WO2001056099A1 - Electrode for lithium cell and lithium secondary cell - Google Patents

Electrode for lithium cell and lithium secondary cell Download PDF

Info

Publication number
WO2001056099A1
WO2001056099A1 PCT/JP2001/000397 JP0100397W WO0156099A1 WO 2001056099 A1 WO2001056099 A1 WO 2001056099A1 JP 0100397 W JP0100397 W JP 0100397W WO 0156099 A1 WO0156099 A1 WO 0156099A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
lithium battery
lithium
thin film
silicon
Prior art date
Application number
PCT/JP2001/000397
Other languages
French (fr)
Japanese (ja)
Inventor
Yoichi Domoto
Hiromasa Yagi
Hisaki Tarui
Hiroaki Ikeda
Masahisa Fujimoto
Hiroshi Kurokawa
Shin Fujitani
Shigeki Matsuta
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to AU2001227085A priority Critical patent/AU2001227085A1/en
Publication of WO2001056099A1 publication Critical patent/WO2001056099A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a lithium battery electrode, a lithium battery using the same, and a lithium secondary battery.
  • lithium secondary batteries which are being actively researched and developed, greatly affect battery characteristics such as charge / discharge voltage, charge / discharge cycle life characteristics, and storage characteristics depending on the electrodes used. For this reason, the battery characteristics are being improved by improving the electrode active material.
  • lithium metal When lithium metal is used as the negative electrode active material, a battery having a high energy density per weight and per volume can be formed.However, there is a problem that lithium is deposited in a dendrite shape during charging and causes an internal short circuit. there were
  • lithium secondary batteries that use aluminum, silicon, tin, etc., which are electrochemically alloyed with lithium during charging, as electrodes have been reported (Solid State Ionics, 1). 13-115, p57 (1998)).
  • silicon is particularly promising as a negative electrode for batteries that has a large theoretical capacity and a high capacity, and various secondary batteries using this as a negative electrode have been proposed (Japanese Patent Laid-Open No. 10-25). No. 768 publication).
  • this type of alloy negative electrode sufficient cycle characteristics have not been obtained because the alloy itself, which is an electrode active material, is pulverized by charging and discharging and the current collecting characteristics are deteriorated.
  • the present applicant has formed on a metal foil such as a copper foil by a plasma CVD method or the like.
  • a metal foil such as a copper foil by a plasma CVD method or the like.
  • the amorphous silicon thin film as the negative electrode for a lithium secondary battery, it has been found that a lithium secondary battery having a high charge / discharge capacity and excellent charge / discharge cycle characteristics can be obtained (Japanese Patent Application No. Hei 1 (1994)). 13 0 1 6 7 9). Disclosure of the invention
  • An object of the present invention is to provide an electrode for a lithium battery using an amorphous material as an active material, and a lithium secondary battery having excellent charge / discharge cycle characteristics when used as an electrode for a secondary battery.
  • An object of the present invention is to provide a battery electrode and a lithium battery and a lithium secondary battery using the same.
  • the lithium battery electrode of the present invention is a lithium battery electrode including an active material that inserts and extracts lithium. It is characterized in that an amorphous material containing at least one kind of impurity selected from oxygen, nitrogen, argon, and fluorine is used as an active material.
  • the amorphous material preferably contains at least silicon, and more preferably, is microcrystalline silicon or amorphous silicon.
  • Microcrystalline silicon in Raman spectroscopic analysis, the crystal region corresponding 5 2 0 cm - 1 and the vicinity of the peak, 4 8 0 cm corresponding to the amorphous region - 1 both peaks of near neighbor is substantially The silicon to be detected.
  • a peak near 520 cm 1 corresponding to the crystalline region was not substantially detected in the Raman spectroscopic analysis, and a peak near 480 cm ⁇ 1 corresponding to the amorphous region was not detected. Silicon whose peak is substantially detected.
  • the carbon concentration in the silicon is preferably less than 50 atomic%, more preferably 3.0 atomic% or less, and further preferably 2.0 atomic% or less.
  • the lower limit of the carbon concentration is preferably 0.0002 atomic% or more.
  • the oxygen concentration Is preferably less than 67 atomic%, more preferably 50 atoms. /.
  • the content is more preferably 20 atomic% or less.
  • the lower limit of the oxygen concentration is preferably 0.002 at% or more.
  • the nitrogen concentration is 57 atoms. /. Is preferably less than 2, more preferably 2 atoms. /. Hereinafter, more preferably 0.1 atom. /. It is as follows.
  • the lower limit of the oxygen concentration is preferably not less than 0.0000 atomic%.
  • the argon concentration in the silicon is 0 / atom.
  • the fluorine concentration is 0.01 atom. Les, preferably less than / 0 .
  • the concentrations of carbon, oxygen, nitrogen, argon, and fluorine can be measured by secondary ion mass spectrometry (SIMS). The number of atoms measured by SIMS by a dividing by 5 X 1 0 22 can be converted to atomic percent.
  • the microcrystalline silicon or the amorphous silicon is preferably a silicon thin film.
  • a method for incorporating the above-described impurities into such a silicon thin film a method similar to the method of doping impurities into a general semiconductor thin film can be used.
  • an impurity source gas may be mixed with a silicon thin film source gas such as a silane gas, and a silicon thin film may be formed by a CVD method such as a plasma CVD method, and impurities may be contained in the silicon thin film.
  • an impurity may be contained by a method such as an ion implantation method.
  • a silicon thin film containing impurities may be formed by sputtering or the like, using silicon containing impurities in advance as a target or the like.
  • the silicon thin film is preferably provided on a current collector.
  • a current collector is used as a substrate, and a silicon thin film is formed on the current collector by a thin film forming method such as a CVD method, a sputtering method, a vacuum evaporation method, or a thermal spraying method. Is formed.
  • a current collector it is preferable to use a current collector made of at least one selected from copper, nickel, iron, stainless steel, molybdenum, tungsten, and tantalum.
  • a metal foil is preferable.
  • a copper foil such as a rolled copper foil and an electrolytic copper foil can be used as the current collector.
  • a copper foil having a large surface roughness Ra is used.
  • Certain electrolytic copper foils are preferably used.
  • the term "lithium battery” includes a lithium primary battery and a lithium secondary battery. Therefore, the electrode of the present invention may be used for a lithium primary battery and a lithium secondary battery. it can..,
  • a lithium battery of the present invention includes a negative electrode comprising the above-described electrode for a lithium battery of the present invention, a positive electrode, and an electrolyte.
  • a lithium secondary battery of the present invention includes a negative electrode comprising the above-described electrode for a lithium battery of the present invention, a positive electrode, and a non-aqueous electrolyte.
