JP4603422B2 - Surface treatment method for resin tanks - Google Patents

Surface treatment method for resin tanks Download PDF

Info

Publication number
JP4603422B2
JP4603422B2 JP2005160806A JP2005160806A JP4603422B2 JP 4603422 B2 JP4603422 B2 JP 4603422B2 JP 2005160806 A JP2005160806 A JP 2005160806A JP 2005160806 A JP2005160806 A JP 2005160806A JP 4603422 B2 JP4603422 B2 JP 4603422B2
Authority
JP
Japan
Prior art keywords
gas
tank
chamber
surface treatment
tank body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005160806A
Other languages
Japanese (ja)
Other versions
JP2006335410A (en
Inventor
純治 松島
成市 手嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAKAGI SEIKO CO., LTD.
Original Assignee
TAKAGI SEIKO CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAKAGI SEIKO CO., LTD. filed Critical TAKAGI SEIKO CO., LTD.
Priority to JP2005160806A priority Critical patent/JP4603422B2/en
Publication of JP2006335410A publication Critical patent/JP2006335410A/en
Application granted granted Critical
Publication of JP4603422B2 publication Critical patent/JP4603422B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、樹脂製燃料タンク等の樹脂製タンク(容器)に、ガスバリア性を付加する表面処理方法及び、処理装置並びにガスバリア性表面処理をした樹脂製タンクに関する。   The present invention relates to a surface treatment method for adding a gas barrier property to a resin tank (container) such as a resin fuel tank, a processing apparatus, and a resin tank subjected to a gas barrier surface treatment.

例えば、樹脂製のガソリン燃料タンクでは、気化したガソリンの樹脂への透過による大気への飛散を防止するために、三酸化硫黄、あるいは、フッ素、塩素、臭素等のガスを用いてガスバリア性を付加する表面処理技術が公知である。
この場合に、樹脂と反応しないで余ったガスを除去装置により除去する必要がある。
しかし、残留ガスが多いとこの除去フィルターを頻繁に交換する必要があるため、コスト高の要因の1つになっていた。
また、従来の表面処理装置は、処理槽の中に被処理品を多数仕込むバッチ処理方式であるために樹脂製タンクの内側のみ又は外側のみ表面処理するのが難しかった。
特開2005−36260号公報には、ロータリー型CVD成膜装置を開示するが、高周波供給手段、ガス導入手段等を各チャンバーに設けた点では未だ効率が高くない。
For example, in a gasoline gasoline tank made of resin, gas barrier properties are added using sulfur trioxide or a gas such as fluorine, chlorine, bromine, etc., in order to prevent the vaporized gasoline from being diffused into the atmosphere. Surface treatment techniques are known.
In this case, it is necessary to remove the excess gas without reacting with the resin using a removing device.
However, if there is a large amount of residual gas, it is necessary to frequently replace this removal filter, which has been one of the causes of high costs.
In addition, since the conventional surface treatment apparatus is a batch treatment method in which a large number of articles to be treated are prepared in a treatment tank, it is difficult to surface-treat only the inside or the outside of the resin tank.
Japanese Patent Application Laid-Open No. 2005-36260 discloses a rotary CVD film forming apparatus, but the efficiency is still not high in that high-frequency supply means, gas introduction means, and the like are provided in each chamber.

特開2005−36260号公報Japanese Patent Laid-Open No. 2005-36260

本発明は上記技術的課題に鑑みて、反応性ガスを効率良く樹脂表面と反応させることにより、反応性ガスの使用量を削減できるとともに、処理時間の短縮化に効果的で生産性の高い樹脂製タンクの表面処理方法及びその装置並びに表面処理製品の提供を目的とする。   In view of the above technical problem, the present invention can reduce the amount of the reactive gas used by efficiently reacting the reactive gas with the resin surface, and is effective in shortening the processing time and having high productivity. It is an object of the present invention to provide a surface treatment method and apparatus for tank manufacturing and a surface treatment product.

本発明に係る樹脂製タンクの表面処理方法は、樹脂製のタンクをそれぞれ収納する複数のチャンバーを有し、タンクを予備加熱する工程と、タンクを予備加熱する工程の前又は後にタンクの内側又は/および外側を減圧するためにチャンバー内を減圧する工程とを有し、減圧した前記チャンバーに、それより先にガスバリア性表面処理を施し、残ガスが存在するチャンバーを接続することで、残ガスを前記チャンバー内に送り込み予備的に表面処理する工程と、残ガスが送り込まれた前記チャンバー内を再度減圧し、その後に新たに反応性ガスを注入する工程とを有することを特徴とする。 The surface treatment method for a resin tank according to the present invention has a plurality of chambers for respectively accommodating resin tanks, and the inside of the tank or before or after the step of preheating the tank and the step of preheating the tank And / or a step of reducing the pressure inside the chamber in order to reduce the pressure outside, and applying a gas barrier surface treatment to the reduced pressure chamber before connecting the chamber in which the residual gas exists, And a step of preliminarily performing a surface treatment, and a step of depressurizing the inside of the chamber into which the residual gas has been fed and then injecting a reactive gas .

