognized, it was regarded as "amorphous". In addition, a peak near 480 cm −1 was not substantially observed,
A substance in which only a peak near 520 cm -1 was substantially observed was defined as "polycrystalline".

【0033】なお、シリコン薄膜は、銅箔上の2.5c
m×2.5cmの領域に、マスクを用いて限定的に形成
した。活物質薄膜を形成した後、シリコン薄膜が形成さ
れていない銅箔の領域の上に負極タブを取り付け、負極
を完成した。
It should be noted that the silicon thin film has a thickness of 2.5c on the copper foil.
It was formed in a limited area of mx 2.5 cm using a mask. After forming the active material thin film, a negative electrode tab was attached on a region of the copper foil where the silicon thin film was not formed, thereby completing a negative electrode.

【0034】〔正極の作製〕LiCoO2 粉末90重量
部、及び導電材としての人造黒鉛粉末5重量部を、結着
剤としてのポリテトラフルオロエチレンを5重量部含む
5重量%のN−メチルピロリドン水溶液に混合し、正極
合剤スラリーとした。このスラリーをドクターブレード
法により、正極集電体であるアルミニウム箔(厚み18
μm)の2cm×2cmの領域の上に塗布した後乾燥
し、正極活物質層を形成した。正極活物質層を塗布しな
かったアルミニウム箔の領域の上に正極タブを取り付
け、正極を完成した。
[Preparation of Positive Electrode] 90 parts by weight of LiCoO 2 powder, 5 parts by weight of artificial graphite powder as a conductive material, and 5 parts by weight of N-methylpyrrolidone containing 5 parts by weight of polytetrafluoroethylene as a binder It was mixed with an aqueous solution to obtain a positive electrode mixture slurry. The slurry was applied to an aluminum foil (thickness 18) as a positive electrode current collector by a doctor blade method.
μm), and then dried to form a positive electrode active material layer. A positive electrode tab was attached on the area of the aluminum foil on which the positive electrode active material layer was not applied, to complete a positive electrode.

【0035】〔電解液の作製〕エチレンカーボネートと
ジメチルカーボネートとの等体積混合溶媒に、LiPF
6 を1モル/リットル溶解して電解液を調製し、これを
以下の電池の作製において用いた。
[Preparation of electrolyte solution] LiPF was added to an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate.
6 was dissolved at 1 mol / liter to prepare an electrolytic solution, which was used in the production of the following battery.

【0036】〔電池の作製〕図2は、作製したリチウム
二次電池を示す斜視図である。図3は、作製したリチウ
ム二次電池を示す断面模式図である。図3に示すよう
に、アルミラミネートフィルムからなる外装体10内
に、正極及び負極が挿入されている。負極集電体11の
上には負極活物質としてのシリコン薄膜12が設けられ
ており、正極集電体13の上には正極活物質層14が設
けられている。シリコン薄膜12と正極活物質層14
は、セパレーター15を介して対向するように配置され
ている。外装体10内には、上記の電解液が注入されて
いる。外装体10の端部は溶着により封口されており、
封口部10aが形成されている。負極集電体11に取り
付けられた負極タブ17は、この封口部10aを通り外
部に取り出されている。なお、図3に図示されないが、
正極集電体13に取り付けられた正極タブ18も、同様
に封口部10aを通り外部に取り出されている。
[Preparation of Battery] FIG. 2 is a perspective view showing the prepared lithium secondary battery. FIG. 3 is a schematic cross-sectional view showing the manufactured lithium secondary battery. As shown in FIG. 3, a positive electrode and a negative electrode are inserted into an exterior body 10 made of an aluminum laminated film. A silicon thin film 12 as a negative electrode active material is provided on the negative electrode current collector 11, and a positive electrode active material layer 14 is provided on the positive electrode current collector 13. Silicon thin film 12 and positive electrode active material layer 14
Are arranged to face each other with the separator 15 interposed therebetween. The above electrolytic solution is injected into the exterior body 10. The end of the exterior body 10 is sealed by welding,
A sealing portion 10a is formed. The negative electrode tab 17 attached to the negative electrode current collector 11 is taken out through the sealing portion 10a. Although not shown in FIG. 3,
Similarly, the positive electrode tab 18 attached to the positive electrode current collector 13 is also taken out through the sealing portion 10a.