  • Solvents for the electrolyte used in the lithium secondary battery of the present invention are not particularly limited, but cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, and dimethyl carbonate, methyl ethyl carbonate, and getyl carbonate. And a mixed solvent of the cyclic carbonate and an ether-based solvent such as 1,2-dimethoxetane and 1,2-dietoxetane.
  • L i PF, L i BF 4, L i CF 3 S 0 3, L i N (CF 3 S_ ⁇ 2) 2 L i N
  • examples of the electrolyte include a gel-like polymer electrolyte obtained by impregnating an electrolyte with a polymer electrolyte such as polyethylene oxide and polyacrylonitrile, and an inorganic solid electrolyte such as LiI and LiN. Is shown.
  • the electrolyte of the lithium secondary battery of the present invention can be used as long as the Li compound as a solvent that develops ionic conductivity and the solvent that dissolves and retains the Li compound do not decompose during charging or discharging or storage of the battery. It can be used without any restrictions.
  • L i C O_ ⁇ 2, L i N i ⁇ 2, L i M n 2, and i Mn_ ⁇ 2, L i C o os N i o. 5 O 2 , L i N i. CO o M n o. 0 2 lithium-containing transition metal oxides such as and, metal oxides containing no lithium such as Mn 0 2 are exemplified.
  • any other substance capable of electrochemically inserting and removing lithium can be used without limitation.
  • FIG. 1 is a diagram showing a distribution of an impurity concentration in a depth direction in a negative electrode manufactured in Example 1 according to the present invention.
  • FIG. 2 is a diagram showing a distribution of an impurity concentration in a depth direction in a negative electrode manufactured in Example 2 according to the present invention.
  • FIG. 3 is a diagram showing a distribution of an impurity concentration in a depth direction in a negative electrode manufactured in Example 3 according to the present invention.
  • FIG. 4 is a diagram showing a distribution of an impurity concentration in a depth direction in a negative electrode manufactured in Example 4 according to the present invention.
  • FIG. 5 is a perspective view showing a lithium secondary battery produced in an example according to the present invention.
  • FIG. 6 is a schematic cross-sectional view showing a lithium secondary battery produced in an example according to the present invention.
  • BEST MODE FOR CARRYING OUT THE INVENTION will be described in more detail with reference to Examples. However, the present invention is not limited to the following Examples at all, and can be implemented with appropriate modifications within the scope of the gist of the present invention. ,.,
  • a copper foil (thickness: 18 ⁇ ) was used as a substrate, and a plasma CVD method was used to measure the carbon, oxygen, nitrogen, argon, or fluorine concentrations shown in Tables 1 to 5 on this copper foil.
  • a silicon thin film was formed. It is a silicon thin film formed of the material gas, a silane (S i ⁇ 4) gas, - is the carrier gas using a hydrogen gas, during the formation of the silicon thin film to contain carbon, When forming a silicon thin film in which CH 4 gas is mixed in the source gas and oxygen is present, co 2 gas is mixed in the source gas and in forming a silicon thin film containing nitrogen, the raw material gas is mixed. N 2 gas c also is mixed, at the time of formation of the silicon thin film to contain argon, the raw material gas is mixed a r gas, during the formation of the silicon thin film to contain fluorine, the raw material gas Was mixed with CF 4 gas.
  • the film forming conditions S i the gas flow rate: 1 0 ⁇ 1 0 0 sccm, H 2 gas flow rate: 0 ⁇ 2 0 0 sccm, substrate temperature: 1 8 0 e C, reaction pressure: 4 0 P a, the high-frequency power : 1 0 0 and 5 5 5 W, CH 4 gas flow rate: () ⁇ 1 0 0 sccm , C 0 2 gas flow rate: 0 1 0 0 sccm, N 2 gas flow rate: 0: 1 0 0 sccm, Ar gas flow rate: 0 to 100 sccm, CF 4 gas flow rate: 0 to 100 sccm, and impurity concentrations as shown in Tables] to 5 were obtained.
  • An amorphous silicon thin film was deposited on copper foil under the above conditions until the film thickness was 2 ⁇ m:
  • a test cell was fabricated in which the counter electrode and the reference electrode were metallized.
  • an equal volume mixed solvent of ethylene carbonate and di E chill carbonate used was the L i PF 6 dissolved 1 mol / l.
  • the reduction of the working electrode is charged and the oxidation is discharge.
  • a rolled copper foil (thickness: 26 ⁇ ) whose surface was roughened by electrolytically depositing copper on the surface was used.
  • a silicon thin film was formed by using a die-type RF sputtering apparatus: The silicon thin film was formed by using only argon gas as an atmosphere gas for sputtering and changing the flow rate of argon gas. Other forming conditions were as shown in Table 6.
  • the negative electrodes of Examples 1 to 4 were manufactured using a 99.99% silicon single crystal.
  • the thickness of the silicon thin film was set at about 6 to 1 l / m. In Example 4, the thin film formation process was started at the ultimate pressure of 10 _ : i Torr, whereas in Examples 1 to 3, vacuum evacuation was performed to 1 () —H Torr. went.
  • each impurity has the highest concentration near the current collector surface and gradually decreases toward the surface in the silicon thin film. Also the atom. /. Table 6 shows the converted values. From these results, extremely large amounts were obtained under these conditions. It can be seen that the impurities of (a) are not mixed in the silicon thin layer.
  • the silicon thin film was limitedly formed in a 2.5 cm ⁇ 2.5 cm area on the copper foil using a mask. After the thin film was formed, the negative electrode tab was mounted on the copper foil area where the silicon thin film was not formed, and the negative electrode was completed.
  • L i PF B was dissolved 1 mole Z l to prepare an electrolytic solution, using the same in the production of the following cell.
  • FIG. 5 is a perspective view showing the manufactured lithium secondary battery.
  • FIG. 6 is a schematic cross-sectional view showing the manufactured lithium secondary battery.
  • a positive electrode and a negative electrode are inserted into an exterior body 10 made of an aluminum laminate film.
  • a silicon thin film 12 as a negative electrode active material is provided, and on the positive electrode current collector 13, a positive electrode active material layer 14 is provided.
  • the silicon thin film 12 and the positive electrode active material layer 14 are arranged to face each other with the separator 15 interposed therebetween.
  • the electrolytic solution 16 described above is injected into the exterior body 10.
  • the end of the exterior body 10 is sealed by welding.
  • the negative electrode tab 17 attached to the negative electrode current collector 11 having the sealing portion 10a formed therein is taken out through the sealing portion 10a.
  • the positive electrode tab 18 attached to the positive electrode current collector 13 is also taken out through the sealing portion 10a similarly.
  • a charge / discharge cycle test was performed on the lithium secondary battery manufactured as described above.
  • the charge and discharge conditions are as follows: charge until the charge current reaches 9 mAh, then discharge at a discharge current of 9 mA until the discharge end voltage reaches 2.75 V, which is defined as one cycle of charge and discharge.
  • the discharge capacity and charge / discharge efficiency at the 1st, 5th, and 20th cycles were determined for each battery. Table 6 shows the results.
  • a lithium secondary battery having excellent charge / discharge cycle characteristics can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