本発明は、樹脂製タンクを所定の温度に加熱保持した状態で反応性ガスと反応させる点に特徴がある。
従って、チャンバー内の減圧はタンクの予備加熱後でもその前でもよい。
また、ここで減圧した部分に反応性ガスを注入するとしたのは、必ずしもチャンバー内全体を減圧する必要は無く、例えば樹脂製のタンクの内側のみに表面処理すれば良い場合にはタンクの内側のみを減圧して、その減圧した部分に反応性ガスを注入し、表面処理する趣旨である。
The present invention is characterized in that the resin tank is reacted with a reactive gas while being heated and held at a predetermined temperature.
Therefore, the decompression in the chamber may be performed after the tank is preheated or before.
The reason why the reactive gas is injected into the decompressed portion here is that it is not always necessary to decompress the entire chamber. For example, when the surface treatment only needs to be performed inside the resin tank, only the inside of the tank is used. The pressure is reduced, and a reactive gas is injected into the reduced pressure portion for surface treatment.

本発明において特に特徴的なのは、減圧した部分に反応性ガスを注入する工程は、先の樹脂製タンクの表面処理に用いた残ガスを注入する工程と、新たに反応性ガスを注入する工程とを有する点である。
樹脂表面にガスバリア性を付加するために、三酸化硫黄ガスまたはフッ素ガス等の反応性ガスと反応させた場合には未反応の三酸化硫黄ガスまたはフッ素ガスが残る。
この未反応の三酸化硫黄ガスまたはフッ素ガスにも未だ充分に反応性は残っている。
そこで、この残ガスを用いて次の樹脂製タンクを予備的に表面処理することで、ガスの使用量の削減と生産性の向上を図ることができる。
Particularly characteristic in the present invention is that the step of injecting the reactive gas into the decompressed portion includes the step of injecting the residual gas used for the surface treatment of the previous resin tank, and the step of newly injecting the reactive gas. It is a point which has.
In order to add gas barrier properties to the resin surface, when reacted with a reactive gas such as sulfur trioxide gas or fluorine gas, unreacted sulfur trioxide gas or fluorine gas remains.
The unreacted sulfur trioxide gas or fluorine gas still remains sufficiently reactive.
Thus, by preliminarily surface-treating the next resin tank using this residual gas, it is possible to reduce the amount of gas used and improve productivity.

このような表面処理方法を用いると、タンクの内側のみ、外側のみ、内外両面のいずれかを選択的に表面処理した製品が得られ、例えばガソリン燃料用タンク等の製品が得られる。   When such a surface treatment method is used, a product obtained by selectively surface-treating only one of the inside, only the outside, and both inside and outside of the tank is obtained. For example, a product such as a gasoline fuel tank is obtained.

本発明に係る表面処理に適した装置としては、タンクの内側のみ、外側のみ、内外両面のいずれかを選択的にガスバリア性表面処理を施す装置がよく、特に残ガスを利用するには、複数のチャンバーをロータリー状に配置したロータリー駆動装置と、それぞれ所定の位置で、チャンバーに収納した被処理品の加熱手段と、チャンバー内の減圧手段と、減圧したチャンバー内への反応性ガス注入手段とを備えるとよい。 As an apparatus suitable for the surface treatment according to the present invention, an apparatus that selectively performs gas barrier surface treatment on only the inside, only the outside, or both inside and outside of the tank is preferable. A rotary drive device in which the chambers are arranged in a rotary shape, a heating means for the article to be processed housed in the chamber, a decompression means in the chamber, and a reactive gas injection means into the decompressed chamber, respectively, at predetermined positions It is good to have.

本発明に係る樹脂製タンクにガスバリア性を付加する表面処理方法においては、反応性ガスで表面処理を行う前にタンク体を予備加熱して、反応性ガスとタンク体樹脂の反応効率を向上させるため、少ないガス量で所定のガスバリア性が得られることから、ガス使用量を削減して反応性ガスの除去フィルターの寿命を長く出来る。
又、表面処理時間を短縮して生産効率が向上する。
本発明に係る樹脂製タンクの製造装置では、本表面処理工程で使用したガスの残ガスを回収し、この残ガスを本表面処理を行う前のタンク体の予備表面処理にリサイクルして使用するため、チャンバー内に注入したガスの樹脂製タンク体との反応率を高めて、その使用量を削減出来る。
チャンバーに、タンク体口部に接続してタンク体中空部に通じるタンク内側ガス注入口と、タンク外側の空所部に通じるタンク外側ガス注入口を備えると、ガスバリア性付加の表面処理をタンク内側面とタンク外側面とを選択して表面処理できるので、更にガス使用量を削減出来る。
In the surface treatment method for adding gas barrier properties to the resin tank according to the present invention, the tank body is preheated before the surface treatment with the reactive gas to improve the reaction efficiency between the reactive gas and the tank body resin. Therefore, since a predetermined gas barrier property can be obtained with a small amount of gas, the life of the reactive gas removal filter can be extended by reducing the amount of gas used.
Moreover, the surface treatment time is shortened and the production efficiency is improved.
In the resin tank manufacturing apparatus according to the present invention, the residual gas of the gas used in the surface treatment process is recovered, and the residual gas is recycled and used for the preliminary surface treatment of the tank body before the main surface treatment. Therefore, the reaction rate of the gas injected into the chamber with the resin tank body can be increased, and the amount used can be reduced.
If the chamber is equipped with a tank inner gas inlet that connects to the tank body mouth and leads to the tank body hollow part, and a tank outer gas inlet that leads to the void outside the tank, surface treatment for adding gas barrier properties can be performed inside the tank. Since the surface treatment can be performed by selecting the side surface and the tank outer surface, the amount of gas used can be further reduced.

本発明に係る樹脂製タンクにガスバリア性を付加する表面処理装置(以下、装置と称する)について、以下図面に基づいて説明する。
図1(イ)は、装置50を上方からみた要部説明図を示し、図1(ロ)はチャンバーの縦断面図を示す。
装置50は、回転駆動する略ドーナツ形の駆動テーブル50a上にロータリー状に8個のチャンバー10を配置している。
なお、チャンバー数は生産タクトを考慮して適宜設定する。
表面処理を施して樹脂製燃料タンク2とする樹脂製タンク体1は、タンク取付工程51でチャンバー10内に順に収納し、チャンバー毎テーブル50aをロータリー式に回転させることで、装置50内の予備加熱工程52a、52b、52c、真空引き工程53、表面処理工程54、残ガス回収工程55、タンク取出工程56に順送りして、タンク取出工程56においてチャンバーから取り出す。
なお、予備加熱工程を3段階にしたのは、生産タクトを短くするためで工程数は限定されない。
周状に配置したチャンバーの中心位置には、円柱状の接続切替部40を配設している。
そして、各チャンバーの上部は蛇腹管等の接続管40a〜40hで、又、図示しないがこれら上部の管の下にもそれぞれ管を備えて接続切替部40と接続している。
この接続切替部40は、各チャンバーと接続した管を、それぞれガス発生装置(ガス注入装置)20や真空吸引装置30と接続している管40j、40kや、別のチャンバーの管と接続したり、閉じたりするもので、工程に応じてそれらの接続を切り替え出来れば良く、例えば回転ジョイントとバルブ及び配管を組み合わせて、各管との接続を回転ジョイントの接続孔位置を回転させて切り替えるものや、又、例えばバルブを備えた接続数分の分岐配管にてして、その分岐配管のバルブを開閉することで接続を切り替えるものでも良く、構造は限定されない。
各チャンバー10は、この接続切替部40を介してガス発生装置20や真空吸引装置30、あるいは他のチャンバーと接続する。
真空吸引装置30は、吸引した反応性ガスを除去する無害化フィルター31を備えている。
A surface treatment apparatus (hereinafter referred to as an apparatus) for adding a gas barrier property to a resin tank according to the present invention will be described with reference to the drawings.
FIG. 1 (a) shows an explanatory view of the main part of the apparatus 50 as viewed from above, and FIG. 1 (b) shows a longitudinal sectional view of the chamber.
In the apparatus 50, eight chambers 10 are arranged in a rotary shape on a substantially donut-shaped drive table 50a that is rotationally driven.
The number of chambers is appropriately set in consideration of production tact.
The resin tank body 1 which is subjected to the surface treatment and is used as the resin fuel tank 2 is sequentially stored in the chamber 10 in the tank mounting step 51, and the chamber table 50a is rotated in a rotary manner so The heating steps 52 a, 52 b, 52 c, the vacuuming step 53, the surface treatment step 54, the residual gas recovery step 55, and the tank take-out step 56 are sequentially transferred to take out from the chamber in the tank take-out step 56.
In addition, the number of processes is not limited because the preheating process has three stages in order to shorten the production tact.
A cylindrical connection switching unit 40 is disposed at the center of the circumferentially arranged chamber.
And the upper part of each chamber is connection pipes 40a-40h, such as a bellows pipe, and although not shown in figure, each pipe is also provided under these upper pipes, and is connected with the connection switching part 40.
The connection switching unit 40 connects tubes connected to the chambers to tubes 40j and 40k connected to the gas generator (gas injection device) 20 and the vacuum suction device 30, respectively, and tubes of other chambers. It is only necessary to switch the connection depending on the process, for example, a combination of a rotary joint, a valve, and a pipe, and the connection with each pipe is switched by rotating the connection hole position of the rotary joint. In addition, for example, the number of connected branch pipes provided with valves may be switched by opening and closing the valves of the branch pipes, and the structure is not limited.
Each chamber 10 is connected to the gas generator 20, the vacuum suction device 30, or another chamber via the connection switching unit 40.
The vacuum suction device 30 includes a detoxifying filter 31 that removes the sucked reactive gas.

図1(ロ)にチャンバー10の縦断面図を示すように、チャンバー10はチャンバー蓋部11とチャンバー本体部12とを取付金具19で係止している。
蓋部11と本体部12との合わせ面にはシール材(図示省略)を備えている。
SUS製の(蛇腹)管40a、40iを、チャンバー10の蓋部11上部に突出したタンク内側ガス注入口14と、蓋部11の中腹部から突出したタンク外側ガス注入口15にシール部材(図示省略)を介してそれぞれ接続している。
表面処理を施すタンク体1は、タンク体の口部1bをチャンバー10のタンク内側ガス注入口14の口部14bにシール部材18を介在させて取り付けてある。
図1に示した例では、シール部材18に向けて口部1bを押しつけるようにタンク体凹部1eをチャンバー12の凸部12aに載せてチャンバー10内に収納してある。
タンク体1の中空部1aは、口部1bからタンク内側ガス注入口14を介して管40aと通じ、一方タンク体1とチャンバー10との間の空所部タンク体の外側16はタンク外側ガス注入口15を介して管40iと通じている。
このように、タンク体中空部1aに通じるタンク内側ガス注入口14と、タンク体外側の空所部16に通じるタンク外側注入口15を備えることで、タンク体1の内側面1cの表面処理と、タンク体外側面1dの表面処理、あるいは両面1c、1dの処理を選択的に行うことが出来る。
よって、タンクの要求品質に応じて内側のみ、あるいは外側のみ表面処理可能になり、使用する反応性ガス量を最少限に抑えることができる。
タンク体内側面1cの表面処理を行う場合と、タンク体外側面1dの表面処理を行う場合、また、両面1c、1dの表面処理を行う場合は、使用するガス注入口が異なる他には、各工程での動作として異なる所はなく同等であることから、以下タンク内側面1cの表面処理を行う場合を代表として説明する。
チャンバー10は、図1(ロ)に示すように駆動テーブル50aの凹部50b上に載置して、駆動テーブル50aの凹部50bとチャンバー10との間には加熱(予備加熱)ヒーターユニット13を備えている。
ヒーターユニットは温水ユニット又はオイルニットでも良く、あるいは、チャンバー内に保温材を敷いた保温式でも良く、特に限定されない。
チャンバー10は回転テーブル毎周囲を断熱材17で覆われている。
As shown in a longitudinal sectional view of the chamber 10 in FIG. 1 (b), the chamber 10 has a chamber lid portion 11 and a chamber body portion 12 locked by a mounting bracket 19.
A sealing material (not shown) is provided on the mating surface of the lid portion 11 and the main body portion 12.
SUS (bellows) tubes 40a and 40i are connected to the tank inner gas inlet 14 projecting from the top of the lid 11 of the chamber 10 and the tank outer gas inlet 15 projecting from the middle of the lid 11 (see FIG. (Not shown).
In the tank body 1 to be subjected to the surface treatment, the mouth portion 1b of the tank body is attached to the mouth portion 14b of the tank inner gas inlet 14 of the chamber 10 with a seal member 18 interposed therebetween.
In the example shown in FIG. 1, the tank body concave portion 1 e is placed on the convex portion 12 a of the chamber 12 and stored in the chamber 10 so as to press the mouth portion 1 b toward the seal member 18.
The hollow portion 1a of the tank body 1 communicates with the pipe 40a from the mouth portion 1b through the tank inner gas inlet port 14, while the outer side 16 of the void tank body between the tank body 1 and the chamber 10 is a tank outer gas. It communicates with the pipe 40 i through the injection port 15.
Thus, by providing the tank inner gas inlet 14 leading to the tank body hollow portion 1a and the tank outer inlet 15 leading to the void portion 16 outside the tank body, surface treatment of the inner surface 1c of the tank body 1 can be achieved. The surface treatment of the tank body outer surface 1d or the treatment of both surfaces 1c and 1d can be selectively performed.
Therefore, only the inner side or the outer side can be surface-treated according to the required quality of the tank, and the amount of reactive gas to be used can be minimized.
When performing the surface treatment of the tank body side surface 1c, when performing the surface treatment of the tank body outer surface 1d, and when performing the surface treatment of the both surfaces 1c and 1d, each step is different from the one used for the different gas inlets. Since there is no difference in the operation of the tank, the operations are the same. Therefore, the case where the surface treatment of the tank inner surface 1c is performed will be described as a representative.
The chamber 10 is placed on the recess 50b of the drive table 50a as shown in FIG. 1B, and a heating (preheating) heater unit 13 is provided between the recess 50b of the drive table 50a and the chamber 10. ing.
The heater unit may be a hot water unit or an oil knit, or may be a heat retaining type in which a heat retaining material is laid in the chamber, and is not particularly limited.
The chamber 10 is covered with a heat insulating material 17 around each turntable.

図2示す工程の説明図と合わせて装置動作を説明する。
図2は図1に示す装置50で同時に行う各工程を説明しており、また、駆動テーブル50aが回転することで矢印に示す方向にチャンバーが各工程を順に流れる。
また、接続切替部の動作を説明するバルブを模式的に描いてある。
タンク体1はタンク体取付工程51でチャンバー10内に取り付ける。
そして、予備加熱工程52a、52b、52cでチャンバー10に備えたヒーター13により予備加熱する。
真空引き工程53前の予備加熱工程52cでは、タンク体1と反応性ガスとの反応性が良い50〜100℃の温度範囲で、好ましくは50〜80℃の温度範囲とするようにタンク体を均一に加熱する。
次の真空引き工程53は、図1(イ)に示す接続切替部40を切り替えて管40eと管40kを接続し、真空引き工程にあるチャンバー10のタンク内側ガス注入口14と真空吸引装置30とを接続する。
図3に接続切替部40動作をバルブ動作で表した説明図を示す。
この時、図3(イ)に示すバルブ41cが開きタンク内側ガス注入口14と真空吸引装置30とが接続して、タンク体1の中空部1aが真空引きされる。
この場合にタンク外側ガス注入口15は接続切替部40で閉じる。
そして中空部1aを真空引きした後に、接続切替部40を切り替えることで図3(ロ)に示すようにバルブ41cを閉じ、バルブ41bを開き、管40eと管40gを接続するようにして、真空引き工程53のチャンバーのタンク内側ガス注入口14を残ガス回収工程55のチャンバーのタンク内側ガス注入口と接続する。
このように、ガス注入口を他のチャンバーのガス注入口と接続する場合には同種類のガス注入口同士を接続する。
残ガス回収工程55のタンク体1の中空部1aには、後述する表面処理工程54で中空部1aに注入し、タンク体1と反応しないで残った反応性ガスの残ガスがある。
そこで、真空引き工程53で真空引きした側のガス注入口14と接続すると、残ガス回収工程55にあるタンク体1の中空部1aの残ガスが真空引き工程53側のタンク体中空部1aへ引き込まれる。
これにより、残ガスにて予備的な表面処理(残ガスコート)ができる。
The operation of the apparatus will be described with reference to the explanatory diagram of the process shown in FIG.
FIG. 2 illustrates each process performed simultaneously by the apparatus 50 shown in FIG. 1, and the chamber flows in the direction indicated by the arrow in turn as the drive table 50a rotates.
Moreover, the valve | bulb explaining operation | movement of a connection switching part is drawn typically.
The tank body 1 is mounted in the chamber 10 in the tank body mounting step 51.
And it preheats with the heater 13 with which the chamber 10 was equipped at the preheating process 52a, 52b, 52c.
In the preheating step 52c before the evacuation step 53, the tank body is adjusted so that the reactivity between the tank body 1 and the reactive gas is in a temperature range of 50 to 100 ° C., preferably 50 to 80 ° C. Heat evenly.
In the next evacuation step 53, the connection switching unit 40 shown in FIG. 1A is switched to connect the tube 40e and the tube 40k, and the tank inner gas inlet 14 and the vacuum suction device 30 of the chamber 10 in the evacuation step are connected. And connect.
FIG. 3 is an explanatory diagram showing the operation of the connection switching unit 40 by a valve operation.
At this time, the valve 41c shown in FIG. 3 (a) is opened, the tank inner gas inlet 14 and the vacuum suction device 30 are connected, and the hollow portion 1a of the tank body 1 is evacuated.
In this case, the tank outer gas inlet 15 is closed by the connection switching unit 40.
Then, after evacuating the hollow portion 1a, the connection switching unit 40 is switched to close the valve 41c, open the valve 41b, and connect the tube 40e and the tube 40g as shown in FIG. The tank inner gas inlet 14 of the chamber of the drawing step 53 is connected to the tank inner gas inlet of the chamber of the residual gas recovery step 55.
Thus, when connecting a gas inlet with the gas inlet of another chamber, the same kind of gas inlets are connected.
In the hollow portion 1a of the tank body 1 in the residual gas recovery step 55, there is a residual gas of the reactive gas that is injected into the hollow portion 1a in the surface treatment step 54 described later and remains without reacting with the tank body 1.
Therefore, when connected to the gas inlet 14 on the side evacuated in the evacuation step 53, the residual gas in the hollow portion 1a of the tank body 1 in the residual gas recovery step 55 is transferred to the tank hollow portion 1a on the evacuation step 53 side. Be drawn.
Thereby, preliminary surface treatment (residual gas coating) can be performed with the residual gas.

次の表面処理工程54では、図3(イ)に示すバルブ41dを開き、図1(イ)の管40fと管40kを接続するようにして、表面処理工程54のチャンバーのタンク内側ガス注入口14と真空吸引装置30とを接続し、真空引き工程53を経ることで残ガスが注入されている中空部1aを70torr以下に真空引きする。
次いで、接続切替部40を切り替えて図3(ロ)に示すようにバルブ41dを閉じ、バルブ41aを開いて、図1(イ)に示す蛇腹管40fと蛇腹管40jを接続することで、表面処理工程54のチャンバーのタンク内ガス注入口14とガス発生装置20とを接続する。
そしてガス発生装置20で発生させた三酸化硫黄ガスまたはフッ素ガス等の反応性ガスをタンク内側ガス注入口からタンク体中空部1aに注入し、タンク体内側面1cの表面処理を行う。
この反応性ガスの圧力は、反応性ガス分圧で0.1atm程度が良い。
この表面処理は、三酸化硫黄によりタンク体の表面をスルホン化する方法や、フッ素(フッ化水素)や、塩素、臭素等を用いてハロゲン化する方法が考えられる。
タンク体は予備加熱工程52a、52b、52cにより、予備加熱した適温のまま断熱材で保温しているため反応性ガスとタンク体1との反応効率が良く、また、真空引き工程53で残ガスにより予備的に表面処理を行っているため、少ないガス使用量で表面処理を行える。
In the next surface treatment step 54, the valve 41d shown in FIG. 3 (a) is opened to connect the tube 40f and the tube 40k in FIG. 14 and the vacuum suction device 30 are connected, and the hollow portion 1a into which the residual gas is injected is evacuated to 70 torr or less by passing through the evacuation step 53.
Next, the connection switching unit 40 is switched, the valve 41d is closed and the valve 41a is opened as shown in FIG. 3B, and the bellows tube 40f and the bellows tube 40j shown in FIG. The in-tank gas inlet 14 of the chamber in the processing step 54 and the gas generator 20 are connected.
Then, a reactive gas such as sulfur trioxide gas or fluorine gas generated by the gas generator 20 is injected into the tank body hollow portion 1a from the tank inner gas injection port, and the surface treatment of the tank body side surface 1c is performed.
The pressure of the reactive gas is preferably about 0.1 atm as the reactive gas partial pressure.
As the surface treatment, a method of sulfonating the surface of the tank body with sulfur trioxide, or a method of halogenation using fluorine (hydrogen fluoride), chlorine, bromine or the like can be considered.
The tank body is kept warm with the heat insulating material at the preheated proper temperature in the preheating steps 52a, 52b, and 52c, so that the reaction efficiency between the reactive gas and the tank body 1 is good. Therefore, the surface treatment can be performed with a small amount of gas used.

表面処理工程54を終えて次の残ガス回収工程55に送ったチャンバー内には、図3(イ)に示すように表面処理工程54でタンク体中空部1aに注入して、タンク体と反応しないで残った残ガスがある。
この残ガスは、前述したように真空引き工程53にあるチャンバーのタンク内側ガス注入口14内が真空引きされた後に、接続切替部を切り替えて図3(ロ)に示すようにバルブ41cを閉じ、バルブ41bを開いて、残ガス回収工程55にある表面処理を終えたタンク体2の中空部1aから、真空引きした真空引き工程53のタンク体1の中空部1aへ送り込む。
このように、表面処理工程54でタンク体1と反応せずに残った残ガスを表面処理工程54前のタンク体1に送って予備的に表面処理するため、総合的に反応性ガスとタンク体の樹脂との反応率が高くなる。
これにより、タンク体のガスバリア性を高くし、又、排気する反応性ガスの量を減らし、反応性ガスを除去するための除去フィルターの寿命を延ばすことができる。
残ガスを送りだした後のチャンバーは、接続切替部40を切り替えて真空吸引装置30と接続し、内部をパージし、タンク体取出工程56で表面処理済みのタンク体(樹脂製燃料タンク製品)2を取り出す。
After the surface treatment step 54 is finished, it is injected into the tank body hollow portion 1a in the surface treatment step 54 as shown in FIG. There is residual gas left without.
As described above, after the inside of the tank gas inlet 14 of the chamber in the evacuation step 53 is evacuated as described above, the connection switching unit is switched and the valve 41c is closed as shown in FIG. Then, the valve 41b is opened, and the surface treatment in the residual gas recovery process 55 is finished, and the tank body 2 is sent to the hollow part 1a of the tank body 1 in the evacuation process 53 that has been evacuated.
In this way, the remaining gas remaining without reacting with the tank body 1 in the surface treatment step 54 is sent to the tank body 1 before the surface treatment step 54 for preliminary surface treatment. The reaction rate of the body with the resin increases.
Accordingly, the gas barrier property of the tank body can be increased, the amount of the reactive gas to be exhausted can be reduced, and the life of the removal filter for removing the reactive gas can be extended.
The chamber after the residual gas is sent is connected to the vacuum suction device 30 by switching the connection switching unit 40, purged inside, and the tank body (resin fuel tank product) 2 that has been surface-treated in the tank body removal step 56 Take out.

タンク体の予備加熱による効果を確認するため、ガソリン燃料タンクを例に本発明に係るガスバリア性を付加する処理方法を施したタンク体と、従来の処理技術を施したタンク体との、ガスバリア性の比較実験を行った。
図4に実験結果を示す。
タンク体は高密度ポリエチレン(旭化成ケミカルズ社製、サンテックB470)をブロー成型した成型品(容量約2L)を用いた。
反応性ガスによる表面処理を行うタンク体の温度は、本発明を適用した処理の場合には予備加熱を行って、その温度を50℃とした(実施例1)。
一方、従来の処理方法を適用するタンク体の温度は室温とした(比較例2)。
そして、それぞれのタンク体をチャンバー内に収容し、チャンバー(反応器)内を1mmHgまで減圧した後、三酸化硫黄と窒素の混合ガスをチャンバー内が700mmHgとなるまで注入して、本発明の実施例1の場合には1時間、従来の処理方法の場合には4時間、タンク体をチャンバー内に静置した。
混合ガスは、本発明の実施例1では三酸化硫黄を50torr、窒素を650torrとし、従来技術の比較例2では三酸化硫黄140torr、窒素560torrとした。
三酸化硫黄処理していないタンク体も比較例1として実験を行った。
実験はタンク体に、市販のレギュラーガソリンを満タン(2L)に入れて、給油口を燃料不透過性のキャップで密封した後、40±2℃に静置した後、重量減少法によりそのガス透過量を測定した。
図4に示す実験結果においてガス透過量は、本発明の実施例1における透過量においては、その処理時間が従来技術の比較例2の4分の1と短く、三酸化硫黄量も少ないにもかかわらず、比較例2の透過量9.0g/m/dayより少ない8.5g/m/dayとなる優れた結果となった。
又、三酸化硫黄を50torr、窒素を50torrとした実施例2のように窒素量を少なくしても透過量は7.0g/m/dayと少なく良い結果となり、窒素量は少ない方が透過量も少ない傾向にある。
In order to confirm the effect of the preliminary heating of the tank body, the gas barrier property between the tank body subjected to the processing method for adding the gas barrier property according to the present invention and the tank body subjected to the conventional processing technique as an example of a gasoline fuel tank A comparative experiment was conducted.
FIG. 4 shows the experimental results.
As the tank body, a molded product (capacity: about 2 L) obtained by blow molding high density polyethylene (manufactured by Asahi Kasei Chemicals Corporation, Suntec B470) was used.
The temperature of the tank body for performing the surface treatment with the reactive gas was preheated in the case of the treatment to which the present invention was applied, and the temperature was set to 50 ° C. (Example 1).
On the other hand, the temperature of the tank body to which the conventional processing method was applied was room temperature (Comparative Example 2).
Each tank body is accommodated in a chamber, the inside of the chamber (reactor) is depressurized to 1 mmHg, and then a mixed gas of sulfur trioxide and nitrogen is injected until the inside of the chamber reaches 700 mmHg. In the case of Example 1, the tank body was left in the chamber for 1 hour, and in the case of the conventional treatment method, 4 hours.
The mixed gas was 50 torr sulfur and 650 torr nitrogen in Example 1 of the present invention, and 140 torr sulfur and 560 torr nitrogen in Comparative Example 2 of the prior art.
An experiment was also conducted as Comparative Example 1 for a tank body that was not treated with sulfur trioxide.
In the experiment, a regular tank of commercially available regular gasoline was put in a tank (2 L), the fuel filler port was sealed with a fuel-impermeable cap, and then left at 40 ± 2 ° C., then the gas was reduced by the weight reduction method. The amount of permeation was measured.
In the experimental results shown in FIG. 4, the gas permeation amount is shorter in the permeation amount in Example 1 of the present invention, which is a quarter of that in Comparative Example 2 of the prior art, and the amount of sulfur trioxide is also small. Regardless, the result was an excellent result of 8.5 g / m 2 / day, which was less than the transmission amount of Comparative Example 2 of 9.0 g / m 2 / day.
Moreover, even if the amount of nitrogen is reduced as in Example 2 where sulfur trioxide is 50 torr and nitrogen is 50 torr, the permeation amount is as small as 7.0 g / m 2 / day. The amount tends to be small.

本発明に関する樹脂製燃料タンクのガスバリア性付加処理装置の説明図を示す。The explanatory view of the gas barrier property addition processing device of the resin fuel tank concerning the present invention is shown. ガスバリア性付加処理装置の工程の説明図を示す。Explanatory drawing of the process of a gas barrier property addition processing apparatus is shown. 真空引き工程と本表面処理工程と残ガス回収工程の説明図を示す。Explanatory drawing of a vacuum drawing process, this surface treatment process, and a residual gas collection | recovery process is shown. タンク体を予備加熱した場合と予備加熱しない場合とのガスバリア性の比較実験結果を示す。The comparative experiment result of the gas barrier property when the tank body is preheated and when it is not preheated is shown.

符号の説明Explanation of symbols

1 ガスバリア性付加処理前の樹脂製タンク体
1a タンク体の中空部
1b タンク体口部
1c タンク体内側面
1d タンク体外側面
1e タンク凹部
2 ガスバリア性付加処理後の樹脂製タンク体(樹脂製燃料タンク製品)
10a、10b、10c、10d、10e チャンバー
10f、10g、10h チャンバー
11 チャンバーの蓋部
12 チャンバーの本体部
12a チャンバー本体部の凸部
13 加熱(予備加熱)ヒーターユニット
14 タンク内側ガス注入口
14a タンク内側ガス注入口外側口部
14b タンク内側ガス注入口内側口部
15 タンク外側ガス注入口
16 空所部
17 断熱材
18 シール部材
19 取付金具
20 ガス発生装置(ガス注入装置)
30 真空吸引装置
31 無害化フィルター(除去フィルター)
40 接続切替部
40a、40b、40c、40d、40e、40f 接続管
40g、40h、40i、40j、40k 接続管
50 表面処理装置
50a ロータリー駆動テーブル
50b ロータリー駆動テーブル凹部
51 タンク体取付工程
52a、52b、52c 予備加熱工程
53 真空引き工程
54 本表面処理工程
55 残ガス回収工程
56 タンク体取出工程
DESCRIPTION OF SYMBOLS 1 Resin tank body 1a before gas barrier property addition process Hollow part 1b of tank body 1c Tank body side 1d Tank side surface 1d Tank body outer surface 1e Tank recessed part 2 Resin tank body after gas barrier property addition process (resin fuel tank product) )
10a, 10b, 10c, 10d, 10e chamber 10f, 10g, 10h chamber 11 chamber lid 12 chamber body 12a chamber body projection 13 heating (preheating) heater unit 14 tank inner gas inlet 14a tank inside Gas inlet outer port 14b Tank inner gas inlet inner port 15 Tank outer gas inlet 16 Empty portion 17 Heat insulating material 18 Seal member 19 Mounting bracket 20 Gas generator (gas injector)
30 Vacuum suction device 31 Detoxification filter (removal filter)
40 Connection switching units 40a, 40b, 40c, 40d, 40e, 40f Connection pipes 40g, 40h, 40i, 40j, 40k Connection pipe 50 Surface treatment device 50a Rotary drive table 50b Rotary drive table recess 51 Tank body attaching process 52a, 52b, 52c Preheating process 53 Vacuuming process 54 Main surface treatment process 55 Residual gas recovery process 56 Tank body extraction process

Claims (1)

樹脂製のタンクをそれぞれ収納する複数のチャンバーを有し、タンクを予備加熱する工程と、タンクを予備加熱する工程の前又は後にタンクの内側又は/および外側を減圧するためにチャンバー内を減圧する工程とを有し、減圧した前記チャンバーに、それより先にガスバリア性表面処理を施し、残ガスが存在するチャンバーを接続することで、残ガスを前記チャンバー内に送り込み予備的に表面処理する工程と、残ガスが送り込まれた前記チャンバー内を再度減圧し、その後に新たに反応性ガスを注入する工程とを有することを特徴とする樹脂製タンクの表面処理方法。 It has a plurality of chambers each containing a resin tank, and the inside of the chamber is decompressed in order to decompress the inside or / and outside of the tank before or after the step of preheating the tank and the step of preheating the tank. A step of performing a gas barrier surface treatment on the decompressed chamber earlier and connecting the chamber in which the residual gas exists, thereby sending the residual gas into the chamber and performing a preliminary surface treatment. And a step of depressurizing the inside of the chamber into which the residual gas has been sent in and then injecting a reactive gas anew .
JP2005160806A 2005-06-01 2005-06-01 Surface treatment method for resin tanks Active JP4603422B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005160806A JP4603422B2 (en) 2005-06-01 2005-06-01 Surface treatment method for resin tanks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005160806A JP4603422B2 (en) 2005-06-01 2005-06-01 Surface treatment method for resin tanks

Publications (2)

Publication Number Publication Date
JP2006335410A JP2006335410A (en) 2006-12-14
JP4603422B2 true JP4603422B2 (en) 2010-12-22

Family

ID=37556291

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005160806A Active JP4603422B2 (en) 2005-06-01 2005-06-01 Surface treatment method for resin tanks

Country Status (1)

Country Link
JP (1) JP4603422B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2395059B (en) 2002-11-05 2005-03-16 Imp College Innovations Ltd Structured silicon anode
GB0601319D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd A method of fabricating pillars composed of silicon-based material
GB0601318D0 (en) 2006-01-23 2006-03-01 Imp Innovations Ltd Method of etching a silicon-based material
GB0709165D0 (en) 2007-05-11 2007-06-20 Nexeon Ltd A silicon anode for a rechargeable battery
GB0713895D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Production
GB0713898D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd A method of fabricating structured particles composed of silcon or a silicon-based material and their use in lithium rechargeable batteries
GB0713896D0 (en) 2007-07-17 2007-08-29 Nexeon Ltd Method
GB2464157B (en) 2008-10-10 2010-09-01 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material
GB2464158B (en) 2008-10-10 2011-04-20 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB2470056B (en) 2009-05-07 2013-09-11 Nexeon Ltd A method of making silicon anode material for rechargeable cells
US9853292B2 (en) 2009-05-11 2017-12-26 Nexeon Limited Electrode composition for a secondary battery cell
GB2470190B (en) 2009-05-11 2011-07-13 Nexeon Ltd A binder for lithium ion rechargeable battery cells
GB201005979D0 (en) 2010-04-09 2010-05-26 Nexeon Ltd A method of fabricating structured particles composed of silicon or a silicon-based material and their use in lithium rechargeable batteries
GB201009519D0 (en) 2010-06-07 2010-07-21 Nexeon Ltd An additive for lithium ion rechargeable battery cells
GB201014706D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Porous electroactive material
GB201014707D0 (en) 2010-09-03 2010-10-20 Nexeon Ltd Electroactive material

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130823A (en) * 1985-12-03 1987-06-13 Honda Motor Co Ltd Forming of metal coating on inner wall of synthetic resin fuel tank
JPH10223564A (en) * 1997-02-06 1998-08-21 Siemens Ag Method for forming layer on surface
JP2002105638A (en) * 2000-07-28 2002-04-10 Tokyo Electron Ltd Film deposition method
JP2002177766A (en) * 2000-12-18 2002-06-25 Pearl Kogyo Kk Atmospheric pressure plasma treating device provided with unit for recovering/reusing inert gas
JP2004006511A (en) * 2002-05-31 2004-01-08 Toppan Printing Co Ltd Plasma processing apparatus
JP2004095452A (en) * 2002-09-03 2004-03-25 Hitachi Ltd Device and method for forming film, and protective film
JP2005036260A (en) * 2003-07-17 2005-02-10 Mitsubishi Shoji Plast Kk Method of producing gas barrier film-coated plastic vessel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62130823A (en) * 1985-12-03 1987-06-13 Honda Motor Co Ltd Forming of metal coating on inner wall of synthetic resin fuel tank
JPH10223564A (en) * 1997-02-06 1998-08-21 Siemens Ag Method for forming layer on surface
JP2002105638A (en) * 2000-07-28 2002-04-10 Tokyo Electron Ltd Film deposition method
JP2002177766A (en) * 2000-12-18 2002-06-25 Pearl Kogyo Kk Atmospheric pressure plasma treating device provided with unit for recovering/reusing inert gas
JP2004006511A (en) * 2002-05-31 2004-01-08 Toppan Printing Co Ltd Plasma processing apparatus
JP2004095452A (en) * 2002-09-03 2004-03-25 Hitachi Ltd Device and method for forming film, and protective film
JP2005036260A (en) * 2003-07-17 2005-02-10 Mitsubishi Shoji Plast Kk Method of producing gas barrier film-coated plastic vessel

Also Published As

Publication number Publication date
JP2006335410A (en) 2006-12-14

Similar Documents

Publication Publication Date Title
JP4603422B2 (en) Surface treatment method for resin tanks
JP4567442B2 (en) Multi-site coating apparatus and plasma coating method
AU650397B1 (en) Process for the production of permeation resistant containers
JP2019083271A (en) Method and apparatus for forming silicon oxide film
KR20190030169A (en) Method and apparatus for forming silicon oxide film, and storage medium
KR20170034892A (en) Method for forming organic monomolecular film and surface treatment method
US20130115157A1 (en) Calcining chamber and process
CN101158560B (en) Hot pipe manufacturing method
JP4819879B2 (en) Source, configuration for installing source, and method for installing and removing source
CN108746610B (en) Hard alloy forming agent removing process
US20070254097A1 (en) Container-Treatment Method Comprising Vacuum Pumping Phases, and Machine for Implementing Same
CN101197200B (en) Sodium-potassium alloy filling method and device
CN111302299A (en) Welding sealing system and welding sealing process
JPH09134913A (en) Heat treater and method of heat treatment
KR20170093164A (en) Method for cleaning high-pressure gas container, and high-pressure gas container
JP6578001B2 (en) Film forming apparatus and film forming method
CN111807714B (en) Continuous self-cleaning glass substrate growth equipment
WO2017068608A1 (en) Film forming device
JPS63122736A (en) Production of hollow body substituted with fluorine on inside thereof and mold used therein
KR102563298B1 (en) Method for removing impurities in thin film and substrate processing apparatus
KR101334221B1 (en) Method of manufacturing multi-level metal thin film and apparatus for manufacturing the same
JPH0355838A (en) Processing method in vertical type processing equipment
KR20230077080A (en) Atmospheric pressure pyrolysis reactor for polytetrafluoroethylene and method for producing tetrafluoroethylene using the same
JPH04187705A (en) Manufacture of aluminum powder compression compact
JPH04187704A (en) Manufacture of aluminum powder compression compact

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100922

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4603422

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250