【0037】〔充放電サイクル試験〕上記のようにして
作製したリチウム二次電池について、充放電サイクル試
験を行った。充放電の条件は、充電電流9mAで充電終
止容量9mAhとなるまで充電した後、放電電流9mA
で放電終止電圧2.75Vとなるまで放電し、これを1
サイクルの充放電として、各電池について、1サイクル
目、5サイクル目、及び20サイクル目における放電容
量及び充放電効率を求めた。結果を表1及び表2に示
す。なお、以下の表における流量の単位sccmは、0
℃、1気圧(101.33kPa)の1分間当りの体積
流量(cm3/分)であり、standard cubic centimeter
s per minute の略である。
[Charge / Discharge Cycle Test] A charge / discharge cycle test was performed on the lithium secondary battery prepared as described above. The charging and discharging conditions were as follows: after charging with a charging current of 9 mA until the charging end capacity reached 9 mAh, a discharging current of 9 mA
Discharge until the discharge end voltage becomes 2.75 V,
As the charge / discharge of the cycle, the discharge capacity and the charge / discharge efficiency at the first cycle, the fifth cycle, and the 20th cycle were obtained for each battery. The results are shown in Tables 1 and 2. The unit sccm of the flow rate in the following table is 0
° C, 1 atm (101.33 kPa) per minute volume flow rate (cm 3 / min), standard cubic centimeter
s per minute.

【0038】[0038]

【表1】 [Table 1]

【0039】[0039]

【表2】 [Table 2]

【0040】表1に示す実施例1〜3及び比較例1〜2
の結果から明らかなように、薄膜形成温度(最高到達温
度)が300℃未満であれば、高い放電容量及び良好な
充放電効率が得られている。
Examples 1 to 3 and Comparative Examples 1 and 2 shown in Table 1
As is clear from the results, when the thin film formation temperature (maximum temperature reached) is less than 300 ° C., a high discharge capacity and good charge / discharge efficiency are obtained.

【0041】表1に示す実施例1及び表2に示す実施例
4及び比較例3の結果から明らかなように、薄膜形成後
に行なう熱処理の温度が650℃になるとシリコン薄膜
の結晶性が多結晶になり、放電容量及び充放電効率が低
下することがわかる。このことから、熱処理の温度は6
50℃未満であることが好ましく、さらに好ましくは4
00℃以下であることがわかる。
As is clear from the results of Example 1 shown in Table 1, Example 4 and Comparative Example 3 shown in Table 2, when the temperature of the heat treatment performed after the formation of the thin film reaches 650 ° C., the crystallinity of the silicon thin film becomes polycrystalline. It can be seen that the discharge capacity and the charge / discharge efficiency decrease. From this, the heat treatment temperature is 6
It is preferably less than 50 ° C., more preferably 4 ° C.
It is understood that the temperature is not higher than 00 ° C.

【0042】表1に示す実施例1並びに表2に示す実施
例5〜7の結果から明らかなように、薄膜形成の際のタ
ーゲットに投入する電力密度が4.94W/cm2 以下
の範囲において、高い放電容量及び良好な充放電効率が
得られることがわかる。
As is clear from the results of Example 1 shown in Table 1 and Examples 5 to 7 shown in Table 2, when the power density applied to the target at the time of forming the thin film was 4.94 W / cm 2 or less. It can be seen that high discharge capacity and good charge / discharge efficiency can be obtained.

【0043】次に、基板温度を変化させ、薄膜形成温度
(最高到達温度)を変化させて形成した実施例1〜3及
び比較例1〜2の負極について、SIMS(二次イオン
質量分析)により、深さ方向における銅元素の濃度分布
を測定した。負極としては、充放電試験前の負極を用
い、O2 + をスパッタリング源に用いて銅元素(63
+) の濃度分布を測定した。
Next, the negative electrodes of Examples 1 to 3 and Comparative Examples 1 and 2 formed by changing the substrate temperature and changing the thin film formation temperature (maximum reaching temperature) were subjected to SIMS (secondary ion mass spectrometry). The concentration distribution of the copper element in the depth direction was measured. As the negative electrode, charging and discharging the negative-electrode before the test, O 2 + a using the sputtering source a copper element (63 C
The concentration distribution of u + ) was measured.

【0044】図4〜図8は、実施例1〜3及び比較例1
〜2で作製した負極の深さ方向の銅の濃度分布を示して
おり、横軸は深さ(μm)を示し、縦軸は原子密度(a
toms/cc:atoms/cm3 )を示している。
図4は実施例1、図5は実施例2、図6は実施例3、図
7は比較例1、図8は比較例2をそれぞれ示している。
4 to 8 show Examples 1 to 3 and Comparative Example 1.
2 shows the concentration distribution of copper in the depth direction of the negative electrode prepared in Examples 2 to 3, the horizontal axis represents the depth (μm), and the vertical axis represents the atomic density (a
toms / cc: atoms / cm 3 ).
4 shows Example 1, FIG. 5 shows Example 2, FIG. 6 shows Example 3, FIG. 7 shows Comparative Example 1, and FIG. 8 shows Comparative Example 2.

【0045】図4〜図8のいずれにおいても、表面近傍
においては、銅の濃度がほぼ均一で、相対的に低い領域
が存在している。また、活物質薄膜の表面から集電体と
の界面に向かうにつれて、銅濃度が増加している領域が
存在している。このような銅濃度が増加する領域が存在
することから、活物質薄膜と集電体との界面近傍におい
ては、集電体からの銅元素の拡散によって、活物質薄膜
と銅元素との混合領域が存在していることがわかる。こ
のような混合領域(混合層)の存在によって、集電体と
活物質薄膜との間における高い密着性が得られていると
考えられる。
In any of FIGS. 4 to 8, there is a region where the copper concentration is almost uniform and relatively low near the surface. In addition, there is a region where the copper concentration increases from the surface of the active material thin film toward the interface with the current collector. Due to the existence of such a region where the copper concentration increases, near the interface between the active material thin film and the current collector, the mixed region of the active material thin film and the copper element is diffused by the copper element from the current collector. It turns out that exists. It is considered that high adhesion between the current collector and the active material thin film is obtained due to the presence of such a mixed region (mixed layer).

【0046】比較的基板温度が低い条件で形成した実施
例1〜3(図4〜図6)においては、活物質薄膜表面近
傍の銅濃度は、1020atoms/cc(atoms/
cm 3 )(約1%)である。これに対して、比較的高い
基板温度で活物質薄膜を形成した比較例1〜2(図7〜
図8)では、活物質薄膜表面近傍の銅濃度は、1021
toms/cc(atoms/cm3 )(約10%)以
上になっている。これらのことから、より高い基板温度
で活物質薄膜を形成すると、活物質薄膜全体に銅が拡散
し、活物質の濃度が相対的に減少するため、放電容量が
低下すると考えられる。また、活物質薄膜中に銅が高い
濃度で存在することにより、サイクル特性が低下するも
のと考えられる。これは、おそらく活物質薄膜中で金属
間化合物が生成するためであると考えられる。
An embodiment in which the substrate is formed at a relatively low substrate temperature
In Examples 1 to 3 (FIGS. 4 to 6), the vicinity of the surface of the active material thin film was measured.
The copper concentration beside is 1020atoms / cc (atoms /
cm Three) (About 1%). On the other hand, relatively high
Comparative Examples 1 and 2 in which an active material thin film was formed at a substrate temperature (FIGS.
In FIG. 8), the copper concentration near the active material thin film surface is 10%.twenty onea
toms / cc (atoms / cmThree) (About 10%)
Is on top. For these reasons, higher substrate temperature
When an active material thin film is formed, copper diffuses throughout the active material thin film
As the active material concentration decreases relatively, the discharge capacity decreases.
It is thought to decrease. Also, copper is high in the active material thin film
The presence of such a compound at a concentration causes the cycle characteristics to deteriorate.
it is considered as. This is probably due to the metal
This is considered to be due to the formation of intermetallic compounds.

【0047】(実験2) 〔負極の作製〕RFスパッタリング装置として、図1に
示すような、回転ホルダーを有するスパッタリング装置
を用いて、シリコン薄膜を形成した。集電体としては、
実験1に用いたものと同様のものを用い、その上にシリ
コン薄膜を形成した。集電体を、図1に示す回転ホルダ
ー1の外周面の上に設置し、回転ホルダー1を回転させ
ながら、ターゲット2に、高周波電源3から高周波(R
F)電力を供給し、Arプラズマ4を発生させ、集電体
の上にシリコン薄膜を形成した。回転ホルダー1の回転
速度は、約10rpmとし、その他の薄膜形成条件は、
表3に示す通りとした。なお、スパッタリングガスとし
ては、Arガスのみを用い、ターゲットは、実験1と同
様のものを用いた。シリコン薄膜の膜厚は約6μmとな
るように形成した。
(Experiment 2) [Preparation of Negative Electrode] A silicon thin film was formed using an RF sputtering apparatus having a rotating holder as shown in FIG. As a current collector,
The same thing as that used in Experiment 1 was used, and a silicon thin film was formed thereon. The current collector is placed on the outer peripheral surface of the rotary holder 1 shown in FIG. 1, and while rotating the rotary holder 1, a high frequency (R)
F) Electric power was supplied to generate Ar plasma 4, and a silicon thin film was formed on the current collector. The rotation speed of the rotary holder 1 is about 10 rpm, and other thin film forming conditions are as follows.
As shown in Table 3. Note that only Ar gas was used as a sputtering gas, and a target similar to that used in Experiment 1 was used. The silicon thin film was formed to have a thickness of about 6 μm.

【0048】〔電池の作製及び充放電サイクル試験〕実
験1と同様の正極を用い、実験1と同様にしてリチウム
二次電池を作製し、実験1と同様にして充放電サイクル
試験を行なった。結果を表3に示す。
[Preparation of Battery and Charge / Discharge Cycle Test] Using the same positive electrode as in Experiment 1, a lithium secondary battery was prepared in the same manner as in Experiment 1, and a charge / discharge cycle test was performed in the same manner as in Experiment 1. Table 3 shows the results.

【0049】[0049]

【表3】 [Table 3]

【0050】表3に示す結果から明らかなように、実施
例8においては、実施例1に比べ、その他の形成条件が
同じで、ターゲットに投入する電力密度が若干大きいに
もかかわらず、薄膜形成温度(最高到達温度)が実施例
1よりも低くなっている。これは、集電体を回転ホルダ
ーの上に設置し、回転ホルダーを回転させながら活物質
薄膜を形成しているので、集電体上へのシリコン薄膜の
形成が間欠的に行なわれ、このため最高到達温度が低く
抑制されているものと考えられる。また、放電容量及び
充放電効率は、実施例1に比べ若干良好になっているこ
とがわかる。
As is clear from the results shown in Table 3, the thin film formation in Example 8 was the same as that in Example 1 except that the other forming conditions were the same and the power density applied to the target was slightly higher. The temperature (the highest temperature reached) is lower than in the first embodiment. This is because the current collector is placed on the rotating holder, and the active material thin film is formed while rotating the rotating holder, so that the silicon thin film is intermittently formed on the current collector. It is considered that the maximum attained temperature was suppressed low. Further, it can be seen that the discharge capacity and the charge / discharge efficiency are slightly better than in Example 1.

【0051】(実験3)実験1と同じ平行平板型スパッ
タリング装置を用い、ターゲットに投入する電力を、高
周波(RF)電力に代えて、DC電力またはパルス電力
とし、表4に示す電力密度とする以外は、実験1の実施
例1と同様にして集電体上にシリコン薄膜を形成し、実
験1と同様にして負極を作製した。
(Experiment 3) Using the same parallel plate type sputtering apparatus as in Experiment 1, the power supplied to the target was changed to DC power or pulse power instead of radio frequency (RF) power, and the power density shown in Table 4 was used. Except for the above, a silicon thin film was formed on the current collector in the same manner as in Example 1 of Experiment 1, and a negative electrode was fabricated in the same manner as in Experiment 1.

【0052】〔電池の作製及び充放電サイクル試験〕実
験1と同様の正極を用い、実験1と同様にしてリチウム
二次電池を作製し、実験1と同様にして充放電サイクル
試験を行なった。結果を表4に示す。
[Preparation of Battery and Charge / Discharge Cycle Test] Using the same positive electrode as in Experiment 1, a lithium secondary battery was prepared in the same manner as in Experiment 1, and a charge / discharge cycle test was performed in the same manner as in Experiment 1. Table 4 shows the results.

【0053】[0053]

【表4】 [Table 4]

【0054】表4に示す結果から明らかなように、高周
波電源に代えて、DC電源またはパルス電源を用いるこ
とにより、実施例1に比べて、薄膜形成温度(最高到達
温度)が低くなっていることがわかる。また、得られた
リチウム二次電池の放電容量及び充放電効率は、実施例
1とほぼ同様の、良好な結果が得られている。
As is evident from the results shown in Table 4, the use of a DC power supply or a pulse power supply instead of the high-frequency power supply lowers the thin film formation temperature (maximum temperature reached) as compared with the first embodiment. You can see that. In addition, the discharge capacity and charge / discharge efficiency of the obtained lithium secondary battery were almost the same as those of Example 1, and good results were obtained.

【0055】上記実施例では、スパッタリング法により
活物質薄膜を形成しているが、本発明はこれに限定され
るものではなく、CVD法などの他の薄膜形成方法を用
いてもよい。
In the above embodiment, the active material thin film is formed by the sputtering method. However, the present invention is not limited to this, and another thin film forming method such as a CVD method may be used.

【0056】[0056]

【発明の効果】本発明によれば、充放電容量が高く、か
つ充放電サイクル特性に優れたリチウム二次電池用電極
を安定して製造することができる。
According to the present invention, an electrode for a lithium secondary battery having a high charge / discharge capacity and excellent charge / discharge cycle characteristics can be stably manufactured.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に従う実施例で用いた回転ホルダーを有
するスパッタリング装置を示す模式的構成図。
FIG. 1 is a schematic configuration diagram showing a sputtering apparatus having a rotating holder used in an embodiment according to the present invention.

【図2】本発明に従う実施例において作製したリチウム
二次電池を示す斜視図。
FIG. 2 is a perspective view showing a lithium secondary battery manufactured in an example according to the present invention.

【図3】本発明に従う実施例において作製したリチウム
二次電池を示す断面模式図。
FIG. 3 is a schematic cross-sectional view showing a lithium secondary battery manufactured in an example according to the present invention.

【図4】実施例1の電極における深さ方向の銅元素の濃
度分布を示す図。
FIG. 4 is a diagram showing a concentration distribution of a copper element in a depth direction in the electrode of Example 1.

【図5】実施例2の電極における深さ方向の銅元素の濃
度分布を示す図。
FIG. 5 is a view showing a concentration distribution of a copper element in a depth direction in an electrode of Example 2.

【図6】実施例3の電極における深さ方向の銅元素の濃
度分布を示す図。
FIG. 6 is a view showing a concentration distribution of a copper element in a depth direction in an electrode of Example 3.

【図7】比較例1の電極における深さ方向の銅元素の濃
度分布を示す図。
FIG. 7 is a diagram showing a concentration distribution of a copper element in a depth direction in an electrode of Comparative Example 1.

【図8】比較例2の電極における深さ方向の銅元素の濃
度分布を示す図。
FIG. 8 is a view showing a concentration distribution of a copper element in a depth direction in an electrode of Comparative Example 2.

【符号の説明】[Explanation of symbols]

1…回転ホルダー 2…ターゲット 3…高周波電源 4…Arプラズマ 10…外装体 11…負極集電体 12…シリコン薄膜 13…正極集電体 14…正極活物質層 15…セパレータ 16…電解液 17…負極タブ 18…正極タブ DESCRIPTION OF SYMBOLS 1 ... Rotating holder 2 ... Target 3 ... High frequency power supply 4 ... Ar plasma 10 ... Outer body 11 ... Negative electrode collector 12 ... Silicon thin film 13 ... Positive electrode collector 14 ... Positive electrode active material layer 15 ... Separator 16 ... Electrolyte 17 ... Negative electrode tab 18 ... Positive electrode tab

───────────────────────────────────────────────────── フロントページの続き (31)優先権主張番号 特願2000−3644(P2000−3644) (32)優先日 平成12年1月12日(2000.1.12) (33)優先権主張国 日本(JP) (72)発明者 八木 弘雅 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 樽井 久樹 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 藤本 正久 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 藤谷 伸 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 島 正樹 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 Fターム(参考) 5H050 AA07 AA08 BA15 CB11 CB13 DA03 FA19 FA20 GA02 GA24 HA14  ──────────────────────────────────────────────────続 き Continued on the front page (31) Priority claim number Japanese Patent Application 2000-3644 (P2000-3644) (32) Priority date January 12, 2000 (2000.1.12) (33) Priority claim country Japan (JP) (72) Inventor Hiromasa Yagi 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Hisaki Tarui 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Masahisa Fujimoto 2-5-5 Keihanhondori, Moriguchi City, Osaka Prefecture Sanyo Electric Co., Ltd. (72) Inventor Shin Fujitani 2-5-5, Keihanhondori, Moriguchi City, Osaka Prefecture No. 5 Sanyo Electric Co., Ltd. (72) Inventor Masaki Shima 2-5-5 Keihanhondori, Moriguchi-shi, Osaka F-term in Sanyo Electric Co., Ltd. 5H050 AA07 AA08 BA15 CB11 CB13 DA03 FA19 FA20 GA02 GA24 HA14

Claims (12)

【特許請求の範囲】[Claims] 【請求項1】 気相から原料を供給して薄膜を形成する
方法を用いて、リチウムと合金化する活物質からなる活
物質薄膜をリチウムと合金化しない金属からなる集電体
の上に形成するリチウム二次電池用電極の製造方法であ
って、 前記集電体との界面近傍の前記活物質薄膜内に前記集電
体成分が拡散してなる混合層が形成される温度で前記活
物質薄膜を形成することを特徴とするリチウム二次電池
用電極の製造方法。
An active material thin film made of an active material alloying with lithium is formed on a current collector made of a metal that does not alloy with lithium by using a method of forming a thin film by supplying a raw material from a gas phase. A method for producing an electrode for a lithium secondary battery, wherein the active material is formed at a temperature at which a mixed layer formed by diffusion of the current collector component in the active material thin film near an interface with the current collector is formed. A method for producing an electrode for a lithium secondary battery, comprising forming a thin film.
【請求項2】 前記活物質薄膜の形成温度が、前記混合
層において前記活物質と前記集電体成分の金属間化合物
が形成されない温度であることを特徴とする請求項1に
記載のリチウム二次電池用電極の製造方法。
2. The lithium secondary battery according to claim 1, wherein the formation temperature of the active material thin film is a temperature at which an intermetallic compound of the active material and the current collector component is not formed in the mixed layer. Method for producing electrode for secondary battery.
【請求項3】 前記活物質薄膜の形成温度が300℃未
満の温度であることを特徴とする請求項1または2に記
載のリチウム二次電池用電極の製造方法。
3. The method for manufacturing an electrode for a lithium secondary battery according to claim 1, wherein the formation temperature of the active material thin film is lower than 300 ° C.
【請求項4】 前記活物質薄膜を形成した後、熱処理を
行なうことを特徴とする請求項1〜3のいずれか1項に
記載のリチウム二次電池用電極の製造方法。
4. The method for manufacturing an electrode for a lithium secondary battery according to claim 1, wherein a heat treatment is performed after forming the active material thin film.
【請求項5】 前記熱処理の温度が650℃未満である
ことを特徴とする請求項4に記載のリチウム二次電池用
電極の製造方法。
5. The method for manufacturing an electrode for a lithium secondary battery according to claim 4, wherein the temperature of the heat treatment is lower than 650 ° C.
【請求項6】 前記活物質がシリコンまたはゲルマニウ
ムを主成分とすることを特徴とする請求項1〜5のいず
れか1項に記載のリチウム二次電池用電極の製造方法。
6. The method for manufacturing an electrode for a lithium secondary battery according to claim 1, wherein the active material contains silicon or germanium as a main component.
【請求項7】 前記活物質薄膜が非晶質シリコン薄膜ま
たは微結晶シリコン薄膜であることを特徴とする請求項
1〜6のいずれか1項に記載のリチウム二次電池用電極
の製造方法。
7. The method of manufacturing an electrode for a lithium secondary battery according to claim 1, wherein the active material thin film is an amorphous silicon thin film or a microcrystalline silicon thin film.
【請求項8】 前記活物質薄膜が、非晶質ゲルマニウム
薄膜、微結晶ゲルマニウム薄膜、非晶質シリコンゲルマ
ニウム合金薄膜、または微結晶シリコンゲルマニウム合
金薄膜であることを特徴とする請求項1〜6のいずれか
1項に記載のリチウム二次電池用電極の製造方法。
8. The method according to claim 1, wherein the active material thin film is an amorphous germanium thin film, a microcrystalline germanium thin film, an amorphous silicon germanium alloy thin film, or a microcrystalline silicon germanium alloy thin film. A method for producing an electrode for a lithium secondary battery according to any one of the preceding claims.
【請求項9】 前記集電体の少なくとも表面部分が銅を
主成分としていることを特徴とする請求項1〜8のいず
れか1項に記載のリチウム二次電池用電極の製造方法。
9. The method for manufacturing an electrode for a lithium secondary battery according to claim 1, wherein at least a surface portion of the current collector contains copper as a main component.
【請求項10】 前記活物質薄膜の形成方法がスパッタ
リング法であることを特徴とする請求項1〜9のいずれ
か1項に記載のリチウム二次電池用電極の製造方法。
10. The method for producing an electrode for a lithium secondary battery according to claim 1, wherein the method of forming the active material thin film is a sputtering method.
【請求項11】 前記集電体上への前記活物質薄膜の形
成を間欠的に行なうことを特徴とする請求項1〜10の
いずれか1項に記載のリチウム二次電池用電極の製造方
法。
11. The method for producing an electrode for a lithium secondary battery according to claim 1, wherein the formation of the active material thin film on the current collector is performed intermittently. .
【請求項12】 前記集電体をドラム状のホルダーの外
周面に設置し、該ホルダーを回転させながら前記集電体
上に前記活物質薄膜を形成することにより間欠的に前記
集電体上に前記活物質薄膜を形成することを特徴とする
請求項11に記載のリチウム二次電池用電極の製造方
法。
12. The current collector is placed on the outer peripheral surface of a drum-shaped holder, and the active material thin film is formed on the current collector while rotating the holder, so that the current collector is intermittently placed on the current collector. The method for manufacturing an electrode for a lithium secondary battery according to claim 11, wherein the active material thin film is formed on the electrode.
JP2000321200A 1999-10-22 2000-10-20 Manufacturing method of electrode for lithium secondary battery Pending JP2001266851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000321200A JP2001266851A (en) 1999-10-22 2000-10-20 Manufacturing method of electrode for lithium secondary battery

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
JP11-301679 1999-10-22
JP30164699 1999-10-22
JP30167999 1999-10-22
JP36530699 1999-12-22
JP2000003644 2000-01-12
JP2000-3644 2000-01-12
JP11-301646 2000-07-07
JP11-365306 2000-07-07
JP2000321200A JP2001266851A (en) 1999-10-22 2000-10-20 Manufacturing method of electrode for lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2001266851A true JP2001266851A (en) 2001-09-28

Family

ID=27530938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000321200A Pending JP2001266851A (en) 1999-10-22 2000-10-20 Manufacturing method of electrode for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2001266851A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045250B2 (en) 2000-11-13 2006-05-16 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery
JP2007194204A (en) * 2006-01-20 2007-08-02 Samsung Sdi Co Ltd Anode active substance, its manufacturing method, anode, and lithium battery provided with the same
JP2008053214A (en) * 2006-07-24 2008-03-06 Matsushita Electric Ind Co Ltd Anode for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery
JP2010245050A (en) * 2010-06-30 2010-10-28 Panasonic Corp Negative electrode for lithium ion secondary battery, and method of manufacturing the same, and lithium ion secondary battery using the same
US7897284B2 (en) 2005-09-29 2011-03-01 Sanyo Electric Co., Ltd. Lithium secondary battery
US7964307B2 (en) 2006-07-24 2011-06-21 Panasonic Corporation Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
WO2011074431A1 (en) * 2009-12-18 2011-06-23 Jx日鉱日石金属株式会社 Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
JP2011198756A (en) * 2010-02-26 2011-10-06 Semiconductor Energy Lab Co Ltd Power storage device, its manufacturing method, secondary battery, and capacitor
KR101227321B1 (en) 2004-03-30 2013-01-28 산요덴키가부시키가이샤 Lithium secondary battery
US8530067B2 (en) 2003-04-10 2013-09-10 Sony Corporation Battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
JP2014521196A (en) * 2012-04-26 2014-08-25 ▲寧▼波杉杉新材料科技有限公司 Porous film silicon negative electrode material in high performance lithium ion battery and method for producing the same
JP2015035427A (en) * 2010-03-26 2015-02-19 株式会社半導体エネルギー研究所 Secondary battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045250B2 (en) 2000-11-13 2006-05-16 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery
US8530067B2 (en) 2003-04-10 2013-09-10 Sony Corporation Battery
KR101227321B1 (en) 2004-03-30 2013-01-28 산요덴키가부시키가이샤 Lithium secondary battery
US7897284B2 (en) 2005-09-29 2011-03-01 Sanyo Electric Co., Ltd. Lithium secondary battery
US8017269B2 (en) 2006-01-20 2011-09-13 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the anode active material
JP4671950B2 (en) * 2006-01-20 2011-04-20 三星エスディアイ株式会社 Negative electrode active material for lithium battery, method for producing the same, and negative electrode and lithium battery for lithium battery employing the same
JP2007194204A (en) * 2006-01-20 2007-08-02 Samsung Sdi Co Ltd Anode active substance, its manufacturing method, anode, and lithium battery provided with the same
JP2008053214A (en) * 2006-07-24 2008-03-06 Matsushita Electric Ind Co Ltd Anode for lithium ion secondary battery, its manufacturing method, and lithium ion secondary battery
US7964307B2 (en) 2006-07-24 2011-06-21 Panasonic Corporation Negative electrode for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery
US8748041B2 (en) 2009-03-31 2014-06-10 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery
WO2011074431A1 (en) * 2009-12-18 2011-06-23 Jx日鉱日石金属株式会社 Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
CN102668184A (en) * 2009-12-18 2012-09-12 Jx日矿日石金属株式会社 Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
JP5661646B2 (en) * 2009-12-18 2015-01-28 Jx日鉱日石金属株式会社 Positive electrode for lithium ion battery, method for producing the same, and lithium ion battery
KR101450978B1 (en) * 2009-12-18 2014-10-15 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US8993160B2 (en) 2009-12-18 2015-03-31 Jx Nippon Mining & Metals Corporation Positive electrode for lithium ion battery, method for producing said positive electrode, and lithium ion battery
US9263732B2 (en) 2009-12-22 2016-02-16 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for a lithium-ion battery, lithium-ion battery using same, and precursor to a positive electrode active material for a lithium-ion battery
US9118076B2 (en) 2010-02-05 2015-08-25 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery and lithium ion battery
US9231249B2 (en) 2010-02-05 2016-01-05 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
US10141120B2 (en) 2010-02-26 2018-11-27 Semiconductor Energy Laboratory Co., Ltd. Power storage system and manufacturing method thereof and secondary battery and capacitor
JP2011198756A (en) * 2010-02-26 2011-10-06 Semiconductor Energy Lab Co Ltd Power storage device, its manufacturing method, secondary battery, and capacitor
JP2015133326A (en) * 2010-02-26 2015-07-23 株式会社半導体エネルギー研究所 power storage device
US9225020B2 (en) 2010-03-04 2015-12-29 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9090481B2 (en) 2010-03-04 2015-07-28 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery
US9240594B2 (en) 2010-03-04 2016-01-19 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9216913B2 (en) 2010-03-04 2015-12-22 Jx Nippon Mining & Metals Corporation Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US8623551B2 (en) 2010-03-05 2014-01-07 Jx Nippon Mining & Metals Corporation Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
JP2015035427A (en) * 2010-03-26 2015-02-19 株式会社半導体エネルギー研究所 Secondary battery
US9735419B2 (en) 2010-03-26 2017-08-15 Semiconductor Energy Laboratory Co., Ltd. Secondary battery and method for forming electrode of secondary battery
JP2010245050A (en) * 2010-06-30 2010-10-28 Panasonic Corp Negative electrode for lithium ion secondary battery, and method of manufacturing the same, and lithium ion secondary battery using the same
US10122012B2 (en) 2010-12-03 2018-11-06 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery
US9327996B2 (en) 2011-01-21 2016-05-03 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion battery and positive electrode active material for lithium ion battery
US9221693B2 (en) 2011-03-29 2015-12-29 Jx Nippon Mining & Metals Corporation Method for producing positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries
US9214676B2 (en) 2011-03-31 2015-12-15 Jx Nippon Mining & Metals Corporation Positive electrode active material for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery
US9224515B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Coporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
US9224514B2 (en) 2012-01-26 2015-12-29 Jx Nippon Mining & Metals Corporation Cathode active material for lithium ion battery, cathode for lithium ion battery, and lithium ion battery
JP2014521196A (en) * 2012-04-26 2014-08-25 ▲寧▼波杉杉新材料科技有限公司 Porous film silicon negative electrode material in high performance lithium ion battery and method for producing the same
US9911518B2 (en) 2012-09-28 2018-03-06 Jx Nippon Mining & Metals Corporation Cathode active material for lithium-ion battery, cathode for lithium-ion battery and lithium-ion battery

Similar Documents

Publication Publication Date Title
JP3702224B2 (en) Method for producing electrode for lithium secondary battery
JP2001266851A (en) Manufacturing method of electrode for lithium secondary battery
JP3702223B2 (en) Method for producing electrode material for lithium battery
JP3733066B2 (en) Electrode for lithium secondary battery and lithium secondary battery
JP3733071B2 (en) Lithium battery electrode and lithium secondary battery
JP3913490B2 (en) Method for producing electrode for lithium secondary battery
JP3733065B2 (en) Lithium battery electrode and lithium secondary battery
JP3733069B2 (en) Lithium battery electrode and lithium secondary battery
JP4245270B2 (en) Method for manufacturing electrode for secondary battery
JPWO2002058182A1 (en) Lithium secondary battery
WO2001031723A1 (en) Electrode for lithium secondary cell and lithium secondary cell
JP2005150038A (en) Lithium secondary battery
KR101654047B1 (en) anode for lithium secondary battery, manufacturing method thereof and lithium secondary battery comprising the same
CN112820847A (en) Silicon-based negative electrode material and preparation method thereof, lithium ion battery and electric appliance
US6815003B2 (en) Method for fabricating electrode for lithium secondary battery
WO2001056099A1 (en) Electrode for lithium cell and lithium secondary cell
JP2002289180A (en) Method and device for manufacturing electrode for lithium secondary battery
JP4329357B2 (en) Lithium secondary battery negative electrode member and manufacturing method thereof
JP2002313326A (en) Manufacturing method of lithium secondary battery
US20030207176A1 (en) Cathode for a lithium secondary battery comprising vanadium oxide as a cathode active material
RU2761861C1 (en) Sodium-ion battery anode and method for its manufacture
JP2001266951A (en) Non-aqueous electrolytic secondary battery
JP2002170554A (en) Method for manufacturing electrode of lithium secondary battery
JP3869609B2 (en) Method for producing electrode for lithium secondary battery
JP2003303587A (en) Method of manufacturing electrode for lithium secondary battery