An electrode for a lithium cell containing an active material which occludes and releases lithium, characterized in that an amorphous material such as an amorphous silicon containing at least one impurity selected from among carbon, oxygen, nitrogen, argon and fluorine is used as the active material.

Description

明 細 書 リチウム電池用電極及びリチウム二次電池 技術分野  Description Electrode for lithium battery and lithium secondary battery Technical field
本発明は、 リチウム電池用電極並びにこれを用いたリチウム電池及び リチウムニ次電池に関するものである。 背景技術  The present invention relates to a lithium battery electrode, a lithium battery using the same, and a lithium secondary battery. Background art
近年、 研究開発が盛んに行われているリチウム二次電池は、 用いられ る電極により充放電電圧、 充放電サイクル寿命特性、 保存特性などの電 池特性が大きく左右される。 このことから、 電極活物質を改善すること により、 電池特性の向上が図られている。  In recent years, lithium secondary batteries, which are being actively researched and developed, greatly affect battery characteristics such as charge / discharge voltage, charge / discharge cycle life characteristics, and storage characteristics depending on the electrodes used. For this reason, the battery characteristics are being improved by improving the electrode active material.
負極活物質としてリチウム金属を用いると、 重量当り及び体積当りと もに高いエネルギー密度の電池を構成することができるが、 充電時にリ チウムがデンドライ ト状に析出し、 内部短絡を引き起こすという問題が あった  When lithium metal is used as the negative electrode active material, a battery having a high energy density per weight and per volume can be formed.However, there is a problem that lithium is deposited in a dendrite shape during charging and causes an internal short circuit. there were
これに対し、 充電の際に電気化学的にリチウムと合金化するアルミ二 ゥム、 シリコン、 錫などを電極と して用いるリチウム二次電池が報告さ れてレ、る ( Solid State Ionics, 1 13- 1 15, p57( 1998)) 。 これらのう ち、 特にシリ コンは理論容量が大きく、 高い容量を示す電池用負極とし て有望であり、 これを負極とする種々の二次電池が提案されている (特 開平 1 0— 2 5 5 7 6 8号公報) 。 しカゝしながら、 この種の合金負極は、 電極活物質である合金自体が充放電により微粉化し集電特性が悪化する ことから、 十分なサイクル特性は得られていない。  On the other hand, lithium secondary batteries that use aluminum, silicon, tin, etc., which are electrochemically alloyed with lithium during charging, as electrodes have been reported (Solid State Ionics, 1). 13-115, p57 (1998)). Of these, silicon is particularly promising as a negative electrode for batteries that has a large theoretical capacity and a high capacity, and various secondary batteries using this as a negative electrode have been proposed (Japanese Patent Laid-Open No. 10-25). No. 768 publication). However, in this type of alloy negative electrode, sufficient cycle characteristics have not been obtained because the alloy itself, which is an electrode active material, is pulverized by charging and discharging and the current collecting characteristics are deteriorated.
本出願人は、 プラズマ C V D法等により、 銅箔等の金属箔上に形成し た非結晶シリコン薄膜をリチウム二次電池用負極として用いることによ り、 充放電容量が高く、 かつ充放電サイクル特性に優れたリチウム二次 電池とすることができることを見出した (特願平 1 1 3 0 1 6 7 9 号) 。 発明の開示 The present applicant has formed on a metal foil such as a copper foil by a plasma CVD method or the like. By using the amorphous silicon thin film as the negative electrode for a lithium secondary battery, it has been found that a lithium secondary battery having a high charge / discharge capacity and excellent charge / discharge cycle characteristics can be obtained (Japanese Patent Application No. Hei 1 (1994)). 13 0 1 6 7 9). Disclosure of the invention
本発明の目的は、 非結晶材料を活物質として用いたリチウム電池用電 極であって、 二次電池用電極として用いた場合に充放電サイクル特性に 優れたリチウムニ次電池とすることができるリチウム電池用電極並びに これを用いたリチウム電池及びリチウム二次電池を提供することにある、 本発明のリチウム電池用電極は、 リチウムを吸蔵 ·放出する活物質を 含むリチウム電池用電極であり、 炭素、 酸素、 窒素、 アルゴン、 及びフ ッ素から選ばれる少なく とも 1種の不純物を含む非結晶材料を活物質と して用いたことを特徴としている。  An object of the present invention is to provide an electrode for a lithium battery using an amorphous material as an active material, and a lithium secondary battery having excellent charge / discharge cycle characteristics when used as an electrode for a secondary battery. An object of the present invention is to provide a battery electrode and a lithium battery and a lithium secondary battery using the same. The lithium battery electrode of the present invention is a lithium battery electrode including an active material that inserts and extracts lithium. It is characterized in that an amorphous material containing at least one kind of impurity selected from oxygen, nitrogen, argon, and fluorine is used as an active material.
本発明において、 非結晶材料は、 少なく ともシリ コンを含むことが好 ましく、 さらに好ましくは、 微結晶シリ コンまたは非晶質シリ コンであ る。 微結晶シリ コンは、 ラマン分光分析において、 結晶領域に対応する 5 2 0 c m - 1 近傍のピークと、 非晶質領域に対応する 4 8 0 c m - 1 近 傍のピークの両方が実質的に検出されるシリ コンである。 また、 非晶質 シリ コンは、 ラマン分光分析において、 結晶領域に対応する 5 2 0 c m 1 近傍のピークが実質的に検出されず、 非晶質領域に対応する 4 8 0 c m— 1近傍のピークが実質的に検出されるシリコンである。 In the present invention, the amorphous material preferably contains at least silicon, and more preferably, is microcrystalline silicon or amorphous silicon. Microcrystalline silicon, in Raman spectroscopic analysis, the crystal region corresponding 5 2 0 cm - 1 and the vicinity of the peak, 4 8 0 cm corresponding to the amorphous region - 1 both peaks of near neighbor is substantially The silicon to be detected. In addition, in the amorphous silicon, a peak near 520 cm 1 corresponding to the crystalline region was not substantially detected in the Raman spectroscopic analysis, and a peak near 480 cm− 1 corresponding to the amorphous region was not detected. Silicon whose peak is substantially detected.
本発明において、 上記シリ コンにおける炭素濃度は、 5 0原子%未満 であることが好ましく、 さらに好ましくは 3 . 0原子%以下、 さらに好 ましくは 2 . 0原子%以下である。 炭素を含有する場合の炭素濃度の下 限値は、 好ましくは 0 . 0 0 0 0 2原子%以上である。 また、 酸素濃度 は 6 7原子%未満であ δことが好ましく、 さらに好ましくは 5 0原子。 /。 以下、 さらに好ましく ま 2 0原子%以下である。 酸素を含む場合の酸素 濃度の下限値は、 好ましくは 0 . 0 0◦ 2原子%以上である。 また、 窒 素濃度は 5 7原子。 /。未満であることが好ましく、 さらに好ましくは 2原 子。 /。以下、 さらに好ましくは 0 . 1原子。 /。以下である。 酸素を含む場合 の酸素濃度の下限値は、好ましくは◦. 0 0 0 0 0 2原子%以上である。 また、 上記シリ コンにおけるアルゴン濃度は、 1原子0 /。以下であるこ とが好ましく、 フッ素濃度は 0 . 0 1原子。 /0以下であることが好ましレ、。 炭素、 酸素、 窒素、 アルゴン、 及びフッ素の濃度は、 二次イオン質量 分析 (S I M S ) により測定することができる。 S I M Sにより測定さ れた原子数を 5 X 1 0 22 で除することとにより原子%に換算すること ができる。 In the present invention, the carbon concentration in the silicon is preferably less than 50 atomic%, more preferably 3.0 atomic% or less, and further preferably 2.0 atomic% or less. When carbon is contained, the lower limit of the carbon concentration is preferably 0.0002 atomic% or more. Also, the oxygen concentration Is preferably less than 67 atomic%, more preferably 50 atoms. /. The content is more preferably 20 atomic% or less. When oxygen is contained, the lower limit of the oxygen concentration is preferably 0.002 at% or more. The nitrogen concentration is 57 atoms. /. Is preferably less than 2, more preferably 2 atoms. /. Hereinafter, more preferably 0.1 atom. /. It is as follows. When oxygen is contained, the lower limit of the oxygen concentration is preferably not less than 0.0000 atomic%. The argon concentration in the silicon is 0 / atom. Preferably, the fluorine concentration is 0.01 atom. Les, preferably less than / 0 . The concentrations of carbon, oxygen, nitrogen, argon, and fluorine can be measured by secondary ion mass spectrometry (SIMS). The number of atoms measured by SIMS by a dividing by 5 X 1 0 22 can be converted to atomic percent.
