TWI444499B - 用於cvd及ald二氧化矽膜的胺基乙烯基矽烷 - Google Patents

用於cvd及ald二氧化矽膜的胺基乙烯基矽烷 Download PDF

Info

Publication number
TWI444499B
TWI444499B TW100144719A TW100144719A TWI444499B TW I444499 B TWI444499 B TW I444499B TW 100144719 A TW100144719 A TW 100144719A TW 100144719 A TW100144719 A TW 100144719A TW I444499 B TWI444499 B TW I444499B
Authority
TW
Taiwan
Prior art keywords
reactor
precursor
cyclic
alkenyl
film
Prior art date
Application number
TW100144719A
Other languages
English (en)
Other versions
TW201224193A (en
Inventor
Manchao Xiao
Liu Yang
Kirk Scott Cuthill
Heather Regina Bowen
Bing Han
Mark Leonard O'neill
Original Assignee
Air Prod & Chem
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Prod & Chem filed Critical Air Prod & Chem
Publication of TW201224193A publication Critical patent/TW201224193A/zh
Application granted granted Critical
Publication of TWI444499B publication Critical patent/TWI444499B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02164Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • H01L21/02208Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
    • H01L21/02219Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
    • H01L21/02222Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)

Description

用於CVD及ALD二氧化矽膜的胺基乙烯基矽烷
本發明關於一種形成二氧化矽膜的低壓熱化學氣相沉積方法,該二氧化矽膜於HF溶液中具有極低的濕式蝕刻速率。
二氧化矽、氮化矽及其混合物的薄膜由於其優良的介電質性常作為半導體製造時的材料。在製造矽為底質的半導體裝置時,這些材料可作為閘極絕緣體、擴散遮罩、側壁間隔物、硬罩、抗反射塗層、鈍化層及封裝材料等等。矽為底質的膜對於其他化合物半導體裝置的鈍化也變得越來越重要。
當矽為底質的膜聯合濕式蝕刻方法使用時,濕式蝕刻方法是用於製造矽積體電路的重要且慣用的製造方法,二氧化矽膜的濕式蝕刻速率對於許多應用而言很重要。在一些案例中(例如,當二氧化矽當作側壁時),於HF溶液中的蝕刻速率必須非常慢,因為於該材料上太快速且攻擊性的作用將難以控制底蝕及線寬。較好的製程希望的是較慢的可控制蝕刻速率,其維持較高半導體產量。在矽為底質的膜當作蝕刻阻擋層、硬罩或鈍化層的一些其他案例中,希望該材料對於濕式蝕刻極具耐性。
現存形成於HF溶液中具有低蝕刻速率之矽為底質的膜之方法是:
(1) 於較高溫度下沉積該等膜以減少該膜中的缺陷例如孔隙率或氫濃度,或
(2) 除了矽或氮之外在該沉積方法的期間添加其他添加物於該沉積方法以帶來其他元素來改進膜性質。
因為較高溫度不可能一直都想要的,而且多種前驅物的使用會增加複雜度給該方法,所以替代方案希望的是控制膜性質。
此領域中的先前技藝包括05/03/2010申請的美國公開專利申請案2010/0120262及美國專利申請案序號第121772,518號。
本發明為一種形成二氧化矽膜的低壓熱化學氣相沉積方法,該二氧化矽膜於HF溶液中具有極低的濕式蝕刻速率,該方法包含:
a.遞送能提供矽來源的第一前驅物至低壓的熱化學氣相沉積反應器,其中該第一前驅物係選自由下列化合物所組成的群組:R1 n R2 m Si(NR3 R4 )4-n-m ,及(R1 R2 SiNR3 )p 的環狀矽氮烷;其中R1 為烯基或芳香族,例如乙烯基、烯丙基及苯基;R2 、R3 及R4 係選自H、線性、分支或環狀C1 -C10 烷基,線性、分支或環狀C2 -C10 烯基,及芳香族;n=1至3;m=0至2;p=3至4;
b.遞送能提供氧來源的第二前驅物至該反應器;
c.使該第一及第二前驅物於介於400℃至700℃的溫度下在100毫托耳至1托耳的壓力之下起反應。
本發明亦為一種形成二氧化矽膜的原子層沉積法,該二氧化矽膜於HF溶液中具有極低的濕式蝕刻速率,該方法包含:
a.遞送能提供矽來源的第一前驅物至原子層沉積反應器,其中該第一前驅物係選自由下列化合物所組成的群組:R1 n R2 m Si(NR3 R4 )4-n-m ,及(R1 R2 SiNR3 )p 的環狀矽氮烷;其中R1 為烯基或芳香族,例如乙烯基、烯丙基及苯基;R2 、R3 及R4 係選自H、線性、分支或環狀C1 -C10 烷基,線性、分支或環狀C2 -C10 烯基,及芳香族;n=1至3;m=0至2;p=3至4;
b.以惰性氣體沖洗該反應器;
c.遞送能提供氧來源的第二前驅物至該反應器;
d.以惰性氣體沖洗該反應器;
e.重複進行(a)與(d)之間的步驟直到達成希望的膜厚度為止。
另外,本發明為一種形成二氧化矽膜的循環式化學氣相沉積方法,該二氧化矽膜於HF溶液中具有極低的濕式蝕刻速率,該方法包含:
a.遞送能提供矽來源的第一前驅物至循環式化學氣相沉積反應器,其中該第一前驅物係選自由下列化合物所組成的群組:R1 n R2 m Si(NR3 R4 )4-n-m ,及(R1 R2 SiNR3 )p 的環狀矽氮烷;其中R1 為烯基或芳香族,例如乙烯基、烯丙基及苯基;R2 、R3 及R4 係選自H、線性、分支或環狀C1 -C10 烷基,線性、分支或環狀C2 -C10 烯基,及芳香族;n=1至3;m=0至2;p=3至4;
b.以惰性氣體沖洗該反應器0.1至1秒;
c.遞送能提供氧來源的第二前驅物至該反應器;
d.以惰性氣體沖洗該反應器0.1至1秒;
e.重複進行(a)與(d)之間的步驟直到達成希望的膜厚度為止。
有一形態中,本發明揭示一種形成矽為底質的膜的方法,該矽為底質的膜於HF溶液中使用熱CVD方法具有極低的濕式蝕刻速率。該方法包含:
a) 將基材置於一隱式反應器中,該反應器係處於400℃至700℃的溫度,以Ar或N2 氣體沖洗並且保持於低於1托耳的壓力下;
b) 以矽前驅物供入該反應器,該矽前驅物利用直接液體注射器遞送並且具有下列結構之一:R1 n R2 m Si(NR3 R4 )4-n-m ;及,(R1 R2 SiNR3 )p 的環狀矽氮烷;例如:
其中R1 為C2 -C10 烯基或芳香族,例如乙烯基、烯丙基及苯基;R2 、R3 及R4 係選自H、線性、分支或環狀C1 -C10 烷基,線性、分支或環狀C2 -C10 烯基,及芳香族;n=1至3;m=0至2;p=3至4;
c) 同時,以氧前驅物例如純氧或臭氧供入該反應器;
d) 於沉積過程中保持100毫托耳至600托耳的壓力。
在另一形態中,本發明的特徵為一種形成二氧化矽膜的方法,該二氧化矽膜於HF溶液中使用原子層沉積法具有極低的濕式蝕刻速率。該方法包含:
a) 將基材置於一隱式反應器中,該反應器係處於100℃至600℃的溫度,以Ar或N2 氣體沖洗並且保持於低於1托耳的壓力下;
b) 以矽前驅物供入該反應器,該矽前驅物利用直接液體注射器遞送並且具有下列結構之一:R1 n R2 m Si(NR3 R4 )4-n-m ;及,(R1 R2 SiNR3 )p 的環狀矽氮烷;例如:
其中R1 為C2 -C10 烯基或芳香族,例如乙烯基、烯丙基及苯基;R2 、R3 及R4 係選自H、線性、分支或環狀C1 -C10 烷基,線性、分支或環狀C2 -C10 烯基,及芳香族;n=1至3;m=0至2;p=3至4;
c) 該矽前驅物的劑量正好足以於該基材表面上形成一前驅物分子單層。過量的前驅物被從該反應器被除去;
d) 等該反應器再次以Ar或N2 沖洗之後,以氧前驅物例如純氧或臭氧供入該反應器;再者,該氧前驅物的劑量正好足以與最後步驟期間形成於該基材上的單層矽前驅物完全反應;
e) 重複進行該等步驟b)至d)直到達於希望的膜厚度為止。
在另一形態中,本發明的特徵為一種形成二氧化矽膜的方法,該二氧化矽膜於HF溶液中使用循環式化學氣相沉積法具有極低的濕式蝕刻速率。該方法包含:
a) 將基材置於一隱式反應器中,該反應器係處於400℃至700℃的溫度,以Ar或N2 氣體沖洗並且保持於低於1托耳的壓力下;
b) 以矽前驅物供入該反應器,該矽前驅物利用直接液體注射器遞送並且具有下列結構之一:R1 n R2 m Si(NR3 R4 )4-n-m ;及,(R1 R2 SiNR3 )p 的環狀矽氮烷;例如:
其中R1 為烯基或芳香族,例如乙烯基、烯丙基及苯基;R2 、R3 及R4 係選自H、線性、分支或環狀C1 -C10 烷基,線性、分支或環狀C2 -C10 烯基,及芳香族;n=1至3;m=0至2;p=3至4;
c) 調節該矽前驅物的劑量(提高或降低)以達成希望的膜沉積速率;
d) 以氧前驅物例如純氧或臭氧供入該反應器;再者,調節該氧前驅物的劑量(提高或降低)以達成希望的膜沉積速率;
e) 以Ar或N2 沖洗該反應器;
f) 重複進行步驟b)至e)直到達於希望的膜厚度為止。
該等胺基乙烯基矽烷前驅物包括,但不限於,雙(異丙基胺基)乙烯基甲基矽烷(BIPAVMS)、雙(異丙基胺基)二乙烯基矽烷(BIPADVS)、雙(異丙基胺基)乙烯基矽烷、雙(異丙基胺基)烯丙基甲基矽烷、雙(異丙基胺基)二烯丙基矽烷、雙(異丙基胺基)烯丙基矽烷、雙(第三丁基胺基)乙烯基甲基矽烷、雙(第三丁基胺基胺基)二乙烯基矽烷、雙(第三丁基胺基胺基)乙烯基矽烷、雙(第三丁基胺基胺基)烯丙基甲基矽烷、雙(第三丁基胺基胺基)二烯丙基矽烷、雙(第三丁基胺基胺基)烯丙基矽烷、雙(二乙基胺基)乙烯基甲基矽烷、雙(二乙基胺基)二乙烯基矽烷、雙(二乙基胺基)乙烯基矽烷、雙(二乙基胺基)烯丙基甲基矽烷、雙(二乙基胺基)二烯丙基矽烷、雙(二乙基胺基)烯丙基矽烷、雙(二甲基胺基)乙烯基甲基矽烷、雙(二甲基胺基)二乙烯基矽烷、雙(二甲基胺基)乙烯基矽烷、雙(二甲基胺基)烯丙基甲基矽烷、雙(二甲基胺基)二烯丙基矽烷、雙(二甲基胺基)烯丙基矽烷、雙(甲基乙基胺基)乙烯基甲基矽烷、雙(甲基乙基胺基)二乙烯基矽烷、雙(甲基乙基胺基)乙烯基矽烷、雙(甲基乙基胺基)烯丙基甲基矽烷、雙(甲基乙基胺基)二烯丙基矽烷、雙(甲基乙基胺基)烯丙基矽烷、二(六氫吡啶基)乙烯基甲基矽烷、二(六氫吡啶基)二乙烯基矽烷、二(六氫吡啶基)乙烯基矽烷、二(六氫吡啶基)烯丙基甲基矽烷、二(六氫吡啶基)二烯丙基矽烷、二(六氫吡啶基)烯丙基矽烷、二吡咯啶基乙烯基甲基矽烷、二吡咯啶基二乙烯基矽烷、二吡咯啶基乙烯基矽烷、二吡咯啶基烯丙基甲基矽烷、二吡咯啶基二烯丙基矽烷、二吡咯啶基烯丙基矽烷、叁(異丙基胺基)乙烯基矽烷、叁(異丙基胺基)烯丙基矽烷、叁(第三丁基胺基)乙烯基矽烷、叁(第三丁基胺基)烯丙基矽烷、叁(二乙基胺基)乙烯基矽烷、叁(二乙基胺基)烯丙基矽烷、叁(二甲基胺基)乙烯基矽烷、叁(二甲基胺基)烯丙基矽烷、叁(甲基乙基胺基)乙烯基矽烷、叁(甲基乙基胺基)烯丙基矽烷、三(六氫吡啶基)乙烯基矽烷、三(六氫吡啶基)烯丙基矽烷、三吡咯啶基乙烯基矽烷、三吡咯啶基烯丙基矽烷、1,3,5-三乙烯基-1,3,5-三甲基環三矽氮烷、1,3,5-三乙烯基環三矽氮烷、1,1,3,3,5,5-六乙烯基環三矽氮烷、1,3,5-三烯丙基-1,3,5-三甲基環三矽氮烷、1,3,5-三烯丙基環三矽氮烷、1,1,3,3,5,5-六烯丙基環三矽氮烷、1,3,5,7-四乙烯基環四矽氮烷、1,1,3,3,5,5,7,7-八乙烯基環四矽氮烷、1,3,5,7-四烯丙基-1,3,5,7-四甲基環四矽氮烷、1,3,5,7-四烯丙基環四矽氮烷、1,1,3,3,5,5,7,7-八乙烯基環四矽氮烷。
試驗時使用的特定特定前驅物為雙(異丙基胺基)乙烯基甲基矽烷(BIPAVMS)。另一類似的前驅物為雙(異丙基胺基)二乙烯基矽烷(BIPADVS)。
本發明所述的方法可使用圖1中舉例說明的低壓熱壁式CVD反應器來證實。該CVD反應器300係藉由周圍的加熱元件201來加熱。所有晶圓203均裝於晶圓固持器202上,其確保該等晶圓能沿著該CVD反應器的軸放置使各晶圓內部可均勻地受熱。單次試驗中的晶圓數目可為至多25個。
在該膜沉積方法開始之前,以惰性氣體(例如,Ar或N2 )透過入口103填入該CVD管,並且接著使用真空泵或維持泵(process pump)302泵抽至低於1毫托耳的真空度並且透過廢棄區303排放。該CVD反應器接著再以惰性氣體填充並且被加熱至調定沉積開始的溫度。一旦該CVD反應器達於該調定溫度,關閉該閥103A並且打開閥101A和102A以將前驅物蒸氣和反應性氣體引進該CVD反應器。該CVD反應器的壓力係藉由變化節流閥301的開啟來控制。
該反應性氣體(例如,O2 )透過入口102流入該CVD反應器而且流速係藉由質流控制器(MFC)來控制。該矽前驅物係呈液態並且被填入液體容器101D。利用高壓氦氣協助將該液體推入汽化器101B,該汽化器101B將該液體加熱並且將該液體汽化。該液態前驅物的流量係利用液體流量控制器(LFC)來控制。該前驅物蒸氣的流速可藉由LFC 101C及該汽化器101B的加熱溫度來控制;就LFC的指定調定而言,該汽化器的溫度越高,該前驅物蒸氣的流速越大;就該汽化器的指定溫度調定而言,該LFC的流速越高,該前驅物蒸氣的流速越大。該閥101A打開或停止該前驅物蒸氣流至該CVD反應器。該CVD反應器的壓力可在約0.01托耳至約1托耳的範圍中。該反應性氣體(例如,O2 )的流速可在5 sccm至200 sccm的範圍中。該矽前驅物蒸氣的流速可在5 sccm至200 sccm的範圍中。該沉積溫度與該反應器壁溫度相同。該沉積溫度可在500℃至700℃的範圍中。
預先調定沉積時間以為該方法帶來具有希望厚度的膜。該沉積速率取決於許多加工參數,包括:沉積溫度、氧氣的流速、載體氣體(氦)的流速、該矽前驅物的液體質量流量、該汽化器的溫度及該反應器的壓力。該汽化器溫度可在20℃至150℃的範圍中。於55℃的汽化器溫度下,該沉積速率為約0.5 nm/min。
該二氧化矽的沉積速率可在每分鐘0.1 nm至10 nm的範圍中。該速率可藉由變化該沉積溫度、該汽化器溫度、該LFC流量、該反應性氧氣的流速及該CVD反應器的壓力來控制。
利用ALD方法形成均勻不含氮的二氧化矽膜的方法可利用圖2中舉例說明的ALD反應器來證實。ALD反應器A200由艙壁A300及基材固持器A202構成。其二者可於不同溫度下被單獨加熱。晶圓(或基材)係於該沉積方法期間被置於A202上。
在該膜沉積方法開始之前,以惰性氣體(例如Ar或N2)透過入口A104和閥A104A填入該ALD反應器A200,並且接著使用真空泵或維持泵A302泵抽至低於1毫托耳的真空度並且排放至廢棄區A303。該ALD反應器A200接著再以惰性氣體填充並且藉由加熱器A201將該基材固持器A202及該反應器壁加熱至調定沉積開始的溫度。
該矽前驅物係由蒸氣吸引管A101遞送,該吸引管A101係藉由圍繞矽前驅物容器A101D的電熱器A101E來加熱並且在沉積的期間保持於恆定溫度。該矽前驅物的流量係透過高速ALD閥A101A、質流控制器A101B及閥A101C來控制。溫度係介於20℃至100℃之間。氦可透過管道A103及閥103A與該矽前驅物同時引進。該氧前驅物係透過具有加熱器A102E的容器A102D穿過控制管道A102的高速ALD閥A102A沿著質流控制器A102B及閥A102C遞送。
該ALD方法的順序如下:
‧ 藉由關閉閥A301及打開閥A101A經相同時間將矽前驅物供入反應器A200達0.1至10秒;
‧ 藉由關閉閥A101A及打開閥A301和A104A經相同時間以沖洗反應器A200達0.5至5秒;
‧ 藉由關閉閥A301及打開閥A102A經相同時間將氧供入反應器A200達0.1至10秒;
‧ 藉由關閉閥A102A及打開閥A301經相同時間以沖洗反應器A200達0.5至5秒;
‧ 重複進行上述循環數次直到達成希望的膜厚度。
循環式CVD方法
圖2中也舉例說明形成均勻不含氮的二氧化矽膜的循環式CVD方法。該ALD反應器可用於該循環式CVD方法。該循環式CVD方法用以沉積均勻不含氮的膜之主要差異在於該矽前驅物及氧前驅物的劑量可以比用於ALD的劑量高出許多,及因此該沉積速率可比ALD高許多。然而,該沉積溫度為400至700℃,比用於ALD方法的沉積溫度高許多。
該循環式CVD方法的順序如下:
‧ 藉由關閉閥A301及打開閥A101A經相同時間將矽前驅物供入反應器A200達5至20秒;
‧ 藉由關閉閥A101A及打開閥A301和A104A經相同時間以沖洗反應器A200達0.1至1秒;
‧ 藉由關閉閥A301及打開閥A102A經相同時間將氧供入反應器A200達5至20秒;
‧ 藉由關閉閥A102A及打開閥A301和A104A經相同時間以沖洗反應器A200達0.1至1秒;
‧ 重複進行上述循環數次直到達成希望的膜厚度。
膜厚度及光學性質
使用FilmTek 2000SE橢圓儀進行厚度及光學性質例如氧化物膜折射率的特徵化。使用於正交入射(入射角=0°)下的光譜學反射數據來進行數據擬合。所用的光之波長範圍為介於200 nm至900 nm。因為當光的波長係介於200 nm與4000 nm之間時二氧化矽的消光係數(k)為0而且二氧化矽的分散性乃眾所周知,所以該數據只有在高頻介電係數時才相符。該氧化物膜的厚度及折射率可藉由該膜的反射數據擬合於預先調定物理模型(例如,Lorentz Osicllator模型)而獲得。使用RMSE(均方根誤差)來推測擬合的適性而且該值必須低於1%才能將測量結果視為可靠。
化學組成
該等膜的化學組成之特徵化係利用X-射線光電子光譜儀(XPS)完成。該等X-射線光電子光譜圖實驗係靠著裝配多通道盤(MCD)及聚焦型鋁單色X-射線源的PHI 5000 VersaProbe Spectrometer來進行。低解析測量掃描係於117.4 eV通行能、1.000 eV/step及50 msec/step停滯時間下進行。高解析多重掃描係於23.50 eV通行能、0.100 eV/step及100 msec/step停滯時間下進行。分析面積利用45°的出射角為直徑200微米。數據利用供應商供應的軟體來收集。應用CasaXPS以利用經透射函數校正的面積靈敏度因子(ASF)來診斷該等數據。所有光譜均充電修正至CHx =284.8 eV。該蝕刻速率靠203 nm SiO2 /Si來校正而且大約為120 A/min。
於稀HF溶液中的蝕刻速率
蝕刻試驗係於1重量% HF(於去離子水中)溶液下進行。將該等膜(沉積於矽晶圓上)置於HF溶液中經30秒,接著於去離子水中沖洗並且在再次測量蝕刻期間損失的材料之前乾燥。將利用習知及相同蝕刻速率的兩個熱氧化矽膜作為參考組與要被特徵化及蝕刻的膜同時裝於相同匣中。該等膜,與參考組熱氧化物膜一起,係於使用橢圓儀及上述方法前後於橫跨膜表面的9個不同點測量其厚度。接著將該蝕刻速率計算成厚度減量除以該等膜被浸入該HF溶液的時間。
介電係數
介電係數,k,係從MDC 802B-150汞探測器測得的C-V曲線求得。該探測器由固持樣品及形成於該膜上能被測量的電氣接點的探針台、Keithley 236電源表及用於C-V測量的HP4284A LCR量計構成。關於C-V測量使得具有相對低電阻率(低於0.02 ohm-cm的表面電阻)的矽晶圓來沉積該等膜。應用前觸點(front contact)模式將電氣接點形成於該膜。透過細管從貯槽將液態金屬(汞)推至該晶圓表面以形成二導電性接點。依據推出汞的管徑求得該等接點面積。接著從下式求出該介電係數:k=電容量x接點面積/該膜的厚度。
實施例1 該膜的化學組成
圖3中顯示非常均勻的不含氮的膜之典型XPS而且表1中也列示包括氮在內的不同元素之組成。從圖3及表1二者可見到,該等膜中沒有偵測到顯著量的氮。
實施例2 該膜的厚度及蝕刻速率
使用橢圓儀測量利用上述發明形成的二氧化矽膜的厚度。於1重量% HF溶液中蝕刻該膜及標準熱二氧化矽。該蝕刻速率接著從膜厚度測量求出並且與熱氧化物的膜厚度比較。表2中列出結果。如表2可見到,該低蝕刻速率二氧化矽(本發明)的濕式蝕刻速率甚至比熱氧化物膜低。
實施例3 氧化矽沉積
利用ATV牌的低壓化學氣相沉積(LPCVD)反應器,我們在每個沉積試驗裝入25個100 mm矽晶圓。在該反應器關上門之後,我們起動自動系統序列器以開始此方法。序列剛開始將該艙泵抽至約1至5毫托耳的基準壓力經約10分鐘。接著此方法將引入氮沖洗氣體(約40至50 sccm)並且開始使用一節流閥控制該艙壓以獲得適當製程壓力(125至500毫托耳)。此方法接著使該艙斜線上升至希望的製程溫度(550℃或600℃),這可能得花大約30分鐘。達於該製程溫度之後,令該晶圓溫度保持穩定30分鐘,同時又讓該氮沖洗氣體流動並且保持製程壓力。等該穩定化時期經過之後,切斷該氮沖洗氣體流動而且使該前驅物(雙(異丙基胺基)乙烯基甲基矽烷)及氧開始流動,同時仍保持該製程壓力及溫度。該前驅物(雙(異丙基胺基)乙烯基甲基矽烷)流量為約14至19 sccm。氧流量為20 sccm或40 sccm。等該沉積步驟完成之後,關掉該前驅物(雙(異丙基胺基)乙烯基甲基矽烷)及氧並且讓該氮沖洗氣體流動。將該節流閥調成開啟以便能沖洗該艙的前驅物(雙(異丙基胺基)乙烯基甲基矽烷)及氧。此時該系統開始斜線下降至約60℃以供取出該等晶圓。該勻變一般花約60分鐘來冷卻。等該方法完成之後,該系統能以氮自動回填該艙並且使其來到大氣壓力,而且能開啟該艙的門以供取出該等晶圓。
利用Rudolph FOCUS自動橢圓儀,每次沉積測量3至20個晶圓。以9點測量圖應用於各晶圓。測得的平均膜厚度變化於350至1000,其取決於使用的方法。那意指沉積速率變化於5.8/min至17/min。晶圓厚度均勻度變化於2.0%至6.9%。測得的平均折射率變化於1.4375至1.4828。
圖4顯示氧化矽膜的動態二次離子質譜(SIMS)深度剖面元素分析,其顯出該膜的矽、氧及碳之優良組成均勻性,以及非常低含量的氮。
101A...閥
101B...汽化器
101C...液體流量控制器
101D...液體容器
102...入口
102A...閥
103...入口
103A...閥
201...加熱元件
202...晶圓固持器
203...晶圓
300...CVD反應器
301...節流閥
302...維持泵
303...廢棄區
A101...蒸氣吸引管
A101A...高速ALD閥
A101B...質流控制器
A101C...閥
A101D...矽前驅物容器
A101E...電熱器
A102...管道
A102A...高速ALD閥
A102B...質流控制器
A102C...閥
A102D...容器
A102E...加熱器
A103...管道
A104...入口
A104A...閥
A200...ALD反應器
A201...加熱器
A202...基材固持器
A300...艙壁
A301...閥
A302...維持泵
A303...廢棄區
圖1為CVD反應器的截面之概視圖。
圖2為ALD反應器的截面之概視圖。
圖3為低蝕刻二氧化矽膜的X-射線光電子光譜圖(XPS)。
圖4為顯示依據本發明沉積的總組合物的深度剖面圖形。
101A...閥
101B...汽化器
101C...液體流量控制器
101D...液體容器
102...入口
102A...閥
103...入口
103A...閥
201...加熱元件
202...晶圓固持器
203...晶圓
300...CVD反應器
301...節流閥
302...維持泵
303...廢棄區

Claims (10)

  1. 一種形成選自氧化矽或二氧化矽的膜的原子層沉積法,該膜於HF溶液中具有低於熱二氧化矽膜的濕式蝕刻速率,該方法包含:a.能提供矽來源的第一前驅物至原子層沉積反應器,其中該第一前驅物係選自由下列化合物所組成的群組:R1 n R2 m Si(NR3 R4 )4-n-m ;及(R1 R2 SiNR3 )p 的環狀矽氮烷;其中R1 為C2 -C10 烯基或芳香族;R2 、R3 及R4 係選自H、線性C1 -C10 烷基、分支或環狀C3 -C10 烷基,線性C2 -C10 烯基、分支或環狀C3 -C10 烯基,及芳香族;n=1至3;m=0至2;p=3至4;b.以惰性氣體沖洗該反應器;c.遞送能提供氧來源的第二前驅物至該反應器;d.以惰性氣體沖洗該反應器;e.重複進行(a)與(d)之間的步驟直到達成希望的膜厚度為止。
  2. 如申請專利範圍第1項之方法,其中R1 係選自由乙烯基、烯丙基及苯基所組成的群組。
  3. 如申請專利範圍第1項之方法,其中該第一前驅物為雙(異丙基胺基)乙烯基甲基矽烷。
  4. 如申請專利範圍第1項之方法,其中該氧前驅物係選自 由氧、臭氧及其混合物所組成的群組。
  5. 一種形成選自氧化矽或二氧化矽的膜的循環式化學氣相沉積方法,該膜於HF溶液中具有低於熱二氧化矽膜的濕式蝕刻速率,該方法包含:a.遞送能提供矽來源的第一前驅物至循環式化學氣相沉積反應器,其中該第一前驅物係選自由下列化合物所組成的群組:R1 n R2 m Si(NR3 R4 )4-n-m ;及(R1 R2 SiNR3 )p 的環狀矽氮烷;其中R1 為C2 -C10 烯基或芳香族;R2 、R3 及R4 係選自H、線性C1 -C10 烷基、分支或環狀C3 -C10 烷基、線性C2 -C10 烯基、分支或環狀C3 -C10 烯基及芳香族;n=1至3;m=0至2;p=3至4;b.以惰性氣體沖洗該反應器0.1至1秒;c.遞送能提供氧來源的第二前驅物至該反應器;d.以惰性氣體沖洗該反應器0.1至1秒;e.重複進行(a)與(d)之間的步驟直到達成希望的膜厚度為止。
  6. 如申請專利範圍第5項之方法,其中R1 係選自由乙烯基、烯丙基及苯基所組成的群組。
  7. 如申請專利範圍第5項之方法,其中該第一前驅物為雙(異丙基胺基)乙烯基甲基矽烷。
  8. 如申請專利範圍第5項之方法,其中該氧前驅物係選自由氧、臭氧及其混合物所組成的群組。
  9. 一種形成選自二氧化矽或氧化矽的膜的原子層沉積法,該方法包含:a.能提供矽來源的第一前驅物至原子層沉積反應器,其中該第一前驅物包含具有下式之化合物:R1 n R2 m Si(NR3 R4 )4-n-m ;其中R1 為C2 -C10 烯基或芳香族;R2 、R3 及R4 係選自H、線性C1 -C10 烷基、分支或環狀C3 -C10 烷基,線性C2 -C10 烯基、分支或環狀C3 -C10 烯基,及芳香族;n=1至3;m=0至2;b.以惰性氣體沖洗該反應器;c.遞送能提供氧來源的第二前驅物至該反應器;d.以惰性氣體沖洗該反應器;e.重複進行(a)與(d)之間的步驟直到達成希望的膜厚度為止。
  10. 一種形成選自氧化矽或二氧化矽的膜的循環式化學氣相沉積方法,該方法包含:a.遞送能提供矽來源的第一前驅物至循環式化學氣相沉積反應器,其中該第一前驅物包具有下式的:R1 n R2 m Si(NR3 R4 )4-n-m ;其中R1 為C2 -C10 烯基或芳香族;R2 、R3 及R4 係選自H、線性C1 -C10 烷基、分支或環狀C3 C10 烷基、線性C2 -C10 烯基、分支或環狀 C3 -C10 烯基及芳香族;n=1至3;m=0至2;b.以惰性氣體沖洗該反應器0.1至1秒;c.遞送能提供氧來源的第二前驅物至該反應器;d.以惰性氣體沖洗該反應器0.1至1秒;e.重複進行(a)與(d)之間的步驟直到達成希望的膜厚度為止。
TW100144719A 2010-12-09 2011-12-05 用於cvd及ald二氧化矽膜的胺基乙烯基矽烷 TWI444499B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/964,266 US8460753B2 (en) 2010-12-09 2010-12-09 Methods for depositing silicon dioxide or silicon oxide films using aminovinylsilanes

Publications (2)

Publication Number Publication Date
TW201224193A TW201224193A (en) 2012-06-16
TWI444499B true TWI444499B (zh) 2014-07-11

Family

ID=45440145

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100144719A TWI444499B (zh) 2010-12-09 2011-12-05 用於cvd及ald二氧化矽膜的胺基乙烯基矽烷

Country Status (6)

Country Link
US (1) US8460753B2 (zh)
EP (1) EP2463404B1 (zh)
JP (1) JP5357240B2 (zh)
KR (1) KR101404576B1 (zh)
CN (2) CN105239055A (zh)
TW (1) TWI444499B (zh)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9448564B2 (en) 2013-02-15 2016-09-20 Reno Technologies, Inc. Gas delivery system for outputting fast square waves of process gas during semiconductor processing
US9188989B1 (en) 2011-08-20 2015-11-17 Daniel T. Mudd Flow node to deliver process gas using a remote pressure measurement device
US9958302B2 (en) 2011-08-20 2018-05-01 Reno Technologies, Inc. Flow control system, method, and apparatus
DE102012203212A1 (de) * 2012-03-01 2013-09-05 Osram Opto Semiconductors Gmbh Beschichtungsanlage und verfahren zur durchführung eines aufwachsprozesses
US9460912B2 (en) 2012-04-12 2016-10-04 Air Products And Chemicals, Inc. High temperature atomic layer deposition of silicon oxide thin films
WO2014040002A2 (en) 2012-09-10 2014-03-13 Mudd Daniel T Pressure based mass flow controller
KR101993355B1 (ko) 2013-03-13 2019-09-30 삼성전자주식회사 반도체 장치의 제조 방법
KR102195139B1 (ko) * 2014-02-20 2020-12-24 삼성전자주식회사 반도체 장치의 제조 방법
US9875888B2 (en) 2014-10-03 2018-01-23 Applied Materials, Inc. High temperature silicon oxide atomic layer deposition technology
KR102332415B1 (ko) * 2014-10-24 2021-12-01 버슘머트리얼즈 유에스, 엘엘씨 실리콘-함유 막을 증착시키기 위한 조성물 및 이를 사용하는 방법
US10421766B2 (en) * 2015-02-13 2019-09-24 Versum Materials Us, Llc Bisaminoalkoxysilane compounds and methods for using same to deposit silicon-containing films
US20190292658A1 (en) * 2015-12-21 2019-09-26 Versum Materials Us, Llc Compositions and methods using same for deposition of silicon-containing film
SG11201807211XA (en) * 2016-02-26 2018-09-27 Versum Materials Us Llc Compositions and methods using same for deposition of silicon-containing film
US10303189B2 (en) 2016-06-30 2019-05-28 Reno Technologies, Inc. Flow control system, method, and apparatus
US11144075B2 (en) 2016-06-30 2021-10-12 Ichor Systems, Inc. Flow control system, method, and apparatus
US10838437B2 (en) 2018-02-22 2020-11-17 Ichor Systems, Inc. Apparatus for splitting flow of process gas and method of operating same
US10679880B2 (en) 2016-09-27 2020-06-09 Ichor Systems, Inc. Method of achieving improved transient response in apparatus for controlling flow and system for accomplishing same
US10663337B2 (en) 2016-12-30 2020-05-26 Ichor Systems, Inc. Apparatus for controlling flow and method of calibrating same
US11177127B2 (en) * 2017-05-24 2021-11-16 Versum Materials Us, Llc Functionalized cyclosilazanes as precursors for high growth rate silicon-containing films
EP3844319A4 (en) * 2018-10-04 2022-06-08 Versum Materials US, LLC HIGH TEMPERATURE ATOMIC LAYER DEPOSITION COMPOSITION OF HIGH QUALITY SILICON OXIDE THIN FILMS
CN112777565B (zh) * 2019-11-05 2022-11-22 中国科学院大连化学物理研究所 一种可抑制逆反应的半导体光催化分解水的方法
JP2023542236A (ja) * 2020-07-24 2023-10-05 バーサム マテリアルズ ユーエス,リミティド ライアビリティ カンパニー ゲルマニウムシード層のための組成物およびそれを使用する方法
WO2022186971A1 (en) 2021-03-03 2022-09-09 Ichor Systems, Inc. Fluid flow control system comprising a manifold assembly

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1352951A (en) * 1971-12-08 1974-05-15 Shell Int Research Electrostatic coating of glass-fibre material
US4863755A (en) * 1987-10-16 1989-09-05 The Regents Of The University Of California Plasma enhanced chemical vapor deposition of thin films of silicon nitride from cyclic organosilicon nitrogen precursors
JP3093070B2 (ja) * 1993-01-26 2000-10-03 大阪瓦斯株式会社 Cvd薄膜形成装置
US5976991A (en) * 1998-06-11 1999-11-02 Air Products And Chemicals, Inc. Deposition of silicon dioxide and silicon oxynitride using bis(tertiarybutylamino) silane
JP4722269B2 (ja) * 2000-08-29 2011-07-13 Azエレクトロニックマテリアルズ株式会社 低誘電率多孔質シリカ質膜、半導体装置およびコーティング組成物、ならびに低誘電率多孔質シリカ質膜の製造方法
US6391803B1 (en) * 2001-06-20 2002-05-21 Samsung Electronics Co., Ltd. Method of forming silicon containing thin films by atomic layer deposition utilizing trisdimethylaminosilane
US20080268177A1 (en) 2002-05-17 2008-10-30 Air Products And Chemicals, Inc. Porogens, Porogenated Precursors and Methods for Using the Same to Provide Porous Organosilica Glass Films with Low Dielectric Constants
KR100505668B1 (ko) * 2002-07-08 2005-08-03 삼성전자주식회사 원자층 증착 방법에 의한 실리콘 산화막 형성 방법
US6838125B2 (en) * 2002-07-10 2005-01-04 Applied Materials, Inc. Method of film deposition using activated precursor gases
US20040197474A1 (en) 2003-04-01 2004-10-07 Vrtis Raymond Nicholas Method for enhancing deposition rate of chemical vapor deposition films
JP3666751B2 (ja) 2003-11-28 2005-06-29 東京エレクトロン株式会社 絶縁膜の形成方法及び絶縁膜形成システム
JP2006261434A (ja) 2005-03-17 2006-09-28 L'air Liquide Sa Pour L'etude & L'exploitation Des Procede S Georges Claude シリコン酸化膜の形成方法
US7312129B2 (en) * 2006-01-25 2007-12-25 Freescale Semiconductor, Inc. Method for producing two gates controlling the same channel
JP5177617B2 (ja) * 2006-12-25 2013-04-03 独立行政法人産業技術総合研究所 酸化シリコン薄膜形成装置
US7500397B2 (en) * 2007-02-15 2009-03-10 Air Products And Chemicals, Inc. Activated chemical process for enhancing material properties of dielectric films
WO2009006272A1 (en) 2007-06-28 2009-01-08 Advanced Technology Materials, Inc. Precursors for silicon dioxide gap fill
US8580993B2 (en) * 2008-11-12 2013-11-12 Air Products And Chemicals, Inc. Amino vinylsilane precursors for stressed SiN films
US8703624B2 (en) 2009-03-13 2014-04-22 Air Products And Chemicals, Inc. Dielectric films comprising silicon and methods for making same
US8889235B2 (en) * 2009-05-13 2014-11-18 Air Products And Chemicals, Inc. Dielectric barrier deposition using nitrogen containing precursor
US8242029B2 (en) * 2009-11-23 2012-08-14 Asm International N.V. Method for forming a silicon dioxide/metal oxide-nanolaminate with a desired wet etch rate

Also Published As

Publication number Publication date
TW201224193A (en) 2012-06-16
KR101404576B1 (ko) 2014-06-09
CN102534548A (zh) 2012-07-04
EP2463404A1 (en) 2012-06-13
KR20120064635A (ko) 2012-06-19
US8460753B2 (en) 2013-06-11
JP2012124492A (ja) 2012-06-28
CN105239055A (zh) 2016-01-13
JP5357240B2 (ja) 2013-12-04
US20120148745A1 (en) 2012-06-14
EP2463404B1 (en) 2019-10-23

Similar Documents

Publication Publication Date Title
TWI444499B (zh) 用於cvd及ald二氧化矽膜的胺基乙烯基矽烷
TWI644359B (zh) 用於低溫原子層沉積膜之腔室底塗層準備方法
TWI547587B (zh) 平滑之含矽膜
KR101913443B1 (ko) 컨포멀 막들의 플라즈마 활성화된 성막
TWI359459B (en) Low wet etch rate silicon nitride film
TWI512136B (zh) 伴隨持續的電漿之pecvd多重步驟處理方法
US7780865B2 (en) Method to improve the step coverage and pattern loading for dielectric films
JP4237845B2 (ja) 最適なkのhdp−cvd処理のためのレシピステップのシーケンス化
KR101422651B1 (ko) 반도체 장치의 제조 방법 및 기판 처리 장치
JPH118235A (ja) 高堆積速度のハロゲンドープトシリコン酸化物層を堆積させるプロセス
TW201618189A (zh) 矽氧化物之沉積方法
TW201233840A (en) Polysilicon films by HDP-CVD
JP2010153859A (ja) Pecvdを用いた流動性誘電体による間隙の充填
KR20060023137A (ko) Hdp-cvd 다단계 갭충진 프로세스
JP2018512727A (ja) 高品質薄膜を形成するための周期的連続処理
US7879397B2 (en) Method for processing polysilazane film
KR20120021253A (ko) 미세 패턴의 형성 방법
KR20150140232A (ko) 반도체 기판들에 대한 반응성 큐어링 공정
Boogaard et al. Characterization of SiO2 films deposited at low temperature by means of remote ICPECVD
US11469147B2 (en) Gas phase production of radicals for dielectrics
Hernández et al. Kinetics and Compositional Dependence on the Microwave Power and SiH4/N 2 Flow Ratio of Silicon Nitride Deposited by Electron Cyclotron Resonance Plasmas
KR101008490B1 (ko) 저온 화학기상증착에 의한 산화막 증착 방법
KR20200100859A (ko) 텅스텐 탄화물 막에 대한 접착 및 결함들을 개선하기 위한 기법들
Marsik et al. Changes of UV optical properties of plasma damaged low-k dielectrics for sidewall damage scatterometry
TW202334478A (zh) 氧化矽之拓撲選擇性膜形成之方法

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees