JP2000348730A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2000348730A
JP2000348730A JP2000149606A JP2000149606A JP2000348730A JP 2000348730 A JP2000348730 A JP 2000348730A JP 2000149606 A JP2000149606 A JP 2000149606A JP 2000149606 A JP2000149606 A JP 2000149606A JP 2000348730 A JP2000348730 A JP 2000348730A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
negative electrode
secondary battery
aqueous electrolyte
non
electrolyte secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000149606A
Other languages
Japanese (ja)
Inventor
Fumiharu Iwasaki
Tsugio Sakai
Hideo Sakamoto
Shinichi Takasugi
Tsuneaki Tamachi
Kensuke Tawara
秀夫 坂本
文晴 岩崎
恒昭 玉地
謙介 田原
次夫 酒井
信一 高杉
Original Assignee
Seiko Instruments Inc
セイコーインスツルメンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

PROBLEM TO BE SOLVED: To enhance energy density and improve a high-rate charge-discharge characteristic and a long-term cycle characteristic by including an acrylic acid polymer in a negative electrode mix. SOLUTION: An acrylic polymer has a good binding property to a metal collector such as aluminum or copper, and it is effective to use a cross-linking type acrylic polymer in order to enhance the binding property. The content of a carboxyl group in the acrylic polymer is preferably set to 50-70%. It is also effective to include carboxymethyl cellulose and polyvinyl alcohol in a positive electrode or negative electrode mix. The composition of those water-soluble polymers in the mix is preferably set to 0.1-20 wt.%. A sheet electrode can be manufactured by preparing mix slurry wherein an active material and the like are mixed and dispersed in the solution of the water-soluble polymers, by applying it to the surface of a collector, then drying it and by rolling and fixing it with a roll press or the like.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【発明の属する技術分野】本発明は、リチウムを吸蔵放出可能な物質を正極活物質および負極活物質とし、リチウムイオン導電性の非水電解質を用いる非水電解質二次電池に関するものであり、特に高エネルギー密度でハイレート充放電特性に優れ、長期サイクル特性が良好な電極の構成に関するものである。 BACKGROUND OF THE INVENTION The present invention provides lithium was capable of absorbing and releasing material and positive and negative electrode active materials, relates a non-aqueous electrolyte secondary battery using a lithium ion conductive non-aqueous electrolyte, particularly excellent high energy density high-rate discharge characteristics, long-term cycle characteristics is related to construction of good electrodes.

【0002】 [0002]

【従来の技術】負極活物質としてリチウムを用いる非水電解質電池は、高電圧、高エネルギー密度で、かつ自己放電が小さく長期信頼性に優れる等の利点により、一次電池としてはメモリ−バックアップ用、カメラ用等の電源として既に広く用いられている。 Nonaqueous electrolyte battery using lithium as the Prior Art the anode active material, a high voltage, high energy density, and the advantage of such self-discharge is excellent in reduced long-term reliability, as the primary battery memory - for backup, already widely used as a power source such as a camera. 近年の携帯型電子機器、通信機器等の著しい発展に伴い、電源としての電池に対し大電流出力を要求する機器が多種多様に出現し、 Recent portable electronic devices, with the remarkable development of such communication equipment, equipment that requires a large current output great variety appeared to battery as a power source,
経済性と機器の小型軽量化さらに環境への配慮の観点から、再充放電可能で、かつ高エネルギー密度の二次電池が強く要望されている。 In view of economical considerations and equipment size and weight reduction further environment, recharge and discharge possible, and a secondary battery having a high energy density has been demanded strongly.

【0003】そこで負極活物質として、炭素材料に代表されるリチウムイオンを吸蔵放出可能な物質を用いた、 [0003] Therefore as the negative electrode active material, was used capable of absorbing and releasing material lithium ion represented by the carbon material,
高エネルギー密度を有する前記非水電解質電池の二次電池化を進める研究開発が活発に行われ、「リチウムイオン二次電池」として一部実用化されているが、エネルギ Research and development to promote the secondary battery of the nonaqueous electrolyte battery having a high energy density is performed actively, has been partially put to practical use as a "lithium-ion secondary battery", energy
-密度、充放電サイクル寿命、信頼性等まだまだ不十分である。 - Density, charge-discharge cycle life, it is still insufficient and the like reliability.

【0004】前記「リチウムイオン二次電池」に用いられる非水電解質は、ニッケル−カドミウム電池やニッケル−水素電池等に用いられる水系の電解液と比較すると、イオン導電性が低い。 [0004] The non-aqueous electrolyte used in the "lithium-ion secondary battery" is a nickel - cadmium battery and a nickel - when compared with the electrolytic solution of aqueous used in a hydrogen battery or the like, a low ionic conductivity. このため高エネルギー密度を得るために、金属箔等の集電体の両面に薄い合剤層を設けた電極シートを、幾重にも渦巻き状に倦回して電池反応面を大面積化する構造が一般的である。 To this order to obtain a high energy density, the electrode sheet provided with a thin mix layer on both sides of the current collector such as a metal foil, a structure of large area cell reaction surface and 倦回 over and over again in a spiral shape it is common.

【0005】合剤中には、活物質、必要な場合には導電助剤そして結着剤等から構成される。 [0005] During material mixture, the active material, if necessary consisting of a conductive auxiliary agent and binder, and the like. 結着剤に求められる特性は 合剤構成物質を確実に結着・保持すること 合剤と集電体とを結着すること 電解液(電解質)に対して化学的に安定であること 安価であること 等が挙げられる。 Characteristics required for the binder inexpensive be chemically stable against the electrolytic solution to bind the mixture and the current collector can be reliably bound and held the mixture constituents (electrolyte) sometimes, and the like. 特に上記の条件が満たされない場合には、ハイレート性能や充放電の繰り返しによるサイクル特性などの電池性能低下を招く。 Especially when the above conditions are not satisfied, leading to cell performance degradation such as cycle characteristics due to repeated high-rate performance and charge and discharge.

【0006】従来、非水電解液二次電池用に用いられる合剤の結着剤としては、ポリテトラフルオロエチレン(PTFE)のディスパージョンや、ポリビニリデンフルオライド(PVDF)のようなフッ素樹脂が多く用いられてきた。 Conventionally, as a binder for the mixture to be used for non-aqueous electrolyte secondary battery, dispersion or polytetrafluoroethylene (PTFE), fluorinated resins such as polyvinylidene fluoride (PVDF) is It has been used in many cases. フッ素樹脂は電解液に対して安定であり、 Fluorine resins are stable to the electrolytic solution,
耐熱性も優れている。 Heat resistance are also excellent.

【0007】特にフッ素樹脂の中でも唯一溶液にすることが可能なPVDFは、合剤スラリーを集電体上に塗布するような電極シートの製造工程において、塗布性が良好であり多く用いられている(例えば、特開平4−18 [0007] Particularly PVDF which can be the only solution among the fluororesin, in the electrode sheet of the manufacturing process such as applying the mixture slurry on the current collector, coating properties are used is often a good (e.g., JP-A-4-18
4872号、特開平5−290854号、特開平6−1 No. 4872, JP-A-5-290854, JP-6-1
11823号、特開平6−349482号参照)。 No. 11823, see Japanese Patent Laid-Open No. 6-349482).

【0008】 [0008]

【発明が解決しようとする課題】前記の通り結着剤として多く用いられてきたPTFEディスパージョンやPV THE INVENTION Problems to be Solved The PTFE dispersion and PV, which as has been widely used as a binder of
DFなどは、合剤中の構成物質を結着するためには良好な結着剤であるが、金属箔などの集電体との結着性には最適ではないという問題点がある。 Etc. DF, is a good binder for binding the constituents in a fixed combination, the binding property with the current collector such as a metal foil has a problem that it is not optimal. またフッ素樹脂のため高価であることも電池製造コスト上問題である。 It is also a battery manufacturing cost problem is expensive because of the fluororesin. その上、PVDFの溶媒であるN−メチル−2−ピロリドン(NMP)やジメチルホルムアミド(DMF)は、下記のような問題点も有している。 Moreover, it is a PVDF solvent N- methyl-2-pyrrolidone (NMP) or dimethylformamide (DMF) has also the following problems.

【0009】 高価であり製品のコストアップになる 有機溶媒のため、製造工程における人体への影響が懸念される 高沸点溶媒のため高温乾燥すると、PVDFの熱分解が起き結着性の低下を招く [0009] For the organic solvent to be cost of expensive and products, leading the influence of the human body in the manufacturing process is a high temperature drying for the high-boiling solvent of concern, a reduction in binding strength occurs thermal decomposition of PVDF

【0010】 [0010]

【課題を解決するための手段】上記問題点を解決するために、本発明はリチウムイオンを吸蔵・放出可能な正極および負極と、リチウムイオン導電性の非水電解質から少なくとも構成される非水電解質二次電池において、正極および/または負極の電極合剤中に水溶性ポリマーを含有することとしている。 In order to solve the above problems SUMMARY OF THE INVENTION The present invention and capable of absorbing and desorbing positive electrode and the negative electrode lithium ion is at least composed of a non-aqueous electrolyte of a lithium-ion conductive non-aqueous electrolyte in the secondary battery, it is set to contain a water-soluble polymer in the positive electrode and / or negative electrode material mixture.

【0011】このため、集電体への結着性も良好で、かつ溶媒が水であることから上記のコストや製造工程における人体への影響などの課題を解決することができる。 [0011] Therefore, it is possible to solve the problem and the impact of the binder of the current collector was good and since the solvent is water the human body in the cost and manufacturing processes.
また、比較的低温で乾燥可能であるから、合剤やシート電極を構成する材料への熱的ダメージを最小限にとどめることができる。 Also, because it is possible drying at relatively low temperatures, thermal damage to the material constituting the mixture or sheet electrodes can be minimized.

【0012】 [0012]

【発明の実施の形態】本発明に用いられる水溶性ポリマーとしては、天然物系ポリマーや合成樹脂など種々のポリマーを用いることができる。 The water-soluble polymer used in the Detailed Description of the Invention The present invention can be used various polymers such as natural-based polymer or a synthetic resin. 例えば天然物系としては、デンプン系のデンプン、化工デンプン、デキストリン、セルロース系のメチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、カルボキシメチルセルロース(CMC)、ゴム系のアラビアゴム、トラガントゴム、カラヤゴム、ローカストビーンゴム、グアーゴム等があげられる。 For example, as a natural-based, starch-based starch, modified starch, dextrin, methylcellulose cellulose, ethyl cellulose, hydroxyethyl cellulose, carboxymethyl cellulose (CMC), gum arabic rubber, gum tragacanth, karaya gum, locust bean gum, guar gum and the like can give.

【0013】また合成樹脂系では、ポリビニルアルコール類、ポリアクリルアミド、ポリエチレンオキサイド、 [0013] In the synthetic resin is polyvinyl alcohol, polyacrylamide, polyethylene oxide,
ポリビニルピロリドン、酢酸ビニル共重合体、アクリル酸ポリマー等を用いることができる。 Polyvinyl pyrrolidone, vinyl acetate copolymer, can be used acrylic acid polymers, and the like.

【0014】中でも、アクリル酸ポリマーやCMC等はアルミニウムや銅等の金属の集電体等への結着性も良好で好ましい。 [0014] Among them, acrylic acid polymers and CMC binder of the metal current collector such as aluminum or copper is preferable satisfactory.

【0015】さらに結着性を高めるために架橋型アクリル酸ポリマーを用いることが効果的である。 [0015] is further it is effective to use a cross-linked acrylic acid polymers in order to improve the binding property. 特に架橋型アクリル酸ポリマー中のカルボキシル基含量が50〜7 In particular carboxyl group content of the crosslinked acrylic acid polymer is 50-7
0%であることが好ましい。 It is preferable that the 0%.

【0016】これら水溶性ポリマーは、一種でも十分に機能を果たすが二種以上を混合して用いてもよい。 [0016] These water-soluble polymers, functions well even one kind may be used by mixing two or more.

【0017】本発明の水溶性ポリマーの合剤中の組成は、合剤の結着性および集電体への結着性が維持できる最小量にとどめるべきである。 The composition in the mixture of water-soluble polymers of the present invention, should be kept to the minimum amount of binding property can be maintained in the binder resistance and the collector of the mixture. 過剰の場合には、電池容量低下、インピーダンス増加等の問題が生じる。 If excessive, the battery capacity decreases, the impedance increases such problems. また過小の場合には、結着性が維持できない。 In the case of too low, it can not be maintained cohesiveness. これらのことを鑑みて合剤中の水溶性ポリマー組成は0.1%(w/ These things water-soluble polymer composition in the mixture in view of the 0.1% (w /
w)以上20%(w/w)以下が良い。 w) more than 20% (w / w) or less is good.

【0018】本発明に用いられる正極活物質としては、 [0018] as a positive electrode active material used in the present invention,
TiS 2 、MoS 2 、NbSe 3等の金属カルコゲン化物や、MnO 2 、M TiS 2, MoS 2, NbSe 3, etc. of metal chalcogenides and, MnO 2, M
oO 3 、V 2 O 5 、Li x CoO 2 、Li x NiO 2 、Li x Mn 2 O 4等の金属酸化物、ポリアニリン、ポリピロール、ポリパラフェニレン、ポリアセン等の導電性高分子、およびグラファイト層間化合物等のリチウムイオンおよび/またはアニオンを吸蔵放出可能な各種の物質を用いることができる。 oO 3, V 2 O 5, Li x CoO 2, Li x NiO 2, Li x Mn 2 O metal oxides such as 4, polyaniline, polypyrrole, polyparaphenylene, conductive polymers such as polyacene, and graphite intercalation compounds lithium ions and / or anions and the like can be used capable of absorbing and releasing various substances.

【0019】特に、金属カルコゲン化物や金属酸化物等のような金属リチウムに対する電極電位が2V以上、より好ましくはV 2 O 5 、MnO 2 、Li x CoO 2 、Li x NiO 2 、Li x Mn 2 O 4 [0019] Particularly, the electrode potential with respect to lithium metal, such as metal chalcogenide or metal oxide is 2V or more, more preferably V 2 O 5, MnO 2, Li x CoO 2, Li x NiO 2, Li x Mn 2 O 4
等のような3Vないし4V以上の高電位を有する(貴な)活物質と、後に述べる金属リチウムに対する電極電位が1V以下の低電位を有する(卑な)活物質を用いた負極とを組み合わせることにより、高エネルギー密度の二次電池が得られるので、より好ましい。 3V to like etc. is combined with the negative electrode using the (nobler) active material having the above high potential 4V, the electrode potential with respect to metallic lithium to be described later have the following low potential 1V (the less noble) active material Accordingly, since the secondary battery of high energy density is obtained, and more preferable.

【0020】負極活物質としては、金属リチウム、炭素質材料、Li x Si、金属酸化物、窒化物、ケイ化物、炭化物、Li xy Si 1-y M y O z (0<x≦6,0≦y<1,0<z<2であり、Mはアルカリ金属を除く金属あるいはケイ素を除く類金属)で示されるケイ素酸化物等のリチウムイオンおよび/またはアニオンを吸蔵放出可能な各種の物質を用いることができる。 [0020] As the negative electrode active material, metallic lithium, carbonaceous materials, Li x Si, metal oxides, nitrides, silicides, carbides, Li x M y Si 1- y M y O z (0 <x ≦ 6 , 0 ≦ y <1,0 is <z <2, M is lithium ion and / or anion capable of absorbing and releasing various silicon oxides represented by metalloid) excluding metal or silicon excluding alkali metal substance can be used.

【0021】特に、Li xy Si 1-y M y O z (0<x≦6,0≦y< [0021] In particular, Li x M y Si 1- y M y O z (0 <x ≦ 6,0 ≦ y <
1,0<z<2であり、Mはアルカリ金属を除く金属あるいはケイ素を除く類金属)で示されるケイ素酸化物等は、金属リチウムに対する電極電位が1V以下の領域での充放電容量が大きいことから、上記正極活物質を用いた正極と組み合わせることで、高電圧・高エネルギー密度な二次電池が得られるので、より好ましい。 1, 0 <z <a 2, M is silicon oxide or the like represented by metalloid) excluding metal or silicon excluding alkali metals, a large charge-discharge capacity in the following areas 1V electrode potential relative to lithium metal since, by combining the positive electrode using the positive electrode active material, the high voltage and high energy density secondary battery is obtained, and more preferable.

【0022】電解質としては、γ−ブチロラクトン、プロピレンカーボネート、エチレンカーボネート(E [0022] As the electrolyte, .gamma.-butyrolactone, propylene carbonate, ethylene carbonate (E
C)、ブチレンカーボネート、ジメチルカーボネート、 C), butylene carbonate, dimethyl carbonate,
ジエチルカーボネート、メチルフォーメイト、1,2− Diethyl carbonate, methyl Four Mate, 1,2
ジメトキシエタン、テトラヒドロフラン、ジオキソラン、ジメチルフォルムアミド等の非水系の有機溶媒の単独または混合溶媒に、支持電解質としてLiClO 4 ,LiP Dimethoxyethane, tetrahydrofuran, dioxolane, alone or mixed solvent of the organic nonaqueous solvent, such as dimethylformamide, LiClO 4, LiP as a supporting electrolyte
F 6 ,LiBF 4 ,LiCF 3 SO 3 、LiC(SO 2 CF 3 ) 3 、LiN(SO 2 CF 3 ) 2等のリチウムイオン解離性塩を溶解した有機非水電解質、 F 6, LiBF 4, LiCF 3 SO 3, LiC (SO 2 CF 3) 3, LiN (SO 2 CF 3) 2 and lithium ion-dissociative salt was dissolved organic nonaqueous electrolyte,
ポリエチレンオキシドやポリフォスファゼン架橋体等の高分子に前記リチウム塩を固溶させた高分子固体電解質あるいはLi 3 N,LiI等の無機固体電解質等のリチウムイオン導電性の非水電解質を用いることができる。 Polyethylene oxide, polyphosphazene crosslinked such polymers in the lithium salt dissolved is not solid polymer electrolyte or Li 3 N, and that a lithium ion conductive non-aqueous electrolyte such as inorganic solid electrolytes such as LiI it can.

【0023】特に、負極活物質として前述したLi xy [0023] In particular, Li x M y S described above as a negative electrode active material
1-y M y O z (0<x≦6,0≦y<1,0<z<2であり、Mはアルカリ金属を除く金属あるいはケイ素を除く類金属)で示されるケイ素酸化物を用いる場合には、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の化2で示されるアルキルカーボネートとECとの混合溶媒を用いることが好ましい。 i 1-y M y O z ( a 0 <x ≦ 6,0 ≦ y < 1,0 <z <2, M is metalloid other than a metal or silicon excluding alkali metal) of silicon oxide represented by If used, dimethyl carbonate, diethyl carbonate, the use of mixed solvent of alkyl carbonate and EC represented by Formula 2 such as ethyl methyl carbonate preferred. さらにECとR 12型アルキルカーボネートの体積混合比が、約3:1〜約1:3の範囲であることがより好ましい。 Further volume mixing ratio of EC and R 1 R 2 type alkyl carbonate is from about 3: 1 to about 1: and more preferably in the range of 3.

【0024】 [0024]

【化1】 [Formula 1] 正極集電体としては、アルミニウムやその合金、チタンやその合金、ステンレスなど正極活物質電位に対して安定である物質であればよい。 As the positive electrode current collector, aluminum or its alloys, titanium and its alloys, it may be a stable material with respect to the positive electrode active material potentials such as stainless steel. その形態としては、例えば箔、エキスパンドメタル等が挙げられる。 As the form, for example a foil, expanded metal, and the like.

【0025】負極集電体としては、銅やその合金、ニッケルやその合金、ステンレスなど負極活物質電位に対して安定である物質であればよい。 [0025] As the negative electrode current collector, copper and its alloys, may be a nickel or a stable material for the alloy, the negative electrode active material potential such as stainless steel. その形態としては、例えば箔、エキスパンドメタル等が挙げられる。 As the form, for example a foil, expanded metal, and the like.

【0026】シート電極の製造方法としては、本発明の水溶性ポリマーの溶液に活物質などの合剤構成物質を混合・分散した合剤スラリーを調整し、この合剤スラリーを集電体上に塗布乾燥し、必要に応じロールプレスなどにより圧延・固着させる方法がある。 [0026] As a method for producing the sheet electrode, by adjusting the mixture slurry in a solution of water-soluble polymer mixture constituents such as active material mixed and dispersed in the present invention, the mixture slurry onto a collector coating and drying, there is a method of rolling and fixed by a roll press as necessary. また、シート状に成形された合剤層を集電体に圧着したり、接着させる方法など種々の方法を用いることができる。 Also, the mix layer which is formed into a sheet or bonding the current collector, it is possible to use various methods such as method of adhering. この際、集電体と合剤層との間に炭素材料や金属粉体を導電性フィラーとする導電層を設けても良い。 At this time, it is also possible to provide a conductive layer to the conductive filler of carbon material or metal powder between the current collector and the mixture layer. 集電体と合剤層との電子導電性が向上し、なおいっそう高性能な電池が実現する。 Improved electron conductivity between the current collector and the mixture layer still is more powerful batteries realized.

【0027】コイン型やボタン型用の電極を製造する方法としては、上記と同様に合剤スラリーを調整し乾燥した後、粉砕・造粒して所定の寸法に成形する湿式法や、 [0027] As a method for producing an electrode for a coin-type or button-type, after drying was adjusted in the same manner as described above material mixture slurry, wet method such pulverization and granulation to be molded into a predetermined size,
本発明の水溶性ポリマーを含む合剤構成物質を均一に混合した後、成形する乾式法等種々の方法を用いて製造することができる。 After uniformly mixing the mixture constituents comprising water-soluble polymers of the present invention can be prepared using a variety of methods dry method such as molding.

【0028】 [0028]

【実施例】以下実施例により本発明の一例を挙げて説明する。 By the following examples will be described as an example of the present invention. 本発明はこれに限定されるものではない。 The present invention is not limited thereto.

【0029】以下に示すように角形電池を作製し充放電特性を測定した。 [0029] was measured fabricated discharge characteristics of prismatic cell as shown below.

【0030】(実施例1)正極活物質としてLiB 0.03 Co [0030] (Example 1) the positive electrode active material LiB 0.03 Co
0.97 O 2で示されるリチウムとコバルトとホウ素の複合酸化物85重量部と、導電剤のグラファイト8重量部を乳鉢で粉砕・混合したものを、結着剤のPVDF7重量部をNMP51.3重量部に溶解した溶液に混合分散し、 A lithium-cobalt composite oxide 85 parts by weight of boron represented by 0.97 O 2, a material obtained by pulverizing and mixing in a mortar 8 parts by weight of graphite as a conductive agent, NMP51.3 parts by PVDF7 parts of the binder mixed dispersed solution in,
正極合剤スラリーを調整した。 A positive electrode mixture slurry was adjusted. この正極合剤スラリーを厚さ20μmのアルミ箔の両面に、乾燥・圧延後の合剤密度が3.3g/cm 3 、片面の合剤厚さが60μmになるように塗布・乾燥し、ロールプレスを用いて圧延して正極シートを作製した。 The positive electrode mixture slurry on both surfaces of an aluminum foil having a thickness of 20 [mu] m, mixture density after drying and rolling 3.3 g / cm 3, one surface of the mixture thickness was applied and dried so that 60 [mu] m, roll to prepare a positive electrode sheet was rolled using a press. こうして作製した正極シートを、2 The positive electrode sheet prepared in this way, 2
7.5mm39mmのサイズに裁断して正極板とした。 Was a positive electrode plate was cut to the size of the 7.5mm39mm.

【0031】同様にして負極を作製した。 [0031] A negative electrode was produced in the same manner. 負極活物質として市販の一酸化ケイ素(SiO)45重量部と、導電剤 のグラファイト40重量部を乳鉢で粉砕・混合したものを、結着剤の架橋型アクリル酸ポリマー15重量部を水300重量部に溶解した溶液に混合分散し、負極合剤スラリーを調整した。 And commercially available silicon monoxide (SiO) 45 parts by weight as a negative electrode active material, a material obtained by pulverizing and mixing in a mortar graphite 40 parts by weight of the conductive agent, water 300 parts by weight cross-linked 15 parts by weight of acrylic acid polymer binder mixture was dispersed in solution in part, to prepare a negative electrode mixture slurry. この負極合剤スラリーを厚さ1 This negative electrode mixture slurry thickness of 1
0μmの銅箔の両面に、乾燥・圧延後の合剤密度が1. On both sides of a copper foil 0 .mu.m, mixture density after drying and rolling 1.
6g/cm 3 、片面の合剤厚さが27μmになるように塗布し、乾燥後ロールプレスを用いて圧延を行った。 6 g / cm 3, one surface of the mixture thickness was coated so that the 27 [mu] m, was subjected to rolling with dry after roll press. こうして作製した負極シートを、27.5×39mmのサイズに裁断して負極板とした。 The negative electrode sheet produced in this way, and a negative electrode plate was cut to a size of 27.5 × 39 mm.

【0032】正極板15枚と負極板16枚を、リチウムイオン透過性の多孔質フィルムであるセパレーターを介在して交互に重ね合わせ(最外側は合剤を片面のみに塗布した負極)、ステンレス製の電池ケースに挿入し、リードをとり、電解液を注入して封口し、角形電池を作製した。 [0032] (negative electrode outermost coated material mixture on one side only) 15 sheets positive and negative electrode plates 16 sheets superposed alternately with a separator disposed therebetween a porous film of a lithium ion-permeable, stainless was inserted into the battery case, take the lead, and sealing the electrolytic solution is injected, to produce a prismatic battery.

【0033】こうして作製した電池を、20mAの定電流で充電終止電圧を4.2V、放電終止電圧を2.7Vの条件で充放電サイクルを3サイクル行った。 [0033] The battery fabricated in this manner, 4.2 V the charge voltage at 20mA constant current was performed three cycles of charge and discharge cycles under the condition of a discharge end voltage 2.7V. この後、充電電圧4.2V、最大充電電流400mAで定電流定電圧で2.5時間充電し、放電電流400mAおよび600mA Thereafter, the charging voltage 4.2 V, then charged for 2.5 hours at a constant current and constant voltage at the maximum charging current 400mA, the discharge current 400mA and 600mA
の定電流で放電終止電圧2.7Vの条件で各電流値で3 3 in each current value under the condition of discharge end voltage 2.7V at a constant current of
サイクルづつ充放電特性測定を行った。 It went the cycle at a time of determination of charge and discharge properties. この放電電流4 The discharge current 4
00mAの場合の放電容量に対する放電電流600mA Discharge current 600mA to the discharge capacity in the case of 00mA
の場合の放電容量の割合を図1に示す。 It indicates the proportion of the discharge capacity in the case of Figure 1. さらに充電電圧4.2V、最大充電電流400mAで定電流定電圧で2. 2 at a constant current constant voltage further charge voltage 4.2 V, with a maximum charge current 400 mA.
5時間充電し、放電電流400mAの定電流で放電終止電圧2.7Vの条件で充放電サイクルを行った。 5 hours to charge, the charge-discharge cycle was performed under the conditions of the discharge end voltage 2.7V at a constant current of discharge current 400 mA. この充放電サイクルのサイクル特性を図2に示す。 Showing the cycle characteristics of the charge-discharge cycle in FIG.

【0034】(実施例2)実施例1において、負極活物質として市販の一酸化ケイ素(SiO)45重量部と、 [0034] (Example 2) Example 1, a commercially available silicon monoxide (SiO) 45 parts by weight as a negative electrode active material,
導電剤のグラファイト40重量部を乳鉢で粉砕・混合したものを、結着剤のPVDF15重量部をNMP110 A material obtained by pulverizing and mixing in a mortar graphite 40 parts by weight of the conductive agent, the PVDF15 parts of the binder NMP110
重量部に溶解した溶液に混合分散し、負極合剤スラリーを調整したこと以外は同様にして角形電池を作製し、同様の充放電試験を行った。 Mixed and dispersed in solution in parts by weight, except that adjusting the anode mixture slurry to prepare a prismatic battery was similarly subjected to the same charge-discharge test. その結果得られた、放電電流400mAの場合の放電容量に対する放電電流600m The resulting discharge current 600m to the discharge capacity when the discharge current 400mA
Aの場合の放電容量の割合を図1に、サイクル特性を図2に示す。 The ratio of the discharge capacity in the case of A in FIG. 1, showing the cycle characteristics in FIG.

【0035】図1および図2から明らかなように、本発明の水溶性ポリマーを結着剤として用いることでハイレート放電時の容量減少が低下した。 [0035] As is apparent from FIGS. 1 and 2, volume reduction of the high-rate discharge by using a water-soluble polymer of the present invention as a binder is lowered. これは、合剤同士の密着性および合剤と集電体との密着性向上によりインピーダンスが減少したことによると考えられる。 This is believed to be due to the impedance is reduced by improving adhesion between the adhesion and a fixed combination and the collector of each other mixture. また、サイクル特性が著しく向上していることから、本発明の水溶性ポリマーを結着剤として用いることで、充放電サイクル経過後も合剤同士および合剤と集電体との密着性を維持できる事を如実に反映した結果である。 Further, maintained at the cycle characteristics are significantly improved, by using a water-soluble polymer of the present invention as a binder, after charge-discharge cycles elapsed also the adhesion between the mixture and between a fixed combination and the current collector it is a result that reflects vividly the possible.

【0036】さらに、正極合剤の結着剤として水溶性ポリマーを含有する事で、さらに電池としての性能が向上する事は言うまでもない。 Furthermore, by containing a water-soluble polymer as the binder of the positive electrode mixture, it is of course to further improve the performance of the battery.

【0037】 [0037]

【発明の効果】以上のように本発明は、リチウムイオンを吸蔵・放出可能な正極および負極と、リチウムイオン導電性の非水電解質から少なくとも構成される非水電解質二次電池において、正極および/または負極の電極合剤中に水溶性ポリマーを含有する構成としたことで、 電池のインピーダンスを低減し、ハイレート放電が可能 充放電サイクル経過後の合剤同士や合剤と集電体との密着性を維持でき、電池劣化を著しく抑制できる。 The present invention as described above, according to the present invention, the lithium ions and capable of absorbing and desorbing positive and negative electrodes, at least configured nonaqueous electrolyte secondary battery of a lithium-ion conductive non-aqueous electrolyte, a positive electrode and / or in the negative electrode of the electrode material mixture that has a structure containing a water-soluble polymer, to reduce the impedance of the battery, the adhesion between the high-rate mixture together or mixture after discharge can charge and discharge cycles elapsed and the current collector can maintain gender, it can be significantly suppressed cell deterioration.

【0038】 合剤スラリーの乾燥温度を低くすることが可能で、活物質等への熱的ダメージを抑制できる。 [0038] can be a drying temperature of the mixture slurry low, it is possible to suppress the thermal damage to the active material and the like.

【0039】 溶媒が水であることから、電池製造工程上人体への影響が少ない。 [0039] Since the solvent is water, a small influence on the cell manufacturing process on the human body. 等の効果を有する。 It has the effect of equal. その結果、高エネルギー密度でサイクル特性が良好な高品質二次電池を得ることができる。 As a result, it is possible to cycle characteristics at high energy density to obtain a good quality secondary battery.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明において実施した、実施例1および実施例2で作製した角形電池の放電電流400mAの場合の放電容量に対する、放電電流600mAの場合の放電容量の割合を比較した説明図である。 Was carried out in [1] The present invention, with respect to the discharge capacity when the discharge current 400mA prismatic battery fabricated in Examples 1 and 2, is a diagram comparing the ratio of the discharge capacity when the discharge current 600mA .

【図2】本発明において実施した、実施例1および実施例2で作製した角形電池の充放電サイクル特性を比較した説明図である。 It was carried out in [2] The present invention is an explanatory diagram comparing the charge-discharge cycle characteristics of the prismatic battery fabricated in Example 1 and Example 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田原 謙介 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 (72)発明者 坂本 秀夫 千葉県千葉市美浜区中瀬1丁目8番地 セ イコーインスツルメンツ株式会社内 (72)発明者 高杉 信一 宮城県仙台市青葉区上愛子字松原45−1 株式会社エスアイアイ・マイクロパーツ内 (72)発明者 玉地 恒昭 宮城県仙台市青葉区上愛子字松原45−1 株式会社エスアイアイ・マイクロパーツ内 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Kensuke Tahara Chiba City, Chiba Prefecture Nakase, Mihama-ku 1-chome address 8 cell ico Instruments within Co., Ltd. (72) inventor Hideo Sakamoto Chiba, Chiba Prefecture Nakase, Mihama-ku 1-chome address 8 cell ico Instruments within Co., Ltd. (72) inventor Shinichi Takasugi Miyagi Prefecture, Aoba-ku, Sendai Kamiayashi shaped Matsubara 45-1 Corporation SII micro in the part (72) inventor ball land HisashiAkira Miyagi Prefecture, Aoba-ku, Sendai Kamiayashi shaped Matsubara 45-1 Corporation SII micro in the part

Claims (4)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 リチウムイオンを吸蔵放出可能な正極と負極合剤の負極活物質にSiOを有する負極と、リチウムイオン導電性の非水電解質からなる非水電解質二次電池であって、前記負極合剤中にアクリル酸ポリマーを含有することを特徴とする非水電解質二次電池。 1. A negative active material and a negative electrode having a SiO, a non-aqueous electrolyte secondary battery comprising a lithium ion conductive non-aqueous electrolyte of a lithium ion capable of absorbing and releasing positive and negative electrode mixture, the negative electrode non-aqueous electrolyte secondary battery characterized by containing an acrylic acid polymer in a fixed combination.
  2. 【請求項2】 前記アクリル酸ポリマーが架橋型であることを特徴とする請求項1記載の非水電解質二次電池。 2. A non-aqueous electrolyte secondary battery according to claim 1, wherein the acrylic acid polymer is a crosslinked.
  3. 【請求項3】 前記アクリル酸ポリマー中のカルボキシル基含量が50〜70%であることを特徴とする請求項1記載の非水電解質二次電池。 3. A non-aqueous electrolyte secondary battery according to claim 1, wherein the carboxyl group content of the acrylic acid polymer is 50-70%.
  4. 【請求項4】 リチウムイオンを吸蔵放出可能な正極と負極合剤の負極活物質にSiOを有する負極と、リチウムイオン導電性の非水電解質からなる非水電解質二次電池であって、前記正極または負極合剤中にポリビニルアルコール、またはカルボキシメチルセルロースを含有することを特徴とする非水電解質二次電池。 4. A negative electrode having a SiO lithium ions in the negative electrode active material capable of absorbing and releasing positive and negative electrode mixture, a non-aqueous electrolyte secondary battery comprising a lithium ion conductive non-aqueous electrolyte, wherein the positive electrode or negative electrode polyvinyl alcohol in the dosage or a non-aqueous electrolyte secondary battery characterized in that it contains carboxymethylcellulose.
JP2000149606A 2000-01-01 2000-05-22 Nonaqueous electrolyte secondary battery Pending JP2000348730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000149606A JP2000348730A (en) 2000-01-01 2000-05-22 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000149606A JP2000348730A (en) 2000-01-01 2000-05-22 Nonaqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP08102917 Division

Publications (1)

Publication Number Publication Date
JP2000348730A true true JP2000348730A (en) 2000-12-15

Family

ID=18655439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000149606A Pending JP2000348730A (en) 2000-01-01 2000-05-22 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2000348730A (en)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100789070B1 (en) 2005-06-06 2007-12-26 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery
EP2071651A1 (en) * 2007-11-28 2009-06-17 Samsung SDI Co., Ltd. Negative electrode and rechargeable lithium battery including same
WO2010008058A1 (en) * 2008-07-17 2010-01-21 旭硝子株式会社 Anode composite for nonaqueous electrolyte cell
WO2010130976A1 (en) * 2009-05-11 2010-11-18 Nexeon Limited A binder for lithium ion rechargeable battery cells
US7875388B2 (en) 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
JP2011071064A (en) * 2009-09-28 2011-04-07 Iwate Univ Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery equipped with the negative electrode
EP2432056A1 (en) * 2010-09-17 2012-03-21 Samsung SDI Co., Ltd. Binder composition for rechargeable lithium battery, and electrode and rechargeable lithium battery including the same
US8384058B2 (en) 2002-11-05 2013-02-26 Nexeon Ltd. Structured silicon anode
DE112011102864T5 (en) 2010-08-31 2013-06-27 Toyota Jidosha Kabushiki Kaisha Anode material, lithium secondary battery and method for producing the anode material
US8585918B2 (en) 2006-01-23 2013-11-19 Nexeon Ltd. Method of etching a silicon-based material
US8597831B2 (en) 2006-01-23 2013-12-03 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8642211B2 (en) 2007-07-17 2014-02-04 Nexeon Limited Electrode including silicon-comprising fibres and electrochemical cells including the same
JP2014026962A (en) * 2012-06-18 2014-02-06 Jsr Corp Electrode for electric power storage device, slurry for electrode, binder composition for electrode, and electric power storage device
US8772174B2 (en) 2010-04-09 2014-07-08 Nexeon Ltd. Method of fabricating structured particles composed of silicon or silicon-based material and their use in lithium rechargeable batteries
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
WO2014200003A1 (en) * 2013-06-12 2014-12-18 Tdk株式会社 Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
CN104638268A (en) * 2013-11-07 2015-05-20 Tdk株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2015162919A1 (en) * 2014-04-22 2015-10-29 凸版印刷株式会社 Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
JP2016066529A (en) * 2014-09-25 2016-04-28 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR20160102407A (en) 2013-12-26 2016-08-30 제온 코포레이션 Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JPWO2015025844A1 (en) * 2013-08-23 2017-03-02 日本電気株式会社 Lithium-iron-manganese-based composite oxide and a lithium-ion secondary battery using the same
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US9692049B2 (en) 2013-02-26 2017-06-27 Samsung Electronics Co., Ltd. Anode containing composite anode active material including water-soluble polymer coating and lithium secondary battery including the same
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material

Cited By (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8384058B2 (en) 2002-11-05 2013-02-26 Nexeon Ltd. Structured silicon anode
KR100789070B1 (en) 2005-06-06 2007-12-26 마쯔시다덴기산교 가부시키가이샤 Non-aqueous electrolyte secondary battery
US9583762B2 (en) 2006-01-23 2017-02-28 Nexeon Limited Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8597831B2 (en) 2006-01-23 2013-12-03 Nexeon Ltd. Method of fabricating fibres composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8585918B2 (en) 2006-01-23 2013-11-19 Nexeon Ltd. Method of etching a silicon-based material
US7875388B2 (en) 2007-02-06 2011-01-25 3M Innovative Properties Company Electrodes including polyacrylate binders and methods of making and using the same
US9871249B2 (en) 2007-05-11 2018-01-16 Nexeon Limited Silicon anode for a rechargeable battery
US9252426B2 (en) 2007-05-11 2016-02-02 Nexeon Limited Silicon anode for a rechargeable battery
US9012079B2 (en) 2007-07-17 2015-04-21 Nexeon Ltd Electrode comprising structured silicon-based material
US8940437B2 (en) 2007-07-17 2015-01-27 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8870975B2 (en) 2007-07-17 2014-10-28 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US8642211B2 (en) 2007-07-17 2014-02-04 Nexeon Limited Electrode including silicon-comprising fibres and electrochemical cells including the same
US9871244B2 (en) 2007-07-17 2018-01-16 Nexeon Limited Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
EP2071651A1 (en) * 2007-11-28 2009-06-17 Samsung SDI Co., Ltd. Negative electrode and rechargeable lithium battery including same
US7931984B2 (en) 2007-11-28 2011-04-26 Samsung Sdi Co., Ltd. Negative electrode for rechargeable lithium battery, and rechargeable lithium battery including the same
WO2010008058A1 (en) * 2008-07-17 2010-01-21 旭硝子株式会社 Anode composite for nonaqueous electrolyte cell
US8932759B2 (en) 2008-10-10 2015-01-13 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material
US9184438B2 (en) 2008-10-10 2015-11-10 Nexeon Ltd. Method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
US9553304B2 (en) 2009-05-07 2017-01-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US8962183B2 (en) 2009-05-07 2015-02-24 Nexeon Limited Method of making silicon anode material for rechargeable cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
CN102439768A (en) * 2009-05-11 2012-05-02 奈克松有限公司 A binder for lithium ion rechargeable battery cells
US10050275B2 (en) 2009-05-11 2018-08-14 Nexeon Limited Binder for lithium ion rechargeable battery cells
WO2010130976A1 (en) * 2009-05-11 2010-11-18 Nexeon Limited A binder for lithium ion rechargeable battery cells
US20120094178A1 (en) * 2009-05-11 2012-04-19 Loveridge Melanie J Composition for a secondary battery cell
JP2012527070A (en) * 2009-05-11 2012-11-01 ネグゼオン・リミテッドNexeon Ltd Lithium-ion rechargeable battery cell
US9608272B2 (en) 2009-05-11 2017-03-28 Nexeon Limited Composition for a secondary battery cell
JP2011071064A (en) * 2009-09-28 2011-04-07 Iwate Univ Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery equipped with the negative electrode
US8772174B2 (en) 2010-04-09 2014-07-08 Nexeon Ltd. Method of fabricating structured particles composed of silicon or silicon-based material and their use in lithium rechargeable batteries
US8945774B2 (en) 2010-06-07 2015-02-03 Nexeon Ltd. Additive for lithium ion rechageable battery cells
US9368836B2 (en) 2010-06-07 2016-06-14 Nexeon Ltd. Additive for lithium ion rechargeable battery cells
DE112011102864T5 (en) 2010-08-31 2013-06-27 Toyota Jidosha Kabushiki Kaisha Anode material, lithium secondary battery and method for producing the anode material
US9647263B2 (en) 2010-09-03 2017-05-09 Nexeon Limited Electroactive material
US9947920B2 (en) 2010-09-03 2018-04-17 Nexeon Limited Electroactive material
US9871248B2 (en) 2010-09-03 2018-01-16 Nexeon Limited Porous electroactive material
EP2432056A1 (en) * 2010-09-17 2012-03-21 Samsung SDI Co., Ltd. Binder composition for rechargeable lithium battery, and electrode and rechargeable lithium battery including the same
US9413009B2 (en) 2010-09-17 2016-08-09 Samsung Sdi Co., Ltd. Binder composition for rechargeable lithium battery, and electrode and rechargeable lithium battery including the same
JP2014026962A (en) * 2012-06-18 2014-02-06 Jsr Corp Electrode for electric power storage device, slurry for electrode, binder composition for electrode, and electric power storage device
US9692049B2 (en) 2013-02-26 2017-06-27 Samsung Electronics Co., Ltd. Anode containing composite anode active material including water-soluble polymer coating and lithium secondary battery including the same
CN105283984B (en) * 2013-06-12 2018-07-10 Tdk株式会社 A lithium ion secondary battery negative electrode and using the same lithium ion secondary battery
WO2014200003A1 (en) * 2013-06-12 2014-12-18 Tdk株式会社 Negative electrode for lithium ion secondary batteries, and lithium ion secondary battery using same
JPWO2014200003A1 (en) * 2013-06-12 2017-02-23 Tdk株式会社 Negative electrode and a lithium ion secondary battery using the same for a lithium ion secondary battery
JPWO2015025844A1 (en) * 2013-08-23 2017-03-02 日本電気株式会社 Lithium-iron-manganese-based composite oxide and a lithium-ion secondary battery using the same
CN104638268A (en) * 2013-11-07 2015-05-20 Tdk株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US9843039B2 (en) 2013-11-07 2017-12-12 Tdk Corporation Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20160102407A (en) 2013-12-26 2016-08-30 제온 코포레이션 Slurry composition for negative electrodes of lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2015162919A1 (en) * 2014-04-22 2015-10-29 凸版印刷株式会社 Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN106233508A (en) * 2014-04-22 2016-12-14 凸版印刷株式会社 Electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2016066529A (en) * 2014-09-25 2016-04-28 信越化学工業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
US6544688B1 (en) Cathode current collector for electrochemical cells
US20030118904A1 (en) Electrode for lithium secondary battery and lithium secondary battery and method of manufacturing same
US6399246B1 (en) Latex binder for non-aqueous battery electrodes
US6346343B1 (en) Secondary lithium battery comprising lithium deposited on negative electrode material
JP2004071305A (en) Non-aqueous electrolyte rechargeable battery
JPH08287915A (en) Nonaqueous secondary battery
JP2003168426A (en) Non-aqueous electrolyte secondary battery
JP2003157852A (en) Method of manufacturing positive electrode for lithium battery and positive electrode
JP2007317534A (en) Non-aqueous electrolyte secondary battery
JP2000164214A (en) Now-aqueous electrolyte secondary battery
JP2007250433A (en) Nonaqueous electrolyte battery
JP2001110418A (en) Positive electrode for lithium secondary battery and the lithium secondary battery
JP2006004739A (en) Lithium secondary battery and positive electrode equipped with the battery, and its manufacturing method
JP2002042817A (en) Lithium secondary battery and its positive electrode producing method
JP2008235258A (en) Anode material for lithium ion secondary battery, anode, and lithium ion secondary battery
JP2000294230A (en) Slurry for forming negative electrode coating film for lithium ion secondary battery and lithium ion secondary battery
JP2003077458A (en) Lithium secondary battery electrode and lithium secondary battery
JPH0997625A (en) Nonaqueous electrolytic secondary battery and manufacture thereof
JP2005203370A (en) Lithium secondary battery anode and lithium secondary battery using it
JP2003297353A (en) Negative electrode for secondary battery, secondary battery using such negative electrode, and manufacturing method for negative electrode
JP2006066298A (en) Lithium secondary battery
JP2005158623A (en) Nonaqueous electrolyte secondary battery
JPH09293537A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP2002270225A (en) Lithium secondary battery
US20030027046A1 (en) Lithium secondary cell and method of producing positive electrode therefor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040106

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040316

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070925