本発明において、 上記微結晶シリ コンまたは非晶質シリ コンは、 シリ コン薄膜であることが好ましい。 このようなシリ コン薄膜中に、 上記不 純物を含有させる方法と しては、 一般的な半導体薄膜への不純物のドー ビングと同様の方法を用いることができる。 例えば、 シランガスなどの シリコン薄膜原料ガス中に不純物の原料ガスを混合し、 プラズマ C V D 法などの C V D法により シリ コン薄膜を形成し、 シリ コン薄膜中に不純 物を含有させてもよい。 また、 シリ コン薄膜形成後、 イオン注入法など の方法により不純物を含有させてもよい。 また、 予め不純物を含有させ たシリコンをターゲッ トなどとして用いて、 スパッタリング法などによ り、 不純物を含有したシリ コン薄膜を形成してもよい。  In the present invention, the microcrystalline silicon or the amorphous silicon is preferably a silicon thin film. As a method for incorporating the above-described impurities into such a silicon thin film, a method similar to the method of doping impurities into a general semiconductor thin film can be used. For example, an impurity source gas may be mixed with a silicon thin film source gas such as a silane gas, and a silicon thin film may be formed by a CVD method such as a plasma CVD method, and impurities may be contained in the silicon thin film. After the formation of the silicon thin film, an impurity may be contained by a method such as an ion implantation method. Alternatively, a silicon thin film containing impurities may be formed by sputtering or the like, using silicon containing impurities in advance as a target or the like.
上記シリ コン薄膜は、 集電体上に設けることが好ましい。 シリ コン薄 膜を集電体上に設ける方法としては、 集電体を基板として用い、 この上 に C V D法、 スパッタ リ ング法、 真空蒸着法、 溶射法などの薄膜形成方 法によりシリ コン薄膜を形成する方法が挙げられる。 集電体と しては、 銅、 ニッケル、 鉄、 ステンレス、 モリブデン、 タン ダステン、 及びタンタルから選ばれる少なく とも 1種からなる集電体を 用いることが好ましい。 集電体の形態としては、 金属箔が好ましい。 例 えば、 圧延銅箔及び電解銅箔などの銅箔を集電体として用いることがで きる 集電体に対するシリ コン薄膜の密着性を高める観点からは、 表面 粗さ R aの大きい銅箔である電解銅箔が好ましく用いられる。 The silicon thin film is preferably provided on a current collector. As a method of providing a silicon thin film on a current collector, a current collector is used as a substrate, and a silicon thin film is formed on the current collector by a thin film forming method such as a CVD method, a sputtering method, a vacuum evaporation method, or a thermal spraying method. Is formed. As the current collector, it is preferable to use a current collector made of at least one selected from copper, nickel, iron, stainless steel, molybdenum, tungsten, and tantalum. As a form of the current collector, a metal foil is preferable. For example, a copper foil such as a rolled copper foil and an electrolytic copper foil can be used as the current collector.From the viewpoint of increasing the adhesion of the silicon thin film to the current collector, a copper foil having a large surface roughness Ra is used. Certain electrolytic copper foils are preferably used.
本発明において、 「リチウム電池」 の言葉は、 リチウム一次電池及び リチウム二次電池を含んでいる,.. 従って、 本発明の電極は、 リチウム一 次電池用及びリチウム二次電池用として用いることができる..,  In the present invention, the term "lithium battery" includes a lithium primary battery and a lithium secondary battery. Therefore, the electrode of the present invention may be used for a lithium primary battery and a lithium secondary battery. it can..,
本発明のリチウム電池は、 上記本発明のリチウム電池用電極からなる 負極と、 正極と、 電解質とを備えている  A lithium battery of the present invention includes a negative electrode comprising the above-described electrode for a lithium battery of the present invention, a positive electrode, and an electrolyte.
本発明のリチウム二次電池は、 上記本発明のリチウム電池用電極から なる負極と、 正極と、 非水電解質とを備えている。  A lithium secondary battery of the present invention includes a negative electrode comprising the above-described electrode for a lithium battery of the present invention, a positive electrode, and a non-aqueous electrolyte.
本発明のリチウム二次電池に用いる電解質の溶媒は、 特に限定される ものではないが、 エチレンカーボネート、 プロピレンカーボネート、 ブ チレンカーボネートなどの環状カーボネートと、ジメチルカーボネート、 メチルェチルカーボネート、 ジェチルカーボネートなどの鎖状カーボネ 一卜との混合溶媒が例示される. また、 前記環状カーボネー卜と 1, 2 ージメ トキシェタン、 1, 2—ジエトキシェタンなどのエーテル系溶媒 との混合溶媒も例示される。 また、 電解質の溶質としては、 L i P F 、 L i B F4 、 L i C F3 S 03 、 L i N ( C F 3 S〇2 ) 2 、 L i NSolvents for the electrolyte used in the lithium secondary battery of the present invention are not particularly limited, but cyclic carbonates such as ethylene carbonate, propylene carbonate, and butylene carbonate, and dimethyl carbonate, methyl ethyl carbonate, and getyl carbonate. And a mixed solvent of the cyclic carbonate and an ether-based solvent such as 1,2-dimethoxetane and 1,2-dietoxetane. As the solute of the electrolyte, L i PF, L i BF 4, L i CF 3 S 0 3, L i N (CF 3 S_〇 2) 2, L i N
(C2 F5 S02 ) 2 、 L i N ( C F S〇2 ) (C4 F¾ S 02 ) 、 L i C ( C F S 02 ) 3 、 L i C; (C2 F5 S ) など及びそ れらの混合物が例示される。 さらに電解質として、 ポリエチレンォキシ ド、 ポリアク リ ロニ ト リルなどのボリマー電解質に電解液を含浸したゲ ル状ボリマー電解質や、 L i I 、 L i Nなどの無機固体電解質が例 示される。 本発明のリチウム二次電池の電解質は、 イオン導電性を発現 させる溶媒としての L i化合物とこれを溶解 ·保持する溶媒が電池の充 電時ゃ放電時あるいは保存時の電圧で分解しない限り、 制約なく用いる ことができる。 (C 2 F 5 S0 2 ) 2 , L i N (CFS〇 2 ) (C 4 F ¾ S 0 2 ), L i C (CFS 0 2 ) 3 , L i C; (C 2 F 5 S) And mixtures thereof. Furthermore, examples of the electrolyte include a gel-like polymer electrolyte obtained by impregnating an electrolyte with a polymer electrolyte such as polyethylene oxide and polyacrylonitrile, and an inorganic solid electrolyte such as LiI and LiN. Is shown. The electrolyte of the lithium secondary battery of the present invention can be used as long as the Li compound as a solvent that develops ionic conductivity and the solvent that dissolves and retains the Li compound do not decompose during charging or discharging or storage of the battery. It can be used without any restrictions.
本発明のリチウムニ次電池の正極活物質としては、 L i C o〇2 、 L i N i 〇2 、 L i M n 2 , し i Mn〇2 、 L i C o o s N i o.5 O 2 、 L i N i。 C O o M n o. 02 などのリチウム含有遷移金属酸 化物や、 Mn 02 などのリチウムを含有していない金属酸化物が例示 される。 また、 この他にも、 リチウムを電気化学的に挿入 ·脱離する物 質であれば、 制限なく用いることができる。 図面の簡単な説明 As the positive electrode active material of the lithium secondary battery of the present invention, L i C O_〇 2, L i N i 〇 2, L i M n 2, and i Mn_〇 2, L i C o os N i o. 5 O 2 , L i N i. CO o M n o. 0 2 lithium-containing transition metal oxides such as and, metal oxides containing no lithium such as Mn 0 2 are exemplified. In addition, any other substance capable of electrochemically inserting and removing lithium can be used without limitation. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に従う実施例 1において作製した負極における深さ方 向の不純物濃度の分布を示す図。  FIG. 1 is a diagram showing a distribution of an impurity concentration in a depth direction in a negative electrode manufactured in Example 1 according to the present invention.
図 2は、 本発明に従う実施例 2において作製した負極における深さ方 向の不純物濃度の分布を示す図。  FIG. 2 is a diagram showing a distribution of an impurity concentration in a depth direction in a negative electrode manufactured in Example 2 according to the present invention.
図 3は、 本発明に従う実施例 3において作製した負極における深さ方 向の不純物濃度の分布を示す図。  FIG. 3 is a diagram showing a distribution of an impurity concentration in a depth direction in a negative electrode manufactured in Example 3 according to the present invention.
図 4は、 本発明に従う実施例 4において作製した負極における深さ方 向の不純物濃度の分布を示す図。  FIG. 4 is a diagram showing a distribution of an impurity concentration in a depth direction in a negative electrode manufactured in Example 4 according to the present invention.
図 5は、 本発明に従う実施例において作製したリチウム二次電池を示 す斜視図である。  FIG. 5 is a perspective view showing a lithium secondary battery produced in an example according to the present invention.
図 6は、 本発明に従う実施例において作製したリチウム二次電池を示 す断面模式図である。 発明を実施するための最良の形態 以下、 本発明を実施例に基づいてさらに詳細に説明するが、 本発明は 下記の実施例に何ら限定されるものではなく、 その要旨を変更しない範 囲において適宜変更して実施することが可能なものである,., FIG. 6 is a schematic cross-sectional view showing a lithium secondary battery produced in an example according to the present invention. BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited to the following Examples at all, and can be implemented with appropriate modifications within the scope of the gist of the present invention. ,.,
(実験 1 )  (Experiment 1)
〔電極の作製〕  (Preparation of electrode)
基板として銅箔 (厚み 1 8 μ πι) を用い、 この銅箔の上にプラズマ C VD法により、 表 1〜表 5に示す炭素濃度、 酸素濃度、 窒素濃度、 アル ゴン濃度、 またはフッ素濃度のシリ コン薄膜を形成した。 シリ コン薄膜 形成の原料ガスと しては、 シラン ( S i Η4 ) ガスを用い、 キャリア ガスと しては水素ガスを用いた ·, 炭素を含有させるシリ コン薄膜の形成 の際には、 原料ガスに C H4 ガスを混入させ、 酸素を a有させるシリ コン薄膜の形成の際には、 原料ガスに co2 ガスを混入させ、 窒素を 含有させるシリ コン薄膜の形成には、 原料ガスに N2 ガスを混入させ た c また、 アルゴンを含有させるシリ コン薄膜の形成の際には、 原料ガ スに A rガスを混入させ、 フッ素を含有させるシリコン薄膜の形成の際 には、 原料ガスに C F4ガスを混入させた。 A copper foil (thickness: 18 μπι) was used as a substrate, and a plasma CVD method was used to measure the carbon, oxygen, nitrogen, argon, or fluorine concentrations shown in Tables 1 to 5 on this copper foil. A silicon thin film was formed. It is a silicon thin film formed of the material gas, a silane (S i Η 4) gas, - is the carrier gas using a hydrogen gas, during the formation of the silicon thin film to contain carbon, When forming a silicon thin film in which CH 4 gas is mixed in the source gas and oxygen is present, co 2 gas is mixed in the source gas and in forming a silicon thin film containing nitrogen, the raw material gas is mixed. N 2 gas c also is mixed, at the time of formation of the silicon thin film to contain argon, the raw material gas is mixed a r gas, during the formation of the silicon thin film to contain fluorine, the raw material gas Was mixed with CF 4 gas.
薄膜形成条件としては、 S i ガス流量: 1 0〜 1 0 0 s c c m、 H2 ガス流量: 0〜 2 0 0 s c c m、 基板温度 : 1 8 0eC、 反応圧力 : 4 0 P a、 高周波電力 : 1 0 0〜 5 5 5 Wとし、 C H 4 ガス流量: () 〜 1 0 0 s c c m、 C 02 ガス流量 : 0〜 1 0 0 s c c m、 N2 ガス 流量: 0〜: 1 0 0 s c c m、 A r ガス流量: 0〜 1 0 0 s c c m、 C F 4 ガス流量 : 0〜 1 0 0 s c c mの範囲内で変化させ、 表 ] 〜表 5に 示すような不純物濃度とした。 膜厚が 2 μ mになるまで上記の条件で非 晶質シリコン薄膜を銅箔上に堆積させた: The film forming conditions, S i the gas flow rate: 1 0~ 1 0 0 sccm, H 2 gas flow rate: 0~ 2 0 0 sccm, substrate temperature: 1 8 0 e C, reaction pressure: 4 0 P a, the high-frequency power : 1 0 0 and 5 5 5 W, CH 4 gas flow rate: () ~ 1 0 0 sccm , C 0 2 gas flow rate: 0 1 0 0 sccm, N 2 gas flow rate: 0: 1 0 0 sccm, Ar gas flow rate: 0 to 100 sccm, CF 4 gas flow rate: 0 to 100 sccm, and impurity concentrations as shown in Tables] to 5 were obtained. An amorphous silicon thin film was deposited on copper foil under the above conditions until the film thickness was 2 μm:
以上のようにしてシリ コン薄膜を形成した各銅箔を 2 c mX 2 c mの 大きさに切り出し、 電極を作製した。 〔充放電特性の測 S:〕 Each copper foil on which a silicon thin film was formed as described above was cut into a size of 2 cm × 2 cm to prepare an electrode. [Measurement of charge / discharge characteristics S:]
上記の各電極を作用極として用い、 対極及び参照極を金属リ した試験セルを作製した。 電解液としては、 エチレンカーボネートとジ ェチルカーボネートとの等体積混合溶媒に、 L i P F 6 を 1 モル/リ ッ トル溶解したものを用いた。 なお、 単極の試験セルでは作用極の還元 を充電と し、 酸化を放電としている。 Using each of the above electrodes as a working electrode, a test cell was fabricated in which the counter electrode and the reference electrode were metallized. As an electrolytic solution, an equal volume mixed solvent of ethylene carbonate and di E chill carbonate used was the L i PF 6 dissolved 1 mol / l. In a unipolar test cell, the reduction of the working electrode is charged and the oxidation is discharge.
上記の各試験セルを、 2 5 °Cにて、 0 . 5 m Aの定電流で、 参照極を 基準とする電位が 0 Vに達するまで充電した後、 2 Vに達するまで放電 を行った。 これを 1サイクルの充放電とし、 1サイクル目及び 5サイク ノレ目の充放電効率を測定した。 結果を表 1〜表 5に示す。 表 1  Each of the above test cells was charged at a constant current of 0.5 mA at 25 ° C until the potential with respect to the reference electrode reached 0 V, and then discharged until the potential reached 2 V . This was defined as one cycle of charge and discharge, and the charge and discharge efficiency at the first cycle and at the fifth cycle was measured. The results are shown in Tables 1 to 5. table 1
試料 灰素^度 充放電効率 (%) Sample Ash degree ^ Charge / discharge efficiency (%)
No. (原子%) 1サイク レ目 5サイクル目 No. (atomic%) 1st cycle 5th cycle
1 0. 4 85 971 0.4 85 97
2 0. 8 95 972 0.8 8 97
3 1 . 0 89 993 1 .0 89 99
4 1 . 0 94 934 1 .0 94 93
5 2. 0 87 995 2.0 87 99
6 50 40 6 50 40
表 2 Table 2
Figure imgf000010_0001
Figure imgf000010_0001
表 3 Table 3
試料 窒素濃度 充放電効率 (%)Sample Nitrogen concentration Charge / discharge efficiency (%)
No. (原子%) 1サイク レ目 5サイクル目No. (atomic%) 1st cycle 5th cycle
1 3 0. 02 95 971 3 0.02 95 97
1 4 0. 02 94 931 4 0.02 94 93
1 5 0. 08 85 971 5 0.08 85 97
1 6 0. 08 89 991 6 0.08 89 99
1 7 0. 1 0 87 991 7 0. 1 0 87 99
1 8 57 5フ 1 8 57 5
表 4 Table 4
Figure imgf000011_0001
Figure imgf000011_0001
表 5 Table 5
Figure imgf000011_0002
Figure imgf000011_0002
表 1に示すように、 炭素濃度が 5 0原子%未満のときに、 良好な充放 電特性が得られており、 特に 2 . 0原子%以下において良好な結果が得 られている。 As shown in Table 1, when the carbon concentration is less than 50 atomic%, good charge / discharge characteristics are obtained, and particularly when the carbon concentration is 2.0 atomic% or less, good results are obtained.
また、 表 2に示すように、 酸素濃度が 6 7 %未満のときに良好な充放 電特性が得られ、 特に 5 0原子%以下において良好な結果が得られてい る。  Further, as shown in Table 2, when the oxygen concentration was less than 67%, good charge / discharge characteristics were obtained, and particularly when the oxygen concentration was 50 atomic% or less, good results were obtained.
また、 表 3に示すように、 窒素濃度が 5 7 %未満のときに良好な充放 電特性が得られ、 特に 0 . 1原子%以下において良好な結果が得られて レ、る。  Further, as shown in Table 3, when the nitrogen concentration is less than 57%, good charge / discharge characteristics are obtained. In particular, when the nitrogen concentration is 0.1 atomic% or less, good results are obtained.
また、 表 4に示すように、 A r濃度 1原子%以下において良好な充放 電特性が得られている。 In addition, as shown in Table 4, good charge / discharge was achieved at an Ar concentration of 1 atomic% or less. Electrical characteristics are obtained.
さらに、 表 5に示すように、 フッ素濃度 0. 0 1原子%以下において 良好な充放電特性が得られている。  Further, as shown in Table 5, good charge / discharge characteristics were obtained at a fluorine concentration of 0.01 atomic% or less.
なお、 試料 N o . 6及び試料 N o. 1 8の 5サイクル目においては、 充電を行うことができなかったので、 充放電効率を求めていない。  In the fifth cycle of Sample No. 6 and Sample No. 18, charging could not be performed, and thus charge / discharge efficiency was not determined.
(実験 2)  (Experiment 2)
〔負極の作製〕  (Preparation of negative electrode)
次に、 集電体として、 表面に電解法で銅を析出させることにより、 表 面を粗面化した圧延銅箔 (厚み 2 6 μ πι) を用い、 この集電体の上に平 行平板型 R Fスパッタリング装置を用いて、 シリコン薄膜を形成した:, スバッタ リ ングの雰囲気ガスと してはアルゴンガスのみを用い、 ァルゴ ンガス流量を変化させて形成した。 その他の形成条件は表 6に示す通り と した。 ターゲッ トとしては、 9 9. 9 9 9%のシリ コン単結晶を用い た, 実施例 1〜 4の負極を作製した。 シリコン薄膜の厚みは約 6〜 1 〇 / mと した。 なお、 実施例 4は、 1 0 _:iT o r r台の到達圧力で薄膜 形成ブ口セスを開始したのに対して、 実施例 1〜 3は 1 ()— H T o r r 台まで真空排気を行った。 Next, as a current collector, a rolled copper foil (thickness: 26 μπι) whose surface was roughened by electrolytically depositing copper on the surface was used. A silicon thin film was formed by using a die-type RF sputtering apparatus: The silicon thin film was formed by using only argon gas as an atmosphere gas for sputtering and changing the flow rate of argon gas. Other forming conditions were as shown in Table 6. As targets, the negative electrodes of Examples 1 to 4 were manufactured using a 99.99% silicon single crystal. The thickness of the silicon thin film was set at about 6 to 1 l / m. In Example 4, the thin film formation process was started at the ultimate pressure of 10 _ : i Torr, whereas in Examples 1 to 3, vacuum evacuation was performed to 1 () —H Torr. went.
形成したシリ コン薄膜については、 ラマン分光分析の結果、 5 2 0 c m一 '近傍のピークが認められず、 4 8 0 c m—1近傍にブロードなヒー クが認められたことから、 非晶質のシリコン薄膜であることが確認でき た。 As a result of Raman spectroscopic analysis of the formed silicon thin film, a peak near 520 cm 1 'was not observed, and a broad peak was observed near 480 cm- 1. It was confirmed that it was a silicon thin film.
さらに、 S I MSにより、 各試料の不純物濃度 (炭素、 窒素、 酸素) を測定した。 測定結果を図 1〜図 4に示す。 これらの図より、 各々の不 純物は集電体表面付近で最も濃度が高く、 シリコン薄膜中においては、 その表面に向かって徐々に減少していることがわかる。 また、 原子。 /。に 換算した値を表 6に示した。 これらの結果より、 本条件では極端に多量 の不純物はシリコン薄)莫中には混入していないことがわかる。 Furthermore, the impurity concentration (carbon, nitrogen, oxygen) of each sample was measured by SIMS. The measurement results are shown in Figs. From these figures, it can be seen that each impurity has the highest concentration near the current collector surface and gradually decreases toward the surface in the silicon thin film. Also the atom. /. Table 6 shows the converted values. From these results, extremely large amounts were obtained under these conditions. It can be seen that the impurities of (a) are not mixed in the silicon thin layer.
なお、 シリ コン薄膜は、 銅箔上の 2 . 5 c m X 2 . 5 c mの領域に、 マスクを用いて限定的に 成した。 薄膜を形成した後、 シリ コン薄膜が 形成されていなレ、銅箔の領域の上に負極タブを取り付け、 負極を完成し た。  The silicon thin film was limitedly formed in a 2.5 cm × 2.5 cm area on the copper foil using a mask. After the thin film was formed, the negative electrode tab was mounted on the copper foil area where the silicon thin film was not formed, and the negative electrode was completed.
〔正極の作製〕  (Preparation of positive electrode)
L i C o 0 2粉末 9 0重量部、 及び導電材としての人造黒鉛粉末 5重 量部を、 結着剤としてのポリテトラフルォロエチレンを 5重量部含む 5 重量%のN—メチルピロリ ドン水溶液に混合し、 正極合材スラリーとし た。 このスラリーをドクターブレード法により、 正極集電体であるアル ミニゥム箔 (厚み 1 8 ^ m ) の 2 c m X 2 c mの領域の上に塗布した後 乾燥し、 正極活物質層を形成した。 正極活物質層を塗布しなかったアル ミニゥム箔の領域の上に正極タブを取り付け、 正極を完成した。 L i C o 0 2 powder 9 0 parts by weight, and the artificial graphite powder 5 by weight of a conductive material, polytetramethylene full O b ethylene of 5% by weight, including 5 parts by weight N- Mechirupirori Don as a binder It was mixed with an aqueous solution to obtain a positive electrode mixture slurry. This slurry was applied on a 2 cm × 2 cm area of an aluminum foil (thickness: 18 ^ m) as a positive electrode current collector by a doctor blade method, and then dried to form a positive electrode active material layer. A positive electrode tab was attached to the area of the aluminum foil on which the positive electrode active material layer was not applied to complete the positive electrode.
〔電解液の作製〕  (Preparation of electrolyte solution)
エチレンカーボネートとジメチルカーボネートとの等体積混合溶媒に、 In an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate,
L i P F Bを 1モル Zリ ッ トル溶解して電解液を調製し、 これを以下の 電池の作製において用いた。 L i PF B was dissolved 1 mole Z l to prepare an electrolytic solution, using the same in the production of the following cell.
〔電池の作製〕  (Production of battery)
図 5は、 作製したリチウム二次電池を示す斜視図である。 図 6は、 作 製したリチウム二次電池を示す断面模式図である。 図 5に示すように、 アルミラミネ一トフイルムからなる外装体 1 0内に正極及び負極が挿入 されている。 負極集電体 1 1 の上には負極活物質としてのシリ コン薄膜 1 2が設けられており、 正極集電体 1 3の上には正極活物質層 1 4が設 けられている。 シリ コン薄膜 1 2と正極活物質層 1 4は、 セパレータ 1 5を介して対向するように配置されている。 外装体 1 0内には、 上記の 電解液 1 6が注入されている。 外装体 1 0の端部は溶着により封口され ており、 封口部 1 0 aが形成されている,, 負極集電体 1 1に取り付けら れた負極タブ 1 7は、この封口部 1 0 aを通り外部に取り出されている。 なお、 図 6に図示されないが、 正極集電体 1 3に取り付けられた正極タ ブ 1 8も、 同様に封口部 1 0 aを通り外部に取り出されている。 FIG. 5 is a perspective view showing the manufactured lithium secondary battery. FIG. 6 is a schematic cross-sectional view showing the manufactured lithium secondary battery. As shown in FIG. 5, a positive electrode and a negative electrode are inserted into an exterior body 10 made of an aluminum laminate film. On the negative electrode current collector 11, a silicon thin film 12 as a negative electrode active material is provided, and on the positive electrode current collector 13, a positive electrode active material layer 14 is provided. The silicon thin film 12 and the positive electrode active material layer 14 are arranged to face each other with the separator 15 interposed therebetween. The electrolytic solution 16 described above is injected into the exterior body 10. The end of the exterior body 10 is sealed by welding. The negative electrode tab 17 attached to the negative electrode current collector 11 having the sealing portion 10a formed therein is taken out through the sealing portion 10a. Although not shown in FIG. 6, the positive electrode tab 18 attached to the positive electrode current collector 13 is also taken out through the sealing portion 10a similarly.
〔充放電サイクル試験〕  [Charge / discharge cycle test]
上記のようにして作製したリチウム二次電池について、 充放電サイク ル試験を行った。 充放電の条件は、 充電電流 9 m A hとなるまで充電し た後、 放電電流 9 m Aで放電終止電圧 2 . 7 5 Vとなるまで放電し、 こ れを 1サイクルの充放電と して、 各電池について、 1サイクル目、 5サ イクル目、 及び 2 0サイクル目における放電容量及び充放電効率を求め た, 結果を表 6に示した。  A charge / discharge cycle test was performed on the lithium secondary battery manufactured as described above. The charge and discharge conditions are as follows: charge until the charge current reaches 9 mAh, then discharge at a discharge current of 9 mA until the discharge end voltage reaches 2.75 V, which is defined as one cycle of charge and discharge. The discharge capacity and charge / discharge efficiency at the 1st, 5th, and 20th cycles were determined for each battery. Table 6 shows the results.
表 6に示す結果から明らかなように、 これらの条件においては高い放 電容量及び良好な充放電効率が得られていることがわかる。 よって、 本 実施例中の不純物濃度であれば、 放電容量及び充放電効率の低下などは 見られず、 リチウム二次電池用電極としての特性を備えていることがわ かる As is evident from the results shown in Table 6, under these conditions, a high discharge capacity and good charge / discharge efficiency were obtained. Therefore, with the impurity concentration in this example, no decrease in the discharge capacity and charge / discharge efficiency was observed, indicating that the electrode has characteristics as an electrode for a lithium secondary battery.
表 6 Table 6
Figure imgf000015_0001
Figure imgf000015_0001
発明の効果 The invention's effect
本発明によれば、 充放電サイクル特性に優れたリチウム二次電池とす ることができる。  According to the present invention, a lithium secondary battery having excellent charge / discharge cycle characteristics can be obtained.
3 Three

Claims

請 求 の 範 囲  The scope of the claims
I . リチウムを吸蔵 ·放出する活物質を含むリチウム電池用電極に おいて、 炭素、 酸素、 窒素、 アルゴン、 及びフッ素から選ばれる少なく とも 1種の不純物を含む非結晶材料を前記活物質として用いたことを特 徴とするリチウム電池用電極。 I. In a lithium battery electrode containing an active material that absorbs and releases lithium, an amorphous material containing at least one impurity selected from carbon, oxygen, nitrogen, argon, and fluorine is used as the active material. An electrode for lithium batteries that features
2 . 前記非結晶材料が少なく ともシリ コンを含むことを特徴とする 請求項 1に記載のリチウム電池用電極。  2. The electrode for a lithium battery according to claim 1, wherein the amorphous material contains at least silicon.
3 . 前記非結晶材料が微結晶シリコンまたは非晶質シリコンである ことを特徴とする請求項 1または 2に記載のリチウム電池用電極,, 3. The electrode for a lithium battery according to claim 1, wherein the amorphous material is microcrystalline silicon or amorphous silicon.
4 . 炭素濃度が 5 0原子。 /。未満であることを特徴とする請求項 1 〜 3のいずれか 1項に記載のリチウム電池用電極。 4. The carbon concentration is 50 atoms. /. The electrode for a lithium battery according to any one of claims 1 to 3, wherein
5 . 酸素濃度が 6 7原子%未満であることを特徴とする請求項 1〜 4のいずれか 1項に記載のリチウム電池用電極。  5. The electrode for a lithium battery according to any one of claims 1 to 4, wherein the oxygen concentration is less than 67 atomic%.
6 . 窒素濃度が 5 7原子%未満であることを特徴とする請求項 1〜 5のいずれか 1項に記載のリチウム電池用電極。 6. The electrode for a lithium battery according to any one of claims 1 to 5, wherein the nitrogen concentration is less than 57 atomic%.
7 . アルゴン濃度が 1原子%以下であることを特徴とする請求項 1 〜 6のいずれか 1項に記載のリチウム電池用電極。  7. The electrode for a lithium battery according to any one of claims 1 to 6, wherein the argon concentration is 1 atomic% or less.
8 . フッ素濃度が 0 . 0 1原子%以下であることを特徴とする請求 項 1 〜 7のいずれか 1項に記載のリチウム電池用電極。  8. The lithium battery electrode according to any one of claims 1 to 7, wherein the fluorine concentration is 0.01 atomic% or less.
9 . 前記微結晶シリコンまたは非晶質シリコンがシリコン薄膜であ ることを特徴とする請求項 3〜8のいずれか 1項に記載のリチウム電池 用電極。  9. The electrode for a lithium battery according to any one of claims 3 to 8, wherein the microcrystalline silicon or the amorphous silicon is a silicon thin film.
1 0 . 前記シリ コン薄膜が集電体上に設けられていることを特徴とす る請求項 9に記載のリチウム電池用電極。  10. The electrode for a lithium battery according to claim 9, wherein the silicon thin film is provided on a current collector.
I I . 前記シリ コン薄膜が、 プラズマ C V D法、 スハッタリ ング法、 真空蒸着法または溶射法により形成されたことを特徴とする請求項 1 0 に記載のリチウム電池用電極。 II. The silicon thin film is formed by plasma CVD, shattering, The electrode for a lithium battery according to claim 10, wherein the electrode is formed by a vacuum evaporation method or a thermal spraying method.
1 2 . 前記集電体が銅、 ニッケル、 鉄、 ステンレス、 モリブデン、 タ ングステン、 及びタンタルから選ばれる少なく とも 1種であることを特 徴とする請求項 1 0または 1 1に記載のリチウム電池用電極。  12. The lithium battery according to claim 10 or 11, wherein the current collector is at least one selected from copper, nickel, iron, stainless steel, molybdenum, tungsten, and tantalum. Electrodes.
1 3 . 請求項 1〜 1 2のいずれか 1項に記載の電極からなる負極と、 正極と、 電解質とを備えるリチウム電池。  13. A lithium battery comprising a negative electrode comprising the electrode according to any one of claims 1 to 12, a positive electrode, and an electrolyte.
1 4 . 請求項 1 〜 1 2のいずれか 1項に記載の電極からなる負極と、 正極と、 非水電解質とを備えるリチウム二次電池。  14. A lithium secondary battery comprising a negative electrode comprising the electrode according to any one of claims 1 to 12, a positive electrode, and a non-aqueous electrolyte.
PCT/JP2001/000397 2000-01-25 2001-01-22 Electrode for lithium cell and lithium secondary cell WO2001056099A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001227085A AU2001227085A1 (en) 2000-01-25 2001-01-22 Electrode for lithium cell and lithium secondary cell

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-15294 2000-01-25
JP2000015294A JP2005235397A (en) 2000-01-25 2000-01-25 Electrode for lithium battery, lithium battery using it, and lithium secondary battery

Publications (1)

Publication Number Publication Date
WO2001056099A1 true WO2001056099A1 (en) 2001-08-02

Family

ID=18542616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000397 WO2001056099A1 (en) 2000-01-25 2001-01-22 Electrode for lithium cell and lithium secondary cell

Country Status (3)

Country Link
JP (1) JP2005235397A (en)
AU (1) AU2001227085A1 (en)
WO (1) WO2001056099A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610357B2 (en) 2000-12-01 2003-08-26 Sanyo Electric Co., Ltd. Method for fabricating electrode for lithium secondary battery
JP2006128067A (en) * 2004-06-15 2006-05-18 Mitsubishi Chemicals Corp Negative electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
KR100721648B1 (en) 2005-06-24 2007-05-23 마쯔시다덴기산교 가부시키가이샤 Negative electrode for lithium ion secondary battery and method for producing the negative electrode
JP2007188872A (en) * 2005-12-13 2007-07-26 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2007188873A (en) * 2005-12-13 2007-07-26 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4608743B2 (en) * 2000-07-19 2011-01-12 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP4635409B2 (en) * 2003-04-14 2011-02-23 株式会社Gsユアサ Non-aqueous electrolyte battery
US8080334B2 (en) 2005-08-02 2011-12-20 Panasonic Corporation Lithium secondary battery
KR20160092063A (en) 2005-10-20 2016-08-03 미쓰비시 가가꾸 가부시키가이샤 Lithium secondary cell and nonaqueous electrolytic solution for use therein
EP1953850B1 (en) 2005-11-07 2011-03-23 Panasonic Corporation Electrode for lithium rechargeable battery, lithium rechargeable battery, and process for producing said lithium rechargeable battery
JP5043338B2 (en) 2006-01-19 2012-10-10 パナソニック株式会社 Lithium secondary battery
KR100851969B1 (en) 2007-01-05 2008-08-12 삼성에스디아이 주식회사 Anode active material, method of preparing the same, anode and lithium battery containing the material
FR2975833B1 (en) 2011-05-24 2013-06-28 Ecole Polytech LI-ION BATTERY ANODES
JP6318859B2 (en) * 2014-05-29 2018-05-09 株式会社豊田自動織機 Copper-containing silicon material, manufacturing method thereof, negative electrode active material, and secondary battery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199524A (en) * 1997-01-17 1998-07-31 Yuasa Corp Non-aqueous electrolyte battery
JPH11283626A (en) * 1998-03-31 1999-10-15 Sanyo Electric Co Ltd Negative electrode material for lithium secondary battery and lithium secondary battery using the same
JPH11339796A (en) * 1998-05-25 1999-12-10 Kao Corp Negative electrode material for nonaqueous secondary battery
EP1024544A2 (en) * 1999-01-26 2000-08-02 Mitsui Mining Co., Ltd. Anode material for lithium secondary battery, lithium secondary battery using said anode material, and method for charging of said secondary battery
EP1039568A1 (en) * 1998-09-18 2000-09-27 Canon Kabushiki Kaisha Electrode material for negative pole of lithium secondary cell, electrode structure using said electrode material, lithium secondary cell using said electrode structure, and method for manufacturing said electrode structure and said lithium secondary cell
EP1054462A1 (en) * 1998-12-03 2000-11-22 Kao Corporation Lithium secondary cell and method for manufacturing the same
JP2001052691A (en) * 1999-08-09 2001-02-23 Toshiba Corp Nonaqueous electrolyte secondary battery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10199524A (en) * 1997-01-17 1998-07-31 Yuasa Corp Non-aqueous electrolyte battery
JPH11283626A (en) * 1998-03-31 1999-10-15 Sanyo Electric Co Ltd Negative electrode material for lithium secondary battery and lithium secondary battery using the same
JPH11339796A (en) * 1998-05-25 1999-12-10 Kao Corp Negative electrode material for nonaqueous secondary battery
EP1039568A1 (en) * 1998-09-18 2000-09-27 Canon Kabushiki Kaisha Electrode material for negative pole of lithium secondary cell, electrode structure using said electrode material, lithium secondary cell using said electrode structure, and method for manufacturing said electrode structure and said lithium secondary cell
EP1054462A1 (en) * 1998-12-03 2000-11-22 Kao Corporation Lithium secondary cell and method for manufacturing the same
EP1024544A2 (en) * 1999-01-26 2000-08-02 Mitsui Mining Co., Ltd. Anode material for lithium secondary battery, lithium secondary battery using said anode material, and method for charging of said secondary battery
JP2001052691A (en) * 1999-08-09 2001-02-23 Toshiba Corp Nonaqueous electrolyte secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6610357B2 (en) 2000-12-01 2003-08-26 Sanyo Electric Co., Ltd. Method for fabricating electrode for lithium secondary battery
JP2006128067A (en) * 2004-06-15 2006-05-18 Mitsubishi Chemicals Corp Negative electrode for non-aqueous electrolyte secondary battery and its manufacturing method, and non-aqueous electrolyte secondary battery
KR100721648B1 (en) 2005-06-24 2007-05-23 마쯔시다덴기산교 가부시키가이샤 Negative electrode for lithium ion secondary battery and method for producing the negative electrode
JP2007188872A (en) * 2005-12-13 2007-07-26 Mitsubishi Chemicals Corp Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2007188873A (en) * 2005-12-13 2007-07-26 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
AU2001227085A1 (en) 2001-08-07
JP2005235397A (en) 2005-09-02

Similar Documents

Publication Publication Date Title
KR100487458B1 (en) Method for producing electrode for lithium secondary cell
JP2001210315A (en) Electrode for lithium secondary battery and lithium secondary battery using it
JP4212458B2 (en) Lithium secondary battery
JPWO2002058182A1 (en) Lithium secondary battery
CA2295987A1 (en) Lithium ion electrochemical cell
JP2003017040A (en) Electrode for lithium secondary battery, and manufacturing method thereof
JP2001283834A (en) Secondary battery
JP2001266851A (en) Manufacturing method of electrode for lithium secondary battery
WO2001056099A1 (en) Electrode for lithium cell and lithium secondary cell
JP3670938B2 (en) Lithium secondary battery
CN108232108A (en) A kind of lithium battery anode structure and preparation method thereof, lithium battery structure
JP2002289177A (en) Lithium secondary battery and electrode for it
US20040175622A9 (en) Method of preparing electrode composition having a carbon-containing-coated metal oxide, electrode composition and electrochemical cell
JP2002231224A (en) Lithium secondary battery electrode, its manufacturing method, and lithium secondary battery
JP4104476B2 (en) Method of using lithium secondary battery and lithium secondary battery
JP4775621B2 (en) Nonaqueous electrolyte secondary battery
JP2002319432A (en) Lithium secondary cell
JP4535722B2 (en) Nonaqueous electrolyte secondary battery
JP4212439B2 (en) How to use lithium secondary battery
JP4471603B2 (en) Lithium secondary battery
JP3869609B2 (en) Method for producing electrode for lithium secondary battery
JP5116213B2 (en) Nonaqueous electrolyte secondary battery
JP3889555B2 (en) Nonaqueous electrolyte secondary battery
JP4841125B2 (en) Method for manufacturing lithium secondary battery
JP3680835B2 (en) Negative electrode member of lithium secondary battery provided with organic electrolyte and lithium secondary battery provided with organic electrolyte

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP